WO2014057648A1 - Vehicle travel assist apparatus - Google Patents

Vehicle travel assist apparatus Download PDF

Info

Publication number
WO2014057648A1
WO2014057648A1 PCT/JP2013/005954 JP2013005954W WO2014057648A1 WO 2014057648 A1 WO2014057648 A1 WO 2014057648A1 JP 2013005954 W JP2013005954 W JP 2013005954W WO 2014057648 A1 WO2014057648 A1 WO 2014057648A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
value
vehicle speed
driver
correction
Prior art date
Application number
PCT/JP2013/005954
Other languages
French (fr)
Japanese (ja)
Inventor
一馬 大浦
敬太 岩崎
卓馬 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014057648A1 publication Critical patent/WO2014057648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/087Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a technique for continuously realizing smooth traveling such that a vehicle travels on a flat road even when a driver's accelerator operation or braking operation that causes a sudden change in the driver's acceleration / deceleration request occurs.
  • the constant speed traveling control device described in Patent Document 1 uses the vehicle speed at the time when the start command for constant speed traveling control is instructed as the target vehicle speed, and the actual vehicle speed is automatically set to the target vehicle speed during the constant speed traveling control.
  • a dead zone is set in which the target vehicle speed is not changed even if the driver depresses the accelerator pedal, and the target vehicle speed is maintained while the amount of depression of the accelerator pedal is changing within the dead zone.
  • the driver estimates that the driver intends to accelerate or decelerate, and changes the target vehicle speed according to the amount of depression of the accelerator pedal.
  • the actual vehicle speed is increased or decreased.
  • the driver can perform constant speed control even with the foot on the accelerator pedal, so the driver intends to accelerate while preventing a delay in the depression of the brake pedal when performing a sudden stop. It was said that the difference from the operation during normal traveling can be reduced by appropriately dealing with cases.
  • the above-described conventional constant speed traveling control device simply performs control to make the actual vehicle speed coincide with the target vehicle speed. For this reason, if an operation that causes the driver's acceleration / deceleration intention to change suddenly is performed on an operation unit that inputs a request for acceleration / deceleration of the vehicle, such as an accelerator pedal or a brake pedal, the change in the target vehicle speed corresponding to the operation is changed. There was an unsolved problem that the actual vehicle behavior could not be followed and the vehicle behavior was contrary to the driver's intention of acceleration / deceleration.
  • An object of the present invention is to provide a vehicular driving support device that can continuously realize smooth running.
  • a vehicle travel support apparatus provides a target vehicle speed (or a control target value related to acceleration / deceleration control of a vehicle based on an acceleration / deceleration request value indicating an acceleration / deceleration request of a driver (or Target acceleration) is calculated, and the actual vehicle speed (or actual acceleration) of the vehicle having the same physical quantity as the target vehicle speed (or target acceleration) is estimated or detected. Then, during normal driving in which the driver operates the accelerator pedal, the brake pedal, or the like to perform acceleration / deceleration, acceleration / deceleration control is performed so that the target vehicle speed (or target acceleration) matches the actual vehicle speed (or actual acceleration).
  • the target vehicle speed (or target acceleration) and the actual vehicle speed (or actual vehicle speed) used for constant speed traveling control is corrected so as to approach the actual vehicle speed (or actual acceleration) with a correction amount corresponding to the magnitude of the deviation from the acceleration).
  • the target vehicle speed (or target speed) is corrected with an amount of correction corresponding to the deviation between the target vehicle speed (or target acceleration) and the actual vehicle speed (or actual acceleration). (Acceleration) can be corrected so as to approach the actual vehicle speed (or actual acceleration). Therefore, even if the driver's intention for acceleration / deceleration suddenly changes, constant speed running control can be performed so that the vehicle behavior becomes closer to the driver's intention for acceleration / deceleration compared to the case where no correction is made. It is done.
  • (A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a standard vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) Vd according to the accelerator operation of the prior art and the first embodiment. It is a wave form diagram which shows each time change. It is a conceptual diagram which shows schematic structure of the motor vehicle 1 in 2nd Embodiment. It is a block diagram which shows the whole structure of the system of 2nd Embodiment. It is a block diagram which shows the function structure of 6 C of correction amount calculation parts of 2nd Embodiment.
  • FIG. 1 It is a timing chart which shows an example of a time change of correction processing operation flag Frb with respect to change of driver acceleration / deceleration demand value Ge by driver's brake operation of a 2nd embodiment.
  • A is a figure which shows an example of the correction amount map corresponding to accelerator operation of 2nd Embodiment
  • (b) is a figure which shows an example of the correction amount map corresponding to brake operation of 2nd Embodiment. is there.
  • (A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) corresponding to the driver's brake operation according to the prior art and the second embodiment. ) It is a waveform diagram showing each time change of Vd.
  • (A) is a figure which shows an example of the correction amount map which has a dead zone corresponding to the accelerator operation of 3rd Embodiment
  • (b) is the correction amount map which has a dead zone corresponding to the brake operation of 3rd Embodiment. It is a figure which shows an example. It is a figure which shows 6 C of correction amount calculation parts of 4th Embodiment.
  • (A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) Vd according to the accelerator operation of the prior art and the fourth embodiment.
  • It is a wave form diagram which shows each time change.
  • It is a block diagram which shows the function structure of 6 C of correction amount calculation parts of 5th Embodiment.
  • FIG. 1 is a diagram showing an overall configuration of a first embodiment of the present invention, and is a conceptual diagram showing a model of an automobile 1 to which a vehicular travel support apparatus according to the present invention is applied.
  • the vehicle 1 in the present embodiment is an electric vehicle having an electric motor 2 as a drive source, and is connected to a transmission 3 to which a driving force output from the electric motor 2 is input and to an output side of the transmission 3.
  • a drive shaft 4 extending in the width direction and left and right drive wheels 5 and 5 provided at both ends of the drive shaft 4 are provided, and the drive of the electric motor 2 transmitted to the drive shaft 4 via a transmission is provided. The force is transmitted to the drive wheels 5 and 5.
  • the vehicle 1 also detects a vehicle speed sensor 7 that detects a vehicle speed (actual vehicle speed) based on the number of rotations of the drive wheels 5, an accelerator pedal 8 that can be depressed by the driver, and a depression amount of the accelerator pedal 8. And an accelerator operation detecting device 9 for performing the operation.
  • the controller 6 is supplied with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an accelerator operation detection signal Ad output from the accelerator operation detection device 9.
  • the controller 6 includes a CPU, a driver circuit, and the like (not shown). The controller 6 performs arithmetic processing to be described later on the electric motor 2 based on the supplied vehicle speed detection signal Vd and accelerator operation detection signal Ad. A command current Iout is output to control the rotation direction and driving force.
  • the electric motor 2 generates a driving force of the automobile 1 and also generates a braking force by regeneration. That is, although the electric motor 2 functions as a braking / driving actuator, a mechanical braking device that generates a braking force due to friction with respect to the driving wheel 5 and a driven wheel (not shown) separately from the braking force due to regeneration. A regenerative brake by the electric motor 2 and a mechanical brake device may be used in combination.
  • FIG. 2 is a block diagram showing an overall functional configuration of the first embodiment. That is, as shown in FIG. 2, the controller 6 includes a driver acceleration / deceleration request estimation unit 6A, a command value calculation unit 6B, a correction amount calculation unit 6C, a vehicle speed servo 6D, and an adder 6E. .
  • the driver acceleration / deceleration request estimation unit 6A is configured to obtain an estimated value of acceleration requested by the driver of the automobile 1 based on the accelerator operation detection signal Ad supplied from the accelerator operation detection device 9.
  • FIG. 3 is a diagram illustrating an example of map data of a driver acceleration / deceleration request value (estimated value Ge) with respect to the accelerator operation amount.
  • map data of the estimated value Ge with respect to the magnitude (accelerator operation amount) of the accelerator operation detection signal Ad is prepared in advance.
  • the driver acceleration / deceleration request estimation unit 6A reads an estimated value Ge corresponding to the magnitude of the accelerator operation detection signal Ad from the map data.
  • the map data of the estimated value Ge monotonously increases with respect to the accelerator operation amount, becomes the minimum value 0 when the accelerator operation amount is 0, and increases as the accelerator operation amount increases. Asymptotically.
  • the method of obtaining the estimated value Ge is not limited to this.
  • the estimated value Ge of the acceleration requested by the driver is obtained by multiplying the magnitude of the accelerator operation detection signal Ad by a predetermined gain. It is also possible. Further, for example, it can be obtained in proportion to the square of the accelerator operation detection signal Ad, or can be obtained based on the absolute value of the accelerator operation detection signal Ad and its change amount (differential value). is there.
  • the estimated value Ge should be set to a characteristic that causes a slight delay with respect to the change in the accelerator operation detection signal Ad. In this embodiment, such a delay component is set.
  • the driver acceleration / deceleration request estimation unit 6A constantly updates the estimated value Ge corresponding to the accelerator operation detection signal Ad indicating the opening degree of the accelerator pedal 8 at that time. Output.
  • the driver acceleration / deceleration request estimation unit 6A determines that the driver intends to start constant speed running control that automatically controls the vehicle speed regardless of his / her operation when the driver removes his / her foot from the accelerator pedal 8. Then, the estimated value Ge set immediately before the separation (a predetermined time before) is held.
  • the automobile 1 needs to travel at a certain speed.
  • a lower limit value Th3 (this embodiment) is a value indicating that the estimated value Ge is not more than a threshold value Th1 set in advance according to the speed condition and that there is no driver acceleration / deceleration request. Then, it is necessary to shift to 0).
  • the driver In the case of an automobile having a configuration in which the driver notifies the system side of the start of constant speed traveling control by operating a switch provided on the steering wheel, the driver is fixed when the switch is operated. It may be determined that the start of the high-speed driving control is intended, and the estimated value Ge at that time may be held.
  • the estimated value Ge obtained by the driver acceleration / deceleration request estimation unit 6A and the vehicle speed detection signal Vd supplied from the vehicle speed sensor 7 are supplied to the correction amount calculation unit 6C. Further, the estimated value Ge obtained by the driver acceleration / deceleration request estimation unit 6A is supplied to the correction amount calculation unit 6C.
  • the command value calculation unit 6B executes a predetermined calculation process based on the supplied estimated value Ge and the vehicle speed detection signal Vd and the correction amount Gr supplied from the correction amount calculation unit 3C, so that the current vehicle 1 A reference vehicle speed Vc, which is the optimum traveling speed, is obtained.
  • the command value calculation unit 6B calculates a vehicle speed command value Vout based on a vehicle speed difference (Vd ⁇ Vc) that is a difference between the vehicle speed detection signal Vd representing the current traveling speed (actual vehicle speed) and the reference vehicle speed Vc. It is designed to output.
  • the vehicle speed command value Vout obtained by the command value calculation unit 6B is supplied to the correction amount calculation unit 6C and the vehicle speed servo 6D, respectively.
  • the correction amount calculation unit 6C monitors the supplied estimated value Ge and, when detecting that the estimated value Ge has changed suddenly, obtains a correction amount Gr corresponding to the magnitude of the supplied vehicle speed command signal Vout. Then, the correction amount Gr obtained by the correction amount calculation unit 6C is supplied to the command value calculation unit 6B.
  • the vehicle speed servo 6D generates and outputs an assist torque Gout, which is a control command value as acceleration, based on the vehicle speed command value Vout supplied from the command value calculation unit 6B.
  • the adder 6E adds the supplied estimated value Ge and the assist torque Gout and outputs it as a command current Iout for the electric motor 2.
  • FIG. 4 is a block diagram illustrating an example of a specific functional configuration of the correction amount calculation unit.
  • the correction amount calculation unit 6 ⁇ / b> C includes a correction processing operation flag setting unit 12, a correction amount determination unit 13, and a correction amount map 14.
  • the correction processing operation flag setting unit 12 monitors a change in the supplied estimated value Ge, and the estimated value Ge is a threshold value Th2 (Th2>) that is a preset value within a numerical range when there is a driver acceleration / deceleration request.
  • the correction processing operation flag Fra is set to the set state only for the operation time ta. In other cases, the correction processing operation flag Fra is set to a non-set state.
  • the correction process operation flag Fra performs a correction process for correcting the reference vehicle speed Vc with a correction amount corresponding to the vehicle speed difference (Vout) during the set state period, and performs the correction process during the non-set state period. It is a flag that prevents implementation.
  • the sudden change means that the estimated value Ge changes from a state where the threshold value Th2 is equal to or greater than the threshold value Th2 to a state where the threshold value Th3 is equal to or less than a preset change time upper limit value tc (tc> 0).
  • the change time upper limit value is set in advance based on, for example, the time change of the estimated value Ge when the driver suddenly lifts his or her foot from the state where the accelerator is depressed.
  • FIG. 5 is a timing chart showing an example of a time change of the correction processing operation flag Fra with respect to a change in the estimated value Ge of the driver acceleration / deceleration request value by the driver's accelerator operation.
  • the correction processing operation flag setting unit 12 has suddenly changed from the state where the estimated value Ge is equal to or higher than the threshold Th2 to the lower limit Th3 by the operation of the accelerator pedal 8 of the driver. Is determined, the correction processing operation flag Fra is set to the set state only for the operation time ta [seconds]. That is, in the example shown in FIG.
  • FIG. 4 shows a state where the accelerator pedal 8 is suddenly released. Further, the correction processing operation flag Fra is shown in the set state only during the operation time ta from time t1 to time t2.
  • the correction amount determination unit 13 determines the magnitude of the vehicle speed command value Vout (reference vehicle speed Vc ⁇ actual vehicle speed Vd) supplied from the command value calculation unit 6B from the correction amount map 14 when the correction amount operation flag Fra is set.
  • the correction amount Gr corresponding to is read.
  • the read correction amount Gr is supplied to the command value calculation unit 6B.
  • the correction amount map 14 is map data composed of a correction amount of the reference vehicle speed Vc set in advance according to the magnitude of the vehicle speed command value Vout.
  • the correction amount map 14 is stored and held in advance in a memory such as a ROM (not shown) provided in the controller 6.
  • FIG. 6 is a diagram illustrating an example of the correction amount map of the present embodiment.
  • the correction amount map 14 indicates that the correction amount Gr approaches a1 as the vehicle speed command value Vout ranges from “0” to a preset positive value a1. It increases non-linearly in the negative direction until reaching a preset negative maximum value b1.
  • the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1.
  • the correction amount map 14 indicates that the correction amount Gr becomes a preset positive maximum value b2 as the correction amount Gr approaches a2 in the range of the vehicle speed command value Vout from “0” to the preset negative value a2. It increases non-linearly in the positive direction until When the vehicle speed command value Vout exceeds a2, the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2.
  • the accelerator pedal 8 is greatly depressed.
  • the reference vehicle speed Vc corresponding to the estimated value Ge is set as the target vehicle speed for constant speed traveling control.
  • acceleration control is performed even though the driver intends to stop acceleration and removes his / her foot from the accelerator pedal 8. This acceleration behavior contrary to the driver's intention to stop acceleration gives the driver a sense of incongruity.
  • the reference vehicle speed Vc is the actual vehicle with the correction amount Gr having a magnitude corresponding to the magnitude of the vehicle speed command value Vout.
  • the reference vehicle speed Vc is corrected so as to approach the speed Vd.
  • the deviation between the actual vehicle speed Vd and the reference vehicle speed Vc is reduced, and the actual vehicle speed Vd is likely to converge to the reference vehicle speed Vc. Therefore, it is possible to suppress the occurrence of acceleration that is not intended by the driver.
  • an appropriate correction amount map 14 is created in advance corresponding to the vehicle type based on the vehicle specifications of the automobile 1, the sensory test of the driver, and the like.
  • the values a1, a2, b1, and b2 shown in FIG. 6 are created in consideration of the difference in feeling when the driver accelerates and decelerates through a running test or the like. Further, as shown in FIG. 6, in the correction amount map 14, the curve L1 on the a1 and b1 side and the curve L2 on the a2 and b2 side are asymmetric with respect to “0”. This is because the driver feels differently on the deceleration side and the acceleration side.
  • FIG. 7 is a block diagram showing the system configuration of the present embodiment so that the flow of each signal can be seen as a whole.
  • the command value calculation unit 6B determines the reference vehicle speed Vc based on the estimated value Ge and the correction amount Gr.
  • the figure shows that it is composed of a reference vehicle model 10 to be calculated and a subtractor 11 for calculating a difference (Vd ⁇ Vc) between the vehicle speed detection signal Vd and the reference vehicle speed Vc.
  • the reference vehicle model 10 for calculating the reference vehicle speed Vc is configured as shown in FIG.
  • the reference vehicle model 10 includes a rolling resistance component storage unit 10a that stores a rolling resistance component R1 that is a predetermined constant value, and an air resistance component setting unit 10b that sets the air resistance component R2 based on the reference vehicle speed Vc. And.
  • the air resistance component setting unit 10b calculates an air resistance component R2 that increases according to the vehicle speed by multiplying the square value (Vc2) of the reference vehicle speed Vc by a fixed gain K. Since both the rolling resistance component R1 and the air resistance component R2 are disturbance components that act in the direction of reducing the traveling speed of the vehicle, their signs are negative opposite to the estimated value Ge.
  • the rolling resistance component R1 and the air resistance component R2 are supplied to the selection units 10c and 10d, respectively.
  • the flag Fa is supplied from the accelerator OFF flag setting unit 10e to each of the selection units 10c and 10d.
  • the flag Fa is a flag that is set when the accelerator pedal 8 corresponding to the accelerator operation unit is not operated in the present embodiment, and is not set when the accelerator pedal 8 is operated.
  • Each of the selection units 10c and 10d outputs a rolling resistance component R1 and an air resistance component R2 when the flag Fa is in a non-set state, and outputs “0” when the flag Fa is in a set state. ing. That is, when the flag Fa is not set, the selection units 10c and 10d output the rolling resistance component R1 and the air resistance component R2 supplied from the rolling resistance component storage unit 10a and the air resistance component setting unit 10b as they are, After the flag Fa is set, regardless of the values of the rolling resistance component R1 and the air resistance component R2 supplied from the rolling resistance component storage unit 10a and the air resistance component setting unit 10b, the rolling resistance component R1 and the air The resistance component R2 is forcibly reset to “0” before being output.
  • the outputs of the selectors 10c and 10d are supplied to the adder 10f together with the estimated value Ge and the correction amount Gr. That is, the adder 10f adds the estimated value Ge, the correction amount Gr, and the outputs of the selection units 10c and 10d.
  • the signs of the rolling resistance component R1 and the air resistance component R2 are negative.
  • the correction amount Gr is output from the correction amount calculation unit 6C, the correction amount Gr is also negative.
  • the calculation in the adder 10f is Ge ⁇ (Gr + R1 + R2) when considering the sign, so that the adder 10f substantially functions as a subtractor.
  • the selectors 10c and 10d When the flag Fa is in the set state, the selectors 10c and 10d output “0”, and the output of the adder 10f is (Ge ⁇ Gr).
  • the output of the adder 10f is the estimated value Ge itself.
  • the reference vehicle model 10 further includes a divider 10g and an integrator 10h.
  • the divider 10g calculates the target acceleration Gc by dividing the output value of the adder 10f by the mass M of the automobile 1.
  • the integrator 10h integrates the target acceleration Gc supplied from the divider 10g.
  • the reference vehicle speed Vc as the target vehicle speed is calculated.
  • the reference vehicle speed Vc output from the integrator 10h is supplied to the air resistance component setting unit 10b and also supplied to the subtractor 11 of FIG. 7 as an output of the reference vehicle model 10.
  • FIG. 9 is a waveform diagram showing an example of the time change of each value, and shows each of the accelerator operation detection signal Ad, the estimated value Ge, the flag Fa, the rolling resistance component R1, and the air resistance component R2. Note that the rolling resistance component R1 and the air resistance component R2 have negative signs, but are shown as absolute values in FIG. FIG. 9 shows that the amount of depression of the accelerator pedal 8 by the driver is substantially constant from time t0 to time t1, and the amount of depression of the accelerator pedal 8 is gradually decreased from around time t1, and the accelerator is depressed at time t2. A state where the foot is completely removed from the pedal 8 is shown.
  • the estimated value Ge decreases with a tendency to be slightly delayed with respect to the change in the accelerator operation detection signal Ad.
  • the estimated value Ge is also 0.
  • the driver acceleration / deceleration request estimation unit 6A determines that the driver intended to start the constant speed traveling control at time t2, and estimates the estimated value Ge immediately before the time t2, and the estimated value for constant speed traveling control after time t2. Hold as Ge ′.
  • the flag Fa is in a non-set state until time t2, and is set when time t2 is reached.
  • the rolling resistance component R1 has a constant value stored in the rolling resistance component storage unit 10a until time t2, but becomes 0 after reaching time t2.
  • the air resistance component R2 has a value proportional to the square of the reference vehicle speed Vc until time t2, but becomes 0 after time t2.
  • the reference vehicle speed Vc gradually increases even if the rolling resistance component R1 and the air resistance component R2 are affected. Yes.
  • the inertial force is applied to the standard vehicle speed Vc as in the case of an actual vehicle due to the low-pass filter characteristic indicated by the integrator 10h, the standard vehicle speed Vc is not changed for a while even after the time t1. It continues to increase during the period.
  • the estimated value Ge ′ held at the time t1 is input to the adder 10f, and the rolling resistance component R1 and the air resistance component R2 are both 0, so the reference vehicle speed Vc Is a constant value.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of the correction processing operation flag setting processing. Note that the processing of FIG. 10 is repeatedly executed in synchronization with a preset sampling clock.
  • the dedicated program is executed in the controller 6 and the correction processing operation flag setting process is executed in the correction amount calculation unit 6C, first, the process proceeds to step S100 as shown in FIG.
  • step S100 the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is set. If it is determined that the correction processing operation flag Fra is in the set state (Yes), the process proceeds to step S102, and if it is not (No), the process proceeds to step S108.
  • step S104 the correction process operation flag setting unit 12 determines whether or not the period during which the correction process operation flag is set has passed ta seconds. If it is determined that the time has elapsed (Yes), the process proceeds to step S106. If it is determined that this is not the case (No), the series of processing ends.
  • step S106 the correction process operation flag setting unit 12 sets the correction process operation flag from the set state to the non-set state, and the series of processes ends.
  • step S110 the correction processing operation flag setting unit 12 compares the estimated value Ge (t) read this time with the threshold value Th2 and the lower limit value Th3, and proceeds to step S112.
  • step S112 the correction processing operation flag setting unit 12 determines whether or not the estimated value Ge has suddenly changed based on the comparison result in step S110. If it is determined that there has been a sudden change (Yes), the process proceeds to step S114. If it is determined that this has not been the case (No), the series of processing ends.
  • the correction processing operation flag setting unit 12 determines the driver acceleration / deceleration request value based on the flag Ft indicating whether or not the estimated value Ge (t ⁇ 1) read immediately before is a value equal to or greater than the threshold Th2. It is determined whether or not Ge has changed suddenly.
  • the flag Ft indicates that the estimated value Ge (t ⁇ 1) is greater than or equal to the threshold Th2 when in the set state, and the estimated value Ge (t ⁇ 1) is less than the threshold Th2 when in the non-set state. It is a flag indicating that.
  • the correction process operation flag setting unit 12 determines whether or not the estimated value Ge (t) read this time is “0” when the flag Ft is set. If it is determined that the value is “0”, it is determined that the change has occurred suddenly, and the flag Ft is set to a non-set state. On the other hand, when it is determined that it is not “0”, it is determined that there is no sudden change, and when the estimated value Ge (t) is a value equal to or greater than the threshold Th2, the flag Ft is maintained in the set state. On the other hand, when the estimated value Ge (t) is a value less than the threshold value Th2, and the flag Ft is set, the flag Ft is set to a non-set state. When the process proceeds to step S114, the correction process operation flag Fra is set to the set state, and the series of processes ends.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure of acceleration / deceleration control processing.
  • the process of FIG. 11 is repeatedly executed in synchronization with a preset sampling clock.
  • the driver acceleration / deceleration request estimation unit 6A reads the estimated value Ge of the driver acceleration / deceleration request from the map data based on the accelerator operation detection signal Ad.
  • the read estimated value Ge is supplied to the command value calculation unit 3B, the correction amount calculation unit 6C, and the adder 6E, respectively, and the process proceeds to step S202.
  • step S202 the correction amount determination unit 13 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is set.
  • the process proceeds to step S204.
  • step S212 the correction amount determination unit 13 reads the correction amount Gr from the correction amount map 14 based on the supplied vehicle speed command value Vout. Then, the read correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S206.
  • step S206 the reference vehicle speed Vc is calculated based on the estimated value Ge and the correction amount Gr in the reference vehicle model 10 of the command value calculation unit 6B. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S208.
  • both the rolling resistance component R1 and the air resistance component R2 are “0”.
  • step S208 the subtractor 11 calculates a vehicle speed command value Vout based on the reference vehicle speed Vc and the actual vehicle speed Vd. Then, the calculated vehicle speed command value Vout is supplied to the correction amount calculation unit 6C and also supplied to the adder 6E as the assist torque Gout via the vehicle speed servo 6D, and the process proceeds to step S210.
  • step S210 the adder 6E adds the assist torque Gout supplied via the vehicle speed servo 6D and the estimated value Ge, and outputs a current command value Iout corresponding to the addition result to the electric motor 2. A series of processing ends.
  • step S212 the estimated value Ge and the rolling resistance are not used in the reference vehicle model 10 without using the correction amount Gr. Based on the component R1 and the air resistance component R2, the reference vehicle speed Vc is calculated, and the process proceeds to step S208.
  • the correction amount Gr may not be supplied, or “0” may be supplied as the correction amount Gr.
  • the correction processing operation flag Fra is not set (No in step S202).
  • the reference vehicle speed Vc is obtained based on the estimated value Ge and the resistance components R1 and R2, and further, the reference vehicle speed.
  • a vehicle speed command value Vout is calculated based on Vc and the vehicle speed detection signal Vd (step S208). Then, the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C, respectively.
  • the vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout, and finally an adder 6E generates a command current Iout corresponding to the added value of the assist torque Gout and the estimated value Ge.
  • the command current Iout is output to 2 (step S210). Therefore, the electric motor 2 is rotationally driven by the command current Iout obtained by adding the estimated value Ge representing the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the reference vehicle speed Vc. Will be.
  • the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is in the set state, and if it is determined that it is not in the set state (No in step S100), the supplied estimation The value Ge is read (step S108).
  • the correction process operation flag setting unit 12 first determines whether or not the estimated value Ge that is read first when the flag Ft is in the non-set state is equal to or greater than the threshold Th2, and determines that the estimated value Ge is equal to or greater than the threshold Th1. Set to the set state. Then, the correction process operation flag setting unit 12 compares the read estimated value Ge with the threshold value Th2 and the lower limit value Th3 for the estimated value Ge read after the second time (step S110).
  • step S112 it is determined whether or not the estimated value Ge is suddenly changed from a state equal to or higher than the threshold Th2 to the lower limit Th3 (“0” in the present embodiment) (step). S112). If it is determined that the correction processing operation flag setting unit 12 has suddenly changed (Yes in step S112), the correction processing operation flag is set to the set state (step S114).
  • the operation of the correction process is started when the driver suddenly shifts from the state in which the accelerator pedal 8 is depressed to the state in which the driver suddenly removes the foot from the accelerator pedal.
  • the constant speed running control is started by releasing the foot from the accelerator pedal 8, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control.
  • the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero.
  • the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the correction processing operation flag Fra is in the set state (Yes in step S202)
  • the correction amount determination unit 13 corrects based on the vehicle speed command value Vout supplied from the command value calculation unit 6B.
  • a correction amount Gr corresponding to the magnitude of Vout is acquired from the amount map 14 (step S204), and the acquired correction amount Gr is supplied to the command value calculation unit 6B.
  • the correction amount operation flag Fra is in the set state (Yes in step S202)
  • the reference vehicle model 10 of the command value calculation unit 6B the supplied correction amount Gr, estimated value Ge, resistance components R1 (0) and R2 ( 0), the reference vehicle speed Vc corrected so as to approach the actual vehicle speed Vd is obtained. Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd.
  • the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C.
  • the vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout.
  • a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
  • the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
  • the correction process of the reference vehicle speed Vc is repeatedly executed until the operation time ta elapses.
  • the correction process operation flag Fra is set to a non-set state. Then, the correction process ends (step S106).
  • the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd. Therefore, the driver suddenly depresses his / her foot from the accelerator pedal 8 in order to stop the acceleration. Even when released, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced by the correction amount. That is, since the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc as compared with the case where the correction is not made, the constant speed traveling control is started relatively smoothly.
  • 12 (a) and 12 (b) show an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) according to the accelerator operation according to the prior art and the present embodiment. It is a wave form diagram which shows each time change of Vd. Note that the broken line in FIG. 12 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
  • the reference vehicle speed Vc is corrected by the correction amount Gr corresponding to the magnitude of the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc and the actual vehicle speed Vd. Therefore, as shown in the circled range in FIG. 12B, the reference vehicle speed Vc approaches the actual vehicle speed Vd, and at the time t2 (t2 ⁇ t3), the actual vehicle speed Vd becomes the reference vehicle speed Vc. And converge. That is, compared with the prior art, the period during which the acceleration control occurs can be shortened, so that it is possible to reduce the uncomfortable feeling felt by the driver. Specifically, it is possible to make it shorter than the prior art by the period td1 in FIG.
  • the acceleration / deceleration control and the constant speed traveling control for the automobile 1 are performed based on the reference vehicle speed Vc calculated by the reference vehicle model 10, but not limited to this configuration, the calculation is performed by the reference vehicle model 10.
  • the acceleration / deceleration control and the constant speed traveling control for the automobile 1 may be performed based on the reference acceleration (target acceleration) Gc. That is, in this configuration, acceleration / deceleration control is performed so that the actual acceleration Gd matches the reference acceleration Gc.
  • the actual acceleration Gd may be obtained by differentiating the actual vehicle speed Vd detected by the vehicle speed sensor 7, or the actual acceleration Gd may be obtained by an acceleration sensor.
  • the target acceleration Gc is actual with a correction amount Gr corresponding to the magnitude of “target acceleration Gc ⁇ actual acceleration Gd”.
  • the target acceleration Gc is corrected so as to approach the acceleration Gd.
  • the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit
  • the reference vehicle model 10 corresponds to the control target value calculation unit
  • the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
  • the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit.
  • the accelerator pedal 8 corresponds to the accelerator operation unit.
  • the driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating a driver acceleration / deceleration request.
  • the reference vehicle model 10 determines the reference vehicle speed (target vehicle speed) Vc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A.
  • the vehicle speed sensor 7 detects the actual vehicle speed Vd.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the vehicle 1 so that the actual vehicle speed Vc matches the reference vehicle speed Vc, and from a state in which there is a driver acceleration / deceleration request based on the estimated value Ge. If it is determined that the driver has changed to a state where there is no acceleration / deceleration request, the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change. Implement control.
  • the norm used for constant speed traveling control A correction process (first correction process) is performed to correct the vehicle speed Vc so as to approach the actual vehicle speed Vd by a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout.
  • the reference vehicle speed Vc can be corrected so as to approach the actual vehicle speed Vd, and therefore the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. Even when the actual vehicle speed Vd is large, the actual vehicle speed Vd can be converged relatively quickly to the reference vehicle speed Vc.
  • the control target value is the vehicle speed
  • transient behavior correction can be performed, and the vehicle behavior closer to the driver acceleration / deceleration intention can be easily realized.
  • the driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request.
  • the reference vehicle model 10 obtains the reference acceleration (target acceleration) Gc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A.
  • the acceleration sensor detects the actual acceleration Gd.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the automobile 1 so that the actual acceleration Gc coincides with the reference acceleration Gc, and from the state where there is a driver acceleration / deceleration request based on the estimated value Ge.
  • the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change.
  • the norm used for constant speed traveling control A correction process (first correction process) is performed to correct the vehicle speed Vc so as to approach the actual vehicle speed Vd by a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout.
  • the reference acceleration Gc can be corrected so as to approach the actual acceleration Gd, and therefore the deviation between the reference acceleration Gc and the actual acceleration Gd. Even when is large, the actual acceleration Gd can be converged relatively quickly to the reference acceleration Gc.
  • the control target value is acceleration
  • steady behavior correction can be performed, and the vehicle behavior closer to the driver acceleration / deceleration intention can be realized without phase delay.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E cause the estimated value Ge to be added by a driver that has been set in advance from a value that is greater than or equal to a threshold Th1 that is set in advance in the numerical range when there is a driver acceleration / deceleration request. If it is determined that the speed has changed to the lower limit value Th3 indicating that there is no deceleration request, the constant speed traveling control is performed, and the correction amount calculation unit 6C and the reference vehicle model 10 are within a numerical range when there is a driver acceleration / deceleration request. If it is determined that the value has changed from a value greater than or equal to the preset threshold Th2 to the lower limit value Th3 indicating that there is no driver acceleration / deceleration request, the first correction process is performed.
  • the constant speed traveling control is performed when the estimated value Ge changes from a value equal to or higher than a threshold Th1 corresponding to a traveling speed at which the constant speed traveling control can be appropriately performed to a lower limit value Th3 indicating no acceleration / deceleration request. Therefore, the effect that the constant speed traveling control can be surely performed is obtained.
  • the threshold value Th2 is set to the first threshold value Th2.
  • the threshold value Th2 is larger than the threshold value Th1. Since the first correction process becomes more effective as the degree of sudden change in the estimated value Ge is larger, the first correction process is more effective by setting a larger value after satisfying the execution condition of the constant speed traveling control. The effect that it can be implemented is obtained.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E have changed from the state where the driver's acceleration / deceleration request is made to the state where the driver's acceleration / deceleration request is not made in a time shorter than the preset change time upper limit value. It is determined that it has suddenly changed. For example, by setting the upper limit of the change time to the maximum value of the time in which the driver feels unintended acceleration or deceleration, an effect that the sudden change of the estimated value Ge can be reliably detected can be obtained. Note that the upper limit of the change time is determined in advance through a driver's sensory test or the like. (6) An upper limit value is provided for the correction amount Gr of the reference vehicle speed Vc or the reference acceleration Gc used in the first correction process. As a result, it is possible to prevent an abrupt change in vehicle behavior due to an excessive correction amount Gr.
  • the correction amount calculation unit 6C and the reference vehicle model 10 perform the first correction process for a preset operation time ta.
  • the correction amount Gr when a certain deviation occurs does not become “0” in a situation where the vehicle behavior that matches the driver acceleration / deceleration intention cannot be realized unless there is a certain deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. In this case, a certain deviation cannot be maintained. Therefore, vehicle behavior that matches the driver's acceleration / deceleration intention cannot be realized.
  • FIGS. 13 to 17 are diagrams showing a second embodiment of the present invention
  • FIG. 13 is a conceptual diagram showing a model of the automobile 1 in the second embodiment.
  • symbol is attached
  • a brake operation detection signal Bd detected by the brake operation detection device 21 is supplied to the controller 6 together with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an accelerator operation detection signal Ad output from the accelerator operation detection device 9. It has become so.
  • an accelerator operation detection signal Ad and a brake operation detection signal Bd are supplied to the driver acceleration / deceleration request estimation unit 6 ⁇ / b> A of the controller 6.
  • the driver acceleration / deceleration request estimation unit 6A calculates an estimated value Ge based on the accelerator operation detection signal Ad and the brake operation detection signal Bd. That is, in the first embodiment, the description is made on the assumption that the driver controls both acceleration and deceleration using only the accelerator pedal 8, but in the second embodiment, the deceleration operation can be performed by depressing the brake pedal 20. Can be done.
  • FIG. 15 is a block diagram illustrating a functional configuration of the correction amount calculation unit 6C according to the present embodiment.
  • the correction amount calculation unit 6C uses the correction amount map 14A corresponding to the driver acceleration / deceleration request value Ge corresponding to the operation of the accelerator pedal 8 and the driver acceleration / deceleration request value Ge corresponding to the operation of the brake pedal 20. And a corresponding correction amount map 14B. That is, in the present embodiment, a correction amount map in which an appropriate correction amount is set for each is prepared in consideration that the sensitivity of the driver is different between the accelerator operation and the brake operation. The method for creating the correction amount map is the same as that in the first embodiment.
  • FIG. 16 is a timing chart showing an example of a time change of the correction processing operation flag Frb with respect to a change in the driver acceleration / deceleration request value Ge due to the driver's brake operation.
  • the correction processing operation flag setting unit 12 changes the estimated value Ge of the driver acceleration / deceleration request value from a state where the estimated value Ge is equal to or less than a preset threshold value Th4 to the upper limit value Th5. If it is determined that there has been a sudden change, the correction processing operation flag Frb is set to the set state only for the operation time tb.
  • the estimated value Ge is a negative value, so the threshold value Th4 is also treated as a negative value.
  • the absolute value of the estimated value Ge is used to make the threshold value Th4 a positive value. Also good. In this case, it is determined whether or not the absolute value of the estimated value Ge has suddenly changed from the state where the absolute value of the estimated value Ge is equal to or greater than the threshold value Th4 to the lower limit value Th5.
  • the upper limit value Th5 is set to “0”. That is, in the example shown in FIG. 16, the estimated value Ge suddenly becomes “0” at time t ⁇ b> 1 from the state where the driver depresses the brake pedal 20 so that the estimated value Ge of the threshold value Th ⁇ b> 4 or less is output. That is, it shows a state where the brake pedal 20 is suddenly released.
  • the correction processing operation flag Frb is in the set state only during the operation time tb from time t1 to time t2.
  • the operation time tb is set to a length different from the operation time ta corresponding to the correction processing operation flag Fra. That is, with regard to the operation time of the correction process, appropriate lengths differ between the accelerator operation and the brake operation. Therefore, appropriate values are set for the length of the operation time through actual running tests, sensory tests, and the like.
  • FIG. 17A is a diagram illustrating an example of a correction amount map corresponding to an accelerator operation
  • FIG. 17B is a diagram illustrating an example of a correction amount map corresponding to a brake operation.
  • the correction amount map 14A corresponding to the accelerator operation shown in FIG. 17A has the same contents as the correction amount map 14 shown in FIG. 6 of the first embodiment.
  • the correction amount map 14B corresponding to the brake operation shown in FIG. 17B the correction amount Gr is a1 ′ within the range where the vehicle speed command value Vout is “0” to a preset positive value a1 ′.
  • the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1 ′.
  • the correction amount map 14B shows that the positive maximum value set in advance as the correction amount Gr approaches a2 ′ in the range of the vehicle speed command value Vout from “0” to a preset negative value a2 ′. It increases non-linearly in the positive direction until it reaches b2 ′.
  • the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2 ′.
  • the reference vehicle speed Vc corresponding to the driver acceleration / deceleration request value Ge is set as the reference vehicle speed Vc for constant speed traveling control.
  • the deceleration control is performed even though the driver intends to stop the deceleration and lifts his foot from the brake pedal 20. The driver feels uncomfortable due to deceleration contrary to the driver's intention to decelerate and stop.
  • the vehicle speed command value Vout is set according to the magnitude of the vehicle speed command value Vout as shown in the correction amount map 14B of FIG.
  • the reference vehicle speed Vc is corrected so that the reference vehicle speed Vc approaches the actual vehicle speed Vd with the magnitude correction amount Gr.
  • the deviation between the actual vehicle speed Vd and the reference vehicle speed Vc is reduced, and the actual vehicle speed Vd is likely to converge to the reference vehicle speed Vc. Therefore, it is possible to suppress the occurrence of unintended deceleration.
  • the correction amount maps 14A and 14B have different correction amounts for the magnitude of the vehicle speed command value Vout.
  • the curve L3 on the a1 ′, b1 ′ side and the curve L4 on the a2 ′, b2 ′ side are asymmetric with respect to “0”. ing. This is because the driver feels differently on the deceleration side and the acceleration side.
  • FIG. 18 is a waveform diagram similar to FIG. Also in the waveform diagram shown in FIG. 18, the accelerator operation detection signal Ad gradually decreases from time t1 and becomes 0 at time t2.
  • the brake operation detection signal Bd maintains 0 until time t3, but the driver starts stepping on the brake pedal 20 at time t3, and then the amount of depression gradually increases, and at time t4. The maximum amount of depression is reached, and the state is maintained thereafter. Since the brake operation detection signal Bd is a signal for the deceleration operation, the sign is reverse to that of the accelerator operation detection signal Ad if originally intended, but in FIG.
  • the flag Fa is once set at the time t2, and then returns to the non-set state again at the time t3.
  • the rolling resistance component R1 and the air resistance component R2 are forcibly set to 0 at time t2, at time t3, the rolling resistance component R1 returns to a value before time t2, and the air resistance component R2 is The value is based on the reference vehicle speed Vc at that time.
  • the reference vehicle speed Vc is fixed to the vehicle speed according to the estimated value Ge ′ held at the control start time in response to the shift to the constant speed traveling control after the time t2. Then, the constant speed traveling control itself stops in response to the depression of the brake pedal 20 at time t3, and the estimated value Ge corresponding to the brake operation detection signal Bd at that time is updated and the reference vehicle model is shifted to time t3. 10, the rolling resistance component R1 and the air resistance component R2 are also larger than 0 as described above. Therefore, the reference vehicle speed Vc gradually decreases after time t3.
  • the brake operation detection signal Bd increases in the minus direction, so that the estimated value Ge becomes a large value in the minus direction, and the estimated value Ge is commanded via the adder 6E.
  • the current Iout is output to the electric motor 2.
  • the electric motor 2 substantially functions as a generator, and regenerative braking occurs.
  • the correction process operation flag Frb is set by adding a comparison process between the threshold value Th4 and the upper limit value Th5 in the setting process of the correction process operation flag Fra, and a part of the setting process of the flag Ft. Is just the same as the processing for setting the correction processing operation flag Fra.
  • the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flags Fra and Frb are set, and determines that both are not set (No in step S100). ), The supplied estimated value Ge is read (step S108). First, when the estimated value Ge read first when the flag Ft is in the non-set state is a positive value, the correction processing operation flag setting unit 12 determines whether the estimated value Ge is equal to or greater than the threshold value Th1. In the case of a negative value, it is determined whether or not the estimated value Ge is equal to or less than a threshold value Th4. Here, the subsequent operation will be described assuming that the value is negative.
  • the correction processing operation flag setting unit 12 determines that the estimated value Ge read this time is a value equal to or smaller than the threshold Th4, the correction processing operation flag setting unit 12 sets the flag Ft to the set state. Then, the correction processing operation flag setting unit 12 compares the read estimated value Ge with the threshold value Th4 and the upper limit value Th5 for the estimated value Ge read after the second time (step S110). Then, based on the comparison result and the flag Ft, it is determined whether or not the estimated value Ge is abruptly changed from the state below the threshold Th4 to the upper limit Th5 (“0” in the present embodiment) (step). S112). If it is determined that the correction processing operation flag setting unit 12 has suddenly changed (Yes in step S112), the correction processing operation flag Frb is set to the set state (step S114).
  • the operation of the correction process is started when the driver suddenly shifts from the state in which the driver depresses the brake pedal 20 to the state in which the driver suddenly releases the foot.
  • the constant speed running control is started by releasing the foot from the brake pedal 20, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control.
  • the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero. If the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the correction processing operation flag Frb is set (Yes in step S202), the correction amount determination unit 13 corrects based on the vehicle speed command value Vout supplied from the command value calculation unit 6B.
  • a correction amount Gr corresponding to the magnitude of Vout is acquired from the amount map 14B (step S204), and the acquired correction amount Gr is supplied to the reference vehicle model 10.
  • the reference vehicle model 10 based on the supplied correction amount Gr, the estimated value Ge, and the resistance components R1 (0) and R2 (0), The reference vehicle speed Vc corrected so as to approach the actual vehicle speed Vd is obtained. Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd. The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout. Finally, a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
  • the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
  • the correction process of the reference vehicle speed Vc is repeatedly executed until the operation time tb elapses.
  • the correction process operation flag Frb is set to a non-set state. Then, the correction process ends (step S106).
  • the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd. Therefore, when the driver suddenly lifts his / her foot from the brake pedal 20 with the intention of decelerating and stopping.
  • the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced by the correction amount. That is, since the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc as compared with the case where the correction is not made, the constant speed traveling control is started relatively smoothly.
  • FIG. 19A and 19B show an estimated value (driver acceleration / deceleration request value) Ge, a standard vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle) corresponding to the brake operation of the driver according to the prior art and this embodiment. It is a wave form diagram which shows each time change of (speed) Vd. In addition, the broken line in FIG. 19 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
  • the accelerator pedal 8 corresponds to the accelerator operation unit
  • the brake pedal 20 corresponds to the brake operation unit.
  • the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit
  • the reference vehicle model 10 corresponds to the control target value calculation unit
  • the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
  • the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit.
  • the accelerator pedal 8 corresponds to the accelerator operation unit.
  • the automobile 1 includes a brake pedal 20 and an accelerator pedal 8.
  • the correction amount calculation unit 6C and the reference vehicle model 10 divide the length of the time period in which the correction process is performed into a correction process caused by the driver's operation of the brake pedal 20 and a correction process caused by the driver's operation of the accelerator pedal 8. Set each independently. Specifically, the operation time ta is set for the correction process caused by the driver's operation of the accelerator pedal 8, and the operation time tb having a length different from the operation time ta is set for the correction process caused by the driver's operation of the brake pedal. Set. As a result, an appropriate time period can be set for each of the correction process that occurs during the brake operation and the correction process that occurs during the accelerator operation, so that an effect that more appropriate correction process can be performed can be obtained.
  • the automobile 1 includes a brake pedal 20 and an accelerator pedal 8.
  • the correction amount map used by the correction amount calculation unit 6C and the reference vehicle model 10 to correct the reference vehicle speed Vc or the reference acceleration Gc is generated by a correction process generated by the driver's operation of the brake pedal 20 and an operation of the driver's accelerator pedal 8.
  • the correction amount map 14A is set for the correction process caused by the driver's operation of the accelerator pedal 8
  • the correction amount different from the correction amount map 14A is set for the correction process caused by the driver's operation of the brake pedal.
  • the map 14B is set.
  • FIG. 20 is a diagram illustrating an example of a correction amount map according to the third embodiment.
  • FIG. 20A is a diagram illustrating an example of a correction amount map having a dead zone corresponding to an accelerator operation.
  • FIG. It is a figure which shows an example of the correction amount map which has a dead zone corresponding to operation.
  • symbol is attached
  • the correction amount map 14C corresponding to the accelerator operation has a correction amount Gr within the range of the vehicle speed command value Vout from “0” to a preset positive value c1. It is “0”, and in this range, there is a dead zone that is not substantially corrected. Further, in the range of positive value a1 set in advance from c1, the correction amount Gr increases non-linearly in a negative direction until it reaches a preset negative maximum value b1 as it approaches a1. When the vehicle speed command value Vout exceeds a1, the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1.
  • the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value c2, and the correction is substantially performed in this range. It becomes a dead zone that is not missed. Further, in the range of negative value a2 set in advance from c2, the correction amount Gr increases non-linearly in the positive direction until it reaches a predetermined positive maximum value b2 as it approaches c2. When the vehicle speed command value Vout exceeds a2, the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2.
  • the correction amount map 14D corresponding to the brake operation is corrected within the range of the vehicle speed command value Vout from “0” to a positive value c1 ′ set in advance, as shown in FIG.
  • the amount Gr is “0”, and in this range, there is a dead zone that is not substantially corrected.
  • the correction amount Gr increases non-linearly in a negative direction until it reaches a preset negative maximum value b1 ′ as it approaches a1 ′. To do.
  • the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1'.
  • the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value c2 ′. In this range, the correction amount Gr is substantially corrected. It is a dead zone that is not performed. Further, in the range from c2 ′ to a preset negative value a2 ′, the correction amount Gr increases non-linearly in the positive direction until it reaches a preset positive maximum value b2 ′ as it approaches a2 ′. To do. When the vehicle speed command value Vout exceeds a2 ', the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2'.
  • the driver acceleration / deceleration request value Ge is “0” on an uphill or downhill where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is large, there is no deviation between the reference vehicle speed Vc and the actual vehicle speed Vd.
  • the running at a constant speed cannot be maintained.
  • the estimated value Ge of the driver acceleration / deceleration request value suddenly becomes “0” from the acceleration side.
  • the actual vehicle speed Vd may decelerate.
  • the estimated value Ge suddenly becomes “0” from the deceleration side the actual vehicle speed Vd may be accelerated. In either case, the vehicle behavior does not match the driver's intention for acceleration / deceleration.
  • the correction amount map is set so that the correction amount is set to “0” in the range near 0 (dead zone range) where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is set in advance.
  • the reference vehicle speed Vc is not excessively corrected when the vehicle speed command value Vout is within the dead zone range (relatively small), so that the driver's intention to accelerate or decelerate even on a steep uphill or downhill
  • “0” is set as the correction amount Gr.
  • the present invention is not limited to this, and a value within a preset numerical range may be set as the range of the neighborhood value of “0”. In other words, it may not be “0” as long as the value is within a range equivalent to that the correction is not substantially performed.
  • the reference vehicle speed Vc is determined by the correction amount Gr read from the correction amount map 14C or 14D.
  • the reference vehicle speed Vc is corrected so as to approach the speed Vd.
  • the correction process is repeatedly performed during the operation time ta or tb, and the vehicle speed command value Vout, which is a deviation between the standard vehicle speed Vc and the actual vehicle speed Vd, is eventually in the range c2 to c1 of the correction amount map 14C, or the correction amount map.
  • the correction amount determination unit 13 reads “0” as the correction amount Gr from the correction amount map 14C or 14D and supplies the read value to the command value calculation unit 6B.
  • “0” is input to the adder 10f as the correction amount Gr, so that the reference vehicle speed Vc is not substantially corrected. Accordingly, since it is possible to prevent the reference vehicle speed Vc from being excessively corrected, it is possible to realize a vehicle behavior that matches the driver's intention for acceleration / deceleration.
  • the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit
  • the reference vehicle model 10 corresponds to the control target value calculation unit
  • the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
  • the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit.
  • the accelerator pedal 8 corresponds to the accelerator operation unit.
  • the present embodiment has the following effects. (1)
  • the correction amount calculation unit 6C and the reference vehicle model 10 determine in the correction process that the vehicle speed command value Vout is a value within the dead band range that is a positive / negative numerical range including 0 that is set in advance
  • the correction amount Gr of the reference vehicle speed Vc or the reference acceleration Gc is set to 0 or a value within a numerical range that is set in advance as a range of values near 0.
  • the vehicle behavior may not match the driver acceleration / deceleration intention.
  • the vehicle speed command value Vout (or “reference acceleration Gc ⁇ actual acceleration Gd”) (deviation) is within the range of c1 to c2 including a preset zero, or includes a preset zero. If it is determined that the value is within the range of c1 ′ to c2 ′, the correction amount is set to “0” or a value near the correction amount, so that an effect of preventing excessive correction can be obtained. In addition, the effect that the hunting of the vehicle behavior due to the hunting of the correction amount Gr can be prevented.
  • FIG. 21 is a diagram illustrating a correction amount calculation unit 6C according to the fourth embodiment.
  • symbol is attached
  • the correction amount calculation unit 6C corrects the reference vehicle speed Vc to approach the actual vehicle speed Vd when the driver's acceleration / deceleration request changes suddenly due to the driver's accelerator operation or brake operation. Had been implemented.
  • the correction amount calculation unit 6C sets the reference vehicle speed Vc exceeding the output limit value or the output limit value of the electric motor 2 by a driver acceleration / deceleration request by an accelerator operation or a brake operation of the driver.
  • the process of correcting the reference vehicle speed Vc so as to approach the actual vehicle speed Vd is different from the first to third embodiments.
  • the correction amount calculation unit 6C of the present embodiment has a norm that exceeds the output limit value or output limit value of the electric motor 2 in addition to the correction amount maps 14C and 14D of the third embodiment.
  • a correction amount map 14E which is a correction amount map when the vehicle speed Vc is set is provided.
  • the correction processing operation flag setting unit 12 of the present embodiment monitors the estimated value Ge of the driver acceleration / deceleration request value supplied from the driver acceleration / deceleration request estimation unit 6A, and the estimated value Ge becomes a value equal to or greater than the threshold Th2. It is determined whether or not.
  • the 2nd correction process operation flag Fra will be set to a set state.
  • the correction process operation flag setting unit 12 determines that the estimated value Ge to be supplied is not less than 0 and less than the threshold value Th2 when the second correction process operation flag Fra is in the set state, the second correction process operation flag Fra The processing operation flag Fra is set to a non-set state.
  • the second correction process operation flag Fra performs a correction process for correcting the reference vehicle speed Vc by a correction amount corresponding to the vehicle speed difference (Vout) during the set state, and is corrected during the non-set state period. It is a flag that prevents the processing from being performed.
  • the correction process performed in the first to third embodiments is referred to as a first correction process
  • the correction process newly performed in the present embodiment is referred to as a second correction process.
  • the correction processing operation flags Fra and Frb of the first to third embodiments are referred to as first correction processing operation flags Fra and Frb.
  • FIG. 22 is a timing chart showing an example of a time change of the second correction processing operation flag Fra with respect to a change in the estimated value Ge of the driver acceleration / deceleration request value due to the driver's accelerator operation.
  • the correction process operation flag setting unit 12 determines that the estimated value Ge is equal to or greater than the threshold value Th2 by the operation of the accelerator pedal 8 of the driver, the second correction process.
  • the operation flag Fra is set to the set state until the estimated value Ge becomes a value less than the threshold value Th2.
  • the driver starts to depress the accelerator pedal 8 at the time t1 with the amount of depression at which the estimated value Ge equal to or greater than the threshold Th2 is output, and the driver depresses the accelerator pedal 8 at the time t2. Is shown and the estimated value Ge becomes zero. Then, the second correction processing operation flag Fra is shown in a set state from time t1 to time t2. In the example shown in FIG. 22, since the estimated value Ge suddenly changes from the value equal to or greater than the threshold Th2 to “0” at time t2, the first correction processing operation flag Fra is set and the first correction is performed. Processing is performed.
  • the correction amount determination unit 13 of the present embodiment determines that the second correction processing operation flag Fra is in the set state
  • the correction amount determination unit 13 reads the correction amount Gr from the correction amount map 14E and supplies it to the command value calculation unit 6B. Thereby, in the reference vehicle model 10 of the command value calculation unit 6B, the reference vehicle speed Vc is calculated using the correction amount Gr.
  • the second correction process is repeatedly performed at a preset sampling period while the second correction process operation flag Fra is in the set state.
  • FIG. 23 is a diagram illustrating a first example of a correction amount map corresponding to the second correction process
  • FIG. 24 is a diagram illustrating a second example of the correction amount map corresponding to the second correction process.
  • the first example of the correction amount map 14E (hereinafter referred to as the correction amount map 14E1) is a correction amount in the range of the vehicle speed command value Vout from “0” to a positive value d1 set in advance.
  • Gr is “0”, and in this range, there is a dead zone that is not substantially corrected.
  • d1 there is a characteristic that the correction amount Gr increases nonlinearly in the negative direction as the vehicle speed command value Vout increases.
  • the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the negative value d2 set in advance, and the correction is substantially performed in this range. It becomes a dead zone that is not missed. Further, after d2, there is a characteristic that the correction amount Gr increases nonlinearly in the positive direction as the vehicle speed command value Vout increases.
  • a second example of the correction amount map 14E (hereinafter referred to as the correction amount map 14E2) has a vehicle speed command value Vout in a range from “0” to a preset positive value d1, as shown in FIG.
  • the correction amount Gr is “0”, and a dead zone in which correction is not substantially performed in this range.
  • the correction amount Gr linearly increases in the negative direction as the vehicle speed command value Vout increases.
  • the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value d2, and the correction is substantially performed in this range. It becomes a dead zone that is not missed.
  • the straight line portion where the correction amount Gr in the correction amount map 14E2 linearly increases is a straight line obtained by multiplying the reciprocal of the calculation sample time by “ ⁇ 1” and a unit conversion constant.
  • the correction amount map 14E2 indicates that when the vehicle speed command value Vout is negative, the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc corrected by the second correction process and the actual vehicle speed Vd is d2 or more.
  • the correction amount Gr is set so that Further, in the correction amount map 14E2, when the vehicle speed command value Vout is positive, the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc corrected by the second correction process and the actual vehicle speed Vd is equal to or less than d1.
  • a correction amount Gr is set.
  • the numerical range of d2 to d1 including “0” in the correction amount maps 14E1 and 14E2 is a numerical range set based on the output limit value or the output limit value of the electric motor 2. Specifically, if the vehicle speed command value Vout is within the range of d2 to d1, acceleration / deceleration control can be performed within a range not exceeding the output limit value or output limit value of the electric motor 2. Therefore, d2 to d1 are an allowable range of the vehicle speed command value Vout (deviation) that does not exceed the output limit value or output limit value of the electric motor 2.
  • the output limit value or output limit value of the electric motor 2 is exceeded, and the output of the electric motor 2 cannot follow the reference vehicle speed Vc.
  • the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd increases. For example, when the driver depresses the accelerator pedal 8 on a steep uphill and a large estimated value Ge is generated on the acceleration side, the motor for achieving the reference vehicle speed Vc according to the output limit value or the output limit value of the electric motor 2. Without obtaining an output, the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd increases.
  • the constant speed traveling control is started in a state where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is large, and the automobile 1 is directed toward the reference vehicle speed Vc. Acceleration control. In other words, acceleration behavior contrary to the driver's intention to stop acceleration occurs, giving the driver a sense of incongruity.
  • the reference vehicle speed Vc is set by the correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout shown in the correction amount map 14E1 or 14E2. It corrects so that it may approach actual vehicle speed Vd. This shortens the acceleration control time that is against the driver's intention to stop acceleration.
  • the correction amount map 14E2 since the vehicle speed command value Vout corrected in the second correction process is always d2 or more or d1 or less, the output of the electric motor 2 can follow the reference vehicle speed Vc after the correction. become.
  • the correction is performed so that the vehicle speed command value Vout is always d2 or more or d1 or less, so that the acceleration control time contrary to the driver's intention to stop acceleration is shortened. can do. Furthermore, in the present embodiment, since the first correction process is performed according to the sudden change in the estimated value Ge, it is possible to shorten the acceleration control time after shifting to the constant speed traveling control.
  • the correction amount map 14C indicated by the dotted line in the drawing and the correction amount maps 14E1 and 14E2 indicated by the solid line in the drawing are the dead zone ranges c2 to c1 of the correction amount map 14C. Is included in the dead zone range d2 to d1 of the correction amount maps 14E1 and 14E2. This prevents the second correction process from operating within the dead zone range c2 to c1 of the correction amount map 14C.
  • FIG. 25 is a flowchart illustrating an example of a processing procedure of second correction processing operation flag setting processing. Note that the processing of FIG. 25 is repeatedly executed in synchronization with a preset sampling clock.
  • the process proceeds to step S300 as shown in FIG.
  • step S300 the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the second correction processing operation flag Fra is set. If it is determined that the second correction processing operation flag Fra is in the set state (Yes), the process proceeds to step S302, and if it is not (No), the process proceeds to step S308.
  • step S302 the correction processing operation flag setting unit 12 reads the estimated value Ge, and the process proceeds to step S304.
  • step S304 the correction processing operation flag setting unit 12 determines whether or not the read estimated value Ge is equal to or greater than the threshold value Th2. If it is determined that the threshold Th2 is equal to or greater than the threshold Th2 (Yes), the series of processes is terminated, and if it is not determined (No), the process proceeds to Step S306.
  • step S306 the correction process operation flag setting unit 12 sets the second correction process operation flag Fra to a non-set state, and the series of processes ends.
  • the correction process operation flag setting unit 12 reads the estimated value Ge and proceeds to step S310. To do.
  • step S310 the correction processing operation flag setting unit 12 determines whether or not the read estimated value Ge is equal to or greater than the threshold value Th2. If it is determined that the threshold Th2 is equal to or greater than the threshold Th2 (Yes), the process proceeds to step S312, and if it is not determined (No), the series of processing ends.
  • the correction process operation flag setting unit 12 sets the second correction process operation flag Fra to the set state, and the series of processes ends.
  • FIG. 26 is a flowchart illustrating an example of a processing procedure of acceleration / deceleration control processing in the present embodiment. Note that the processing of FIG. 26 is repeatedly executed in synchronization with a preset sampling clock. When a dedicated program is executed in the controller 6 and acceleration / deceleration control processing is executed, first, as shown in FIG. 26, the process proceeds to step S400.
  • step S400 the driver acceleration / deceleration request estimation unit 6A reads the estimated value Ge of the driver acceleration / deceleration request from the map data based on the accelerator operation detection signal Ad. Then, the read estimated value Ge is supplied to the command value calculation unit 3B, the correction amount calculation unit 6C, and the adder 6E, respectively, and the process proceeds to step S402.
  • step S402 the correction amount determination unit 13 of the correction amount calculation unit 6C determines whether or not the first correction processing operation flag Fra is set. When it is determined that the set state is set (Yes), the process proceeds to step S404. When it is determined that the set state is set (No), the process proceeds to step S412.
  • the correction amount determination unit 13 reads the correction amount Gr (hereinafter referred to as the first correction amount Gr) from the correction amount map 14C or 14D based on the supplied vehicle speed command value Vout. Then, the read first correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S406.
  • the reference vehicle speed Vc is calculated based on the estimated value Ge and the first correction amount Gr in the reference vehicle model 10 of the command value calculation unit 6B. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S408.
  • step S408 the subtractor 11 calculates a vehicle speed command value Vout based on the reference vehicle speed Vc and the actual vehicle speed Vd. Then, the calculated vehicle speed command value Vout is supplied to the correction amount calculation unit 6C and also supplied to the adder 6E as the assist torque Gout via the vehicle speed servo 6D, and the process proceeds to step S410.
  • step S410 the adder 6E adds the assist torque Gout supplied via the vehicle speed servo 6D and the estimated value Ge, and outputs a current command value Iout corresponding to the addition result to the electric motor 2. A series of processing ends.
  • step S402 determines whether or not Fra is set. If it is determined that the set state is set (Yes), the process proceeds to step S414. If it is determined that the set state is not set (No), the process shifts to step S418.
  • the correction amount determination unit 13 reads the correction amount Gr (hereinafter referred to as the second correction amount Gr) from the correction amount map 14E1 or 14E2 based on the supplied vehicle speed command value Vout. Then, the read second correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S416.
  • step S416 in the reference vehicle model 10 of the command value calculation unit 6B, the reference vehicle speed Vc is calculated based on the estimated value Ge, the second correction amount Gr, the rolling resistance component R1, and the air resistance component R2. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S408.
  • Step S412 when it is determined that the first correction processing operation flag Fra is not set and the process proceeds to Step S418, the first and second correction amounts Gr are not used in the reference vehicle model 10. Based on the estimated value Ge, the rolling resistance component R1, and the air resistance component R2, the reference vehicle speed Vc is calculated, and the process proceeds to step S408. In this case, the first and second correction amounts Gr may not be supplied, or “0” may be supplied as the first and second correction amounts Gr.
  • step S400 An estimated value Ge of the driver acceleration / deceleration request is obtained (step S400).
  • the estimated value Ge is supplied to each of the command value calculation unit 6B, the correction amount calculation unit 6C, and the adder 6E.
  • the first correction processing operation flags Fra and Frab and the second correction processing operation flag Fra are not set (No in step S402, No in S412).
  • the reference vehicle speed Vc is obtained based on the estimated value Ge and the resistance components R1 and R2 (step S418), and the vehicle speed command value Vout is calculated based on the reference vehicle speed Vc and the vehicle speed detection signal Vd.
  • the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C.
  • the vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout, and finally an adder 6E generates a command current Iout corresponding to the added value of the assist torque Gout and the estimated value Ge.
  • the command current Iout is output to 2 (step S410). Therefore, the electric motor 2 is rotationally driven by the command current Iout obtained by adding the estimated value Ge representing the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the reference vehicle speed Vc. Will be.
  • the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the second correction processing operation flag Fra is in the set state, and if it is determined that it is not in the set state (No in step S300), it is supplied.
  • the estimated value Ge is read (step S308).
  • the correction process operation flag setting unit 12 determines whether or not the read estimated value Ge is greater than or equal to the threshold value Th2 (step S310), and determines that the read estimated value Ge is greater than or equal to the threshold value Th2 (Yes in step S310).
  • the operation flag Fra is set to the set state (step S312).
  • the accelerator operation amount increases, the estimated value Ge of the driver acceleration / deceleration request value becomes equal to or greater than the threshold Th2, and the second correction processing operation flag Fra is set. Thereby, the second correction process is started.
  • the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the second correction processing operation flag Fra is in the set state (Yes in step S412), the correction amount determination unit 13C based on the vehicle speed command value Vout supplied from the command value calculation unit 6B.
  • the second correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout is acquired from the correction amount map 14E (here, the correction amount map 14E2 is used) (step S414). At this time, if the vehicle speed command value Vout is within the range of d2 to d1 in the correction amount map 14E2, “0” is acquired as the second correction amount Gr.
  • the vehicle speed command value Vout is outside the range of d2 to d1, that is, within the range where the output limit value or output limit value of the electric motor 2 is exceeded, a value other than “0” is acquired.
  • the second correction amount Gr is acquired so that the vehicle speed command value Vout based on the corrected standard vehicle speed Vc falls within the range of d2 to d1.
  • the correction amount determination unit 13 supplies the acquired second correction amount Gr to the command value calculation unit 6B.
  • the actual vehicle speed is based on the supplied second correction amount Gr, estimated value Ge, and resistance components R1 and R2.
  • a reference vehicle speed Vc corrected to approach Vd is obtained.
  • the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd.
  • the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C.
  • the vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout.
  • a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
  • the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
  • the output of the electric motor 2 based on the vehicle speed command value Vout is an output capable of bringing the actual vehicle speed Vd close to the reference vehicle speed Vc.
  • the correction process of the reference vehicle speed Vc is repeatedly performed until the estimated value Ge is less than the threshold value Th2, and when it is determined that the estimated value Ge is less than the threshold value Th2 (No in step S304), the second correction process operation flag Fra. Is set to the non-set state, and the second correction process is terminated (step S306).
  • the first correction processing operation flag Fra is set.
  • the constant speed running control is started by releasing the foot from the accelerator pedal 8, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control.
  • the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero.
  • the reference vehicle speed Vc is set to the actual vehicle speed by the first correction amount Gr other than “0”.
  • the first correction amount Gr becomes “0”, so that the correction is not substantially performed.
  • the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd by the second correction process.
  • the reference vehicle speed Vc can be corrected so that the vehicle speed command value Vout is a value within the range of d2 to d1, and in such a situation, the driver suddenly accelerates with the intention of stopping the acceleration. Even when the foot is released from the pedal 8, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced.
  • the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc compared with the case where the correction is not performed, so that it is possible to shorten the acceleration control time against the driver's intention.
  • the first correction process since the first correction process is also performed, it is possible to more reliably shorten the acceleration control time against the driver's intention.
  • FIGS. 27A and 27B show an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) according to the accelerator operation according to the related art and the present embodiment. It is a wave form diagram which shows each time change of Vd. Note that the broken line in FIG. 27 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
  • the estimated value Ge is equal to or greater than the threshold value Th2 during the period from time t0 to t1, so the second correction processing operation flag Fra is set.
  • the second correction process is activated. Therefore, in the prior art, in a situation where the motor output for making the actual vehicle speed Vd close to the reference vehicle speed Vc cannot be obtained due to the output limit value or the output limit value of the electric motor 2, the correction is made so that the actual vehicle speed Vd approaches the reference vehicle speed Vc. Is done. Therefore, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd becomes small as shown in the circled range on the left side of FIG.
  • the actual vehicle speed Vd is changed to the reference vehicle speed Vc at the time t2 (t2 ⁇ t3) as shown in the circled area on the right side of FIG. Converge. Specifically, it converges faster by the time period td3 compared to the prior art.
  • the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is sufficiently small (within the range of c2 to c1) at the time of shifting to the constant speed traveling control. Therefore, only the second correction process is performed.
  • the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit
  • the reference vehicle model 10 corresponds to the control target value calculation unit
  • the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
  • the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit.
  • the accelerator pedal 8 corresponds to the accelerator operation unit.
  • the present embodiment has the following effects. (1) It is determined that the correction amount calculation unit 6C and the reference vehicle model 10 are in a state where there is a driver acceleration / deceleration request based on the estimated value Ge, and the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration”).
  • Gd is used in acceleration / deceleration control when it is determined that the value exceeds a preset allowable deviation threshold (d2 or less or d1 or more) based on the output characteristics (output limit value or output limit value) of the electric motor 2
  • the reference vehicle speed Vc (or reference acceleration Gc) is approximated to the actual vehicle speed Vd (or actual acceleration Gd) with a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”).
  • a correction process (second correction process) to be corrected is performed.
  • the reference vehicle speed Vc (or reference acceleration Gc) by the output limit value or output limit value of the electric motor 2.
  • the reference vehicle speed Vc or reference acceleration Gc
  • the reference vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) within the range of d2 to d1 (or the output of the electric motor 2 with respect to the reference acceleration Gc).
  • the correction amount calculation unit 6C and the reference vehicle model 10 are positive and negative numerical values in which the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) includes a preset 0 in the second correction process. If it is determined that the value is within the allowable output range, the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc) is set to 0 or a value within a numerical range preset as a range of values near 0. To do. As a result, it is possible to prevent the standard vehicle speed Vc (or the standard acceleration Gc) from being corrected, for example, until it matches the actual vehicle speed Vd (or the actual acceleration Gd). An effect is obtained in that it is possible to prevent a vehicle behavior that does not match the intention of deceleration.
  • the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) is outside the allowable output range (outside the range of d2 to d1). If the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) before and after the correction matches the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc), The corrected vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) is set to a correction amount that is a value within the allowable output range. As a result, after the correction, the output of the electric motor 2 can follow the reference vehicle speed Vc, so that the effect of shortening the acceleration control time against the driver's intention to stop the acceleration can be obtained. .
  • the correction amount calculation unit 6C and the reference vehicle model 10 are positive and negative numerical values in which the vehicle speed command value Vout (or “target acceleration Gc ⁇ actual acceleration Gd”) includes a preset 0 in the first correction process. If it is determined that the value is within the dead band range (c2 to c1), the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc) is set to 0 or a numerical range set in advance as a range of values close to 0 The value in Further, the allowable output range (d2 to d1) was set to a numerical range including the dead band range (c2 to c1). As a result, it is possible to prevent the second correction process from operating within the dead zone range (c2 to c1) of the first correction process.
  • the driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request.
  • the reference vehicle model 10 determines the reference vehicle speed (target vehicle speed) Vc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A.
  • the vehicle speed sensor 7 detects the actual vehicle speed Vd.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the vehicle 1 so that the actual vehicle speed Vc matches the reference vehicle speed Vc, and from a state in which there is a driver acceleration / deceleration request based on the estimated value Ge.
  • the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change.
  • the correction amount calculation unit 6C and the reference vehicle model 10 are determined to be in a state where there is a driver acceleration / deceleration request, and the vehicle speed command value Vout is the output characteristic (output limit value) of the electric motor 2.
  • a correction process (second correction process) is performed to correct the correction amount Gr so as to approach the actual vehicle speed Vd.
  • the driver depresses the accelerator pedal 8 and a large estimated value Ge is generated on the acceleration side, so that the motor output for achieving the reference vehicle speed Vc cannot be obtained by the output limit value or the output limit value of the electric motor 2.
  • the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd by the second correction process.
  • the reference vehicle speed Vc can be corrected so that the vehicle speed command value Vout is a value within the range of d2 to d1. Therefore, in such a situation, even when the driver suddenly removes his or her foot from the accelerator pedal 8 with the intention of stopping the acceleration, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced, so no correction is made. Compared to the case, an effect is obtained in which the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc.
  • the driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request.
  • the reference vehicle model 10 obtains the reference acceleration (target acceleration) Gc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A.
  • the acceleration sensor detects the actual acceleration Gd.
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the automobile 1 so that the actual acceleration Gc coincides with the reference acceleration Gc, and from the state where there is a driver acceleration / deceleration request based on the estimated value Ge.
  • the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change.
  • the correction amount calculation unit 6C and the reference vehicle model 10 are determined to be in a state where there is a driver acceleration / deceleration request, and “target acceleration Gc ⁇ actual acceleration Gd” is output from the electric motor 2. If it is determined that the value is equal to or greater than a preset allowable deviation threshold based on the characteristic (output limit value or output limit value), the reference acceleration Gc used in the acceleration / deceleration control is set to the magnitude of “target acceleration Gc ⁇ actual acceleration Gd”.
  • a correction process (second correction process) is performed to correct the actual acceleration Gd so as to approach the actual acceleration Gd with the correction amount Gr according to the above.
  • the reference acceleration Gc is corrected so as to approach the actual acceleration Gd by the second correction process. Accordingly, the reference acceleration Gc can be corrected so that “target acceleration Gc ⁇ actual acceleration Gd” is a value within a range in which the output of the electric motor 2 can follow the reference acceleration Gc. Therefore, in such a situation, even when the driver suddenly removes his or her foot from the accelerator pedal 8 in order to stop acceleration, the difference between the reference acceleration Gc and the actual acceleration Gd can be reduced, and thus no correction is made. Compared to the case, the effect is obtained that the actual acceleration Gd can be quickly converged to the reference acceleration Gc.
  • FIG. 28 is a block diagram illustrating a functional configuration of the correction amount calculation unit 6C according to the present embodiment.
  • the correction amount calculation unit 6C of the present embodiment has a correction gain map 15A that is map data of the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd and the absolute value of the estimated value Ge
  • FIG. 29 is a diagram illustrating an example of a correction gain map 15A corresponding to the actual vehicle speed Vd.
  • the correction gain map 15A has a preset gain larger than 0 when the actual vehicle speed Vd is 0, and the correction gain Gv is also a logarithmic function as the actual vehicle speed Vd increases. It has a characteristic of increasing and eventually approaching the maximum value.
  • FIG. 30 is a diagram illustrating an example of the correction gain map 15B corresponding to the absolute value of the estimated value Ge.
  • the correction gain map 15B has a preset gain larger than 0 when the absolute value
  • the correction amount calculation unit 6C includes a correction amount map 14E1 as a reference correction amount map.
  • the correction amount determination unit 13 of the present embodiment is supplied with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an estimated value Ge output from the driver acceleration / deceleration request estimation unit 6A. It has come to be.
  • the correction amount determination unit 13 reads the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd from the correction gain map 15A, and the magnitude of the absolute value
  • the correction gain Gg corresponding to is read.
  • the correction amount determination unit 13 multiplies the read correction gain Gv and Gg by the second correction amount Gr read from the correction amount map 14E1, and calculates a command value for the second correction amount Gr after multiplication. Supply to unit 6B.
  • the reference vehicle speed Vc is calculated based on the estimated value Ge, the corrected second correction amount Gr, the rolling resistance component R1, and the air resistance component R2.
  • the correction amount determination unit 13 reads the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd from the correction gain map 15A, and sets the absolute value
  • the actual vehicle speed is based on the supplied second correction amount Gr, estimated value Ge, and resistance components R1 and R2.
  • the reference vehicle speed Vc corrected so as to approach Vd is obtained (step S416).
  • the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd.
  • the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C.
  • the vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout.
  • a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
  • the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
  • the correction process of the reference vehicle speed Vc is repeatedly performed until the estimated value Ge is less than the threshold value Th2, and when it is determined that the estimated value Ge is less than the threshold value Th2 (No in step S304), the second correction process operation flag Fra. Is set to the non-set state, and the second correction process is terminated (step S306).
  • the degree of deviation between the reference vehicle speed Vc and the actual vehicle speed Vd varies depending on the magnitude of the actual vehicle speed Vd and the estimated value Ge.
  • the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd and the magnitude of the absolute value
  • the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit
  • the reference vehicle model 10 corresponds to the control target value calculation unit
  • the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
  • the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit
  • the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit.
  • the accelerator pedal 8 corresponds to the accelerator operation unit.
  • the second correction amount Gr which is the correction amount of the reference vehicle speed Vc (or the reference acceleration Gc) used by the correction amount calculation unit 6C and the reference vehicle model 10 in the second correction processing, is calculated as the absolute value
  • Ge Correction is performed with a correction gain Gg corresponding to the magnitude of
  • the degree of deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) differs depending on the magnitude of the estimated value Ge, it depends on the magnitude of the absolute value
  • the second correction amount Gr With the correction gain Gg, the deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) can be corrected with an appropriate correction amount. As a result, it is possible to reduce the difference between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) in a shorter time.
  • the correction amount calculation unit 6C and the reference vehicle model 10 set the second correction amount Gr, which is the correction amount of the reference vehicle speed Vc (or reference acceleration Gc) in the second correction process, according to the magnitude of the actual vehicle speed Vd. Correction is performed with the correction gain Gv. Since the degree of deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) differs depending on the magnitude of the actual vehicle speed Vd (or actual acceleration Gd), the actual vehicle speed Vd (or actual acceleration Gd) is different.
  • the sudden change of the estimated value Ge from a value equal to or greater than the threshold Th2 or a value equal to or less than the threshold Th4 to “0” is set as the operation start condition of the first correction process. Absent. For example, when the estimated value Ge is equal to or greater than the threshold Th2 or when the time when the estimated value Ge changes from a value equal to or less than the threshold Th4 to “0” is equal to or less than a preset threshold, other configurations may be used. Good.
  • the driver acceleration / deceleration request value is estimated based on the accelerator operation amount and the brake operation amount detected by the accelerator operation detection device 9 and the brake operation detection device 21. Not exclusively. If the driver acceleration / deceleration request value can be estimated, for example, the estimated value may be obtained based on the operation amount of a steering switch, a joystick, or the like.
  • the standard vehicle speed Vc is corrected using the various correction amount maps 14E (14E1, 14E2) for the electric motor 2, but the model and configuration of the drive device to be corrected Since the output limit value or the output limit value differs depending on the etc., the content of the correction amount map may be changed according to the model, configuration, or the like.
  • the electric motor is configured to use the correction amount map shown in FIG. 31A
  • the engine is configured to use the correction amount map shown in FIG. 31B.
  • a correction amount map having different contents depending on the model of the driving device is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Provided is a vehicle travel assist apparatus that continuously enables smooth travel of a vehicle as if traveling on a flat road even when the driver's intension for acceleration/deceleration is changed rapidly. A normative vehicle model (10), during normal travel in which the driver operates an accelerator pedal, a brake pedal, and the like to accelerate or decelerate, implements acceleration/deceleration control such that a normative vehicle speed (Vc) and an actual vehicle speed (Vd) correspond to each other. Upon transition to constant speed travel control such that the vehicle speed is controlled automatically regardless of driver operation following an operation involving a rapid change in an estimated value (Ge), the normative vehicle model corrects the normative vehicle speed (Vc) used for the constant speed travel control to approach the actual vehicle speed (Vd) by using a correction amount (Gr) that is supplied from a correction amount calculation unit (6C) and that is in accordance with the magnitude of a deviation between the normative vehicle speed and the actual vehicle speed (Vd).

Description

車両用走行支援装置Vehicle travel support device
 本発明は、ドライバの加減速要求が急変するようなドライバのアクセル操作又はブレーキ操作が発生した場合でも車両が平坦路を走行するような滑らかな走行を連続して実現できるようにする技術に関する。 The present invention relates to a technique for continuously realizing smooth traveling such that a vehicle travels on a flat road even when a driver's accelerator operation or braking operation that causes a sudden change in the driver's acceleration / deceleration request occurs.
 本発明に関係する従来の装置としては、例えば、特許文献1に記載された定速走行制御装置がある。即ち、特許文献1記載の定速走行制御装置は、定速走行制御の開始指令が指示された時点の車速を目標車速とし、定速走行制御中は、実車速がその目標車速に自動的に一致するように制御を行うものにおいて、ドライバがアクセルペダルを踏み込んでも目標車速を変化させない不感帯を設定しておき、その不感帯内でアクセルペダルの踏み込み量が変化している間は目標車速を維持し、不感帯を越えてアクセルペダルが踏み込まれた場合やアクセルペダルが戻された場合には、ドライバは加速又は減速を意図していると推定し、目標車速をアクセルペダルの踏み込み量に応じて変化させて実車速を増減させるというものである。
 このような構成により、ドライバは、アクセルペダルに足を乗せたままでも定速制御が行えるため、急停止を行う場合などにおけるブレーキペダルの踏み込み動作の遅れを防止しつつ、ドライバが加速を意図する場合などにも的確に対応することで通常走行時の操作との相違を低減することができる、というものであった。
As a conventional apparatus related to the present invention, for example, there is a constant speed traveling control apparatus described in Patent Document 1. That is, the constant speed traveling control device described in Patent Document 1 uses the vehicle speed at the time when the start command for constant speed traveling control is instructed as the target vehicle speed, and the actual vehicle speed is automatically set to the target vehicle speed during the constant speed traveling control. In the case of control to match, a dead zone is set in which the target vehicle speed is not changed even if the driver depresses the accelerator pedal, and the target vehicle speed is maintained while the amount of depression of the accelerator pedal is changing within the dead zone. When the accelerator pedal is depressed or the accelerator pedal is released beyond the dead zone, the driver estimates that the driver intends to accelerate or decelerate, and changes the target vehicle speed according to the amount of depression of the accelerator pedal. The actual vehicle speed is increased or decreased.
With such a configuration, the driver can perform constant speed control even with the foot on the accelerator pedal, so the driver intends to accelerate while preventing a delay in the depression of the brake pedal when performing a sudden stop. It was said that the difference from the operation during normal traveling can be reduced by appropriately dealing with cases.
特許第4103814号公報Japanese Patent No. 4103814
 しかしながら、上記従来の定速走行制御装置にあっては、単に目標車速に実車速を一致させるという制御を行うものであった。そのため、アクセルペダルやブレーキペダル等の車両の加減速の要求入力を行う操作部に対して、ドライバの加減速意図が急変する操作が行われると、この操作に応じた目標車速の変化に対して実車両挙動が追従できず、ドライバの加減速意図に反した車両挙動が生じてしまうという未解決の課題があった。
 本発明は、従来の定速走行制御装置におけるこのような未解決の課題に着目してなされたものであって、ドライバの加減速意図が急変するような場合でも車両が平坦路を走行するような滑らかな走行を連続して実現できる車両用走行支援装置を提供することを目的とする。 
However, the above-described conventional constant speed traveling control device simply performs control to make the actual vehicle speed coincide with the target vehicle speed. For this reason, if an operation that causes the driver's acceleration / deceleration intention to change suddenly is performed on an operation unit that inputs a request for acceleration / deceleration of the vehicle, such as an accelerator pedal or a brake pedal, the change in the target vehicle speed corresponding to the operation is changed. There was an unsolved problem that the actual vehicle behavior could not be followed and the vehicle behavior was contrary to the driver's intention of acceleration / deceleration.
The present invention has been made paying attention to such an unsolved problem in the conventional constant speed travel control device, and the vehicle travels on a flat road even when the driver's intention of acceleration / deceleration suddenly changes. An object of the present invention is to provide a vehicular driving support device that can continuously realize smooth running.
 上記課題を解決するため、本発明の一態様である車両用走行支援装置は、ドライバの加減速要求を示す加減速要求値に基づき車両の加減速制御に係る制御目標値である目標車速(又は目標加速度)を演算し、該目標車速(又は目標加速度)と同じ物理量である車両の実車速(又は実加速度)を推定又は検出する。そして、ドライバがアクセルペダルやブレーキペダル等の操作手段を操作して加減速を行う通常走行時には、目標車速(又は目標加速度)と実車速(又は実加速度)とが一致するように加減速制御を行う一方、加減速要求値が急変するような操作の後に、ドライバの操作によらず自動的に車速を制御する定速走行制御に移行すると、目標車速(又は目標加速度)と実車速(又は実加速度)との偏差の大きさに応じた修正量で、定速走行制御に用いる目標車速(又は目標加速度)を実車速(又は実加速度)に近づくように修正するようにした。 In order to solve the above-described problem, a vehicle travel support apparatus according to an aspect of the present invention provides a target vehicle speed (or a control target value related to acceleration / deceleration control of a vehicle based on an acceleration / deceleration request value indicating an acceleration / deceleration request of a driver (or Target acceleration) is calculated, and the actual vehicle speed (or actual acceleration) of the vehicle having the same physical quantity as the target vehicle speed (or target acceleration) is estimated or detected. Then, during normal driving in which the driver operates the accelerator pedal, the brake pedal, or the like to perform acceleration / deceleration, acceleration / deceleration control is performed so that the target vehicle speed (or target acceleration) matches the actual vehicle speed (or actual acceleration). On the other hand, after an operation that causes the acceleration / deceleration request value to change suddenly, when the vehicle shifts to constant speed traveling control that automatically controls the vehicle speed regardless of the driver's operation, the target vehicle speed (or target acceleration) and the actual vehicle speed (or actual vehicle speed) The target vehicle speed (or target acceleration) used for constant speed traveling control is corrected so as to approach the actual vehicle speed (or actual acceleration) with a correction amount corresponding to the magnitude of the deviation from the acceleration).
 本発明によれば、ドライバの加減速意図が急変しても、目標車速(又は目標加速度)と実車速(又は実加速度)との偏差の大きさに応じた修正量で該目標車速(又は目標加速度)を実車速(又は実加速度)に近づくように修正することが可能である。そのため、ドライバの加減速意図が急変しても、修正を行わなかった場合と比較して、ドライバの加減速意図により近い車両挙動となるように定速走行制御を行うことができるという効果が得られる。 According to the present invention, even if the driver's intention for acceleration / deceleration suddenly changes, the target vehicle speed (or target speed) is corrected with an amount of correction corresponding to the deviation between the target vehicle speed (or target acceleration) and the actual vehicle speed (or actual acceleration). (Acceleration) can be corrected so as to approach the actual vehicle speed (or actual acceleration). Therefore, even if the driver's intention for acceleration / deceleration suddenly changes, constant speed running control can be performed so that the vehicle behavior becomes closer to the driver's intention for acceleration / deceleration compared to the case where no correction is made. It is done.
第1実施形態における自動車1の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the motor vehicle 1 in 1st Embodiment. 第1実施形態のシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system of 1st Embodiment. 第1実施形態のアクセル操作量に対するドライバ加減速要求値(推定値Ge)のマップデータの一例を示す図である。It is a figure which shows an example of the map data of the driver acceleration / deceleration request value (estimated value Ge) with respect to the accelerator operation amount of 1st Embodiment. 第1実施形態の修正量算出部の具体的な機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the specific function structure of the correction amount calculation part of 1st Embodiment. 第1実施形態のドライバのアクセル操作によるドライバ加減速要求値の推定値Geの変化に対する修正処理作動フラグFraの時間変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of a time change of correction processing operation flag Fra to change of estimated value Ge of a driver acceleration / deceleration demand value by driver's accelerator operation of a 1st embodiment. 第1実施形態の修正量マップの一例を示す図である。It is a figure which shows an example of the correction amount map of 1st Embodiment. 第1実施形態の信号の流れを見えるようにしたブロック図である。It is the block diagram which made the flow of the signal of 1st Embodiment visible. 第1実施形態の規範車両モデルの構成を示すブロック図である。It is a block diagram which shows the structure of the normative vehicle model of 1st Embodiment. 第1実施形態における各値の時間的変化を示す波形図である。It is a wave form diagram which shows the time change of each value in 1st Embodiment. 第1実施形態の修正処理作動フラグ設定処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the correction process action flag setting process of 1st Embodiment. 第1実施形態の加減速制御処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the acceleration / deceleration control process of 1st Embodiment. (a)及び(b)は、従来技術及び第1実施形態の、アクセル操作に応じた推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。(A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a standard vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) Vd according to the accelerator operation of the prior art and the first embodiment. It is a wave form diagram which shows each time change. 第2実施形態における自動車1の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the motor vehicle 1 in 2nd Embodiment. 第2実施形態のシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system of 2nd Embodiment. 第2実施形態の修正量算出部6Cの機能構成を示すブロック図である。It is a block diagram which shows the function structure of 6 C of correction amount calculation parts of 2nd Embodiment. 第2実施形態のドライバのブレーキ操作によるドライバ加減速要求値Geの変化に対する修正処理作動フラグFrbの時間変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of a time change of correction processing operation flag Frb with respect to change of driver acceleration / deceleration demand value Ge by driver's brake operation of a 2nd embodiment. (a)は、第2実施形態のアクセル操作に対応する修正量マップの一例を示す図であり、(b)は、第2実施形態のブレーキ操作に対応する修正量マップの一例を示す図である。(A) is a figure which shows an example of the correction amount map corresponding to accelerator operation of 2nd Embodiment, (b) is a figure which shows an example of the correction amount map corresponding to brake operation of 2nd Embodiment. is there. 第2実施形態における各値の時間的変化を示す波形図である。It is a wave form diagram which shows the time change of each value in 2nd Embodiment. (a)及び(b)は、従来技術及び第2実施形態の、ドライバのブレーキ操作に対応する推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。(A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) corresponding to the driver's brake operation according to the prior art and the second embodiment. ) It is a waveform diagram showing each time change of Vd. (a)は、第3実施形態のアクセル操作に対応する不感帯を有する修正量マップの一例を示す図であり、(b)は、第3実施形態のブレーキ操作に対応する不感帯を有する修正量マップの一例を示す図である。(A) is a figure which shows an example of the correction amount map which has a dead zone corresponding to the accelerator operation of 3rd Embodiment, (b) is the correction amount map which has a dead zone corresponding to the brake operation of 3rd Embodiment. It is a figure which shows an example. 第4実施形態の修正量算出部6Cを示す図である。It is a figure which shows 6 C of correction amount calculation parts of 4th Embodiment. 第4実施形態のドライバのアクセル操作によるドライバ加減速要求値の推定値Geの変化に対する第2修正処理作動フラグFraの時間変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of the time change of the 2nd correction process operation flag Fra with respect to the change of the estimated value Ge of the driver acceleration / deceleration request value by the accelerator operation of the driver of 4th Embodiment. 第4実施形態の第2修正処理に対応する修正量マップの第1の例を示す図である。It is a figure which shows the 1st example of the correction amount map corresponding to the 2nd correction process of 4th Embodiment. 第4実施形態の第2修正処理に対応する修正量マップの第2の例を示す図である。It is a figure which shows the 2nd example of the correction amount map corresponding to the 2nd correction process of 4th Embodiment. 第4実施形態の第2修正処理作動フラグ設定処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the 2nd correction process operation flag setting process of 4th Embodiment. 第4実施形態における加減速制御処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the acceleration / deceleration control process in 4th Embodiment. (a)及び(b)は、従来技術及び第4実施形態の、アクセル操作に応じた推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。(A) and (b) are an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) Vd according to the accelerator operation of the prior art and the fourth embodiment. It is a wave form diagram which shows each time change. 第5実施形態の修正量算出部6Cの機能構成を示すブロック図である。It is a block diagram which shows the function structure of 6 C of correction amount calculation parts of 5th Embodiment. 第5実施形態の実車速Vdに対応する補正ゲインマップ15Aの一例を示す図である。It is a figure which shows an example of the correction gain map 15A corresponding to the actual vehicle speed Vd of 5th Embodiment. 第5実施形態の推定値Geの絶対値に対応する補正ゲインマップ15Bの一例を示す図である。It is a figure which shows an example of the correction gain map 15B corresponding to the absolute value of estimated value Ge of 5th Embodiment. 駆動装置の機種毎に異なる修正量マップの一例を示す図である。It is a figure which shows an example of the correction amount map which changes for every model of a drive device.
 以下、本発明の実施形態を説明する。
(第1実施形態)
(構成)
 図1は、本発明の第1実施形態の全体構成を示す図であり、本発明に係る車両用走行支援装置を適用した自動車1のモデルを示す概念図である。
 本実施形態における自動車1は、電動モータ2を駆動源とした電気自動車であり、電動モータ2から出力された駆動力が入力される変速機3と、その変速機3の出力側に連結され車両幅方向に延びるドライブシャフト4と、そのドライブシャフト4の両端に設けられた左右の駆動輪5、5と、を備えていて、ドライブシャフト4に変速機を介して伝達された電動モータ2の駆動力が駆動輪5、5に伝達されるようになっている。
Embodiments of the present invention will be described below.
(First embodiment)
(Constitution)
FIG. 1 is a diagram showing an overall configuration of a first embodiment of the present invention, and is a conceptual diagram showing a model of an automobile 1 to which a vehicular travel support apparatus according to the present invention is applied.
The vehicle 1 in the present embodiment is an electric vehicle having an electric motor 2 as a drive source, and is connected to a transmission 3 to which a driving force output from the electric motor 2 is input and to an output side of the transmission 3. A drive shaft 4 extending in the width direction and left and right drive wheels 5 and 5 provided at both ends of the drive shaft 4 are provided, and the drive of the electric motor 2 transmitted to the drive shaft 4 via a transmission is provided. The force is transmitted to the drive wheels 5 and 5.
 また、この自動車1は、駆動輪5の回転数に基づいて車速(実車速)を検出する車速センサ7と、ドライバによる踏み込み操作が可能なアクセルペダル8と、そのアクセルペダル8の踏み込み量を検出するアクセル操作検出装置9と、を備えている。そして、コントローラ6には、車速センサ7が出力する車速検出信号Vdと、アクセル操作検出装置9が出力するアクセル操作検出信号Adとが供給されるようになっている。 The vehicle 1 also detects a vehicle speed sensor 7 that detects a vehicle speed (actual vehicle speed) based on the number of rotations of the drive wheels 5, an accelerator pedal 8 that can be depressed by the driver, and a depression amount of the accelerator pedal 8. And an accelerator operation detecting device 9 for performing the operation. The controller 6 is supplied with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an accelerator operation detection signal Ad output from the accelerator operation detection device 9.
 コントローラ6は、図示しないCPUやドライバ回路などを備えて構成されていて、供給される車速検出信号Vd及びアクセル操作検出信号Adに基づき、後述する演算処理を実行して、電動モータ2に対して指令電流Ioutを出力してその回転方向や駆動力を制御するようになっている。なお、この実施形態では、電動モータ2は、自動車1の駆動力を生成するとともに、回生による制動力を発生するようにもなっている。つまり、電動モータ2は、制駆動アクチュエータとして機能するものであるが、回生による制動力とは別に、駆動輪5や図示しない従動輪に対して摩擦による制動力を発生する機械的なブレーキ装置を設け、電動モータ2による回生ブレーキと機械的なブレーキ装置とを併用するようにしてもよい。 The controller 6 includes a CPU, a driver circuit, and the like (not shown). The controller 6 performs arithmetic processing to be described later on the electric motor 2 based on the supplied vehicle speed detection signal Vd and accelerator operation detection signal Ad. A command current Iout is output to control the rotation direction and driving force. In this embodiment, the electric motor 2 generates a driving force of the automobile 1 and also generates a braking force by regeneration. That is, although the electric motor 2 functions as a braking / driving actuator, a mechanical braking device that generates a braking force due to friction with respect to the driving wheel 5 and a driven wheel (not shown) separately from the braking force due to regeneration. A regenerative brake by the electric motor 2 and a mechanical brake device may be used in combination.
 図2は、第1実施形態の全体的な機能構成を示すブロック図である。
 即ち、図2に示すように、コントローラ6は、ドライバ加減速要求推定部6Aと、指令値算出部6Bと、修正量算出部6Cと、車速サーボ6Dと、加算器6Eと、を備えている。
 ドライバ加減速要求推定部6Aは、アクセル操作検出装置9から供給されるアクセル操作検出信号Adに基づき、自動車1のドライバが要求している加速度の推定値を求めるようになっている。
FIG. 2 is a block diagram showing an overall functional configuration of the first embodiment.
That is, as shown in FIG. 2, the controller 6 includes a driver acceleration / deceleration request estimation unit 6A, a command value calculation unit 6B, a correction amount calculation unit 6C, a vehicle speed servo 6D, and an adder 6E. .
The driver acceleration / deceleration request estimation unit 6A is configured to obtain an estimated value of acceleration requested by the driver of the automobile 1 based on the accelerator operation detection signal Ad supplied from the accelerator operation detection device 9.
 ここで、図3は、アクセル操作量に対するドライバ加減速要求値(推定値Ge)のマップデータの一例を示す図である。
 本実施形態では、図3に示すように、アクセル操作検出信号Adの大きさ(アクセル操作量)に対する推定値Geのマップデータを予め用意しておく。そして、ドライバ加減速要求推定部6Aは、このマップデータからアクセル操作検出信号Adの大きさに対応する推定値Geを読み出すようになっている。
 図3に示す例では、推定値Geのマップデータは、アクセル操作量に対して単調に増加し、かつ、アクセル操作量が0のときに最小値0となり、アクセル操作量が増加するにつれて最大値に漸近する特性を有している。
Here, FIG. 3 is a diagram illustrating an example of map data of a driver acceleration / deceleration request value (estimated value Ge) with respect to the accelerator operation amount.
In the present embodiment, as shown in FIG. 3, map data of the estimated value Ge with respect to the magnitude (accelerator operation amount) of the accelerator operation detection signal Ad is prepared in advance. Then, the driver acceleration / deceleration request estimation unit 6A reads an estimated value Ge corresponding to the magnitude of the accelerator operation detection signal Ad from the map data.
In the example shown in FIG. 3, the map data of the estimated value Ge monotonously increases with respect to the accelerator operation amount, becomes the minimum value 0 when the accelerator operation amount is 0, and increases as the accelerator operation amount increases. Asymptotically.
 なお、推定値Geの求め方は、これに限定されるものではなく、例えば、アクセル操作検出信号Adの大きさに所定のゲインを乗じることでドライバが要求している加速度の推定値Geを求めることも可能である。また、例えば、アクセル操作検出信号Adの二乗に比例して求めることも可能であるし、或いは、アクセル操作検出信号Adの絶対値とその変化量(微分値)とに基づいて求めることも可能である。ただし、内燃機関を駆動源とした車両の運転特性に慣れているドライバのことを考え、推定値Geは、アクセル操作検出信号Adの変化に対して若干の遅れを伴うような特性に設定することが望ましく、本実施形態でも、そのような遅れ成分を設定している。 The method of obtaining the estimated value Ge is not limited to this. For example, the estimated value Ge of the acceleration requested by the driver is obtained by multiplying the magnitude of the accelerator operation detection signal Ad by a predetermined gain. It is also possible. Further, for example, it can be obtained in proportion to the square of the accelerator operation detection signal Ad, or can be obtained based on the absolute value of the accelerator operation detection signal Ad and its change amount (differential value). is there. However, considering the driver who is accustomed to the driving characteristics of the vehicle using the internal combustion engine as the driving source, the estimated value Ge should be set to a characteristic that causes a slight delay with respect to the change in the accelerator operation detection signal Ad. In this embodiment, such a delay component is set.
 また、ドライバ加減速要求推定部6Aは、ドライバがアクセルペダル8を操作しているときには、そのときのアクセルペダル8の開度を表すアクセル操作検出信号Adに応じた推定値Geを常に更新しつつ出力する。一方、ドライバ加減速要求推定部6Aは、ドライバがアクセルペダル8から足を離したときには、ドライバは、自身の操作によらず自動的に車速を制御する定速走行制御の開始を意図したと判断し、その離す直前(予め設定された時間だけ前)に設定されていた推定値Geを保持するようになっている。ここで、定速走行制御へと移行するためには、自動車1がある程度の速度で走行している必要がある。この速度条件を満たすためには、推定値Geが、速度条件に応じて予め設定された閾値Th1以上の状態から、ドライバの加減速要求が無い状態を示す値である下限値Th3(本実施形態では0)へと移行する必要がある。 Further, when the driver is operating the accelerator pedal 8, the driver acceleration / deceleration request estimation unit 6A constantly updates the estimated value Ge corresponding to the accelerator operation detection signal Ad indicating the opening degree of the accelerator pedal 8 at that time. Output. On the other hand, the driver acceleration / deceleration request estimation unit 6A determines that the driver intends to start constant speed running control that automatically controls the vehicle speed regardless of his / her operation when the driver removes his / her foot from the accelerator pedal 8. Then, the estimated value Ge set immediately before the separation (a predetermined time before) is held. Here, in order to shift to the constant speed traveling control, the automobile 1 needs to travel at a certain speed. In order to satisfy this speed condition, a lower limit value Th3 (this embodiment) is a value indicating that the estimated value Ge is not more than a threshold value Th1 set in advance according to the speed condition and that there is no driver acceleration / deceleration request. Then, it is necessary to shift to 0).
 なお、ドライバが、ハンドルに設けられたスイッチを操作することで定速走行制御の開始をシステム側に通知するような構成を備える自動車の場合には、そのスイッチを操作したときに、ドライバは定速走行制御の開始を意図したと判断し、そのときの推定値Geを保持するようにしてもよい。
 そして、ドライバ加減速要求推定部6Aが求めた推定値Geと、車速センサ7から供給される車速検出信号Vdとが、修正量算出部6Cに供給されるようになっている。更に、ドライバ加減速要求推定部6Aが求めた推定値Geが、修正量算出部6Cに供給されるようになっている。
In the case of an automobile having a configuration in which the driver notifies the system side of the start of constant speed traveling control by operating a switch provided on the steering wheel, the driver is fixed when the switch is operated. It may be determined that the start of the high-speed driving control is intended, and the estimated value Ge at that time may be held.
The estimated value Ge obtained by the driver acceleration / deceleration request estimation unit 6A and the vehicle speed detection signal Vd supplied from the vehicle speed sensor 7 are supplied to the correction amount calculation unit 6C. Further, the estimated value Ge obtained by the driver acceleration / deceleration request estimation unit 6A is supplied to the correction amount calculation unit 6C.
 指令値算出部6Bは、供給される推定値Ge及び車速検出信号Vdと、修正量算出部3Cから供給される修正量Grとに基づき、所定の演算処理を実行して、現時点の自動車1の走行速度として最適な速度である規範車速Vcを求める。加えて、指令値算出部6Bは、現在の走行速度(実車速)を表す車速検出信号Vdと規範車速Vcとの差である車速差(Vd-Vc)に基づき、車速指令値Voutを演算し出力するようになっている。
 そして、指令値算出部6Bが求めた車速指令値Voutが、修正量算出部6Cと、車速サーボ6Dとにそれぞれ供給されるようになっている。
The command value calculation unit 6B executes a predetermined calculation process based on the supplied estimated value Ge and the vehicle speed detection signal Vd and the correction amount Gr supplied from the correction amount calculation unit 3C, so that the current vehicle 1 A reference vehicle speed Vc, which is the optimum traveling speed, is obtained. In addition, the command value calculation unit 6B calculates a vehicle speed command value Vout based on a vehicle speed difference (Vd−Vc) that is a difference between the vehicle speed detection signal Vd representing the current traveling speed (actual vehicle speed) and the reference vehicle speed Vc. It is designed to output.
The vehicle speed command value Vout obtained by the command value calculation unit 6B is supplied to the correction amount calculation unit 6C and the vehicle speed servo 6D, respectively.
 修正量算出部6Cは、供給される推定値Geを監視し、推定値Geが急変したことを検出すると、供給される車速指令信号Voutの大きさに応じた修正量Grを求める。そして、修正量算出部6Cが求めた修正量Grが指令値算出部6Bに供給されるようになっている。
 車速サーボ6Dは、指令値算出部6Bから供給される車速指令値Voutに基づき、加速度としての制御指令値であるアシストトルクGoutを生成し出力する。
 加算器6Eは、供給される推定値GeとアシストトルクGoutとを加算し、それを電動モータ2に対する指令電流Ioutとして出力するようになっている。
The correction amount calculation unit 6C monitors the supplied estimated value Ge and, when detecting that the estimated value Ge has changed suddenly, obtains a correction amount Gr corresponding to the magnitude of the supplied vehicle speed command signal Vout. Then, the correction amount Gr obtained by the correction amount calculation unit 6C is supplied to the command value calculation unit 6B.
The vehicle speed servo 6D generates and outputs an assist torque Gout, which is a control command value as acceleration, based on the vehicle speed command value Vout supplied from the command value calculation unit 6B.
The adder 6E adds the supplied estimated value Ge and the assist torque Gout and outputs it as a command current Iout for the electric motor 2.
 図4は、修正量算出部の具体的な機能構成の一例を示すブロック図である。
 修正量算出部6Cは、図4に示すように、修正処理作動フラグ設定部12と、修正量決定部13と、修正量マップ14とを含んで構成される。
 修正処理作動フラグ設定部12は、供給される推定値Geの変化を監視し、推定値Geがドライバの加減速要求が有るときの数値範囲内において予め設定された値である閾値Th2(Th2>Th1)以上の値から、予め設定されたドライバの加減速要求が無い状態を示す値である下限値Th3へと急変したと判定すると、修正処理作動フラグFraを作動時間taだけセット状態に設定し、それ以外の場合に修正処理作動フラグFraを非セット状態に設定する。
FIG. 4 is a block diagram illustrating an example of a specific functional configuration of the correction amount calculation unit.
As shown in FIG. 4, the correction amount calculation unit 6 </ b> C includes a correction processing operation flag setting unit 12, a correction amount determination unit 13, and a correction amount map 14.
The correction processing operation flag setting unit 12 monitors a change in the supplied estimated value Ge, and the estimated value Ge is a threshold value Th2 (Th2>) that is a preset value within a numerical range when there is a driver acceleration / deceleration request. (Th1) When it is determined that the value has suddenly changed from the above value to the lower limit value Th3, which is a value indicating a state in which the driver does not request acceleration / deceleration, the correction processing operation flag Fra is set to the set state only for the operation time ta. In other cases, the correction processing operation flag Fra is set to a non-set state.
 ここで、修正処理作動フラグFraは、セット状態の期間に、車速差(Vout)に応じた修正量で規範車速Vcを修正する修正処理を実施するようにし、非セット状態の期間は修正処理を実施しないようにするフラグである。
 また、上記急変するとは、厳密に、推定値Geが閾値Th2以上の状態から閾値Th3以下の状態へと、予め設定された変化時間上限値tc(tc>0)以下の時間で変化したときをいう。変化時間上限値は、例えば、ドライバがアクセルを踏み込んだ状態から急に足を離したときの推定値Geの時間変化等に基づき予め設定する。
Here, the correction process operation flag Fra performs a correction process for correcting the reference vehicle speed Vc with a correction amount corresponding to the vehicle speed difference (Vout) during the set state period, and performs the correction process during the non-set state period. It is a flag that prevents implementation.
In addition, the sudden change means that the estimated value Ge changes from a state where the threshold value Th2 is equal to or greater than the threshold value Th2 to a state where the threshold value Th3 is equal to or less than a preset change time upper limit value tc (tc> 0). Say. The change time upper limit value is set in advance based on, for example, the time change of the estimated value Ge when the driver suddenly lifts his or her foot from the state where the accelerator is depressed.
 図5は、ドライバのアクセル操作によるドライバ加減速要求値の推定値Geの変化に対する修正処理作動フラグFraの時間変化の一例を示すタイミングチャートである。
 具体的に、修正処理作動フラグ設定部12は、図5に示すように、ドライバのアクセルペダル8の操作によって、推定値Geが閾値Th2以上となっている状態から、下限値Th3へと急変したと判定すると、修正処理作動フラグFraを、作動時間ta[秒]だけセット状態に設定する。
 つまり、図5に示す例は、ドライバが、閾値Th2以上の推定値Geが出力されるほどアクセルペダル8を踏み込んでいる状態から、時刻t1において、推定値Geが「0」になる状態、即ち、アクセルペダル8から急に足を離した状態へと移行している様子を示している。更に、修正処理作動フラグFraが時刻t1から時刻t2までの作動時間taの間だけセット状態となっている様子を示している。
FIG. 5 is a timing chart showing an example of a time change of the correction processing operation flag Fra with respect to a change in the estimated value Ge of the driver acceleration / deceleration request value by the driver's accelerator operation.
Specifically, as shown in FIG. 5, the correction processing operation flag setting unit 12 has suddenly changed from the state where the estimated value Ge is equal to or higher than the threshold Th2 to the lower limit Th3 by the operation of the accelerator pedal 8 of the driver. Is determined, the correction processing operation flag Fra is set to the set state only for the operation time ta [seconds].
That is, in the example shown in FIG. 5, the estimated value Ge becomes “0” at the time t <b> 1 from the state where the driver depresses the accelerator pedal 8 so that the estimated value Ge equal to or greater than the threshold Th <b> 2 is output. FIG. 4 shows a state where the accelerator pedal 8 is suddenly released. Further, the correction processing operation flag Fra is shown in the set state only during the operation time ta from time t1 to time t2.
 修正量決定部13は、修正量作動フラグFraがセット状態のときに、修正量マップ14から、指令値算出部6Bから供給される車速指令値Vout(規範車速Vc-実車速Vd)の大きさに応じた修正量Grを読み出す。そして、読み出した修正量Grを指令値算出部6Bに供給するようになっている。
 修正量マップ14は、車速指令値Voutの大きさに応じて予め設定された規範車速Vcの修正量から構成されるマップデータである。また、修正量マップ14は、コントローラ6の備える不図示のROM等のメモリに予め記憶保持されている。
The correction amount determination unit 13 determines the magnitude of the vehicle speed command value Vout (reference vehicle speed Vc−actual vehicle speed Vd) supplied from the command value calculation unit 6B from the correction amount map 14 when the correction amount operation flag Fra is set. The correction amount Gr corresponding to is read. The read correction amount Gr is supplied to the command value calculation unit 6B.
The correction amount map 14 is map data composed of a correction amount of the reference vehicle speed Vc set in advance according to the magnitude of the vehicle speed command value Vout. The correction amount map 14 is stored and held in advance in a memory such as a ROM (not shown) provided in the controller 6.
 図6は、本実施形態の修正量マップの一例を示す図である。
 本実施形態において、修正量マップ14は、図6に示すように、車速指令値Voutが「0」から予め設定された正の値a1の範囲において、修正量Grが、a1に近づくにしたがって、予め設定された負の最大値b1となるまで負方向へと非線形に増加する。そして、車速指令値Voutがa1を超えると、修正量Grが負の最大値b1で一定となる特性を有している。更に、修正量マップ14は、車速指令値Voutが「0」から予め設定された負の値a2の範囲において、修正量Grが、a2に近づくにしたがって、予め設定された正の最大値b2となるまで正方向へと非線形に増加する。そして、車速指令値Voutがa2を超えると、修正量Grが正の最大値b2で一定となる特性を有している。
FIG. 6 is a diagram illustrating an example of the correction amount map of the present embodiment.
In the present embodiment, as shown in FIG. 6, the correction amount map 14 indicates that the correction amount Gr approaches a1 as the vehicle speed command value Vout ranges from “0” to a preset positive value a1. It increases non-linearly in the negative direction until reaching a preset negative maximum value b1. When the vehicle speed command value Vout exceeds a1, the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1. Further, the correction amount map 14 indicates that the correction amount Gr becomes a preset positive maximum value b2 as the correction amount Gr approaches a2 in the range of the vehicle speed command value Vout from “0” to the preset negative value a2. It increases non-linearly in the positive direction until When the vehicle speed command value Vout exceeds a2, the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2.
 例えば、自動車1が急な上り坂を上っている最中に、ドライバがアクセルペダル8を大きく踏み込んでいる状態から急にアクセルペダル8から足を離すと、アクセルペダル8を大きく踏み込んでいる時点の推定値Geに応じた規範車速Vcが定速走行制御の目標車速として設定される。このような場合、規範車速Vcに対して実車速Vdが下回るため、ドライバが加速の停止を意図してアクセルペダル8から足を離したにもかかわらず、加速制御が行われてしまう。このドライバの加速停止の意図に反する加速挙動によって、ドライバに違和感を与えることになる。 For example, when the driver suddenly lifts his or her foot from the accelerator pedal 8 while the vehicle 1 is climbing a steep uphill, the accelerator pedal 8 is greatly depressed. The reference vehicle speed Vc corresponding to the estimated value Ge is set as the target vehicle speed for constant speed traveling control. In such a case, since the actual vehicle speed Vd is lower than the reference vehicle speed Vc, acceleration control is performed even though the driver intends to stop acceleration and removes his / her foot from the accelerator pedal 8. This acceleration behavior contrary to the driver's intention to stop acceleration gives the driver a sense of incongruity.
 そこで、本実施形態では、推定値Geが急変した場合に、図6の修正量マップ14に示すように車速指令値Voutの大きさに応じた大きさの修正量Grで、規範車速Vcが実車速Vdに近づくように該規範車速Vcを修正する。これにより、実車速Vdと規範車速Vcとの偏差が小さくなり、実車速Vdが規範車速Vcに収束しやすくなる。そのため、ドライバの意図しない加速の発生を抑制することが可能となる。
 なお、修正量マップ14は、自動車1の車両諸元、ドライバの官能試験等に基づき車種等に対応して適切なものが予め作成されるものである。特に、図6に示すa1、a2、b1、b2の各値は、走行試験等を通して、ドライバの加速時、減速時の感じ方の違い等を考慮して作成する。
 また、修正量マップ14は、図6に示すように、「0」を境として、a1、b1側の曲線L1と、a2、b2側の曲線L2とが非対称となっている。これは、減速側と加速側とでドライバの感じ方が異なるためである。
Therefore, in the present embodiment, when the estimated value Ge changes suddenly, as shown in the correction amount map 14 of FIG. 6, the reference vehicle speed Vc is the actual vehicle with the correction amount Gr having a magnitude corresponding to the magnitude of the vehicle speed command value Vout. The reference vehicle speed Vc is corrected so as to approach the speed Vd. As a result, the deviation between the actual vehicle speed Vd and the reference vehicle speed Vc is reduced, and the actual vehicle speed Vd is likely to converge to the reference vehicle speed Vc. Therefore, it is possible to suppress the occurrence of acceleration that is not intended by the driver.
Note that an appropriate correction amount map 14 is created in advance corresponding to the vehicle type based on the vehicle specifications of the automobile 1, the sensory test of the driver, and the like. In particular, the values a1, a2, b1, and b2 shown in FIG. 6 are created in consideration of the difference in feeling when the driver accelerates and decelerates through a running test or the like.
Further, as shown in FIG. 6, in the correction amount map 14, the curve L1 on the a1 and b1 side and the curve L2 on the a2 and b2 side are asymmetric with respect to “0”. This is because the driver feels differently on the deceleration side and the acceleration side.
 図7は、各信号の流れが全体的に見えるように本実施形態のシステム構成を表現したブロック図であり、指令値算出部6Bが、推定値Ge及び修正量Grに基づいて規範車速Vcを算出する規範車両モデル10と、車速検出信号Vdと規範車速Vcとの差(Vd-Vc)を演算する減算器11とから構成されている点を示している。
 そして、規範車速Vcを算出するための規範車両モデル10は、本実施形態では、図8に示すように構成されている。
FIG. 7 is a block diagram showing the system configuration of the present embodiment so that the flow of each signal can be seen as a whole. The command value calculation unit 6B determines the reference vehicle speed Vc based on the estimated value Ge and the correction amount Gr. The figure shows that it is composed of a reference vehicle model 10 to be calculated and a subtractor 11 for calculating a difference (Vd−Vc) between the vehicle speed detection signal Vd and the reference vehicle speed Vc.
In the present embodiment, the reference vehicle model 10 for calculating the reference vehicle speed Vc is configured as shown in FIG.
 即ち、規範車両モデル10は、予め定められた一定値である転がり抵抗成分R1を記憶した転がり抵抗成分記憶部10aと、規範車速Vcに基づいて空気抵抗成分R2を設定する空気抵抗成分設定部10bと、を備えている。
 空気抵抗成分設定部10bは、規範車速Vcの二乗値(Vc2)に固定のゲインKを乗じることで、車速に応じて増大する空気抵抗成分R2を演算するようになっている。
 なお、転がり抵抗成分R1及び空気抵抗成分R2は、いずれも車両の走行速度を低減させる方向に作用する外乱成分であるため、それらの符号は、推定値Geとは逆のマイナスである。
 そして、転がり抵抗成分R1及び空気抵抗成分R2は、それぞれ選択部10c、10dに供給されるようになっている。
That is, the reference vehicle model 10 includes a rolling resistance component storage unit 10a that stores a rolling resistance component R1 that is a predetermined constant value, and an air resistance component setting unit 10b that sets the air resistance component R2 based on the reference vehicle speed Vc. And.
The air resistance component setting unit 10b calculates an air resistance component R2 that increases according to the vehicle speed by multiplying the square value (Vc2) of the reference vehicle speed Vc by a fixed gain K.
Since both the rolling resistance component R1 and the air resistance component R2 are disturbance components that act in the direction of reducing the traveling speed of the vehicle, their signs are negative opposite to the estimated value Ge.
The rolling resistance component R1 and the air resistance component R2 are supplied to the selection units 10c and 10d, respectively.
 一方、選択部10c、10dのそれぞれには、転がり抵抗成分R1、空気抵抗成分R2の他に、「0」が供給されている。また、選択部10c、10dのそれぞれには、アクセルOFFフラグ設定部10eから、フラグFaが供給されるようになっている。ここで、フラグFaは、本実施形態においてアクセル操作部に対応するアクセルペダル8が操作されていないときにセット状態となり、アクセルペダル8が操作されているときには非セット状態となるフラグである。 On the other hand, in addition to the rolling resistance component R1 and the air resistance component R2, “0” is supplied to each of the selection units 10c and 10d. Further, the flag Fa is supplied from the accelerator OFF flag setting unit 10e to each of the selection units 10c and 10d. Here, the flag Fa is a flag that is set when the accelerator pedal 8 corresponding to the accelerator operation unit is not operated in the present embodiment, and is not set when the accelerator pedal 8 is operated.
 そして、選択部10c、10dのそれぞれは、フラグFaが非セット状態であるときには転がり抵抗成分R1、空気抵抗成分R2を出力し、フラグFaがセット状態であるときには「0」を出力するようになっている。つまり、選択部10c、10dは、フラグFaが非セット状態であるときには、転がり抵抗成分記憶部10a、空気抵抗成分設定部10bから供給される転がり抵抗成分R1、空気抵抗成分R2をそのまま出力し、フラグFaがセット状態になった後には、転がり抵抗成分記憶部10a、空気抵抗成分設定部10bから供給される転がり抵抗成分R1、空気抵抗成分R2の値に関係なく、それら転がり抵抗成分R1、空気抵抗成分R2を強制的に「0」に設定し直してから出力するようになっている。 Each of the selection units 10c and 10d outputs a rolling resistance component R1 and an air resistance component R2 when the flag Fa is in a non-set state, and outputs “0” when the flag Fa is in a set state. ing. That is, when the flag Fa is not set, the selection units 10c and 10d output the rolling resistance component R1 and the air resistance component R2 supplied from the rolling resistance component storage unit 10a and the air resistance component setting unit 10b as they are, After the flag Fa is set, regardless of the values of the rolling resistance component R1 and the air resistance component R2 supplied from the rolling resistance component storage unit 10a and the air resistance component setting unit 10b, the rolling resistance component R1 and the air The resistance component R2 is forcibly reset to “0” before being output.
 選択部10c、10dの出力は、推定値Ge及び修正量Grと共に、加算器10fに供給されるようになっている。
 即ち、加算器10fは、推定値Geと、修正量Grと、選択部10c、10dの出力とを加算するものである。ただし、選択部10c、10dから転がり抵抗成分R1、空気抵抗成分R2が出力されているときには、それら転がり抵抗成分R1、空気抵抗成分R2の符号はマイナスである。加えて、本実施形態では、修正量算出部6Cから修正量Grが出力されているときには、修正量Grもマイナスとなる。そのため、加算器10fにおける演算は、符号まで考えると、Ge-(Gr+R1+R2)となるから、この加算器10fは、実質的には減算器として機能する。なお、フラグFaがセット状態であるときには、選択部10c、10dは「0」を出力するため、加算器10fの出力は(Ge-Gr)となる。また、フラグFaがセット状態でありかつ修正処理作動フラグFraが非セット状態であるときには、加算器10fの出力は推定値Geそのものとなる。
The outputs of the selectors 10c and 10d are supplied to the adder 10f together with the estimated value Ge and the correction amount Gr.
That is, the adder 10f adds the estimated value Ge, the correction amount Gr, and the outputs of the selection units 10c and 10d. However, when the rolling resistance component R1 and the air resistance component R2 are output from the selection units 10c and 10d, the signs of the rolling resistance component R1 and the air resistance component R2 are negative. In addition, in the present embodiment, when the correction amount Gr is output from the correction amount calculation unit 6C, the correction amount Gr is also negative. For this reason, the calculation in the adder 10f is Ge− (Gr + R1 + R2) when considering the sign, so that the adder 10f substantially functions as a subtractor. When the flag Fa is in the set state, the selectors 10c and 10d output “0”, and the output of the adder 10f is (Ge−Gr). When the flag Fa is in the set state and the correction processing operation flag Fra is in the non-set state, the output of the adder 10f is the estimated value Ge itself.
 さらに、規範車両モデル10は、除算器10gと、積分器10hとを備えている。除算器10gは、加算器10fの出力値を自動車1の質量Mで除算することで目標加速度Gcを演算するものであり、積分器10hは、除算器10gから供給される目標加速度Gcを積分することで、目標車速としての規範車速Vcを演算するものである。
 そして、積分器10hから出力された規範車速Vcが、空気抵抗成分設定部10bに供給されるとともに、この規範車両モデル10の出力として図7の減算器11に供給されるようになっている。
The reference vehicle model 10 further includes a divider 10g and an integrator 10h. The divider 10g calculates the target acceleration Gc by dividing the output value of the adder 10f by the mass M of the automobile 1. The integrator 10h integrates the target acceleration Gc supplied from the divider 10g. Thus, the reference vehicle speed Vc as the target vehicle speed is calculated.
The reference vehicle speed Vc output from the integrator 10h is supplied to the air resistance component setting unit 10b and also supplied to the subtractor 11 of FIG. 7 as an output of the reference vehicle model 10.
 図9は、各値の時間変化の一例を示す波形図であり、アクセル操作検出信号Ad、推定値Ge、フラグFa、転がり抵抗成分R1、空気抵抗成分R2のそれぞれを示している。なお、転がり抵抗成分R1及び空気抵抗成分R2は、その符号はマイナスであるが、この図9では絶対値で表記している。
 この図9は、時刻t0から時刻t1の間は、ドライバによるアクセルペダル8の踏み込み量はほぼ一定で、時刻t1を過ぎた辺りから徐々にアクセルペダル8の踏み込み量を減少させ、時刻t2においてアクセルペダル8から完全に足を離した様子を示している。
 この場合、推定値Geは、時刻t1を越えた後は、アクセル操作検出信号Adの変化に対して若干遅れる傾向で減少するが、時刻t2においてドライバがアクセルペダル8から完全に足を離したときには、推定値Geも0となっている。
FIG. 9 is a waveform diagram showing an example of the time change of each value, and shows each of the accelerator operation detection signal Ad, the estimated value Ge, the flag Fa, the rolling resistance component R1, and the air resistance component R2. Note that the rolling resistance component R1 and the air resistance component R2 have negative signs, but are shown as absolute values in FIG.
FIG. 9 shows that the amount of depression of the accelerator pedal 8 by the driver is substantially constant from time t0 to time t1, and the amount of depression of the accelerator pedal 8 is gradually decreased from around time t1, and the accelerator is depressed at time t2. A state where the foot is completely removed from the pedal 8 is shown.
In this case, after the time t1 is exceeded, the estimated value Ge decreases with a tendency to be slightly delayed with respect to the change in the accelerator operation detection signal Ad. However, when the driver completely removes the foot from the accelerator pedal 8 at time t2. The estimated value Ge is also 0.
 ドライバ加減速要求推定部6Aは、時刻t2においてドライバが定速走行制御の開始を意図したと判断し、その時刻t2の直前における推定値Geを、時刻t2以降は定速走行制御用の推定値Ge'として保持する。
 フラグFaは、時刻t2に至るまでは非セット状態であり、時刻t2に至った時点でセット状態となる。
 転がり抵抗成分R1は、時刻t2に至るまでは、転がり抵抗成分記憶部10aに記憶されている一定値となっているが、時刻t2に至った後は0となる。
 同様に、空気抵抗成分R2は、時刻t2に至るまでは、規範車速Vcの二乗に比例した値となっているが、時刻t2に至った後は0となる。
The driver acceleration / deceleration request estimation unit 6A determines that the driver intended to start the constant speed traveling control at time t2, and estimates the estimated value Ge immediately before the time t2, and the estimated value for constant speed traveling control after time t2. Hold as Ge ′.
The flag Fa is in a non-set state until time t2, and is set when time t2 is reached.
The rolling resistance component R1 has a constant value stored in the rolling resistance component storage unit 10a until time t2, but becomes 0 after reaching time t2.
Similarly, the air resistance component R2 has a value proportional to the square of the reference vehicle speed Vc until time t2, but becomes 0 after time t2.
 そして、時刻t0から時刻t1の間は、アクセル操作検出信号Adがある程度の大きさにあるため、転がり抵抗成分R1、空気抵抗成分R2が影響していても、規範車速Vcは徐々に増加している。また、積分器10hが示すローパスフィルタ特性の影響で規範車速Vcには現実の自動車と同様に慣性力が加わっているため、規範車速Vcは、時刻t1を過ぎた後であっても、しばらくの間は増加を続ける。
 しかし、時刻t2に至った後は、時刻t1において保持された推定値Ge'が加算器10fに入力されるとともに、転がり抵抗成分R1及び空気抵抗成分R2はいずれも0になるため、規範車速Vcは一定値となる。
Since the accelerator operation detection signal Ad is at a certain level between time t0 and time t1, the reference vehicle speed Vc gradually increases even if the rolling resistance component R1 and the air resistance component R2 are affected. Yes. In addition, since the inertial force is applied to the standard vehicle speed Vc as in the case of an actual vehicle due to the low-pass filter characteristic indicated by the integrator 10h, the standard vehicle speed Vc is not changed for a while even after the time t1. It continues to increase during the period.
However, after reaching the time t2, the estimated value Ge ′ held at the time t1 is input to the adder 10f, and the rolling resistance component R1 and the air resistance component R2 are both 0, so the reference vehicle speed Vc Is a constant value.
(修正処理作動フラグ設定処理)
 次に、図10に基づき、修正量算出部6Cで実行される修正処理作動フラグ設定処理の処理手順を説明する。図10は、修正処理作動フラグ設定処理の処理手順の一例を示すフローチャートである。なお、図10の処理は、予め設定されたサンプリングクロックに同期して繰り返し実行される。
 コントローラ6において専用のプログラムが実行され、修正量算出部6Cにおいて修正処理作動フラグ設定処理が実行されると、まず、図10に示すように、ステップS100に移行する。
 ステップS100では、修正量算出部6Cの修正処理作動フラグ設定部12において、修正処理作動フラグFraがセット状態か否かを判定する。そして、修正処理作動フラグFraがセット状態であると判定した場合(Yes)は、ステップS102に移行し、そうでないと判定した場合(No)は、ステップS108に移行する。
(Correction processing operation flag setting processing)
Next, based on FIG. 10, the processing procedure of the correction process operation flag setting process executed by the correction amount calculation unit 6C will be described. FIG. 10 is a flowchart illustrating an example of a processing procedure of the correction processing operation flag setting processing. Note that the processing of FIG. 10 is repeatedly executed in synchronization with a preset sampling clock.
When the dedicated program is executed in the controller 6 and the correction processing operation flag setting process is executed in the correction amount calculation unit 6C, first, the process proceeds to step S100 as shown in FIG.
In step S100, the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is set. If it is determined that the correction processing operation flag Fra is in the set state (Yes), the process proceeds to step S102, and if it is not (No), the process proceeds to step S108.
 ステップS102に移行した場合は、修正処理作動フラグ設定部12において、作動時間taの測定用のカウント値を+1して、ステップS104に移行する。
 ステップS104では、修正処理作動フラグ設定部12において、修正処理作動フラグがセット状態となっている期間がta秒を経過したか否かを判定する。そして、経過したと判定した場合(Yes)は、ステップS106に移行し、そうでないと判定した場合(No)は、一連の処理を終了する。
 ステップS106に移行した場合は、修正処理作動フラグ設定部12において、修正処理作動フラグをセット状態から非セット状態に設定して、一連の処理を終了する。
When the process proceeds to step S102, the correction process operation flag setting unit 12 increments the count value for measuring the operation time ta by 1, and the process proceeds to step S104.
In step S104, the correction process operation flag setting unit 12 determines whether or not the period during which the correction process operation flag is set has passed ta seconds. If it is determined that the time has elapsed (Yes), the process proceeds to step S106. If it is determined that this is not the case (No), the series of processing ends.
When the process proceeds to step S106, the correction process operation flag setting unit 12 sets the correction process operation flag from the set state to the non-set state, and the series of processes ends.
 一方、ステップS100において、修正作動フラグが非セット状態に設定されておりステップS108に移行した場合は、修正処理作動フラグ設定部12において、推定値Geを読み込んで、ステップS110に移行する。
 ステップS110では、修正処理作動フラグ設定部12において、今回読み込んだ推定値Ge(t)と閾値Th2及び下限値Th3とを比較して、ステップS112に移行する。
 ステップS112では、修正処理作動フラグ設定部12において、ステップS110の比較結果に基づき、推定値Geが急変したか否かを判定する。そして、急変したと判定した場合(Yes)は、ステップS114に移行し、そうでないと判定した場合(No)は、一連の処理を終了する。
On the other hand, when the correction operation flag is set to the non-set state in step S100 and the process proceeds to step S108, the correction process operation flag setting unit 12 reads the estimated value Ge and proceeds to step S110.
In step S110, the correction processing operation flag setting unit 12 compares the estimated value Ge (t) read this time with the threshold value Th2 and the lower limit value Th3, and proceeds to step S112.
In step S112, the correction processing operation flag setting unit 12 determines whether or not the estimated value Ge has suddenly changed based on the comparison result in step S110. If it is determined that there has been a sudden change (Yes), the process proceeds to step S114. If it is determined that this has not been the case (No), the series of processing ends.
 具体的に、修正処理作動フラグ設定部12は、1つ前に読み込んだ推定値Ge(t-1)が閾値Th2以上の値であるか否かを示すフラグFtに基づき、ドライバ加減速要求値Geが急変したか否かを判定する。ここで、フラグFtは、セット状態のときに推定値Ge(t-1)が閾値Th2以上であることを示し、非セット状態のときに推定値Ge(t-1)が閾値Th2未満であることを示すフラグである。 Specifically, the correction processing operation flag setting unit 12 determines the driver acceleration / deceleration request value based on the flag Ft indicating whether or not the estimated value Ge (t−1) read immediately before is a value equal to or greater than the threshold Th2. It is determined whether or not Ge has changed suddenly. Here, the flag Ft indicates that the estimated value Ge (t−1) is greater than or equal to the threshold Th2 when in the set state, and the estimated value Ge (t−1) is less than the threshold Th2 when in the non-set state. It is a flag indicating that.
 修正処理作動フラグ設定部12は、フラグFtがセット状態である場合に、今回読み込んだ推定値Ge(t)が「0」か否かを判定する。そして、「0」であると判定した場合は急変したと判定すると共に、フラグFtを非セット状態に設定する。一方、「0」でないと判定した場合は、急変していないと判定すると共に、推定値Ge(t)が閾値Th2以上の値である場合は、フラグFtをセット状態のまま維持する。一方、推定値Ge(t)が閾値Th2未満の値である場合で、かつフラグFtがセット状態である場合は、フラグFtを非セット状態に設定する。
 ステップS114に移行した場合は、修正処理作動フラグFraをセット状態に設定して、一連の処理を終了する。
The correction process operation flag setting unit 12 determines whether or not the estimated value Ge (t) read this time is “0” when the flag Ft is set. If it is determined that the value is “0”, it is determined that the change has occurred suddenly, and the flag Ft is set to a non-set state. On the other hand, when it is determined that it is not “0”, it is determined that there is no sudden change, and when the estimated value Ge (t) is a value equal to or greater than the threshold Th2, the flag Ft is maintained in the set state. On the other hand, when the estimated value Ge (t) is a value less than the threshold value Th2, and the flag Ft is set, the flag Ft is set to a non-set state.
When the process proceeds to step S114, the correction process operation flag Fra is set to the set state, and the series of processes ends.
(加減速制御処理)
 次に、図11に基づき、コントローラ6の加減速制御処理の処理手順を説明する。図11は、加減速制御処理の処理手順の一例を示すフローチャートである。なお、図11の処理は、予め設定されたサンプリングクロックに同期して繰り返し実行される。
 コントローラ6において専用のプログラムが実行され、加減速制御処理が実行されると、まず、図11に示すように、ステップS200に移行する。
 ステップS200では、ドライバ加減速要求推定部6Aにおいて、アクセル操作検出信号Adに基づいて、ドライバ加減速要求の推定値Geをマップデータから読み出す。そして、読み出した推定値Geを、指令値算出部3B、修正量算出部6C及び加算器6Eにそれぞれ供給して、ステップS202に移行する。
(Acceleration / deceleration control processing)
Next, the processing procedure of the acceleration / deceleration control processing of the controller 6 will be described based on FIG. FIG. 11 is a flowchart illustrating an example of a processing procedure of acceleration / deceleration control processing. The process of FIG. 11 is repeatedly executed in synchronization with a preset sampling clock.
When a dedicated program is executed in the controller 6 and acceleration / deceleration control processing is executed, first, the process proceeds to step S200 as shown in FIG.
In step S200, the driver acceleration / deceleration request estimation unit 6A reads the estimated value Ge of the driver acceleration / deceleration request from the map data based on the accelerator operation detection signal Ad. Then, the read estimated value Ge is supplied to the command value calculation unit 3B, the correction amount calculation unit 6C, and the adder 6E, respectively, and the process proceeds to step S202.
 ステップS202では、修正量算出部6Cの修正量決定部13において、修正処理作動フラグFraがセット状態か否かを判定する。そして、セット状態であると判定した場合(Yes)は、ステップS204に移行し、非セット状態であると判定した場合(No)は、ステップS212に移行する。
 ステップS204に移行した場合は、修正量決定部13において、供給された車速指令値Voutに基づき、修正量マップ14から修正量Grを読み出す。そして、読み出した修正量Grを指令値算出部6Bに供給して、ステップS206に移行する。
 ステップS206では、指令値算出部6Bの規範車両モデル10において、推定値Geと、修正量Grとに基づき、規範車速Vcを算出する。そして、算出した規範車速Vcを減算器11に供給して、ステップS208に移行する。なお、修正処理作動フラグFraがセット状態である場合は、転がり抵抗成分R1、空気抵抗成分R2が共に「0」となる。
In step S202, the correction amount determination unit 13 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is set. When it is determined that the set state is set (Yes), the process proceeds to step S204. When it is determined that the set state is set (No), the process proceeds to step S212.
When the process proceeds to step S204, the correction amount determination unit 13 reads the correction amount Gr from the correction amount map 14 based on the supplied vehicle speed command value Vout. Then, the read correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S206.
In step S206, the reference vehicle speed Vc is calculated based on the estimated value Ge and the correction amount Gr in the reference vehicle model 10 of the command value calculation unit 6B. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S208. When the correction processing operation flag Fra is set, both the rolling resistance component R1 and the air resistance component R2 are “0”.
 ステップS208では、減算器11において、規範車速Vcと実車速Vdとに基づき車速指令値Voutを演算する。そして、演算した車速指令値Voutを、修正量算出部6Cに供給すると共に、車速サーボ6Dを介してアシストトルクGoutとして加算器6Eに供給して、ステップS210に移行する。
 ステップS210では、加算器6Eにおいて、車速サーボ6Dを介して供給されたアシストトルクGoutと、推定値Geとを加算すると共に、加算結果に対応する電流指令値Ioutを電動モータ2に出力して、一連の処理を終了する。
In step S208, the subtractor 11 calculates a vehicle speed command value Vout based on the reference vehicle speed Vc and the actual vehicle speed Vd. Then, the calculated vehicle speed command value Vout is supplied to the correction amount calculation unit 6C and also supplied to the adder 6E as the assist torque Gout via the vehicle speed servo 6D, and the process proceeds to step S210.
In step S210, the adder 6E adds the assist torque Gout supplied via the vehicle speed servo 6D and the estimated value Ge, and outputs a current command value Iout corresponding to the addition result to the electric motor 2. A series of processing ends.
 一方、ステップS202において、修正処理作動フラグFraが非セット状態であると判定してステップS212に移行した場合は、規範車両モデル10において、修正量Grを用いずに、推定値Geと、転がり抵抗成分R1と、空気抵抗成分R2とに基づき、規範車速Vcを算出して、ステップS208に移行する。この場合、修正量Grを供給しないように構成してもよいし、修正量Grとして「0」を供給する構成としてもよい。 On the other hand, if it is determined in step S202 that the correction process operation flag Fra is not set and the process proceeds to step S212, the estimated value Ge and the rolling resistance are not used in the reference vehicle model 10 without using the correction amount Gr. Based on the component R1 and the air resistance component R2, the reference vehicle speed Vc is calculated, and the process proceeds to step S208. In this case, the correction amount Gr may not be supplied, or “0” may be supplied as the correction amount Gr.
(動作)
 次に、動作を説明する。
 まず、自動車1の電源が投入されていると、コントローラ6には、アクセル操作検出信号Ad及び車速検出信号Vdが供給され、ドライバ加減速要求推定部6Aにおいて、アクセル操作検出信号Adに基づいて、ドライバ加減速要求の推定値Geが求められる(ステップS200)。推定値Geは、指令値算出部6B、修正量算出部6C及び加算器6Eにそれぞれ供給される。
(Operation)
Next, the operation will be described.
First, when the power of the automobile 1 is turned on, the accelerator operation detection signal Ad and the vehicle speed detection signal Vd are supplied to the controller 6, and the driver acceleration / deceleration request estimation unit 6A is based on the accelerator operation detection signal Ad. An estimated value Ge of the driver acceleration / deceleration request is obtained (step S200). The estimated value Ge is supplied to each of the command value calculation unit 6B, the correction amount calculation unit 6C, and the adder 6E.
 現時点では、修正処理作動フラグFraは非セット状態であり(ステップS202のNo)、規範車両モデル10では、推定値Ge、抵抗成分R1、R2に基づき、規範車速Vcが求められ、更に、規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される(ステップS208)。そして、その車速指令値Voutが車速サーボ6Dび修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eにおいて、アシストトルクGoutと推定値Geとの加算値に応じた指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される(ステップS210)。
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。
At present, the correction processing operation flag Fra is not set (No in step S202). In the reference vehicle model 10, the reference vehicle speed Vc is obtained based on the estimated value Ge and the resistance components R1 and R2, and further, the reference vehicle speed. A vehicle speed command value Vout is calculated based on Vc and the vehicle speed detection signal Vd (step S208). Then, the vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C, respectively. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout, and finally an adder 6E generates a command current Iout corresponding to the added value of the assist torque Gout and the estimated value Ge. The command current Iout is output to 2 (step S210).
Therefore, the electric motor 2 is rotationally driven by the command current Iout obtained by adding the estimated value Ge representing the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the reference vehicle speed Vc. Will be.
 一方、修正量算出部6Cの修正処理作動フラグ設定部12は、修正処理作動フラグFraがセット状態か否かを判定し、セット状態では無いと判定すると(ステップS100のNo)、供給される推定値Geを読み込む(ステップS108)。修正処理作動フラグ設定部12は、まず、フラグFtが非セット状態のときに最初に読み込んだ推定値Geが閾値Th2以上か否かを判定し、閾値Th1以上の値であると判定するとフラグFtをセット状態に設定する。そして、修正処理作動フラグ設定部12は、2回目以降に読み込んだ推定値Geについて、読み込んだ推定値Geと閾値Th2及び下限値Th3との比較処理を行う(ステップS110)。そして、この比較結果とフラグFtとに基づき、推定値Geが、閾値Th2以上の状態から下限値Th3(本実施形態では「0」)へと急激に変化しているか否かを判定する(ステップS112)。この判定により、修正処理作動フラグ設定部12は、急変していると判定すると(ステップS112のYes)、修正処理作動フラグをセット状態に設定する(ステップS114)。 On the other hand, the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flag Fra is in the set state, and if it is determined that it is not in the set state (No in step S100), the supplied estimation The value Ge is read (step S108). The correction process operation flag setting unit 12 first determines whether or not the estimated value Ge that is read first when the flag Ft is in the non-set state is equal to or greater than the threshold Th2, and determines that the estimated value Ge is equal to or greater than the threshold Th1. Set to the set state. Then, the correction process operation flag setting unit 12 compares the read estimated value Ge with the threshold value Th2 and the lower limit value Th3 for the estimated value Ge read after the second time (step S110). Then, based on the comparison result and the flag Ft, it is determined whether or not the estimated value Ge is suddenly changed from a state equal to or higher than the threshold Th2 to the lower limit Th3 (“0” in the present embodiment) (step). S112). If it is determined that the correction processing operation flag setting unit 12 has suddenly changed (Yes in step S112), the correction processing operation flag is set to the set state (step S114).
 つまり、ドライバがアクセルペダル8を踏み込んでいる状態から、急にアクセルペダルから足を離した状態へと移行したことにより、修正処理の作動が開始される。加えて、アクセルペダル8から足を離したことで定速走行制御が開始され、直前における推定値Geが、定速走行制御用の推定値Ge'として保持される。更に、定速走行制御が開始されると、以降はフラグFaがセット状態となり、転がり抵抗成分R1及び空気抵抗成分R2が0となる。
 修正量算出部6Cの修正量決定部13は、修正処理作動フラグFraがセット状態であると判定すると(ステップS202のYes)、指令値算出部6Bから供給される車速指令値Voutに基づき、修正量マップ14から、Voutの大きさに応じた修正量Grを取得して(ステップS204)、取得した修正量Grを指令値算出部6Bに供給する。
That is, the operation of the correction process is started when the driver suddenly shifts from the state in which the accelerator pedal 8 is depressed to the state in which the driver suddenly removes the foot from the accelerator pedal. In addition, the constant speed running control is started by releasing the foot from the accelerator pedal 8, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control. Further, when the constant speed traveling control is started, the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero.
When the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the correction processing operation flag Fra is in the set state (Yes in step S202), the correction amount determination unit 13 corrects based on the vehicle speed command value Vout supplied from the command value calculation unit 6B. A correction amount Gr corresponding to the magnitude of Vout is acquired from the amount map 14 (step S204), and the acquired correction amount Gr is supplied to the command value calculation unit 6B.
 修正量作動フラグFraがセット状態である場合(ステップS202のYes)、指令値算出部6Bの規範車両モデル10では、供給される修正量Gr、推定値Ge、抵抗成分R1(0)及びR2(0)に基づき、実車速Vdへと近づくように修正された規範車速Vcが求められる。更に、修正された規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される。そして、その車速指令値Voutが車速サーボ6D及び修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eを介して、指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される。 When the correction amount operation flag Fra is in the set state (Yes in step S202), in the reference vehicle model 10 of the command value calculation unit 6B, the supplied correction amount Gr, estimated value Ge, resistance components R1 (0) and R2 ( 0), the reference vehicle speed Vc corrected so as to approach the actual vehicle speed Vd is obtained. Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd. The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout. Finally, a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を、修正された規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。
 なお、規範車速Vcの修正処理は、作動時間taを経過するまで繰り返し実行され、作動時間taを経過したと判定されると(ステップS104のYes)、修正処理作動フラグFraが非セット状態に設定され修正処理が終了する(ステップS106)。
Therefore, the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
The correction process of the reference vehicle speed Vc is repeatedly executed until the operation time ta elapses. When it is determined that the operation time ta has elapsed (Yes in step S104), the correction process operation flag Fra is set to a non-set state. Then, the correction process ends (step S106).
 このように、ドライバの加減速意図が急変した場合に、規範車速Vcが実車速Vdに近づくように修正するようにしたので、ドライバが加速の停止を意図して急にアクセルペダル8から足を離したときでも、修正量の分だけ規範車速Vcと実車速Vdとの差を小さくすることができる。つまり、修正しない場合と比較して、実車速Vdを規範車速Vcへと速く収束させることができるので、定速走行制御が比較的円滑に開始されることになる。 As described above, when the driver's intention to accelerate or decelerate suddenly changes, the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd. Therefore, the driver suddenly depresses his / her foot from the accelerator pedal 8 in order to stop the acceleration. Even when released, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced by the correction amount. That is, since the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc as compared with the case where the correction is not made, the constant speed traveling control is started relatively smoothly.
 次に、図12に基づき、ドライバが急な上り坂でアクセルペダル8を大きく踏み込んだ状態から急にアクセルペダル8を離した場合の具体的な動作例を従来例と比較しながら説明する。
 図12(a)及び(b)は、従来技術及び本実施形態の、アクセル操作に応じた推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。なお、図12中の破線が実車速Vdであり、実線が規範車速Vcである。
Next, based on FIG. 12, a specific operation example in the case where the accelerator pedal 8 is suddenly released from a state where the accelerator pedal 8 is greatly depressed on a steep uphill will be described in comparison with the conventional example.
12 (a) and 12 (b) show an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) according to the accelerator operation according to the prior art and the present embodiment. It is a wave form diagram which shows each time change of Vd. Note that the broken line in FIG. 12 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
 図12(a)に示すように、従来技術の自動車においては、急な上り坂において、ドライバがアクセルペダルを大きく踏み込んだ状態で自動車が上り坂を登ると、踏み込み量の大きさに応じてドライバ加減速要求値Geも大きな値となり規範車速Vcも大きくなる。一方、自動車は、重力に逆らって坂を上っているため平坦路と比較して規範車速Vcに対して実車速Vdが小さくなり、両者の差が大きくなる。そして、時刻t1の時点で、ドライバがアクセルペダルから急に足を離すと、この直前のドライバ加減速要求値Geが定速走行制御用のドライバ加減速要求値Ge’として保持される。そのため、定速走行制御が開始されると、図12(a)の丸で囲んだ範囲に示すように、規範車速Vcと実車速Vdとの差が大きくなり、実車速Vdが規範車速Vcに収束するまでに時刻t1から時刻t3までの時間がかかることになる。従って、ドライバは、加速の停止を意図してアクセルペダルから足を離したにもかかわらず、時刻t1からt3の間は加速制御が行われるため違和感を受けることになる。 As shown in FIG. 12 (a), in a conventional vehicle, when a driver climbs an uphill in a state where the driver depresses the accelerator pedal greatly on a steep uphill, the driver according to the amount of depression. The acceleration / deceleration request value Ge also becomes a large value, and the reference vehicle speed Vc also becomes large. On the other hand, since an automobile climbs a slope against gravity, the actual vehicle speed Vd is smaller than the standard vehicle speed Vc compared to a flat road, and the difference between the two is increased. When the driver suddenly removes his / her foot from the accelerator pedal at time t1, the immediately preceding driver acceleration / deceleration request value Ge is held as the driver acceleration / deceleration request value Ge ′ for constant speed traveling control. Therefore, when the constant speed traveling control is started, as shown in the circled range in FIG. 12A, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd becomes large, and the actual vehicle speed Vd becomes the reference vehicle speed Vc. It takes time from time t1 to time t3 to converge. Therefore, the driver feels uncomfortable because the acceleration control is performed between the times t1 and t3 even though the driver has lifted his / her foot from the accelerator pedal with the intention of stopping the acceleration.
 一方、図12(b)に示すように、本実施形態の自動車1においては、時刻t1までは従来技術と同様となるが、時刻t1の時点で、ドライバ加減速意図の急変が検出されるため修正量作動フラグFraがセット状態となる。これにより、修正処理が作動して、規範車速Vcと実車速Vdとの偏差(車速指令値Vout)の大きさに応じた修正量Grによって規範車速Vcが修正される。そのため、図12(b)の丸で囲んだ範囲に示すように、規範車速Vcが実車速Vdへと近づいていき、時刻t2(t2<t3)の時点で、実車速Vdが規範車速Vcへと収束する。つまり、従来技術と比較して、加速制御が発生する期間を短くすることができるので、ドライバが感じる違和感を低減することが可能となる。具体的に、従来技術よりも、図12(b)中のtd1の期間だけ短くすることが可能である。 On the other hand, as shown in FIG. 12 (b), in the automobile 1 of the present embodiment, it is the same as the prior art until the time t1, but a sudden change in the driver acceleration / deceleration intention is detected at the time t1. The correction amount operation flag Fra is set. Thus, the correction process is activated, and the reference vehicle speed Vc is corrected by the correction amount Gr corresponding to the magnitude of the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc and the actual vehicle speed Vd. Therefore, as shown in the circled range in FIG. 12B, the reference vehicle speed Vc approaches the actual vehicle speed Vd, and at the time t2 (t2 <t3), the actual vehicle speed Vd becomes the reference vehicle speed Vc. And converge. That is, compared with the prior art, the period during which the acceleration control occurs can be shortened, so that it is possible to reduce the uncomfortable feeling felt by the driver. Specifically, it is possible to make it shorter than the prior art by the period td1 in FIG.
 なお、本実施形態において、規範車両モデル10で算出した規範車速Vcに基づき、自動車1に対する加減速制御及び定速走行制御を行う構成としているが、この構成に限らず、規範車両モデル10で算出した規範加速度(目標加速度)Gcに基づき、自動車1に対する加減速制御及び定速走行制御を行う構成としてもよい。つまり、この構成においては、実加速度Gdが規範加速度Gcに一致するように加減速制御を行う。この場合、車速センサ7で検出した実車速Vdを微分することによって実加速度Gdを求める構成としてもよいし、加速度センサによって、実加速度Gdを求める構成としてもよい。また、この構成とした場合は、車速指令値Vout(目標車速Vc-実車速Vd)に代えて、「目標加速度Gc-実加速度Gd」の大きさに応じた修正量Grで目標加速度Gcが実加速度Gdに近づくように該目標加速度Gcを修正する。このことは、以降の各実施形態においても同様である。 In the present embodiment, the acceleration / deceleration control and the constant speed traveling control for the automobile 1 are performed based on the reference vehicle speed Vc calculated by the reference vehicle model 10, but not limited to this configuration, the calculation is performed by the reference vehicle model 10. The acceleration / deceleration control and the constant speed traveling control for the automobile 1 may be performed based on the reference acceleration (target acceleration) Gc. That is, in this configuration, acceleration / deceleration control is performed so that the actual acceleration Gd matches the reference acceleration Gc. In this case, the actual acceleration Gd may be obtained by differentiating the actual vehicle speed Vd detected by the vehicle speed sensor 7, or the actual acceleration Gd may be obtained by an acceleration sensor. Further, in this configuration, instead of the vehicle speed command value Vout (target vehicle speed Vc−actual vehicle speed Vd), the target acceleration Gc is actual with a correction amount Gr corresponding to the magnitude of “target acceleration Gc−actual acceleration Gd”. The target acceleration Gc is corrected so as to approach the acceleration Gd. The same applies to the following embodiments.
 ここで、本実施形態において、ドライバ加減速要求推定部6Aが加減速要求検出部に対応し、規範車両モデル10が制御目標値演算部に対応し、車速センサ7が実測値検出部に対応する。
 また、本実施形態において、修正量算出部6C及び規範車両モデル10が、制御目標値修正部に対応し、減算器11、車速サーボ6D及び加算器6Eが加減速制御部及び定速走行制御部に対応し、アクセルペダル8がアクセル操作部に対応する。
Here, in this embodiment, the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit, the reference vehicle model 10 corresponds to the control target value calculation unit, and the vehicle speed sensor 7 corresponds to the actual measurement value detection unit. .
In the present embodiment, the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit, and the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit. The accelerator pedal 8 corresponds to the accelerator operation unit.
(第1実施形態の効果)
(1)ドライバ加減速要求推定部6Aが、ドライバの加減速要求を示す加減速要求値を推定する。規範車両モデル10が、ドライバ加減速要求推定部6Aが推定したドライバ加減速要求値の推定値Geに基づき自動車1の規範車速(目標車速)Vcを求める。車速センサ7が、実車速Vdを検出する。減算器11、車速サーボ6D及び加算器6Eが、実車速Vcが規範車速Vcに一致するように自動車1に対する加減速制御を行うと共に、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の推定値Geに基づき、ドライバの操作によらず自動的に車速を制御する定速走行制御を実施する。修正量算出部6C及び規範車両モデル10が、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと急変したと判定すると、定速走行制御に用いる規範車速Vcを、車速指令値Voutの大きさに応じた修正量Grで実車速Vdに近づくように修正する修正処理(第1修正処理)を実施する。
(Effect of 1st Embodiment)
(1) The driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating a driver acceleration / deceleration request. The reference vehicle model 10 determines the reference vehicle speed (target vehicle speed) Vc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A. The vehicle speed sensor 7 detects the actual vehicle speed Vd. The subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the vehicle 1 so that the actual vehicle speed Vc matches the reference vehicle speed Vc, and from a state in which there is a driver acceleration / deceleration request based on the estimated value Ge. If it is determined that the driver has changed to a state where there is no acceleration / deceleration request, the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change. Implement control. If the correction amount calculation unit 6C and the normative vehicle model 10 determine that the driver's acceleration / deceleration request is suddenly changed based on the estimated value Ge to a driver's acceleration / deceleration request, the norm used for constant speed traveling control A correction process (first correction process) is performed to correct the vehicle speed Vc so as to approach the actual vehicle speed Vd by a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout.
 これにより、推定値Geが急変した後に、定速走行制御が開始された場合でも、規範車速Vcを実車速Vdに近づくように修正することができるので、規範車速Vcと実車速Vdとの偏差が大きい場合でも実車速Vdを規範車速Vcに比較的速く収束させることができる。これにより、例えば、アクセル操作によって推定値Geが急変時に、加速停止の意図に反して行われる加速制御の時間を短くすることができ、ドライバに与える違和感を低減することができる。従って、推定値Geの急変時でも、ドライバの加減速意図に応じた車両挙動へと比較的滑らかに移行することができるという効果が得られる。
 また、制御目標値を車速としたため、過渡的な挙動補正が可能となり、ドライバ加減速意図により近い車両挙動を容易に実現することができるという効果が得られる。
Thereby, even when the constant speed traveling control is started after the estimated value Ge changes suddenly, the reference vehicle speed Vc can be corrected so as to approach the actual vehicle speed Vd, and therefore the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. Even when the actual vehicle speed Vd is large, the actual vehicle speed Vd can be converged relatively quickly to the reference vehicle speed Vc. Thereby, for example, when the estimated value Ge is suddenly changed by an accelerator operation, it is possible to shorten the time of acceleration control that is performed against the intention of stopping acceleration, and to reduce the uncomfortable feeling given to the driver. Therefore, even when the estimated value Ge changes suddenly, there is an effect that the vehicle behavior can be shifted relatively smoothly according to the driver's intention of acceleration / deceleration.
In addition, since the control target value is the vehicle speed, transient behavior correction can be performed, and the vehicle behavior closer to the driver acceleration / deceleration intention can be easily realized.
(2)ドライバ加減速要求推定部6Aが、ドライバの加減速要求を示す加減速要求値を推定する。規範車両モデル10が、ドライバ加減速要求推定部6Aが推定したドライバ加減速要求値の推定値Geに基づき自動車1の規範加速度(目標加速度)Gcを求める。加速度センサが、実加速度Gdを検出する。減算器11、車速サーボ6D及び加算器6Eが、実加速度Gcが規範加速度Gcに一致するように自動車1に対する加減速制御を行うと共に、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の推定値Geに基づき、ドライバの操作によらず自動的に車速を制御する定速走行制御を実施する。修正量算出部6C及び規範車両モデル10が、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと急変したと判定すると、定速走行制御に用いる規範車速Vcを、車速指令値Voutの大きさに応じた修正量Grで実車速Vdに近づくように修正する修正処理(第1修正処理)を実施する。 (2) The driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request. The reference vehicle model 10 obtains the reference acceleration (target acceleration) Gc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A. The acceleration sensor detects the actual acceleration Gd. The subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the automobile 1 so that the actual acceleration Gc coincides with the reference acceleration Gc, and from the state where there is a driver acceleration / deceleration request based on the estimated value Ge. If it is determined that the driver has changed to a state where there is no acceleration / deceleration request, the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change. Implement control. If the correction amount calculation unit 6C and the normative vehicle model 10 determine that the driver's acceleration / deceleration request is suddenly changed based on the estimated value Ge to a driver's acceleration / deceleration request, the norm used for constant speed traveling control A correction process (first correction process) is performed to correct the vehicle speed Vc so as to approach the actual vehicle speed Vd by a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout.
 これにより、推定値Geが急変した後に、定速走行制御が開始された場合でも、規範加速度Gcを実加速度Gdに近づくように修正することができるので、規範加速度Gcと実加速度Gdとの偏差が大きい場合でも実加速度Gdを規範加速度Gcに比較的速く収束させることができる。これにより、例えば、アクセル操作によって推定値Geが急変時に、加速停止の意図に反して行われる加速制御の時間を短くすることができ、ドライバに与える違和感を低減することができる。従って、推定値Geの急変時でも、ドライバの加減速意図に応じた車両挙動へと比較的滑らかに移行することができるという効果が得られる。
 また、制御目標値を加速度としたため、定常的な挙動補正が可能となり、ドライバ加減速意図により近い車両挙動を位相遅れなく実現することができるという効果が得られる。
Thus, even when the constant speed traveling control is started after the estimated value Ge changes suddenly, the reference acceleration Gc can be corrected so as to approach the actual acceleration Gd, and therefore the deviation between the reference acceleration Gc and the actual acceleration Gd. Even when is large, the actual acceleration Gd can be converged relatively quickly to the reference acceleration Gc. Thereby, for example, when the estimated value Ge is suddenly changed by an accelerator operation, it is possible to shorten the time of acceleration control that is performed against the intention of stopping acceleration, and to reduce the uncomfortable feeling given to the driver. Therefore, even when the estimated value Ge changes suddenly, there is an effect that the vehicle behavior can be shifted relatively smoothly according to the driver's intention of acceleration / deceleration.
Further, since the control target value is acceleration, steady behavior correction can be performed, and the vehicle behavior closer to the driver acceleration / deceleration intention can be realized without phase delay.
(3)減算器11、車速サーボ6D及び加算器6Eが、推定値Geが、ドライバの加減速要求が有るときの数値範囲において予め設定された閾値Th1以上の値から予め設定されたドライバの加減速要求が無い状態を示す下限値Th3へと変化したと判定すると、定速走行制御を実施し、修正量算出部6C及び規範車両モデル10が、ドライバの加減速要求が有るときの数値範囲において予め設定された閾値Th2以上の値からドライバの加減速要求が無い状態を示す下限値Th3へと急変したと判定すると、第1修正処理を実施する。 (3) The subtractor 11, the vehicle speed servo 6D, and the adder 6E cause the estimated value Ge to be added by a driver that has been set in advance from a value that is greater than or equal to a threshold Th1 that is set in advance in the numerical range when there is a driver acceleration / deceleration request. If it is determined that the speed has changed to the lower limit value Th3 indicating that there is no deceleration request, the constant speed traveling control is performed, and the correction amount calculation unit 6C and the reference vehicle model 10 are within a numerical range when there is a driver acceleration / deceleration request. If it is determined that the value has changed from a value greater than or equal to the preset threshold Th2 to the lower limit value Th3 indicating that there is no driver acceleration / deceleration request, the first correction process is performed.
 推定値Geが、定速走行制御を適切に実施できる走行速度に対応する閾値Th1以上の値から加減速要求の無い状態を示す下限値Th3へと変化したときに定速走行制御を実施するようにしたので確実に定速走行制御を実施することができるという効果が得られる。加えて、推定値Geが、ドライバの加減速要求が有る状態を示す閾値Th2以上の値から下限値Th3へと変化したときに第1修正処理を実施するようにしたので、閾値Th2を第1修正処理を行うのに適切な値に設定することで、第1修正処理をより効果的に実施することができるという効果が得られる。 The constant speed traveling control is performed when the estimated value Ge changes from a value equal to or higher than a threshold Th1 corresponding to a traveling speed at which the constant speed traveling control can be appropriately performed to a lower limit value Th3 indicating no acceleration / deceleration request. Therefore, the effect that the constant speed traveling control can be surely performed is obtained. In addition, since the first correction process is performed when the estimated value Ge changes from a value equal to or greater than the threshold value Th2 indicating a state where there is a driver acceleration / deceleration request to the lower limit value Th3, the threshold value Th2 is set to the first threshold value Th2. By setting to an appropriate value for performing the correction process, it is possible to obtain an effect that the first correction process can be performed more effectively.
(4)閾値Th2は、閾値Th1よりも大きくした。
 第1修正処理は、推定値Geの急変度合いが大きいほど効果的となるので、定速走行制御の実施条件を満たした上でより大きい値に設定することで、第1修正処理をより効果的に実施することができるという効果が得られる。
(4) The threshold value Th2 is larger than the threshold value Th1.
Since the first correction process becomes more effective as the degree of sudden change in the estimated value Ge is larger, the first correction process is more effective by setting a larger value after satisfying the execution condition of the constant speed traveling control. The effect that it can be implemented is obtained.
(5)減算器11、車速サーボ6D及び加算器6Eが、ドライバの加減速要求が有る状態から、予め設定された変化時間上限値以下の時間でドライバの加減速要求が無い状態へと変化したときに急変したと判定する。
 例えば、変化時間上限値を、ドライバが意図しない加速や減速を感じる範囲の時間の最大値に設定することで、推定値Geの急変時を確実に検出することができるという効果が得られる。なお、変化時間上限値は、ドライバの官能試験等を通じて適切な値を予め求めておく。
(6)第1修正処理において用いる、規範車速Vc又は規範加速度Gcの修正量Grに上限値を設けた。
 これにより、修正量Grが過大となることによる急激な車両挙動の変化が生じることを防ぐことができるという効果が得られる。
(5) The subtractor 11, the vehicle speed servo 6D, and the adder 6E have changed from the state where the driver's acceleration / deceleration request is made to the state where the driver's acceleration / deceleration request is not made in a time shorter than the preset change time upper limit value. It is determined that it has suddenly changed.
For example, by setting the upper limit of the change time to the maximum value of the time in which the driver feels unintended acceleration or deceleration, an effect that the sudden change of the estimated value Ge can be reliably detected can be obtained. Note that the upper limit of the change time is determined in advance through a driver's sensory test or the like.
(6) An upper limit value is provided for the correction amount Gr of the reference vehicle speed Vc or the reference acceleration Gc used in the first correction process.
As a result, it is possible to prevent an abrupt change in vehicle behavior due to an excessive correction amount Gr.
(7)修正量算出部6C及び規範車両モデル10が、予め設定された作動時間taだけ、第1修正処理を実施する。
 第1修正処理の作動時間を設定することにより、規範車速Vc又は規範加速度Gcに対して過剰な修正が行われるのを防ぐことができるという効果が得られる。
 例えば、規範車速Vcと実車速Vdとに一定の偏差が存在しないとドライバ加減速意図に合致する車両挙動を実現できない状況において、一定の偏差が生じた際の修正量Grが「0」とならない場合、一定の偏差を保つことができない。そのため、ドライバ加減速意図に合致する車両挙動を実現することができない。つまり、規範車速Vc又は規範加速度Gcの修正を作動時間taの間のみ行うことにより一定の偏差が無くなるような過度の修正を防ぐことができる。これにより、ドライバの加減速意図により近い車両挙動を実現することができるという効果が得られる。
(7) The correction amount calculation unit 6C and the reference vehicle model 10 perform the first correction process for a preset operation time ta.
By setting the operation time of the first correction process, it is possible to prevent an excessive correction from being performed on the reference vehicle speed Vc or the reference acceleration Gc.
For example, the correction amount Gr when a certain deviation occurs does not become “0” in a situation where the vehicle behavior that matches the driver acceleration / deceleration intention cannot be realized unless there is a certain deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. In this case, a certain deviation cannot be maintained. Therefore, vehicle behavior that matches the driver's acceleration / deceleration intention cannot be realized. That is, it is possible to prevent an excessive correction that eliminates a certain deviation by correcting the reference vehicle speed Vc or the reference acceleration Gc only during the operation time ta. Thereby, the effect that the vehicle behavior closer to the driver's intention of acceleration / deceleration can be realized.
(第2実施形態)
 次に、図13乃至図17に基づき、本発明の第2実施形態を説明する。図13乃至図17は、本発明の第2実施形態を示す図であり、図13は、第2実施形態における自動車1のモデルを示す概念図である。なお、上記第1実施形態と同様の構成には同じ符号を付し、その重複する説明は省略する。
 即ち、本実施形態では、アクセルペダル8の他にドライバが操作可能なブレーキペダル20と、そのブレーキペダル20の踏み込み量を検出するブレーキ操作検出装置21と、を備えている。そして、コントローラ6には、車速センサ7が出力する車速検出信号Vdと、アクセル操作検出装置9が出力するアクセル操作検出信号Adと共に、ブレーキ操作検出装置21が検出したブレーキ操作検出信号Bdが供給されるようになっている。
(Second Embodiment)
Next, based on FIG. 13 thru | or FIG. 17, 2nd Embodiment of this invention is described. FIGS. 13 to 17 are diagrams showing a second embodiment of the present invention, and FIG. 13 is a conceptual diagram showing a model of the automobile 1 in the second embodiment. In addition, the same code | symbol is attached | subjected to the structure similar to the said 1st Embodiment, and the overlapping description is abbreviate | omitted.
That is, in this embodiment, in addition to the accelerator pedal 8, a brake pedal 20 that can be operated by the driver and a brake operation detection device 21 that detects the amount of depression of the brake pedal 20 are provided. A brake operation detection signal Bd detected by the brake operation detection device 21 is supplied to the controller 6 together with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an accelerator operation detection signal Ad output from the accelerator operation detection device 9. It has become so.
 そして、図14に示すように、コントローラ6のドライバ加減速要求推定部6Aには、アクセル操作検出信号Ad及びブレーキ操作検出信号Bdが供給されている。ドライバ加減速要求推定部6Aは、それらアクセル操作検出信号Ad及びブレーキ操作検出信号Bdに基づき、推定値Geを求めるようになっている。
 即ち、上記第1実施形態では、ドライバはアクセルペダル8だけで加速及び減速の両方を制御するという前提で説明を行っているが、この第2実施形態では、ブレーキペダル20を踏み込むことでも減速操作を行えるようになっている。
As shown in FIG. 14, an accelerator operation detection signal Ad and a brake operation detection signal Bd are supplied to the driver acceleration / deceleration request estimation unit 6 </ b> A of the controller 6. The driver acceleration / deceleration request estimation unit 6A calculates an estimated value Ge based on the accelerator operation detection signal Ad and the brake operation detection signal Bd.
That is, in the first embodiment, the description is made on the assumption that the driver controls both acceleration and deceleration using only the accelerator pedal 8, but in the second embodiment, the deceleration operation can be performed by depressing the brake pedal 20. Can be done.
 図15は、本実施形態の修正量算出部6Cの機能構成を示すブロック図である。
 本実施形態において、修正量算出部6Cは、アクセルペダル8の操作に応じたドライバ加減速要求値Geに対応する修正量マップ14Aと、ブレーキペダル20の操作に応じたドライバ加減速要求値Geに対応する修正量マップ14Bとを備えている。
 つまり、本実施形態では、アクセル操作時とブレーキ操作時とではドライバの感度が異なることを考慮して、それぞれに適切な修正量の設定された修正量マップを用意する。修正量マップの作成方法については、上記第1実施形態と同様である。
FIG. 15 is a block diagram illustrating a functional configuration of the correction amount calculation unit 6C according to the present embodiment.
In the present embodiment, the correction amount calculation unit 6C uses the correction amount map 14A corresponding to the driver acceleration / deceleration request value Ge corresponding to the operation of the accelerator pedal 8 and the driver acceleration / deceleration request value Ge corresponding to the operation of the brake pedal 20. And a corresponding correction amount map 14B.
That is, in the present embodiment, a correction amount map in which an appropriate correction amount is set for each is prepared in consideration that the sensitivity of the driver is different between the accelerator operation and the brake operation. The method for creating the correction amount map is the same as that in the first embodiment.
 図16は、ドライバのブレーキ操作によるドライバ加減速要求値Geの変化に対する修正処理作動フラグFrbの時間変化の一例を示すタイミングチャートである。
 具体的に、修正処理作動フラグ設定部12は、図16に示すように、ドライバ加減速要求値の推定値Geが、予め設定された閾値Th4以下となっている状態から、上限値Th5へと急変したと判定すると、修正処理作動フラグFrbを、作動時間tbだけセット状態に設定する。なお、ブレーキ操作時においては、推定値Geがマイナスの値になるため閾値Th4も負の値として扱っているが、推定値Geの絶対値を用いて、閾値Th4を正の値とする構成としてもよい。この場合は、推定値Geの絶対値が、閾値Th4以上となっている状態から、下限値Th5へと急変したか否かを判定することになる。
FIG. 16 is a timing chart showing an example of a time change of the correction processing operation flag Frb with respect to a change in the driver acceleration / deceleration request value Ge due to the driver's brake operation.
Specifically, as shown in FIG. 16, the correction processing operation flag setting unit 12 changes the estimated value Ge of the driver acceleration / deceleration request value from a state where the estimated value Ge is equal to or less than a preset threshold value Th4 to the upper limit value Th5. If it is determined that there has been a sudden change, the correction processing operation flag Frb is set to the set state only for the operation time tb. At the time of brake operation, the estimated value Ge is a negative value, so the threshold value Th4 is also treated as a negative value. However, the absolute value of the estimated value Ge is used to make the threshold value Th4 a positive value. Also good. In this case, it is determined whether or not the absolute value of the estimated value Ge has suddenly changed from the state where the absolute value of the estimated value Ge is equal to or greater than the threshold value Th4 to the lower limit value Th5.
 本実施形態では、上限値Th5は「0」に設定されている。つまり、図16に示す例は、ドライバが、閾値Th4以下の推定値Geが出力されるほどブレーキペダル20を踏み込んでいる状態から、時刻t1において、急に推定値Geが「0」になる状態、即ち、ブレーキペダル20から急に足を離した状態へと移行している様子を示している。更に、修正処理作動フラグFrbが時刻t1から時刻t2までの作動時間tbの間だけセット状態となっている様子を示している。
 なお、本実施形態において、作動時間tbは、修正処理作動フラグFraに対応する作動時間taとは異なる長さに設定されている。つまり、修正処理の作動時間についても、アクセル操作の場合と、ブレーキ操作の場合とで適切な長さがそれぞれ異なる。そのため、作動時間の長さについても、実際の走行試験や官能試験等を通じて適切な値をそれぞれ設定する。
In the present embodiment, the upper limit value Th5 is set to “0”. That is, in the example shown in FIG. 16, the estimated value Ge suddenly becomes “0” at time t <b> 1 from the state where the driver depresses the brake pedal 20 so that the estimated value Ge of the threshold value Th <b> 4 or less is output. That is, it shows a state where the brake pedal 20 is suddenly released. Further, the correction processing operation flag Frb is in the set state only during the operation time tb from time t1 to time t2.
In the present embodiment, the operation time tb is set to a length different from the operation time ta corresponding to the correction processing operation flag Fra. That is, with regard to the operation time of the correction process, appropriate lengths differ between the accelerator operation and the brake operation. Therefore, appropriate values are set for the length of the operation time through actual running tests, sensory tests, and the like.
 図17(a)は、アクセル操作に対応する修正量マップの一例を示す図であり、(b)は、ブレーキ操作に対応する修正量マップの一例を示す図である。
 本実施形態において、図17(a)に示す、アクセル操作に対応する修正量マップ14Aは、上記第1実施形態の図6に示す修正量マップ14と同様の内容となっている。
 一方、図17(b)に示す、ブレーキ操作に対応する修正量マップ14Bは、車速指令値Voutが「0」から予め設定された正の値a1’の範囲において、修正量Grが、a1’に近づくにしたがって、予め設定された負の最大値b1’となるまで負方向へと非線形に増加する。そして、車速指令値Voutがa1’を超えると、修正量Grが負の最大値b1’で一定となる特性を有している。更に、修正量マップ14Bは、車速指令値Voutが「0」から予め設定された負の値a2’の範囲において、修正量Grが、a2’に近づくにしたがって、予め設定された正の最大値b2’となるまで正方向へと非線形に増加する。そして、車速指令値Voutがa2’を超えると、修正量Grが正の最大値b2’で一定となる特性を有している。
FIG. 17A is a diagram illustrating an example of a correction amount map corresponding to an accelerator operation, and FIG. 17B is a diagram illustrating an example of a correction amount map corresponding to a brake operation.
In the present embodiment, the correction amount map 14A corresponding to the accelerator operation shown in FIG. 17A has the same contents as the correction amount map 14 shown in FIG. 6 of the first embodiment.
On the other hand, in the correction amount map 14B corresponding to the brake operation shown in FIG. 17B, the correction amount Gr is a1 ′ within the range where the vehicle speed command value Vout is “0” to a preset positive value a1 ′. As the value approaches, it increases in a non-linear direction in a negative direction until reaching a preset negative maximum value b1 ′. When the vehicle speed command value Vout exceeds a1 ′, the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1 ′. Further, the correction amount map 14B shows that the positive maximum value set in advance as the correction amount Gr approaches a2 ′ in the range of the vehicle speed command value Vout from “0” to a preset negative value a2 ′. It increases non-linearly in the positive direction until it reaches b2 ′. When the vehicle speed command value Vout exceeds a2 ′, the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2 ′.
 例えば、自動車1が急な下り坂を下っている最中に、ドライバがブレーキペダル20を大きく踏み込んでいる状態から急にブレーキペダル20から足を離すと、ブレーキペダル20を大きく踏み込んでいる時点のドライバ加減速要求値Geに応じた規範車速Vcが定速走行制御の規範車速Vcとして設定される。このような場合、規範車速Vcに対して実車速Vdが上回るため、ドライバが減速の停止を意図してブレーキペダル20から足を離したにもかかわらず、減速制御が行われてしまう。このドライバの減速停止の意図に反する減速によって、ドライバに違和感を与えてしまう。 For example, if the driver suddenly removes his / her foot from the brake pedal 20 while the vehicle 1 is going down a steep downhill, the brake pedal 20 is greatly depressed. The reference vehicle speed Vc corresponding to the driver acceleration / deceleration request value Ge is set as the reference vehicle speed Vc for constant speed traveling control. In such a case, since the actual vehicle speed Vd exceeds the reference vehicle speed Vc, the deceleration control is performed even though the driver intends to stop the deceleration and lifts his foot from the brake pedal 20. The driver feels uncomfortable due to deceleration contrary to the driver's intention to decelerate and stop.
 そこで、本実施形態では、ブレーキ操作によって、ドライバ加減速要求値の推定値Geが急変した場合に、図17(b)の修正量マップ14Bに示すように車速指令値Voutの大きさに応じた大きさの修正量Grで、規範車速Vcが実車速Vdに近づくように該規範車速Vcを修正する。これにより、実車速Vdと規範車速Vcとの偏差が小さくなり、実車速Vdが規範車速Vcに収束しやすくなる。そのため、意図しない減速の発生を抑制することが可能となる。 Therefore, in the present embodiment, when the estimated value Ge of the driver acceleration / deceleration request value is suddenly changed by the brake operation, the vehicle speed command value Vout is set according to the magnitude of the vehicle speed command value Vout as shown in the correction amount map 14B of FIG. The reference vehicle speed Vc is corrected so that the reference vehicle speed Vc approaches the actual vehicle speed Vd with the magnitude correction amount Gr. As a result, the deviation between the actual vehicle speed Vd and the reference vehicle speed Vc is reduced, and the actual vehicle speed Vd is likely to converge to the reference vehicle speed Vc. Therefore, it is possible to suppress the occurrence of unintended deceleration.
 なお、修正量マップ14Aと14Bとは、車速指令値Voutの大きさに対する修正量がそれぞれ異なっている。また、修正量マップ14Bは、図17(b)に示すように、「0」を境として、a1’、b1’側の曲線L3と、a2’、b2’側の曲線L4とが非対称となっている。これは、減速側と加速側とでドライバの感じ方が異なるためである。 The correction amount maps 14A and 14B have different correction amounts for the magnitude of the vehicle speed command value Vout. In the correction amount map 14B, as shown in FIG. 17B, the curve L3 on the a1 ′, b1 ′ side and the curve L4 on the a2 ′, b2 ′ side are asymmetric with respect to “0”. ing. This is because the driver feels differently on the deceleration side and the acceleration side.
 図18は、図9と同様の波形図である。この図18に示す波形図でも、アクセル操作検出信号Adが時刻t1から徐々に減少し時刻t2において0になっている。これに対し、ブレーキ操作検出信号Bdは、時刻t3に至るまでは0を維持しているが、時刻t3においてドライバがブレーキペダル20を踏み始め、そこから徐々に踏み込み量が増大し、時刻t4において最大踏み込み量に至り、それ以降はその状態が維持されている。なお、ブレーキ操作検出信号Bdは、減速操作に対する信号であるため、本来ならばアクセル操作検出信号Adとは符号が逆であるが、この図18では絶対値で表記している。 FIG. 18 is a waveform diagram similar to FIG. Also in the waveform diagram shown in FIG. 18, the accelerator operation detection signal Ad gradually decreases from time t1 and becomes 0 at time t2. On the other hand, the brake operation detection signal Bd maintains 0 until time t3, but the driver starts stepping on the brake pedal 20 at time t3, and then the amount of depression gradually increases, and at time t4. The maximum amount of depression is reached, and the state is maintained thereafter. Since the brake operation detection signal Bd is a signal for the deceleration operation, the sign is reverse to that of the accelerator operation detection signal Ad if originally intended, but in FIG.
 このようなアクセル操作検出信号Ad及びブレーキ操作検出信号Bdの変化に対応し、フラグFaは、時刻t2において一旦セット状態なった後に、時刻t3において再び非セット状態に戻っている。同様に、転がり抵抗成分R1及び空気抵抗成分R2も、時刻t2において強制的に0となった後に、時刻t3において、転がり抵抗成分R1は、時刻t2以前の値に復帰し、空気抵抗成分R2は、その時点の規範車速Vcに基づいた値となっている。 Corresponding to such changes in the accelerator operation detection signal Ad and the brake operation detection signal Bd, the flag Fa is once set at the time t2, and then returns to the non-set state again at the time t3. Similarly, after the rolling resistance component R1 and the air resistance component R2 are forcibly set to 0 at time t2, at time t3, the rolling resistance component R1 returns to a value before time t2, and the air resistance component R2 is The value is based on the reference vehicle speed Vc at that time.
 規範車速Vcは、時刻t2以降は定速走行制御に移行したことに応じて制御開始時点に保持された推定値Ge’に応じた車速に固定されている。そして、時刻t3においてブレーキペダル20が踏み込まれたことに応じて定速走行制御自体が停止し、時刻t3移行はその時点のブレーキ操作検出信号Bdに応じた推定値Geが更新されて規範車両モデル10に供給されるとともに、上記のように転がり抵抗成分R1及び空気抵抗成分R2も0よりも大きい値となる。よって、規範車速Vcは、時刻t3以降は徐々に減少する。 The reference vehicle speed Vc is fixed to the vehicle speed according to the estimated value Ge ′ held at the control start time in response to the shift to the constant speed traveling control after the time t2. Then, the constant speed traveling control itself stops in response to the depression of the brake pedal 20 at time t3, and the estimated value Ge corresponding to the brake operation detection signal Bd at that time is updated and the reference vehicle model is shifted to time t3. 10, the rolling resistance component R1 and the air resistance component R2 are also larger than 0 as described above. Therefore, the reference vehicle speed Vc gradually decreases after time t3.
(動作)
 次に、動作を説明する。
 本実施形態においては、ブレーキペダル20が踏み込まれると、ブレーキ操作検出信号Bdがマイナス方向に増大するため、推定値Geはマイナス方向に大きな値となり、その推定値Geが加算器6Eを介して指令電流Ioutとして電動モータ2に出力される。これにより、電動モータ2は実質的に発電機として機能するようになって、回生ブレーキが発生する。
 なお、本実施形態において、修正処理作動フラグFrbの設定処理は、修正処理作動フラグFraの設定処理において閾値Th4及び上限値Th5との比較処理が追加され、かつフラグFtの設定処理について一部処理が追加されるのみで修正処理作動フラグFraの設定処理と同様となる。
(Operation)
Next, the operation will be described.
In the present embodiment, when the brake pedal 20 is depressed, the brake operation detection signal Bd increases in the minus direction, so that the estimated value Ge becomes a large value in the minus direction, and the estimated value Ge is commanded via the adder 6E. The current Iout is output to the electric motor 2. As a result, the electric motor 2 substantially functions as a generator, and regenerative braking occurs.
In the present embodiment, the correction process operation flag Frb is set by adding a comparison process between the threshold value Th4 and the upper limit value Th5 in the setting process of the correction process operation flag Fra, and a part of the setting process of the flag Ft. Is just the same as the processing for setting the correction processing operation flag Fra.
 具体的に、修正量算出部6Cの修正処理作動フラグ設定部12は、修正処理作動フラグFra及びFrbがセット状態か否かを判定し、両方ともセット状態では無いと判定すると(ステップS100のNo)、供給される推定値Geを読み込む(ステップS108)。修正処理作動フラグ設定部12は、まず、フラグFtが非セット状態のときに最初に読み込んだ推定値Geが正の値である場合は、推定値Geが閾値Th1以上か否かを判定し、負の値である場合は、推定値Geが閾値Th4以下か否かを判定する。ここでは、負の値であったとして、以降の動作を説明する。修正処理作動フラグ設定部12は、今回読み込んだ推定値Geが閾値Th4以下の値であると判定するとフラグFtをセット状態に設定する。そして、修正処理作動フラグ設定部12は、2回目以降に読み込んだ推定値Geについて、読み込んだ推定値Geと閾値Th4及び上限値Th5との比較処理を行う(ステップS110)。そして、この比較結果とフラグFtとに基づき、推定値Geが、閾値Th4以下の状態から上限値Th5(本実施形態では「0」)へと急激に変化しているか否かを判定する(ステップS112)。この判定により、修正処理作動フラグ設定部12は、急変していると判定すると(ステップS112のYes)、修正処理作動フラグFrbをセット状態に設定する(ステップS114)。 Specifically, the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the correction processing operation flags Fra and Frb are set, and determines that both are not set (No in step S100). ), The supplied estimated value Ge is read (step S108). First, when the estimated value Ge read first when the flag Ft is in the non-set state is a positive value, the correction processing operation flag setting unit 12 determines whether the estimated value Ge is equal to or greater than the threshold value Th1. In the case of a negative value, it is determined whether or not the estimated value Ge is equal to or less than a threshold value Th4. Here, the subsequent operation will be described assuming that the value is negative. If the correction processing operation flag setting unit 12 determines that the estimated value Ge read this time is a value equal to or smaller than the threshold Th4, the correction processing operation flag setting unit 12 sets the flag Ft to the set state. Then, the correction processing operation flag setting unit 12 compares the read estimated value Ge with the threshold value Th4 and the upper limit value Th5 for the estimated value Ge read after the second time (step S110). Then, based on the comparison result and the flag Ft, it is determined whether or not the estimated value Ge is abruptly changed from the state below the threshold Th4 to the upper limit Th5 (“0” in the present embodiment) (step). S112). If it is determined that the correction processing operation flag setting unit 12 has suddenly changed (Yes in step S112), the correction processing operation flag Frb is set to the set state (step S114).
 つまり、ドライバがブレーキペダル20を踏み込んでいる状態から、急にブレーキペダル20から足を離した状態へと移行したことにより、修正処理の作動が開始される。加えて、ブレーキペダル20から足を離したことで定速走行制御が開始され、直前における推定値Geが、定速走行制御用の推定値Ge'として保持される。更に、定速走行制御が開始されると、以降はフラグFaがセット状態となり、転がり抵抗成分R1及び空気抵抗成分R2が0となる。
 修正量算出部6Cの修正量決定部13は、修正処理作動フラグFrbがセット状態であると判定すると(ステップS202のYes)、指令値算出部6Bから供給される車速指令値Voutに基づき、修正量マップ14Bから、Voutの大きさに応じた修正量Grを取得して(ステップS204)、取得した修正量Grを規範車両モデル10に供給する。
That is, the operation of the correction process is started when the driver suddenly shifts from the state in which the driver depresses the brake pedal 20 to the state in which the driver suddenly releases the foot. In addition, the constant speed running control is started by releasing the foot from the brake pedal 20, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control. Further, when the constant speed traveling control is started, the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero.
If the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the correction processing operation flag Frb is set (Yes in step S202), the correction amount determination unit 13 corrects based on the vehicle speed command value Vout supplied from the command value calculation unit 6B. A correction amount Gr corresponding to the magnitude of Vout is acquired from the amount map 14B (step S204), and the acquired correction amount Gr is supplied to the reference vehicle model 10.
 修正量作動フラグFrbがセット状態である場合(ステップS202のYes)、規範車両モデル10では、供給される修正量Grと、推定値Ge、抵抗成分R1(0)、R2(0)に基づき、実車速Vdへと近づくように修正された規範車速Vcが求められる。更に、修正された規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される。そして、その車速指令値Voutが車速サーボ6D及び修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eを介して、指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される。 When the correction amount operation flag Frb is in the set state (Yes in step S202), in the reference vehicle model 10, based on the supplied correction amount Gr, the estimated value Ge, and the resistance components R1 (0) and R2 (0), The reference vehicle speed Vc corrected so as to approach the actual vehicle speed Vd is obtained. Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd. The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout. Finally, a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を、修正された規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。
 なお、規範車速Vcの修正処理は、作動時間tbを経過するまで繰り返し実行され、作動時間tbを経過したと判定されると(ステップS104のYes)、修正処理作動フラグFrbが非セット状態に設定され修正処理が終了する(ステップS106)。
Therefore, the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
The correction process of the reference vehicle speed Vc is repeatedly executed until the operation time tb elapses. When it is determined that the operation time tb has elapsed (Yes in step S104), the correction process operation flag Frb is set to a non-set state. Then, the correction process ends (step S106).
 このように、ドライバの加減速意図が急変した場合に、規範車速Vcが実車速Vdに近づくように修正するようにしたので、減速停止を意図して急にブレーキペダル20から足を離したときでも、修正分だけ規範車速Vcと実車速Vdとの差を小さくすることができる。つまり、修正しない場合と比較して、実車速Vdを規範車速Vcへと速く収束させることができるので、定速走行制御が比較的円滑に開始されることになる。 In this way, when the driver's intention to accelerate / decelerate suddenly changes, the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd. Therefore, when the driver suddenly lifts his / her foot from the brake pedal 20 with the intention of decelerating and stopping. However, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced by the correction amount. That is, since the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc as compared with the case where the correction is not made, the constant speed traveling control is started relatively smoothly.
 次に、図19に基づき、ドライバが急な下り坂でブレーキペダル20を大きく踏み込んだ状態から急にブレーキペダル20から足を離した場合の具体的な動作例を従来例と比較しながら説明する。
 図19(a)及び(b)は、従来技術及び本実施形態の、ドライバのブレーキ操作に対応する推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。なお、図19中の破線が実車速Vdであり、実線が規範車速Vcである。
Next, based on FIG. 19, a specific operation example in the case where the driver suddenly lifts his / her foot from the brake pedal 20 in a state where the brake pedal 20 is greatly depressed on a steep downhill will be described in comparison with the conventional example. .
19A and 19B show an estimated value (driver acceleration / deceleration request value) Ge, a standard vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle) corresponding to the brake operation of the driver according to the prior art and this embodiment. It is a wave form diagram which shows each time change of (speed) Vd. In addition, the broken line in FIG. 19 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
 図19(a)に示すように、従来技術の自動車においては、急な下り坂において、ドライバがブレーキペダル20を大きく踏み込んだ状態で自動車が下り坂を下ると、踏み込み量の大きさに応じてドライバ加減速要求値Geもマイナス方向に大きな値となり規範車速Vcが小さくなる。一方、自動車は、坂を下っているため平坦路と比較して規範車速Vcに対して実車速Vdが大きくなり、両者の差が大きくなる。そして、時刻t1の時点で、ドライバがブレーキペダル20から急に足を離すと、この直前のドライバ加減速要求値Geが定速走行制御用のドライバ加減速要求値Ge’として保持される。そのため、定速走行制御が開始されると、図19(a)の丸で囲んだ範囲に示すように、規範車速Vcと実車速Vdとの差が大きくなり、実車速Vdが規範車速Vcに収束するまでに時刻t3までかかることになる。従って、ドライバは減速停止を意図してブレーキペダル20から足を離したにもかかわらず、時刻t1からt3の間は減速制御が行われるため違和感を受けることになる。 As shown in FIG. 19 (a), in the conventional vehicle, when the driver goes downhill in a state where the driver has stepped down the brake pedal 20 on a steep downhill, according to the amount of depression. The driver acceleration / deceleration request value Ge also becomes a large value in the negative direction, and the reference vehicle speed Vc becomes small. On the other hand, since an automobile is going down a hill, the actual vehicle speed Vd is larger than the reference vehicle speed Vc compared to a flat road, and the difference between the two is increased. When the driver suddenly removes his / her foot from the brake pedal 20 at time t1, the immediately preceding driver acceleration / deceleration request value Ge is held as the driver acceleration / deceleration request value Ge ′ for constant speed traveling control. Therefore, when the constant speed traveling control is started, as shown in a circled range in FIG. 19A, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd becomes large, and the actual vehicle speed Vd becomes the reference vehicle speed Vc. It will take until time t3 to converge. Accordingly, the driver feels uncomfortable because the deceleration control is performed between the times t1 and t3 even though the driver has released his / her foot from the brake pedal 20 with the intention of decelerating and stopping.
 一方、図19(b)に示すように、本実施形態の自動車1においては、時刻t1までは従来技術と同様となるが、時刻t1の時点で、ドライバ加減速意図の急変が検出され修正量作動フラグFrbがセット状態となる。これにより、修正処理が作動して、規範車速Vcと実車速Vdとの偏差の大きさに応じた修正量Grによって規範車速Vcが修正される。そのため、図19(b)の丸で囲んだ範囲に示すように、規範車速Vcが修正量Grで実車速Vdへと近づいていくため、時刻t2(t2<t3)の時点で、実車速Vdが規範車速Vcへと収束する。つまり、従来技術と比較して、減速制御が発生する期間を短くすることが可能となる。具体的に、従来技術よりも、図19(b)中のtd2の期間だけ短くすることが可能である。従って、従来技術と比較して、ドライバが感じる違和感を低減することが可能となる。 On the other hand, as shown in FIG. 19 (b), in the automobile 1 of the present embodiment, until the time t1, it is the same as the prior art, but at the time t1, a sudden change in the driver acceleration / deceleration intention is detected and the correction amount The operation flag Frb is set. Accordingly, the correction process is activated, and the reference vehicle speed Vc is corrected by the correction amount Gr corresponding to the magnitude of the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. Therefore, as shown in the circled range in FIG. 19B, the reference vehicle speed Vc approaches the actual vehicle speed Vd with the correction amount Gr, so that the actual vehicle speed Vd at the time t2 (t2 <t3). Converges to the reference vehicle speed Vc. That is, it is possible to shorten the period during which the deceleration control occurs as compared with the prior art. Specifically, it is possible to make it shorter than the prior art by the period of td2 in FIG. Therefore, it is possible to reduce a sense of incongruity felt by the driver as compared with the prior art.
 ここで、本実施形態において、アクセルペダル8がアクセル操作部に対応し、ブレーキペダル20がブレーキ操作部に対応する。
 また、本実施形態において、ドライバ加減速要求推定部6Aが加減速要求検出部に対応し、規範車両モデル10が制御目標値演算部に対応し、車速センサ7が実測値検出部に対応する。
 また、本実施形態において、修正量算出部6C及び規範車両モデル10が、制御目標値修正部に対応し、減算器11、車速サーボ6D及び加算器6Eが加減速制御部及び定速走行制御部に対応し、アクセルペダル8がアクセル操作部に対応する。
Here, in the present embodiment, the accelerator pedal 8 corresponds to the accelerator operation unit, and the brake pedal 20 corresponds to the brake operation unit.
In the present embodiment, the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit, the reference vehicle model 10 corresponds to the control target value calculation unit, and the vehicle speed sensor 7 corresponds to the actual measurement value detection unit.
In the present embodiment, the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit, and the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit. The accelerator pedal 8 corresponds to the accelerator operation unit.
(第2実施形態の効果)
 本実施形態は、上記第1実施形態の効果に加えて、以下の効果を奏する。
(1)自動車1は、ブレーキペダル20及びアクセルペダル8を備えている。修正量算出部6C及び規範車両モデル10が、修正処理を実施する時間期間の長さを、ドライバのブレーキペダル20の操作によって生じる修正処理と、ドライバのアクセルペダル8の操作によって生じる修正処理とに対してそれぞれ独立に設定する。具体的に、ドライバのアクセルペダル8の操作によって生じる修正処理に対して作動時間taを設定し、ドライバのブレーキペダルの操作によって生じる修正処理に対して作動時間taとは異なる長さの作動時間tbを設定する。
 これにより、ブレーキ操作時に生じる修正処理と、アクセル操作時に生じる修正処理とにおいてそれぞれ適切な時間期間を設定することができるので、より適切な修正処理を実施することができるという効果が得られる。
(Effect of 2nd Embodiment)
This embodiment has the following effects in addition to the effects of the first embodiment.
(1) The automobile 1 includes a brake pedal 20 and an accelerator pedal 8. The correction amount calculation unit 6C and the reference vehicle model 10 divide the length of the time period in which the correction process is performed into a correction process caused by the driver's operation of the brake pedal 20 and a correction process caused by the driver's operation of the accelerator pedal 8. Set each independently. Specifically, the operation time ta is set for the correction process caused by the driver's operation of the accelerator pedal 8, and the operation time tb having a length different from the operation time ta is set for the correction process caused by the driver's operation of the brake pedal. Set.
As a result, an appropriate time period can be set for each of the correction process that occurs during the brake operation and the correction process that occurs during the accelerator operation, so that an effect that more appropriate correction process can be performed can be obtained.
(2)自動車1は、ブレーキペダル20及びアクセルペダル8を備えている。修正量算出部6C及び規範車両モデル10が、規範車速Vc又は規範加速度Gcの修正に用いる修正量マップを、ドライバのブレーキペダル20の操作によって生じる修正処理と、ドライバのアクセルペダル8の操作によって生じる修正処理とに対してそれぞれ独立に設定する。具体的に、ドライバのアクセルペダル8の操作によって生じる修正処理に対して修正量マップ14Aを設定し、ドライバのブレーキペダルの操作によって生じる修正処理に対して修正量マップ14Aとは内容の異なる修正量マップ14Bを設定する。
 これにより、ドライバの加減速意図を検出するための手段であるアクセルペダル8やブレーキペダル20等の手段毎に適切な修正量マップを設定することが可能となるので、ドライバの加減速意図の変化に応じて、規範車速Vc又は規範加速度Gcを適切に修正することができるという効果が得られる。
(2) The automobile 1 includes a brake pedal 20 and an accelerator pedal 8. The correction amount map used by the correction amount calculation unit 6C and the reference vehicle model 10 to correct the reference vehicle speed Vc or the reference acceleration Gc is generated by a correction process generated by the driver's operation of the brake pedal 20 and an operation of the driver's accelerator pedal 8. Set independently for each correction process. Specifically, the correction amount map 14A is set for the correction process caused by the driver's operation of the accelerator pedal 8, and the correction amount different from the correction amount map 14A is set for the correction process caused by the driver's operation of the brake pedal. The map 14B is set.
This makes it possible to set an appropriate correction amount map for each means such as the accelerator pedal 8 and the brake pedal 20 that are means for detecting the driver's acceleration / deceleration intention. Accordingly, there is an effect that the reference vehicle speed Vc or the reference acceleration Gc can be appropriately corrected.
(第3実施形態)
 次に、図20に基づき、本発明の第3実施形態を説明する。図20は、第3実施形態の修正量マップの一例を示す図であり、(a)は、アクセル操作に対応する不感帯を有する修正量マップの一例を示す図であり、(b)は、ブレーキ操作に対応する不感帯を有する修正量マップの一例を示す図である。なお、上記第1実施形態及び第2実施形態と同様の構成には同じ符号を付し、その重複する説明は省略する。
 即ち、本実施形態では、修正量マップとして、図20(a)及び(b)に示す、不感帯を有する修正量マップ14C及び14Dを用いる点が上記各実施形態と異なる。
(Third embodiment)
Next, a third embodiment of the present invention will be described based on FIG. FIG. 20 is a diagram illustrating an example of a correction amount map according to the third embodiment. FIG. 20A is a diagram illustrating an example of a correction amount map having a dead zone corresponding to an accelerator operation. FIG. It is a figure which shows an example of the correction amount map which has a dead zone corresponding to operation. In addition, the same code | symbol is attached | subjected to the structure similar to the said 1st Embodiment and 2nd Embodiment, and the overlapping description is abbreviate | omitted.
That is, the present embodiment is different from the above embodiments in that the correction amount maps 14C and 14D having dead zones shown in FIGS. 20A and 20B are used as the correction amount maps.
 本実施形態において、アクセル操作に対応する修正量マップ14Cは、図20(a)に示すように、車速指令値Voutが「0」から予め設定された正の値c1の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、c1から予め設定された正の値a1の範囲において、修正量Grが、a1に近づくにしたがって、予め設定された負の最大値b1となるまで負方向へと非線形に増加する。そして、車速指令値Voutがa1を超えると、修正量Grが負の最大値b1で一定となる特性を有している。更に、修正量マップ14Cは、車速指令値Voutが「0」から予め設定された負の値c2の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、c2から予め設定された負の値a2の範囲において、修正量Grが、c2に近づくにしたがって、予め設定された正の最大値b2となるまで正方向へと非線形に増加する。そして、車速指令値Voutがa2を超えると、修正量Grが正の最大値b2で一定となる特性を有している。 In the present embodiment, as shown in FIG. 20A, the correction amount map 14C corresponding to the accelerator operation has a correction amount Gr within the range of the vehicle speed command value Vout from “0” to a preset positive value c1. It is “0”, and in this range, there is a dead zone that is not substantially corrected. Further, in the range of positive value a1 set in advance from c1, the correction amount Gr increases non-linearly in a negative direction until it reaches a preset negative maximum value b1 as it approaches a1. When the vehicle speed command value Vout exceeds a1, the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1. Further, in the correction amount map 14C, the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value c2, and the correction is substantially performed in this range. It becomes a dead zone that is not missed. Further, in the range of negative value a2 set in advance from c2, the correction amount Gr increases non-linearly in the positive direction until it reaches a predetermined positive maximum value b2 as it approaches c2. When the vehicle speed command value Vout exceeds a2, the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2.
 また、本実施形態において、ブレーキ操作に対応する修正量マップ14Dは、図20(b)に示すように、車速指令値Voutが「0」から予め設定された正の値c1’の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、c1’から予め設定された正の値a1’の範囲において、修正量Grが、a1’に近づくにしたがって、予め設定された負の最大値b1’となるまで負方向へと非線形に増加する。そして、車速指令値Voutがa1’を超えると、修正量Grが負の最大値b1’で一定となる特性を有している。更に、修正量マップ14Bは、車速指令値Voutが「0」から予め設定された負の値c2’の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、c2’から予め設定された負の値a2’の範囲において、修正量Grが、a2’に近づくにしたがって、予め設定された正の最大値b2’となるまで正方向へと非線形に増加する。そして、車速指令値Voutがa2’を超えると、修正量Grが正の最大値b2’で一定となる特性を有している。 Further, in the present embodiment, the correction amount map 14D corresponding to the brake operation is corrected within the range of the vehicle speed command value Vout from “0” to a positive value c1 ′ set in advance, as shown in FIG. The amount Gr is “0”, and in this range, there is a dead zone that is not substantially corrected. Further, within the range of positive value a1 ′ set in advance from c1 ′, the correction amount Gr increases non-linearly in a negative direction until it reaches a preset negative maximum value b1 ′ as it approaches a1 ′. To do. When the vehicle speed command value Vout exceeds a1 ', the correction amount Gr has a characteristic that becomes constant at the negative maximum value b1'. Further, in the correction amount map 14B, the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value c2 ′. In this range, the correction amount Gr is substantially corrected. It is a dead zone that is not performed. Further, in the range from c2 ′ to a preset negative value a2 ′, the correction amount Gr increases non-linearly in the positive direction until it reaches a preset positive maximum value b2 ′ as it approaches a2 ′. To do. When the vehicle speed command value Vout exceeds a2 ', the correction amount Gr has a characteristic that becomes constant at the positive maximum value b2'.
 例えば、規範車速Vcと実車速Vdの偏差が大きくなる上り坂や下り坂では、ドライバ加減速要求値Geが「0」である時、規範車速Vcと実車速Vdとに偏差が生じていないと一定速での走行を維持できない場合がある。例えば、上記第1及び第2実施形態のように、制御目標値Vcと実測値Vdとが一致するまで修正を行うと、ドライバ加減速要求値の推定値Geが加速側から急に「0」になる際に実車速Vdが減速する場合がある。また、推定値Geが減速側から急に「0」になる際に実車速Vdが加速する場合がある。いずれの場合も、ドライバの加減速意図に合致しない車両挙動となる。 For example, when the driver acceleration / deceleration request value Ge is “0” on an uphill or downhill where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is large, there is no deviation between the reference vehicle speed Vc and the actual vehicle speed Vd. There is a case where the running at a constant speed cannot be maintained. For example, when correction is performed until the control target value Vc and the actual measurement value Vd coincide with each other as in the first and second embodiments, the estimated value Ge of the driver acceleration / deceleration request value suddenly becomes “0” from the acceleration side. In some cases, the actual vehicle speed Vd may decelerate. In addition, when the estimated value Ge suddenly becomes “0” from the deceleration side, the actual vehicle speed Vd may be accelerated. In either case, the vehicle behavior does not match the driver's intention for acceleration / deceleration.
 本実施形態では、規範車速Vcと実車速Vdの偏差が予め設定された0近傍の範囲(不感帯範囲)において修正量を「0」にするように修正量マップを設定した。これにより、車速指令値Voutが不感帯範囲内の大きさのとき(比較的小さいとき)に規範車速Vcを過度に修正することがなくなるので、急な上り坂や下り坂においてもドライバの加減速意図により近い車両挙動を実現することが可能となる。
 なお、上記不感帯の範囲において、修正量Grとして「0」を設定したが、これに限らず、「0」の近傍値の範囲として予め設定された数値範囲内の値を設定してもよい。つまりは、実質的に修正が行われていないのと等価となる範囲内の値であれば「0」でなくてもよい。
In the present embodiment, the correction amount map is set so that the correction amount is set to “0” in the range near 0 (dead zone range) where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is set in advance. As a result, the reference vehicle speed Vc is not excessively corrected when the vehicle speed command value Vout is within the dead zone range (relatively small), so that the driver's intention to accelerate or decelerate even on a steep uphill or downhill It is possible to realize a vehicle behavior closer to
In the dead zone range, “0” is set as the correction amount Gr. However, the present invention is not limited to this, and a value within a preset numerical range may be set as the range of the neighborhood value of “0”. In other words, it may not be “0” as long as the value is within a range equivalent to that the correction is not substantially performed.
(動作)
 次に、動作を説明する。
 本実施形態では、ドライバのアクセル操作又はブレーキ操作によって、ドライバ加減速要求値Geが急変して修正処理が作動すると、修正量マップ14C又は14Dから読み出された修正量Grによって規範車速Vcが実車速Vdに近づくように規範車速Vcの修正が行われる。修正処理は、作動時間ta又はtbの間、繰り返し行われ、やがて規範車速Vcと実車速Vdの偏差である車速指令値Voutが、修正量マップ14Cのc2~c1の範囲、又は、修正量マップ14Dのc2’~c1’の範囲の値になったとする。これにより、修正量決定部13は、修正量マップ14C又は14Dから修正量Grとして「0」を読み出して、指令値算出部6Bに供給する。これにより、規範車両モデル10では、修正量Grとして「0」が加算器10fに入力されるため、規範車速Vcの修正が実質的に行われない。従って、規範車速Vcを過剰に修正することを防ぐことができるので、ドライバの加減速意図により合致した車両挙動を実現することが可能となる。
(Operation)
Next, the operation will be described.
In the present embodiment, when the driver acceleration / deceleration request value Ge is suddenly changed by the driver's accelerator operation or brake operation and the correction process is activated, the reference vehicle speed Vc is determined by the correction amount Gr read from the correction amount map 14C or 14D. The reference vehicle speed Vc is corrected so as to approach the speed Vd. The correction process is repeatedly performed during the operation time ta or tb, and the vehicle speed command value Vout, which is a deviation between the standard vehicle speed Vc and the actual vehicle speed Vd, is eventually in the range c2 to c1 of the correction amount map 14C, or the correction amount map. It is assumed that the value is in the range of c2 ′ to c1 ′ of 14D. Thereby, the correction amount determination unit 13 reads “0” as the correction amount Gr from the correction amount map 14C or 14D and supplies the read value to the command value calculation unit 6B. As a result, in the reference vehicle model 10, “0” is input to the adder 10f as the correction amount Gr, so that the reference vehicle speed Vc is not substantially corrected. Accordingly, since it is possible to prevent the reference vehicle speed Vc from being excessively corrected, it is possible to realize a vehicle behavior that matches the driver's intention for acceleration / deceleration.
 ここで、本実施形態において、ドライバ加減速要求推定部6Aが加減速要求検出部に対応し、規範車両モデル10が制御目標値演算部に対応し、車速センサ7が実測値検出部に対応する。
 また、本実施形態において、修正量算出部6C及び規範車両モデル10が、制御目標値修正部に対応し、減算器11、車速サーボ6D及び加算器6Eが加減速制御部及び定速走行制御部に対応し、アクセルペダル8がアクセル操作部に対応する。
Here, in this embodiment, the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit, the reference vehicle model 10 corresponds to the control target value calculation unit, and the vehicle speed sensor 7 corresponds to the actual measurement value detection unit. .
In the present embodiment, the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit, and the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit. The accelerator pedal 8 corresponds to the accelerator operation unit.
(第3実施形態の効果)
 本実施形態は、上記第1実施形態及び第2実施形態の効果に加えて、以下の効果を奏する。
(1)修正量算出部6C及び規範車両モデル10が、修正処理において、車速指令値Voutが、予め設定された0を内包する正負の数値範囲である不感帯範囲内の値であると判定すると、規範車速Vc又は規範加速度Gcの修正量Grを、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とする。
 例えば、規範車速Vcと実車速Vdに一定以上の偏差が存在しないとドライバ加減速意図に合致する車両挙動を実現できない状況において、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)とが一致するまで修正を行ってしまうとドライバ加減速意図に合致しない車両挙動となる場合がある。
(Effect of the third embodiment)
In addition to the effects of the first and second embodiments, the present embodiment has the following effects.
(1) When the correction amount calculation unit 6C and the reference vehicle model 10 determine in the correction process that the vehicle speed command value Vout is a value within the dead band range that is a positive / negative numerical range including 0 that is set in advance, The correction amount Gr of the reference vehicle speed Vc or the reference acceleration Gc is set to 0 or a value within a numerical range that is set in advance as a range of values near 0.
For example, in a situation where a vehicle behavior that matches the driver's intention for acceleration / deceleration cannot be realized unless there is a certain deviation between the reference vehicle speed Vc and the actual vehicle speed Vd, the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration) If correction is performed until Gd) coincides with the vehicle, the vehicle behavior may not match the driver acceleration / deceleration intention.
 このような場合において、車速指令値Vout(又は「規範加速度Gc-実加速度Gd」)(偏差)が、予め設定された0を内包するc1~c2の範囲内、又は予め設定された0を内包するc1’~c2’の範囲内の値であると判定すると、修正量を「0」又はその近傍値とするようにしたので、過度の修正を防ぐことができるという効果が得られる。加えて、修正量Grの正負がハンチングすることによる車両挙動のハンチングを防ぐことができるという効果も得られる。 In such a case, the vehicle speed command value Vout (or “reference acceleration Gc−actual acceleration Gd”) (deviation) is within the range of c1 to c2 including a preset zero, or includes a preset zero. If it is determined that the value is within the range of c1 ′ to c2 ′, the correction amount is set to “0” or a value near the correction amount, so that an effect of preventing excessive correction can be obtained. In addition, the effect that the hunting of the vehicle behavior due to the hunting of the correction amount Gr can be prevented.
(第4実施形態)
 次に、図21乃至図27に基づき、本発明の第4実施形態を説明する。図21は、第4実施形態の修正量算出部6Cを示す図である。なお、上記第1乃至第3実施形態と同様の構成には同じ符号を付し、その重複する説明は省略する。
 上記第1乃至第3実施形態では、修正量算出部6Cが、ドライバのアクセル操作又はブレーキ操作によって、ドライバの加減速要求が急変した場合に規範車速Vcを実車速Vdに近づくように修正する処理を実施していた。これに加えて、本実施形態では、修正量算出部6Cが、ドライバのアクセル操作又はブレーキ操作によるドライバ加減速要求によって、電動モータ2の出力限界値又は出力制限値を超える規範車速Vcが設定された場合に、この規範車速Vcを実車速Vdに近づくように修正する処理を実施する点が上記第1乃至第3実施形態と異なる。
(Fourth embodiment)
Next, based on FIG. 21 thru | or FIG. 27, 4th Embodiment of this invention is described. FIG. 21 is a diagram illustrating a correction amount calculation unit 6C according to the fourth embodiment. In addition, the same code | symbol is attached | subjected to the structure similar to the said 1st thru | or 3rd embodiment, and the overlapping description is abbreviate | omitted.
In the first to third embodiments, the correction amount calculation unit 6C corrects the reference vehicle speed Vc to approach the actual vehicle speed Vd when the driver's acceleration / deceleration request changes suddenly due to the driver's accelerator operation or brake operation. Had been implemented. In addition to this, in the present embodiment, the correction amount calculation unit 6C sets the reference vehicle speed Vc exceeding the output limit value or the output limit value of the electric motor 2 by a driver acceleration / deceleration request by an accelerator operation or a brake operation of the driver. In this case, the process of correcting the reference vehicle speed Vc so as to approach the actual vehicle speed Vd is different from the first to third embodiments.
 即ち、本実施形態の修正量算出部6Cは、図21に示すように、上記第3実施形態の修正量マップ14C及び14Dに加えて、電動モータ2の出力限界値又は出力制限値を超える規範車速Vcが設定された場合の修正量マップである修正量マップ14Eを備える。
 また、本実施形態の修正処理作動フラグ設定部12は、ドライバ加減速要求推定部6Aから供給されるドライバ加減速要求値の推定値Geを監視し、推定値Geが閾値Th2以上の値になったか否かを判定する。そして、推定値Geが、閾値Th2以上の値になったと判定すると、第2修正処理作動フラグFraをセット状態に設定する。一方、修正処理作動フラグ設定部12は、第2修正処理作動フラグFraがセット状態の場合に、供給される推定値Geが0以上でかつ閾値Th2未満の値になったと判定すると、第2修正処理作動フラグFraを非セット状態に設定する。
That is, as shown in FIG. 21, the correction amount calculation unit 6C of the present embodiment has a norm that exceeds the output limit value or output limit value of the electric motor 2 in addition to the correction amount maps 14C and 14D of the third embodiment. A correction amount map 14E which is a correction amount map when the vehicle speed Vc is set is provided.
Further, the correction processing operation flag setting unit 12 of the present embodiment monitors the estimated value Ge of the driver acceleration / deceleration request value supplied from the driver acceleration / deceleration request estimation unit 6A, and the estimated value Ge becomes a value equal to or greater than the threshold Th2. It is determined whether or not. And if it determines with the estimated value Ge having become the value more than threshold value Th2, the 2nd correction process operation flag Fra will be set to a set state. On the other hand, when the correction process operation flag setting unit 12 determines that the estimated value Ge to be supplied is not less than 0 and less than the threshold value Th2 when the second correction process operation flag Fra is in the set state, the second correction process operation flag Fra The processing operation flag Fra is set to a non-set state.
 ここで、第2修正処理作動フラグFraは、セット状態の期間に、車速差(Vout)に応じた修正量で規範車速Vcを修正する修正処理を実施するようにし、非セット状態の期間は修正処理を実施しないようにするフラグである。
 なお、本実施形態では、上記第1乃至第3実施形態で実施していた修正処理を第1修正処理と称し、本実施形態で新たに実施される修正処理を第2修正処理と称す。また、上記第1乃至第3実施形態の修正処理作動フラグFra及びFrbを第1修正処理作動フラグFra及びFrbと称す。
Here, the second correction process operation flag Fra performs a correction process for correcting the reference vehicle speed Vc by a correction amount corresponding to the vehicle speed difference (Vout) during the set state, and is corrected during the non-set state period. It is a flag that prevents the processing from being performed.
In the present embodiment, the correction process performed in the first to third embodiments is referred to as a first correction process, and the correction process newly performed in the present embodiment is referred to as a second correction process. The correction processing operation flags Fra and Frb of the first to third embodiments are referred to as first correction processing operation flags Fra and Frb.
 図22は、ドライバのアクセル操作によるドライバ加減速要求値の推定値Geの変化に対する第2修正処理作動フラグFraの時間変化の一例を示すタイミングチャートである。
 具体的に、修正処理作動フラグ設定部12は、図22に示すように、ドライバのアクセルペダル8の操作によって、推定値Geが閾値Th2以上の値になっていると判定すると、第2修正処理作動フラグFraを、推定値Geが閾値Th2未満の値になるまでセット状態に設定する。
FIG. 22 is a timing chart showing an example of a time change of the second correction processing operation flag Fra with respect to a change in the estimated value Ge of the driver acceleration / deceleration request value due to the driver's accelerator operation.
Specifically, as illustrated in FIG. 22, when the correction process operation flag setting unit 12 determines that the estimated value Ge is equal to or greater than the threshold value Th2 by the operation of the accelerator pedal 8 of the driver, the second correction process. The operation flag Fra is set to the set state until the estimated value Ge becomes a value less than the threshold value Th2.
 つまり、図22に示す例は、ドライバが、時刻t1において、閾値Th2以上の推定値Geが出力される踏み込み量でアクセルペダル8の踏み込みを開始し、時刻t2において、ドライバがアクセルペダル8から足を離して推定値Geが0となる様子を示している。そして、第2修正処理作動フラグFraが時刻t1から時刻t2までの間、セット状態となっている様子を示している。なお、図22に示す例では、推定値Geが時刻t2で閾値Th2以上の値から「0」へと急変しているため、第1修正処理作動フラグFraがセット状態となって、第1修正処理が実施される。 That is, in the example shown in FIG. 22, the driver starts to depress the accelerator pedal 8 at the time t1 with the amount of depression at which the estimated value Ge equal to or greater than the threshold Th2 is output, and the driver depresses the accelerator pedal 8 at the time t2. Is shown and the estimated value Ge becomes zero. Then, the second correction processing operation flag Fra is shown in a set state from time t1 to time t2. In the example shown in FIG. 22, since the estimated value Ge suddenly changes from the value equal to or greater than the threshold Th2 to “0” at time t2, the first correction processing operation flag Fra is set and the first correction is performed. Processing is performed.
 本実施形態の修正量決定部13は、第2修正処理作動フラグFraがセット状態であると判定すると、修正量マップ14Eから修正量Grを読み出し、指令値算出部6Bに供給する。これにより、指令値算出部6Bの規範車両モデル10において、修正量Grを用いて規範車速Vcが算出される。この第2修正処理は、第2修正処理作動フラグFraがセット状態にある期間は、予め設定されたサンプリング周期で繰り返し実施される。 If the correction amount determination unit 13 of the present embodiment determines that the second correction processing operation flag Fra is in the set state, the correction amount determination unit 13 reads the correction amount Gr from the correction amount map 14E and supplies it to the command value calculation unit 6B. Thereby, in the reference vehicle model 10 of the command value calculation unit 6B, the reference vehicle speed Vc is calculated using the correction amount Gr. The second correction process is repeatedly performed at a preset sampling period while the second correction process operation flag Fra is in the set state.
 図23は、第2修正処理に対応する修正量マップの第1の例を示す図であり、図24は、第2修正処理に対応する修正量マップの第2の例を示す図である。
 修正量マップ14Eの第1の例(以下、修正量マップ14E1と称す)は、図23に示すように、車速指令値Voutが「0」から予め設定された正の値d1の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、d1以降は車速指令値Voutが大きくなるにしたがって、修正量Grが、負方向へと非線形に増加する特性を有している。更に、修正量マップ14E1は、車速指令値Voutが「0」から予め設定された負の値d2の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、d2以降は車速指令値Voutが大きくなるにしたがって、修正量Grが、正方向へと非線形に増加する特性を有している。
FIG. 23 is a diagram illustrating a first example of a correction amount map corresponding to the second correction process, and FIG. 24 is a diagram illustrating a second example of the correction amount map corresponding to the second correction process.
As shown in FIG. 23, the first example of the correction amount map 14E (hereinafter referred to as the correction amount map 14E1) is a correction amount in the range of the vehicle speed command value Vout from “0” to a positive value d1 set in advance. Gr is “0”, and in this range, there is a dead zone that is not substantially corrected. Further, after d1, there is a characteristic that the correction amount Gr increases nonlinearly in the negative direction as the vehicle speed command value Vout increases. Further, in the correction amount map 14E1, the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the negative value d2 set in advance, and the correction is substantially performed in this range. It becomes a dead zone that is not missed. Further, after d2, there is a characteristic that the correction amount Gr increases nonlinearly in the positive direction as the vehicle speed command value Vout increases.
 また、修正量マップ14Eの第2の例(以下、修正量マップ14E2と称す)は、図24に示すように、車速指令値Voutが「0」から予め設定された正の値d1の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、d1以降は車速指令値Voutが大きくなるにしたがって、修正量Grが、負方向へと線形増加する特性を有している。更に、修正量マップ14E2は、車速指令値Voutが「0」から予め設定された負の値d2の範囲において修正量Grが「0」となっており、この範囲においては実質的に修正が行われない不感帯となる。更に、d2以降は車速指令値Voutが大きくなるにしたがって、修正量Grが、正方向へと線形増加する特性を有している。なお、本実施形態において、修正量マップ14E2における修正量Grが線形増加する直線部分は、その傾きが計算サンプル時間の逆数に「-1」及び単位変換定数を掛けた直線となる。 Further, a second example of the correction amount map 14E (hereinafter referred to as the correction amount map 14E2) has a vehicle speed command value Vout in a range from “0” to a preset positive value d1, as shown in FIG. The correction amount Gr is “0”, and a dead zone in which correction is not substantially performed in this range. Further, after d1, there is a characteristic that the correction amount Gr linearly increases in the negative direction as the vehicle speed command value Vout increases. Further, in the correction amount map 14E2, the correction amount Gr is “0” in the range of the vehicle speed command value Vout from “0” to the preset negative value d2, and the correction is substantially performed in this range. It becomes a dead zone that is not missed. Further, after d2, there is a characteristic that the correction amount Gr linearly increases in the positive direction as the vehicle speed command value Vout increases. In the present embodiment, the straight line portion where the correction amount Gr in the correction amount map 14E2 linearly increases is a straight line obtained by multiplying the reciprocal of the calculation sample time by “−1” and a unit conversion constant.
 本実施形態において、修正量マップ14E2は、車速指令値Voutが負の場合に、第2修正処理で修正後の規範車速Vcと実車速Vdとの偏差(車速指令値Vout)が、d2以上となるように修正量Grが設定されている。更に、修正量マップ14E2は、車速指令値Voutが正の場合に、第2修正処理で修正後の規範車速Vcと実車速Vdとの偏差(車速指令値Vout)が、d1以下となるように修正量Grが設定されている。 In the present embodiment, the correction amount map 14E2 indicates that when the vehicle speed command value Vout is negative, the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc corrected by the second correction process and the actual vehicle speed Vd is d2 or more. The correction amount Gr is set so that Further, in the correction amount map 14E2, when the vehicle speed command value Vout is positive, the deviation (vehicle speed command value Vout) between the reference vehicle speed Vc corrected by the second correction process and the actual vehicle speed Vd is equal to or less than d1. A correction amount Gr is set.
 また、本実施形態において、修正量マップ14E1及び14E2における「0」を内包するd2~d1の数値範囲は、電動モータ2の出力限界値又は出力制限値に基づき設定される数値範囲である。具体的に、車速指令値Voutがd2~d1の範囲内にあれば、電動モータ2の出力限界値又は出力制限値を超えない範囲での加減速制御が可能となる。従って、d2~d1は、車速指令値Vout(偏差)の、電動モータ2の出力限界値又は出力制限値を超えない許容範囲となる。一方、車速指令値Voutがd2~d1の範囲外にあれば、電動モータ2の出力限界値又は出力制限値を超える範囲となり、規範車速Vcに対して電動モータ2の出力が追従できずに、規範車速Vcと実車速Vdとの偏差が大きくなる。例えば、急な上り坂で、ドライバがアクセルペダル8を踏み込んで、加速側に大きな推定値Geが発生すると、電動モータ2の出力限界値又は出力制限値によって、規範車速Vcを達成するためのモータ出力が得られずに、規範車速Vcと実車速Vdとの偏差が大きくなる。そのため、その後、ドライバがアクセルペダル8から足を離すと、規範車速Vcと実車速Vdとの偏差が大きい状態で定速走行制御が開始されることになり、自動車1は、規範車速Vcに向けて加速制御される。つまり、ドライバの加速停止の意図に反する加速挙動が発生して、ドライバに違和感を与えることになる。 In this embodiment, the numerical range of d2 to d1 including “0” in the correction amount maps 14E1 and 14E2 is a numerical range set based on the output limit value or the output limit value of the electric motor 2. Specifically, if the vehicle speed command value Vout is within the range of d2 to d1, acceleration / deceleration control can be performed within a range not exceeding the output limit value or output limit value of the electric motor 2. Therefore, d2 to d1 are an allowable range of the vehicle speed command value Vout (deviation) that does not exceed the output limit value or output limit value of the electric motor 2. On the other hand, if the vehicle speed command value Vout is outside the range of d2 to d1, the output limit value or output limit value of the electric motor 2 is exceeded, and the output of the electric motor 2 cannot follow the reference vehicle speed Vc. The deviation between the reference vehicle speed Vc and the actual vehicle speed Vd increases. For example, when the driver depresses the accelerator pedal 8 on a steep uphill and a large estimated value Ge is generated on the acceleration side, the motor for achieving the reference vehicle speed Vc according to the output limit value or the output limit value of the electric motor 2. Without obtaining an output, the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd increases. Therefore, after that, when the driver removes his / her foot from the accelerator pedal 8, the constant speed traveling control is started in a state where the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is large, and the automobile 1 is directed toward the reference vehicle speed Vc. Acceleration control. In other words, acceleration behavior contrary to the driver's intention to stop acceleration occurs, giving the driver a sense of incongruity.
 そこで、本実施形態では、車速指令値Voutがd2~d1の範囲外にあるときに、修正量マップ14E1又は14E2に示す、車速指令値Voutの大きさに応じた修正量Grによって規範車速Vcを実車速Vdに近づくように修正する。これにより、ドライバの加速停止の意図に反する加速制御の時間を短くする。特に、修正量マップ14E2では、第2修正処理で修正後の車速指令値Voutが必ずd2以上又はd1以下となるため、修正後は、規範車速Vcに対して電動モータ2の出力が追従できるようになる。つまり、修正量マップ14E2を用いた第2修正処理では、車速指令値Voutが常にd2以上又はd1以下となるように修正が行われるためドライバの加速停止の意図に反する加速制御の時間をより短くすることができる。
 更に、本実施形態では、推定値Geの急変に応じて、第1修正処理が実施されるため、定速走行制御に移行後の加速制御の時間をより短くすることが可能である。
Therefore, in this embodiment, when the vehicle speed command value Vout is outside the range of d2 to d1, the reference vehicle speed Vc is set by the correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout shown in the correction amount map 14E1 or 14E2. It corrects so that it may approach actual vehicle speed Vd. This shortens the acceleration control time that is against the driver's intention to stop acceleration. In particular, in the correction amount map 14E2, since the vehicle speed command value Vout corrected in the second correction process is always d2 or more or d1 or less, the output of the electric motor 2 can follow the reference vehicle speed Vc after the correction. become. In other words, in the second correction process using the correction amount map 14E2, the correction is performed so that the vehicle speed command value Vout is always d2 or more or d1 or less, so that the acceleration control time contrary to the driver's intention to stop acceleration is shortened. can do.
Furthermore, in the present embodiment, since the first correction process is performed according to the sudden change in the estimated value Ge, it is possible to shorten the acceleration control time after shifting to the constant speed traveling control.
 なお、図23及び図24に示すように、図中点線で示した修正量マップ14Cと、図中実線で示した修正量マップ14E1及び14E2とは、修正量マップ14Cの不感帯の範囲c2~c1が、修正量マップ14E1及び14E2の不感帯の範囲d2~d1に内包される関係となっている。これにより、第2修正処理が、修正量マップ14Cの不感帯の範囲c2~c1の範囲内で作動することを防ぐ。 As shown in FIGS. 23 and 24, the correction amount map 14C indicated by the dotted line in the drawing and the correction amount maps 14E1 and 14E2 indicated by the solid line in the drawing are the dead zone ranges c2 to c1 of the correction amount map 14C. Is included in the dead zone range d2 to d1 of the correction amount maps 14E1 and 14E2. This prevents the second correction process from operating within the dead zone range c2 to c1 of the correction amount map 14C.
(第2修正処理作動フラグ設定処理)
 次に、図25に基づき、修正量算出部6Cで実行される第2修正処理作動フラグ設定処理の処理手順を説明する。図25は、第2修正処理作動フラグ設定処理の処理手順の一例を示すフローチャートである。なお、図25の処理は、予め設定されたサンプリングクロックに同期して繰り返し実行される。
 コントローラ6において専用のプログラムが実行され、修正量算出部6Cにおいて第2修正処理作動フラグ設定処理が実行されると、まず、図25に示すように、ステップS300に移行する。
(Second correction processing operation flag setting processing)
Next, based on FIG. 25, the process procedure of the 2nd correction process operation flag setting process performed in the correction amount calculation part 6C is demonstrated. FIG. 25 is a flowchart illustrating an example of a processing procedure of second correction processing operation flag setting processing. Note that the processing of FIG. 25 is repeatedly executed in synchronization with a preset sampling clock.
When a dedicated program is executed in the controller 6 and the second correction process operation flag setting process is executed in the correction amount calculation unit 6C, first, the process proceeds to step S300 as shown in FIG.
 ステップS300では、修正量算出部6Cの修正処理作動フラグ設定部12において、第2修正処理作動フラグFraがセット状態か否かを判定する。そして、第2修正処理作動フラグFraがセット状態であると判定した場合(Yes)は、ステップS302に移行し、そうでないと判定した場合(No)は、ステップS308に移行する。
 ステップS302に移行した場合は、修正処理作動フラグ設定部12において、推定値Geを読み込んで、ステップS304に移行する。
 ステップS304では、修正処理作動フラグ設定部12において、読み込んだ推定値Geが閾値Th2以上であるか否かを判定する。そして、閾値Th2以上であると判定した場合(Yes)は、一連の処理を終了し、そうでないと判定した場合(No)は、ステップS306に移行する。
In step S300, the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the second correction processing operation flag Fra is set. If it is determined that the second correction processing operation flag Fra is in the set state (Yes), the process proceeds to step S302, and if it is not (No), the process proceeds to step S308.
When the process proceeds to step S302, the correction processing operation flag setting unit 12 reads the estimated value Ge, and the process proceeds to step S304.
In step S304, the correction processing operation flag setting unit 12 determines whether or not the read estimated value Ge is equal to or greater than the threshold value Th2. If it is determined that the threshold Th2 is equal to or greater than the threshold Th2 (Yes), the series of processes is terminated, and if it is not determined (No), the process proceeds to Step S306.
 ステップS306では、修正処理作動フラグ設定部12において、第2修正処理作動フラグFraを非セット状態に設定して、一連の処理を終了する。
 一方、ステップS300において、第2修正処理作動フラグFraが非セット状態であると判定されステップS308に移行した場合は、修正処理作動フラグ設定部12において、推定値Geを読み込んで、ステップS310に移行する。
 ステップS310では、修正処理作動フラグ設定部12において、読み込んだ推定値Geが閾値Th2以上であるか否かを判定する。そして、閾値Th2以上であると判定した場合(Yes)は、ステップS312に移行し、そうでないと判定した場合(No)は、一連の処理を終了する。
 ステップS312に移行した場合は、修正処理作動フラグ設定部12において、第2修正処理作動フラグFraをセット状態に設定して、一連の処理を終了する。
In step S306, the correction process operation flag setting unit 12 sets the second correction process operation flag Fra to a non-set state, and the series of processes ends.
On the other hand, when it is determined in step S300 that the second correction process operation flag Fra is not set and the process proceeds to step S308, the correction process operation flag setting unit 12 reads the estimated value Ge and proceeds to step S310. To do.
In step S310, the correction processing operation flag setting unit 12 determines whether or not the read estimated value Ge is equal to or greater than the threshold value Th2. If it is determined that the threshold Th2 is equal to or greater than the threshold Th2 (Yes), the process proceeds to step S312, and if it is not determined (No), the series of processing ends.
When the process proceeds to step S312, the correction process operation flag setting unit 12 sets the second correction process operation flag Fra to the set state, and the series of processes ends.
(加減速制御処理)
 次に、図26に基づき、本実施形態におけるコントローラ6の加減速制御処理の処理手順を説明する。図26は、本実施形態における加減速制御処理の処理手順の一例を示すフローチャートである。なお、図26の処理は、予め設定されたサンプリングクロックに同期して繰り返し実行される。
 コントローラ6において専用のプログラムが実行され、加減速制御処理が実行されると、まず、図26に示すように、ステップS400に移行する。
(Acceleration / deceleration control processing)
Next, based on FIG. 26, the process procedure of the acceleration / deceleration control process of the controller 6 in this embodiment is demonstrated. FIG. 26 is a flowchart illustrating an example of a processing procedure of acceleration / deceleration control processing in the present embodiment. Note that the processing of FIG. 26 is repeatedly executed in synchronization with a preset sampling clock.
When a dedicated program is executed in the controller 6 and acceleration / deceleration control processing is executed, first, as shown in FIG. 26, the process proceeds to step S400.
 ステップS400では、ドライバ加減速要求推定部6Aにおいて、アクセル操作検出信号Adに基づいて、ドライバ加減速要求の推定値Geをマップデータから読み出す。そして、読み出した推定値Geを、指令値算出部3B、修正量算出部6C及び加算器6Eにそれぞれ供給して、ステップS402に移行する。
 ステップS402では、修正量算出部6Cの修正量決定部13において、第1修正処理作動フラグFraがセット状態か否かを判定する。そして、セット状態であると判定した場合(Yes)は、ステップS404に移行し、非セット状態であると判定した場合(No)は、ステップS412に移行する。
In step S400, the driver acceleration / deceleration request estimation unit 6A reads the estimated value Ge of the driver acceleration / deceleration request from the map data based on the accelerator operation detection signal Ad. Then, the read estimated value Ge is supplied to the command value calculation unit 3B, the correction amount calculation unit 6C, and the adder 6E, respectively, and the process proceeds to step S402.
In step S402, the correction amount determination unit 13 of the correction amount calculation unit 6C determines whether or not the first correction processing operation flag Fra is set. When it is determined that the set state is set (Yes), the process proceeds to step S404. When it is determined that the set state is set (No), the process proceeds to step S412.
 ステップS404に移行した場合は、修正量決定部13において、供給された車速指令値Voutに基づき、修正量マップ14C又は14Dから修正量Gr(以下、第1修正量Grと称す)を読み出す。そして、読み出した第1修正量Grを指令値算出部6Bに供給して、ステップS406に移行する。
 ステップS406では、指令値算出部6Bの規範車両モデル10において、推定値Geと、第1修正量Grとに基づき、規範車速Vcを算出する。そして、算出した規範車速Vcを減算器11に供給して、ステップS408に移行する。
When the process proceeds to step S404, the correction amount determination unit 13 reads the correction amount Gr (hereinafter referred to as the first correction amount Gr) from the correction amount map 14C or 14D based on the supplied vehicle speed command value Vout. Then, the read first correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S406.
In step S406, the reference vehicle speed Vc is calculated based on the estimated value Ge and the first correction amount Gr in the reference vehicle model 10 of the command value calculation unit 6B. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S408.
 ステップS408では、減算器11において、規範車速Vcと実車速Vdとに基づき車速指令値Voutを演算する。そして、演算した車速指令値Voutを、修正量算出部6Cに供給すると共に、車速サーボ6Dを介してアシストトルクGoutとして加算器6Eに供給して、ステップS410に移行する。
 ステップS410では、加算器6Eにおいて、車速サーボ6Dを介して供給されたアシストトルクGoutと、推定値Geとを加算すると共に、加算結果に対応する電流指令値Ioutを電動モータ2に出力して、一連の処理を終了する。
In step S408, the subtractor 11 calculates a vehicle speed command value Vout based on the reference vehicle speed Vc and the actual vehicle speed Vd. Then, the calculated vehicle speed command value Vout is supplied to the correction amount calculation unit 6C and also supplied to the adder 6E as the assist torque Gout via the vehicle speed servo 6D, and the process proceeds to step S410.
In step S410, the adder 6E adds the assist torque Gout supplied via the vehicle speed servo 6D and the estimated value Ge, and outputs a current command value Iout corresponding to the addition result to the electric motor 2. A series of processing ends.
 一方、ステップS402において、第1修正処理作動フラグFraが非セット状態であると判定してステップS412に移行した場合は、修正量算出部6Cの修正量決定部13において、第2修正処理作動フラグFraがセット状態か否かを判定する。そして、セット状態であると判定した場合(Yes)は、ステップS414に移行し、非セット状態であると判定した場合(No)は、ステップS418に移行する。
 ステップS414に移行した場合は、修正量決定部13において、供給された車速指令値Voutに基づき、修正量マップ14E1又は14E2から修正量Gr(以下、第2修正量Grと称す)を読み出す。そして、読み出した第2修正量Grを指令値算出部6Bに供給して、ステップS416に移行する。
On the other hand, if it is determined in step S402 that the first correction processing operation flag Fra is not set and the process proceeds to step S412, the correction amount determination unit 13 of the correction amount calculation unit 6C uses the second correction processing operation flag. It is determined whether or not Fra is set. If it is determined that the set state is set (Yes), the process proceeds to step S414. If it is determined that the set state is not set (No), the process shifts to step S418.
When the process proceeds to step S414, the correction amount determination unit 13 reads the correction amount Gr (hereinafter referred to as the second correction amount Gr) from the correction amount map 14E1 or 14E2 based on the supplied vehicle speed command value Vout. Then, the read second correction amount Gr is supplied to the command value calculation unit 6B, and the process proceeds to step S416.
 ステップS416では、指令値算出部6Bの規範車両モデル10において、推定値Geと、第2修正量Grと、転がり抵抗成分R1と、空気抵抗成分R2とに基づき、規範車速Vcを算出する。そして、算出した規範車速Vcを減算器11に供給して、ステップS408に移行する。
 また、ステップS412において、第1修正処理作動フラグFraが非セット状態であると判定してステップS418に移行した場合は、規範車両モデル10において、第1及び第2修正量Grを用いずに、推定値Geと、転がり抵抗成分R1と、空気抵抗成分R2とに基づき、規範車速Vcを算出して、ステップS408に移行する。この場合、第1及び第2修正量Grを供給しないように構成してもよいし、第1及び第2修正量Grとして「0」を供給する構成としてもよい。
In step S416, in the reference vehicle model 10 of the command value calculation unit 6B, the reference vehicle speed Vc is calculated based on the estimated value Ge, the second correction amount Gr, the rolling resistance component R1, and the air resistance component R2. Then, the calculated reference vehicle speed Vc is supplied to the subtractor 11, and the process proceeds to step S408.
In Step S412, when it is determined that the first correction processing operation flag Fra is not set and the process proceeds to Step S418, the first and second correction amounts Gr are not used in the reference vehicle model 10. Based on the estimated value Ge, the rolling resistance component R1, and the air resistance component R2, the reference vehicle speed Vc is calculated, and the process proceeds to step S408. In this case, the first and second correction amounts Gr may not be supplied, or “0” may be supplied as the first and second correction amounts Gr.
(動作)
 次に、動作を説明する。
 まず、自動車1の電源が投入されていると、コントローラ6には、アクセル操作検出信号Ad及び車速検出信号Vdが供給され、ドライバ加減速要求推定部6Aにおいて、アクセル操作検出信号Adに基づいて、ドライバ加減速要求の推定値Geが求められる(ステップS400)。推定値Geは、指令値算出部6B、修正量算出部6C及び加算器6Eにそれぞれ供給される。
 現時点では、第1修正処理作動フラグFra及びFrb並びに第2修正処理作動フラグFraは非セット状態であるとする(ステップS402のNo,S412のNo)。
(Operation)
Next, the operation will be described.
First, when the power of the automobile 1 is turned on, the accelerator operation detection signal Ad and the vehicle speed detection signal Vd are supplied to the controller 6, and the driver acceleration / deceleration request estimation unit 6A is based on the accelerator operation detection signal Ad. An estimated value Ge of the driver acceleration / deceleration request is obtained (step S400). The estimated value Ge is supplied to each of the command value calculation unit 6B, the correction amount calculation unit 6C, and the adder 6E.
At this time, it is assumed that the first correction processing operation flags Fra and Frab and the second correction processing operation flag Fra are not set (No in step S402, No in S412).
 規範車両モデル10では、推定値Ge、抵抗成分R1、R2に基づき、規範車速Vcが求められ(ステップS418)、更に、規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される(ステップS408)。そして、その車速指令値Voutが車速サーボ6D及び修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eにおいて、アシストトルクGoutと推定値Geとの加算値に応じた指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される(ステップS410)。
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。
In the reference vehicle model 10, the reference vehicle speed Vc is obtained based on the estimated value Ge and the resistance components R1 and R2 (step S418), and the vehicle speed command value Vout is calculated based on the reference vehicle speed Vc and the vehicle speed detection signal Vd. (Step S408). The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout, and finally an adder 6E generates a command current Iout corresponding to the added value of the assist torque Gout and the estimated value Ge. The command current Iout is output to 2 (step S410).
Therefore, the electric motor 2 is rotationally driven by the command current Iout obtained by adding the estimated value Ge representing the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the reference vehicle speed Vc. Will be.
 一方、修正量算出部6Cの修正処理作動フラグ設定部12は、第2修正処理作動フラグFraがセット状態か否かを判定し、セット状態では無いと判定すると(ステップS300のNo)、供給される推定値Geを読み込む(ステップS308)。修正処理作動フラグ設定部12は、読み込んだ推定値Geが閾値Th2以上か否かを判定し(ステップS310)、閾値Th2以上の値であると判定すると(ステップS310のYes)、第2修正処理作動フラグFraをセット状態に設定する(ステップS312)。
 つまり、ドライバがアクセルペダル8を踏み込むことで、アクセル操作量が増加して、ドライバ加減速要求値の推定値Geが閾値Th2以上となり、第2修正処理作動フラグFraがセット状態となる。これにより、第2修正処理が開始される。
On the other hand, the correction processing operation flag setting unit 12 of the correction amount calculation unit 6C determines whether or not the second correction processing operation flag Fra is in the set state, and if it is determined that it is not in the set state (No in step S300), it is supplied. The estimated value Ge is read (step S308). The correction process operation flag setting unit 12 determines whether or not the read estimated value Ge is greater than or equal to the threshold value Th2 (step S310), and determines that the read estimated value Ge is greater than or equal to the threshold value Th2 (Yes in step S310). The operation flag Fra is set to the set state (step S312).
That is, when the driver depresses the accelerator pedal 8, the accelerator operation amount increases, the estimated value Ge of the driver acceleration / deceleration request value becomes equal to or greater than the threshold Th2, and the second correction processing operation flag Fra is set. Thereby, the second correction process is started.
 修正量算出部6Cの修正量決定部13は、第2修正処理作動フラグFraがセット状態であると判定すると(ステップS412のYes)、指令値算出部6Bから供給される車速指令値Voutに基づき、修正量マップ14E(ここでは、修正量マップ14E2を用いることとする)から、車速指令値Voutの大きさに応じた第2修正量Grを取得する(ステップS414)。このとき、車速指令値Voutが修正量マップ14E2におけるd2~d1の範囲内にあれば、第2修正量Grとして「0」が取得される。一方、車速指令値Voutがd2~d1の範囲外、即ち、電動モータ2の出力限界値又は出力制限値を超えている範囲にあれば「0」以外の値が取得される。具体的には、修正量マップ14Eを用いているので、修正後の規範車速Vcによる車速指令値Voutが、d2~d1の範囲内となる第2修正量Grが取得される。修正量決定部13は、取得した第2修正量Grを指令値算出部6Bに供給する。 When the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the second correction processing operation flag Fra is in the set state (Yes in step S412), the correction amount determination unit 13C based on the vehicle speed command value Vout supplied from the command value calculation unit 6B. The second correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout is acquired from the correction amount map 14E (here, the correction amount map 14E2 is used) (step S414). At this time, if the vehicle speed command value Vout is within the range of d2 to d1 in the correction amount map 14E2, “0” is acquired as the second correction amount Gr. On the other hand, if the vehicle speed command value Vout is outside the range of d2 to d1, that is, within the range where the output limit value or output limit value of the electric motor 2 is exceeded, a value other than “0” is acquired. Specifically, since the correction amount map 14E is used, the second correction amount Gr is acquired so that the vehicle speed command value Vout based on the corrected standard vehicle speed Vc falls within the range of d2 to d1. The correction amount determination unit 13 supplies the acquired second correction amount Gr to the command value calculation unit 6B.
 車速指令値Voutがd2~d1の範囲外である場合、指令値算出部6Bの規範車両モデル10では、供給される第2修正量Gr、推定値Ge、抵抗成分R1及びR2に基づき、実車速Vdへと近づくように修正された規範車速Vcが求められる。更に、修正された規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される。そして、その車速指令値Voutが車速サーボ6D及び修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eを介して、指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される。 When the vehicle speed command value Vout is outside the range of d2 to d1, in the reference vehicle model 10 of the command value calculation unit 6B, the actual vehicle speed is based on the supplied second correction amount Gr, estimated value Ge, and resistance components R1 and R2. A reference vehicle speed Vc corrected to approach Vd is obtained. Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd. The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout. Finally, a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を、修正された規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。この車速指令値Voutによる電動モータ2の出力は、実車速Vdを規範車速Vcに近づけることが可能な出力となる。
 なお、規範車速Vcの修正処理は、推定値Geが閾値Th2未満となるまで繰り返し実施され、推定値Geが閾値Th2未満になったと判定すると(ステップS304のNo)、第2修正処理作動フラグFraが非セット状態に設定され第2修正処理が終了する(ステップS306)。
Therefore, the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout. The output of the electric motor 2 based on the vehicle speed command value Vout is an output capable of bringing the actual vehicle speed Vd close to the reference vehicle speed Vc.
The correction process of the reference vehicle speed Vc is repeatedly performed until the estimated value Ge is less than the threshold value Th2, and when it is determined that the estimated value Ge is less than the threshold value Th2 (No in step S304), the second correction process operation flag Fra. Is set to the non-set state, and the second correction process is terminated (step S306).
 このとき、ドライバがアクセルペダル8から急に足を離して、推定値Geが閾値Th2以上の値から急に「0」へと変化した場合は、第1修正処理作動フラグFraがセット状態となって、第1修正処理が実施される。加えて、アクセルペダル8から足を離したことで定速走行制御が開始され、直前における推定値Geが、定速走行制御用の推定値Ge'として保持される。更に、定速走行制御が開始されると、以降はフラグFaがセット状態となり、転がり抵抗成分R1及び空気抵抗成分R2が0となる。
 第1修正処理が開始されると、車速指令値Voutが、修正量マップ14Cにおけるc2~c1の範囲外にある場合は、「0」以外の第1修正量Grによって、規範車速Vcが実車速Vdに近づくように修正が行われ、c2~c1の範囲内にある場合は、第1修正量Grが「0」となるので実質的に修正が行われない。
At this time, when the driver suddenly removes his or her foot from the accelerator pedal 8 and the estimated value Ge suddenly changes from a value equal to or greater than the threshold Th2 to “0”, the first correction processing operation flag Fra is set. Thus, the first correction process is performed. In addition, the constant speed running control is started by releasing the foot from the accelerator pedal 8, and the immediately preceding estimated value Ge is held as the estimated value Ge ′ for constant speed running control. Further, when the constant speed traveling control is started, the flag Fa is set thereafter, and the rolling resistance component R1 and the air resistance component R2 become zero.
When the first correction process is started, when the vehicle speed command value Vout is outside the range of c2 to c1 in the correction amount map 14C, the reference vehicle speed Vc is set to the actual vehicle speed by the first correction amount Gr other than “0”. When the correction is made so as to approach Vd and is within the range of c2 to c1, the first correction amount Gr becomes “0”, so that the correction is not substantially performed.
 このように、ドライバがアクセルペダル8を踏み込んで、加速側に大きな推定値Geが発生し、電動モータ2の出力限界値又は出力制限値によって、規範車速Vcを達成するためのモータ出力が得られないような状況でも、第2修正処理によって、規範車速Vcが実車速Vdに近づくように修正するようにした。これにより、規範車速Vcを、車速指令値Voutがd2~d1の範囲内の値となるように修正することが可能となり、このような状況において、ドライバが加速の停止を意図して急にアクセルペダル8から足を離したときでも、規範車速Vcと実車速Vdとの差を小さくすることができる。つまり、修正しない場合と比較して、実車速Vdを規範車速Vcへと速く収束させることができるので、ドライバの意図に反した加速制御の時間を短くすることが可能となる。加えて、本実施形態では、第1修正処理も実施されるため、ドライバの意図に反した加速制御の時間をより確実に短くすることが可能となる。 In this way, when the driver depresses the accelerator pedal 8, a large estimated value Ge is generated on the acceleration side, and a motor output for achieving the reference vehicle speed Vc is obtained based on the output limit value or the output limit value of the electric motor 2. Even in such a situation, the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd by the second correction process. As a result, the reference vehicle speed Vc can be corrected so that the vehicle speed command value Vout is a value within the range of d2 to d1, and in such a situation, the driver suddenly accelerates with the intention of stopping the acceleration. Even when the foot is released from the pedal 8, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced. That is, the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc compared with the case where the correction is not performed, so that it is possible to shorten the acceleration control time against the driver's intention. In addition, in the present embodiment, since the first correction process is also performed, it is possible to more reliably shorten the acceleration control time against the driver's intention.
 次に、図27に基づき、ドライバが急な上り坂でアクセルペダル8を大きく踏み込んだ状態から急にアクセルペダル8を離した場合の具体的な動作例を従来例と比較しながら説明する。
 図27(a)及び(b)は、従来技術及び本実施形態の、アクセル操作に応じた推定値(ドライバ加減速要求値)Ge、規範車速(目標車速)Vc及び車速検出信号(実車速)Vdの時間変化をそれぞれ示す波形図である。なお、図27中の破線が実車速Vdであり、実線が規範車速Vcである。
Next, based on FIG. 27, a specific operation example in a case where the accelerator pedal 8 is suddenly released from a state in which the driver depresses the accelerator pedal 8 greatly on a steep uphill will be described in comparison with a conventional example.
FIGS. 27A and 27B show an estimated value (driver acceleration / deceleration request value) Ge, a reference vehicle speed (target vehicle speed) Vc, and a vehicle speed detection signal (actual vehicle speed) according to the accelerator operation according to the related art and the present embodiment. It is a wave form diagram which shows each time change of Vd. Note that the broken line in FIG. 27 is the actual vehicle speed Vd, and the solid line is the reference vehicle speed Vc.
 図27(a)に示すように、従来技術の自動車においては、急な上り坂において、ドライバがアクセルペダルを大きく踏み込んだ状態で自動車が上り坂を登ると、踏み込み量の大きさに応じてドライバ加減速要求値Geも大きな値となり規範車速Vcも大きくなる。これにより、電動モータ2の出力限界値又は出力制限値によって、実車速Vdを規範車速Vcへと近づけるためのモータ出力が得られなくなり、図27(a)中の左側の丸で囲んだ範囲に示すように、規範車速Vcと実車速Vcとの差が大きくなっていく。そして、時刻t1の時点で、ドライバがアクセルペダルから急に足を離すと、この直前のドライバ加減速要求値Geが定速走行制御用のドライバ加減速要求値Ge’として保持される。そのため、定速走行制御が開始されると、図27(a)の右側の丸で囲んだ範囲に示すように、規範車速Vcと実車速Vdとの差が大きくなり、実車速Vdが規範車速Vcに収束するまでに時刻t1から時刻t3までの時間を要することになる。従って、ドライバは、加速の停止を意図してアクセルペダルから足を離したにもかかわらず、時刻t1からt3の間は加速制御が行われるため違和感を受けることになる。 As shown in FIG. 27 (a), in a conventional vehicle, when the vehicle climbs an uphill in a state where the driver depresses the accelerator pedal greatly on a steep uphill, the driver according to the amount of depression. The acceleration / deceleration request value Ge also becomes a large value, and the reference vehicle speed Vc also becomes large. As a result, the motor output for bringing the actual vehicle speed Vd close to the reference vehicle speed Vc cannot be obtained by the output limit value or the output limit value of the electric motor 2, and the range surrounded by the left circle in FIG. As shown, the difference between the reference vehicle speed Vc and the actual vehicle speed Vc increases. When the driver suddenly removes his / her foot from the accelerator pedal at time t1, the immediately preceding driver acceleration / deceleration request value Ge is held as the driver acceleration / deceleration request value Ge ′ for constant speed traveling control. Therefore, when the constant speed traveling control is started, as shown in the circled area on the right side of FIG. 27A, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd becomes large, and the actual vehicle speed Vd becomes the reference vehicle speed. It takes time from time t1 to time t3 to converge to Vc. Therefore, the driver feels uncomfortable because the acceleration control is performed between the times t1 and t3 even though the driver has lifted his / her foot from the accelerator pedal with the intention of stopping the acceleration.
 一方、図27(b)に示すように、本実施形態の自動車1においては、時刻t0~t1の期間において、推定値Geが閾値Th2以上となるため、第2修正処理作動フラグFraがセット状態となって第2修正処理が作動する。そのため、従来技術においては電動モータ2の出力限界値又は出力制限値によって、実車速Vdを規範車速Vcへと近づけるためのモータ出力が得られなくなる状況において、実車速Vdを規範車速Vcに近づける修正が行われる。従って、図27(b)の左側の丸で囲んだ範囲に示すように、規範車速Vcと実車速Vdとの差が小さくなる。その後、時刻t1の時点で、ドライバがアクセルペダルから急に足を離すと、この直前のドライバ加減速要求値Geが定速走行制御用のドライバ加減速要求値Ge’として保持される。そのため、定速走行制御が開始されると、図27(b)の右側の丸で囲んだ範囲に示すように、実車速Vdは、時刻t2(t2<t3)の時点で規範車速Vcへと収束する。具体的に、従来技術と比較して時間期間td3だけ速く収束する。
 なお、図27(b)に示す例では、定速走行制御に移行した時点で、規範車速Vcと実車速Vdの偏差が十分に小さくなっている(c2~c1の範囲内となっている)ので、第2修正処理のみが実施されている。
On the other hand, as shown in FIG. 27 (b), in the vehicle 1 of the present embodiment, the estimated value Ge is equal to or greater than the threshold value Th2 during the period from time t0 to t1, so the second correction processing operation flag Fra is set. Thus, the second correction process is activated. Therefore, in the prior art, in a situation where the motor output for making the actual vehicle speed Vd close to the reference vehicle speed Vc cannot be obtained due to the output limit value or the output limit value of the electric motor 2, the correction is made so that the actual vehicle speed Vd approaches the reference vehicle speed Vc. Is done. Therefore, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd becomes small as shown in the circled range on the left side of FIG. Thereafter, when the driver suddenly removes his / her foot from the accelerator pedal at time t1, the immediately preceding driver acceleration / deceleration request value Ge is held as the driver acceleration / deceleration request value Ge ′ for constant speed traveling control. Therefore, when the constant speed running control is started, the actual vehicle speed Vd is changed to the reference vehicle speed Vc at the time t2 (t2 <t3) as shown in the circled area on the right side of FIG. Converge. Specifically, it converges faster by the time period td3 compared to the prior art.
In the example shown in FIG. 27 (b), the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd is sufficiently small (within the range of c2 to c1) at the time of shifting to the constant speed traveling control. Therefore, only the second correction process is performed.
 以上のことから、第2修正処理を実施することで、従来技術と比較して、加速制御が発生する期間を短くすることができるので、ドライバが感じる違和感を低減することが可能となる。
 ここで、本実施形態において、ドライバ加減速要求推定部6Aが加減速要求検出部に対応し、規範車両モデル10が制御目標値演算部に対応し、車速センサ7が実測値検出部に対応する。
 また、本実施形態において、修正量算出部6C及び規範車両モデル10が、制御目標値修正部に対応し、減算器11、車速サーボ6D及び加算器6Eが加減速制御部及び定速走行制御部に対応し、アクセルペダル8がアクセル操作部に対応する。
From the above, by performing the second correction process, it is possible to reduce the period during which the acceleration control occurs compared to the conventional technique, and thus it is possible to reduce the uncomfortable feeling felt by the driver.
Here, in this embodiment, the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit, the reference vehicle model 10 corresponds to the control target value calculation unit, and the vehicle speed sensor 7 corresponds to the actual measurement value detection unit. .
In the present embodiment, the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit, and the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit. The accelerator pedal 8 corresponds to the accelerator operation unit.
(第4実施形態の効果)
 本実施形態は、上記第1乃至第3実施形態の効果に加えて、以下の効果を奏する。
(1)修正量算出部6C及び規範車両モデル10が、推定値Geに基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)が、電動モータ2の出力特性(出力限界値又は出力制限値)に基づき予め設定された許容偏差閾値以上(d2以下又はd1以上)の値になったと判定すると、加減速制御で用いる規範車速Vc(又は規範加速度Gc)を、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)の大きさに応じた修正量Grで実車速Vd(又は実加速度Gd)に近づくように修正する修正処理(第2修正処理)を実施する。
(Effect of 4th Embodiment)
In addition to the effects of the first to third embodiments, the present embodiment has the following effects.
(1) It is determined that the correction amount calculation unit 6C and the reference vehicle model 10 are in a state where there is a driver acceleration / deceleration request based on the estimated value Ge, and the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration”). Gd ") is used in acceleration / deceleration control when it is determined that the value exceeds a preset allowable deviation threshold (d2 or less or d1 or more) based on the output characteristics (output limit value or output limit value) of the electric motor 2 The reference vehicle speed Vc (or reference acceleration Gc) is approximated to the actual vehicle speed Vd (or actual acceleration Gd) with a correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”). A correction process (second correction process) to be corrected is performed.
 つまり、例えばドライバがアクセルペダル8を踏み込んで加速側に大きな推定値Geが発生し、電動モータ2の出力限界値又は出力制限値によって、規範車速Vc(又は規範加速度Gc)を達成するためのモータ出力が得られないような状況でも、第2修正処理によって、規範車速Vc(又は規範加速度Gc)が実車速Vd(又は実加速度Gd)に近づくように修正するようにした。これにより、規範車速Vc(又は規範加速度Gc)を、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)がd2~d1の範囲内(又は規範加速度Gcに対して電動モータ2の出力が追従できる範囲内)の値となるように修正することが可能となる。従って、このような状況において、ドライバが加速の停止を意図して急にアクセルペダル8から足を離したときでも、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との差を小さくすることができるので、修正しない場合と比較して、実車速Vd(又は実加速度Gd)を規範車速Vc(又は規範加速度Gc)へと速く収束させることができるという効果が得られる。 That is, for example, when the driver depresses the accelerator pedal 8, a large estimated value Ge is generated on the acceleration side, and the motor for achieving the reference vehicle speed Vc (or reference acceleration Gc) by the output limit value or output limit value of the electric motor 2. Even in a situation where the output cannot be obtained, the reference vehicle speed Vc (or reference acceleration Gc) is corrected so as to approach the actual vehicle speed Vd (or actual acceleration Gd) by the second correction process. As a result, the reference vehicle speed Vc (or reference acceleration Gc) and the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) within the range of d2 to d1 (or the output of the electric motor 2 with respect to the reference acceleration Gc). Can be corrected so as to be within the range that can be followed. Therefore, in such a situation, even when the driver suddenly removes his or her foot from the accelerator pedal 8 in order to stop acceleration, the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) As a result, the actual vehicle speed Vd (or the actual acceleration Gd) can be quickly converged to the reference vehicle speed Vc (or the reference acceleration Gc) as compared with the case where the difference is not corrected. .
(2)修正量算出部6C及び規範車両モデル10が、第2修正処理において、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)が、予め設定された0を内包する正負の数値範囲である許容出力範囲内の値であると判定すると、規範車速Vc(又は規範加速度Gc)の修正量Grを、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とする。
 これにより、規範車速Vc(又は規範加速度Gc)が、例えば実車速Vd(又は実加速度Gd)と一致するまで修正されてしまうようなことを防ぐことができるので、過剰な修正によって、ドライバの加減速意図に合致しない車両挙動となることを防ぐことができるという効果が得られる。
(2) The correction amount calculation unit 6C and the reference vehicle model 10 are positive and negative numerical values in which the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) includes a preset 0 in the second correction process. If it is determined that the value is within the allowable output range, the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc) is set to 0 or a value within a numerical range preset as a range of values near 0. To do.
As a result, it is possible to prevent the standard vehicle speed Vc (or the standard acceleration Gc) from being corrected, for example, until it matches the actual vehicle speed Vd (or the actual acceleration Gd). An effect is obtained in that it is possible to prevent a vehicle behavior that does not match the intention of deceleration.
(3)修正量算出部6C及び規範車両モデル10が、第2修正処理において、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)が許容出力範囲外(d2~d1の範囲外)の値であると判定すると、規範車速Vc(又は規範加速度Gc)の修正量Grを、修正前後の車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)の正負の符号が一致し、かつ、修正後の車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)が許容出力範囲内の値となる修正量とする。
 これにより、修正後は、規範車速Vcに対して電動モータ2の出力が追従できるようになるため、ドライバの加速停止の意図に反する加速制御の時間をより短くすることができるという効果が得られる。
(3) When the correction amount calculation unit 6C and the reference vehicle model 10 are in the second correction process, the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) is outside the allowable output range (outside the range of d2 to d1). If the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) before and after the correction matches the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc), The corrected vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) is set to a correction amount that is a value within the allowable output range.
As a result, after the correction, the output of the electric motor 2 can follow the reference vehicle speed Vc, so that the effect of shortening the acceleration control time against the driver's intention to stop the acceleration can be obtained. .
(4)修正量算出部6C及び規範車両モデル10が、第1修正処理において、車速指令値Vout(又は「目標加速度Gc-実加速度Gd」)が、予め設定された0を内包する正負の数値範囲である不感帯範囲(c2~c1)内の値であると判定すると、規範車速Vc(又は規範加速度Gc)の修正量Grを、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とする。また、許容出力範囲(d2~d1)を、不感帯範囲(c2~c1)を内包する数値範囲に設定した。
 これにより、第2修正処理が、第1修正処理の不感帯範囲(c2~c1)内で作動することを防ぐことができるという効果が得られる。
(4) The correction amount calculation unit 6C and the reference vehicle model 10 are positive and negative numerical values in which the vehicle speed command value Vout (or “target acceleration Gc−actual acceleration Gd”) includes a preset 0 in the first correction process. If it is determined that the value is within the dead band range (c2 to c1), the correction amount Gr of the reference vehicle speed Vc (or reference acceleration Gc) is set to 0 or a numerical range set in advance as a range of values close to 0 The value in Further, the allowable output range (d2 to d1) was set to a numerical range including the dead band range (c2 to c1).
As a result, it is possible to prevent the second correction process from operating within the dead zone range (c2 to c1) of the first correction process.
(5)ドライバ加減速要求推定部6Aが、ドライバの加減速要求を示す加減速要求値を推定する。規範車両モデル10が、ドライバ加減速要求推定部6Aが推定したドライバ加減速要求値の推定値Geに基づき自動車1の規範車速(目標車速)Vcを求める。車速センサ7が、実車速Vdを検出する。減算器11、車速サーボ6D及び加算器6Eが、実車速Vcが規範車速Vcに一致するように自動車1に対する加減速制御を行うと共に、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の推定値Geに基づき、ドライバの操作によらず自動的に車速を制御する定速走行制御を実施する。修正量算出部6C及び規範車両モデル10が、推定値Geに基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、車速指令値Voutが、電動モータ2の出力特性(出力限界値又は出力制限値)に基づき予め設定された許容偏差閾値以上(d2以下又はd1以上)の値になったと判定すると、加減速制御で用いる規範車速Vcを、車速指令値Voutの大きさに応じた修正量Grで実車速Vdに近づくように修正する修正処理(第2修正処理)を実施する。 (5) The driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request. The reference vehicle model 10 determines the reference vehicle speed (target vehicle speed) Vc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A. The vehicle speed sensor 7 detects the actual vehicle speed Vd. The subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the vehicle 1 so that the actual vehicle speed Vc matches the reference vehicle speed Vc, and from a state in which there is a driver acceleration / deceleration request based on the estimated value Ge. If it is determined that the driver has changed to a state where there is no acceleration / deceleration request, the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change. Implement control. Based on the estimated value Ge, the correction amount calculation unit 6C and the reference vehicle model 10 are determined to be in a state where there is a driver acceleration / deceleration request, and the vehicle speed command value Vout is the output characteristic (output limit value) of the electric motor 2. Or a reference vehicle speed Vc used for acceleration / deceleration control according to the magnitude of the vehicle speed command value Vout. A correction process (second correction process) is performed to correct the correction amount Gr so as to approach the actual vehicle speed Vd.
 つまり、例えばドライバがアクセルペダル8を踏み込んで加速側に大きな推定値Geが発生し、電動モータ2の出力限界値又は出力制限値によって、規範車速Vcを達成するためのモータ出力が得られないような状況でも、第2修正処理によって、規範車速Vcが実車速Vdに近づくように修正するようにした。これにより、規範車速Vcを、車速指令値Voutがd2~d1の範囲内の値となるように修正することが可能となる。従って、このような状況において、ドライバが加速の停止を意図して急にアクセルペダル8から足を離したときでも、規範車速Vcと実車速Vdとの差を小さくすることができるので、修正しない場合と比較して、実車速Vdを規範車速Vcへと速く収束させることができるという効果が得られる。 That is, for example, the driver depresses the accelerator pedal 8 and a large estimated value Ge is generated on the acceleration side, so that the motor output for achieving the reference vehicle speed Vc cannot be obtained by the output limit value or the output limit value of the electric motor 2. Even in such a situation, the reference vehicle speed Vc is corrected so as to approach the actual vehicle speed Vd by the second correction process. As a result, the reference vehicle speed Vc can be corrected so that the vehicle speed command value Vout is a value within the range of d2 to d1. Therefore, in such a situation, even when the driver suddenly removes his or her foot from the accelerator pedal 8 with the intention of stopping the acceleration, the difference between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced, so no correction is made. Compared to the case, an effect is obtained in which the actual vehicle speed Vd can be rapidly converged to the reference vehicle speed Vc.
(6)ドライバ加減速要求推定部6Aが、ドライバの加減速要求を示す加減速要求値を推定する。規範車両モデル10が、ドライバ加減速要求推定部6Aが推定したドライバ加減速要求値の推定値Geに基づき自動車1の規範加速度(目標加速度)Gcを求める。加速度センサが、実加速度Gdを検出する。減算器11、車速サーボ6D及び加算器6Eが、実加速度Gcが規範加速度Gcに一致するように自動車1に対する加減速制御を行うと共に、推定値Geに基づき、ドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の推定値Geに基づき、ドライバの操作によらず自動的に車速を制御する定速走行制御を実施する。修正量算出部6C及び規範車両モデル10が、推定値Geに基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、「目標加速度Gc-実加速度Gd」が、電動モータ2の出力特性(出力限界値又は出力制限値)に基づき予め設定された許容偏差閾値以上の値になったと判定すると、加減速制御で用いる規範加速度Gcを、「目標加速度Gc-実加速度Gd」の大きさに応じた修正量Grで実加速度Gdに近づくように修正する修正処理(第2修正処理)を実施する。 (6) The driver acceleration / deceleration request estimation unit 6A estimates an acceleration / deceleration request value indicating the driver's acceleration / deceleration request. The reference vehicle model 10 obtains the reference acceleration (target acceleration) Gc of the automobile 1 based on the estimated value Ge of the driver acceleration / deceleration request value estimated by the driver acceleration / deceleration request estimation unit 6A. The acceleration sensor detects the actual acceleration Gd. The subtractor 11, the vehicle speed servo 6D, and the adder 6E perform acceleration / deceleration control on the automobile 1 so that the actual acceleration Gc coincides with the reference acceleration Gc, and from the state where there is a driver acceleration / deceleration request based on the estimated value Ge. If it is determined that the driver has changed to a state where there is no acceleration / deceleration request, the vehicle speed is automatically controlled regardless of the driver's operation based on an estimated value Ge at a preset time before the time of change. Implement control. Based on the estimated value Ge, the correction amount calculation unit 6C and the reference vehicle model 10 are determined to be in a state where there is a driver acceleration / deceleration request, and “target acceleration Gc−actual acceleration Gd” is output from the electric motor 2. If it is determined that the value is equal to or greater than a preset allowable deviation threshold based on the characteristic (output limit value or output limit value), the reference acceleration Gc used in the acceleration / deceleration control is set to the magnitude of “target acceleration Gc−actual acceleration Gd”. A correction process (second correction process) is performed to correct the actual acceleration Gd so as to approach the actual acceleration Gd with the correction amount Gr according to the above.
 つまり、例えばドライバがアクセルペダル8を踏み込んで加速側に大きな推定値Geが発生し、電動モータ2の出力限界値又は出力制限値によって、規範加速度Gcを達成するためのモータ出力が得られないような状況でも、第2修正処理によって、規範加速度Gcが実加速度Gdに近づくように修正するようにした。これにより、規範加速度Gcを、「目標加速度Gc-実加速度Gd」が規範加速度Gcに対して電動モータ2の出力が追従できる範囲内の値となるように修正することが可能となる。従って、このような状況において、ドライバが加速の停止を意図して急にアクセルペダル8から足を離したときでも、規範加速度Gcと実加速度Gdとの差を小さくすることができるので、修正しない場合と比較して、実加速度Gdを規範加速度Gcへと速く収束させることができるという効果が得られる。 That is, for example, a large estimated value Ge is generated on the acceleration side when the driver depresses the accelerator pedal 8, and the motor output for achieving the reference acceleration Gc is not obtained by the output limit value or the output limit value of the electric motor 2. Even in such a situation, the reference acceleration Gc is corrected so as to approach the actual acceleration Gd by the second correction process. Accordingly, the reference acceleration Gc can be corrected so that “target acceleration Gc−actual acceleration Gd” is a value within a range in which the output of the electric motor 2 can follow the reference acceleration Gc. Therefore, in such a situation, even when the driver suddenly removes his or her foot from the accelerator pedal 8 in order to stop acceleration, the difference between the reference acceleration Gc and the actual acceleration Gd can be reduced, and thus no correction is made. Compared to the case, the effect is obtained that the actual acceleration Gd can be quickly converged to the reference acceleration Gc.
(第5実施形態)
 次に、図28乃至図30に基づき、本発明の第5実施形態を説明する。なお、上記第1乃至第4実施形態と同様の構成には同じ符号を付し、その重複する説明は省略する。
 本実施形態では、第2修正処理において、基準となる修正量マップ14Eから読み出した修正量Grを、ドライバ加減速要求値の推定値Geの大きさに応じた補正量及び実車速Vdの大きさに応じた補正量で補正する点が上記第4実施形態と異なる。
 図28は、本実施形態の修正量算出部6Cの機能構成を示すブロック図である。
 即ち、本実施形態の修正量算出部6Cは、図28に示すように、実車速Vdの大きさに応じた補正ゲインGvのマップデータである補正ゲインマップ15Aと、推定値Geの絶対値|Ge|の大きさに応じた補正ゲインGgのマップデータである補正ゲインマップ15Bとを備えている。
(Fifth embodiment)
Next, based on FIG. 28 thru | or FIG. 30, 5th Embodiment of this invention is described. In addition, the same code | symbol is attached | subjected to the structure similar to the said 1st thru | or 4th embodiment, and the overlapping description is abbreviate | omitted.
In the present embodiment, in the second correction process, the correction amount Gr read from the reference correction amount map 14E is used as a correction amount corresponding to the estimated value Ge of the driver acceleration / deceleration request value and the magnitude of the actual vehicle speed Vd. The difference from the fourth embodiment is that correction is performed with a correction amount according to the above.
FIG. 28 is a block diagram illustrating a functional configuration of the correction amount calculation unit 6C according to the present embodiment.
That is, as shown in FIG. 28, the correction amount calculation unit 6C of the present embodiment has a correction gain map 15A that is map data of the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd and the absolute value of the estimated value Ge | And a correction gain map 15B which is map data of the correction gain Gg corresponding to the magnitude of Ge |.
 図29は、実車速Vdに対応する補正ゲインマップ15Aの一例を示す図である。
 図29に示すように、補正ゲインマップ15Aは、実車速Vdが0のときに0よりも大きい予め設定されたゲインを有し、実車速Vdが大きくなるにつれて対数関数のように補正ゲインGvも大きくなっていき、最終的に最大値に漸近する特性を有している。
FIG. 29 is a diagram illustrating an example of a correction gain map 15A corresponding to the actual vehicle speed Vd.
As shown in FIG. 29, the correction gain map 15A has a preset gain larger than 0 when the actual vehicle speed Vd is 0, and the correction gain Gv is also a logarithmic function as the actual vehicle speed Vd increases. It has a characteristic of increasing and eventually approaching the maximum value.
 図30は、推定値Geの絶対値に対応する補正ゲインマップ15Bの一例を示す図である。
 図30に示すように、補正ゲインマップ15Bは、推定値Geの絶対値|Ge|が0のときに0よりも大きい予め設定されたゲインを有し、絶対値|Ge|が大きくなるにつれて対数関数のように補正ゲインGgも大きくなっていき、最終的に最大値に漸近する特性を有している。
 また、修正量算出部6Cは、基準となる修正量マップとして修正量マップ14E1を備えている。
 そして、本実施形態の修正量決定部13には、車速指令値Voutに加えて、車速センサ7が出力する車速検出信号Vdと、ドライバ加減速要求推定部6Aが出力する推定値Geとが供給されるようになっている。
FIG. 30 is a diagram illustrating an example of the correction gain map 15B corresponding to the absolute value of the estimated value Ge.
As shown in FIG. 30, the correction gain map 15B has a preset gain larger than 0 when the absolute value | Ge | of the estimated value Ge is 0, and the logarithm as the absolute value | Ge | As a function, the correction gain Gg also increases and finally has a characteristic of asymptotically approaching the maximum value.
The correction amount calculation unit 6C includes a correction amount map 14E1 as a reference correction amount map.
In addition to the vehicle speed command value Vout, the correction amount determination unit 13 of the present embodiment is supplied with a vehicle speed detection signal Vd output from the vehicle speed sensor 7 and an estimated value Ge output from the driver acceleration / deceleration request estimation unit 6A. It has come to be.
 修正量決定部13は、第2修正処理が実施されると、補正ゲインマップ15Aから実車速Vdの大きさに応じた補正ゲインGvを読み出し、補正ゲインマップ15Bから絶対値|Ge|の大きさに応じた補正ゲインGgを読み出す。そして、修正量決定部13は、修正量マップ14E1から読み出した第2修正量Grに対して、読み出した補正ゲインGvとGgとを乗算し、乗算後の第2修正量Grを、指令値算出部6Bに供給する。
 これにより、指令値算出部6Bの規範車両モデル10では、推定値Geと、補正後の第2修正量Grと、転がり抵抗成分R1と、空気抵抗成分R2とに基づき、規範車速Vcが算出される。
When the second correction process is performed, the correction amount determination unit 13 reads the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd from the correction gain map 15A, and the magnitude of the absolute value | Ge | from the correction gain map 15B. The correction gain Gg corresponding to is read. Then, the correction amount determination unit 13 multiplies the read correction gain Gv and Gg by the second correction amount Gr read from the correction amount map 14E1, and calculates a command value for the second correction amount Gr after multiplication. Supply to unit 6B.
Thus, in the reference vehicle model 10 of the command value calculation unit 6B, the reference vehicle speed Vc is calculated based on the estimated value Ge, the corrected second correction amount Gr, the rolling resistance component R1, and the air resistance component R2. The
(動作)
 次に動作を説明する。
 修正量算出部6Cの修正量決定部13は、第2修正処理作動フラグFraがセット状態であると判定すると(ステップS412のYes)、指令値算出部6Bから供給される車速指令値Voutに基づき、修正量マップ14E1から、車速指令値Voutの大きさに応じた第2修正量Grを取得する。このとき、車速指令値Voutが修正量マップ14E1におけるd2~d1の範囲内にあれば、第2修正量Grとして「0」が取得される。一方、車速指令値Voutがd2~d1の範囲外、即ち、電動モータ2の出力限界値又は出力制限値を超えている範囲にあれば「0」以外の値が取得される。修正量決定部13は、次に、補正ゲインマップ15Aから、実車速Vdの大きさに応じた補正ゲインGvを読み出し、補正ゲインマップ15Bから、推定値Geの絶対値|Ge|の大きさに応じた補正ゲインGgを読み出す。そして、修正量マップ14E1から読み出した第2修正量Grに対して、読み出した補正ゲインGvとGgとを乗算し、乗算後の第2修正量Grを、指令値算出部6Bに供給する(ステップS414)。
(Operation)
Next, the operation will be described.
When the correction amount determination unit 13 of the correction amount calculation unit 6C determines that the second correction processing operation flag Fra is in the set state (Yes in step S412), the correction amount determination unit 13C based on the vehicle speed command value Vout supplied from the command value calculation unit 6B. Then, the second correction amount Gr corresponding to the magnitude of the vehicle speed command value Vout is acquired from the correction amount map 14E1. At this time, if the vehicle speed command value Vout is within the range of d2 to d1 in the correction amount map 14E1, “0” is acquired as the second correction amount Gr. On the other hand, if the vehicle speed command value Vout is outside the range of d2 to d1, that is, within the range where the output limit value or output limit value of the electric motor 2 is exceeded, a value other than “0” is acquired. Next, the correction amount determination unit 13 reads the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd from the correction gain map 15A, and sets the absolute value | Ge | of the estimated value Ge from the correction gain map 15B. The corresponding correction gain Gg is read out. Then, the second correction amount Gr read from the correction amount map 14E1 is multiplied by the read correction gain Gv and Gg, and the second correction amount Gr after multiplication is supplied to the command value calculation unit 6B (step S1). S414).
 車速指令値Voutがd2~d1の範囲外である場合、指令値算出部6Bの規範車両モデル10では、供給される第2修正量Gr、推定値Ge、抵抗成分R1及びR2に基づき、実車速Vdへと近づくように修正された規範車速Vcが求められる(ステップS416)。更に、修正された規範車速Vcと車速検出信号Vdとに基づいて車速指令値Voutが演算される。そして、その車速指令値Voutが車速サーボ6D及び修正量算出部6Cにそれぞれ供給される。車速サーボ6Dは、車速指令値Voutに基づきアシストトルクGoutを出力し、最終的に、加算器6Eを介して、指令電流Ioutが生成され、電動モータ2に指令電流Ioutが出力される。 When the vehicle speed command value Vout is outside the range of d2 to d1, in the reference vehicle model 10 of the command value calculation unit 6B, the actual vehicle speed is based on the supplied second correction amount Gr, estimated value Ge, and resistance components R1 and R2. The reference vehicle speed Vc corrected so as to approach Vd is obtained (step S416). Further, the vehicle speed command value Vout is calculated based on the corrected standard vehicle speed Vc and the vehicle speed detection signal Vd. The vehicle speed command value Vout is supplied to the vehicle speed servo 6D and the correction amount calculation unit 6C. The vehicle speed servo 6D outputs an assist torque Gout based on the vehicle speed command value Vout. Finally, a command current Iout is generated via the adder 6E, and the command current Iout is output to the electric motor 2.
 従って、電動モータ2は、ドライバによる加減速の要求を表す推定値Geと、実際の車速を、修正された規範車速Vcに一致させるために必要な車速指令値Voutとを合算してなる指令電流Ioutによって回転駆動されることになる。
 なお、規範車速Vcの修正処理は、推定値Geが閾値Th2未満となるまで繰り返し実施され、推定値Geが閾値Th2未満になったと判定すると(ステップS304のNo)、第2修正処理作動フラグFraが非セット状態に設定され第2修正処理が終了する(ステップS306)。
Therefore, the electric motor 2 has a command current obtained by adding the estimated value Ge indicating the acceleration / deceleration request by the driver and the vehicle speed command value Vout necessary for making the actual vehicle speed coincide with the corrected standard vehicle speed Vc. It is driven to rotate by Iout.
The correction process of the reference vehicle speed Vc is repeatedly performed until the estimated value Ge is less than the threshold value Th2, and when it is determined that the estimated value Ge is less than the threshold value Th2 (No in step S304), the second correction process operation flag Fra. Is set to the non-set state, and the second correction process is terminated (step S306).
 実車速Vdの大きさや、推定値Geの大きさによって、規範車速Vcと実車速Vdとの乖離の度合いが異なる。本実施形態では、修正量マップ14E1から読み出した第2修正量Grに対して、実車速Vdの大きさに応じた補正ゲインGvと、推定値Geの絶対値|Ge|の大きさに応じた補正ゲインGgとを乗算するようにしたので、規範車速Vcと実車速Vdとの乖離を適切な修正量で低減することが可能となる。これにより、より短い時間で規範車速Vcと実車速Vdとの乖離を低減することが可能となる。 The degree of deviation between the reference vehicle speed Vc and the actual vehicle speed Vd varies depending on the magnitude of the actual vehicle speed Vd and the estimated value Ge. In the present embodiment, with respect to the second correction amount Gr read from the correction amount map 14E1, the correction gain Gv corresponding to the magnitude of the actual vehicle speed Vd and the magnitude of the absolute value | Ge | Since the correction gain Gg is multiplied, the deviation between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced with an appropriate correction amount. As a result, the divergence between the reference vehicle speed Vc and the actual vehicle speed Vd can be reduced in a shorter time.
 ここで、本実施形態において、ドライバ加減速要求推定部6Aが加減速要求検出部に対応し、規範車両モデル10が制御目標値演算部に対応し、車速センサ7が実測値検出部に対応する。
 また、本実施形態において、修正量算出部6C及び規範車両モデル10が、制御目標値修正部に対応し、減算器11、車速サーボ6D及び加算器6Eが加減速制御部及び定速走行制御部に対応し、アクセルペダル8がアクセル操作部に対応する。
Here, in this embodiment, the driver acceleration / deceleration request estimation unit 6A corresponds to the acceleration / deceleration request detection unit, the reference vehicle model 10 corresponds to the control target value calculation unit, and the vehicle speed sensor 7 corresponds to the actual measurement value detection unit. .
In the present embodiment, the correction amount calculation unit 6C and the reference vehicle model 10 correspond to the control target value correction unit, and the subtractor 11, the vehicle speed servo 6D, and the adder 6E include the acceleration / deceleration control unit and the constant speed traveling control unit. The accelerator pedal 8 corresponds to the accelerator operation unit.
(第5実施形態の効果)
 本実施形態は、上記第1乃至第4実施形態の効果に加えて、以下の効果を奏する。
(1)修正量算出部6C及び規範車両モデル10が、第2修正処理で用いる規範車速Vc(又は規範加速度Gc)の修正量である第2修正量Grを、推定値Geの絶対値|Ge|の大きさに応じた補正ゲインGgによって補正する。
 推定値Geの大きさによって、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離の度合いが異なるため、推定値Geの絶対値|Ge|の大きさに応じた補正ゲインGgで第2修正量Grを補正することで、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離を適切な修正量で修正することができる。これにより、より短い時間で規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離を低減することができるという効果が得られる。
(Effect of 5th Embodiment)
This embodiment has the following effects in addition to the effects of the first to fourth embodiments.
(1) The second correction amount Gr, which is the correction amount of the reference vehicle speed Vc (or the reference acceleration Gc) used by the correction amount calculation unit 6C and the reference vehicle model 10 in the second correction processing, is calculated as the absolute value | Ge Correction is performed with a correction gain Gg corresponding to the magnitude of |.
Since the degree of deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) differs depending on the magnitude of the estimated value Ge, it depends on the magnitude of the absolute value | Ge | By correcting the second correction amount Gr with the correction gain Gg, the deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) can be corrected with an appropriate correction amount. As a result, it is possible to reduce the difference between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) in a shorter time.
(2)修正量算出部6C及び規範車両モデル10が、第2修正処理における規範車速Vc(又は規範加速度Gc)の修正量である第2修正量Grを、実車速Vdの大きさに応じた補正ゲインGvで補正する。
 実車速Vd(又は実加速度Gd)の大きさによって、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離の度合いが異なるため、実車速Vd(又は実加速度Gd)の大きさに応じた補正ゲインGvで第2修正量Grを補正することで、規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離を適切な修正量で修正することができる。これにより、より短い時間で規範車速Vc(又は規範加速度Gc)と実車速Vd(又は実加速度Gd)との乖離を低減することができるという効果が得られる。
(2) The correction amount calculation unit 6C and the reference vehicle model 10 set the second correction amount Gr, which is the correction amount of the reference vehicle speed Vc (or reference acceleration Gc) in the second correction process, according to the magnitude of the actual vehicle speed Vd. Correction is performed with the correction gain Gv.
Since the degree of deviation between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) differs depending on the magnitude of the actual vehicle speed Vd (or actual acceleration Gd), the actual vehicle speed Vd (or actual acceleration Gd) is different. ) By correcting the second correction amount Gr with a correction gain Gv corresponding to the magnitude of the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) with an appropriate correction amount. It can be corrected. As a result, it is possible to reduce the difference between the reference vehicle speed Vc (or reference acceleration Gc) and the actual vehicle speed Vd (or actual acceleration Gd) in a shorter time.
(変形例)
 上記各実施形態では、本発明に係る車両用走行支援装置及び自動車を、電動モータ2を動力源とするいわゆる電気自動車に適用した場合について説明しているが、これに限定されるものではなく、内燃機関を動力源とする自動車や、内燃機関と電動モータとを備えたハイブリッド車両であっても、本願発明は適用可能である。
 また、上記各実施形態では、フラグFaがセットされた状態では、転がり抵抗成分R1及び空気抵抗成分R2を0にするようにしているが、これに限定されるものではなく、例えば、0よりも若干大きな値に設定するような制御でも構わない。
(Modification)
In each of the above embodiments, the case where the vehicular driving support apparatus and the vehicle according to the present invention are applied to a so-called electric vehicle using the electric motor 2 as a power source is described, but the present invention is not limited thereto. The present invention can be applied even to an automobile using an internal combustion engine as a power source or a hybrid vehicle including an internal combustion engine and an electric motor.
In the above embodiments, the rolling resistance component R1 and the air resistance component R2 are set to 0 when the flag Fa is set. However, the present invention is not limited to this. Control that sets a slightly large value may be used.
 また、上記各実施形態では、推定値Geが、閾値Th2以上の値又は閾値Th4以下の値から「0」に急変したことを、第1修正処理の作動開始条件としているが、この構成に限らない。例えば、推定値Geが、閾値Th2以上の値又は閾値Th4以下の値から「0」に変化する時間が予め設定した閾値以下となったときは開始条件とする構成とするなど他の構成としてもよい。
 また、上記各実施形態では、アクセル操作検出装置9、ブレーキ操作検出装置21によって検出されるアクセル操作量やブレーキ操作量に基づいて、ドライバ加減速要求値を推定する構成としたが、この構成に限らない。ドライバ加減速要求値を推定することが可能で有れば、例えば、ステアリングスイッチやジョイスティック等の操作量に基づいて、推定値を求める構成としてもよい。
Further, in each of the above-described embodiments, the sudden change of the estimated value Ge from a value equal to or greater than the threshold Th2 or a value equal to or less than the threshold Th4 to “0” is set as the operation start condition of the first correction process. Absent. For example, when the estimated value Ge is equal to or greater than the threshold Th2 or when the time when the estimated value Ge changes from a value equal to or less than the threshold Th4 to “0” is equal to or less than a preset threshold, other configurations may be used. Good.
In each of the above embodiments, the driver acceleration / deceleration request value is estimated based on the accelerator operation amount and the brake operation amount detected by the accelerator operation detection device 9 and the brake operation detection device 21. Not exclusively. If the driver acceleration / deceleration request value can be estimated, for example, the estimated value may be obtained based on the operation amount of a steering switch, a joystick, or the like.
 また、上記各実施形態では、電動モータ2に対して、各種修正量マップ14E(14E1、14E2)を用いて、規範車速Vcを補正する構成としたが、修正対象とする駆動装置の機種や構成等によって、出力限界値又は出力制限値が異なるため、機種や構成等に応じて修正量マップの内容を変更するようにしてもよい。例えば、電動モータに対しては、図31(a)に示す修正量マップを用いるように構成し、エンジンに対しては、図31(b)に示す修正量マップを用いるように構成するといったように、駆動装置の機種に応じて異なる内容の修正量マップを用いるようにする。 Further, in each of the above embodiments, the standard vehicle speed Vc is corrected using the various correction amount maps 14E (14E1, 14E2) for the electric motor 2, but the model and configuration of the drive device to be corrected Since the output limit value or the output limit value differs depending on the etc., the content of the correction amount map may be changed according to the model, configuration, or the like. For example, the electric motor is configured to use the correction amount map shown in FIG. 31A, and the engine is configured to use the correction amount map shown in FIG. 31B. In addition, a correction amount map having different contents depending on the model of the driving device is used.
 また、上記実施形態は、本発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本発明の範囲は、上記の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。また、上記の説明で用いる図面は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。
 また、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良、均等物等は本発明に含まれるものである。
 以上、本願が優先権を主張する日本国特許出願P2012-226607(2012年10月12日出願)の全内容は、ここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明のことである。
The above embodiments are preferable specific examples of the present invention, and various technically preferable limitations are given. However, the scope of the present invention is described in particular in the above description to limit the present invention. As long as there is no, it is not restricted to these forms. In the drawings used in the above description, for convenience of illustration, the vertical and horizontal scales of members or parts are schematic views different from actual ones.
In addition, the present invention is not limited to the above-described embodiments, and modifications, improvements, equivalents, and the like within the scope that can achieve the object of the present invention are included in the present invention.
As described above, the entire contents of the Japanese Patent Application P2012-226607 (filed on October 12, 2012) to which the present application claims priority are incorporated herein by reference.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure will be obvious to those skilled in the art.
1  自動車
2  電動モータ
3  変速機
4  ドライブシャフト
5  駆動輪
6  コントローラ
6A ドライバ加減速要求推定部
6B 指令値算出部
6C 修正量算出部
6D 車速サーボ
6E 加算器
7  車速センサ
8  アクセルペダル
9  アクセル操作検出装置
10 規範車両モデル
10a 転がり抵抗成分記憶部
10b 空気抵抗成分設定部
10c 選択部
10d 設定部
10e フラグ設定部
10f 加算器
10g 除算器
10h 積分器
11  減算器
12  修正処理作動フラグ設定部
13  修正量決定部
14  修正量マップ
15A,15B 補正ゲインマップ
20  ブレーキペダル
21  ブレーキ操作検出装置
30  ステアリングコラム
30a ハンドル
31  ハンドル操作検出装置
32  旋回アシストトルク演算部
DESCRIPTION OF SYMBOLS 1 Car 2 Electric motor 3 Transmission 4 Drive shaft 5 Drive wheel 6 Controller 6A Driver acceleration / deceleration request estimation part 6B Command value calculation part 6C Correction amount calculation part 6D Vehicle speed servo 6E Adder 7 Vehicle speed sensor 8 Accelerator pedal 9 Accelerator operation detection device 10 reference vehicle model 10a rolling resistance component storage unit 10b air resistance component setting unit 10c selection unit 10d setting unit 10e flag setting unit 10f adder 10g divider 10h integrator 11 subtractor 12 correction processing operation flag setting unit 13 correction amount determination unit 14 Correction amount map 15A, 15B Correction gain map 20 Brake pedal 21 Brake operation detection device 30 Steering column 30a Handle 31 Handle operation detection device 32 Turning assist torque calculator

Claims (18)

  1.  ドライバの加減速要求を示す加減速要求値を推定又は検出する加減速要求検出部と、
     前記加減速要求検出部が推定又は検出した加減速要求値に基づき制御目標値である目標車速を求める目標車速演算部と、
     前記制御目標値と同じ物理量である車両の実車速を推定又は検出する実車速検出部と、
     前記目標車速と前記実車速とに基づき、前記実車速が前記目標車速に一致するように前記車両に対する加減速制御を実施する加減速制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の前記加減速要求値に基づき、前記加減速制御に代えてドライバの操作によらず自動的に車速を制御する定速走行制御を実施する定速走行制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと急変したと判定すると、前記定速走行制御に用いる前記目標車速を、該目標車速と前記実車速との偏差の大きさに応じた修正量で前記実車速に近づくように修正する第1修正処理を実施する制御目標値修正部と、を備えることを特徴とする車両用走行支援装置。
    An acceleration / deceleration request detector for estimating or detecting an acceleration / deceleration request value indicating an acceleration / deceleration request of the driver;
    A target vehicle speed calculation unit for obtaining a target vehicle speed that is a control target value based on the acceleration / deceleration request value estimated or detected by the acceleration / deceleration request detection unit;
    An actual vehicle speed detector for estimating or detecting an actual vehicle speed of the vehicle having the same physical quantity as the control target value;
    An acceleration / deceleration control unit that performs acceleration / deceleration control on the vehicle based on the target vehicle speed and the actual vehicle speed so that the actual vehicle speed matches the target vehicle speed;
    Based on the acceleration / deceleration request value, when it is determined that the driver's acceleration / deceleration request is changed to a state where there is no driver's acceleration / deceleration request, the acceleration / deceleration request value at a preset time point before the change point is obtained. Based on the acceleration / deceleration control, a constant speed traveling control unit that performs constant speed traveling control that automatically controls the vehicle speed without depending on the operation of the driver;
    If it is determined based on the acceleration / deceleration request value that the driver's acceleration / deceleration request is suddenly changed to a state where there is no driver's acceleration / deceleration request, the target vehicle speed used for the constant speed traveling control is set to the target vehicle speed and the actual vehicle. And a control target value correction unit that performs a first correction process that corrects the actual vehicle speed so as to approach the actual vehicle speed by a correction amount corresponding to the magnitude of the deviation from the speed.
  2.  ドライバの加減速要求を示す加減速要求値を推定又は検出する加減速要求検出部と、
     前記加減速要求検出部が推定又は検出した加減速要求値に基づき制御目標値である目標加速度を求める目標加速度演算部と、
     前記制御目標値と同じ物理量である車両の実加速度を推定又は検出する実加速度検出部と、
     前記目標加速度と前記実加速度とに基づき、前記実加速度が前記目標加速度に一致するように前記車両に対する加減速制御を実施する加減速制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の前記加減速要求値に基づき、前記加減速制御に代えてドライバの操作によらず自動的に車速を制御する定速走行制御を実施する定速走行制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと急変したと判定すると、前記定速走行制御に用いる前記目標加速度を、前記目標加速度と前記実加速度との偏差の大きさに応じた修正量で前記実加速度に近づくように修正する第1修正処理を実施する制御目標値修正部と、を備えることを特徴とする車両用走行支援装置。
    An acceleration / deceleration request detector for estimating or detecting an acceleration / deceleration request value indicating an acceleration / deceleration request of the driver;
    A target acceleration calculation unit for obtaining a target acceleration which is a control target value based on the acceleration / deceleration request value estimated or detected by the acceleration / deceleration request detection unit;
    An actual acceleration detector for estimating or detecting an actual acceleration of the vehicle having the same physical quantity as the control target value;
    An acceleration / deceleration control unit that performs acceleration / deceleration control on the vehicle based on the target acceleration and the actual acceleration so that the actual acceleration matches the target acceleration;
    Based on the acceleration / deceleration request value, when it is determined that the driver's acceleration / deceleration request is changed to a state where there is no driver's acceleration / deceleration request, the acceleration / deceleration request value at a preset time point before the change point is obtained. Based on the acceleration / deceleration control, a constant speed traveling control unit that performs constant speed traveling control that automatically controls the vehicle speed without depending on the operation of the driver;
    If it is determined based on the acceleration / deceleration request value that there is a sudden change from a state in which there is a driver acceleration / deceleration request to a state in which there is no driver acceleration / deceleration request, the target acceleration used for the constant speed traveling control is determined as the target acceleration and the actual acceleration. And a control target value correction unit that performs a first correction process that corrects the actual acceleration so as to approach the actual acceleration with a correction amount corresponding to the magnitude of the deviation from the acceleration.
  3.  前記定速走行制御部は、前記加減速要求値が、ドライバの加減速要求が有るときの数値範囲において予め設定された第1閾値以上の値から予め設定された前記ドライバの加減速要求が無い状態を示す値へと変化したと判定すると、前記定速走行制御を実施し、
     前記制御目標値修正部は、前記加減速要求値が、ドライバの加減速要求が有るときの数値範囲において予め設定された第2閾値以上の値から前記ドライバの加減速要求が無い状態を示す値へと急変したと判定すると、前記第1修正処理を実施することを特徴とする請求項1又は2に記載の車両用走行支援装置。
    The constant speed traveling control unit has no acceleration / deceleration request of the driver set in advance from a value greater than or equal to a preset first threshold value in the numerical range when the acceleration / deceleration request value is present. When it is determined that the value has changed to a value indicating the state, the constant speed traveling control is performed,
    The control target value correcting unit is a value indicating that the driver does not request acceleration / deceleration from a value that is equal to or greater than a preset second threshold value in a numerical range when the acceleration / deceleration request value is present. The vehicle travel support apparatus according to claim 1, wherein when it is determined that the vehicle suddenly changes, the first correction process is performed.
  4.  前記第2閾値は、前記第1閾値よりも大きいことを特徴とする請求項3に記載の車両用走行支援装置。 The vehicle travel support apparatus according to claim 3, wherein the second threshold value is larger than the first threshold value.
  5.  前記制御目標値修正部は、前記ドライバの加減速要求が有る状態から前記ドライバの加減速要求が無い状態へと、予め設定された変化時間上限値以下の時間で変化したときに前記急変したと判定することを特徴とする請求項1乃至4のいずれか1項に記載の車両用走行支援装置。 The control target value correcting unit is suddenly changed when the driver changes from a state where acceleration / deceleration is requested to a state where there is no acceleration / deceleration request from the driver at a time equal to or less than a preset change time upper limit value. The vehicle travel support device according to any one of claims 1 to 4, wherein the vehicle travel support device is determined.
  6.  前記第1修正処理において、前記制御目標値の修正量に上限値を設けたことを特徴とする請求項1乃至5のいずれか1項に記載の車両用走行支援装置。 The vehicular travel support apparatus according to any one of claims 1 to 5, wherein, in the first correction process, an upper limit value is provided for a correction amount of the control target value.
  7.  前記制御目標値修正部は、予め設定された時間期間だけ、前記第1修正処理を実施することを特徴とする請求項1乃至6のいずれか1項に記載の車両用走行支援装置。 The vehicular travel support apparatus according to any one of claims 1 to 6, wherein the control target value correction unit performs the first correction process only during a preset time period.
  8.  前記車両は、ブレーキ操作部及びアクセル操作部を備えており、
     前記制御目標値修正部は、前記時間期間の長さを、ドライバの前記ブレーキ操作部の操作によって生じる前記第1修正処理と、ドライバの前記アクセル操作部の操作によって生じる前記第1修正処理とに対してそれぞれ独立に設定することを特徴とする請求項7に記載の車両用走行支援装置。
    The vehicle includes a brake operation unit and an accelerator operation unit,
    The control target value correction unit is configured to change the length of the time period into the first correction process generated by an operation of the brake operation unit of the driver and the first correction process generated by an operation of the accelerator operation unit of the driver. The vehicular travel support apparatus according to claim 7, wherein the vehicular travel support apparatus is set independently of each other.
  9.  前記車両は、ブレーキ操作部及びアクセル操作部を備えており、
     前記制御目標値修正部は、前記制御目標値の修正に用いる修正量のデータを、ドライバの前記ブレーキ操作部の操作によって生じる前記第1修正処理と、ドライバの前記アクセル操作部の操作によって生じる前記第1修正処理とに対してそれぞれ独立に設定することを特徴とする請求項1乃至8のいずれか1項に記載の車両用走行支援装置。
    The vehicle includes a brake operation unit and an accelerator operation unit,
    The control target value correction unit generates correction amount data used for correction of the control target value by the first correction process generated by the driver's operation of the brake operation unit and the driver's operation of the accelerator operation unit. The vehicular travel support apparatus according to any one of claims 1 to 8, wherein the vehicular travel support apparatus is set independently for each of the first correction processes.
  10.  前記制御目標値修正部は、前記第1修正処理において、前記偏差が、予め設定された0を内包する正負の数値範囲である不感帯範囲内の値であると判定すると、前記制御目標値の修正量を、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とすることを特徴とする請求項1乃至9のいずれか1項に記載の車両用走行支援装置。 When the control target value correcting unit determines in the first correction process that the deviation is a value within a dead band range that is a positive / negative numerical value range including a preset 0, the control target value correction The vehicle travel support apparatus according to any one of claims 1 to 9, wherein the amount is set to 0 or a value within a numerical range set in advance as a range of values close to 0.
  11.  前記制御目標値修正部は、前記加減速要求値に基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、前記偏差が、車両の備える駆動装置の出力特性に基づき予め設定された許容偏差閾値以上の値になったと判定すると、前記加減速制御で用いる前記制御目標値を、前記偏差の大きさに応じた修正量で前記制御目標値と同じ物理量に近づくように修正する第2修正処理を実施することを特徴とする請求項1乃至10のいずれか1項に記載の車両用走行支援装置。 The control target value correction unit is determined based on the acceleration / deceleration request value to be in a state where a driver's acceleration / deceleration request is present, and the deviation is set in advance based on an output characteristic of a driving device provided in the vehicle. When it is determined that the value is equal to or greater than the allowable deviation threshold, the control target value used in the acceleration / deceleration control is corrected so as to approach the same physical quantity as the control target value with a correction amount according to the magnitude of the deviation. The vehicle travel support apparatus according to claim 1, wherein correction processing is performed.
  12.  前記制御目標値修正部は、前記第2修正処理で用いる前記制御目標値の修正量を、前記加減速要求値の大きさに応じた補正量で補正することを特徴とする請求項11に記載の車両用走行支援装置。 The said control target value correction part correct | amends the correction amount of the said control target value used by a said 2nd correction process with the correction amount according to the magnitude | size of the said acceleration / deceleration request value. Vehicle travel support device.
  13.  車両の実車速を推定又は検出する実車速検出部を備え、
     前記制御目標値修正部は、前記第2修正処理における前記制御目標値の修正量を、前記実車速の大きさに応じた補正量で補正することを特徴とする請求項11又は12に記載の車両用走行支援装置。
    An actual vehicle speed detector for estimating or detecting the actual vehicle speed of the vehicle;
    The said control target value correction part correct | amends the correction amount of the said control target value in a said 2nd correction process with the correction amount according to the magnitude | size of the said actual vehicle speed, The Claim 11 or 12 characterized by the above-mentioned. A vehicle travel support device.
  14.  前記制御目標値修正部は、前記第2修正処理において、前記偏差が、予め設定された0を内包する正負の数値範囲である許容出力範囲内の値であると判定すると、前記制御目標値の修正量を、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とすることを特徴とする請求項11乃至13のいずれか1項に記載の車両用走行支援装置。 When the control target value correcting unit determines in the second correction process that the deviation is a value within an allowable output range that is a positive / negative numerical value range including a preset 0, the control target value The vehicle travel support apparatus according to any one of claims 11 to 13, wherein the correction amount is set to 0 or a value within a numerical range set in advance as a range of values close to 0.
  15.  前記制御目標値修正部は、前記第2修正処理において、前記偏差が前記許容出力範囲外の値であると判定すると、前記制御目標値の修正量を、修正前後の前記制御目標値と前記物理量との偏差の正負の符号が一致し、かつ、修正後の前記制御目標値と前記物理量との偏差が前記許容出力範囲内の値となる修正量とすることを特徴とする請求項14に記載の車両用走行支援装置。 When the control target value correction unit determines that the deviation is a value outside the allowable output range in the second correction process, the control target value correction unit calculates the control target value correction amount before and after the correction and the physical amount. 15. The correction amount is such that the sign of the difference between and a deviation coincides with each other, and the deviation between the corrected control target value and the physical quantity becomes a value within the allowable output range. Vehicle travel support device.
  16.  前記制御目標値修正部は、前記第1修正処理において、前記偏差が、予め設定された0を内包する正負の数値範囲である不感帯範囲内の値であると判定すると、前記制御目標値の修正量を、0又は、0の近傍値の範囲として予め設定された数値範囲内の値とするようになっており、
     前記許容出力範囲を、前記不感帯範囲を内包する数値範囲に設定したことを特徴とする請求項14又は15に記載の車両用走行支援装置。
    When the control target value correcting unit determines in the first correction process that the deviation is a value within a dead band range that is a positive / negative numerical value range including a preset 0, the control target value correction The amount is set to a value within a numerical range set in advance as a range of 0 or a neighborhood value of 0,
    The vehicular driving support apparatus according to claim 14 or 15, wherein the allowable output range is set to a numerical value range including the dead zone range.
  17.  ドライバの加減速要求を示す加減速要求値を推定又は検出する加減速要求検出部と、
     前記加減速要求検出部が推定又は検出した加減速要求値に基づき制御目標値である目標車速を求める目標車速演算部と、
     前記制御目標値と同じ物理量である車両の実車速を推定又は検出する実車速検出部と、
     前記実測値が前記制御目標値に一致するように前記車両に対する加減速制御を実施する加減速制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の前記加減速要求値に基づき、前記加減速制御に代えてドライバの操作によらず自動的に車速を制御する定速走行制御を実施する定速走行制御部と、
     前記加減速要求値に基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、前記目標車速と前記実車速との偏差が、車両の備える駆動装置の出力特性に基づき予め設定された許容偏差閾値以上の値になったと判定すると、前記加減速制御で用いる前記目標車速を、偏差の大きさに応じた修正量で前記実車速に近づくように修正する第2修正処理を実施することを特徴とする車両用走行支援装置。
    An acceleration / deceleration request detector for estimating or detecting an acceleration / deceleration request value indicating an acceleration / deceleration request of the driver;
    A target vehicle speed calculation unit for obtaining a target vehicle speed that is a control target value based on the acceleration / deceleration request value estimated or detected by the acceleration / deceleration request detection unit;
    An actual vehicle speed detector for estimating or detecting an actual vehicle speed of the vehicle having the same physical quantity as the control target value;
    An acceleration / deceleration control unit that performs acceleration / deceleration control on the vehicle so that the actual measurement value matches the control target value;
    Based on the acceleration / deceleration request value, when it is determined that the driver's acceleration / deceleration request is changed to a state where there is no driver's acceleration / deceleration request, the acceleration / deceleration request value at a preset time point before the change point is obtained. Based on the acceleration / deceleration control, a constant speed traveling control unit that performs constant speed traveling control that automatically controls the vehicle speed without depending on the operation of the driver;
    Based on the acceleration / deceleration request value, it is determined that the driver has requested acceleration / deceleration, and the deviation between the target vehicle speed and the actual vehicle speed is set in advance based on the output characteristics of the drive device provided in the vehicle. When it is determined that the value is equal to or greater than an allowable deviation threshold value, a second correction process is performed to correct the target vehicle speed used in the acceleration / deceleration control so that the target vehicle speed approaches the actual vehicle speed by a correction amount corresponding to the magnitude of the deviation. A vehicle travel support apparatus characterized by the above.
  18.  ドライバの加減速要求を示す加減速要求値を推定又は検出する加減速要求検出部と、
     前記加減速要求検出部が推定又は検出した加減速要求値に基づき制御目標値である目標加速度を求める目標加速度演算部と、
     前記制御目標値と同じ物理量である車両の実加速度を推定又は検出する実加速度検出部と、
     前記実加速度が前記目標加速度に一致するように前記車両に対する加減速制御を実施する加減速制御部と、
     前記加減速要求値に基づきドライバの加減速要求が有る状態からドライバの加減速要求が無い状態へと変化したと判定すると、変化した時点より前の予め設定された時点の前記加減速要求値に基づき、前記加減速制御に代えてドライバの操作によらず自動的に車速を制御する定速走行制御を実施する定速走行制御部と、
     前記加減速要求値に基づき、ドライバの加減速要求が有る状態になったと判定され、かつ、前記目標加速度と前記加速度との偏差が、車両の備える駆動装置の出力特性に基づき予め設定された許容偏差閾値以上の値になったと判定すると、前記加減速制御で用いる前記目標加速度を、偏差の大きさに応じた修正量で前記実加速度に近づくように修正する第2修正処理を実施することを特徴とする車両用走行支援装置。
    An acceleration / deceleration request detector for estimating or detecting an acceleration / deceleration request value indicating an acceleration / deceleration request of the driver;
    A target acceleration calculation unit for obtaining a target acceleration which is a control target value based on the acceleration / deceleration request value estimated or detected by the acceleration / deceleration request detection unit;
    An actual acceleration detector for estimating or detecting an actual acceleration of the vehicle having the same physical quantity as the control target value;
    An acceleration / deceleration control unit that performs acceleration / deceleration control on the vehicle so that the actual acceleration matches the target acceleration;
    Based on the acceleration / deceleration request value, when it is determined that the driver's acceleration / deceleration request is changed to a state where there is no driver's acceleration / deceleration request, the acceleration / deceleration request value at a preset time point before the change point is obtained. Based on the acceleration / deceleration control, a constant speed traveling control unit that performs constant speed traveling control that automatically controls the vehicle speed without depending on the operation of the driver;
    Based on the acceleration / deceleration request value, it is determined that the driver has requested acceleration / deceleration, and a deviation between the target acceleration and the acceleration is set in advance based on an output characteristic of a driving device included in the vehicle. When it is determined that the value is equal to or greater than a deviation threshold value, the second correction process is performed to correct the target acceleration used in the acceleration / deceleration control so that the target acceleration approaches the actual acceleration with a correction amount corresponding to the magnitude of the deviation. A vehicular travel support apparatus.
PCT/JP2013/005954 2012-10-12 2013-10-07 Vehicle travel assist apparatus WO2014057648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226607 2012-10-12
JP2012226607 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057648A1 true WO2014057648A1 (en) 2014-04-17

Family

ID=50477131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005954 WO2014057648A1 (en) 2012-10-12 2013-10-07 Vehicle travel assist apparatus

Country Status (1)

Country Link
WO (1) WO2014057648A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184665A (en) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd Traveling support device for vehicle
EP3017995A1 (en) * 2014-11-05 2016-05-11 ABB Technology Oy Adjustment method for speed-controlled electronic drive and apparatus for implementing the same
CN105882658A (en) * 2016-06-13 2016-08-24 清华大学 Method for saving energy between two intersections through three-phase driving mode involving acceleration phase, constant speed phase and deceleration phase
CN108340916A (en) * 2017-01-23 2018-07-31 郑州宇通客车股份有限公司 Constant speed of vehicle travel control method and control device
CN108422898A (en) * 2018-03-01 2018-08-21 威马智慧出行科技(上海)有限公司 Electric vehicle and its control method and system
CN110497914A (en) * 2019-08-26 2019-11-26 格物汽车科技(苏州)有限公司 Driver behavior model development approach, equipment and the storage medium of automatic Pilot
CN112757909A (en) * 2021-01-12 2021-05-07 恒大新能源汽车投资控股集团有限公司 Vehicle control method and device, electronic equipment and storage medium
CN112896177A (en) * 2021-03-26 2021-06-04 北京车和家信息技术有限公司 Method and device for determining vehicle running speed, storage medium and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306334A (en) * 1988-06-03 1989-12-11 Fujitsu Ten Ltd Device for controlling constant speed running of automobile
JPH05214978A (en) * 1992-01-31 1993-08-24 Toyota Motor Corp Engine brake force control device
JPH07164919A (en) * 1993-12-17 1995-06-27 Aisin Seiki Co Ltd Vehicle driving output control device
JP4103814B2 (en) * 2004-02-02 2008-06-18 株式会社デンソー Constant speed travel control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306334A (en) * 1988-06-03 1989-12-11 Fujitsu Ten Ltd Device for controlling constant speed running of automobile
JPH05214978A (en) * 1992-01-31 1993-08-24 Toyota Motor Corp Engine brake force control device
JPH07164919A (en) * 1993-12-17 1995-06-27 Aisin Seiki Co Ltd Vehicle driving output control device
JP4103814B2 (en) * 2004-02-02 2008-06-18 株式会社デンソー Constant speed travel control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184665A (en) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd Traveling support device for vehicle
EP3017995A1 (en) * 2014-11-05 2016-05-11 ABB Technology Oy Adjustment method for speed-controlled electronic drive and apparatus for implementing the same
CN105882658A (en) * 2016-06-13 2016-08-24 清华大学 Method for saving energy between two intersections through three-phase driving mode involving acceleration phase, constant speed phase and deceleration phase
CN108340916A (en) * 2017-01-23 2018-07-31 郑州宇通客车股份有限公司 Constant speed of vehicle travel control method and control device
CN108422898A (en) * 2018-03-01 2018-08-21 威马智慧出行科技(上海)有限公司 Electric vehicle and its control method and system
CN108422898B (en) * 2018-03-01 2019-12-06 威马智慧出行科技(上海)有限公司 Electric automobile and control method and system thereof
CN110497914A (en) * 2019-08-26 2019-11-26 格物汽车科技(苏州)有限公司 Driver behavior model development approach, equipment and the storage medium of automatic Pilot
CN112757909A (en) * 2021-01-12 2021-05-07 恒大新能源汽车投资控股集团有限公司 Vehicle control method and device, electronic equipment and storage medium
CN112896177A (en) * 2021-03-26 2021-06-04 北京车和家信息技术有限公司 Method and device for determining vehicle running speed, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
WO2014057648A1 (en) Vehicle travel assist apparatus
JP6491686B2 (en) vehicle
EP3072768B1 (en) Vehicle speed limit apparatus
JP5556523B2 (en) Vehicle control device
US20170036547A1 (en) Regeneration control device of electrically driven vehicle
JP5696788B2 (en) Vehicle control device
WO2015136664A1 (en) Vehicle control device and vehicle control method
EP3072767A2 (en) Vehicle speed limit apparatus
JP6222194B2 (en) Driving force control device
CN112848921A (en) Downhill method and device of electric automobile and vehicle
JP6020023B2 (en) Vehicle travel support device
JP6229701B2 (en) Driving force control device
JP5673296B2 (en) Vehicle driving force control device
JP2010270854A (en) Vehicle control device
JP6142515B2 (en) Vehicle travel support device
JP2006200526A (en) Output characteristic control device for vehicle
JP6182847B2 (en) Vehicle travel support device
JP6368803B2 (en) Shift control device for automatic transmission
JP2007118746A (en) Driving force controller for vehicle
JP6245076B2 (en) Output correction device for vehicle acceleration sensor
JP2020011582A (en) Drive force control device
JP6304310B2 (en) Vehicle control device
JP2009262584A (en) Driving force distribution control device of four-wheel drive vehicle
JP5161897B2 (en) Vehicle control device
JP2013184665A (en) Traveling support device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP