WO2014061340A1 - 回転陽極x線管装置およびx線撮像装置 - Google Patents

回転陽極x線管装置およびx線撮像装置 Download PDF

Info

Publication number
WO2014061340A1
WO2014061340A1 PCT/JP2013/071783 JP2013071783W WO2014061340A1 WO 2014061340 A1 WO2014061340 A1 WO 2014061340A1 JP 2013071783 W JP2013071783 W JP 2013071783W WO 2014061340 A1 WO2014061340 A1 WO 2014061340A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
ray tube
bearing
rotary
rotating
Prior art date
Application number
PCT/JP2013/071783
Other languages
English (en)
French (fr)
Inventor
井上 知昭
智彬 山下
秋田 浩二
関 善隆
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Publication of WO2014061340A1 publication Critical patent/WO2014061340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/1024Rolling bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces

Definitions

  • the present invention relates to a rotary anode X-ray tube device and an X-ray imaging device that reduce rotational vibration of the rotary anode X-ray tube.
  • an X-ray tube apparatus is used as an X-ray generation source in medical X-ray apparatuses (X-ray imaging apparatuses) and industrial X-ray inspection apparatuses (X-ray imaging apparatuses) that diagnose a subject using X-rays. in use.
  • the X-ray tube apparatus has a structure in which an X-ray tube is accommodated in a housing filled with insulating oil.
  • the X-ray tube includes a cathode that emits thermoelectrons and an anode that is disposed to face the cathode. It is provided in a vacuum vessel.
  • thermoelectrons reaching the anode form an electron beam spot on the target provided on the anode, and X-rays are generated from the electron beam spot.
  • a rotary anode X-ray tube device having a rotary anode type X-ray tube is known.
  • a rotating anode type X-ray tube electrons emitted from the cathode are accelerated and focused by a potential gradient between the cathode and the anode target, and collide with the surface of the rotating X-ray emitting layer of the anode target substantially perpendicularly. Form the focal point that will be the source.
  • an electron beam with high energy collides with the focal point, the electron beam is rapidly decelerated by the X-ray emitting layer, and X-rays are emitted.
  • the rate of conversion to X-rays is about 1% of the kinetic energy of the electrons that collide with the X-ray emitting layer, and the remaining energy is converted to heat, which heats the anode target and its surroundings.
  • the target electron beam spot When heat is concentrated in the target electron beam spot, the target electron beam spot may be melted by the heat.
  • the electron beam spot on the target In the rotating anode X-ray tube device, the electron beam spot on the target is changed by rotating the anode. It is dispersed to prevent heat from being concentrated in the target electron beam spot.
  • the rotary anode X-ray tube device has a structure in which the rotary anode is supported by a vacuum vessel via a bearing such as a ball bearing, and the rotary anode rotates due to backlash of parts, residual imbalance, bearing clearance, etc. Vibration may occur as the anode rotates.
  • the vibration is propagated to the vacuum vessel via the supporting means supporting the rotating anode, and further propagated to the housing via the X-ray tube attaching means. For this reason, the housing vibrates and the resolution of the X-ray image is lowered or noise is generated.
  • Patent Document 1 describes that a rotating body support body is made to have low rigidity, and the support body is provided with an attenuation device using a squeeze film damper using an insulating oil filled in an X-ray tube apparatus. Yes. According to Patent Document 1, since the vibration of the X-ray tube device is effectively absorbed, the dynamic load acting on the rolling bearing is reduced. Thereby, a stable rotation characteristic can be obtained for a long time, and an X-ray photograph with good image quality can be obtained.
  • This X-ray tube device includes a rotating anode support means for supporting the rotating anode and an X-ray tube mounting means, and a vibration isolating member for attenuating vibration generated when the rotating anode rotates between them. Intervened.
  • the vibration is absorbed and attenuated by the vibration isolating member, so that it is transmitted from the X-ray tube mounting means to the housing side. Vibration and accompanying noise can be greatly reduced.
  • the rotating anode support means has a soft support structure by the vibration isolating member and suppresses the vibration generated from the rotating anode, the vibration of the rotating anode itself can be reduced.
  • a liquid metal gasket described in Patent Document 3 is known as a liquid metal gasket used in a vacuum tube.
  • the liquid metal gasket includes an inner plug that includes a liquid metal fill, a first seal that is operatively connected to a first end of the inner plug to isolate the bearing assembly from the vacuum vessel portion of the vacuum tube; A second seal operatively connected to the second end of the inner plug to prevent particles and vapor in the cavity of the bearing assembly from moving into the vacuum region of the x-ray tube.
  • the first seal is preferably a contact seal and the second seal is preferably a non-contact seal.
  • the liquid metal gasket may include a liquid metal such as mercury, gallium or a gallium alloy.
  • an X-ray tube apparatus using liquid metal is known as described in Patent Document 4.
  • a cathode region that generates an electron beam, an anode target that emits X-rays by irradiation of the electron beam, and a bearing region that includes a hydrodynamic slide bearing are provided in a part of a region facing each other.
  • a rotating support mechanism that has a rotating portion and a fixed portion whose other opposing regions are non-bearing regions, and rotatably supports the anode target, and a vacuum envelope that houses the cathode, anode target, and rotating support mechanism And at least a part of the surface of one or both of the rotating part and the fixed part in the non-bearing region is made of a material having a poor wettability with respect to the liquid metal lubricant than the surfaces of the rotating part and the fixed part in the bearing region. It is formed with. According to this X-ray tube apparatus, an increase in bearing loss can be suppressed when the anode target rotates at a high speed.
  • the X-ray tube apparatus described in Patent Document 1 is provided with a vibration damping device using insulating oil in a support portion of a rotating body having a low temperature, and is employed as a support for a high temperature portion of a rotating anode X-ray tube apparatus. Can not do it. Further, in the X-ray tube device described in Patent Document 2, a vibration isolating member that attenuates vibration generated when the rotating anode rotates between the rotating anode supporting means that supports the rotating anode and the X-ray tube mounting means.
  • any lubricant can be used by separating the bearing portion and the anode target portion by a gasket structure made of liquid metal, but the rolling bearing has a damping function. Therefore, there is little vibration reduction effect.
  • a slide bearing structure made of liquid metal is described and has a fluid damping function.
  • both a radial bearing and a thrust bearing are required, which is expensive. There is a problem that a large amount of liquid metal is required and the cost is increased.
  • an object of the present invention is to provide a rotating anode X-ray tube device and an X-ray imaging device that can attenuate rotational vibrations, improve bearing life, and obtain stable rotation over the long term.
  • a rotating anode X-ray tube device includes a cathode member that generates an electron beam, an anode member that generates an X-ray when the electron beam collides, a rotating member that supports the anode member, and the rotating member.
  • a rotating anode X-ray tube comprising: a bearing box rotatably supported via a bearing; and a container containing these cathode member, anode member, rotating member and bearing box in a vacuum-tight manner.
  • the bearing is disposed at least on the anode member side in the axial direction of the rotating member, and a gap is formed between an outer ring of the rolling bearing and an inner surface of the bearing box, and a liquid metal is formed in the gap. Is filled.
  • the X-ray imaging apparatus is provided with such a rotary anode X-ray tube apparatus.
  • FIG. 1 It is sectional drawing which shows the rotary anode X-ray tube apparatus which concerns on 1st Embodiment of this invention. It is an expanded sectional view showing a rotating anode X-ray tube. It is an expanded sectional view of a bearing part. It is a schematic block diagram which shows the X-ray CT apparatus as an X-ray imaging apparatus. It is an expanded sectional view which shows the bearing part of the rotary anode X-ray tube apparatus which concerns on 2nd Embodiment of this invention. It is an expanded sectional view which shows the bearing part of the rotating anode X-ray tube apparatus which concerns on 3rd Embodiment of this invention.
  • the rotary anode X-ray tube device 1 includes a rotary anode X-ray tube 2 inside.
  • the rotating anode X-ray tube 2 includes a cathode member (hereinafter referred to as a cathode body) 3 that generates an electron beam, an anode member (hereinafter referred to as an anode target) 4 that generates an X-ray upon collision with an electron beam, and an anode target.
  • the bottomed cylindrical drive motor rotor 5 that serves as a rotating member that supports the shaft 4, the shaft 6 connected to the drive motor rotor 5, the rolling bearings 10A and 10B that support the shaft 6, and the shaft via the rolling bearings 10A and 10B And a glass tube ball as a container containing the cathode body 3, the anode target 4, the drive motor rotor 5, the shaft 6 (rolling bearings 10A and 10B) and the bearing box 7 in a vacuum-tight manner. 8 and so on.
  • the rotary anode X-ray tube 2 is fixed in a housing 9 that forms an outer frame of the rotary anode X-ray tube device 1.
  • a frame 9a protrudes from one end portion inside the housing 9 in the axial direction of the rotary anode X-ray tube 2, and a support portion 9b is fixed to the frame 9a.
  • the rotary anode X-ray tube 2 is fixed to the support portion 9b with a bolt 11.
  • the other end of the rotary anode X-ray tube 2 (glass tube bulb 8) is supported by the housing 9 via a tube support 12.
  • the frame 9a is provided with a motor stator 3a serving as a magnetic field generator, and the drive motor rotor 5 and the anode target 4 rotate in the range of 3000 to 9000 rpm by the generation of the rotating magnetic field.
  • a high voltage is applied between the cathode body 3 and the anode target 4, so that the housing 9 is filled with an insulating oil 13 in order to ensure overall electrical insulation.
  • the shaft 6 is fixed to the bottom of the drive motor rotor 5 with a bolt (not shown) via a flange 6a.
  • the bearing box 7 includes a base portion 7a, a cylindrical portion 7b provided integrally with the base portion 7a, and a bearing box surrounding material 16 that covers the cylindrical portion 7b.
  • Bolt holes 7c are formed in the base portion 7a.
  • the bolt 11 for fixing to the support part 9b (refer FIG. 1) is fastened by the bolt hole 7c.
  • the shaft 6 is rotatably supported via rolling bearings 10A and 10B.
  • the rolling bearings 10 ⁇ / b> A and 10 ⁇ / b> B are arranged at a predetermined interval via a cylindrical spacer ring 14 in the axial direction of the shaft 6.
  • the spacer ring 14 is positioned and fixed in a non-rotatable manner with a screw or the like (not shown) with respect to the cylindrical portion 7b of the bearing housing 7.
  • the outer peripheral surface of the cylindrical portion 7 b is covered with a cylindrical bearing box surrounding material 16.
  • the bearing box surrounding member 16 has a stepped shape corresponding to the stepped shape of the cylindrical portion 7b, and extends toward the anode target 4 so that the tip end portion 16a covers the bearing 10A.
  • the rolling bearing 10 ⁇ / b> A includes an outer ring 101 and rolling elements (balls) 102.
  • 10 A of rolling bearings do not have an inner ring
  • the outer ring 101 is fixed to the spacer ring 14 by a fixing member such as a pin and is fixed so as not to rotate.
  • a ring-shaped member 15 having a predetermined thickness is attached to the outer peripheral surface 101 a of the outer ring 101.
  • a gap of about several tens of ⁇ m is provided between the outer peripheral surface 15 b of the ring-shaped member 15 and the inner peripheral surface 16 b of the bearing housing surrounding material 16.
  • S1 is formed.
  • the gap S1 is filled with the liquid metal 18.
  • the outer ring 101 of the rolling bearing 10 ⁇ / b> A is supported on the inner peripheral surface 16 b of the bearing box enclosure 16 via the liquid metal 18.
  • the material of the ring-shaped member 15 can be formed of a material that can withstand high temperatures in a vacuum, such as stainless steel.
  • the size of the ring-shaped member 15 (size in the axial direction) can be set as appropriate.
  • the area where the liquid metal 18 is held can be changed, and the reaction force against the vibration input can be set to a desired value.
  • the liquid metal 18 for example, a material containing mercury, gallium, a gallium alloy, or the like can be used, and the boiling point is 1000 ° C. or higher.
  • the rolling bearing 10B has an outer ring 103 and rolling elements 104 as shown in FIG. Similarly to the rolling bearing 10A, the rolling bearing 10B does not have an inner ring, and a groove 6c is formed on the outer peripheral surface of the shaft 6 so that the rolling element 104 is in sliding contact therewith.
  • the outer ring 103 is housed in the cylindrical portion 7b of the bearing box 7, and is positioned by a pressing spring 17 and a ring 19 installed inside the cylindrical portion 7b.
  • the scanner gantry 111 has a circular opening 113 at the center, and a bed 115 for laying the subject 114 is installed in the opening 113.
  • the bed 115 is movable in the body axis direction and the vertical direction of the subject 114 by a horizontal movement unit and a vertical movement unit (not shown).
  • a scanner 112 that rotates around the subject 114 is provided.
  • the rotary anode X-ray tube device 1 and the X-ray detector 116 are arranged on the scanner 112 so as to face each other with the subject 114 interposed therebetween.
  • X-rays generated from the rotating anode X-ray tube apparatus 1 are irradiated to the subject 114.
  • a well-known collimator (not shown) or the like is disposed between the irradiation surface side of the rotary anode X-ray tube apparatus 1, that is, between the rotary anode X-ray tube apparatus 1 and the subject 114, and the irradiation field of the X-ray beam is X.
  • a predetermined width corresponding to the line detector 116 is set.
  • the X-ray detector 116 is formed in an arc shape centered on the focal point of the rotary anode X-ray tube apparatus 1. On the X-ray receiving surface, a large number of X-ray detection element groups are arranged in a channel direction perpendicular to the body axis of the subject 114, and a plurality of X-ray detection element groups are arranged in the body axis direction of the subject 114. It becomes the composition.
  • the X-ray detector 116 detects X-rays transmitted through the subject 114 and the data acquisition device 117 collects data as projection data.
  • Projection data collected by the data collection device 117 is sent to the image reconstruction device 118, and the image reconstruction device 118 reconstructs a tomographic image of the subject 114 based on the projection data. Then, the reconstructed tomographic image is displayed on the image display device 119 and used for image diagnosis.
  • a gap S1 is formed between the outer peripheral surface 15b of the ring-shaped member 15 and the inner peripheral surface 16b of the bearing housing surrounding material 16, Since the liquid metal 18 is filled in the gap S1, the liquid metal 18 can function as a squeeze damper.
  • the liquid metal 18 is pushed away by the vibration propagated through the ring-shaped member 15, the liquid metal 18 A reaction force is generated by the viscosity of, and a vibration damping effect is obtained. Accordingly, the rotational vibration can be suitably attenuated to improve the bearing life, and stable rotation can be obtained over a long period.
  • the rotational vibration can be suitably reduced by the liquid metal 18, so that the rotating anode X-ray tube device 1 having a high vibration damping effect and quiet can be obtained. Can be provided.
  • the liquid metal 18 may be in an amount that fills the narrow gap S1, a large amount of liquid metal is not required unlike a sliding bearing, and the cost can be reduced. Moreover, by changing the size of the ring-shaped member 15, the area where the liquid metal 18 is held can be freely changed, and a desired damping force can be obtained.
  • the outer ring 101 and the ring-shaped member 15 do not rotate, so that no dynamic pressure is generated, and the liquid metal 18 in the narrow gap S1 has a gap due to capillary action. Since it is held in S1, there is no fear of leakage.
  • the grooves 6b and 6c are provided on the outer peripheral surface of the shaft 6, the inner ring of the rolling bearings 10A and 10B is not required, and the shaft 6 can be formed thicker as the inner ring is unnecessary. This contributes to improvement of vibration damping.
  • the noise of the X-ray CT apparatus based on the rotational vibration of the rotary anode X-ray tube apparatus 1 can be suitably reduced, and the quietness is achieved. Improvements can be made. Furthermore, an X-ray CT apparatus capable of improving the resolution of the X-ray image is obtained by attenuating the rotational vibration of the rotary anode X-ray tube apparatus 1.
  • ring-shaped elastic members 105 and 106 are arranged on both sides of the ring-shaped member 15 so as to close the gap S1.
  • the elastic members 105 and 106 are fixed to the inner peripheral surface 16b of the bearing box surrounding member 16, respectively.
  • the elastic members 105 and 106 As the elastic members 105 and 106, a material that does not generate an excessive reaction force against the deformation of about several tens of ⁇ m due to the expansion due to the difference in thermal expansion between the bearing housing material 16 and the shaft 6 is selected. In the present embodiment, since the elastic members 105 and 106 and the ring-shaped member 15 are in contact with each other, and the ring-shaped member 15 is somewhat restrained from vibration, the elastic members 105 and 106 have a small coefficient of friction. A material such as PTFE (polytetrafluoroethylene) is preferably used.
  • PTFE polytetrafluoroethylene
  • the liquid metal 18 is pushed out due to excessive vibration of the shaft 6, or the gap S1 decreases due to thermal expansion and the liquid metal 18 exceeds the volume of the gap S1. Even in this case, the gap S1 is sealed (sealed) by the elastic members 105 and 106, and the liquid metal 18 does not leak outside the gap S1. Therefore, a stable damping effect can be obtained, the bearing life can be improved, and stable rotation can be obtained for a long period.
  • FIG. 3 A rotary anode X-ray tube apparatus according to a third embodiment will be described with reference to FIG.
  • This embodiment is different from the first and second embodiments in that the outer diameter D1 of the axial end portion of the ring-shaped member 15 is smaller than the outer diameter D2 of the central portion of the ring-shaped member 15 in the axial direction. is there.
  • the axial end portion of the ring-shaped member 15 is inclined toward the outer ring 101, whereby the outer diameter D ⁇ b> 1 of the axial end portion of the ring-shaped member 15 is changed to the ring-shaped member 15. It is comprised smaller than the outer diameter D2 of the axial direction center part. That is, the gap S ⁇ b> 1 is enlarged toward the end of the ring-shaped member 15.
  • the liquid metal 18 is expanded by expanding the volume at the axial end of the ring-shaped member 15 against excessive vibration of the shaft 6 and changes in the gap S1 due to thermal expansion. Does not leak from the gap S1.
  • the ring-shaped member 15 is not restrained by the elastic members 105 and 106 (see FIG. 5) as shown in the second embodiment, a more excellent damping effect can be obtained.
  • the inclination toward the outer ring 101 is a straight section, but the outer diameter D1 of the axial end portion of the ring-shaped member 15 is a curved section, a concave section, or a stepped section.
  • the ring-shaped member 15 may be configured to be smaller than the outer diameter D2 of the central portion in the axial direction.
  • a spring 20 that functions as an urging structure is disposed between the rolling bearing 10A and the spacer ring 14, and a preload is applied to the rolling bearing 10A and the rolling bearing 10B by the spring 20.
  • the rolling elements 102 and 104 of both rolling bearings 10A and 10B are pressed against the grooves 6b and 6c by the outer rings 101 and 103 by the spring 20, respectively. Therefore, all the rolling elements 102 and 104 have no play and stable vibration damping is obtained. Further, due to the clearance S1 between the ring-shaped member 15 and the bearing box surrounding material 16, excessive preload and insufficient preload do not occur due to solid astringency caused by friction between the outer ring 101 and the bearing box surrounding material 16. Advantages such as these are also obtained.
  • the spring 20 was arrange
  • the spring 20 should just be arrange
  • a rotary anode X-ray tube apparatus will be described with reference to FIG.
  • the present embodiment differs from the first to fourth embodiments in that a clearance S1 is provided in both the rolling bearing 10A and the rolling bearing 10B, and the clearance S1 is filled with the liquid metal 18 respectively. .
  • the clearance S1 is formed in both the rolling bearing 10A on the side with a large vibration and the rolling bearing 10B on the side with a relatively small vibration, and the liquid metal 18 is filled in these clearances S1, respectively.
  • the rotary anode X-ray tube device 1 can be further damped in vibration and excellent in quietness.
  • the gap S1 is formed between the outer peripheral surface 15b of the ring-shaped member 15 and the inner peripheral surface 16b of the bearing box surrounding material 16, and the liquid metal 18 is filled in the gap S1.
  • the gap S ⁇ b> 1 is formed between the outer ring 101 (outer ring 103) and the inner peripheral surface 16 b (the inner peripheral surface of the cylindrical portion 7 b) of the bearing housing outer member 16. They may be formed directly and filled with the liquid metal 18 in the gap S1.
  • grooves 6b and 6c are formed on the outer peripheral surface of the shaft 6, the present invention is not limited to this, and an inner ring may be provided to support the shaft 6 with the inner ring.
  • the rotary anode X-ray tube apparatus 1 described in each of the embodiments is not limited to the one used for the above-described X-ray CT apparatus, and may be used for an industrial X-ray inspection apparatus as an imaging apparatus. it can. Also in this case, the quietness can be improved and the resolution of the X-ray image can be improved by the rotational vibration damping effect of the rotary anode X-ray tube apparatus 1.

Landscapes

  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

 本発明の回転陽極X線管装置(1)の回転陽極X線管(2)は、陰極部材(3)から出射した電子線が照射されることによりX線を発生する陽極部材(4)と、前記陽極部材を支持する回転部材(5,6)と、前記回転部材を転がり軸受(10A,10B)を介して回転自在に支持する軸受箱(7)と、前記陰極部材、陽極部材、回転部材および軸受箱を真空気密に内包する収容器と、を有し、前記回転部材の軸方向において少なくとも陽極部材側に配置された転がり軸受(10A)の外輪(101)と前記軸受箱の内面との間には、隙間(S1)が形成され、前記隙間には、液体金属(18)が充填されることを特徴とする。 これにより、回転振動を減衰して軸受寿命を向上し、長期的に安定した回転が得られる回転陽極X線管装置およびX線撮像装置が提供される。

Description

回転陽極X線管装置およびX線撮像装置
 本発明は、回転陽極X線管の回転振動を低減した回転陽極X線管装置およびX線撮像装置に関する。
 従来、X線を使用して被検体を診断する医療用X線装置(X線撮像装置)や工業用X線検査装置(X線撮像装置)には、X線発生源としてX線管装置が使用されている。
 X線管装置は、絶縁油が充填されたハウジング内にX線管が収容された構造を有しており、X線管は、熱電子を発する陰極と、陰極と対向配置された陽極とが真空容器内に備わるものである。このようなX線管装置において、陰極と陽極との間に高電圧を印加すると、熱電子が陽極へ向かって加速され、両電極間にX線管電流が流れる。陽極に達した熱電子は陽極に設けられたターゲット上に電子線スポットを形成し、それにより電子線スポットからX線が発生される。
 また、回転陽極型のX線管を備えた回転陽極X線管装置が知られている。回転陽極型のX線管では、陰極から放射された電子は、陰極と陽極ターゲット間の電位勾配により加速、集束され、回転する陽極ターゲットのX線放射層表面に略垂直に衝突してX線発生源となる焦点を形成する。焦点に高いエネルギを持った電子ビームが衝突すると、電子ビームはX線放射層により急速に減速されるためX線が放出される。X線に変換される割合は、X線放射層に衝突する電子の運動エネルギの中の1%程度と僅かで残りのエネルギは熱に変換され陽極のターゲットやその周辺を加熱する。
 ターゲットの電子線スポットに熱が集中的に発生すると、熱によりターゲットの電子線スポットが溶融することがあるが、回転陽極X線管装置では、陽極を回転させることによりターゲット上の電子線スポットを分散させ、ターゲットの電子線スポットに熱が集中的に発生することを防止している。
 ところで、回転陽極X線管装置では、回転陽極がボールベアリング等の軸受を介して真空容器に支持された構造となっており、部品のガタや残留アンバランス、軸受の隙間等が原因で、回転陽極が回転する際に振動が発生することがある。
 回転陽極が振動すると、その振動が回転陽極を支持している支持手段を介して真空容器へと伝播され、さらに、X線管取り付け手段を介してハウジングへと伝播される。このため、ハウジングが振動してX線画像の解像度が低下したり、騒音が生じたりする原因となる。
 本技術分野の背景技術として、特許文献1に記載されたものがある。特許文献1には、回転体の支持体の剛性を低くし、かつ支持体に、X線管装置内に充填された絶縁油を用いたスクイーズフィルムダンパによる減衰装置を備えたものが記載されている。特許文献1によれば、X線管装置の振動が効果的に吸振されるので、転がり軸受に作用する動的荷重が軽減される。これにより、長期的に安定した回転特性が得られ、画質の良いX線写真が得られる。
 また、回転陽極から発生する振動を効率よく低減するものとして特許文献2に記載のX線管装置がある。
 このX線管装置では、回転陽極を支持する回転陽極支持手段とX線管取り付け手段と、を備えており、これらの間に回転陽極が回転する際に発生する振動を減衰する防振部材を介在させてある。これにより、回転陽極や回転陽極支持手段等の製作精度や組み立て精度等が原因で振動が発生しても、防振部材により吸収、減衰されるため、X線管取り付け手段よりハウジング側へ伝播される振動や、これに伴う騒音を大幅に低減することができる。さらに、防振部材により回転陽極支持手段が軟支持構造となって、回転陽極から発生する振動を抑制するため、回転陽極自体の振動を軽減することもできる。
 また、真空管内で使用する液体金属ガスケットとして特許文献3に記載されたものが知られている。この液体金属ガスケットは、液体金属充填物を含む内部プラグと、軸受組立体を真空管の真空容器部分から隔離するように内部プラグの第1の端部に動作上接続された第1のシールと、軸受組立体の空洞内の粒子および蒸気がX線管の真空領域の中へ移動するのを防止するように内部プラグの第2の端部に動作上接続された第2のシールと、を有する。第1のシールは好ましくは接触シールであり、第2のシールは好ましくは非接触シールである。液体金属ガスケットは、水銀、ガリウムまたはガリウム合金のような液体金属を含んでいてもよい。これらの液体金属ガスケットにより、任意の適当な種類の軸受組立体潤滑剤、例えば、油、粉末、液体、固体、湿潤金属等を使用することが可能である。
 また、液体金属を用いたX線管装置として特許文献4に記載されたものが知られている。このX線管装置では、電子ビームを発生する陰極と、電子ビームの照射によりX線を放出する陽極ターゲットと、互いが対向する領域の一部に動圧式すべり軸受からなる軸受領域が設けられ、その他の対向する領域が非軸受領域になっている回転部分および固定部分を有し、陽極ターゲットを回転可能に支持する回転支持機構と、陰極および陽極ターゲット、回転支持機構を収納する真空外囲器とを具備し、非軸受領域における回転部分および固定部分の一方あるいは両方の少なくとも表面の一部を、軸受領域における回転部分および固定部分の表面よりも液体金属潤滑材に対して濡れ性の悪い材料で形成している。このX線管装置によれば、陽極ターゲットが高速回転する場合に、軸受損失の増大を抑えることができる。
特開昭57-78756号公報 特開2010-44897号公報 特開2004-335474号公報 特開2007-273102号公報
 一般的に医療用のX線管装置は病院等の静寂な場所で使用されるため、運転時の騒音は極力小さいことが望ましい。しかしながら、回転陽極X線管装置は、高温・高真空条件で用いられることから、回転体を支持する軸受の潤滑剤として通常用いられるグリースや潤滑油を使用することができない。このため、転がり軸受では、鉛、銀等の固体潤滑材が用いられ、また、すべり軸受では、ガリウム合金等の液体金属が用いられている。
 したがって、転がり軸受では、潤滑条件が十分でなく温度変化による軸受隙間の増加等により、振動が増加して騒音が増大する可能性がある。また、振動の増加により電子ビームも振動するためX線画像の鮮明度も低下し、さらに、振動による動的な荷重も増大するため軸受の寿命が低下する可能性もある。
 特許文献1に記載されたX線管装置は、温度の低い回転体の支持部において絶縁油を用いた振動減衰装置を設けたものであり、回転陽極X線管装置の高温部分の支持として採用することができない。また、特許文献2に記載のX線管装置では、回転陽極を支持する回転陽極支持手段とX線管取り付け手段との間に、回転陽極が回転する際に発生する振動を減衰する防振部材を介在させているが、防振部材による振動低減効果は期待できるものの、回転陽極X線管装置のように室温から高温(約300℃)まで安定した減衰機能を持つ部材の選定が難しい。
 また、特許文献3に記載されたX線管装置では、液体金属によるガスケット構造によって軸受部と陽極ターゲット部とを分離することで任意の潤滑剤を使用できるが、転がり軸受は、減衰機能を有さないため振動低減効果は少ない。
 また、特許文献4に記載されたX線管装置では、液体金属によるすべり軸受構造が記載されており流体による減衰機能を備えているが、ラジアル軸受とスラスト軸受の双方が必要であり、高価な液体金属が多量に必要でコスト高になるといった課題を有している。
 そこで、本発明は、回転振動を減衰して軸受寿命を向上し、長期的に安定した回転が得られる回転陽極X線管装置およびX線撮像装置を提供することを目的とする。
 本発明の回転陽極X線管装置は、電子線を発生する陰極部材と、電子線が衝突してX線を発生する陽極部材と、前記陽極部材を支持する回転部材と、前記回転部材を転がり軸受を介して回転自在に支持する軸受箱と、これらの陰極部材、陽極部材、回転部材および軸受箱を真空気密に内包する収容器と、を含んでなる回転陽極X線管を備え、前記転がり軸受は、前記回転部材の軸方向において少なくとも前記陽極部材側に配置されており、前記転がり軸受の外輪と前記軸受箱の内面との間には、隙間が形成され、前記隙間には、液体金属が充填されていることを特徴とする。
 また、X線撮像装置は、このような回転陽極X線管装置を備えていることを特徴とする。
 本発明によれば、回転振動を減衰して軸受寿命を向上し、長期的に安定した回転が得られる回転陽極X線管装置およびX線撮像装置が得られる。
本発明の第1実施形態に係る回転陽極X線管装置を示す断面図である。 回転陽極X線管を示す拡大断面図である。 軸受部分の拡大断面図である。 X線撮像装置としてのX線CT装置を示す概略構成図である。 本発明の第2実施形態に係る回転陽極X線管装置の軸受部分を示す拡大断面図である。 本発明の第3実施形態に係る回転陽極X線管装置の軸受部分を示す拡大断面図である。 本発明の第4実施形態に係る回転陽極X線管装置の回転陽極X線管を示す拡大断面図である。 本発明の第5実施形態に係る回転陽極X線管装置の回転陽極X線管を示す拡大断面図である。
 以下、本実施形態に係る回転陽極X線管装置について図面を参照して説明する。
(第1実施形態)
 図1に示すように、回転陽極X線管装置1は、内部に回転陽極X線管2を備えている。回転陽極X線管2は、電子線を発生する陰極部材(以下、陰極体という)3と、電子線が衝突してX線を発生する陽極部材(以下、陽極ターゲットという)4と、陽極ターゲット4を支持する回転部材となる有底円筒状の駆動モータロータ5と、駆動モータロータ5に連結された軸6と、軸6を支持する転がり軸受10A,10Bと、転がり軸受10A,10Bを介して軸6を回転自在に支持する軸受箱7と、陰極体3、陽極ターゲット4、駆動モータロータ5、軸6(転がり軸受10A,10B)および軸受箱7を真空気密に内包する収容器としてのガラス管球8と、を含んで構成されている。
 回転陽極X線管2は、回転陽極X線管装置1の外枠を形成するハウジング9内に固定されている。ハウジング9の内側の一端部には、回転陽極X線管2の軸方向にフレーム9aが突設され、このフレーム9aに支持部9bが固定されている。支持部9bには、回転陽極X線管2がボルト11により固定されている。また、回転陽極X線管2(ガラス管球8)の他端部は、管支持体12を介してハウジング9に支持されている。
 フレーム9aには、磁界発生装置となるモータステータ3aが設けられており、回転磁界の発生により、駆動モータロータ5と陽極ターゲット4は、3000~9000rpmの範囲で回転する。X線発生時は、陰極体3と陽極ターゲット4との間に高電圧が印加されるので全体の電気絶縁性を確保するためにハウジング9内は、絶縁油13で満たされている。
 図2に示すように、駆動モータロータ5の底部には、フランジ部6aを介して軸6が図示しないボルトにより固定されている。
 軸受箱7は、基部7aと、基部7aに一体に設けられた円筒部7bと、円筒部7bを覆う軸受箱外囲材16とを有している。基部7aには、ボルト穴7cが形成されている。ボルト穴7cには、支持部9b(図1参照)に固定するためのボルト11が締結される。円筒部7bの内側には、転がり軸受10A,10Bを介して軸6が回転自在に支持されている。
 転がり軸受10A,10Bは、軸6の軸方向に円筒状のスペーサリング14を介して所定の間隔に配置されている。なお、スペーサリング14は、軸受箱7の円筒部7bに対して図示しないねじ等により回転不能に位置決め固定されている。
 円筒部7bの外周面は、円筒状の軸受箱外囲材16で覆われている。軸受箱外囲材16は、円筒部7bの段付き形状に対応する段付き形状を備えており、先端部16aが軸受10Aを覆う状態に、陽極ターゲット4に向けて延出している。
 転がり軸受10Aは、図3に示すように、外輪101と転動体(ボール)102とを有している。転がり軸受10Aは内輪を有しておらず、軸6の外周面に転動体102が摺接する溝6bが形成されている。外輪101は、図示はしないが、ピン等の固定部材によってスペーサリング14に回り止めされており、回転不能に固定されている。外輪101の外周面101aには、所定の厚さを有するリング状部材15が取り付けられている。
 外輪101の外周面101aにリング状部材15が取り付けられた状態で、リング状部材15の外周面15bと軸受箱外囲材16の内周面16bとの間には、数十μm程度の隙間S1が形成されるようになっている。この隙間S1には、液体金属18が充填されている。つまり、転がり軸受10Aの外輪101は、液体金属18を介して軸受箱外囲材16の内周面16bに支持されている。リング状部材15の材質としては、真空中で高温に耐えられるもの、例えば、ステンレス等により形成することができる。
 なお、リング状部材15の大きさ(軸方向の大きさ)は適宜設定することができる。リング状部材15の大きさを変えることで液体金属18が保持される面積を変えることができ、振動入力に対する反力を所望のものに設定することができる。
 液体金属18は、例えば、水銀、ガリウムまたはガリウム合金等を含むものを用いることができ、沸点は、1000℃以上である。
 転がり軸受10Bは、図2に示すように、外輪103と転動体104とを有している。転がり軸受10Bも前記転がり軸受10Aと同様に内輪を有しておらず、軸6の外周面に転動体104が摺接する溝6cが形成されている。外輪103は、軸受箱7の円筒部7bに収納され、円筒部7bの内側に設置されている押しばね17およびリング19で位置決めされている。
 このような回転陽極X線管装置において、軸6が回転すると、軸6や駆動モータロータ5等の回転体は、一端側のボルト11(図1参照)でフレーム9a(図1参照)に片持ち状態に支持されているため、これから一番離れた側となる他端側の陽極ターゲット4が最も振動の大きい部分となる。したがって、軸6においては、転がり軸受10Aで支持している部分が最も振動が大きくなる。
 軸6の振動は、図3に示すように、転動体102から外輪101へ伝播され、外輪101からリング状部材15を通じて隙間S1内の液体金属18に伝わる。液体金属18に振動が伝播され、振動により液体金属18が押し退けられようとすると、液体金属18の粘性により反力が生じ、振動減衰効果が得られる。
 次に、図4を参照して回転陽極X線管装置1を用いたX線撮像装置としてのX線CT装置について説明する。
 図4に示すように、スキャナガントリ111は、中央部に円形の開口部113を有しており、この開口部113に、被検体114を寝かせるための寝台115が設置されている。寝台115は、図示しない水平移動手段および上下移動手段により被検体114の体軸方向および上下方向へ移動自在となっている。
 スキャナガントリ111内には、被検体114の周囲を回転するスキャナ112が設けられている。このスキャナ112には、被検体114を挟んで対向するように、回転陽極X線管装置1とX線検出器116とが配置されている。
 回転陽極X線管装置1から発生したX線は、被検体114に照射される。なお、回転陽極X線管装置1の照射面側すなわち回転陽極X線管装置1と被検体114との間には周知の図示しないコリメータ等が配置されており、X線ビームの照射野がX線検出器116に対応する所定幅に設定されている。
 X線検出器116は、回転陽極X線管装置1の焦点を中心とする円弧状に形成されている。X線の受光面には、被検体114の体軸と直交するチャンネル方向に多数のX線検出素子群が配列され、またX線検出素子群は被検体114の体軸方向へ複数列配列された構成となっている。このX線検出器116で被検体114を透過したX線が検出され、データ収集装置117で投影データとしてデータ収集される。
 データ収集装置117で収集された投影データは、画像再構成装置118に送られ、画像再構成装置118では、投影データに基づき被検体114の断層像が再構成される。そして、再構成された断層像は画像表示装置119に表示され、画像診断に供される。
 以上説明した本実施形態の回転陽極X線管装置1によれば、リング状部材15の外周面15bと軸受箱外囲材16の内周面16bとの間には、隙間S1が形成され、この隙間S1に液体金属18が充填されているので、液体金属18をスクイーズダンパとして機能させることができ、リング状部材15を通じて伝播された振動により液体金属18が押し退けられようとすると、液体金属18の粘性により反力が生じ、振動減衰効果が得られる。したがって、回転振動を好適に減衰して軸受寿命を向上することができ、長期的に安定した回転が得られる。
 また、運転時に、軸6における最も振動が大きくなる転がり軸受10Aにおいて、液体金属18により好適に回転振動を低減することができるので、振動減衰効果が高く、静粛な回転陽極X線管装置1を提供することができる。
 また、液体金属18は、狭い隙間S1内を満たす量でよいため、すべり軸受けのように多量の液体金属を必要とせず、コストの低減を図ることができる。
 また、リング状部材15の大きさを変更することによって、液体金属18が保持される面積を自由に変えることができ、所望の減衰力を得ることができる。
 なお、陽極ターゲット4の表面からX線が図1中の矢印方向に放出されるときに、陽極ターゲット4に生じる熱の一部は熱伝導により軸6および転がり軸受10Aを通じて軸受箱7へ伝熱され、その結果、転がり軸受10Aが約300~400℃の温度に上昇することとなるが、液体金属18の沸点は、1000℃以上であるため、陽極ターゲット4の熱により蒸発することもなく、回転陽極X線管2の仕様温度範囲内で減衰機能が失われることもない。したがって、回転振動を好適に減衰して軸受寿命を向上することができ、長期的に安定した回転が得られる。
 また、本実施形態の転がり軸受10Aは、すべり軸受と異なり外輪101およびリング状部材15は回転しないため、動圧が発生することはなく、狭い隙間S1内の液体金属18は、毛細管現象により隙間S1内に保持されるため、これが漏れる心配もない。
 また、軸6の外周面に溝6b,6cが設けられているので、転がり軸受10A,10Bの内輪が不要となり、内輪が不要となる分、軸6を太く形成することができる。このことは、振動減衰の向上に寄与する。
 また、回転陽極X線管装置1を用いたX線CT装置によれば、回転陽極X線管装置1の回転振動に基づくX線CT装置の騒音を好適に低減することができ、静寂性の向上を図ることができる。さらに、回転陽極X線管装置1の回転振動が減衰されることにより、X線画像の解像度の向上を図ることができるX線CT装置が得られる。
(第2実施形態)
 図5を参照して第2実施形態の回転陽極X線管装置について説明する。
 本実施形態が前記第1実施形態と異なるところは、隙間S1の両端部をシールした点にある。
 図5に示すように、リング状部材15の両端部の側方には、隙間S1を塞ぐようにリング状の弾性部材105,106が配置されている。弾性部材105,106は軸受箱外囲材16の内周面16bにそれぞれ固定されている。
 弾性部材105,106としては、軸受箱外囲材16と軸6の熱膨張差による伸び、約数十μmの変形に対し過大な反力が出ない材質のものを選定する。本実施形態では、弾性部材105,106とリング状部材15とが接触状態にあり、リング状部材15は、振動を多少拘束されることになるため、弾性部材105,106は、摩擦係数の小さい材質、例えばPTFE(ポリテトラフルオロエチレン)等を用いるのがよい。
 本実施形態の回転陽極X線管装置1によれば、軸6の過大な振動により液体金属18が押し出されたり、熱膨張により隙間S1が減少して液体金属18が隙間S1の体積を超える状態になっても、弾性部材105,106により隙間S1が密封され(シールされ)、隙間S1の外部に液体金属18が漏れることがない。したがって、安定した減衰効果が得られ、軸受寿命を向上することができ、長期的に安定した回転が得られる。
(第3実施形態)
 図6を参照して第3実施形態の回転陽極X線管装置について説明する。 本実施形態が前記第1,第2実施形態と異なるところは、リング状部材15の軸方向端部の外径D1が、リング状部材15の軸方向中央部の外径D2よりも小さい点にある。
 図6に示すように、リング状部材15の軸方向端部は、外輪101に向けて傾斜しており、これによって、リング状部材15の軸方向端部の外径D1が、リング状部材15の軸方向中央部の外径D2よりも小さく構成されている。つまり、リング状部材15の端部方向に向かって隙間S1が拡大する構造となっている。
 本実施形態の回転陽極X線管装置1によれば、軸6の過大振動や、熱膨張による隙間S1の変化に対して、リング状部材15の軸方向端部における容積拡大により、液体金属18が隙間S1から漏れることがない。
 しかも、前記第2実施形態で示したような弾性部材105,106(図5参照)によってリング状部材15を拘束することもないため、より優れた減衰効果が得られる。
 なお、本実施形態では、外輪101に向けた傾斜を断面直線状としたが、断面湾曲突状、断面湾曲凹状、または断面段状として、リング状部材15の軸方向端部の外径D1が、リング状部材15の軸方向中央部の外径D2よりも小さくなるように構成してもよい。
(第4実施形態)
 図7を参照して第4実施形態の回転陽極X線管装置について説明する。
 本実施形態が前記第1~第3実施形態と異なるところは、付勢用構造物としてのばね20によって転がり軸受10Aおよび転がり軸受10Bに予圧が付与されている点である。
 転がり軸受10Aとスペーサリング14との間には、付勢用構造物として機能するばね20が配置されており、このばね20によって、転がり軸受10Aおよび転がり軸受10Bに予圧が付与されている。
 本実施形態の回転陽極X線管装置1によれば、ばね20により両方の転がり軸受10A、10Bの転動体102,104がそれぞれの外輪101,103によって各溝6b,6cに対して押し付けられることとなるため、すべての転動体102,104は遊びがなくなり、安定した振動減衰が得られる。
 さらに、リング状部材15と軸受箱外囲材16との間の隙間S1により、外輪101と軸受箱外囲材16との間の摩擦による固渋で、過大予圧や予圧不足が生じることがないといった利点も得られる。
 また、前記実施形態では、転がり軸受10Aとスペーサリング14との間にばね20を配置したが、これに限られることはなく、転がり軸受10Aや転がり軸受10Bに対して予圧を付与可能に、転がり軸受10Aと軸受箱7との間にばね20が配置されていればよい。
(第5実施形態)
 図8を参照して第5実施形態の回転陽極X線管装置について説明する。
 本実施形態が前記第1~第4実施形態と異なるところは、転がり軸受10Aおよび転がり軸受10Bの両方に隙間S1が設けられ、これらの隙間S1に液体金属18がそれぞれ充填されている点である。
 本実施形態では、振動の大きい側の転がり軸受10Aと比較的振動の小さい側の転がり軸受10Bの両方に隙間S1が形成されて、これらの隙間S1に液体金属18がそれぞれ充填されているので、より一層振動を減衰することができ、静粛性に優れた回転陽極X線管装置1が得られる。
 以上本発明について説明したが、本発明は前記実施形態に限定されるものではなく、適宜変更して実施可能である。
 前記各実施形態では、リング状部材15の外周面15bと軸受箱外囲材16の内周面16bとの間に隙間S1を形成して、この隙間S1に液体金属18を充填したが、これに限られることはなく、リング状部材15を用いることなく、外輪101(外輪103)と軸受箱外囲材16の内周面16b(円筒部7bの内周面)との間に隙間S1を直接形成して、この隙間S1に液体金属18をそれぞれ充填してもよい。
 また、軸6の外周面に溝6b,6cを形成したが、これに限られることはなく、内輪を設けて、内輪で軸6を支持してもよい。
 また、前記各実施形態で説明した回転陽極X線管装置1は、前記したX線CT装置に用いるものに限られることはなく、撮像装置としての工業用X線検査装置に対して用いることもできる。この場合にも、回転陽極X線管装置1による回転振動の減衰効果により、静寂性の向上やX線画像の解像度の向上を図ることができる。
 1   回転陽極X線管装置
 2   回転陽極X線管
 3   陰極体(陰極部材)
 4   陽極ターゲット(陽極部材)
 6   軸(回転部材)
 7   軸受箱
 8   ガラス管球(収容器)
 10A 転がり軸受
 10B 転がり軸受
 14  スペーサリング
 15  リング状部材
 15b 外周面
 16  軸受箱外囲材
 16b 内周面
 18  液体金属
 101 外輪
 105 弾性部材
 D1  外径
 D2  外径
 S1  隙間

Claims (7)

  1.  電子線を発生する陰極部材と、電子線が衝突してX線を発生する陽極部材と、前記陽極部材を支持する回転部材と、前記回転部材を転がり軸受を介して回転自在に支持する軸受箱と、これらの陰極部材、陽極部材、回転部材および軸受箱を真空気密に内包する収容器と、を含んでなる回転陽極X線管を備え、
     前記転がり軸受は、前記回転部材の軸方向において少なくとも前記陽極部材側に配置されており、
     前記転がり軸受の外輪と前記軸受箱の内面との間には、隙間が形成され、
     前記隙間には、液体金属が充填されていることを特徴とする回転陽極X線管装置。
  2.  電子線を発生する陰極部材と、電子線が衝突してX線を発生する陽極部材と、前記陽極部材を支持する回転部材と、前記回転部材を転がり軸受を介して回転自在に支持する軸受箱と、これらの陰極部材、陽極部材、回転部材および軸受箱を真空気密に内包する収容器と、を含んでなる回転陽極X線管を備え、
     前記転がり軸受は、前記軸受箱との間に配置された付勢用構造物によって予圧が付与されており、
     前記転がり軸受の外輪と前記軸受箱の内面との間には、隙間が形成され、
     前記隙間には、液体金属が充填されていることを特徴とする回転陽極X線管装置。
  3.  電子線を発生する陰極部材と、電子線が衝突してX線を発生する陽極部材と、前記陽極部材を支持する回転部材と、前記回転部材を転がり軸受を介して回転自在に支持する軸受箱と、これらの陰極部材、陽極部材、回転部材および軸受箱を真空気密に内包する収容器と、を含んでなる回転陽極X線管を備え、
     前記転がり軸受は、前記回転部材の軸方向において少なくとも前記陽極部材側とこれとは反対側との2箇所に配置されており、
     前記転がり軸受の外輪と前記軸受箱の内面との間には、それぞれ隙間が形成され、
     前記各隙間には、液体金属が充填されていることを特徴とする回転陽極X線管装置。
  4.  前記転がり軸受の外輪の外周面には、リング状部材が装着されており、前記リング状部材と前記軸受箱の内面との間に前記隙間が形成され、前記隙間に液体金属が充填されていることを特徴とする請求項1に記載の回転陽極X線管装置。
  5.  前記リング状部材の軸方向端部の側方には、前記液体金属をシールする弾性部材が配置されていることを特徴とする請求項1に記載の回転陽極X線管装置。
  6.  前記リング状部材の軸方向端部の外径は、前記リング状部材の軸方向中央部の外径よりも小さいことを特徴とする請求項1に記載の回転陽極X線管装置。
  7.  請求項1に記載の回転陽極X線管装置を備えたことを特徴とするX線撮像装置。
PCT/JP2013/071783 2012-10-19 2013-08-12 回転陽極x線管装置およびx線撮像装置 WO2014061340A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231893A JP5988823B2 (ja) 2012-10-19 2012-10-19 回転陽極x線管装置およびx線撮像装置
JP2012-231893 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061340A1 true WO2014061340A1 (ja) 2014-04-24

Family

ID=50487917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071783 WO2014061340A1 (ja) 2012-10-19 2013-08-12 回転陽極x線管装置およびx線撮像装置

Country Status (2)

Country Link
JP (1) JP5988823B2 (ja)
WO (1) WO2014061340A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664190A (zh) * 2019-03-05 2020-09-15 株式会社捷太格特 滚动轴承装置及其组装方法
CN115483081A (zh) * 2022-09-02 2022-12-16 北京智束科技有限公司 医疗检测系统、x射线管、液态金属轴承及制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416593B2 (ja) * 2014-11-13 2018-10-31 株式会社日立製作所 回転陽極x線管装置およびx線撮像装置
JP2017091881A (ja) * 2015-11-12 2017-05-25 株式会社日立製作所 X線管装置及びx線ct装置
JP6926997B2 (ja) * 2017-12-05 2021-08-25 株式会社ジェイテクト 軸受用ハウジング及び転がり軸受装置
JP7433274B2 (ja) 2021-06-25 2024-02-19 富士フイルムヘルスケア株式会社 X線管装置及びx線ct装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183243U (ja) * 1984-11-08 1986-06-02
JPS6237872U (ja) * 1985-08-27 1987-03-06
JPH02126544A (ja) * 1988-07-06 1990-05-15 Toshiba Corp 回転陽極x線管
JPH02267265A (ja) * 1989-02-21 1990-11-01 General Electric Co <Ge> 潤滑軸受の製造方法
JPH11273599A (ja) * 1998-01-22 1999-10-08 Koyo Seiko Co Ltd 回転陽極x線管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846784B1 (fr) * 2002-10-30 2005-02-11 Ge Med Sys Global Tech Co Llc Ensemble de palier pour le montage a rotation d'une anode rotative d'un dispositif d'emission de rayons x et dispositif d'emission de rayon x equipe d'un tel ensemble.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183243U (ja) * 1984-11-08 1986-06-02
JPS6237872U (ja) * 1985-08-27 1987-03-06
JPH02126544A (ja) * 1988-07-06 1990-05-15 Toshiba Corp 回転陽極x線管
JPH02267265A (ja) * 1989-02-21 1990-11-01 General Electric Co <Ge> 潤滑軸受の製造方法
JPH11273599A (ja) * 1998-01-22 1999-10-08 Koyo Seiko Co Ltd 回転陽極x線管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664190A (zh) * 2019-03-05 2020-09-15 株式会社捷太格特 滚动轴承装置及其组装方法
US11022172B2 (en) * 2019-03-05 2021-06-01 Jtekt Corporation Rolling bearing device and assembling method for the same
CN115483081A (zh) * 2022-09-02 2022-12-16 北京智束科技有限公司 医疗检测系统、x射线管、液态金属轴承及制造方法
CN115483081B (zh) * 2022-09-02 2024-05-07 北京智束科技有限公司 医疗检测系统、x射线管、液态金属轴承及制造方法

Also Published As

Publication number Publication date
JP5988823B2 (ja) 2016-09-07
JP2014086163A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5988823B2 (ja) 回転陽極x線管装置およびx線撮像装置
US9972472B2 (en) Welded spiral groove bearing assembly
US9449783B2 (en) Enhanced barrier for liquid metal bearings
JP5775257B2 (ja) 液体潤滑式軸受及び液体冷却式陽極ターゲット組立体を持つx線管
JP2011060517A (ja) 回転陽極型x線管および回転陽極型x線管装置
US10626921B2 (en) Method and apparatus for reducing wear of hydrodynamic bearing
US20200294753A1 (en) Spiral groove bearing assembly with minimized deflection
US10573484B2 (en) Magnetic support for journal bearing operation at low and zero speeds
JP7214336B2 (ja) X線管内の相対的なベアリングシャフトの撓みを減少させるためのシステムおよび方法
US9607801B2 (en) Friction welding of X-ray tube components using intermediate filler materials
JP7134848B2 (ja) 内部冷却チャネルを有するx線管用のスラストフランジ
US10816437B2 (en) Contactless rotor state/speed measurement of x-ray tube
EP3358208B1 (en) Ring seal for liquid metal bearing assembly
JP4810069B2 (ja) X線管内の液体金属ガスケット
US10460901B2 (en) Cooling spiral groove bearing assembly
JP6416593B2 (ja) 回転陽極x線管装置およびx線撮像装置
JP6169576B2 (ja) 回転陽極型x線管装置及びx線撮影装置
JP7286824B2 (ja) 捕捉されるガスを減少させるx線管の液体金属軸受構造
CN115376871A (zh) X射线管及x射线发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847697

Country of ref document: EP

Kind code of ref document: A1