WO2014057663A1 - 樹脂組成物及びそれを用いたシール部材 - Google Patents

樹脂組成物及びそれを用いたシール部材 Download PDF

Info

Publication number
WO2014057663A1
WO2014057663A1 PCT/JP2013/006008 JP2013006008W WO2014057663A1 WO 2014057663 A1 WO2014057663 A1 WO 2014057663A1 JP 2013006008 W JP2013006008 W JP 2013006008W WO 2014057663 A1 WO2014057663 A1 WO 2014057663A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
hardness
rubber
elastic recovery
Prior art date
Application number
PCT/JP2013/006008
Other languages
English (en)
French (fr)
Inventor
明宏 大和田
高橋 純一
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Publication of WO2014057663A1 publication Critical patent/WO2014057663A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3208Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip provided with tension elements, e.g. elastic rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a resin composition and a seal member using the same, and more particularly to a resin composition containing a rubber component, a thermoplastic resin and a filler, and a seal member using the same.
  • a sealing member for a hydraulic continuously variable transmission (hereinafter referred to as “CVT”).
  • CVT hydraulic continuously variable transmission
  • the groove width of the pulley is changed in a correlated manner by the hydraulic pressure in the hydraulic chamber, and the speed change is changed steplessly by changing the diameter of the pulley.
  • a fixed pulley is integrally formed on a drive shaft, and a movable pulley is formed on a housing that reciprocates along this shaft.
  • the movable pulley is provided with a hydraulic chamber.
  • the movable pulley comes into contact with and is separated from the fixed pulley.
  • the width of the groove formed in both pulleys is increased / decreased
  • the rotational radius of the belt wound around the pulleys is increased / decreased
  • power is transmitted, and the gear ratio is changed.
  • the shaft groove formed on the outer peripheral surface of the shaft A resin seal ring is attached.
  • CVT since the oil pump is stopped when the engine is stopped, no hydraulic pressure is generated and no load is applied. In a conventional seal ring, sufficient sealing performance can be obtained in a state where hydraulic pressure is generated.
  • Combination seal rings composed of: have been used.
  • a polytetrafluoroethylene (PTFE) resin to which a filler is added is used as the material of the resin ring 7, and a rubber-like elastic body is used as the material of the O-ring 6.
  • PTFE polytetrafluoroethylene
  • the O-ring 6 and the resin ring 7 are crushed and installed in the gap between the groove bottom 8 and the inner surface 4a of the housing 4.
  • the seal ring material a material obtained by filling a fluororesin such as polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, or ethylenetetrafluoroethylene (ETFE) with an additive such as carbon powder or carbon fiber is used. It has been.
  • PTFE polytetrafluoroethylene
  • ETFE ethylenetetrafluoroethylene
  • Patent Document 1 discloses a composition in which carbon black having a predetermined DBP absorption amount is blended with a PTFE resin as a resin composition applicable to CVT.
  • the seal ring of this composition expands when it absorbs oil, and fills gaps in the radial direction of the seal ring due to creep deformation at high temperatures and improves low-temperature sealability.
  • the seal ring of patent document 1 is for high surface pressures, such as CVT, it is shown that a carbon fiber and graphite can be mix
  • Patent Document 2 discloses (A) (meth) acrylic block copolymer comprising (A1) (meth) acrylic polymer block and (A2) acrylic polymer block, ( B) a thermoplastic elastomer composition comprising a compound containing two or more amino groups in one molecule and (C) a thermoplastic resin, wherein (A) the (meth) acrylic block copolymer is converted to the compound (B)
  • (C) a thermoplastic elastomer composition obtained by dynamically heat-treating in a thermoplastic resin, and further (D) adding a thermoplastic resin and kneading is disclosed.
  • this composition has an excellent balance between hardness and mechanical strength, has excellent rubber elasticity over a wide temperature range, excellent high-temperature creep performance and molding processability, and is excellent in oil resistance and heat resistance while being a thermoplastic elastomer. ing.
  • a seal ring for CVT or the like is required to have creep resistance at a higher temperature range, and it is considered difficult to obtain sufficient performance with the composition of Patent Document 2.
  • a filler In order to improve the high temperature creep characteristics, it is considered effective to add a filler to increase the hardness of the resin composition. It is also shown that fillers such as glass fiber, mica, talc, calcium carbonate can be added to the composition of Patent Document 2.
  • the elastic recovery rate which is a reciprocal characteristic, decreases, so that even if the creep resistance can be improved, sufficient sealing characteristics may not be obtained. .
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a resin composition having a high creep strength and an excellent elastic recovery rate even at high temperatures and a seal member using the same.
  • a further object of the present invention is to provide a resin composition that can maintain elasticity even after being used for a long time under high temperature and pressure, and that can exhibit excellent sealing properties over a long period of time in a wide temperature range, and a sealing member using the same. To do.
  • the present inventors have maintained an excellent elastic recovery rate in a wide temperature range by dispersing aramid fibers in a resin composition containing a rubber component and a thermoplastic resin.
  • the present inventors have found that the hardness of the resin composition can be greatly improved and have arrived at the present invention. That is, the resin composition of the present invention is characterized by containing a rubber component, a thermoplastic resin, and an aramid fiber.
  • the resin composition of the present invention has high hardness, it can suppress a decrease in creep strength at high temperatures, and can maintain an excellent elastic recovery rate in a wide temperature range, so even after being used for a long time under high temperature and pressure. Excellent rubber elasticity can be maintained without deformation or breakage. Therefore, the sealing member comprised from the resin composition of the present invention can maintain excellent sealing characteristics over a long period of time even under severe use conditions.
  • the resin composition of the present invention comprises a mixture containing a rubber component, a thermoplastic resin, and an aramid fiber.
  • aramid fibers By dispersing aramid fibers in a resin composition containing a rubber component and a thermoplastic resin, the hardness of the resin composition can be greatly improved while maintaining an excellent elastic recovery rate in a wide temperature range. .
  • the resin composition of the present invention since the resin composition of the present invention has high hardness, it is possible to suppress a decrease in creep strength at a high temperature and to maintain an excellent elastic recovery rate in a wide temperature range. Even after use, excellent rubber elasticity can be maintained without deformation or breakage.
  • the sealing member comprised from the resin composition of the present invention can maintain excellent sealing characteristics over a long period of time even under severe use conditions.
  • the aramid of the aramid fiber used in the present invention is not particularly limited, and poly (para-phenylene terephthalamide), poly (para-benzamide), poly (para-amide hydrazide), poly (para-phenylene terephthalamide-3,4 -Diphenyl ether terephthalamide), poly (4,4'-benzanilide terephthalamide), poly (para-phenylene-4,4'-biphenylenedicarboxylic acid amide), poly (para-phenylene-2,6-naphthalenedicarboxylic acid amide) ), Poly (2-chloro-para-phenylene terephthalamide), co-poly (para-phenylene-3,4'-oxydiphenylene terephthalamide), and the like.
  • Examples of commercially available aramid fibers include “Kevlar” manufactured by Toray DuPont Co., Ltd.
  • the hardness of the resin composition can be improved while maintaining an excellent elastic recovery rate.
  • the content of the aramid fiber with respect to the entire resin composition is preferably 3.0 to 10.0% by mass, and more preferably 3.0 to 7.0% by mass.
  • a resin composition having higher hardness and elastic recovery rate can be obtained. If the content of the aramid fiber is less than 3.0% by mass, sufficient hardness may not be obtained.
  • the fiber length of the aramid fibers contained in the resin composition is preferably 0.5 mm to 5.0 mm, more preferably 1.0 mm to 3.0 mm.
  • the fiber length of the aramid fiber is preferably 0.5 mm to 5.0 mm, more preferably 1.0 mm to 3.0 mm.
  • the A hardness of the resin composition of the present invention is preferably 70 or more. By setting the A hardness within this range, creep deformation of the resin composition in a high temperature range can be effectively suppressed.
  • the A hardness is preferably 75 or more, more preferably 80 or more.
  • the elastic recovery rate in the temperature range of 20 ° C. (normal temperature) to 150 ° C. of the resin composition of the present invention is preferably 70% or more. The elastic recovery rate is obtained by a load-unloading test. The larger the value, the more the rubber elasticity is maintained and the superior sealing characteristics are exhibited.
  • the elastic recovery rate in the temperature range is more preferably 75% or more.
  • the tensile strength at break of the resin composition of the present invention is preferably 3 MPa or more.
  • the tensile strength at break is preferably 4 MPa or more, more preferably 5 MPa or more.
  • the elongation rate of the resin composition of this invention is 15% or more.
  • the resin composition can be effectively prevented from being broken (cripped) due to deformation or cracking due to hydraulic pressure during use.
  • the values of the A hardness and the elastic recovery rate can be controlled by the types and addition amounts of the thermoplastic resin and the aramid fiber. Since the A hardness and the elastic recovery rate are contradictory characteristics, usually, when the A hardness is improved, the elastic recovery rate tends to decrease. However, in the resin composition of the present invention, the addition of aramid fibers can greatly improve the A hardness while maintaining the excellent elastic recovery rate of the resin composition containing the rubber component and the thermoplastic resin. By highly dispersing the rubber component, the thermoplastic resin and the aramid fiber, the injection moldability, mechanical strength, creep resistance, and rubber elasticity at high temperatures can be further improved.
  • the rubber component of the present invention may be added as a crosslinked rubber or a thermoplastic elastomer, or may be added as a dynamic crosslinked resin.
  • the surface hardness of these rubber components is Shore hardness A and is preferably 60 to 90.
  • Cross-linked rubbers include natural rubber, synthetic isoprene rubber (IR), fluorine rubber, butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber ( IIR), halogenated butyl rubber, urethane rubber, silicone rubber, acrylic rubber and the like.
  • thermoplastic elastomer examples include polyester elastomers, polyolefin elastomers, fluorine elastomers, silicone elastomers, butadiene elastomers, polyamide elastomers, polystyrene elastomers, urethane elastomers, and the like.
  • thermoplastic elastomers one type can be used, but two or more types can also be mixed and used.
  • polyester elastomers and polyamide elastomers are preferable from the viewpoint of injection moldability and heat resistance.
  • polyester elastomers include "Hytrel” manufactured by Toray DuPont Co., Ltd., “Perprene” manufactured by Toyobo Co., Ltd., and “Primalloy” manufactured by Mitsubishi Chemical Corporation. , “Pebax” manufactured by ARKEMA, “UBESTAXPA” manufactured by Ube Industries, Ltd., and the like.
  • the dynamically crosslinked resin has a structure in which a crosslinked rubber phase is dispersed in a thermoplastic resin phase.
  • the thermoplastic resin used for the dynamically crosslinked resin is not particularly limited, and examples thereof include polyester and polyamide (PA).
  • PA polyester and polyamide
  • the rubber is not particularly limited.
  • natural rubber cis-1,4-polyisoprene, high cis polybutadiene, styrene-butadiene copolymer rubber, ethylene-propylene rubber (EPM), ethylene-propylene diene rubber (EPDM).
  • EPM ethylene-propylene rubber
  • EPDM ethylene-propylene diene rubber
  • Chloroprene rubber butyl rubber, halogenated butyl rubber, acrylonitrile-butadiene copolymer rubber, acrylic rubber and the like.
  • the dynamically crosslinked resin can be produced by a known method.
  • a crosslinking agent is mixed with an uncrosslinked rubber component in advance, and a thermoplastic resin component and an uncrosslinked rubber component are melt-kneaded using a twin-screw extruder to simultaneously disperse and crosslink the rubber component. be able to.
  • Such a dynamically crosslinked resin can be obtained as a commercial product.
  • commercially available products of dynamically cross-linked resins in which acrylic rubber is dispersed in a polyester resin include “ETPV” manufactured by DuPont, “NOFAloy” manufactured by NOF Corporation (TZ660-7612-BK, TZ660-6602-BK, etc.) Etc.
  • the rubber component content is preferably 60% by mass to 95% by mass and more preferably 80% by mass to 95% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the surface hardness of the thermoplastic resin mixed with the rubber component is a Shore hardness D of preferably 70 or more, and more preferably 90 or more.
  • the thermoplastic resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyester such as polyethylene naphthalate (PEN), polypropylene (PP), syndiotactic polystyrene resin, polyoxy Methylene (POM), polyamide (PA), polycarbonate (PC), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU) , Polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryle Preparative (PAR), polyether nitrile (PEN), polytetra
  • thermoplastic resins may be a copolymer or a modified product, or may be a mixture of two or more.
  • thermoplastic resins PBT, PA, PPS, and PVDF are preferable.
  • the addition amount of the thermoplastic resin is preferably 5% by mass to 40% by mass and more preferably 5% by mass to 20% by mass with respect to the total mass of the resin composition constituting the sealing member.
  • the aramid fiber is added to the resin composition of the present invention, but depending on the intended use and required characteristics, other fillings may be used as long as the characteristics of the resin composition of the present invention are not impaired. Materials can also be added.
  • other fillers include fibrous inorganic fillers and fibrous organic fillers. Specific examples of the fibrous inorganic filler include glass fiber, carbon fiber, carbon nanotube, alumina fiber, potassium titanate fiber, boron fiber, and silicon carbide fiber.
  • fibrous organic fillers other than aramid fibers include vinylon fibers and polypropylene fibers.
  • carbon nanotubes are preferred. Carbon nanotubes not only exhibit a reinforcing function as a fibrous inorganic filler, but are also effective as fillers for improving the dynamic characteristics, as will be described later.
  • fillers can be added for the purpose of improving the dynamic characteristics and the like.
  • Other fillers include calcium carbonate, montmorillonite, bentonite, talc, silica, mica, mica, barium sulfate, calcium sulfate, calcium silicate, molybdenum disulfide, glass beads, graphite, fullerene, carbon (amorphous) powder, anthracite powder , Aluminum oxide, titanium oxide, magnesium oxide, potassium titanate, boron nitride, PTFE powder and the like.
  • the addition amount of the filler other than the aramid fiber is preferably 3% by mass to 20% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the amount added is preferably 1% by mass to 10% by mass with respect to the total mass of the resin composition constituting the seal member.
  • the mixing method of the resin composition in the present invention is not particularly limited, but can be mixed using a lab plast mill, a twin screw extruder, or the like.
  • a lab plast mill a twin screw extruder, or the like.
  • it is effective to uniformly and highly disperse the rubber component, the thermoplastic resin and the aramid resin.
  • a commercially available high shear molding machine can also be used.
  • the dispersibility can be controlled by the shape and length of the screw, the diameter of the feedback hole, the screw rotation speed, the shear mixing time, and the like.
  • the use of the resin composition of the present invention is not particularly limited, and it is used as a gasket, a tube, a packing, a hose, a seal member and the like in various fields.
  • it is preferably used as a seal member.
  • the seal member include a rotary motion seal ring and a reciprocating seal ring, and the seal member is particularly preferably applied to a seal ring mounted on a CVT of an automobile.
  • the resin composition of the present invention is used as a seal ring for CVT, it is preferable to employ an endless type seal ring having no joint in order to reliably prevent oil leakage in a no-load state.
  • the resin material of the present invention has flexibility, it is excellent in mounting property even as an endless type, and mounting is further facilitated by using a single type.
  • an abutment can be provided depending on the application.
  • the joint shape in this case is not particularly limited, and other known joints such as a right angle (straight) joint, an oblique (angle) joint, a stepped joint, a double angle joint, a double cut joint, and a triple step joint are adopted. be able to.
  • Example 1 Polyester resin / acrylic rubber-based dynamically cross-linked resin as rubber component, polyvinylidene fluoride resin as thermoplastic resin, aramid fiber with 3 mm fiber length as filler, ⁇ 92 mm screw that combines lead and kneading disc is installed And mixed with a twin screw extruder.
  • a polyester resin / acrylic rubber-based dynamically cross-linked resin, a polyvinylidene fluoride resin, and an aramid resin were respectively supplied by side feeders and mixed under shear conditions of a temperature of 240 ° C. and a screw rotation speed of 200 rpm to obtain pellets. .
  • the polyester resin / acrylic rubber-based dynamically crosslinked resin and the polyvinylidene fluoride resin were commercially available, and the mass ratio (polyester resin / acrylic rubber-based dynamically crosslinked resin: polyvinylidene fluoride resin) was 90:10. Moreover, the addition amount of the aramid fiber was 10% by mass with respect to the entire resin composition.
  • the obtained pellets were injection molded to prepare various measurement samples, and the surface hardness (A hardness) and elastic recovery rate were measured by the following methods, and a bending resistance test was performed. The results are shown in Table 1. In addition, A hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 which has not added the filler mentioned later into 100. Moreover, the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Examples 2 to 5 A measurement sample as in Example 1, except that the fiber length of the aramid fiber was 0.5 mm (Example 2), 1 mm (Example 3), 5 mm (Example 4), and 7 mm (Example 5). was made. The surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1. In addition, A hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 which has not added the filler mentioned later into 100. Moreover, the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Examples 6 to 10 The content of aramid fibers is 2% by mass (Example 6), 3% by mass (Example 7), 5% by mass (Example 8), 7% by mass (Example 9) and the entire resin composition.
  • a measurement sample was prepared in the same manner as in Example 1 except that the content was 12% by mass (Example 10).
  • the surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1.
  • a hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 which has not added the filler mentioned later into 100.
  • the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Example 1 A measurement sample was prepared in the same manner as in Example 1 except that no aramid fiber was added. The surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1. In addition, the A hardness and the elastic recovery rate were represented by the relative ratios of the values of the examples and other comparative examples, with the value of the comparative example 1 being 100. Moreover, the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Example 2 A measurement sample was prepared in the same manner as in Example 1 except that carbon fiber was used instead of the aramid fiber.
  • the surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1.
  • a hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 into 100.
  • the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Example 3 A measurement sample was prepared in the same manner as in Example 1 except that glass fiber was used instead of aramid fiber. The surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1. In addition, A hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 into 100. Moreover, the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • Example 4 A measurement sample was prepared in the same manner as in Example 1 except that graphite (average particle diameter: 2 ⁇ m) was used instead of the aramid fiber. The surface hardness (A hardness) and elastic recovery rate of each sample were measured, and a bending resistance test was performed. The results are shown in Table 1. In addition, A hardness and an elastic recovery rate were represented by the relative ratio by making the value of the comparative example 1 into 100. Moreover, the result of the bending resistance test was represented by (a), (b), (c), or (d) based on the following criteria.
  • the obtained sample was placed vertically on a bending tester, a load was applied in the vertical direction, the vertical height was changed from 25 mm to 7 mm, and then bending back from 7 mm to 25 mm was repeated 300 times per minute.
  • the presence or absence of cracks in the sample after the test and the maximum length of the cracks were confirmed with a microscope.
  • (a) in which no crack was observed (b) in which a microcrack having a maximum length of 5 ⁇ m or less was observed, and a small crack having a maximum length exceeding 5 ⁇ m and 40 ⁇ m or less was observed.
  • the sample was (c), the sample was broken, and the sample with a large crack with a maximum length exceeding 40 ⁇ m was defined as (d).
  • Comparative Examples 2, 3, and 4 in which 10% by mass of carbon fiber, glass fiber, and graphite were added to the entire resin composition, respectively, as compared with Comparative Example 1 in which no filler was added, It was found that the A hardness was significantly increased. Then, it was confirmed that the elastic recovery rate sharply decreased against the increase in the A hardness. In addition, after the bending test, any sample of Comparative Examples 2, 3, and 4 was broken or a large crack was observed. On the other hand, in Example 1 in which an aramid fiber having a fiber length of 3 mm was added in an amount of 10% by mass with respect to the entire resin composition, the A hardness increased by 21% while maintaining the elastic recovery rate close to that of Comparative Example 1. I understood it.
  • Example 1 it was confirmed that the resin composition was excellent in creep resistance, elasticity and mechanical strength with only slight cracks observed after the bending test. From the results of Examples 1 to 5 in which the fiber length of the aramid fiber was changed within the range of 0.5 mm to 7 mm, the addition of the aramid fiber having a short fiber length can increase the A hardness while maintaining the elastic recovery rate. I understood. When the fiber length was increased, the A hardness increased, but the elastic recovery rate tended to decrease.
  • the fiber length of the aramid fiber is preferably 0.5 mm to 5.0 mm, more preferably 1.0 m to 3.0 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)

Abstract

 高温下でも、クリープ強度が高く、優れた弾性復元率を有する樹脂組成及びそれを用いたシール部材を提供する。さらには、高温加圧下で長期間使用した後もゴム弾性を維持し、広い温度範囲で長期にわたり、優れたシール特性を発揮し得る樹脂組成物及びそれを用いたシール部材を提供する。ゴム成分、熱可塑性樹脂及びアラミド繊維を含有する樹脂組成物からシール部材を製造する。繊維長さが、0.5 ~ 5.0mmのアラミド繊維を用い、樹脂組成物全体に対して、3.0質量%~10.0質量%添加する。シール部材を構成する樹脂組成物のゴム成分としては、アクリルゴムを用い、熱可塑性樹脂としては、ポリフッ化ビニリデンを用いる。

Description

樹脂組成物及びそれを用いたシール部材
 本発明は、樹脂組成物及びそれを用いたシール部材に関し、さらに詳しくは、ゴム成分、熱可塑性樹脂及び充填材を含有する樹脂組成物及びそれを用いたシール部材に関する。
 近年、自動車用をはじめ各種分野において、耐熱性に優れ、圧縮永久歪が低い樹脂材料への要求が高まっている。
 このような樹脂材料の用途としては、例えば、油圧式の無段変速機(Continuously VariableTransmission、以下、「CVT」という。)用のシール部材(シールリング)が挙げられる。油圧式CVTでは、油圧室の油圧によりプーリの溝幅を相関的に変化させ、プーリの直径を変えることにより変速を無段階に変化させている。通常、駆動用の軸に固定プーリが一体形成され、この軸に沿って往復動するハウジングに可動プーリが形成されている。可動プーリには油圧室が設けられ、油圧室の油圧を制御することにより、可動プーリが固定プーリに離接する。これにより、両プーリに形成される溝部の幅を増減して、プーリに巻き掛けられたベルトの回転半径を増減させ、動力を伝達して、変速比を変化させる。油圧室に油を満たし、油圧を生じさせるために、軸の外周面に形成される軸溝には、
樹脂製のシールリングが装着される。
 CVTでは、エンジン停止時には、オイルポンプが停止するため、油圧が発生せず無負荷となる。従来のシールリングでは、油圧の発生している状態では、十分なシール性が得られるが、無負荷状態では、ハウジング内周面との密着性が失われ、油圧室の油が抜けてしまう。このような状態で、エンジンを再起動すると、油圧室に油が充填されるまでに時間を要する。また、油圧室に油が充填されていない状態で起動すると、CVTの回転部に焼き付きによる損傷が生じる恐れがある。そのため、油圧のない無負荷の状態においても油圧室からの油漏れを低減できるシールリングが求められている。
 CVT用のシールリングとしては、図1に示すように、断面略矩形で外周側に配置されるエンドレスタイプの樹脂リング7と、内周側に配置され、樹脂リングに拡張力を与えるOリング6から構成される組合せシールリングが用いられてきた。一般に、樹脂リング7の材料としては、充填剤を添加したポリテトラフルオロエチレン(PTFE)樹脂等が用いられ、Oリング6の材料としては、ゴム状弾性体が用いられている。
 このような従来の組合せシールリングでは、Oリング6と樹脂リング7を潰し込んで、溝底8とハウジング4の内面4aとの間の隙間に装着するため、その後、Oリング6と樹脂リング7が装着された軸3をハウジング4に挿入する際の組み付け抵抗が大きく、圧入装置を導入してハウジング4を組み付ける必要があった。そのため、製造コストが増加し、シールリングの組み付け不具合も検知できないという問題があった。そこで、上記組合せシールリングの装着性やコスト面での問題点を解決するため、1本型シールリングでの対応が求められている。
 CVT では、油圧室に最大約7MPaの油圧が生じるため、高油圧下で、優れた耐摩耗性及びシール性を有するシールリングが要求される。また、高速運転時の発熱による温度上昇や寒冷地での使用を考慮すると、シールリングには、-40℃~150℃の温度領域での耐性が求められる。そこで、シールリング材料としては、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂にカーボン粉末やカーボンファイバー等の添加剤を充填した材料が用いられている。
 例えば、特許文献1には、CVTに適用可能な樹脂組成物として、PTFE系樹脂に所定のDBP吸収量を有するカーボンブラックを配合した組成物が開示されている。この組成のシールリングでは、吸油した際に膨張して、高温時のクリープ変形によるシールリングの径方向等の隙間を補填し、低温シール性が改善できるため、油圧装置の運転開始直後の低温時でも優れたシール性があることが記載されている。また、特許文献1のシールリングは、CVT等の高面圧用であるため、耐摩耗性及び耐クリープ性等の向上を目的として、炭素繊維やグラファイトを配合できることも示されている。
 特許文献1のシールリングを採用することにより、低温下(室温付近)での油漏れ量を低減することは可能と考えられる。しかしながら、上記の構成は、PTFE系樹脂を主成分とするため、高温の潤滑・作動油中で加圧されることによりシールリングが塑性変形する。そのため、運転後にエンジンを停止し、無負荷状態とするとハウジング内周面との密着状態(密着性)を維持することが困難となり、油圧室からの油漏れを防止することは難しい。このような課題を解決するためには、耐熱性に優れ、広い温度範囲において優れたゴム弾性及び耐クリープ特性を有する樹脂材料が求められる。
 このような材料として、例えば、特許文献2には、(A1)(メタ)アクリル系重合体ブロックおよび(A2)アクリル系重合体ブロックからなる(A)(メタ)アクリル系ブロック共重合体、(B)1分子中に2個以上のアミノ基を含む化合物および(C)熱可塑性樹脂からなる熱可塑性エラストマー組成物であって、(A)(メタ)アクリル系ブロック共重合体を(B)化合物により、(C)熱可塑性樹脂中で動的に熱処理した後、さらに(D)熱可塑性樹脂を添加して混練することにより得られる熱可塑性エラストマー組成物が開示されている。この組成物は、硬度と機械強度のバランスに優れ、広い温度範囲にわたるゴム弾性、高温クリープ性能、成形加工性に優れ、かつ熱可塑性エラストマーでありながら、耐油性、耐熱性に優れることが記載されている。
 しかし、CVT用等のシールリングには、より高温域における耐クリープ特性が求められ、特許文献2の組成では十分な性能を得ることは困難と考えられる。高温クリープ特性を向上させるためには、充填材を添加して、樹脂組成物の硬度を上げることが有効と考えられる。特許文献2の組成物には、ガラス繊維、マイカ、タルク、炭酸カルシウム等の充填材を添加できることも示されている。しかし、前記充填材の添加により、硬度を上げると、相反特性である弾性復元率が低下するため、耐クリープ特性を向上させることはできても、十分なシール特性を得られない可能性がある。
特開2006-283898号公報 特開2005-264068号公報
 本発明は上記事情に鑑みてなされたもので、高温下でも、クリープ強度が高く、優れた弾性復元率を有する樹脂組成及びそれを用いたシール部材を提供することを目的とする。さらには、高温加圧下で長期間使用した後も弾性を維持し、広い温度範囲で長期にわたり、優れたシール特性を発揮し得る樹脂組成物及びそれを用いたシール部材を提供することを目的とする。
 上記目的に鑑み鋭意研究の結果、本発明者らは、ゴム成分と熱可塑性樹脂を含有する樹脂組成物に、アラミド繊維を分散させることにより、広い温度範囲において優れた弾性復元率を維持しつつ、樹脂組成物の硬度を大幅に向上させることができることを見いだし、本発明に想到した。すなわち、本発明の樹脂組成物は、ゴム成分、熱可塑性樹脂、及びアラミド繊維を含有することを特徴とする。
 本発明の樹脂組成物は高硬度であるため、高温下でのクリープ強度の低下を抑制でき、かつ広い温度範囲において優れた弾性復元率を維持できるため、高温高圧下で長時間使用した後でも、変形又は破断することなく、優れたゴム弾性を維持することができる。そのため、本発明の樹脂組成物から構成されるシール部材は過酷な使用条件下でも長期にわたり優れたシール特性を維持することができる。
従来のシール部材の一例を示す断面図である。
 以下に本発明の樹脂組成物及びそれを用いたシール部材について詳細に説明する。
 本発明の樹脂組成物は、ゴム成分、熱可塑性樹脂、及びアラミド繊維を含有する混合物からなる。ゴム成分、及び熱可塑性樹脂を含有する樹脂組成物に、アラミド繊維を分散させることにより、広い温度範囲において優れた弾性復元率を維持しつつ、樹脂組成物の硬度を大幅に向上させることができる。このように、本発明の樹脂組成物は高硬度であるため、高温下でのクリープ強度の低下を抑制でき、かつ広い温度範囲において優れた弾性復元率を維持できるため、高温高圧下で長時間使用した後でも、変形又は破断することなく、優れたゴム弾性を維持することができる。そのため、本発明の樹脂組成物から構成されるシール部材は過酷な使用条件下でも長期にわたり優れたシール特性を維持することができる。
 本発明に用いるアラミド繊維のアラミドは、特に限定されず、ポリ(パラ-フェニレンテレフタルアミド)、ポリ(パラ-ベンズアミド)、ポリ(パラ-アミドヒドラジド)、ポリ(パラ-フェニレンテレフタルアミド-3,4-ジフェニルエーテルテレフタルアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラ-フェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラ-フェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロ-パラ-フェニレンテレフタルアミド)、コポリ(パラ-フェニレン-3,4’-オキシジフェニレンテレフタルアミド)等のパラ系アラミドが挙げられる。アラミド繊維の市販品としては、東レ・デュポン株式会社製「ケブラー」等が挙げられる。
 前記アラミド繊維を後述するゴム成分及び熱可塑性樹脂を含む樹脂組成物に分散させることにより、優れた弾性復元率を維持しつつ、樹脂組成物の硬度を向上させることができる。ここで、樹脂組成物全体に対するアラミド繊維の含有量は3.0~10.0質量%が好ましく、3.0~7.0質量%がより好ましい。アラミド繊維を前記範囲で含有させることにより、より高い硬度及び弾性復元率を有する樹脂組成物が得られる。アラミド繊維の含有量が、3.0質量%未満では十分な硬度を得られない可能性があり、一方、10.0質量%を超えると弾性復元率が低下する可能性がある。
 また、本発明において、樹脂組成物に含有させるアラミド繊維の繊維長さは0.5mm~5.0mmが好ましく、1.0mm~3.0mmがより好ましい。アラミド繊維の繊維長さを前記範囲とすることにより、より少ないアラミド繊維の添加により、樹脂組成物の硬度と引張強度を十分向上させることができるため、優れた弾性復元率を実現することができる。
 本発明においては、後述するゴム成分、熱可塑性樹脂、及びアラミド樹脂が高分散していることが好ましく、樹脂組成物の各成分の分散性を向上させることにより、得られる樹脂組成物の機械的強度、耐クリープ特性をさらに向上させることができる。このような樹脂組成物では、使用時の油圧による変形や亀裂の発生により生じる樹脂組成物の破断(キレ)を効果的に防止することができる。
 本発明の樹脂組成物のA硬度は、70以上が好ましく、A硬度をこの範囲とすることにより、高温域における樹脂組成物のクリープ変形を効果的に抑制できる。A硬度は75以上が好ましく、80以上がより好ましい。また、本発明の樹脂組成物の20℃(常温)~150℃の温度範囲における弾性復元率は、70%以上であることが好ましい。弾性復元率は、負荷-除荷試験により求められ、この値が大きいほど、ゴム弾性が維持され、優れたシール特性を発揮する。前記温度範囲における弾性復元率は、75%以上がより好ましい。A硬度及び弾性復元率を前記範囲とすることにより、高温下でも優れた耐クリープ特性及び弾性を維持でき、過酷な使用条件下でも長期にわたって優れたシール特性を持続できる。
 さらに、本発明の樹脂組成物の引張破断強度は、3MPa以上であることが好ましい。A硬度及び引張破断強度を前記範囲とすることにより、圧縮及び引張の両方向からのクリープ変形をより効果的に抑制することができる。引張破断強度は4MPa以上が好ましく、5MPa以上がより好ましい。また、本発明の樹脂組成物の伸び率は、15%以上であることが好ましい。延び率を前記範囲とすることにより、使用時の油圧による変形や亀裂の発生により生じる樹脂組成物の破断(キレ)を効果的に防止することができる。
 A硬度や弾性復元率の値は、熱可塑性樹脂及びアラミド繊維の種類や添加量等により制御することができる。A硬度と弾性復元率は、相反する特性であるため、通常は、A硬度を向上させると、弾性復元率が低下する傾向がある。しかし、本発明の樹脂組成物では、アラミド繊維の添加により、ゴム成分及び熱可塑性樹脂を含有する樹脂組成物の優れた弾性復元率を維持しつつ、A硬度を大幅に向上させることができる。
 ゴム成分、熱可塑性樹脂及びアラミド繊維を高分散することにより、射出成形性、機械的強度、耐クリープ特性及び高温下でのゴム弾性をさらに向上させることができる。
 本発明のゴム成分は、架橋ゴム又は熱可塑性エラストマーとして添加してもよいし、動的架橋樹脂として添加することもできる。これらのゴム成分の表面硬度は、ショア硬度Aで、60~90が好ましい。
 架橋ゴムとしては、天然ゴム、合成イソプレンゴム(IR)、フッ素ゴム、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、ウレタンゴム、シリコーンゴム、アクリルゴム等を挙げることができる。これらの架橋ゴムのうちから1種を用いることもできるが、2種以上を混合して用いることもでき、後述する熱可塑性エラストマーや動的架橋樹脂と併用することもできる。
 熱可塑性エラストマーとしては、ポリエステル系エラストマー、ポリオレフィン系エラストマー、フッ素系エラストマー、シリコーン系エラストマー、ブタジエン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、ウレタン系エラストマー等が挙げられる。これらの熱可塑性エラストマーのうちから1種を用いることもできるが、2種以上を混合して用いることもできる。射出成形性及び耐熱性の観点から、上記熱可塑性エラストマーの中でも、ポリエステル系エラストマー及びポリアミド系エラストマーが好ましい。
 ポリエステル系エラストマーの市販品としては、東レ・デュポン株式会社製「ハイトレル」、東洋紡績株式会社製「ペルプレン」、及び三菱化学株式会社製「プリマロイ」等が挙げられ、ポリアミド系エラストマーの市販品としては、ARKEMA社製「ペバックス」、宇部興産株式会社製「UBESTAXPA」等が挙げられる。
 動的架橋樹脂は、熱可塑性樹脂相中に架橋ゴム相が分散した構造を有する。動的架橋樹脂に用いられる熱可塑性樹脂は、特に限定されず、ポリエステル、ポリアミド(PA)等が挙げられる。一方、ゴムは、特に限定されず、例えば天然ゴム、シス-1,4-ポリイソプレン、ハイシスポリブタジエン、スチレン-ブタジエン共重合体ゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレンジエンゴム(EPDM)、クロロプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル-ブタジエン共重合体ゴム、アクリルゴム等が挙げられる。
 動的架橋樹脂は公知の方法で製造することができる。例えば、予め未架橋のゴム成分中に架橋剤を混合し、2軸押出機を用いて、熱可塑性樹脂成分と未架橋のゴム成分を溶融混練することにより、ゴム成分の分散と架橋を同時に行うことができる。このような動的架橋樹脂は市販品として入手することもできる。例えば、ポリエステル樹脂中にアクリルゴムが分散した動的架橋樹脂の市販品としては、デュポン社製「ETPV」、日油株式会社製「ノフアロイ」(TZ660-7612-BK、TZ660-6602-BK等)等が挙げられる。また、ポリアミド樹脂中にアクリルゴムが分散した動的架橋樹脂の市販品としては、日本ゼオン株式会社製「ゼオサーム」等が挙げられる。
 シール部材を構成する樹脂組成物全体の質量に対して、ゴム成分の含有量は、60質量%~95質量%とするのが好ましく、80質量%~95質量%とするのがより好ましい。ゴム成分の含有量を前記範囲に規定することにより、樹脂組成物の圧縮永久歪がより小さくなり、長期に亘りより優れたシール特性が得られる。
 前記ゴム成分と混合する熱可塑性樹脂の表面硬度は、ショア硬度Dで、70以上が好ましく、90以上がより好ましい。熱可塑性樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリプロピレン(PP)、シンジオタクティックポリスチレン樹脂、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルフォン(PSU)、ポリエーテルスルフォン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらの樹脂は、共重合体、変性体であってもよく、2種類以上を混合してもよい。射出成型性、耐熱性等を考慮すると、上記熱可塑性樹脂の中でもPBT、PA、PPS、PVDFが好ましい。
 シール部材を構成する樹脂組成物全体の質量に対して、熱可塑性樹脂の添加量は、5質量%~40質量%とするのが好ましく、5質量~20質量%とするのがより好ましい。この範囲で熱可塑性樹脂を添加することにより、シール部材の機械的強度及び耐クリープ特性が向上し、加圧条件下で長時間使用後も、優れたシール特性を維持でき、PV値がより高い領域での使用も可能となる。
 前述のとおり、本発明の樹脂組成物には、アラミド繊維を添加するが、使用される用途や要求される特性に応じて、本発明の樹脂組成物の特性を損なわない範囲で、その他の充填材を添加することもできる。その他の充填材としては、繊維状無機系充填材や繊維状有機系充填材が挙げられる。具体的な繊維状無機系充填材としては、ガラス繊維、炭素繊維、カーボンナノチューブ、アルミナ繊維、チタン酸カリウム繊維、ボロン繊維、炭化珪素繊維等が挙げられる。一方、アラミド繊維以外の繊維状有機系充填材としては、ビニロン繊維、ポリプロピレン繊維等が挙げられる。
 アラミド繊維とその他の繊維状充填材との併用により、シール部材の機械的強度及び耐クリープ特性がさらに向上し、よりPV値が高い領域でも使用できる可能性がある。前記有機及び無機充填材の中でもカーボンナノチューブが好ましい。カーボンナノチューブは、繊維状無機充填材として補強機能を発揮するのみならず、後述する充填材と同様、?動特性を向上させるための充填材としても有効である。
 また、?動特性等を向上させる目的で、その他の充填材を添加することもできる。その他の充填材としては、炭酸カルシウム、モンモリロナイト、ベントナイト、タルク、シリカ、雲母、マイカ、硫酸バリウム、硫酸カルシウム、珪酸カルシウム、二硫化モリブデン、ガラスビーズ、グラファイト、フラーレン、カーボン(アモルファス)粉、無煙炭粉末、酸化アルミニウム、酸化チタン、酸化マグネシウム、チタン酸カリウム、窒化ホウ素、PTFE粉末等が挙げられる。
 アラミド繊維以外の充填材の添加量は、シール部材を構成する樹脂組成物全体の質量に対して、3質量%~20質量%とするのが好ましい。また、充填材として、カーボンナノチューブを添加する場合、その添加量は、シール部材を構成する樹脂組成物全体の質量に対して、1質量%~10質量%とするのが好ましい。この範囲で、充填材を添加することにより、優れた機械的強度及び?動特性が得られ、長期にわたりより優れたシール特性を維持できる。
 本発明における樹脂組成物の混合方法は特に限定されないが、ラボプラストミル、二軸押出機等を用いて混合することができる。上述したように樹脂組成物の射出成形性、機械的強度、耐クリープ特性及びゴム弾性を向上させるためには、ゴム成分、熱可塑性樹脂及びアラミド樹脂を均一高分散させることが有効である。均一高分散を確実に実現するためにはスクリュー軸にせん断作用の生じるニーディングディスクを組み合わせた二軸押出機を用いて高せん断条件下で混合するのが好ましい。また、市販の高せん断成形加工機を用いることもできる。分散性は、スクリューの形状や長さ、帰還穴径、スクリュー回転速度やせん断混合時間等により制御することができる。
 本発明の樹脂組成物の用途は特に限定されず、各種分野において、ガスケット、チューブ、パッキン、ホース、シール部材等として用いられる。特に、シール部材として好ましく用いられる。シール部材としては、回転運動用シールリングや往復運動用シールリング等が挙げられるが、特に、自動車のCVT等に装着されるシールリングに適用するのが好ましい。
 本発明の樹脂組成物をCVT用シールリングとして用いる場合、無負荷状態における油漏れを確実に防止するため、合口を有しないエンドレスタイプのシールリングを採用するのが好ましい。本発明の樹脂材料は柔軟性があるため、エンドレスタイプとしても装着性に優れ、1本型とすることによりさらに装着が容易となる。一方、用途等によっては合口を設けることもできる。この場合の合口形状は特に限定されず、直角(ストレート)合口、斜め(アングル)合口、段付き(ステップ)合口の他、ダブルアングル合口、ダブルカット合口、トリプルステップ合口等公知の合口を採用することができる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
 ゴム成分としてポリエステル樹脂/アクリルゴム系動的架橋樹脂、熱可塑性樹脂としてポリフッ化ビニリデン樹脂、充填材として繊維長さが3mmのアラミド繊維を用い、リードとニーディングディスクを組み合わせたφ92mmのスクリューが設置された2軸押出機で混合した。ここで、ポリエステル樹脂/アクリルゴム系動的架橋樹脂、ポリフッ化ビニリデン樹脂及びアラミド樹脂を、それぞれサイドフィーダーにて供給し、温度240℃、スクリュー回転数200rpmのせん断条件で混合してペレットを得た。なお、ポリエステル樹脂/アクリルゴム系動的架橋樹脂とポリフッ化ビニリデン樹脂は、市販品を用い、質量比(ポリエステル樹脂/アクリルゴム系動的架橋樹脂:ポリフッ化ビニリデン樹脂
)は90:10とした。また、アラミド繊維の添加量は、樹脂組成物全体に対して、10質量%とした。得られたペレットを射出成型し、各種測定試料を作製し、以下の方法で、表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、後述する充填材を加えていない比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(実施例2~5)
 アラミド繊維の繊維長さを、0.5mm(実施例2)、1mm(実施例3)、5mm(実施例4)及び7mm(実施例5)とした他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、後述する充填材を加えていない比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(実施例6~10)
 アラミド繊維の含有量を樹脂組成物全体に対して、2質量%(実施例6)、3質量%(実施例7)、5質量%(実施例8)、7質量%(実施例9)及び12質量%(実施例10)とした他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、後述する充填材を加えていない比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(比較例1)
 アラミド繊維を添加しなかった他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、本比較例1の値を100として、実施例及びその他の比較例の値を相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(比較例2)
 アラミド繊維に変えて炭素繊維を用いた他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(比較例3)
 アラミド繊維に変えてガラス繊維を用いた他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(比較例4)
 アラミド繊維に変えてグラファイト(平均粒径:2μm)を用いた他は実施例1と同様に、測定試料を作製した。それぞれの試料の表面硬度(A硬度)、及び弾性復元率を測定し、耐屈曲試験を行った。結果を表1に示す。なお、A硬度及び弾性復元率は、比較例1の値を100として相対比で表した。また、耐屈曲試験の結果は、以下に示す基準で、(a)、(b)、(c)、又は(d)で表した。
(表面硬度の測定)
 JIS K7215に基づき、ショアA硬度を測定した。
(弾性復元率の測定)
 実施例1~10及び比較例1~4の樹脂組成物を射出成形して、厚さ2.0~5.0μmのシートを作製した後、直径φ2.0mm、高さ1.0~3.0mmの円柱状に切り出して測定試料とした。エスアイアイ・ナノテクノロジー株式会社製熱機械分析装置を用い、昇温法により、空気中で、昇温速度10℃/分で150℃まで昇温した。その後、温度を150℃に保持しながら、負荷速度0.32MPa/分で、0.47MPaまで荷重を上げ、0.47MPaで、5分間保持した後、0.031MPa/分で除荷した時の応力及び歪みを測定した。得られた値を用いて弾性復元率を算出した。
(引張破断強度及び伸び率の測定)
 JIS K7162に基づき、引張破断強度と伸び率を測定した。
(耐屈曲試験)
 実施例1~10及び比較例1~4の樹脂組成物を射出成形して、合口のないリング状の測定試料を作製した。得られた試料を屈曲試験器に垂直に設置し、垂直方向に荷重をかけ、垂直高さを25mmから7mmとした後、7mmから25mmに戻す屈曲を1分間に300回繰り返した。試験後の試料の亀裂の有無及び亀裂の最大長さを顕微鏡で確認した。ここで、亀裂が認められなかったものを(a)、最大長さが5μm以下の微小亀裂が認められたものを(b)、最大長さが5μm超え、40μm以下の小さい亀裂が認められたものを(c)、試料が破断したもの、及び最大長さが40μmを超える大きな亀裂が認められたものを(d)とした。
 充填材を添加していない比較例1に比べ、充填材として、それぞれ、炭素繊維、ガラス繊維、及びグラファイトを樹脂組成物全体に対して10質量%添加した比較例2、3、及び4では、A硬度が大幅に上昇することがわかった。そして、A硬度の上昇に相反して、弾性復元率が急激に低下することが確認された。また、屈曲試験後には、比較例2、3、及び4のいずれの試料でも破断するか、大きな亀裂が認められた。
 一方、繊維長さ3mmのアラミド繊維を樹脂組成物全体に対して10質量%添加した実施例1では、弾性復元率は比較例1に近い値を維持したまま、A硬度が21%も上昇することがわかった。実施例1では、屈曲試験後も微小な亀裂がわずかに認められたのみで、耐クリープ特性、弾性及び機械強度に優れた樹脂組成物であることが確認された。
 アラミド繊維の繊維長さを0.5mm~7mmの範囲で変えた実施例1~5の結果より、繊維長さの短いアラミド繊維を添加すると弾性復元率を維持しつつ、A硬度を上げられることがわかった。繊維長さを長くするとA硬度は上昇するが、弾性復元率が低下する傾向が認められた。アラミド繊維の繊維長さは、0.5mm~5.0mmであることが好ましく、1.0m~3.0mmであることがより好ましい。
 アラミド繊維の添加量を2質量%~12質量%の範囲で変えた実施例1及び6~10の結果より、アラミド繊維の添加量が少ないときは、弾性復元率を維持しつつ、A硬度を上昇させることができることがわかった。アラミド繊維をさらに増加させるとA硬度は上昇するが、弾性復元率が低下する傾向が認められた。アラミド繊維の含有量は、樹脂組成物全体に対して、3.0質量%~10.0質量%であることが好ましく、3.0質量%~7.0質量%であることがより好ましい。
 なお、スクリュー回転数を200rpmから100rpmに低減させて、同様に樹脂組成物を作製して、評価した結果、アラミド繊維を添加する効果は認められた。しかし、機械的強度、耐クリープ特性及び弾性復元率は、前記実施例の値には及ばす、高分散による効果が確認された。
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  ゴム成分、熱可塑性樹脂及びアラミド繊維を含有する
     ことを特徴とする樹脂組成物。
  2.  前記アラミド繊維の繊維長さが、0.5mm~5.0mmである
     ことを特徴とする請求項1に記載の樹脂組成物。
  3.  前記樹脂組成物全体に対する前記アラミド繊維の含有量が、3.0質量%~10.0質量%である
     ことを特徴とする請求項1又は2に記載の樹脂組成物。
  4.  表面A硬度が70以上で、かつ150℃における弾性復元率が70%以上である
     ことを特徴とする請求項1~3の何れかに記載の樹脂組成物。
  5.  引張破断強度が、3MPa以上である
     ことを特徴とする請求項1~4の何れかに記載の樹脂組成物。
  6.  伸び率が、15%以上である
     ことを特徴とする請求項1~5の何れかに記載の樹脂組成物。
  7.  前記ゴム成分が、アクリルゴムである
     ことを特徴とする請求項1~6の何れかに記載の樹脂組成物。
  8.  前記熱可塑性樹脂が、ポリフッ化ビニリデンである
     ことを特徴とする請求項1~7の何れかに記載の樹脂組成物。
  9.  請求項1~8の何れかに記載の樹脂組成物を用いる
     ことを特徴とするシール部材。
PCT/JP2013/006008 2012-10-11 2013-10-09 樹脂組成物及びそれを用いたシール部材 WO2014057663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012226463A JP5642756B2 (ja) 2012-10-11 2012-10-11 シール部材
JP2012-226463 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057663A1 true WO2014057663A1 (ja) 2014-04-17

Family

ID=50477145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006008 WO2014057663A1 (ja) 2012-10-11 2013-10-09 樹脂組成物及びそれを用いたシール部材

Country Status (2)

Country Link
JP (1) JP5642756B2 (ja)
WO (1) WO2014057663A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146862A1 (ja) * 2014-03-28 2015-10-01 Nok株式会社 Hnbr組成物及びhnbr架橋体
US11835137B2 (en) 2017-09-19 2023-12-05 Nok Corporation Sealing member for mechanical seals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169447A (ja) * 2004-12-17 2006-06-29 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2007033705A (ja) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd 半導電性ベルトおよびその半導電性ベルトを用いた画像形成装置
WO2012096387A1 (ja) * 2011-01-14 2012-07-19 株式会社リケン シールリング

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169447A (ja) * 2004-12-17 2006-06-29 Sumitomo Chemical Co Ltd 樹脂組成物およびその成形体
JP2007033705A (ja) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd 半導電性ベルトおよびその半導電性ベルトを用いた画像形成装置
WO2012096387A1 (ja) * 2011-01-14 2012-07-19 株式会社リケン シールリング

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146862A1 (ja) * 2014-03-28 2015-10-01 Nok株式会社 Hnbr組成物及びhnbr架橋体
JP5904314B2 (ja) * 2014-03-28 2016-04-13 Nok株式会社 Hnbr組成物及びhnbr架橋体
US11835137B2 (en) 2017-09-19 2023-12-05 Nok Corporation Sealing member for mechanical seals

Also Published As

Publication number Publication date
JP2014077095A (ja) 2014-05-01
JP5642756B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5782551B2 (ja) 無段変速機用シールリング
WO2014002582A1 (ja) 樹脂組成物及びシール部材
JP5386052B2 (ja) シールリング
JP5904314B2 (ja) Hnbr組成物及びhnbr架橋体
KR20170095305A (ko) 수소화나이트릴 고무 조성물 및 드라이브트레인용 오일씰
JP5642756B2 (ja) シール部材
JPH11310666A (ja) 潤滑性ゴム組成物およびシール部材
JP4550181B2 (ja) 潤滑性アクリロニトリルブタジエンゴム組成物およびその製造方法、並びにシール部材
JPH09183867A (ja) ワイパーブレードゴム
JPH093249A (ja) 潤滑性ゴム組成物
JP5816195B2 (ja) シーリングシステムの方法および装置
JP2015108079A (ja) シール部材
JP7405722B2 (ja) 軸シール
JP2009052736A (ja) 高負荷伝動ベルト及び高負荷伝動ベルト用ブロック
JP2002081551A (ja) シールリング
JP3170541B2 (ja) 潤滑性ゴム組成物
JPH0985966A (ja) インクジェット記録装置のインク回収用プランジャポンプ
JPH09163763A (ja) 超音波モータ
JPH1180428A (ja) 潤滑性ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845570

Country of ref document: EP

Kind code of ref document: A1