WO2014059802A1 - Photoelectrochromic device - Google Patents

Photoelectrochromic device Download PDF

Info

Publication number
WO2014059802A1
WO2014059802A1 PCT/CN2013/078828 CN2013078828W WO2014059802A1 WO 2014059802 A1 WO2014059802 A1 WO 2014059802A1 CN 2013078828 W CN2013078828 W CN 2013078828W WO 2014059802 A1 WO2014059802 A1 WO 2014059802A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
material layer
solar cell
poly
photoelectrochromic device
Prior art date
Application number
PCT/CN2013/078828
Other languages
French (fr)
Chinese (zh)
Inventor
陈怡�
武文轩
孙金礼
罗多
Original Assignee
珠海兴业绿色建筑科技有限公司
珠海兴业光电科技有限公司
珠海兴业新能源科技有限公司
湖南兴业太阳能科技有限公司
珠海兴业节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海兴业绿色建筑科技有限公司, 珠海兴业光电科技有限公司, 珠海兴业新能源科技有限公司, 湖南兴业太阳能科技有限公司, 珠海兴业节能科技有限公司 filed Critical 珠海兴业绿色建筑科技有限公司
Priority to DE212013000019.7U priority Critical patent/DE212013000019U1/en
Publication of WO2014059802A1 publication Critical patent/WO2014059802A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • the present invention relates to an electrochromic device, and more particularly to a photochromic device.
  • An electrochromic material refers to a material that changes color due to a change in the polarity and intensity of an applied electric field due to a reversible oxidation or reduction reaction that causes a change in the reflection or transmission intensity of incident light.
  • Electrochromic materials can be classified into two categories: organic materials and inorganic materials. Non-electrochromic materials have received extensive attention due to their stable performance and strong UV resistance, mainly transition metal oxides such as tungsten oxide, nickel oxide, manganese oxide and the like. If the material is sandwiched between two pieces of glass, it can be used on the outer wall of the building. In this way, people can actively control the reflection or transmission intensity of the glass with light as the season and time change, thus saving energy. The purpose of consumption.
  • This color-changing material can also be widely used in other fields, such as: sunglasses, car sunroofs, anti-glare rearview mirrors, etc. If such a color changing material is plated on the inner surface of some flexible organic materials, it can also be used to make a flexible color changing device.
  • the electrochromic device uses only a low DC voltage (generally no more than ⁇ 5V), the color of the device can be changed.
  • the power generated by the solar cell can be used as the driving voltage of the electrochromic device, energy can be further saved, and the purpose of automatically adjusting the color of the device according to the intensity of external light, that is, the photochromic device can be achieved.
  • U.S. Patent No. 5,377,037 discloses an electrochromic sunglasses powered by a thin film amorphous silicon solar cell.
  • CN101673018B discloses a solar photovoltaic electrochromic device based on an inorganic translucent thin film solar cell and an organic electrochromic solution.
  • Chinese patent CN101930142B discloses an inorganic film based on Photochromic devices for solar cells and electrochromic materials. These technologies use thin-film solar cells made of inorganic semiconductor materials (such as amorphous silicon, CIGS, CdTe, etc.), which rely mainly on the absorption of photons whose energy is greater than the solar spectrum in the range of their semiconductor band gaps (such as the forbidden band of amorphous silicon).
  • a photogenerated current is 1.75 eV, which can only absorb sunlight with a wavelength of less than 765 nm.
  • the color variation range of the electrochromic device is reduced.
  • the organic solar cell process is relatively simple, the cost is low, and the absorption spectrum can be adjusted by selecting and adjusting organic materials, and the color can be adjusted in a larger range.
  • visible light wavelength 400nm-700nm
  • ultraviolet light wavelength 200-400nm
  • the remaining 53% wavelength above 700nm is near-infrared light and infrared light.
  • the material that absorbs near-infrared and infrared light is used to make solar cells, directly supplying electricity to the electrochromic device, not only can save energy to the utmost, but also have the least impact on the color variation range of the device. .
  • a photochromic device comprising a layer of organic solar cell material that provides an applied electric field for the device to control color change.
  • the photochromic device of the present invention comprises a transparent non-conductive substrate, an organic solar cell material layer, an electrochromic material layer 1 and an electrochromic material layer 2, which are in two electrochromic material layers. An electrolyte layer between them, and a transparent conductive layer over the electrochromic material layer.
  • the device substrate is at least one transparent non-conductive substrate, which may be an inorganic material such as glass or an organic material such as a PET film or plastic.
  • an organic solar cell material layer is formed on a transparent non-conductive substrate, the organic solar cell material layer comprising an anode, an organic photoelectric conversion material layer, and a cathode.
  • the above anode and cathode include inorganic or organic transparent conductive materials such as: In 2 0 3 :Sn(IT0), Sn0 2 :F(FT0), ⁇ 0: ⁇ 1( ⁇ 0), carbon nanotubes, graphene ( Graphene) and silver nanowires
  • the organic photoelectric conversion material layer may be a mixed film in which a single layer is formed by mixing one or more organic materials by vacuum co-evaporation, chemical vapor deposition, spin coating or sol-gel; or It is a multilayer film formed by sequentially depositing two or more layers of organic materials; it may also be a dye-sensitized solar cell material composed of a Ti0 2 porous nano film, an electrolyte, and a photosensitizing dye. Its main characteristic is transparent to visible light (wavelength between 300nm and 700nm), that is, visible light transmittance is above 50%, mainly generated by absorbing ultraviolet light (wavelength less than 300nm) or near-infrared and infrared light (wavelength greater than 700nm). electric power.
  • Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4 ⁇ c] pyrrole -l , 4-dione) ie PBDTT-DPP
  • PBDTT-DPP polymer solar cell with [6, 6] -phenyl-C61_butyric acid methyl ester
  • PCBM polymer solar cell with [6, 6] -phenyl-C61_butyric acid methyl ester
  • the light rate is as high as 66%, and its photoelectric conversion efficiency is also 4%.
  • the electrochromic material layer comprises an organic electrochromic material, a transition metal oxide or a Prussian blue, which may be: Vilogen, Pyrazoline Poly (aniline) Tetrathiafulvalene W0 3 MoO 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , M0, Ir0 2 , Rh 2 0 3 , Co0 2 , Fe 4 [Fe (CN) 6 ] 3 .
  • the electrolyte layer comprises a liquid electrolyte, a solid electrolyte or a polymer electrolyte, and may be: LiNb0 3 , LiB0 2 , LiF, LiBF 4 , LiPF 4 , LiPN0 LiBS0, LiA10 2 LiC10 4 + Propylenecarbonate Poly (methyl meth-acrylate) (PMMA) Poly (Vinyl Chloride) (PVC), Poly (Ethylene oxide) (PEO), Poly (ethyl eneglycole) (PEG), Poly (vinylbutral) (PVB).
  • the photochromic device further includes a photosensitive switch that can control the circuitry.
  • the working principle is as follows: When the sunlight is strong, the photosensitive switch directly connects the positive and negative electrodes of the organic solar cell with the positive and negative electrodes of the electrochromic device. The battery is exposed to light due to the photoelectric effect, and the device becomes darker in color. When there is no sunlight or weak light, the photosensitive switch automatically connects the two ends of the electrochromic device directly to form a short circuit, so the color of the device changes from dark to light. Therefore, the device can achieve the purpose of adjusting the color of the device according to the light, that is, the photochromic device.
  • the photochromic device described above further includes a battery to store the amount of electricity produced by the organic solar cell, which can be used to power the photosensitive switch.
  • FIG. 1 is a basic structural view of a photochromic device driven by an organic solar cell.
  • 101 and 102 are device substrates
  • 201, 202 and 203 are transparent conductive layers
  • 300 is an organic photoelectric conversion material layer
  • 401 is an electrochromic material layer 1
  • 402 is an electrolyte layer
  • 403 is an electrochromic material layer 2.
  • 501 and 502 It is a non-conductive adhesive for device packaging.
  • Fig. 2 is a structural view of a photochromic device of Example 1.
  • 300 is an organic photoelectric conversion material layer including a cathode modification layer 301, an organic electron acceptor layer 302, an organic electron donor layer 303, and an anode modification layer 304.
  • Fig. 3 is a structural view of a photochromic device of Example 2.
  • 300 is an organic photoelectric conversion material layer, an anode modification layer 301, an organic photoelectric conversion active layer 302, and a buffer layer 303.
  • 701 and 702 are fixed height non-conductive spacers.
  • a transparent conductive material layer 201 is formed on the transparent non-conductive substrate 101 by magnetron sputtering, such as: IT0 (In 2 0 3 :Sn), FT0 (Sn0:F) or ⁇ 0 ( ⁇ 0: ⁇ 1), the thickness of which is between 100 nm and 200 nm, the sheet resistance is less than 30 ⁇ / ⁇ , and the light transmittance is greater than 85%.
  • the organic photoelectric conversion material layer is formed on the substrate 101 which has been plated with the transparent conductive material 201 by vacuum evaporation, and includes:
  • Cathode modification layer 301 such as: Bathocuproine
  • (BCP) the thickness of which is between 5nm and 50nm.
  • an organic electron donor layer 303 such as: chloroaluminum phthalocyanine (ClAlPc), having a thickness between 10 nm and 100 nm.
  • An Anode modification layer such as Mo0 3 , having a thickness between 10 nm and 50 nm.
  • a transparent conductive film 202 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: IT0 (In 2 0 3 :Sn) , FT0 (SnO:F) or AZ0 (Zn0:Al), the thickness of which is between 100 nm and 200 nm, the sheet resistance is less than 30 ⁇ / ⁇ , and the light transmittance is greater than 85%.
  • the electrochromic material layer 401 is formed by a vacuum evaporation method or a magnetron sputtering method, such as M0, Ir0 2 , Rh 2 0 3 , Co0 2 , and has a thickness of between 100 nm and 500 nm.
  • the electrolyte layer 402 is formed by a vacuum evaporation method or a magnetron sputtering method, such as LiN b 0 3 , LiB0 2 , LiF, LiBF 4 , LiPF 4 , LiPN0 LiBS0, LiA10 2 , and has a thickness of 100 nm to 500 nm.
  • the electrochromic material layer 403 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: W0 3 , Mo0 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , and the thickness thereof is between 100 nm and 500 nm. .
  • a transparent conductive film 203 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: IT0 (In 2 0 3 :Sn), FTO (SnO:F) or ⁇ 0 ( ⁇ 0: ⁇ 1), and its thickness is 100 nm to 200 nm. Between, the sheet resistance is less than 30 ⁇ / ⁇ , and the light transmittance is greater than 85%.
  • magnetron sputtering such as: ITO (In 2 0 3 :Sn), FTO (SnO:F) or ⁇ 0 ( ⁇ 0: ⁇ 1)
  • Anode modification layer 301 using spin-coating
  • Organic photoelectric conversion active layer 302 Polymer
  • [6,6]-phenyl-C61-butyric acid methyl ester (ie, PCBM) was dissolved in dichlorobenzene solvent at a concentration of 1:2 in a concentration of 0.7%. It was deposited on the PED0T:PSS layer by spin coating to a thickness of between 100 nm and 200 nm.
  • Buffer layer 303 A Ti0 2 buffer layer was formed by a sol-gel method and subjected to a tempering treatment at 100 ° C, and the thickness thereof was between 100 nm and 200 nm.
  • the electrochromic material layer 401 is formed by a vacuum evaporation method or a magnetron sputtering method, such as W0 3 , Mo0 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , and has a thickness of between 100 nm and 500 nm.
  • a transparent conductive film 203 is formed on another non-conductive substrate 102 by vacuum evaporation or magnetron sputtering, such as: ITO (In 2 0 3 : Sn), FTO (SnO: F) or ⁇ 0 ( ⁇ 0: ⁇ 1), the thickness is between 100nm and 200nm, the sheet resistance is less than 30 ⁇ / ⁇ , and the light transmittance is greater than 85%.
  • an electrochromic material layer 403 such as M0, Ir0 2 , Rh 2 0 3 , Co0 2 , having a thickness of between 100 nm and 500 nm is formed by vacuum evaporation or magnetron sputtering.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectrochromic device capable of changing color according to changes in the intensity of solar rays. The present invention mainly comprises a transparent non-conductive substrate (101), an organic solar cell layer, electrochromic layers (401, 403), an electrolyte layer (402) and transparent conductive layers (201, 202, 203). The organic solar cell layer comprises an anode (304), a cathode (301) and an organic photoelectric conversion layer (300). Electricity produced by the photoelectric effect of said organic solar cell can be provided to the electrochromic layers (401, 403) of the device, and by using a photosensitive switch, the change in color of the device can automatically be controlled according to the intensity of solar rays.

Description

一种光电致变色器件 所属技术领域  Photoelectric color change device
本发明涉及一种电致变色器件, 特别是一种光电致变色器件。  The present invention relates to an electrochromic device, and more particularly to a photochromic device.
背景技术 Background technique
电致变色材料是指随着外加电场极性和强度的变化,由于可逆的氧化或还原 反应导致对入射光线的反射或透射强度发生改变而改变颜色的材料。电致变色材 料可分为有机材料和无机材料两大类。无机电致变色材料由于性能稳定、抗紫外 线能力强而得到广泛关注, 主要是过渡金属氧化物, 如:氧化钨、 氧化镍、 氧化 锰等。 这种材料如果夹在两片玻璃之间, 可以用于建筑物的外墙面, 这样, 人们 便可以随着季节和时间的变化, 主动控制玻璃对光线的反射或透射强度, 从而达 到节省能耗的目的。 这种变色材料也可广泛用于其它领域, 如: 太阳眼镜、 汽车 天窗、 反眩后视镜等。如果把这种变色材料镀在一些柔性有机材料的内表面, 也 可用于制作柔性变色器件。  An electrochromic material refers to a material that changes color due to a change in the polarity and intensity of an applied electric field due to a reversible oxidation or reduction reaction that causes a change in the reflection or transmission intensity of incident light. Electrochromic materials can be classified into two categories: organic materials and inorganic materials. Non-electrochromic materials have received extensive attention due to their stable performance and strong UV resistance, mainly transition metal oxides such as tungsten oxide, nickel oxide, manganese oxide and the like. If the material is sandwiched between two pieces of glass, it can be used on the outer wall of the building. In this way, people can actively control the reflection or transmission intensity of the glass with light as the season and time change, thus saving energy. The purpose of consumption. This color-changing material can also be widely used in other fields, such as: sunglasses, car sunroofs, anti-glare rearview mirrors, etc. If such a color changing material is plated on the inner surface of some flexible organic materials, it can also be used to make a flexible color changing device.
另外, 由于电致变色器件仅使用较低的直流电压 (一般不超过 ±5V) 即可达 到改变器件颜色的目的。这样, 如果可以将太阳能电池产生的电力用做电致变色 器件的驱动电压, 不但可以进一步节省能源, 并且可以达到根据外界光线的强弱 自动调节器件颜色的目的, 也即光电致变色器件。 例如美国专利 US 5377037公开 了一种由薄膜非晶硅太阳能电池供电的电致变色太阳眼镜。 中国专利  In addition, since the electrochromic device uses only a low DC voltage (generally no more than ±5V), the color of the device can be changed. Thus, if the power generated by the solar cell can be used as the driving voltage of the electrochromic device, energy can be further saved, and the purpose of automatically adjusting the color of the device according to the intensity of external light, that is, the photochromic device can be achieved. For example, U.S. Patent No. 5,377,037 discloses an electrochromic sunglasses powered by a thin film amorphous silicon solar cell. China Patent
CN101673018B公开了一种基于无机半透明薄膜太阳能电池和有机电致变色溶液 的太阳能光电电致变色器件。而中国专利 CN101930142B公开了一种基于无机薄膜 太阳能电池和电致变色材料的光电致变色器件。这些技术都是利用无机半导体材 料(如非晶硅、 CIGS、 CdTe等)制作薄膜太阳能电池, 它们主要依靠吸收光子能 量大于其半导体禁带能级范围内的太阳光谱(如非晶硅的禁带为 1. 75 eV,即只能 吸收波长小于 765 nm的阳光)产生光生电流。 因此, 它们的颜色普遍较深, 如果 采用整体集成的器件结构,会縮小电致变色器件的颜色变化范围。而有机太阳能 电池制程相对简单,成本较低, 且可以通过对有机材料的选择和调配进行吸收光 谱的调节, 颜色可调节范围较大。 太阳光谱中可见光 (波长 400nm-700nm) 只占 约 44%左右, 紫外光(波长 200-400nm)占约 3%,剩余约 53% (波长 700nm以上)是近红 外光及红外光。如果选择对可见光透明程度较高, 主要吸收近红外和红外光线的 材料制作太阳能电池, 直接为电致变色器件提供电力, 不但可以最大限度地节省 能源, 而且对器件颜色变化范围的影响是最小的。 CN101673018B discloses a solar photovoltaic electrochromic device based on an inorganic translucent thin film solar cell and an organic electrochromic solution. And Chinese patent CN101930142B discloses an inorganic film based on Photochromic devices for solar cells and electrochromic materials. These technologies use thin-film solar cells made of inorganic semiconductor materials (such as amorphous silicon, CIGS, CdTe, etc.), which rely mainly on the absorption of photons whose energy is greater than the solar spectrum in the range of their semiconductor band gaps (such as the forbidden band of amorphous silicon). A photogenerated current is 1.75 eV, which can only absorb sunlight with a wavelength of less than 765 nm. Therefore, their color is generally deep, and if the overall integrated device structure is adopted, the color variation range of the electrochromic device is reduced. The organic solar cell process is relatively simple, the cost is low, and the absorption spectrum can be adjusted by selecting and adjusting organic materials, and the color can be adjusted in a larger range. In the solar spectrum, visible light (wavelength 400nm-700nm) accounts for only about 44%, ultraviolet light (wavelength 200-400nm) accounts for about 3%, and the remaining 53% (wavelength above 700nm) is near-infrared light and infrared light. If you choose a material that is more transparent to visible light, the material that absorbs near-infrared and infrared light is used to make solar cells, directly supplying electricity to the electrochromic device, not only can save energy to the utmost, but also have the least impact on the color variation range of the device. .
发明内容 Summary of the invention
针对以上问题, 本发明的目的在于提供一种光电致变色器件, 所述器件包 括有机太阳能电池材料层,所述有机太阳能电池材料层为器件提供控制颜色变化 的外加电场。  In view of the above problems, it is an object of the present invention to provide a photochromic device comprising a layer of organic solar cell material that provides an applied electric field for the device to control color change.
如附图 1所示, 本发明所述的光电致变色器件包括透明非导电基底, 有机 太阳能电池材料层, 电致变色材料层 1和电致变色材料层 2, 处于两个电致变色材 料层之间的电解质层, 以及在电致变色材料层之上的透明导电层。  As shown in FIG. 1, the photochromic device of the present invention comprises a transparent non-conductive substrate, an organic solar cell material layer, an electrochromic material layer 1 and an electrochromic material layer 2, which are in two electrochromic material layers. An electrolyte layer between them, and a transparent conductive layer over the electrochromic material layer.
在本发明的一种实施方案中, 所述器件基底是至少一个透明非导电基底, 可以是无机材料, 如玻璃, 也可以是有机材料, 如 PET薄膜、 塑料。  In one embodiment of the invention, the device substrate is at least one transparent non-conductive substrate, which may be an inorganic material such as glass or an organic material such as a PET film or plastic.
在本发明的一种实施方案中, 在透明非导电基底上形成有机太阳能电池材 料层, 所述有机太阳能电池材料层包括阳极、 有机光电转换材料层和阴极。 上述阳极、 阴极包括无机或有机透明导电材料, 如: In203:Sn(IT0), Sn02:F(FT0), Ζη0:Α1(ΑΖ0), 碳纳米管 (carbon nanotubes), 石墨烯(graphene) 及银纳米线 (silver nanowires In one embodiment of the invention, an organic solar cell material layer is formed on a transparent non-conductive substrate, the organic solar cell material layer comprising an anode, an organic photoelectric conversion material layer, and a cathode. The above anode and cathode include inorganic or organic transparent conductive materials such as: In 2 0 3 :Sn(IT0), Sn0 2 :F(FT0), Ζη0:Α1(ΑΖ0), carbon nanotubes, graphene ( Graphene) and silver nanowires
上述有机光电转换材料层可以是将一种或一种以上的有机材料混合起来, 通过真空共蒸、化学气相沉积法、旋涂法或者是溶胶凝胶的方法制成单层的混合 薄膜; 或者是由两层或两层以上的有机材料依次沉积而成的多层薄膜; 还可以是 由 Ti02多孔纳米膜、 电解质以及光敏染料组成的染料敏化太阳能电池材料。 其主 要特性是对于可见光 (波长在 300nm至 700nm之间) 透明, 即可见光透过率在 50% 以上,主要通过吸收紫外光(波长小于 300nm)或近红外及红外光(波长大于 700nm) 来产生电力。 如: Richard R. Lunt 等制作的以有机材料 Chloroaluminum phthalocyanine (ClAlPc)为有机分子的电子供体 (organic molecular electron donor) 禾口 C60为电子受体 (organic molecular electron acceptor) 的有机太 阳能电池,在可见光范围内平均透光率为 56%,光电转换效率为 1.7%。而 Chun-Chao Chen等制作的以聚合物 The organic photoelectric conversion material layer may be a mixed film in which a single layer is formed by mixing one or more organic materials by vacuum co-evaporation, chemical vapor deposition, spin coating or sol-gel; or It is a multilayer film formed by sequentially depositing two or more layers of organic materials; it may also be a dye-sensitized solar cell material composed of a Ti0 2 porous nano film, an electrolyte, and a photosensitizing dye. Its main characteristic is transparent to visible light (wavelength between 300nm and 700nm), that is, visible light transmittance is above 50%, mainly generated by absorbing ultraviolet light (wavelength less than 300nm) or near-infrared and infrared light (wavelength greater than 700nm). electric power. Such as: Richard R. Lunt and other organic solar cells made of organic material Chloroaluminum phthalocyanine (ClAlPc) and organic silver electrons, in visible light The average light transmittance in the range was 56%, and the photoelectric conversion efficiency was 1.7%. And the polymer made by Chun-Chao Chen, etc.
Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole -l,4-dione) (即 PBDTT-DPP)为电子供体, 以 [6, 6] -phenyl-C61_butyric acid methyl ester (即 PCBM)为电子受体的聚合物太阳能电池, 在波长为 550nm处的透 光率高达 66%, 其光电转换效率也达到了 4%。  Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole -l , 4-dione) (ie PBDTT-DPP) is an electron donor, a polymer solar cell with [6, 6] -phenyl-C61_butyric acid methyl ester (ie PCBM) as an electron acceptor, at a wavelength of 550 nm The light rate is as high as 66%, and its photoelectric conversion efficiency is also 4%.
在本发明的一种实施方案中, 所述电致变色材料层包括有机电致变色材 料、过渡金属氧化物或普鲁士蓝,可以是: Vilogen, Pyrazoline Poly (aniline) Tetrathiafulvalene W03 Mo03、 Nb205 Ti02、 V205、 M0、 Ir02、 Rh203、 Co02、 Fe4 [Fe (CN) 6] 3In one embodiment of the invention, the electrochromic material layer comprises an organic electrochromic material, a transition metal oxide or a Prussian blue, which may be: Vilogen, Pyrazoline Poly (aniline) Tetrathiafulvalene W0 3 MoO 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , M0, Ir0 2 , Rh 2 0 3 , Co0 2 , Fe 4 [Fe (CN) 6 ] 3 .
在本发明的一种实施方案中, 所述电解质层包括液态电解质、 固态电解质 或聚合物电解质, 可以是: LiNb03、 LiB02、 LiF、 LiBF4、 LiPF4、 LiPN0 LiBS0、 LiA102 LiC104+Propylenecarbonate Poly (methyl meth-acrylate) (PMMA) Poly (Vinyl Chloride) (PVC ) 、 Poly (Ethylene oxide) (PEO) 、 Poly (ethyl eneglycole) (PEG)、 Poly (vinylbutral) (PVB)。 In an embodiment of the invention, the electrolyte layer comprises a liquid electrolyte, a solid electrolyte or a polymer electrolyte, and may be: LiNb0 3 , LiB0 2 , LiF, LiBF 4 , LiPF 4 , LiPN0 LiBS0, LiA10 2 LiC10 4 + Propylenecarbonate Poly (methyl meth-acrylate) (PMMA) Poly (Vinyl Chloride) (PVC), Poly (Ethylene oxide) (PEO), Poly (ethyl eneglycole) (PEG), Poly (vinylbutral) (PVB).
在本发明的一种实施方案中, 所述有机太阳能电池材料层可以有多个, 而 且它们以串联或并联的方式相连,以达到控制所述电致变色器件所需的电压及电 流的要求。  In one embodiment of the invention, there may be a plurality of layers of organic solar cell material, and they are connected in series or in parallel to achieve the voltage and current requirements required to control the electrochromic device.
在本发明的一种实施方案中, 所述光电致变色器件还包括可以控制电路的 光敏开关。其工作原理如下: 当太阳光线较强时, 光敏开关将有机太阳能电池的 正、 负极与电致变色器件的正、 负极直接相连。 电池受到光照由于光电效应而产 生电场, 器件颜色变深。 当没有太阳光或光线较弱时, 光敏开关自动将电致变色 器件的两端直接相连, 形成短路, 因而器件的颜色会从深色变成浅色。 因此, 此 器件可以达到根据光线调节器件颜色的目的, 也即光电致变色器件。  In one embodiment of the invention, the photochromic device further includes a photosensitive switch that can control the circuitry. The working principle is as follows: When the sunlight is strong, the photosensitive switch directly connects the positive and negative electrodes of the organic solar cell with the positive and negative electrodes of the electrochromic device. The battery is exposed to light due to the photoelectric effect, and the device becomes darker in color. When there is no sunlight or weak light, the photosensitive switch automatically connects the two ends of the electrochromic device directly to form a short circuit, so the color of the device changes from dark to light. Therefore, the device can achieve the purpose of adjusting the color of the device according to the light, that is, the photochromic device.
在本发明的一种实施方案中, 上述光电致变色器件还包括蓄电池, 以储存 有机太阳能电池所产生的电量, 此电量可以用于为光敏开关提供电力。  In one embodiment of the invention, the photochromic device described above further includes a battery to store the amount of electricity produced by the organic solar cell, which can be used to power the photosensitive switch.
附图说明 DRAWINGS
下面结合附图和实施实例对本发明进一步说明: The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
附图 1为由有机太阳能电池驱动的光电致变色器件的基本结构图。 图中, 101和 102是器件基板, 201、 202和 203是透明导电层, 300是有机光电转换材料层, 401是电致变色材料层 1, 402是电解质层, 403是电致变色材料层 2。 501和 502 是器件封装用不导电粘合胶。 1 is a basic structural view of a photochromic device driven by an organic solar cell. In the figure, 101 and 102 are device substrates, 201, 202 and 203 are transparent conductive layers, 300 is an organic photoelectric conversion material layer, 401 is an electrochromic material layer 1, 402 is an electrolyte layer, and 403 is an electrochromic material layer 2. . 501 and 502 It is a non-conductive adhesive for device packaging.
图 2为实施实例 1的光电致变色器件的结构图。图中 300是有机光电转换材料层, 包括阴极修饰层 301, 有机电子受体层 302, 有机电子供体层 303, 阳极修饰层 304。 Fig. 2 is a structural view of a photochromic device of Example 1. 300 is an organic photoelectric conversion material layer including a cathode modification layer 301, an organic electron acceptor layer 302, an organic electron donor layer 303, and an anode modification layer 304.
图 3为实施实例 2的光电致变色器件的结构图。图中 300是有机光电转换材料层, 阳极修饰层 301, 有机光电转换活性层 302, 缓冲层 303。 701和 702是固定高度 的不导电间隔物。 Fig. 3 is a structural view of a photochromic device of Example 2. In the figure, 300 is an organic photoelectric conversion material layer, an anode modification layer 301, an organic photoelectric conversion active layer 302, and a buffer layer 303. 701 and 702 are fixed height non-conductive spacers.
具体实 I»案 Specific case I»
实施实例 1: 具体实施步骤如下: Implementation example 1: The specific implementation steps are as follows:
(1) 如附图 2所示, 利用磁控溅射法在透明非导电基底 101上制作透明导电材 料层 201,如: IT0(In203:Sn),FT0(Sn0:F)或 ΑΖ0(Ζη0:Α1),其厚度在 100nm-200nm 之间, 方块电阻小于 30Ω/Ο, 且透光率大于 85%。 (1) As shown in Fig. 2, a transparent conductive material layer 201 is formed on the transparent non-conductive substrate 101 by magnetron sputtering, such as: IT0 (In 2 0 3 :Sn), FT0 (Sn0:F) or ΑΖ0 (Ζη0: Α1), the thickness of which is between 100 nm and 200 nm, the sheet resistance is less than 30 Ω/Ο, and the light transmittance is greater than 85%.
(2) 利用真空蒸镀法在已经镀有透明导电材料 201的基底 101上制作有机光电 转换材料层, 包括:  (2) The organic photoelectric conversion material layer is formed on the substrate 101 which has been plated with the transparent conductive material 201 by vacuum evaporation, and includes:
a) 阴极修饰层 301 (Cathode modification layer), 如: Bathocuproine a) Cathode modification layer 301, such as: Bathocuproine
( BCP ), 其厚度在 5nm-50nm之间。 (BCP), the thickness of which is between 5nm and 50nm.
b) 有机电子受体层 302, 如: C6。, 其厚度在 10nm-100nm之间。 b) an organic electron acceptor layer 302, such as: C 6 . Its thickness is between 10 nm and 100 nm.
c) 有机电子供体层 303, 如: chloroaluminum phthalocyanine (ClAlPc), 其厚度在 10nm-100nm之间。  c) an organic electron donor layer 303, such as: chloroaluminum phthalocyanine (ClAlPc), having a thickness between 10 nm and 100 nm.
d) 阳极修饰层 304 (Anode modification layer), 如: Mo03,其厚度在 10nm-50nm之间。 d) An Anode modification layer, such as Mo0 3 , having a thickness between 10 nm and 50 nm.
(3) 利用真空蒸镀法或磁控溅射法制作透明导电薄膜 202, 如: IT0 (In203:Sn) ,FT0 (SnO:F) 或 AZ0(Zn0:Al), 其厚度在 100nm_200nm之间, 方块 电阻小于 30Ω/Ο, 且透光率大于 85%。 (3) A transparent conductive film 202 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: IT0 (In 2 0 3 :Sn) , FT0 (SnO:F) or AZ0 (Zn0:Al), the thickness of which is between 100 nm and 200 nm, the sheet resistance is less than 30 Ω/Ο, and the light transmittance is greater than 85%.
(4) 利用真空蒸镀法或磁控溅射法制作电致变色材料层 401,如: M0、 Ir02、 Rh203、 Co02, 其厚度在 100nm-500nm之间。 (4) The electrochromic material layer 401 is formed by a vacuum evaporation method or a magnetron sputtering method, such as M0, Ir0 2 , Rh 2 0 3 , Co0 2 , and has a thickness of between 100 nm and 500 nm.
(5) 利用真空蒸镀法或磁控溅射法制作电解质层 402, 如: LiNb03、 LiB02、 LiF、 LiBF4、 LiPF4、 LiPN0 LiBS0、 LiA102, 其厚度在 100nm_500nm之间。 (5) The electrolyte layer 402 is formed by a vacuum evaporation method or a magnetron sputtering method, such as LiN b 0 3 , LiB0 2 , LiF, LiBF 4 , LiPF 4 , LiPN0 LiBS0, LiA10 2 , and has a thickness of 100 nm to 500 nm.
(6) 利用真空蒸镀法或磁控溅射法制作电致变色材料层 403, 如: W03、 Mo03、 Nb205 Ti02、 V205, 其厚度在 100nm-500nm之间。 (6) The electrochromic material layer 403 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: W0 3 , Mo0 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , and the thickness thereof is between 100 nm and 500 nm. .
(7) 利用真空蒸镀法或磁控溅射法制作透明导电薄膜 203,如: IT0(In203:Sn), FTO (SnO:F)或 ΑΖ0(Ζη0:Α1), 其厚度在 100nm_200nm之间, 方块电阻小于 30Ω/ □, 且透光率大于 85%。 (7) A transparent conductive film 203 is formed by a vacuum evaporation method or a magnetron sputtering method, such as: IT0 (In 2 0 3 :Sn), FTO (SnO:F) or ΑΖ0 (Ζη0:Α1), and its thickness is 100 nm to 200 nm. Between, the sheet resistance is less than 30 Ω / □, and the light transmittance is greater than 85%.
(8) 利用不导电粘合胶 501和 502 (如 EVA胶或环氧树脂) 将另一片透明不导 电基底 102与器件其它几层封装起来。  (8) Encapsulate another transparent non-conductive substrate 102 with the other layers of the device using non-conductive adhesives 501 and 502 (such as EVA adhesive or epoxy).
(9) 加上外部控制电路,包括光敏开关及连线等。在光照较强时,光敏开关 601 连接到端口 1, 通过有机太阳能电池的光电效应产生电场, 储存在电致变色材料 层 401的 Li+在电场的作用下经过电解质层注入到电致变色材料层 403, 导致器 件颜色变深。 在没有光照或光强较弱 (具体强度可以由光敏开关控制)时, 光敏 开关 601连接到端口 2, 电致变色材料层 401与 403直接相连, 加在其两端的电 场为零, 导致已经注入电致变色材料层 403的 Li+逐渐扩散回到电致变色材料层 401, 导致器件颜色回到初始的浅色状态。 实施实例 2: 具体实施步骤如下: 如附图 3所示, (9) Plus external control circuit, including photosensitive switch and wiring. When the illumination is strong, the photosensitive switch 601 is connected to the port 1, and an electric field is generated by the photoelectric effect of the organic solar cell, and Li + stored in the electrochromic material layer 401 is injected into the electrochromic material layer through the electrolyte layer under the action of the electric field. 403, causing the device to darken. When there is no light or the light intensity is weak (the specific intensity can be controlled by the photosensitive switch), the photosensitive switch 601 is connected to the port 2, and the electrochromic material layers 401 and 403 are directly connected, and the electric field applied to both ends thereof is zero, resulting in the injection. The Li + of the electrochromic material layer 403 gradually diffuses back to the electrochromic material layer 401, causing the device color to return to the original light color state. Implementation Example 2: The specific implementation steps are as follows: As shown in Figure 3,
(1) 首先制作器件的 100部分:  (1) First make 100 parts of the device:
a) 利用磁控溅射法在透明非导电基底 101上制作透明导电材料层 201, 如: ITO (In203:Sn) , FTO (SnO:F) 或 ΑΖ0(Ζη0:Α1), 其厚度在 100nm_200nm 之间, 方块电阻小于 30Ω/Ο, 且透光率大于 85%。 a) forming a transparent conductive material layer 201 on the transparent non-conductive substrate 101 by magnetron sputtering, such as: ITO (In 2 0 3 :Sn), FTO (SnO:F) or ΑΖ0 (Ζη0:Α1), the thickness thereof Between 100 nm and 200 nm, the sheet resistance is less than 30 Ω/Ο, and the light transmittance is greater than 85%.
b) 制作有机光电转换材料层, 包括:  b) Making organic photoelectric conversion material layers, including:
i. 阳极修饰层 301: 利用旋涂法 (spin-coating) 将  i. Anode modification layer 301: using spin-coating
poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (艮卩 PED0T:PSS),均匀地沉积在透明导电材料 201层上, 并在 120°C下作 褪火处理。  Poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (艮卩 PED0T: PSS), uniformly deposited on the layer of transparent conductive material 201, and tempered at 120 °C.
ϋ. 有机光电转换活性层 302: 将聚合物  ϋ. Organic photoelectric conversion active layer 302: Polymer
poly (2, 60-4, 8-bis (5-ethylhexylthienyl) benzo- [1, 2_b;3, 4_b]d ithiophene - alt_5_dibutyloctyl - 3, 6_bis (5_bromothiophen_2_yl )pyrrolo[3, 4- c]pyrrole- 1, 4- dione) (即 PBDTT- DPP)与  Poly (2, 60-4, 8-bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b]d ithiophene - alt_5_dibutyloctyl - 3, 6_bis (5_bromothiophen_2_yl )pyrrolo[3, 4- c]pyrrole-1 4- dione) (ie PBDTT-DPP) and
[6, 6]-phenyl-C61-butyric acid methyl ester (即 PCBM)以 1: 2 的重量比溶解在二氯苯溶剂中, 浓度为 0.7%。 利用旋涂法将其沉积 在 PED0T:PSS层上, 其厚度在 100nm-200nm之间。  [6,6]-phenyl-C61-butyric acid methyl ester (ie, PCBM) was dissolved in dichlorobenzene solvent at a concentration of 1:2 in a concentration of 0.7%. It was deposited on the PED0T:PSS layer by spin coating to a thickness of between 100 nm and 200 nm.
iii. 缓冲层 303: 利用溶胶-凝胶法(sol-gel)制作 Ti02缓冲层, 并在 100°C下作褪火处理, 其厚度在 100nm-200nm之间。 Iii. Buffer layer 303: A Ti0 2 buffer layer was formed by a sol-gel method and subjected to a tempering treatment at 100 ° C, and the thickness thereof was between 100 nm and 200 nm.
c) 利用真空蒸镀法或磁控溅射法制作透明导电薄膜 202, 如: IT0 c) Making a transparent conductive film 202 by vacuum evaporation or magnetron sputtering, such as: IT0
(In203:Sn) ,FT0 (Sn0:F) 或 ΑΖ0(Ζη0:Α1), 其厚度在 100nm_200nm之 间, 方块电阻小于 30Ω/Ο, 且透光率大于 85%。 d) 利用真空蒸镀法或磁控溅射法制作电致变色材料层 401, 如: W03、 Mo03、 Nb205 Ti02、 V205, 其厚度在 100nm-500nm之间。 (In 2 0 3 :Sn) , FT0 (Sn0:F) or ΑΖ0 (Ζη0:Α1), the thickness is between 100 nm and 200 nm, the sheet resistance is less than 30 Ω/Ο, and the light transmittance is greater than 85%. d) The electrochromic material layer 401 is formed by a vacuum evaporation method or a magnetron sputtering method, such as W0 3 , Mo0 3 , Nb 2 0 5 Ti0 2 , V 2 0 5 , and has a thickness of between 100 nm and 500 nm.
( 2 ) 制作器件的 200部分:  (2) Making 200 parts of the device:
a) 在另一片非导电基底 102上利用真空蒸镀法或磁控溅射法制作透明导电 薄膜 203, 如: ITO ( In203 : Sn) , FTO ( SnO : F) 或 ΑΖ0 (Ζη0 : Α1), 其厚度 在 100nm-200nm之间, 方块电阻小于 30Ω/Ο, 且透光率大于 85%。 b) 在透明导电薄膜 203上, 利用真空蒸镀法或磁控溅射法制作电致变色材 料层 403,如: M0、 Ir02、 Rh203、 Co02, 其厚度在 100nm_500nm之间。a) A transparent conductive film 203 is formed on another non-conductive substrate 102 by vacuum evaporation or magnetron sputtering, such as: ITO (In 2 0 3 : Sn), FTO (SnO: F) or ΑΖ0 (Ζη0: Α1), the thickness is between 100nm and 200nm, the sheet resistance is less than 30Ω/Ο, and the light transmittance is greater than 85%. b) On the transparent conductive film 203, an electrochromic material layer 403, such as M0, Ir0 2 , Rh 2 0 3 , Co0 2 , having a thickness of between 100 nm and 500 nm is formed by vacuum evaporation or magnetron sputtering.
( 3 ) 在器件的 100部分和 200部分之间利用不导电粘合胶将固定高度的不导电 间隔物 701和 702固定在器件的边缘, 其高度在 10微米到 200微米之间, 以确 保两个部分之间的间隔距离是相同的。 (3) Fixing the fixed height non-conductive spacers 701 and 702 at the edge of the device with a non-conductive adhesive between the 100 and 200 parts of the device, with a height between 10 and 200 microns to ensure The separation distance between the parts is the same.
( 4) 利用不导电粘合胶 501和 502 (如 EVA胶或环氧树脂) 将 100部分与 200 部分封装起来。  (4) Pack 100 and 200 parts with non-conductive adhesive 501 and 502 (such as EVA or epoxy).
( 5 ) 在器件的 100部分和 200部分之间注入液态电解质,如: LiC104+Propylene Carbonate, 并使其均匀分布于整个器件之中。 (5) Inject a liquid electrolyte such as LiC10 4 + Propylene Carbonate between the 100 and 200 parts of the device and distribute it evenly throughout the device.
( 6 ) 加上外部控制电路,包括光敏开关及连线等。在光照较强时,光敏开关 601 连接到端口 1, 通过有机太阳能电池的光电效应产生电场, 储存在电致变色材料 层 403的 Li+在电场的作用下经过电解质层注入到电致变色材料层 401, 导致器 件颜色变深。 在没有光照或光强较弱 (具体强度可以由光敏开关控制)时, 光敏 开关 601连接到端口 2, 电致变色材料层 401与 403直接相连, 加在其两端的电 场为零, 导致已经注入电致变色材料层 401的 Li+逐渐扩散回到电致变色材料层 403, 导致器件颜色回到初始的浅色状态。 (6) Add external control circuits, including photosensitive switches and wiring. When the illumination is strong, the photosensitive switch 601 is connected to the port 1, and an electric field is generated by the photoelectric effect of the organic solar cell, and the Li + stored in the electrochromic material layer 403 is injected into the electrochromic material layer through the electrolyte layer under the action of the electric field. 401, causing the device to darken. When there is no light or the light intensity is weak (the specific intensity can be controlled by the photosensitive switch), the photosensitive switch 601 is connected to the port 2, and the electrochromic material layers 401 and 403 are directly connected, and the electric field applied to both ends thereof is zero, resulting in the injection. The Li + of the electrochromic material layer 401 gradually diffuses back to the electrochromic material layer 403, causing the device color to return to the original light color state.

Claims

权 利 要 求 书 claims
1、 一种光电致变色器件, 其特征在于, 包括: 1. A photoelectrochromic device, characterized by including:
透明非导电基底; Transparent non-conductive substrate;
有机太阳能电池材料层, 其形成于所述透明非导电基底之上; An organic solar cell material layer formed on the transparent non-conductive substrate;
电致变色材料层 1和电致变色材料层 2, 其形成于有机太阳能电池材料层之 上; Electrochromic material layer 1 and electrochromic material layer 2, which are formed on the organic solar cell material layer;
电解质层, 其形成于两个电致变色材料层之间; an electrolyte layer formed between two electrochromic material layers;
透明导电层, 其形成于电解质层之上。 A transparent conductive layer formed on the electrolyte layer.
2、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述透明非导电 基底包括无机材料或有机材料, 包括: 玻璃、 PET薄膜、 塑料。 2. The photoelectrochromic device according to claim 1, characterized in that the transparent non-conductive substrate includes inorganic materials or organic materials, including: glass, PET film, and plastic.
3、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述有机太阳能 电池材料层包括阳极、 有机光电转换材料层和阴极; 3. The photoelectrochromic device according to claim 1, wherein the organic solar cell material layer includes an anode, an organic photoelectric conversion material layer and a cathode;
4、 根据权利要求书 3所述的光电致变色器件, 其特征在于, 所述阳极、 阴极 主要由无机或有机透明导电材料组成, 包括: In203:Sn(IT0),Sn02:F(FT0), Ζη0:Α1(ΑΖ0), 碳纳米管 (carbon nanotubes)、 石墨烯(graphene)及银纳米线 4. The photoelectrochromic device according to claim 3, characterized in that the anode and cathode are mainly composed of inorganic or organic transparent conductive materials, including: In 2 0 3 : Sn (ITO), Sn0 2 : F (FT0), Ζη0:Α1(ΑΖ0), carbon nanotubes, graphene and silver nanowires
(silver nanowires (silver nanowires
5、 根据权利要求书 3所述的光电致变色器件, 其特征在于, 所述有机光电转 换材料层包括至少一层有机聚合物、有机小分子化合物或是有机聚合物和有机小 分子化合物的混合物组成的光电材料。 5. The photoelectrochromic device according to claim 3, wherein the organic photoelectric conversion material layer includes at least one layer of organic polymers, organic small molecule compounds, or a mixture of organic polymers and organic small molecule compounds. Optoelectronic materials composed of.
6、 据权利要求书 3所述的光电致变色器件, 其特征在于, 所述有机光电转换 材料层可以是但不仅限于: Poly(3-hexylthiophene) (P3HT)、 6, 6— phenyl C61_butyric acid methyl ester (PCBM) Polyl 6. The photoelectrochromic device according to claim 3, wherein the organic photoelectric conversion material layer can be but is not limited to: Poly(3-hexylthiophene) (P3HT), 6, 6-phenyl C61_butyric acid methyl ester (PCBM) Polyl
1, 4_ (2-methoxy5-ethylhexyloxy) phenyl enevi-nylene (MEH-PPV)、 富勒烯 (C60) Poly (3, 4-ethylenedioxythiophene) Ploystyrene 1, 4_ (2-methoxy5-ethylhexyloxy) phenyl enevi-nylene (MEH-PPV), fullerene (C60) Poly (3, 4-ethylenedioxythiophene) Ploystyrene
sulfonic (PEDOT PSS) Zinc phthalocyanine (ZnPc) Chloroaluminum phthalocyanine (ClAlPc)、 sulfonic (PEDOT PSS) Zinc phthalocyanine (ZnPc) Chloroaluminum phthalocyanine (ClAlPc),
Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [ 1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole -l 4-dione (PBDTT-DPP)、 碳纳米管(Carbon nano_tubes )、 石墨烯(Graphene) 及银纳米线 (Si lver o_wires Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole -l 4-dione (PBDTT-DPP), carbon nanotubes (Carbon nano_tubes), graphene (Graphene) and silver nanowires (Silver o_wires
7、 根据权利要求书 2所 3的光电致变色器件, 其特征在于, 所述有机光电转 换材料层对可见光 (波长范围在 300nm至 700nm之间) 透过率〉50%,主要通过吸收 紫外光 (波长〈300nm)或近红外光 (波长〉700nm)能量将光能转换成电能,可以是但 不仅限于: Chloroaluminum phthalocyanine (ClAlPc) 7. The photoelectrochromic device according to claim 2, 3, characterized in that the organic photoelectric conversion material layer has a transmittance of visible light (wavelength range between 300nm and 700nm) > 50%, mainly by absorbing ultraviolet light. (wavelength <300nm) or near-infrared light (wavelength>700nm) energy converts light energy into electrical energy, which can be but is not limited to: Chloroaluminum phthalocyanine (ClAlPc)
Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [ 1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole - 1 4- dione (PBDTT- DPP) poly (3- hexylthiophene) (P3HT)、 6 6- phenyl C61-butyric acid methyl ester (PCBM)和富勒烯(C60) Poly (2, 60-4, 8_bis (5-ethylhexylthienyl) benzo- [1, 2_b; 3, 4_b] dithiophene- alt_5_dibutyloctyl_3, 6_bis (5-bromothiophen-2-yl) pyrrolo [3, 4~c] pyrrole - 1 4- dione (PBDTT- DPP) poly (3- hexylthiophene) (P3HT), 6 6-phenyl C61-butyric acid methyl ester (PCBM) and fullerene (C60)
8、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述有机太阳能 电池材料层包括染料敏化太阳能电池。其中,所述染料敏化太阳能电池包括阳极、 阴极、 Ti02多孔纳米膜、 电解质以及光敏染料。 8. The photoelectrochromic device according to claim 1, wherein the organic solar cell material layer includes a dye-sensitized solar cell. Wherein, the dye-sensitized solar cell includes an anode, a cathode, a TiO2 porous nanofilm, an electrolyte and a photosensitive dye.
9、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述电致变色材 料层包括有机电致变色材料、 过渡金属氧化物或普鲁士蓝(即: Fe4 [Fe (CN) 6] 3) o 9. The photoelectrochromic device according to claim 1, wherein the electrochromic material layer includes an organic electrochromic material, a transition metal oxide or Prussian blue (ie: Fe4 [Fe (CN) 6 ] 3 )o
10、 根据权利要求书 9所述的光电致变色器件, 其特征在于, 所述有机电致 变色材料包括 Vi logens、 Pyrazol ine Poly (ani l ine)或 Tetrathiafulvalene。 10. The photoelectrochromic device according to claim 9, wherein the organic electrochromic material includes Vi logens, Pyrazoline Poly (aniline) or Tetrathiafulvalene.
11、 根据权利要求书 9所述的光电致变色器件, 其特征在于, 所述过渡金属 氧化物包括 Ni0、 Ir02、 Rh203、 Co02、 W03 Mo03、 Nb205 Ti02、 V205 11. The photoelectrochromic device according to claim 9, characterized in that the transition metal oxide includes Ni0, Ir02 , Rh203 , Co02 , W03Mo03 , Nb205Ti02 , V 2 0 5 .
12、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述电解质层 包括液态电解质, 固态薄膜电解质或聚合物电解质。 12. The photoelectrochromic device according to claim 1, wherein the electrolyte layer includes a liquid electrolyte, a solid film electrolyte or a polymer electrolyte.
13、 根据权利要求书 12所述的光电致变色器件, 其特征在于, 所述液态电解 质, 包括锂盐及有机溶剂。 13. The photoelectrochromic device according to claim 12, wherein the liquid electrolyte includes a lithium salt and an organic solvent.
14、 根据权利要求书 12所述的光电致变色器件, 其特征在于, 所述锂盐包括 LiC104、 LiBF4、 CF3Li03S。 14. The photoelectrochromic device according to claim 12, wherein the lithium salt includes LiC10 4 , LiBF 4 , and CF 3 Li0 3 S.
15、 根据权利要求书 12所述的光电致变色器件, 其特征在于, 所述有机溶剂 包括 Propylene Carbonate, Dimethylformamide。 15. The photoelectrochromic device according to claim 12, wherein the organic solvent includes Propylene Carbonate and Dimethylformamide.
16、 根据权利要求书 12所述的光电致变色器件, 其特征在于, 所述固态薄膜 电解质, 包括: LiNb03 LiB02、 LiF、 LiBF4、 LiPF4、 LiPON, LiBS0、 LiA102 16. The photoelectrochromic device according to claim 12, characterized in that the solid film electrolyte includes: LiNb0 3 LiB0 2 , LiF, LiBF 4 , LiPF 4 , LiPON, LiBS0, LiA10 2 .
17、 根据权利要求书 12所述的光电致变色器件, 其特征在于, 所述聚合物电 解质, 包括: Poly (methyl meth-acrylate (PMMA)、 Poly (Vinyl Chloride (PVC)、 Poly (Ethylene oxide (PEO) Poly (ethyleneglycole (PEG)、 Poly (vinylbutral 17. The photoelectrochromic device according to claim 12, characterized in that the polymer electrolyte includes: Poly (methyl meth-acrylate (PMMA), Poly (Vinyl Chloride (PVC)), Poly (Ethylene oxide ( PEO) Poly (ethyleneglycole (PEG), Poly (vinylbutral
(PVB)。 (PVB).
18、 根据权利要求书 1所述的光电致变色器件, 其特征在于, 所述电致变色 器件包括一个或多个有机太阳能电池材料层且其串联连接,即所述有机太阳能电 池材料层的所述阳极连接至另一有机太阳能电池材料层的所述阴极,以提供器件 颜色改变所需的电压。 18. The photoelectrochromic device according to claim 1, wherein the electrochromic device includes one or more organic solar cell material layers and they are connected in series, that is, all of the organic solar cell material layers The anode is connected to the cathode of another organic solar cell material layer to provide the voltage required to change the color of the device.
19、 根据权利要求书 1所述的光电致变色器件, 所述有机太阳能电池材料层 连接有光敏开关, 光敏开关根据光线强弱自动控制器件颜色深浅。 19. The photoelectrochromic device according to claim 1, the organic solar cell material layer is connected to a photosensitive switch, and the photosensitive switch automatically controls the color depth of the device according to the intensity of light.
20、 根据权利要求书 1所述的光电致变色器件, 所述有机太阳能电池材料层 连接有蓄电池, 蓄电池将电池电量储存, 以提供光敏开关所需的电力。 20. The photoelectrochromic device according to claim 1, the organic solar cell material layer is connected to a battery, and the battery stores the battery power to provide the power required by the photosensitive switch.
PCT/CN2013/078828 2012-10-17 2013-07-04 Photoelectrochromic device WO2014059802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212013000019.7U DE212013000019U1 (en) 2012-10-17 2013-07-04 Photo electrochromic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210393307.3A CN103777424A (en) 2012-10-17 2012-10-17 Photochromic device
CN201210393307.3 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014059802A1 true WO2014059802A1 (en) 2014-04-24

Family

ID=50487525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078828 WO2014059802A1 (en) 2012-10-17 2013-07-04 Photoelectrochromic device

Country Status (3)

Country Link
CN (1) CN103777424A (en)
DE (1) DE212013000019U1 (en)
WO (1) WO2014059802A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148414A1 (en) 2017-02-10 2018-08-16 Gentex Corporation Transparent photovoltaic coating for an electro-chromic device
WO2019066553A3 (en) * 2017-09-28 2019-05-23 주식회사 엘지화학 Electrochromic composite, electrochromic element comprising same, and manufacturing method for electrochromic element
CN115872632A (en) * 2022-12-04 2023-03-31 航天材料及工艺研究所 Intelligent thermal control device and preparation method thereof
US11891571B2 (en) 2017-09-28 2024-02-06 Lg Chem, Ltd. Electrochromic composite, electrochromic element comprising same, and manufacturing method for electrochromic element

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614914A (en) * 2015-02-16 2015-05-13 浙江上方电子装备有限公司 Electrochromic glass with solar cell
CN104698716B (en) * 2015-03-18 2018-04-27 哈尔滨工业大学 A kind of adaptive electrochromic intelligent window
CN104867678B (en) * 2015-04-17 2018-04-03 新余学院 Conducting polymer/zinc oxide combined counter electrode and preparation method thereof
CN105022199A (en) * 2015-08-13 2015-11-04 武汉大学 Energy-saving display device and display method
CN105185296B (en) * 2015-10-27 2017-12-26 武汉大学 A kind of display device
DE102015015078A1 (en) * 2015-11-12 2017-05-18 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Automotive vision element
CN105553035A (en) * 2016-02-01 2016-05-04 蔡雄 Electric vehicle rapid charging station based on visual regulating function
CN106054486A (en) * 2016-02-18 2016-10-26 杨炳 High generation efficiency solar cell based on electrochromic device and manufacturing method thereof
CN106525942B (en) * 2016-10-09 2018-11-09 济南大学 A kind of construction method with the photic electric transducer that the time is reading signal
CN106637205B (en) * 2016-12-21 2018-11-02 北京工业大学 It can infrared regulation and control nano silver wire conductive substrates WO3Electrochromic device and preparation method thereof
CN109822996A (en) * 2017-11-23 2019-05-31 宸美(厦门)光电有限公司 Electrocontrolled color change vehicle glass
CN110045558B (en) * 2018-01-12 2021-01-12 中国科学院上海硅酸盐研究所 Lithium aluminate solid ion conducting layer, preparation method thereof and all-solid-state electrochromic device
CN108646498A (en) * 2018-05-08 2018-10-12 深圳市德安里科技有限公司 A kind of electrochromic device, preparation method and electrochomeric glass
CN109143717B (en) * 2018-08-14 2021-02-26 Oppo广东移动通信有限公司 Control method and device of electronic equipment, storage medium and electronic equipment
CN109742123B (en) * 2019-01-10 2021-01-26 京东方科技集团股份有限公司 Display substrate and display device
CN109557739A (en) * 2019-01-18 2019-04-02 南京工业大学 A kind of optical drive electrochromic device and preparation method thereof
CN109752894A (en) * 2019-03-11 2019-05-14 南京工业大学 A kind of light modulation smart window
CN111755532A (en) * 2019-03-28 2020-10-09 汉能移动能源控股集团有限公司 Photovoltaic module
CN112864263B (en) * 2019-11-26 2023-01-24 中国建材国际工程集团有限公司 Solar cell panel and application thereof
CN112951944B (en) * 2019-11-26 2022-11-18 中国建材国际工程集团有限公司 Preparation method of solar cell panel
CN111045268B (en) * 2019-12-31 2022-11-01 哈尔滨工业大学 All-solid-state electrochromic device with fluoride as electrolyte layer and preparation method thereof
CN111286710B (en) * 2020-03-30 2022-08-05 天津耀皮工程玻璃有限公司 V for electrochromic-based glass 2 O 5 Preparation method of multi-layer ion storage layer
CN113419392B (en) * 2021-08-23 2021-11-12 深圳大学 Self-powered electrochromic display device
CN115915800B (en) * 2022-12-15 2023-10-27 嘉庚创新实验室 Intermediate material and application thereof, and preparation method of perovskite layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377037A (en) * 1992-11-06 1994-12-27 Midwest Research Institute Electrochromic-photovoltaic film for light-sensitive control of optical transmittance
US20050237594A1 (en) * 2004-04-26 2005-10-27 Kuo-Chuan Ho Electrochromic device using poly(3,4-ethylenedioxythiophene) and derivatives thereof
CN101930142A (en) * 2009-06-22 2010-12-29 财团法人工业技术研究院 Photoelectrochromic element and manufacturing method thereof
CN102279496A (en) * 2010-06-13 2011-12-14 财团法人工业技术研究院 Tunable solar photovoltaic electrochromic assembly and module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673018B (en) 2008-09-10 2011-08-31 财团法人工业技术研究院 Solar photovoltaic electrochromic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377037A (en) * 1992-11-06 1994-12-27 Midwest Research Institute Electrochromic-photovoltaic film for light-sensitive control of optical transmittance
US20050237594A1 (en) * 2004-04-26 2005-10-27 Kuo-Chuan Ho Electrochromic device using poly(3,4-ethylenedioxythiophene) and derivatives thereof
CN101930142A (en) * 2009-06-22 2010-12-29 财团法人工业技术研究院 Photoelectrochromic element and manufacturing method thereof
CN102279496A (en) * 2010-06-13 2011-12-14 财团法人工业技术研究院 Tunable solar photovoltaic electrochromic assembly and module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148414A1 (en) 2017-02-10 2018-08-16 Gentex Corporation Transparent photovoltaic coating for an electro-chromic device
EP3580608A4 (en) * 2017-02-10 2020-01-22 Gentex Corporation Transparent photovoltaic coating for an electro-chromic device
US10955719B2 (en) 2017-02-10 2021-03-23 Gentex Corporation Transparent photovoltaic coating for an electro-chromic device
WO2019066553A3 (en) * 2017-09-28 2019-05-23 주식회사 엘지화학 Electrochromic composite, electrochromic element comprising same, and manufacturing method for electrochromic element
US11891571B2 (en) 2017-09-28 2024-02-06 Lg Chem, Ltd. Electrochromic composite, electrochromic element comprising same, and manufacturing method for electrochromic element
CN115872632A (en) * 2022-12-04 2023-03-31 航天材料及工艺研究所 Intelligent thermal control device and preparation method thereof

Also Published As

Publication number Publication date
DE212013000019U1 (en) 2014-05-21
CN103777424A (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2014059802A1 (en) Photoelectrochromic device
US11796883B2 (en) Integrated photovoltaic and electrochromic windows
Tong et al. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices
TWI385814B (en) Photoelectrochromics device and method of manufacturing the same
US8669625B2 (en) Photoelectric conversion device and electronic equipment
CN103035845B (en) The preparation method of organic (the inorganic)/metal of high conductivity/inorganic (organic) multi-layer-structure transparent conductive film
US8508834B2 (en) Printable photovoltaic electrochromic device and module
JP2007005620A (en) Organic thin film solar cell
Yang et al. Colorful squaraines dyes for efficient solution-processed all small-molecule semitransparent organic solar cells
CN102522506A (en) Organic solar cell of suede light trapping electrode and manufacturing method thereof
Pugliese et al. Highly efficient all-solid-state WO3-perovskite photovoltachromic cells for single-glass smart windows
US11189433B2 (en) Multifunctional solid-state devices for solar control, photovoltaic conversion and artificial lighting
CN103094480A (en) Polymer solar cell and preparation method thereof
Li et al. Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy
US10998515B2 (en) Solar cell and manufacturing method therefor
CN102280590B (en) Solar cell by virtue of taking colloid quantum dots and graphene as light anode and manufacturing method thereof
Radu et al. Study of a new composite based on SnO2 nanoparticles—P3HT: PC71BM co-polymer blend, used as potential absorber in bulk heterojunction photovoltaic cells
CN105336865A (en) High-electrical-conductivity polymer composite electrode and preparation method thereof
CN103280528B (en) A kind of polymer solar battery
JP5579696B2 (en) Organic thin film solar cell
JP5303828B2 (en) Organic thin film solar cell
CA2820090A1 (en) Organic photovoltaic array and method of manufacture
CN101877386A (en) Universal solar battery based on mesoscopic optical structure
CN102208461A (en) Solar cell and preparation method thereof
CN108336231A (en) A kind of organic photodetector of wide spectrum response

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2120130000197

Country of ref document: DE

Ref document number: 212013000019

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13846858

Country of ref document: EP

Kind code of ref document: A1