WO2014057934A1 - 通信方法、通信システム及び通信装置 - Google Patents

通信方法、通信システム及び通信装置 Download PDF

Info

Publication number
WO2014057934A1
WO2014057934A1 PCT/JP2013/077339 JP2013077339W WO2014057934A1 WO 2014057934 A1 WO2014057934 A1 WO 2014057934A1 JP 2013077339 W JP2013077339 W JP 2013077339W WO 2014057934 A1 WO2014057934 A1 WO 2014057934A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
communication
data signal
twisted pair
Prior art date
Application number
PCT/JP2013/077339
Other languages
English (en)
French (fr)
Inventor
大祐 梅原
石河 伸一
Original Assignee
国立大学法人京都工芸繊維大学
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学, 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 国立大学法人京都工芸繊維大学
Publication of WO2014057934A1 publication Critical patent/WO2014057934A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to a communication method, a communication system, and a communication apparatus that perform bidirectional communication on a single transmission line.
  • Patent Document 1 a multiplex communication method for transmitting and receiving at different frequencies.
  • Patent Document 1 there is an increasing need for full duplex communication that can be realized using existing hardware.
  • a bundle of four twisted cables called 100BASE-TX is used as the communication line for full duplex communication.
  • 100BASE-TX A bundle of four twisted cables called 100BASE-TX is used as the communication line for full duplex communication.
  • it is sufficient to use two pairs of cables for transmission and reception, and the other two pairs are unnecessary.
  • it is required to reduce the weight (saving of wiring) of a harness including a communication line. Therefore, it is necessary to perform full duplex communication without using 100BASE-TX.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication method, a communication system, and a communication apparatus capable of realizing bidirectional communication on a single transmission line.
  • the communication method according to the present invention is a communication method in which two communication devices communicate a digital signal bidirectionally via one transmission line, and the transmission line is a digital signal transmitted from the two communication devices.
  • the transmission state is such that it can be determined whether or not the signal values are different.
  • the communication method according to the present invention is characterized in that each of the two communication devices detects a transmission state in the transmission path and demodulates a reception signal based on the detected transmission state and the transmission signal.
  • the communication method according to the present invention is characterized in that the transmission path is a pair of twisted pair cables.
  • the communication system is a communication system in which two communication devices communicate a digital signal bidirectionally via one transmission line, and the two communication devices respectively transmit signals to the transmission line.
  • a transmission unit that superimposes a signal
  • a determination unit that determines whether or not the signal values of the digital signals transmitted from the two communication devices are different on the transmission path, and a received signal based on a determination result by the determination unit and the transmission signal
  • demodulating means for demodulating the signal.
  • the communication system is characterized in that, when the determining means determines that the signal values are different, the demodulating means inverts the transmission signal and demodulates the received signal.
  • the transmission means includes conversion means for converting a digital signal to be transmitted into a signal in which one value of the digital signal corresponds to a positive amplitude and the other value corresponds to a negative amplitude.
  • the signal generated by the conversion means is superimposed on the transmission line.
  • the communication system according to the present invention is characterized in that the transmission path is a pair of twisted pair cables.
  • a communication apparatus is a communication apparatus that is connected to one transmission path that can determine whether or not the signal value of a transmitted digital signal is different, and that transmits / receives a digital signal via the transmission path, Transmitting means for superimposing a transmission signal on the signal on the transmission path, determination means for determining a transmission state in the transmission path, determination results by the determination means, and demodulation means for demodulating the reception signal based on the transmission signal It is characterized by that.
  • the communication device is characterized in that the transmission means includes addition means for adding a transmission signal to the transmission path.
  • the transmission means includes conversion means for converting a digital signal to be transmitted into a signal in which one value of the digital signal corresponds to a positive amplitude and the other value corresponds to a negative amplitude. It is characterized by that.
  • the communication apparatus is characterized in that the transmission path is a pair of twisted pair cables, and the transmission means includes inversion means for inverting the transmission signal.
  • the communication apparatus is characterized in that the demodulation means includes means for taking an exclusive OR of a signal indicating the transmission state determined by the determination means and a transmission signal.
  • the present invention it is possible to determine whether or not digital signals transmitted from two communication devices are different in one transmission path (for example, a twisted pair cable), and it is possible to distinguish between the other states and the transmission. It is possible to identify the signal from the other based on the state.
  • one transmission path for example, a twisted pair cable
  • transmission signals from two communication devices are superimposed on the transmission path by addition, and each communication device can determine whether or not the signal values are different based on the superimposed transmission signals.
  • each communication device can demodulate the received signal based on the determination result of whether or not the signal value is different from the transmission signal from the own device.
  • a transmission signal from each communication device can be determined by converting a digital signal to be transmitted into a signal having positive and negative amplitudes and then superimposing it on a transmission path.
  • each communication device when each communication device determines that the transmission state in the transmission path is different from the signal value, it can demodulate the signal by inverting the transmission signal from the own device.
  • each of the two communication devices can demodulate the received signal based on the transmission state in the transmission path. Thereby, two-way communication is realized between two communication devices through one transmission path.
  • FIG. 1 is a block diagram schematically showing a configuration of a communication system in the present embodiment.
  • two communication devices 2 and 3 are connected by a pair of twisted pair cables 1, and full-duplex communication is performed between the communication devices 2 and 3.
  • the communication devices 2 and 3 transmit and receive digital data signals using NRZ (Non
  • NRZ Non
  • the communication device 2 includes a transceiver 20 connected to the twisted pair cable 1 and a communication control unit 21 that controls communication by the transceiver 20.
  • the communication device 3 includes a transceiver 30 connected to the twisted pair cable 1 and a communication control unit 31 that controls communication by the transceiver 30.
  • the transceiver 20 is hardware that realizes transmission and reception of digital data signals by full-duplex communication in the twisted pair cable 1.
  • the transceiver 20 includes a transmission data terminal TX2 that receives a transmission data signal and a reception data terminal RX2 that outputs a reception data signal. A detailed configuration inside the transceiver 20 will be described later.
  • the communication control unit 21 generates a transmission data signal according to a predetermined communication protocol, and supplies the transmission data signal to the transmission data terminal TX2 of the transceiver 20.
  • the communication control unit 21 generates a transmission data signal in bit units in synchronization with a clock signal from a clock circuit (not shown). The clock circuit at this time is synchronized with the clock circuit in the communication device 3.
  • the communication control unit 21 interprets the reception data signal output from the reception data terminal RX2 of the transceiver 20 according to the predetermined communication protocol, and acquires information such as a data value from the reception data signal.
  • the configurations of the transceiver 30 and the communication control unit 31 in the communication device 3 are the same as those of the transceiver 20 and the communication control unit 21 of the communication device 2, detailed description thereof is omitted.
  • FIG. 2 is a block diagram showing an internal configuration of the transceivers 20 and 30 in the present embodiment.
  • the transceiver 20 includes an EX-OR circuit 23, a transmission unit 24, and a reception unit 27. Since the internal configuration of the transceiver 30 is the same as the internal configuration of the transceiver 20, the corresponding reference numerals are assigned and detailed description thereof is omitted.
  • the transmission data signal from the transmission data terminal TX2 is branched at the first node 22, one of the branched signals is input to the transmission unit 24, and the other is input to one input terminal of the EX-OR circuit 23. ing.
  • the transmission unit 24 is connected to the twisted pair cable 1 inside.
  • the receiving unit 27 is also connected to the twisted pair cable 1 inside.
  • the receiving unit 27 is connected to the other input terminal of the EX-OR circuit 23.
  • the output of the EX-OR circuit 23 is connected to the reception data terminal RX2.
  • the transmission unit 24 includes a transmission data signal converter 25 and a signal adder 26 to the twisted pair cable 1, which receives a transmission data signal from the transmission data terminal TX 2.
  • the converter 25 is a circuit that converts a digital data signal having a signal value of 0 V or 1 V into a pulse signal having positive and negative amplitudes.
  • FIG. 3 is a circuit diagram showing a configuration of converter 25 that constitutes transceiver 20 in the present embodiment. Since the configuration of the converter 35 in the transceiver 30 is the same as that of the converter 25, a detailed description thereof will be omitted.
  • the converter 25 has a configuration of an inverting amplifier circuit using an operational amplifier 251. An input signal of the converter 25 is input to the negative voltage terminal of the operational amplifier 251 through the resistor R1. The positive voltage terminal of the operational amplifier 251 is grounded.
  • the negative voltage terminal of the operational amplifier 251 is connected to a constant voltage of ⁇ 0.5 V via the resistor R3, and is connected to the output terminal of the operational amplifier 251 itself via the resistor R2.
  • the positive power supply terminal of the operational amplifier 251 is connected in parallel with a constant voltage of Vcc and a capacitor C1.
  • a negative voltage terminal of the operational amplifier 251 is connected in parallel with a constant voltage of ⁇ Vcc and a capacitor C2.
  • a pulse signal having positive and negative amplitudes is output from the output terminal of the operational amplifier 251.
  • FIG. 4 is a time chart showing input / output signals of the converter 25.
  • the horizontal axis in FIG. 4 indicates the passage of time, and the vertical axis in FIG. 4 indicates the signal levels of the input signal (IN) and the output signal (OUT).
  • the converter 25 converts the digital data signal (IN) of 0V or 1V into a pulse signal (OUT) having an amplitude from minus 1V to plus 1V.
  • the adder 26 is a circuit that adds the pulse signal from the converter 25 to the twisted pair cable 1 using a grounding resistor.
  • FIG. 5 is a circuit diagram showing a configuration of adders 26 and 36 constituting transceivers 20 and 30 in the present embodiment. Both the adder 26 and the adder 36 are configured using two resistors.
  • the pulse signal BP2 output from the converter 25 and input to the adder 26 is input to one end of the twisted pair cable 1 via the series resistor R10. Note that the other end of the resistor R12 whose one end is grounded is connected between the resistor R10 and the twisted pair cable 1. Further, the pulse signal BP3 output from the converter 35 and input to the adder 36 is input to the other end of the twisted pair cable 1 via the series resistor R11.
  • FIG. 6 is a time chart showing pulse signals on the twisted pair cable 1 obtained by the adders 26 and 36.
  • the horizontal axis of FIG. 6 indicates the passage of time, and indicates a break of 1 bit time by a broken line.
  • the vertical axis in FIG. 6 indicates the signal levels of the pulse signal (BP2) from the communication device 2, the pulse signal (BP3) from the communication device 3, and the addition signal (SUM) on the twisted pair cable 1.
  • a signal SUM obtained by adding the pulse signal BP2 and the pulse signal BP3 is obtained by the adder 26 and the adder 36.
  • both the pulse signal BP2 from the communication device 2 and the pulse signal BP3 from the communication device 3 have positive + 1V, and the amplitude of the addition signal SUM Is also + 1V.
  • the amplitude of the pulse signal BP2 from the communication device 2 is positive + 1V, and the amplitude of the pulse signal BP3 from the communication device 3 is negative -1V.
  • the amplitude of the addition signal SUM is zeroed by the addition.
  • the amplitude of the pulse signal BP2 from the communication device 2 is negative ⁇ 1V
  • the amplitude of the pulse signal BP3 from the communication device 3 is positive + 1V
  • the addition signal The SUM amplitude is zero by addition.
  • both the pulse signal BP2 from the communication device 2 and the pulse signal BP3 from the communication device 3 have a negative amplitude of ⁇ 1V
  • the amplitude of the addition signal SUM is also ⁇ 1V. .
  • the addition signal SUM sent over the twisted pair cable 1 has a positive or negative amplitude when the amplitude of the pulse signal BP2 from the communication device 2 is the same as the amplitude of the pulse signal BP3 from the communication device 3. If the voltage is different, the amplitude is zero. Thereby, it is possible to determine whether or not the amplitude of the pulse signal BP2 from the communication device 2 and the amplitude of the pulse signal BP3 from the communication device 3 are the same based on the amplitude of each bit of the addition signal SUM. .
  • the determination / demodulator 28 is connected to the twisted pair cable 1.
  • the determination / demodulator 28 is a circuit that determines whether the amplitude of the addition signal SUM on the twisted pair cable 1 is positive or negative and outputs a determination result.
  • the determination / demodulator 28 determines whether the amplitude (signal level) of the addition signal SUM is greater than or equal to a predetermined positive threshold or less than a predetermined negative threshold.
  • the determination / demodulator 28 determines that the amplitude is zero when the amplitude is less than the positive threshold and exceeds the negative threshold.
  • FIG. 7 is a circuit diagram showing a configuration of determination / demodulator 28 that constitutes transceiver 20 in the present embodiment.
  • the determination / demodulator 28 has a window comparator configuration using operational amplifiers 281 and 282.
  • the input signal (addition signal SUM) from the twisted pair cable 1 branches, one is input to the negative voltage terminal of the operational amplifier 281 via the resistor R14, and the other is input to the positive voltage terminal of the operational amplifier 282 via the resistor R15. ing.
  • a constant voltage of V15 corresponding to the positive threshold is connected to the positive voltage terminal of the operational amplifier 281.
  • Constant voltages of capacitors C9 and V3 are connected in parallel to the positive power supply terminal, and a capacitor is connected to the negative power supply terminal. Negative constant voltages of C4 and V10 are connected in parallel.
  • the L terminal and G terminal of the operational amplifier 281 are grounded.
  • the negative voltage terminal of the operational amplifier 282 is connected to a constant voltage of ⁇ V16 corresponding to the negative threshold, the positive power supply terminal is connected to the constant voltages of the capacitors C5 and V13 in parallel, and the negative power supply terminal is connected to the negative power supply terminal.
  • the negative constant voltages of the capacitors C6 and V14 are connected in parallel.
  • the L terminal and G terminal of the operational amplifier 282 are grounded.
  • Outputs of the operational amplifier 281 and the operational amplifier 282 are input to an AND circuit, and an output signal from the AND circuit is output as an output of data received from the determination / demodulator 28 via the twisted pair cable 1. That is, the AND circuit outputs “1” only when the amplitude of the addition signal SUM is less than the positive threshold and exceeds the negative threshold.
  • FIG. 8 is a time chart showing input / output signals of the decision / demodulator 28.
  • the horizontal axis of FIG. 8 shows the passage of time, and the vertical axis of FIG. 8 shows the signal levels of the addition signal (SUM) and the output signal (OUT) on the twisted pair cable 1 input to the determination / demodulator 28. Show.
  • the output signal shown in FIG. 8 is “1” when the amplitude of the sum signal (SUM) input to the determination / demodulator 28 is zero, and “0” when the amplitude is positive or negative 1V. Show. That is, for each bit, the determination / demodulator 28 indicates “1” when the transmission data signal from the communication device 2 and the reception data signal from the communication device 3 are different, and indicates “0” when they are the same. It can be said that a signal (determination result) is output.
  • the addition signal SUM in the twisted pair cable 1 has a positive or negative 1V amplitude when the amplitude of the pulse signal BP2 from the communication device 2 and the amplitude of the pulse signal BP3 from the communication device 3 are the same. This is because it becomes zero.
  • the EX-OR circuit 23 is a circuit that outputs an exclusive OR signal of two input signals.
  • the input of the EX-OR circuit 23 is connected to the first node 22 and the receiving unit 27 branched from the transmission data terminal TX2. Therefore, the EX-OR circuit 23 takes an exclusive OR of the transmission data signal and the data signal received by the receiving unit 27. That is, the EX-OR circuit 23 outputs an exclusive OR signal between the transmission data signal and a signal indicating whether or not the transmission data signal and the reception data signal in the twisted pair cable 1 are the same.
  • “0” is output from the receiving unit 27, and therefore, the EX-OR circuit 23 transmits “1” when the transmission data signal is “1”.
  • the full duplex communication is realized by the transceiver 20 and the transceiver 30 configured as described above.
  • FIG. 9 is a time chart showing transition of signals in the transceivers 20 and 30 in the present embodiment.
  • the horizontal axis in FIG. 9 shows the passage of time.
  • the signal at the transmission data terminal TX2 of the transceiver 20, the signal at the transmission data terminal TX3 of the transceiver 30, the signal BP2 inputted to the adder 26 of the transceiver 20, and the adder 36 of the transceiver 30 are plotted on the vertical axis.
  • BP3 addition signal SUM on twisted pair cable 1
  • signals CD2 and 3 output from decision / demodulators 28 and 38 of transceivers 20 and 30 signals at reception data terminal RX2 of transceiver 20, and reception data of transceiver 30
  • the signal level of each signal at the terminal RX3 is shown.
  • a signal of “0” is input to the transmission data terminal TX2 of the communication device 2 in one bit time from the time t4.
  • the signal input to the transmission data terminal TX2 is converted into a pulse signal BP2 having a positive amplitude of +1 V by the converter 25 and input to the adder 26.
  • a signal “0” is input to the transmission data terminal TX 3 of the communication device 3.
  • the signal input to the transmission data terminal TX3 is converted into a pulse signal BP3 by the converter 35 and input to the adder 36. Accordingly, a positive amplitude pulse signal of +1 V is transmitted to the twisted pair cable 1 in one bit time from the time t4.
  • the determination / demodulators 28 and 38 output that the transmission data signal and the reception data signal in the twisted pair cable 1 are the same (“0”). Therefore, the EX-OR circuit 23 outputs the same “0” as the transmission data signal “0”, and the EX-OR circuit 33 also outputs the same “0” as the transmission data signal “0”. As a result, “0” is output to the reception data terminal RX2 of the communication device 2, and the transmission data signal “0” from the communication device 3 can be demodulated. Similarly, “0” is output to the reception data terminal RX3 of the communication device 3, and the transmission data signal “0” from the communication device 2 can be demodulated.
  • a signal “1” is input to the transmission data terminal TX2 of the communication device 2, and a signal “1” is input to the transmission data terminal TX3 of the communication device 3.
  • the transmission data signal in the communication device 2 is converted into a negative amplitude pulse signal BP 2 by the converter 25 and input to the adder 26.
  • the transmission data signal is converted into a negative amplitude pulse signal BP 3 by the converter 35 and input to the adder 36.
  • the adder 26 and the adder 36 send a negative amplitude pulse signal of ⁇ 1 V to the twisted pair cable 1 in one bit time from the time t5.
  • the determination / demodulators 28 and 38 output that the transmission data signal and the reception data signal in the twisted pair cable 1 are the same (“0”). Therefore, the EX-OR circuit 23 outputs “1” that is the same as the transmission data signal “1”, and the EX-OR circuit 33 also outputs “1” that is the same as the transmission data signal “1”. As a result, “1” is output to the reception data terminal RX of the communication device 2, and the transmission data signal “1” from the communication device 3 can be demodulated. Similarly, “1” is output to the reception data terminal RX3 of the communication device 3, and the transmission data signal “1” from the communication device 2 can be demodulated.
  • the transmission data signal and the reception data signal on the twisted pair cable 1 are the same in the 1-bit time from the time t6 (“0”), and “0” is input to the reception data terminal RX of the communication device 2. Is output, and the transmission data signal “0” from the communication device 3 can be demodulated. Similarly, “0” is output to the reception data terminal RX3 of the communication device 3, and the transmission data signal “0” from the communication device 2 can be demodulated.
  • a signal “0” is input to the transmission terminal TX2 of the communication device 2, and a different signal “1” is input to the transmission data terminal TX3 of the communication device 3.
  • the transmission data signal in the communication device 2 is converted into a negative amplitude pulse signal BP 2 by the converter 25 and input to the adder 26.
  • the transmission data signal is converted into a positive amplitude pulse signal BP 3 by the converter 35 and input to the adder 36.
  • the adder 26 and the adder 36 send a signal having a zero amplitude to the twisted pair cable 1 in one bit time from the time t6.
  • the determination / demodulators 28 and 38 output that the transmission data signal and the reception data signal in the twisted pair cable 1 are not the same (“1”). Accordingly, the EX-OR circuit 23 of the communication device 2 outputs “1” obtained by inverting the transmission data signal “0”, and the EX-OR circuit 33 of the communication device 3 inverts the transmission data signal “1”. “0” is output. As a result, “1” is output to the reception data terminal RX2 of the communication device 2, and the transmission data signal “1” from the communication device 3 can be demodulated. Similarly, “0” is output to the reception data terminal RX3 of the communication device 3, and the transmission data signal “0” from the communication device 2 can be demodulated.
  • the transmission data signal is converted into a pulse signal by the transceiver 20 and the transceiver 30 of the communication device 2 and the communication device 3 and then superimposed on the twisted pair cable 1. Further, the transmission data signal on the twisted pair cable 1 Full-duplex communication is realized by determining whether or not the received data signal is the same and demodulating the received data signal using the transmitted data signal and the determination result.
  • the signal delay in the twisted pair cable 1 and the measures against the clock signal synchronization shift are not described. However, when full-duplex communication is actually performed, it is necessary to deal with them.
  • the plurality of communication devices are respectively When demodulating the received data signal, The transmission data signal is duplicated when the determination result is the same state, and when the determination result is not the same state, the transmission data signal is inverted and the reception data signal is demodulated. Communication method.
  • the plurality of communication devices transmit and receive digital data signals by full-duplex communication via the twisted pair cables.
  • the plurality of communication devices are respectively Means for synchronizing the bit time of one bit of the digital data signal with another communication device; Means for superimposing the transmission data signal on the transmission data signal from each communication device; Every bit time, Means for determining whether or not the communication state in the twisted pair cable is the same between the transmission data signal and the reception data signal; And a demodulating means for demodulating the received data signal using the determination result by the means and the transmission data signal.
  • the demodulating means duplicates the transmission data signal when the determination results are the same, and inverts the transmission data signal and demodulates the reception data signal when the determination results are not the same.
  • the plurality of communication devices transmit and receive digital data signals by full-duplex communication via the twisted pair cables.
  • the plurality of communication devices are respectively A reception terminal for receiving a data signal to be transmitted; An output terminal for outputting a received data signal; A first node for branching the transmission data signal received at the reception terminal; An exclusive OR circuit that inputs the data signal output from the connection part and the one branched from the first node, and outputs an exclusive OR signal to the output terminal; A converter for converting the other branched from the first node into a pulse signal having a positive amplitude or a negative amplitude having a width of 1 bit of the digital data signal, and a pulse signal output from the converter as the twisted pair cable A transmitter having an adder for adding to the signal above;
  • a communication system comprising: a receiving unit that determines whether the pulse signal in the twisted pair cable is positive or negative and the magnitude
  • Appendix 6 The communication system according to appendix 5, wherein the reception unit is configured to output a data signal that is true when the amplitude of the pulse signal is less than a positive threshold value and exceeds a negative threshold value.
  • a reception terminal for receiving a data signal to be transmitted; An output terminal for outputting a received data signal; A first node for branching the transmission data signal received at the reception terminal; An exclusive OR circuit that inputs the data signal output from the connection part and the one branched from the first node, and outputs an exclusive OR signal to the output terminal; A converter for converting the other branched from the first node into a pulse signal having a positive amplitude or a negative amplitude having a width of 1 bit of the digital data signal, and a pulse signal output from the converter as the twisted pair cable A transmitter having an adder for adding to the signal above; A communication device comprising: a receiving unit that determines whether the pulse signal in the twisted pair cable is positive or negative and the magnitude of the amplitude, and demodulates and outputs a data signal based on the determination result.
  • the digital data signal carried by the twisted pair cable is superimposed in a state where the bit time is synchronized in each communication device.
  • each communication device for each bit time, it is determined whether the communication state in the twisted pair cable is the same state for the transmission data signal and the reception data signal.
  • the reception data signal is demodulated using the transmission data signal based on the determination result in each communication device. For example, if the communication state in the twisted pair cable is the same for the transmission data signal and the reception data signal, one bit of the reception data signal is the same as one bit of the transmission data signal.
  • the communication state in the twisted pair cable is a state where the transmission data signal and the reception data signal are different, one bit of the reception data signal is opposite to one bit of the transmission data signal.
  • each communication apparatus can demodulate the received data signal.
  • the superimposition of the transmission data signal from the communication device to the twisted pair cable is realized by adding a pulse signal having a positive amplitude or a negative amplitude.
  • the positive amplitude or the negative amplitude of the pulse signal in the twisted pair cable is a plurality of times, the same transmission data is transmitted from a plurality of communication devices in the bit time.
  • each communication apparatus can determine the communication state in the twisted pair cable, and can demodulate the received data signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 1つの伝送路での全二重化通信を実現する通信方法、通信システム及び通信装置を提供する。 全二重化通信を実現するために、送信データ端子TX2,TX3にて受け付けた信号は、正負のパルス信号に変換され、加算器26,36により加算され、ツイストペアケーブル1へ送出される。判定・復調器28,38にて同時的に、ツイストペアケーブル1における通信状態が、送信データ信号と受信データ信号とが同一の状態であるか否かを判定して結果を出力し、EX-OR回路23,33にて、判定結果に基づき送信データ信号を複製又は反転して受信データ信号として復調し、受信データ端子RX2,RX3へ出力する。

Description

通信方法、通信システム及び通信装置
 本発明は、1つの伝送路にて双方向通信を行なう通信方法、通信システム及び通信装置に関する。
 既存の通信方法では、双方向通信を行なう場合、送信用及び受信用のケーブルを用いて送受信が行なわれる。これに対し、1つの伝送路で同時的に双方向から情報を送信し、各々が情報を受信する方法により、伝送路を削減することができるが、困難性から当該方法は採用されていない。
 特に車載通信システムでは、電気的制御に基づく機能が増加していることによって通信量が増えている。そのため、異なる周波数で送受信する多重通信方法も提案されている(特許文献1等)。しかしながら既存のハードウェアを用いて実現することが可能な全二重化通信の必要性が高まっている。
 既存の車載通信システムでは、CANプロトコルに基づき1対のツイストペアケーブルを用いることが一般的である。車載通信システムに、全二重化通信(双方向)通信を適用する場合、更にもう1対のペアケーブルが必要となる。
特開2008-193606号公報
 全二重化通信に係る通信線として100BASE-TXと呼ばれる4本のツイストケーブルが束ねられたものを用いる。しかしながら、全二重化通信では、送信用及び受信用の2対のケーブルを用いれば足り、他の2対は不要である。車載通信システムでは、通信線を含むハーネスの軽量化(省線化)が求められているので、100BASE-TXを用いずに、全二重化通信を行なうことが必要である。
 本発明は斯かる事情に鑑みてなされたものであり、1つの伝送路にて双方向通信を実現することができる通信方法、通信システム及び通信装置を提供することを目的とする。
 本発明に係る通信方法は、2つの通信装置が1つの伝送路を介してデジタル信号を双方向に通信する通信方法であって、前記伝送路は、前記2つの通信装置から送信されるデジタル信号の信号値が異なるか否かが判別可能な伝送状態となることを特徴とする。
 本発明に係る通信方法は、前記2つの通信装置は夫々、前記伝送路における伝送状態を検出し、検出した伝送状態、及び送信信号に基づき受信信号を復調することを特徴とする。
 本発明に係る通信方法は、前記伝送路は、1対のツイストペアケーブルであることを特徴とする。
 本発明に係る通信システムは、2つの通信装置が、1つの伝送路を介してデジタル信号を双方向に通信する通信システムであって、前記2つの通信装置は夫々、前記伝送路上の信号に送信信号を重畳させる送信手段と、前記伝送路上で前記2つの通信装置から送信されるデジタル信号の信号値が異なるか否かを判別する判別手段と該判別手段による判別結果及び送信信号に基づき受信信号を復調する復調手段とを備えることを特徴とする。
 本発明に係る通信システムは、前記復調手段は、前記判別手段が信号値が異なる状態であると判別した場合、送信信号を反転させて受信信号を復調するようにしてあることを特徴とする。
 本発明に係る通信システムは、前記送信手段は、送信するデジタル信号を、該デジタル信号の一方の値を正の振幅、他方の値を負の振幅に対応させた信号に変換する変換手段を備え、該変換手段が生成した信号を前記伝送路に重畳させるようにしてあることを特徴とする。
 本発明に係る通信システムは、前記伝送路は、1対のツイストペアケーブルであることを特徴とする。
 本発明に係る通信装置は、送信されるデジタル信号の信号値が異なるか否かが判別可能な1つの伝送路に接続され、前記伝送路を介してデジタル信号を送受信する通信装置であって、前記伝送路上の信号に送信信号を重畳させる送信手段と、前記伝送路における伝送状態を判別する判別手段と、該判別手段による判別結果、及び送信信号に基づき受信信号を復調する復調手段とを備えることを特徴とする。
 本発明に係る通信装置は、前記送信手段は、送信信号を前記伝送路に加算する加算手段を有することを特徴とする。
 本発明に係る通信装置は、前記送信手段は、送信するデジタル信号を、該デジタル信号の一方の値を正の振幅、他方の値を負の振幅に対応させた信号に変換する変換手段を有することを特徴とする。
 本発明に係る通信装置は、前記伝送路は1対のツイストペアケーブルであり、前記送信手段は、送信信号を反転する反転手段を有することを特徴とする。
 本発明に係る通信装置は、前記復調手段は、前記判別手段により判別した伝送状態を示す信号と、送信信号との排他的論理和をとる手段を有することを特徴とする。
 本発明では、1つの伝送路(例えばツイストペアケーブル)には2つの通信装置から送信されるデジタル信号の信号が異なるか否かが判別可能であり、他の状態と識別が可能であって当該伝送状態に基づき他方からの信号を特定することが可能である。
 本発明では、伝送路には2つの通信装置からの送信信号が加算によって重畳され、各通信装置は重畳された送信信号に基づき、信号値が異なるか否かを判別できる。これにより、各通信装置は自装置からの送信信号と、信号値が異なるか否かの判別結果により、受信信号が復調可能となる。
 各通信装置からの送信信号は例えば、送信するデジタル信号を正及び負の振幅を有する信号に変換してから、伝送路にて重畳されることにより、伝送状態が判別可能となる。
 本発明では、各通信装置は伝送路における伝送状態が信号値と異なる状態と判別した場合、自装置からの送信信号を反転することによって復調可能となる。
 本発明による場合、2つの通信装置は夫々、伝送路における伝送状態に基づき、受信信号を復調することが可能である。これにより、1つの伝送路にて2つの通信装置間で双方向通信が実現される。
本実施の形態における通信システムの構成を模式的に示すブロック図である。 本実施の形態におけるトランシーバの内部構成を示すブロック図である。 本実施の形態におけるトランシーバを構成する変換器の構成を示す回路図である。 変換器の入出力信号を示すタイムチャートである。 本実施の形態におけるトランシーバを構成する加算器の構成を示す回路図である。 加算器によって得られるツイストペアケーブル上のパルス信号を示すタイムチャートである。 本実施の形態におけるトランシーバを構成する判定・復調器の構成を示す回路図である。 判定・復調器の入出力信号を示すタイムチャートである。 本実施の形態におけるトランシーバ内における信号の推移を示すタイムチャートである。
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 特に、以下の実施の形態では、1つの伝送路としてツイストペアケーブルを採用した場合を例に挙げて双方向通信を実現する方法を説明する。
 図1は、本実施の形態における通信システムの構成を模式的に示すブロック図である。本実施の形態における通信システムは、1対のツイストペアケーブル1で、2つの通信装置2及び通信装置3が接続され、通信装置2及び通信装置3間で全二重化通信を行なう。通信装置2及び3は、NRZ(Non Return Zero )信号を用いてデジタルデータ信号を送受信する。
 通信装置2は、ツイストペアケーブル1に接続されるトランシーバ20と、トランシーバ20による通信を制御する通信制御部21とを備える。同様にして通信装置3は、ツイストペアケーブル1に接続されるトランシーバ30と、トランシーバ30による通信を制御する通信制御部31とを備える。
 トランシーバ20は、ツイストペアケーブル1における全二重化通信によるデジタルデータ信号の送受信を実現するハードウェアである。トランシーバ20は、送信データ信号を受け付ける送信データ端子TX2と、受信データ信号を出力する受信データ端子RX2とを備える。トランシーバ20内部の詳細な構成については後述にて説明する。
 通信制御部21は、所定の通信プロトコルに従って送信データ信号を生成してトランシーバ20の送信データ端子TX2へ与える。なお、通信制御部21は、図示しないクロック回路からのクロック信号に同期してビット単位で送信データ信号を生成する。このときのクロック回路は、通信装置3におけるクロック回路と同期されてある。通信制御部21は、トランシーバ20の受信データ端子RX2から出力された受信データ信号を前記所定の通信プロトコルに従って解釈し、受信データ信号からデータ値等の情報を取得する。
 通信装置3におけるトランシーバ30及び通信制御部31の構成は、通信装置2のトランシーバ20及び通信制御部21と同様であるので、詳細な説明を省略する。
 図2は、本実施の形態におけるトランシーバ20,30の内部構成を示すブロック図である。トランシーバ20は、EX-OR回路23と、送信部24と、受信部27とを備える。トランシーバ30の内部構成は、トランシーバ20の内部構成と同様であるので、対応する符号を付して詳細な説明を省略する。
 送信データ端子TX2からの送信データ信号は、第1節点22にて分岐されており、分岐した信号は一方は送信部24に入力され、他方はEX-OR回路23の一方の入力端子に入力されている。送信部24は、内部でツイストペアケーブル1に接続されている。また、受信部27も内部でツイストペアケーブル1に接続されている。受信部27は、EX-OR回路23の他方の入力端子に接続されている。EX-OR回路23の出力は、受信データ端子RX2に接続されている。
 送信部24は、送信データ端子TX2からの送信データ信号を入力し、送信データ信号の変換器25とツイストペアケーブル1への信号の加算器26とを備える。
 変換器25は、信号値が0Vか1Vのデジタルデータ信号を、正負振幅のパルス信号へ変換する回路である。図3は、本実施の形態におけるトランシーバ20を構成する変換器25の構成を示す回路図である。トランシーバ30における変換器35の構成は、変換器25と同様であるので詳細な説明は省略する。変換器25は、オペアンプ251を用いた反転増幅回路の構成をとっている。変換器25の入力信号が抵抗R1を介してオペアンプ251のマイナス電圧端子に入力される。そして、オペアンプ251のプラス電圧端子は接地されている。またオペアンプ251のマイナス電圧端子は、-0.5Vの定電圧に、抵抗R3を介して接続されており、また、オペアンプ251自身の出力端子と抵抗R2を介して接続されている。オペアンプ251のプラス電源端子には、Vccの定電圧及びコンデンサC1が並列に接続されている。オペアンプ251のマイナス電源端子には、-Vccの定電圧及びコンデンサC2が並列に接続されている。オペアンプ251の出力端子から、正負振幅のパルス信号が出力される。
 図4は、変換器25の入出力信号を示すタイムチャートである。図4の横軸は時間の経過を示し、図4の縦軸は、入力信号(IN)、及び出力信号(OUT)夫々の信号レベルを示している。図4に示すように変換器25は、0Vか1Vのデジタルデータ信号(IN)を、マイナス1Vからプラス1Vへの振幅を持つパルス信号(OUT)へ変換する。
 加算器26は、接地抵抗を用いてツイストペアケーブル1へ、変換器25からのパルス信号を加算する回路である。図5は、本実施の形態におけるトランシーバ20,30を構成する加算器26,36の構成を示す回路図である。加算器26及び加算器36はいずれも、2つの抵抗を用いて構成されている。変換器25から出力され、加算器26へ入力されるパルス信号BP2は、直列抵抗R10を介してツイストペアケーブル1の一端へ入力される。なお、抵抗R10とツイストペアケーブル1との間には、一端が接地している抵抗R12の他端が接続されている。また、ツイストペアケーブル1の他端には、変換器35から出力され、加算器36へ入力されるパルス信号BP3が、直列抵抗R11を介して入力される。抵抗R11とツイストペアケーブル1との間には一端が接地している抵抗R13の他端が接続されている。これにより、ツイストペアケーブル1には、通信装置2からのパルス信号BP2と通信装置3からのパルス信号BP3との加算信号SUMが搬送される。
 図6は、加算器26,36によって得られるツイストペアケーブル1上のパルス信号を示すタイムチャートである。図6の横軸は時間の経過を示し破線により、1ビット時間の区切りを示している。図6の縦軸は、通信装置2からのパルス信号(BP2)、通信装置3からのパルス信号(BP3)、及びツイストペアケーブル1上の加算信号(SUM)夫々の信号レベルを示している。
 図6に示すように、加算器26及び加算器36により、パルス信号BP2及びパルス信号BP3を加算した信号SUMが得られている。例えば、図6における1ビット目にあたる時刻t0からの1ビット時間では、通信装置2からのパルス信号BP2も通信装置3からのパルス信号BP3も、振幅は正の+1Vであり、加算信号SUMの振幅も+1Vである。これに対し、2ビット目にあたる時刻t1からの1ビット時間では、通信装置2からのパルス信号BP2の振幅は正の+1Vであって通信装置3からのパルス信号BP3の振幅は負の-1Vであり、加算信号SUMの振幅は加算により相殺されてゼロである。3ビット目にあたる時刻t2からの1ビット時間では、通信装置2からのパルス信号BP2の振幅は負の-1Vであって通信装置3からのパルス信号BP3の振幅は正の+1Vであり、加算信号SUMの振幅は加算によってゼロである。4ビット目にあたるt3からの1ビット時間では、通信装置2からのパルス信号BP2も通信装置3からのパルス信号BP3も、振幅は負の-1Vであり、加算信号SUMの振幅も-1Vである。このように、ツイストペアケーブル1上に送出される加算信号SUMは、通信装置2からのパルス信号BP2の振幅と通信装置3からのパルス信号BP3の振幅とが同一の場合は、振幅が正又は負の1V、異なる場合は振幅がゼロとなる。これにより、加算信号SUMのビット毎の振幅によって、通信装置2からのパルス信号BP2の振幅と通信装置3からのパルス信号BP3の振幅とが同一であるか否かを判断することが可能である。
 判定・復調器28は、ツイストペアケーブル1に接続してある。判定・復調器28は、ツイストペアケーブル1上の加算信号SUMの振幅の正負を判定し、判定結果を出力する回路である。なお、判定・復調器28は、加算信号SUMの振幅(信号レベル)が、所定の正の閾値以上であるか、又は所定の負の閾値以下であるかによって、振幅の正負を判定する。判定・復調器28は、振幅が正の閾値未満、且つ負の閾値を超過する場合は、ゼロ振幅と判定する。図7は、本実施の形態におけるトランシーバ20を構成する判定・復調器28の構成を示す回路図である。トランシーバ30における判定・復調器38の構成は、判定・復調器28の構成と同様であるので詳細な説明を省略する。判定・復調器28は、オペアンプ281,282を用いたウィンドコンパレータの構成をとっている。ツイストペアケーブル1からの入力信号(加算信号SUM)は分岐して、一方は抵抗R14を介してオペアンプ281のマイナス電圧端子に入力され、他方は抵抗R15を介してオペアンプ282のプラス電圧端子に入力されている。オペアンプ281のプラス電圧端子には、正の閾値に対応するV15の定電圧が接続されており、プラス電源端子には、コンデンサC9及びV3の定電圧が並列に接続され、マイナス電源端子にはコンデンサC4及びV10の負の定電圧が並列に接続されている。また、オペアンプ281のL端子及びG端子は接地されている。オペアンプ282のマイナス電圧端子には負の閾値に対応する-V16の定電圧が接続されており、プラス電源端子には、コンデンサC5及びV13の定電圧が並列に接続され、マイナス電源端子には、コンデンサC6及びV14の負の定電圧が並列に接続されている。オペアンプ282のL端子及びG端子は接地されている。オペアンプ281及びオペアンプ282の出力がAND回路に入力され、AND回路からの出力信号が判定・復調器28からツイストペアケーブル1にて受信したデータの出力として出力される。つまり、AND回路からは、加算信号SUMの振幅が正の閾値未満、且つ負の閾値を超過している場合のみ「1」が出力される。
 図8は、判定・復調器28の入出力信号を示すタイムチャートである。図8の横軸は、時間の経過を示し、図8の縦軸は、判定・復調器28に入力されるツイストペアケーブル1上の加算信号(SUM)、出力信号(OUT)夫々の信号レベルを示している。
 図8に示す出力信号は、判定・復調器28に入力される加算信号(SUM)の振幅がゼロの場合に真値「1」、振幅が正又は負の1Vである場合に「0」を示している。つまり、判定・復調器28は、1ビット毎に、通信装置2からの送信データ信号と通信装置3からの受信データ信号とが異なるときに「1」、同一である場合に「0」を示す信号(判定結果)を出力すると言える。ツイストペアケーブル1における加算信号SUMは、通信装置2からのパルス信号BP2の振幅と通信装置3からのパルス信号BP3の振幅とが同一の場合は、振幅が正又は負の1V、異なる場合は振幅がゼロとなるからである。
 EX-OR回路23は、2つの入力信号の排他的論理和信号を出力する回路である。EX-OR回路23の入力には、送信データ端子TX2が分岐した第1節点22及び受信部27が接続されている。したがって、EX-OR回路23は、送信データ信号と、受信部27にて受信したデータ信号との排他的論理和をとる。即ち、EX-OR回路23は、送信データ信号と、ツイストペアケーブル1における送信データ信号及び受信データ信号間が同一か否かを示す信号との排他的論理和信号を出力する。送信データ信号と受信データ信号が同一の場合は、受信部27から「0」が出力されるので、EX-OR回路23からは、送信データ信号が「1」のときは「1」が、送信データ信号が「0」のときは「0」が出力される。送信データ信号と受信データ信号が異なる場合は、受信部27から「1」が出力されるので、EX-OR回路23からは、送信データ信号が「1」のときは反転させた「0」が、送信データ信号が「0」のときは反転させた「1」が出力される。
 このように構成されるトランシーバ20及びトランシーバ30によって、全二重化通信が実現されることを、以下のタイムチャートを参照して説明する。
 図9は、本実施の形態におけるトランシーバ20,30内における信号の推移を示すタイムチャートである。図9の横軸は、時間の経過を示す。図9の縦軸には、トランシーバ20の送信データ端子TX2における信号、トランシーバ30の送信データ端子TX3における信号、トランシーバ20の加算器26に入力される信号BP2、トランシーバ30の加算器36に入力されるBP3、ツイストペアケーブル1上の加算信号SUM、トランシーバ20,30の判定・復調器28,38から出力される信号CD2,3、トランシーバ20の受信データ端子RX2における信号、及び、トランシーバ30の受信データ端子RX3における信号夫々の信号レベルを示す。
 通信装置2及び通信装置3からの送信データ信号が夫々どのように同時的に送信され、復調されるかを図9のタイムチャートを参照しつつ説明する。
 まず、時間t4からの1ビット時間では、通信装置2の送信データ端子TX2に「0」の信号が入力されている。送信データ端子TX2に入力される信号は、変換器25にて+1Vの正振幅のパルス信号BP2に変換され、加算器26へ入力される。同時的に通信装置3の送信データ端子TX3には「0」の信号が入力されている。送信データ端子TX3に入力される信号は、変換器35にてパルス信号BP3に変換され、加算器36へ入力される。したがって時間t4からの1ビット時間では、ツイストペアケーブル1には+1Vの正の振幅のパルス信号が送出される。同時的に判定・復調器28,38は、ツイストペアケーブル1における送信データ信号と受信データ信号とは同一である(「0」)と出力する。したがって、EX-OR回路23は、送信データ信号「0」と同一の「0」を出力し、EX-OR回路33も、送信データ信号「0」と同一の「0」を出力する。結果、通信装置2の受信データ端子RX2には「0」が出力され、通信装置3からの送信データ信号「0」を復調できている。同様に通信装置3の受信データ端子RX3には「0」が出力され、通信装置2からの送信データ信号「0」が復調できている。
 時間t5からの1ビット時間では、通信装置2の送信データ端子TX2に「1」の信号が入力され、通信装置3の送信データ端子TX3に「1」の信号が入力されている。通信装置2における送信データ信号は、変換器25にて負の振幅のパルス信号BP2に変換され、加算器26に入力される。同時的に通信装置3でも、送信データ信号は変換器35にて負の振幅のパルス信号BP3に変換され、加算器36に入力される。加算器26及び加算器36により、時間t5からの1ビット時間では、ツイストペアケーブル1には-1Vの負の振幅のパルス信号が送出される。同時的に判定・復調器28,38は、ツイストペアケーブル1における送信データ信号と受信データ信号とは同一である(「0」)と出力する。したがって、EX-OR回路23は、送信データ信号「1」と同一の「1」を出力し、EX-OR回路33も送信データ信号「1」と同一の「1」を出力する。結果、通信装置2の受信データ端子RXには「1」が出力され、通信装置3からの送信データ信号「1」を復調できている。同様に通信装置3の受信データ端子RX3には「1」が出力され、通信装置2からの送信データ信号「1」が復調できている。
 時間t6からの1ビット時間でも同様に、ツイストペアケーブル1上における送信データ信号と受信データ信号とは同一であると判定され(「0」)、通信装置2の受信データ端子RXには「0」が出力され、通信装置3からの送信データ信号「0」を復調できている。同様に通信装置3の受信データ端子RX3には「0」が出力され、通信装置2からの送信データ信号「0」が復調できている。
 時間t7からの1ビット時間では、通信装置2の送信端子TX2には「0」の信号が入力され、通信装置3の送信データ端子TX3には異なる「1」の信号が入力されている。通信装置2における送信データ信号は、変換器25にて負の振幅のパルス信号BP2に変換され、加算器26に入力される。同時的に通信装置3でも、送信データ信号は変換器35にて正の振幅のパルス信号BP3に変換され、加算器36に入力される。加算器26及び加算器36により、時間t6からの1ビット時間では、ツイストペアケーブル1にはゼロの振幅の信号が送出される。同時的に判定・復調器28,38は、ツイストペアケーブル1における送信データ信号と受信データ信号とは同一でない(「1」)と出力する。したがって、通信装置2のEX-OR回路23は、送信データ信号「0」を反転させた「1」を出力し、通信装置3のEX-OR回路33は、送信データ信号「1」を反転させた「0」を出力する。結果、通信装置2の受信データ端子RX2には「1」が出力され、通信装置3からの送信データ信号「1」を復調できている。同様に通信装置3の受信データ端子RX3には「0」が出力され、通信装置2からの送信データ信号「0」が復調できている。
 このようにして、通信装置2及び通信装置3のトランシーバ20及びトランシーバ30にて、送信データ信号をパルス信号へ変換してからツイストペアケーブル1に重畳し、更に、ツイストペアケーブル1上における送信データ信号と受信データ信号とが同一か否かを判定し、送信データ信号と判定結果とを用いて受信データ信号を復調することにより、全二重化通信が実現される。
 本実施の形態では、ツイストペアケーブル1における信号の遅延、クロック信号の同期ずれに対する処置については記載していないが、実際に全二重化通信を行なう場合にはそれらの対処が必要である。
 なお、上述のように開示された本実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上の実施の形態に関し更に、以下の付記を開示する。
 (付記1)
 1対のツイストペアケーブルと、該ツイストペアケーブルに接続される複数の通信装置とを含む通信システムにて、前記複数の通信装置が前記ツイストペアケーブルを介して全二重化通信によりデジタルデータ信号を送受信する通信方法において、
 前記複数の通信装置は夫々、他の通信装置と前記デジタルデータ信号の1ビット分のビット時間を同期させ、
 各通信装置からの送信データ信号を重畳させ、
 前記複数の通信装置は夫々、
 ビット時間毎に、
 前記ツイストペアケーブルにおける通信状態が、送信データ信号と受信データ信号とが同一の状態であるか否かを判定し、
 判定結果と送信データ信号とを用いて受信データ信号を復調する
 ことを特徴とする通信方法。
 (付記2)
 前記複数の通信装置は夫々、
 受信データ信号を復調するに際し、
 前記判定結果が同一の状態である場合、送信データ信号を複製し、判定結果が同一の状態でない場合、送信データ信号を反転させて受信データ信号を復調する
 ことを特徴とする付記1に記載の通信方法。
 (付記3)
 1対のツイストペアケーブルと、該ツイストペアケーブルに接続される複数の通信装置とを含み、前記複数の通信装置が前記ツイストペアケーブルを介して全二重化通信によりデジタルデータ信号を送受信する通信システムにおいて、
 前記複数の通信装置は夫々、
 他の通信装置と前記デジタルデータ信号の1ビット分のビット時間を同期させる手段と、
 各通信装置からの送信データ信号に、送信データ信号を重畳させる手段と、
 ビット時間毎に、
 前記ツイストペアケーブルにおける通信状態が、送信データ信号と受信データ信号とが同一の状態であるか否かを判定する手段と、
 該手段による判定結果、及び送信データ信号を用いて受信データ信号を復調する復調手段と
 を備えることを特徴とする通信システム。
 (付記4)
 前記復調手段は、判定結果が同一の状態である場合、送信データ信号を複製し、同一の状態でない場合、送信データ信号を反転して受信データ信号を復調するようにしてあること
 を特徴とする付記3に記載の通信システム。
 (付記5)
 1対のツイストペアケーブルと、該ツイストペアケーブルに接続される複数の通信装置とを含み、前記複数の通信装置が前記ツイストペアケーブルを介して全二重化通信によりデジタルデータ信号を送受信する通信システムにおいて、
 前記複数の通信装置は夫々、
 送信するデータ信号を受け付ける受付端子と、
 受信データ信号を出力する出力端子と、
 前記受付端子にて受け付けた送信データ信号を分岐する第1節点と、
 該第1節点から分岐した一方、及び前記接続部から出力されるデータ信号を入力し、排他的論理和信号を、前記出力端子へ出力する排他的論理和回路と、
 前記第1節点から分岐した他方を、前記デジタルデータ信号の1ビット分の幅の正振幅又は負振幅のパルス信号へ変換する変換器、及び、該変換器から出力されるパルス信号を前記ツイストペアケーブル上の信号へ加算する加算器を有する送信部と、
 前記ツイストペアケーブルにおけるパルス信号の正負及び振幅の大きさを判定し、判定結果に基づきデータ信号を復調し出力する受信部と
 を備えることを特徴とする通信システム。
 (付記6)
 前記受信部は、パルス信号の振幅が正の閾値未満、且つ負の閾値を超過する場合、真とするデータ信号を出力するようにしてあること
 を特徴とする付記5に記載の通信システム。
 (付記7)
 1対のツイストペアケーブルに接続され、該ツイストペアケーブルを介してデジタルデータ信号を送受信する通信装置において、
 他の通信装置と前記デジタルデータ信号の1ビット分のビット時間を同期させる手段と、
 他の通信装置からの送信データ信号に、送信データ信号を重畳させる手段と、
 該ビット時間毎に、
 前記ツイストペアケーブルにおける通信状態が、送信データ信号と受信データ信号とが同一の状態であるか否かを判定する手段と、
 該手段による判定結果が同一の状態である場合、送信データ信号を複製し、判定結果が同一の状態でない場合、送信データ信号の1ビットを反転させて受信データ信号を復調する復調手段と
 を備えることを特徴とする通信装置。
 (付記8)
 1対のツイストペアケーブルに接続され、該ツイストペアケーブルを介してデジタルデータ信号を送受信する通信装置において、
 送信するデータ信号を受け付ける受付端子と、
 受信データ信号を出力する出力端子と、
 前記受付端子にて受け付けた送信データ信号を分岐する第1節点と、
 該第1節点から分岐した一方、及び前記接続部から出力されるデータ信号を入力し、排他的論理和信号を、前記出力端子へ出力する排他的論理和回路と、
 前記第1節点から分岐した他方を、前記デジタルデータ信号の1ビット分の幅の正振幅又は負振幅のパルス信号へ変換する変換器、及び、該変換器から出力されるパルス信号を前記ツイストペアケーブル上の信号へ加算する加算器を有する送信部と、
 前記ツイストペアケーブルにおけるパルス信号の正負及び振幅の大きさを判定し、判定結果に基づきデータ信号を復調し出力する受信部と
 を備えることを特徴とする通信装置。
 付記1乃至8に開示した通信方法、通信システム及び通信装置により、ツイストペアケーブルにて搬送されるデジタルデータ信号は、通信装置夫々にてビット時間が同期されている状態で、重畳される。各通信装置にてビット時間毎に、ツイストペアケーブルにおける通信状態が、送信データ信号及び受信データ信号が同一の状態であるか否かが判定される。各通信装置にて受信データ信号は、判定結果に基づき送信データ信号を用いて復調される。
 例えば、ツイストペアケーブルにおける通信状態が、送信データ信号及び受信データ信号が同一の状態であれば、受信データ信号の1ビットは、送信データ信号の1ビットと同一である。ツイストペアケーブルにおける通信状態が、送信データ信号及び受信データ信号が相違する状態であれば、受信データ信号の1ビットは、送信データ信号の1ビットと反対である。これにより、各通信装置は受信データ信号を復調することが可能である。
 具体的には実施の形態に示したように、通信装置からツイストペアケーブルへの送信データ信号の重畳は、正振幅又は負振幅のパルス信号を加算することにより実現される。ツイストペアケーブルにおけるパルス信号の正振幅又は負振幅が複数倍となっている場合、当該ビット時間では、複数の通信装置から同一の送信データが送信されている。ツイストペアケーブルにおけるパルス信号の振幅が相殺されて減少又はゼロ振幅となっている場合、当該ビット時間では、複数の通信装置から異なる送信データが送信されている。これにより、各通信装置は、ツイストペアケーブルにおける通信状態を判定することができ、受信データ信号を復調することが可能である。
 1 ツイストペアケーブル
 2,3 通信装置
 20,30 トランシーバ(送受信部)
 23,33 EX-OR回路(排他的論理和回路)
 24,34 送信部
 25,35 変換器
 26,36 加算器
 27,37 受信部
 28,38 判定・復調器
 TX2,TX3 送信データ端子(受付端子)
 RX2,RX3 受信データ端子(出力端子)

Claims (12)

  1.  2つの通信装置が1つの伝送路を介してデジタル信号を双方向に通信する通信方法であって、
     前記伝送路は、前記2つの通信装置から送信されるデジタル信号の信号値が異なるか否かが判別可能な伝送状態となること
     を特徴とする通信方法。
  2.  前記2つの通信装置は夫々、
     前記伝送路における伝送状態を検出し、
     検出した伝送状態、及び送信信号に基づき受信信号を復調する
     ことを特徴とする請求項1に記載の通信方法。
  3.  前記伝送路は、1対のツイストペアケーブルであること
     を特徴とする請求項1又は2に記載の通信方法。
  4.  2つの通信装置が、1つの伝送路を介してデジタル信号を双方向に通信する通信システムであって、
     前記2つの通信装置は夫々、
     前記伝送路上の信号に送信信号を重畳させる送信手段と、
     前記伝送路上で前記2つの通信装置から送信されるデジタル信号の信号値が異なるか否かを判別する判別手段と
     該判別手段による判別結果及び送信信号に基づき受信信号を復調する復調手段と
     を備えることを特徴とする通信システム。
  5.  前記復調手段は、
     前記判別手段が信号値が異なる状態であると判別した場合、
     送信信号を反転させて受信信号を復調するようにしてあること
     を特徴とする請求項4に記載の通信システム。
  6.  前記送信手段は、
     送信するデジタル信号を、該デジタル信号の一方の値を正の振幅、他方の値を負の振幅に対応させた信号に変換する変換手段を備え、
     該変換手段が生成した信号を前記伝送路に重畳させるようにしてあること
     を特徴とする請求項4又は5に記載の通信システム。
  7.  前記伝送路は、1対のツイストペアケーブルであること
     を特徴とする請求項4乃至6のいずれか1つに記載の通信システム。
  8.  送信されるデジタル信号の信号値が異なるか否かが判別可能な1つの伝送路に接続され、前記伝送路を介してデジタル信号を送受信する通信装置であって、
     前記伝送路上の信号に送信信号を重畳させる送信手段と、
     前記伝送路における伝送状態を判別する判別手段と、
     該判別手段による判別結果、及び送信信号に基づき受信信号を復調する復調手段と
     を備えることを特徴とする通信装置。
  9.  前記送信手段は、
     送信信号を前記伝送路に加算する加算手段を有すること
     を特徴とする請求項8に記載の通信装置。
  10.  前記送信手段は、
     送信するデジタル信号を、該デジタル信号の一方の値を正の振幅、他方の値を負の振幅に対応させた信号に変換する変換手段を有すること
     を特徴とする請求項8又は9に記載の通信装置。
  11.  前記伝送路は1対のツイストペアケーブルであり、
     前記送信手段は、送信信号を反転する反転手段を有すること
     を特徴とする請求項8乃至10のいずれか1つに記載の通信装置。
  12.  前記復調手段は、
     前記判別手段により判別した伝送状態を示す信号と、送信信号との排他的論理和をとる手段を有すること
     を特徴とする請求項8乃至11のいずれか1つに記載の通信装置。
PCT/JP2013/077339 2012-10-10 2013-10-08 通信方法、通信システム及び通信装置 WO2014057934A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225338 2012-10-10
JP2012225338A JP2014078850A (ja) 2012-10-10 2012-10-10 通信方法、通信システム及び通信装置

Publications (1)

Publication Number Publication Date
WO2014057934A1 true WO2014057934A1 (ja) 2014-04-17

Family

ID=50477402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077339 WO2014057934A1 (ja) 2012-10-10 2013-10-08 通信方法、通信システム及び通信装置

Country Status (2)

Country Link
JP (1) JP2014078850A (ja)
WO (1) WO2014057934A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238434A (ja) * 1991-01-23 1992-08-26 Matsushita Electric Ind Co Ltd 伝送装置
JP2008193606A (ja) * 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk データ伝送システム及びデータ伝送方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238434A (ja) * 1991-01-23 1992-08-26 Matsushita Electric Ind Co Ltd 伝送装置
JP2008193606A (ja) * 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk データ伝送システム及びデータ伝送方法

Also Published As

Publication number Publication date
JP2014078850A (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
EP2550753B1 (en) Communication node and procedure for various means of transmission
JP5135767B2 (ja) データ受信装置
US9203640B2 (en) Long distance subsea can bus repeater cable
US6449318B1 (en) Variable low frequency offset, differential, OOK, high-speed twisted pair communication
EP2663043B1 (en) Capacitive isolated voltage domains
EP2790365A1 (en) Communication device, communication system, and communication method
US20120290753A1 (en) Connection method for bus controllers and communication system
JP4393458B2 (ja) データ伝送装置及びデータ伝送方法
US9703735B2 (en) Data communication system, slave, and master
KR20190103202A (ko) 버스 시스템용 가입자국, 및 버스 시스템에서 데이터 전송 방법
WO2014057934A1 (ja) 通信方法、通信システム及び通信装置
JP2004140565A (ja) 平衡伝送装置
US6519328B1 (en) Variable low frequency offset, differential, OOK, high-speed twisted pair communication using telephone load coils
JP2017120960A (ja) 通信経路異常監視装置
WO1986004755A1 (en) Data bus pilot tone
JP6088559B2 (ja) 通信システム
Kosuge et al. 30.6 An electromagnetic clip connector for in-vehicle LAN to reduce wire harness weight by 30%
CN208820779U (zh) 一种船用总线隔离收发电路
US8755529B2 (en) Method and device for establishing network connection
Mizuma et al. Silent-interval impedance matching for short pulse CAN to enhance scalability
JPH1198114A (ja) Ss伝送装置
CN118100981A (zh) 全双工高速有线通信的回声消除方法、收发器系统及芯片
Sato et al. Poster: Symbol detection with OR rule for CAN FD
US20210044324A1 (en) Communication system and signal repeater
JP2019213027A (ja) リピータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845684

Country of ref document: EP

Kind code of ref document: A1