JP2009262584A - Driving force distribution control device of four-wheel drive vehicle - Google Patents

Driving force distribution control device of four-wheel drive vehicle Download PDF

Info

Publication number
JP2009262584A
JP2009262584A JP2008110586A JP2008110586A JP2009262584A JP 2009262584 A JP2009262584 A JP 2009262584A JP 2008110586 A JP2008110586 A JP 2008110586A JP 2008110586 A JP2008110586 A JP 2008110586A JP 2009262584 A JP2009262584 A JP 2009262584A
Authority
JP
Japan
Prior art keywords
torque
wheel
drive
target transmission
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110586A
Other languages
Japanese (ja)
Other versions
JP5003580B2 (en
Inventor
Masamichi Ando
雅倫 安藤
Naoteru Kusuho
直照 九十歩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008110586A priority Critical patent/JP5003580B2/en
Publication of JP2009262584A publication Critical patent/JP2009262584A/en
Application granted granted Critical
Publication of JP5003580B2 publication Critical patent/JP5003580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving force distribution control device of a four-wheel drive vehicle in which the bearing strength of a drive system on an auxiliary drive wheel side is set small. <P>SOLUTION: In a four-wheel drive vehicle, the output torque of an engine 1 is transmitted to main drive wheels 5, 6, and transmitted to auxiliary drive wheels 7, 8 through a torque distribution actuator 9, an estimated main drive wheel allowable torque calculation means 10 calculates estimated main drive wheel allowable drive torque based on estimated loads of the main drive wheels, a target transmission torque setting means 10 stores, as the target transmission torque to the auxiliary drive wheel, a value obtained by deducting the estimated main drive wheel allowable drive torque from overall drive torque based on the output torque of the engine, and sets the target transmission torque a value of previously-stored target transmission torque as far as there arises no rotational difference not smaller than a prescribed value between the main drive wheels and the auxiliary drive wheels when there is a drive torque request higher than that in succeeding processing, and an actuator control means 10 controls the target transmission torque so as to be transmitted to the auxiliary drive wheels. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両の駆動源である原動機の出力トルクを、前輪および後輪のうちの一方である主駆動輪に伝達するとともに、トルク配分アクチュエータを介して前輪および後輪のうちの他方である副駆動輪に伝達する四輪駆動車の、前記トルク配分アクチュエータの作動を制御して、前記主駆動輪と前記副駆動輪とのトルク配分を車両状態に応じたものとする駆動力配分制御装置に関するものである。   The present invention transmits the output torque of a prime mover that is a drive source of a vehicle to a main drive wheel that is one of front wheels and rear wheels, and is the other of front wheels and rear wheels via a torque distribution actuator. A driving force distribution control device that controls the operation of the torque distribution actuator of a four-wheel drive vehicle that transmits to the sub drive wheels, and makes the torque distribution between the main drive wheels and the sub drive wheels according to the vehicle state. It is about.

上述の如き四輪駆動車の駆動力配分制御装置としては従来、例えば特許文献1記載のものが知られており、この駆動力配分制御装置は、トルク配分アクチュエータの作動を制御することにより、主駆動輪と副駆動輪とのトルク配分を車両状態としての静的荷重配分に応じたものとするとともに、ドライバーや総合制御装置等からより高い駆動トルクを要求されると、前輪駆動ベースの四輪駆動車ゆえ副駆動輪としての後輪の、加速による荷重配分の増加に従って、副駆動輪のトルク配分を増加させてその要求に応じている。
特開2001−225658号公報
As a driving force distribution control device for a four-wheel drive vehicle as described above, a device disclosed in, for example, Patent Document 1 is conventionally known. This driving force distribution control device controls the operation of a torque distribution actuator, thereby The torque distribution between the drive wheels and the sub-drive wheels is made according to the static load distribution as the vehicle state, and when a higher drive torque is requested from the driver or the general control device, the four wheels of the front wheel drive base According to the increase in the load distribution due to the acceleration of the rear wheels as the auxiliary driving wheels because of the driving vehicle, the torque distribution of the auxiliary driving wheels is increased to meet the demand.
JP 2001-225658 A

しかしながら、上記従来の四輪駆動車の駆動力配分制御装置では、より高い駆動トルクを要求されると、主駆動輪の推定許容駆動トルクを勘案せずに常に副駆動輪の荷重配分の増加に従って副駆動輪のトルク配分を増加させて目標伝達トルクを設定している。このため、発進性および加速性には優れるものの、主駆動輪のみで駆動トルクを許容できるような場合でも副駆動輪へトルク配分されることから、副駆動輪側の駆動系に必要以上の駆動負荷が掛かるので、副駆動輪側の駆動系の耐力をより小さく設定して駆動ユニットの軽量化や原価低減を図るのが困難であるという、改良することが望ましい点があった。   However, in the driving force distribution control device for the conventional four-wheel drive vehicle, when a higher driving torque is required, the load distribution of the auxiliary driving wheel is always increased without considering the estimated allowable driving torque of the main driving wheel. The target transmission torque is set by increasing the torque distribution of the auxiliary drive wheels. For this reason, although it has excellent startability and acceleration, torque is distributed to the sub drive wheels even when the drive torque can be tolerated only by the main drive wheels. Since a load is applied, it is desirable to improve that it is difficult to reduce the drive unit weight and cost by setting the proof strength of the drive system on the auxiliary drive wheel side to be smaller.

それゆえ本発明は、副駆動輪側の駆動系の耐力を小さく設定することができる四輪駆動車の駆動力配分制御装置を提案することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is therefore to propose a driving force distribution control device for a four-wheel drive vehicle, in which the proof strength of the drive system on the auxiliary drive wheel side can be set small.

この目的のため本発明の四輪駆動車の駆動力配分制御装置は、車両の駆動源である原動機の出力トルクを、前輪および後輪のうちの一方である主駆動輪に伝達するとともに、トルク配分アクチュエータを介して前輪および後輪のうちの他方である副駆動輪に伝達する四輪駆動車の、前記トルク配分アクチュエータの作動を制御して、前記主駆動輪と前記副駆動輪とのトルク配分を車両状態に応じたものとする駆動力配分制御装置において、各々所定時間ごとに繰返し処理を行う推定主駆動輪許容トルク算出手段と目標伝達トルク設定手段とアクチュエータ制御手段とを具え、前記推定主駆動輪許容トルク算出手段は、前記主駆動輪の推定荷重に基づき推定主駆動輪許容駆動トルクを算出し、前記目標伝達トルク設定手段は、前記原動機の出力トルクに基づく総駆動トルクから前記推定主駆動輪許容駆動トルクを減算した値を前記副駆動輪への目標伝達トルクとして設定して記憶し、次回の処理でより高い駆動トルクが要求された場合に、主駆動輪と副駆動輪との回転差が所定以上発生していなければ前記記憶した目標伝達トルクの値を副駆動輪への目標伝達トルクとして設定し、前記アクチュエータ制御手段は、前記設定された目標伝達トルクを前記副駆動輪に伝達するように前記トルク配分アクチュエータの作動を制御することを特徴としている。   For this purpose, the driving force distribution control device for a four-wheel drive vehicle according to the present invention transmits the output torque of a prime mover that is a drive source of the vehicle to the main drive wheel that is one of the front wheels and the rear wheels, and the torque. The torque of the main drive wheel and the sub drive wheel is controlled by controlling the operation of the torque distribution actuator of a four-wheel drive vehicle that transmits to the sub drive wheel, which is the other of the front wheels and the rear wheels, via the distribution actuator. In the driving force distribution control device in which the distribution depends on the vehicle state, the driving force distribution control device includes estimated main driving wheel allowable torque calculating means, target transmission torque setting means, and actuator control means, each of which repeatedly performs processing at predetermined time intervals. The main drive wheel allowable torque calculating means calculates an estimated main drive wheel allowable drive torque based on the estimated load of the main drive wheel, and the target transmission torque setting means is an output of the prime mover. The value obtained by subtracting the estimated main driving wheel allowable driving torque from the total driving torque based on the torque is set and stored as the target transmission torque to the auxiliary driving wheel, and when a higher driving torque is requested in the next processing If the rotation difference between the main drive wheel and the sub drive wheel is not greater than a predetermined value, the stored target transmission torque value is set as the target transmission torque to the sub drive wheel, and the actuator control means is The operation of the torque distribution actuator is controlled so as to transmit the target transmission torque to the auxiliary driving wheel.

かかる本発明の四輪駆動車の駆動力配分制御装置にあっては、所定時間ごとに繰返し行なう処理により、推定主駆動輪許容トルク算出手段が、主駆動輪の推定荷重に基づき推定主駆動輪許容駆動トルクを算出し、目標伝達トルク設定手段が、原動機の出力トルクに基づく総駆動トルクから推定主駆動輪許容駆動トルクを減算した値を副駆動輪への目標伝達トルクとして設定して記憶し、次回の処理でより高い駆動トルクが要求された場合に、主駆動輪と副駆動輪との回転差が所定以上発生していなければその記憶した目標伝達トルクの値を副駆動輪への目標伝達トルクとして設定し、アクチュエータ制御手段が、目標伝達トルク設定手段が設定した目標伝達トルクを副駆動輪に伝達するようにトルク分配アクチュエータの作動を制御する。   In the driving force distribution control device for a four-wheel drive vehicle according to the present invention, the estimated main drive wheel allowable torque calculating means performs the estimated main drive wheel based on the estimated load of the main drive wheel by performing processing repeatedly at predetermined time intervals. The allowable drive torque is calculated, and the target transmission torque setting means sets and stores the value obtained by subtracting the estimated main drive wheel allowable drive torque from the total drive torque based on the output torque of the prime mover as the target transmission torque to the sub drive wheels. When a higher driving torque is requested in the next process, if the rotational difference between the main driving wheel and the sub driving wheel does not occur more than a predetermined value, the stored target transmission torque value is set to the target driving wheel. The transmission torque is set, and the actuator control means controls the operation of the torque distribution actuator so that the target transmission torque set by the target transmission torque setting means is transmitted to the sub drive wheels.

従って、この発明の四輪駆動車の駆動力配分制御装置によれば、例えば高μ路での走行等の、主駆動輪のみで発進または加速が可能な状態では、推定主駆動輪許容駆動トルクが大きく算出されることから、副駆動輪への目標伝達トルクが、副駆動輪の許容駆動トルクに対して小さく設定されるので、副駆動輪側の駆動系に掛かる駆動負荷を低減することができ、それゆえ副駆動輪側の駆動系の耐力をより小さく設定して駆動ユニットの軽量化や原価低減を図ることができる。   Therefore, according to the driving force distribution control device for a four-wheel drive vehicle of the present invention, when the vehicle can start or accelerate with only the main drive wheel, for example, traveling on a high μ road, the estimated main drive wheel allowable drive torque Therefore, the target transmission torque to the auxiliary driving wheel is set smaller than the allowable driving torque of the auxiliary driving wheel, so that the driving load applied to the driving system on the auxiliary driving wheel side can be reduced. Therefore, the proof strength of the drive system on the side of the auxiliary drive wheel can be set smaller, and the weight of the drive unit can be reduced and the cost can be reduced.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。ここに、図1は、この発明の四輪駆動車の駆動力配分制御装置の第1実施例を具えたパワートレーンを示す全体システム図である。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings. FIG. 1 is an overall system diagram showing a power train provided with a first embodiment of the driving force distribution control device for a four-wheel drive vehicle according to the present invention.

図中符号1は原動機としてのエンジン、2は有段自動変速機、3はフロントディファレンシャル、4はリヤディファレンシャル、5は右前輪、6は左前輪、7は右後輪、8は左後輪、9は通常の電磁式クラッチを具えたトルク配分アクチュエータ、10は通常のマイクロコンピュータを具えたトルク配分コントローラ、11は右前輪速センサ、12は左前輪速センサ、13は右後輪速センサ、14は左後輪速センサ、15はアクセルペダルの踏み込み量を検出するアクセル開度センサ、16はこれも通常のマイクロコンピュータを具えてエンジン1の点火時期等を制御するエンジンコントローラを示している。   In the figure, reference numeral 1 is an engine as a prime mover, 2 is a stepped automatic transmission, 3 is a front differential, 4 is a rear differential, 5 is a right front wheel, 6 is a left front wheel, 7 is a right rear wheel, 8 is a left rear wheel, 9 is a torque distribution actuator having a normal electromagnetic clutch, 10 is a torque distribution controller having a normal microcomputer, 11 is a right front wheel speed sensor, 12 is a left front wheel speed sensor, 13 is a right rear wheel speed sensor, 14 Is a left rear wheel speed sensor, 15 is an accelerator opening sensor for detecting the amount of depression of an accelerator pedal, and 16 is an engine controller that also includes an ordinary microcomputer and controls the ignition timing of the engine 1 and the like.

この第1実施例の駆動力配分制御装置が適用される四輪駆動車は、主駆動輪としての左右の前輪5,6へはエンジン1の駆動トルクが直接伝達され、副駆動輪としての左右の後輪7,8へはトルク配分アクチュエータ9を介してエンジン1の駆動トルクが伝達される前輪駆動ベースの四輪駆動車である。すなわち、トルク配分アクチュエータ9が解放状態である場合は、前輪:後輪=100:0のトルク配分比となり、トルク配分アクチュエータ9がエンジン1の駆動トルクの1/2トルク以上にて締結されていれば、前輪:後輪=50:50の等トルク配分比となり、トルク配分コントローラ10からの制御指令によって作動するトルク配分アクチュエータ9の締結トルクにより、前輪5,6と後輪7,8とに伝達されるトルク配分比が、前輪:後輪=100:0〜50:50の範囲にて可変に制御される。   In the four-wheel drive vehicle to which the drive force distribution control device of the first embodiment is applied, the drive torque of the engine 1 is directly transmitted to the left and right front wheels 5 and 6 as main drive wheels, and the left and right as sub drive wheels. The rear wheels 7 and 8 are front-wheel drive-based four-wheel drive vehicles to which the drive torque of the engine 1 is transmitted via the torque distribution actuator 9. That is, when the torque distribution actuator 9 is in the released state, the torque distribution ratio of front wheel: rear wheel = 100: 0 is established, and the torque distribution actuator 9 is fastened with a torque equal to or greater than ½ torque of the drive torque of the engine 1. For example, the front wheel: rear wheel = 50: 50 is an equal torque distribution ratio, and is transmitted to the front wheels 5, 6 and the rear wheels 7, 8 by the fastening torque of the torque distribution actuator 9 that operates according to a control command from the torque distribution controller 10. The torque distribution ratio is variably controlled in the range of front wheel: rear wheel = 100: 0 to 50:50.

トルク配分コントローラ10は、各車輪速センサ11,12,13,14からの車輪速信号と、アクセル開度センサ15からのアクセル開度信号と、エンジンコントローラ16からのエンジン回転信号と、これも通常のマイクロコンピュータを具えて自動変速機2の変速作動を制御する図示しない自動変速機コントローラからのギア位置信号等とを入力する。   The torque distribution controller 10 includes a wheel speed signal from each wheel speed sensor 11, 12, 13, 14, an accelerator opening signal from the accelerator opening sensor 15, an engine rotation signal from the engine controller 16, and this is also normal. And a gear position signal from an automatic transmission controller (not shown) that controls the shift operation of the automatic transmission 2.

そしてトルク配分コントローラ10は、決められた制御則に従った演算処理を短時間(例えば100ms)毎に繰り返し行うことで、主駆動輪の推定荷重に基づき推定主駆動輪許容駆動トルクを算出する推定主駆動輪許容トルク算出部10aと、エンジン1の駆動トルクに基づく総駆動トルクから推定主駆動輪許容駆動トルクを減算した値を副駆動輪への目標伝達トルクとして設定して記憶し、次回の処理でより高い駆動トルクが要求された場合に、主駆動輪と副駆動輪との回転差が所定以上発生していなければ前回記憶した目標伝達トルクの値を副駆動輪への目標伝達トルクとして設定する目標伝達トルク設定部10bと、その設定された目標伝達トルクを副駆動輪に伝達するようにトルク配分アクチュエータの作動を制御するアクチュエータ制御部10cとして機能し、その演算処理結果による制御指令をトルク配分アクチュエータ9に出力する。   Then, the torque distribution controller 10 performs estimation processing for calculating the estimated main driving wheel allowable driving torque based on the estimated load of the main driving wheel by repeatedly performing arithmetic processing according to the determined control law every short time (for example, 100 ms). A value obtained by subtracting the estimated main driving wheel allowable driving torque from the total driving torque based on the driving torque of the engine 1 and the main driving wheel allowable torque calculating unit 10a is set and stored as a target transmission torque to the sub driving wheel, and stored next time. When a higher drive torque is required in the processing, if the rotation difference between the main drive wheel and the sub drive wheel does not exceed a predetermined value, the previously stored target transfer torque value is used as the target transfer torque to the sub drive wheel. A target transmission torque setting unit 10b to be set and an actuator for controlling the operation of the torque distribution actuator so as to transmit the set target transmission torque to the sub drive wheels. Functions as motor control section 10c, and outputs a control command due to the calculation result to the torque distribution actuator 9.

図2は、この第1実施例の駆動力配分制御装置のトルク配分コントローラ10が実行するトルク配分制御を示すフローチャートである。   FIG. 2 is a flowchart showing torque distribution control executed by the torque distribution controller 10 of the driving force distribution control device of the first embodiment.

ステップS1では、推定主駆動輪荷重と推定前後荷重配分の算出および推定路面摩擦係数μ(前回値)の読み込みを行う。ここで、推定主駆動輪(前輪)荷重および推定前後荷重配分は、当該車両の仕様に応じてあらかじめ与えられた車両総重量と前後重量配分とから求めることができる。また推定路面μ(前回値)は後述するステップS7〜S9の前回の実行によって記憶している。   In step S1, the estimated main driving wheel load and the estimated longitudinal load distribution are calculated and the estimated road friction coefficient μ (previous value) is read. Here, the estimated main drive wheel (front wheel) load and the estimated front-rear load distribution can be obtained from the total vehicle weight and the front-rear weight distribution given in advance according to the specifications of the vehicle. The estimated road surface μ (previous value) is stored by the previous execution of steps S7 to S9 described later.

次のステップS2では、算出した推定主駆動輪荷重と読み込んだ推定推定路面μ(前回値)とを乗算して、主駆動輪である左右前輪5,6の推定摩擦力に等しい推定主駆動輪許容トルク(前回値)を算出し、続くステップS3では、総駆動力の算出および副駆動輪指令トルク(前回値)の読み込みを行う。ここで、総駆動力は、現在エンジントルク推定値と自動変速機2の現在の変速比とに基づいて定まり、現在エンジントルク推定値はアクセル開度センサ15からのアクセル開度信号とエンジンコントローラ16からのエンジン回転信号とに基づいて求まり、自動変速機2の現在の変速比は上記自動変速機コントローラからのギア位置信号から求まる。そして副駆動輪指令トルク(前回値)は後述のステップS12で設定して記憶している。   In the next step S2, the calculated estimated main driving wheel load is multiplied by the read estimated estimated road surface μ (previous value), and the estimated main driving wheel equal to the estimated friction force of the left and right front wheels 5, 6 as the main driving wheel. The allowable torque (previous value) is calculated, and in the subsequent step S3, the total driving force is calculated and the auxiliary driving wheel command torque (previous value) is read. Here, the total driving force is determined based on the current engine torque estimated value and the current gear ratio of the automatic transmission 2, and the current engine torque estimated value is determined by the accelerator opening signal from the accelerator opening sensor 15 and the engine controller 16. And the current gear ratio of the automatic transmission 2 is obtained from the gear position signal from the automatic transmission controller. The auxiliary drive wheel command torque (previous value) is set and stored in step S12 described later.

次のステップS4では、総駆動力から副駆動輪指令トルク(前回値)を減算して主駆動輪配分トルクを算出し、続くステップS5では、前後輪の回転数差である前後差回転が所定値以上であるか否かを判断する。この判断は、先ず、各車輪速センサ11,12,13,14からの車輪速信号に基づいて前輪右車輪速度と前輪左車輪速度と後輪右車輪速度と後輪左車輪速度を計算する。そして左右前輪車輪速度の平均値と左右後輪車輪速度の平均値との差をとることにより前後回転数差を計算する。なお、この計算は、アンチスキッドブレーキシステム(ABS)が搭載された車両では、ABSコントローラでの計算結果を流用することで省略しても良い。   In the next step S4, the main driving wheel distribution torque is calculated by subtracting the auxiliary driving wheel command torque (previous value) from the total driving force, and in the subsequent step S5, the forward / backward differential rotation, which is the rotational speed difference between the front and rear wheels, is predetermined. It is determined whether or not the value is greater than or equal to the value. In this determination, first, a front wheel right wheel speed, a front wheel left wheel speed, a rear wheel right wheel speed, and a rear wheel left wheel speed are calculated based on wheel speed signals from the wheel speed sensors 11, 12, 13, and 14. Then, the difference between the front and rear rotational speeds is calculated by taking the difference between the average value of the left and right front wheel speeds and the average value of the left and right rear wheel speeds. This calculation may be omitted by diverting the calculation result of the ABS controller in a vehicle equipped with an anti-skid brake system (ABS).

次いで、上記求めた前後差回転と所定値とを比較して、前後差回転が所定値以下であるか否かを判断する。この所定値は、例えば雨で濡れた路面で前輪のみの二輪駆動走行中にドライバーが気付くか否かの前輪の空転で生ずる程度に設定されており、これにより通常のドライ路面や僅かに濡れた路面では前後差回転が所定値以下となり、例えば雪道や氷結路等では前後差回転が所定値を越えることになる。   Next, the obtained front-rear differential rotation is compared with a predetermined value to determine whether the front-rear differential rotation is equal to or smaller than a predetermined value. This predetermined value is set, for example, to the extent that it occurs due to the idling of the front wheels whether or not the driver notices during two-wheel drive driving with only the front wheels on a wet road surface due to rain, so that the normal dry road surface or slightly wet The forward / backward differential rotation is less than a predetermined value on the road surface. For example, the forward / backward differential rotation exceeds a predetermined value on a snowy road or an icy road.

ステップS5での判断の結果前後差回転が所定値以下の(YESの)場合には、次のステップS6で、主駆動輪配分トルクが推定主駆動輪許容トルク(前回値)以上か否かを判断し、主駆動輪配分トルクが推定主駆動輪許容トルク(前回値)以上の(YESの)場合には、次のステップS7で、推定路面μの値を、未だ所定上限値に到達していなければ一定値増加させて今回値とする(インクリメントする)。   If the result of determination in step S5 is that the forward / backward differential rotation is less than or equal to a predetermined value (YES), in next step S6, whether or not the main drive wheel distribution torque is greater than or equal to the estimated main drive wheel allowable torque (previous value). If the main driving wheel distribution torque is greater than the estimated main driving wheel allowable torque (previous value) (YES), the estimated road surface μ value has not yet reached the predetermined upper limit value in the next step S7. If not, the value is increased by a certain value to obtain the current value (increment).

一方、ステップS5での判断の結果、前後差回転が所定値以下でない(NOの)場合には、ステップS8で、主駆動輪配分トルクと推定主駆動輪許容トルク(前回値)とのうち低い方と推定駆動輪荷重とから推定路面μ(今回値)を算出して推定路面μ(前回値)と比較し、今回値の方が低い場合に、推定路面μの値を、未だ所定下限値に到達していなければ一定値減少させて今回値とする(デクリメントする)。なお、ステップS6での判断の結果、主駆動輪配分トルクが推定主駆動輪許容トルク(前回値)以上でない(NOの)場合には、ステップS9で、推定路面μの今回値として、前回値を維持する。   On the other hand, if the result of determination in step S5 is that the forward / backward differential rotation is not less than or equal to the predetermined value (NO), in step S8, the main driving wheel distribution torque and the estimated main driving wheel allowable torque (previous value) are lower. The estimated road surface μ (current value) is calculated from the road and the estimated driving wheel load and compared with the estimated road surface μ (previous value). If the current value is lower, the estimated road surface μ value is still set to the specified lower limit. If the value does not reach, the value is decreased by a certain value to the current value (decrement). As a result of the determination in step S6, if the main drive wheel distribution torque is not equal to or greater than the estimated main drive wheel allowable torque (previous value) (NO), the previous value as the current value of the estimated road surface μ is obtained in step S9. To maintain.

次のステップS10では、推定路面μの今回値と推定主駆動輪荷重とを乗算して推定主駆動輪許容トルク(今回値)を算出し、続くステップS11では、総駆動力から推定主駆動輪許容トルク(今回値)を減算して副駆動輪配分トルクT1を算出し、次のステップS12では、その副駆動輪配分トルクT1を、目標伝達トルクとしての副駆動輪指令トルク(今回値)として設定および記憶する。そしてこの副駆動輪指令トルク(今回値)に対応した制御指令をトルク配分アクチュエータ9に出力する。   In the next step S10, the current value of the estimated road surface μ is multiplied by the estimated main drive wheel load to calculate the estimated main drive wheel allowable torque (current value). In the subsequent step S11, the estimated main drive wheel is calculated from the total drive force. The sub drive wheel distribution torque T1 is calculated by subtracting the allowable torque (current value). In the next step S12, the sub drive wheel distribution torque T1 is used as the sub drive wheel command torque (current value) as the target transmission torque. Set and remember. Then, a control command corresponding to the sub drive wheel command torque (current value) is output to the torque distribution actuator 9.

従って、トルク配分コントローラ10の処理のうち、ステップS1〜S10は推定主駆動輪許容トルク算出手段としての推定主駆動輪許容トルク算出部10a、ステップS11〜S12は目標伝達トルク設定手段としての目標伝達トルク設定部10b、ステップS12はアクチュエータ制御手段としてのアクチュエータ制御部10cに相当する。   Accordingly, in the processing of the torque distribution controller 10, steps S1 to S10 are estimated main drive wheel allowable torque calculation units 10a as estimated main drive wheel allowable torque calculation means, and steps S11 to S12 are target transmissions as target transmission torque setting means. The torque setting unit 10b and step S12 correspond to an actuator control unit 10c as actuator control means.

この第1実施例の駆動力配分制御装置によれば、例えば高μ路での走行等の、主駆動輪のみで発進または加速が可能な状態では、推定主駆動輪許容駆動トルクが大きく算出されることから、副駆動輪への目標伝達トルクが、副駆動輪の許容駆動トルクに対して小さく設定されるので、前輪駆動車に近い前後輪トルク配分で走行し得て、副駆動輪側の駆動系に掛かる駆動負荷を低減することができ、それゆえ副駆動輪側の駆動系の耐力をより小さく設定して駆動ユニットの軽量化や原価低減を図ることができる。   According to the driving force distribution control device of the first embodiment, the estimated main driving wheel allowable driving torque is greatly calculated in a state where starting or acceleration is possible with only the main driving wheel, such as traveling on a high μ road. Therefore, since the target transmission torque to the auxiliary driving wheel is set smaller than the allowable driving torque of the auxiliary driving wheel, the vehicle can travel with the front and rear wheel torque distribution close to that of the front wheel driving vehicle. The driving load applied to the drive system can be reduced. Therefore, the proof strength of the drive system on the side of the auxiliary drive wheels can be set smaller to reduce the weight and cost of the drive unit.

図3は、この発明の四輪駆動車の駆動力配分制御装置の第2実施例を具えたパワートレーンを示す全体システム図であり、図中先の第1実施例と同様の部分はそれと同一の符号にて示す。この第2実施例の四輪駆動車の駆動力配分制御装置は、トルク配分コントローラ10がさらに、目標伝達トルク下限値保持部10dを有する点のみ、第1実施例と異なっており、他の点では第1実施例と同様に構成されている。   FIG. 3 is an overall system diagram showing a power train provided with a second embodiment of the driving force distribution control apparatus for a four-wheel drive vehicle according to the present invention. The same parts as those in the first embodiment in the figure are the same as those shown in FIG. It shows with the code | symbol. The driving force distribution control device for a four-wheel drive vehicle according to the second embodiment differs from the first embodiment only in that the torque distribution controller 10 further includes a target transmission torque lower limit holding unit 10d. The configuration is the same as in the first embodiment.

図4は、この第2実施例の駆動力配分制御装置のトルク配分コントローラ10が実行するトルク配分制御を示すフローチャートであり、このフローチャートが図2に示す第1実施例のフローチャートと異なる点は、ステップS12以下のみであるので、その異なる点のみについて以下に説明する。   FIG. 4 is a flowchart showing the torque distribution control executed by the torque distribution controller 10 of the driving force distribution control apparatus of the second embodiment, and this flowchart is different from the flowchart of the first embodiment shown in FIG. Since only step S12 and subsequent steps are described, only the differences will be described below.

この第2実施例の駆動力配分制御装置では、トルク配分コントローラ10は、ステップS12で、先にステップS1で求めた推定前後荷重配分とステップS3で求めた総躯動力とから、従来と同様にその総躯動力を前後荷重配分に応じて副駆動輪としての後輪側に配分した副駆動輪配分トルクT2を求める。   In the driving force distribution control apparatus of the second embodiment, the torque distribution controller 10 is the same as the conventional one based on the estimated longitudinal load distribution previously obtained in step S1 and the total kite power obtained in step S3 in step S12. A sub-drive wheel distribution torque T2 in which the total power is distributed to the rear wheel side as a sub drive wheel according to the front-rear load distribution is obtained.

次のステップS13では、ステップS12で求めた副駆動輪配分トルクT2が副駆動輪指令トルクの所定下限値Tmin1以上か否かを判断して、前後荷重配分に応じた副駆動輪配分トルクT2が所定下限値Tmin1以上の(YESの)場合には、次のステップS14で、ステップS11で求めた、推定主駆動輪許容駆動トルクに基づく副駆動輪配分トルクT1と副駆動輪指令トルクの所定下限値Tmin2(<Tmin1)とを比較して、値が高い方を目標伝達トルクとしての副駆動輪指令トルク(今回値)として設定および記憶する。そしてこの副駆動輪指令トルク(今回値)に対応した制御指令をトルク配分アクチュエータ9に出力する。   In the next step S13, it is determined whether or not the auxiliary driving wheel distribution torque T2 obtained in step S12 is equal to or larger than a predetermined lower limit value Tmin1 of the auxiliary driving wheel command torque, and the auxiliary driving wheel distribution torque T2 corresponding to the longitudinal load distribution is determined. If it is equal to or greater than the predetermined lower limit value Tmin1 (YES), in the next step S14, the predetermined lower limit of the sub drive wheel distribution torque T1 and the sub drive wheel command torque based on the estimated main drive wheel allowable drive torque obtained in step S11 The value Tmin2 (<Tmin1) is compared, and the higher value is set and stored as the auxiliary driving wheel command torque (current value) as the target transmission torque. Then, a control command corresponding to the sub drive wheel command torque (current value) is output to the torque distribution actuator 9.

一方、ステップS13で、副駆動輪配分トルクT2が所定下限値Tmin1以上でない(NOの)場合には、ステップS15で、前後荷重配分に応じた副駆動輪配分トルクT2を目標伝達トルクとしての副駆動輪指令トルク(今回値)として設定および記憶する。そしてこの副駆動輪指令トルク(今回値)に対応した制御指令をトルク配分アクチュエータ9に出力する。   On the other hand, if the sub-drive wheel distribution torque T2 is not equal to or greater than the predetermined lower limit value Tmin1 (NO) in step S13, in step S15, the sub-drive wheel distribution torque T2 corresponding to the front / rear load distribution is used as the sub-target transmission torque. Set and store as drive wheel command torque (current value). Then, a control command corresponding to the sub drive wheel command torque (current value) is output to the torque distribution actuator 9.

従って、トルク配分コントローラ10の処理のうちステップS12〜S15は目標伝達トルク下限値保持部10dに相当し、この第2実施例の駆動力配分制御装置によれば、第1実施例と同様の作用効果が得られるのに加え、前後荷重配分に応じた副駆動輪配分トルクT2が所定下限値Tmin1未満の場合はその前後荷重配分に応じた(ゼロにならない)副駆動輪配分トルクT2が目標伝達トルクになり、また前後荷重配分に応じた副駆動輪配分トルクT2が所定下限値Tmin1以上の場合は推定主駆動輪許容駆動トルクに基づく副駆動輪配分トルクT1と副駆動輪指令トルクの所定下限値Tmin2とのうち高い方が目標伝達トルクになるので、車両発進時における主駆動輪の初期空転を抑制し得て、発進性を向上させることができる。   Therefore, steps S12 to S15 in the processing of the torque distribution controller 10 correspond to the target transmission torque lower limit holding unit 10d. According to the driving force distribution control device of the second embodiment, the same operation as that of the first embodiment is performed. In addition to obtaining the effect, if the auxiliary drive wheel distribution torque T2 corresponding to the front / rear load distribution is less than the predetermined lower limit Tmin1, the auxiliary drive wheel distribution torque T2 corresponding to the front / rear load distribution (not zero) is transmitted to the target. When the auxiliary drive wheel distribution torque T2 corresponding to the front / rear load distribution is equal to or greater than the predetermined lower limit value Tmin1, the predetermined lower limit of the sub drive wheel distribution torque T1 and the sub drive wheel command torque based on the estimated main drive wheel allowable drive torque Since the higher one of the values Tmin2 is the target transmission torque, the initial idling of the main drive wheels when starting the vehicle can be suppressed, and the startability can be improved.

図5は、この発明の四輪駆動車の駆動力配分制御装置の第3実施例を具えたパワートレーンを示す全体システム図であり、図中先の第2実施例と同様の部分はそれと同一の符号にて示す。この第3実施例の四輪駆動車の駆動力配分制御装置はさらに、車両の前後加速度を検出する前後加速度検出手段としての、通常の加速度センサからなる前後加速度検出器17をトルク配分コントローラ10に接続されて具える点のみ、第2実施例と異なっており、他の点では第2実施例と同様に構成されている。なお、この第3実施例の四輪駆動車の駆動力配分制御装置のトルク配分コントローラ10も目標伝達トルク下限値保持部10dを有するが、図示は省略する。   FIG. 5 is an overall system diagram showing a power train provided with a third embodiment of the driving force distribution control device for a four-wheel drive vehicle according to the present invention. The same parts as those in the second embodiment are the same as those in the second embodiment. It shows with the code | symbol. The driving force distribution control device for a four-wheel drive vehicle of the third embodiment further includes a longitudinal acceleration detector 17 composed of a normal acceleration sensor as a longitudinal acceleration detection means for detecting the longitudinal acceleration of the vehicle. Only the point provided and connected is different from the second embodiment, and the other points are the same as those of the second embodiment. Although the torque distribution controller 10 of the driving force distribution control device for a four-wheel drive vehicle according to the third embodiment also has a target transmission torque lower limit holding unit 10d, illustration thereof is omitted.

図6は、この第3実施例の駆動力配分制御装置のトルク配分コントローラ10が実行するトルク配分制御を示すフローチャートであり、このフローチャートが図4に示す第2実施例のフローチャートと異なる点は、ステップS0のみであるので、その異なる点のみについて以下に説明する。   FIG. 6 is a flowchart showing the torque distribution control executed by the torque distribution controller 10 of the driving force distribution control device of the third embodiment, and this flowchart is different from the flowchart of the second embodiment shown in FIG. Since only step S0 is provided, only the difference will be described below.

この第3実施例の駆動力配分制御装置では、トルク配分コントローラ10は、ステップS0で、前後加速度検出器17から入力した前後加速度値に応じて、次のステップS1で求める推定主駆動輪荷重を補正する。すなわち車両が加速すると、前後荷重配分は、当該車両の仕様に応じてあらかじめ与えられた車両総重量と前後重量配分とから求めた配分よりも副駆動輪(後輪)側が増加するとともに主駆動輪(前輪)側が減少するので、前後加速度値の増大に応じて推定主駆動輪荷重を減少させる。   In the driving force distribution control device of the third embodiment, the torque distribution controller 10 calculates the estimated main driving wheel load obtained in the next step S1 in accordance with the longitudinal acceleration value input from the longitudinal acceleration detector 17 in step S0. to correct. That is, when the vehicle accelerates, the front and rear load distribution increases on the auxiliary driving wheel (rear wheel) side and the main driving wheel as compared with the distribution obtained from the total vehicle weight and the front and rear weight distribution given in advance according to the specification of the vehicle. Since the (front wheel) side decreases, the estimated main drive wheel load is decreased in accordance with an increase in the longitudinal acceleration value.

この第3実施例の駆動力配分制御装置によれば、第2実施例と同様の作用効果が得られるのに加え、前後加速度値に応じて推定主駆動輪荷重を補正するので、後輪への目標伝達トルクをより精度良く算出することができ、車両の発進時および加速時において後方への荷重移動に応じて副駆動輪である後輪への目標伝達トルクを増大させ得て、発進性および加速性を向上させることができる。   According to the driving force distribution control device of the third embodiment, the same effect as that of the second embodiment can be obtained, and the estimated main driving wheel load is corrected according to the longitudinal acceleration value. The target transmission torque can be calculated more accurately, and the target transmission torque to the rear wheels, which are the auxiliary drive wheels, can be increased in accordance with the load movement to the rear when the vehicle starts and accelerates. And acceleration can be improved.

図7は、この発明の四輪駆動車の駆動力配分制御装置の第4実施例を具えたパワートレーンを示す全体システム図であり、図中先の第2実施例と同様の部分はそれと同一の符号にて示す。この第4実施例の四輪駆動車の駆動力配分制御装置はさらに、車輪のスリップを検出する車輪スリップ検出手段としての車輪スリップ検出器18を具える点のみ、第2実施例と異なっており、他の点では第2実施例と同様に構成されている。   FIG. 7 is an overall system diagram showing a power train provided with a fourth embodiment of the driving force distribution control device for a four-wheel drive vehicle of the present invention. The same parts as those in the second embodiment are the same as those in the second embodiment. It shows with the code | symbol. The driving force distribution control device for a four-wheel drive vehicle of the fourth embodiment is different from the second embodiment only in that it further includes a wheel slip detector 18 as wheel slip detection means for detecting wheel slip. The other points are the same as in the second embodiment.

なお、具体的にはこの第4実施例の四輪駆動車の駆動力配分制御装置のトルク配分コントローラ10が、各車輪速センサ11,12,13,14からの車輪速信号に基づいて前輪右車輪速度と前輪左車輪速度と後輪右車輪速度と後輪左車輪速度を計算し、そして左右前輪車輪速度の平均値と左右後輪車輪速度の平均値との差をとることにより前後回転数差を計算することで、車輪スリップ検出器18としての機能を果たす。また、この第4実施例の四輪駆動車の駆動力配分制御装置のトルク配分コントローラ10も目標伝達トルク下限値保持部10dを有するが、図示は省略する。   Specifically, the torque distribution controller 10 of the driving force distribution control device for the four-wheel drive vehicle according to the fourth embodiment is configured so that the front wheel right side is based on the wheel speed signals from the wheel speed sensors 11, 12, 13, and 14. Calculate the wheel speed, front wheel left wheel speed, rear wheel right wheel speed, rear wheel left wheel speed, and take the difference between the average value of the left and right front wheel speeds and the average value of the left and right rear wheel speeds. By calculating the difference, it functions as a wheel slip detector 18. Further, the torque distribution controller 10 of the driving force distribution control device for a four-wheel drive vehicle according to the fourth embodiment also has a target transmission torque lower limit holding unit 10d, which is not shown.

図8は、この第4実施例の駆動力配分制御装置のトルク配分コントローラ10が実行するトルク配分制御を示すフローチャートであり、このフローチャートが図4に示す第2実施例のフローチャートと異なる点は、ステップS5-1およびステップS5-2のみであるので、その異なる点のみについて以下に説明する。   FIG. 8 is a flowchart showing the torque distribution control executed by the torque distribution controller 10 of the driving force distribution control apparatus of the fourth embodiment. This flowchart differs from the flowchart of the second embodiment shown in FIG. Since only step S5-1 and step S5-2 are included, only the differences will be described below.

この第4実施例の駆動力配分制御装置では、トルク配分コントローラ10は、ステップS5-1で、各車輪速センサ11,12,13,14からの車輪速信号に基づいて、左右前輪5,6および左右後輪7,8のうち1輪以上の空転量が所定値以上か否かを判断し、1輪以上の空転量が所定値以上の(YESの)場合は前述のステップS8へ進み、そうでない場合は次のステップS5-2で、前述のステップS5と同様、前後差回転が所定値以下か否かを判断し、前後差回転が所定値以下の場合は前述のステップS7へ進み、そうでない場合は前述のステップS9へ進む。   In the driving force distribution control device of the fourth embodiment, the torque distribution controller 10 determines the left and right front wheels 5, 6 based on the wheel speed signals from the wheel speed sensors 11, 12, 13, 14 in step S5-1. In addition, it is determined whether or not the amount of slipping of one or more of the left and right rear wheels 7 and 8 is greater than or equal to a predetermined value. If the amount of slipping of one or more wheels is greater than or equal to a predetermined value (YES), the process proceeds to step S8 described above. Otherwise, in the next step S5-2, as in step S5 described above, it is determined whether the front-rear differential rotation is equal to or less than a predetermined value.If the front-rear differential rotation is equal to or less than the predetermined value, the process proceeds to step S7 described above. Otherwise, the process proceeds to step S9 described above.

この第4実施例の駆動力配分制御装置によれば、第2実施例と同様の作用効果が得られるのに加え、1輪以上の空転量が所定値以上かまたは前後差回転が所定値を越える場合に推定路面μの値を低下させて推定主駆動輪許容駆動トルクを減少させることから、主駆動輪に空転が発生した場合でもエンジントルクダウン等の方法によらず、総駆動力を低減することなくその後の車輪の空転を抑え得て、副駆動輪への配分トルクが小さい状態で雪道等の低μ路に進入して発進加速や中間加速を行った場合でも、副駆動輪への配分トルクを所定値以上として主駆動輪の空転を防止するので、雪道等においてもアスファルト路等と同等の発進加速や中間加速を行うことができる。   According to the driving force distribution control device of the fourth embodiment, in addition to the same effects as those of the second embodiment, in addition to the idling amount of one or more wheels being a predetermined value or more, or the forward / rearward rotation is a predetermined value. If it exceeds, the estimated road surface μ value is decreased to reduce the estimated main drive wheel allowable drive torque, so even if idling occurs on the main drive wheel, the total drive force is reduced regardless of the method such as engine torque reduction. It is possible to suppress the subsequent idling of the wheels without having to do so, and even when starting acceleration or intermediate acceleration by entering a low μ road such as a snowy road with a small distribution torque to the auxiliary driving wheels, The distribution torque is set to a predetermined value or more to prevent the main drive wheels from slipping, so that start acceleration and intermediate acceleration equivalent to those on asphalt roads can be performed even on snowy roads.

図9は、この発明の四輪駆動車の駆動力配分制御装置の第5実施例を具えたパワートレーンを示す全体システム図であり、図中先の第2実施例と同様の部分はそれと同一の符号にて示す。この第5実施例の四輪駆動車の駆動力配分制御装置はさらに、路面の勾配を検出する勾配検出手段としての勾配検出器19を具える点のみ、第2実施例と異なっており、他の点では第2実施例と同様に構成されている。   FIG. 9 is an overall system diagram showing a power train provided with a fifth embodiment of the driving force distribution control device for a four-wheel drive vehicle of the present invention, and the same parts as those of the second embodiment are the same as those in the second embodiment. It shows with the code | symbol. The driving force distribution control device for a four-wheel drive vehicle of the fifth embodiment is different from the second embodiment only in that it further includes a gradient detector 19 as a gradient detecting means for detecting the gradient of the road surface. This is the same as in the second embodiment.

なお、路面の勾配と車両の前後加速度との間には、同じ総駆動力でも路面の上り勾配の角度が増加するにつれて車両の前後加速度が減少するという関係があることから、具体的にはこの第5実施例の四輪駆動車の駆動力配分制御装置では、トルク配分コントローラ10が、図5に示す第3実施例と同様に前後加速度検出器17を具え、その前後加速度検出器17が検出した車両の前後加速度と、前述のステップS2で前回求めた総駆動力とから、例えばあらかじめ実験によって定めたマップを用いて路面の上り勾配の程度を求めている。また、この第5実施例の四輪駆動車の駆動力配分制御装置のトルク配分コントローラ10も目標伝達トルク下限値保持部10dを有するが、図示は省略する。   It should be noted that there is a relationship between the road surface gradient and the vehicle longitudinal acceleration because the vehicle longitudinal acceleration decreases as the angle of the road gradient increases even with the same total driving force. In the driving force distribution control device for a four-wheel drive vehicle of the fifth embodiment, the torque distribution controller 10 includes the longitudinal acceleration detector 17 as in the third embodiment shown in FIG. 5, and the longitudinal acceleration detector 17 detects it. Based on the longitudinal acceleration of the vehicle and the total driving force previously obtained in step S2, the degree of the road slope is obtained using, for example, a map determined in advance through experiments. Further, the torque distribution controller 10 of the driving force distribution control device for a four-wheel drive vehicle according to the fifth embodiment also has a target transmission torque lower limit holding unit 10d, which is not shown.

図10は、この第5実施例の駆動力配分制御装置のトルク配分コントローラ10が実行するトルク配分制御を示すフローチャートであり、このフローチャートが図4に示す第2実施例のフローチャートと異なる点は、ステップS0のみであるので、その異なる点のみについて以下に説明する。   FIG. 10 is a flowchart showing the torque distribution control executed by the torque distribution controller 10 of the driving force distribution control apparatus of the fifth embodiment, and this flowchart is different from the flowchart of the second embodiment shown in FIG. Since only step S0 is provided, only the difference will be described below.

この第5実施例の駆動力配分制御装置では、トルク配分コントローラ10は、ステップS0で、前後加速度検出器17から入力した前後加速度値から上述の如くして求めた路面の上り勾配に応じて、次のステップS1で求める推定主駆動輪荷重を補正する。すなわち路面の上り勾配の角度が増加すると、前後荷重配分は、当該車両の仕様に応じてあらかじめ与えられた車両総重量と前後重量配分とから求めた配分よりも副駆動輪(後輪)側が増加するとともに主駆動輪(前輪)側が減少するので、路面の上り勾配の角度の増加に応じて推定主駆動輪荷重を減少させる。   In the driving force distribution control device of the fifth embodiment, the torque distribution controller 10 determines in step S0 according to the road surface gradient determined as described above from the longitudinal acceleration value input from the longitudinal acceleration detector 17. The estimated main driving wheel load obtained in the next step S1 is corrected. That is, when the angle of the road slope increases, the front / rear load distribution increases on the secondary drive wheel (rear wheel) side than the distribution obtained from the total vehicle weight and the front / rear weight distribution given in advance according to the specifications of the vehicle. At the same time, since the main drive wheel (front wheel) side is reduced, the estimated main drive wheel load is reduced in accordance with an increase in the angle of the road slope.

この第5実施例の駆動力配分制御装置によれば、第2実施例と同様の作用効果が得られるのに加え、路面の上り勾配の角度に応じて推定主駆動輪荷重を補正するので、後輪への目標伝達トルクをより精度良く算出することができ、車両の発進時および加速時において路面の上り勾配の角度が大きいほど副駆動輪への目標伝達トルクを増大させ得て、発進性および加速性を向上させることができる。   According to the driving force distribution control device of the fifth embodiment, in addition to obtaining the same operational effects as the second embodiment, the estimated main driving wheel load is corrected according to the angle of the road slope, so The target transmission torque to the rear wheels can be calculated with higher accuracy, and the target transmission torque to the auxiliary drive wheels can be increased as the angle of the road slope increases when the vehicle starts and accelerates. And acceleration can be improved.

図11は、車両の発進加速時およびその後の中間加速時における、上記各実施例の駆動力配分制御装置による駆動力配分制御の効果を示すタイムチャートであり、図示のように、時刻1秒〜4秒までの発進加速時の3秒間アクセル開度25%に維持してからアクセル開度0%に戻すと、先ず1速で高い総駆動トルクが立ち上がり、車速が上がるにつれて、約3秒の時に2速に、そして約4秒の時に3速にアップシフト変速され、それにつれて総駆動トルクが下がり、約4秒から後のアクセル開度0%の間は総駆動トルク0で変速段を維持してコースト走行する。   FIG. 11 is a time chart showing the effect of the driving force distribution control by the driving force distribution control device of each of the above-described embodiments at the time of starting acceleration of the vehicle and the subsequent intermediate acceleration. As shown in FIG. When the accelerator opening is maintained at 25% for 3 seconds and the accelerator opening is returned to 0% for 3 seconds when starting acceleration up to 4 seconds, first the high total driving torque rises at the first speed, and at about 3 seconds as the vehicle speed increases. Upshifting to 2nd speed and then 3rd speed at about 4 seconds, the total driving torque decreases accordingly, and the gear position is maintained at 0 for the total driving torque from 0 to 4% after about 4 seconds. And coast.

この発進加速時に、副駆動輪である後輪への配分トルクは、従来の制御であれば図11の最下部に破線で示すように概ね一定に維持されてしまうが、上記実施例によれば同部に実線で示すように、総駆動トルクを立ち上がり後は低下させることができ、これにより前輪駆動車に近い前後輪トルク配分で走行することができる。   At the time of starting acceleration, the distribution torque to the rear wheels, which are auxiliary driving wheels, is maintained almost constant as shown by the broken line at the bottom of FIG. 11 in the case of conventional control. As indicated by the solid line in the same section, the total driving torque can be reduced after rising, thereby allowing the vehicle to travel with front and rear wheel torque distribution close to that of the front wheel drive vehicle.

また図示のように、時刻10秒〜15秒までの中間加速時の5秒間アクセル開度50%に維持してからアクセル開度0%に戻すと、先ずコースティングで維持された3速で総駆動トルクが上昇し、車速が上がるにつれて、約13秒の時に4速にアップシフト変速され、それにつれて総駆動トルクが下がり、約15秒から後のアクセル開度0%の間は総駆動トルク0で変速段を維持してコースト走行する。   Also, as shown in the figure, when the accelerator opening is maintained at 50% for 5 seconds during the intermediate acceleration from 10 seconds to 15 seconds and then returned to 0%, the first speed is maintained at the third speed maintained by the coasting. As the driving torque increases and the vehicle speed increases, the upshift is made to the fourth speed at about 13 seconds, and the total driving torque decreases accordingly, and the total driving torque is 0 for the subsequent accelerator opening 0% after about 15 seconds. Keep coasting and keep coasting.

この中間加速時にも、副駆動輪である後輪への配分トルクは、従来の制御であれば図11の最下部に破線で示すようにある程度の高さに維持されてしまうが、上記実施例によれば同部に実線で示すように、発進加速時に低下したままの低さに維持することができ、これにより前輪駆動車に近い前後輪トルク配分で走行することができる。   Even during this intermediate acceleration, the distribution torque to the rear wheels, which are auxiliary driving wheels, is maintained at a certain level as shown by the broken line at the bottom of FIG. Accordingly, as indicated by the solid line in the same section, it can be maintained at a low level as it is lowered at the time of starting acceleration, thereby enabling traveling with front and rear wheel torque distribution close to that of the front wheel drive vehicle.

従ってこの結果からも、上記各実施例の駆動力配分制御装置は、副駆動輪側の駆動系に掛かる駆動負荷を低減することができるということが判る。それゆえ上記各実施例の駆動力配分制御装置によれば、副駆動輪側の駆動系の耐力をより小さく設定して駆動ユニットの軽量化や原価低減を図ることができる。   Therefore, also from this result, it can be seen that the driving force distribution control device of each of the above embodiments can reduce the driving load applied to the driving system on the auxiliary driving wheel side. Therefore, according to the driving force distribution control device of each of the above embodiments, it is possible to reduce the driving unit in weight and cost by setting the proof strength of the driving system on the auxiliary driving wheel side smaller.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内において種々変更が加えられうるものである。例えば、この発明の駆動力配分制御は、後輪駆動をベースとした四輪駆動車にも適用することができ、その場合には後輪が主駆動輪、前輪が副駆動輪となる。また、上記実施例は有段自動変速機を具える四輪駆動車に適用したが、この発明の駆動力配分制御は無段自動変速機を具える四輪駆動車に適用することもできる。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and various modifications can be made within the scope of the claims. For example, the driving force distribution control of the present invention can be applied to a four-wheel drive vehicle based on rear wheel drive, in which case the rear wheel is the main drive wheel and the front wheel is the auxiliary drive wheel. Moreover, although the said Example was applied to the four-wheel drive vehicle provided with a stepped automatic transmission, the drive force distribution control of this invention can also be applied to the four-wheel drive vehicle provided with a continuously variable automatic transmission.

かくしてこの発明の四輪駆動車の駆動力配分制御装置によれば、例えば高μ路での走行等の、主駆動輪のみで発進または加速が可能な状態では、推定主駆動輪許容駆動トルクが大きく算出されることから、副駆動輪への目標伝達トルクが、副駆動輪の許容駆動トルクに対して小さく設定されるので、副駆動輪側の駆動系に掛かる駆動負荷を低減することができ、それゆえ副駆動輪側の駆動系の耐力をより小さく設定して駆動ユニットの軽量化や原価低減を図ることができる。   Thus, according to the driving force distribution control device for a four-wheel drive vehicle of the present invention, the estimated main drive wheel allowable drive torque is increased in a state where starting or acceleration is possible with only the main drive wheel, for example, traveling on a high μ road. Since the target transmission torque to the auxiliary drive wheel is set smaller than the allowable drive torque of the auxiliary drive wheel, the driving load applied to the drive system on the auxiliary drive wheel side can be reduced. Therefore, it is possible to reduce the drive unit weight and cost by setting the proof strength of the drive system on the auxiliary drive wheel side smaller.

なお、この発明においては、前記目標伝達トルク設定手段は、目標伝達トルク下限値を有し、前記設定した目標伝達トルクとその目標伝達トルク下限値とのうち高い方の値を改めて目標伝達トルクとして設定するものであっても良い。このようにすれば、副駆動輪への配分トルクが小さい状態で雪道等の低μ路に進入して発進加速や中間加速を行った場合でも、副駆動輪への配分トルクを所定値以上として主駆動輪の空転を防止するので、雪道等においてもアスファルト路等と同等の発進加速や中間加速を行うことができる。   In the present invention, the target transmission torque setting means has a target transmission torque lower limit value, and the higher value of the set target transmission torque and the target transmission torque lower limit value is newly set as the target transmission torque. It may be set. In this way, even when entering a low μ road such as a snowy road with a small distribution torque to the auxiliary drive wheels and starting acceleration or intermediate acceleration, the distribution torque to the auxiliary drive wheels is greater than a predetermined value. As the main drive wheels are prevented from idling, starting acceleration and intermediate acceleration equivalent to those on asphalt roads can be performed even on snowy roads.

また、この発明においては、前記駆動力配分制御装置は、前記車両の前後加速度を検出する前後加速度検出手段を具え、前記主駆動輪推定許容トルク算出手段は、前記前後加速度検出手段が検出した車両の前後加速度の大きさに応じて前記主駆動輪の推定荷重を補正するものであっても良い。このようにすれば、後輪への目標伝達トルクをより精度良く算出することができるので、車両の発進時および加速時において後方への荷重移動に応じて副駆動輪である後輪への目標伝達トルクを増大させ得て、発進性および加速性を向上させることができる。   In the present invention, the driving force distribution control device includes a longitudinal acceleration detecting means for detecting longitudinal acceleration of the vehicle, and the main driving wheel estimated allowable torque calculating means is a vehicle detected by the longitudinal acceleration detecting means. The estimated load of the main drive wheel may be corrected according to the magnitude of the longitudinal acceleration. In this way, the target transmission torque to the rear wheels can be calculated with higher accuracy, so that the target to the rear wheels, which are the auxiliary driving wheels, can be determined according to the rearward load movement when the vehicle starts and accelerates. The transmission torque can be increased, and the startability and acceleration can be improved.

さらに、この発明においては、前記駆動力配分制御装置は、前記車両の前記主駆動輪のスリップを検出する主駆動輪スリップ検出手段を具え、前記主駆動輪推定許容トルク算出手段は、前記主駆動輪スリップ検出手段が主駆動輪のスリップを検出した場合に、前記主駆動輪の推定許容トルクを小さくするものであっても良い。このようにすれば、主駆動輪に空転が発生した場合でもエンジントルクダウン等の方法によらず、総駆動力を低減することなくその後の車輪の空転を抑え得て、副駆動輪への配分トルクが小さい状態で雪道等の低μ路に進入して発進加速や中間加速を行った場合でも、副駆動輪への配分トルクを所定値以上として主駆動輪の空転を防止するので、雪道等においてもアスファルト路等と同等の発進加速や中間加速を行うことができる。   Further, according to the present invention, the driving force distribution control device includes main driving wheel slip detection means for detecting slip of the main driving wheel of the vehicle, and the main driving wheel estimated allowable torque calculation means includes the main driving wheel. When the wheel slip detection means detects the slip of the main driving wheel, the estimated allowable torque of the main driving wheel may be reduced. In this way, even if idling occurs on the main drive wheel, it is possible to suppress the subsequent idling of the wheel without reducing the total driving force, regardless of the method such as engine torque reduction, and distribution to the sub drive wheel. Even if you enter a low μ road such as a snowy road with low torque and start acceleration or intermediate acceleration, the distribution torque to the sub drive wheels is set to a predetermined value or more to prevent the main drive wheels from slipping. Even on roads, start acceleration and intermediate acceleration equivalent to asphalt roads can be performed.

そして、この発明においては、前記主駆動輪は前記車両の前輪であり、前記駆動力配分制御装置は、前記車両が走行している路面の上り勾配を検出する上り勾配検出手段を具え、前記目標伝達トルク設定手段は、上り勾配検出手段が上り勾配を検出した場合に、前記目標伝達トルクを勾配がない場合より大きく設定するものであっても良い。このようにすれば、副駆動輪である後輪への目標伝達トルクをより精度良く算出することができるので、車両の発進時および加速時において路面の上り勾配の角度が大きいほど副駆動輪への目標伝達トルクを増大させ得て、発進性および加速性を向上させることができる。   In the present invention, the main driving wheel is a front wheel of the vehicle, and the driving force distribution control device includes an ascending gradient detecting means for detecting an ascending gradient of a road surface on which the vehicle is traveling, and The transmission torque setting means may set the target transmission torque larger when the ascending gradient detecting means detects the ascending gradient than when there is no gradient. In this way, the target transmission torque to the rear wheel, which is the auxiliary drive wheel, can be calculated with higher accuracy. Therefore, when the vehicle starts and accelerates, the larger the angle of the road uphill, the greater the change to the auxiliary drive wheel. The target transmission torque can be increased, and the startability and acceleration can be improved.

この発明の四輪駆動車の駆動力配分制御装置の第1実施例を具えたパワートレーンを示す全体システム図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall system diagram showing a power train provided with a first embodiment of a driving force distribution control device for a four-wheel drive vehicle according to the present invention; 上記第1実施例の駆動力配分制御装置のトルク配分コントローラが実行するトルク配分制御を示すフローチャートである。It is a flowchart which shows the torque distribution control which the torque distribution controller of the driving force distribution control apparatus of the said 1st Example performs. この発明の四輪駆動車の駆動力配分制御装置の第2実施例を具えたパワートレーンを示す全体システム図である。It is a whole system figure which shows the power train provided with 2nd Example of the driving force distribution control apparatus of the four-wheel drive vehicle of this invention. 上記第2実施例の駆動力配分制御装置のトルク配分コントローラが実行するトルク配分制御を示すフローチャートである。It is a flowchart which shows the torque distribution control which the torque distribution controller of the driving force distribution control apparatus of the said 2nd Example performs. この発明の四輪駆動車の駆動力配分制御装置の第3実施例を具えたパワートレーンを示す全体システム図である。It is a whole system figure which shows the power train provided with 3rd Example of the driving force distribution control apparatus of the four-wheel drive vehicle of this invention. 上記第3実施例の駆動力配分制御装置のトルク配分コントローラが実行するトルク配分制御を示すフローチャートである。It is a flowchart which shows the torque distribution control which the torque distribution controller of the driving force distribution control apparatus of the said 3rd Example performs. この発明の四輪駆動車の駆動力配分制御装置の第4実施例を具えたパワートレーンを示す全体システム図である。It is a whole system figure which shows the power train provided with 4th Example of the driving force distribution control apparatus of the four-wheel drive vehicle of this invention. 上記第4実施例の駆動力配分制御装置のトルク配分コントローラが実行するトルク配分制御を示すフローチャートである。It is a flowchart which shows the torque distribution control which the torque distribution controller of the driving force distribution control apparatus of the said 4th Example performs. この発明の四輪駆動車の駆動力配分制御装置の第5実施例を具えたパワートレーンを示す全体システム図である。It is a whole system figure which shows the power train provided with 5th Example of the driving force distribution control apparatus of the four-wheel drive vehicle of this invention. 上記第5実施例の駆動力配分制御装置のトルク配分コントローラが実行するトルク配分制御を示すフローチャートである。It is a flowchart which shows the torque distribution control which the torque distribution controller of the driving force distribution control apparatus of the said 5th Example performs. 車両の発進加速時およびその後の中間加速時における、上記各実施例の駆動力配分制御装置による駆動力配分制御の効果を示すタイムチャートである。It is a time chart which shows the effect of the driving force distribution control by the driving force distribution control apparatus of each said Example at the time of start acceleration of a vehicle, and the time of intermediate acceleration after that.

符号の説明Explanation of symbols

1 エンジン
2 無段変速機
3 フロントディファレンシャル
4 リヤディファレンシャル
5 右前輪
6 左前輪
7 右後輪
8 左後輪
9 トルク配分アクチュエータ
10 トルク配分コントローラ
10a 推定主駆動輪許容トルク算出部
10b 目標伝達トルク設定部
10c アクチュエータ制御部
10d 目標伝達トルク下限値保持部
11 右前輪速センサ
12 左前輪速センサ
13 右後輪速センサ
14 右後輪速センサ
15 アクセル開度センサ
16 エンジンコントローラ
17 前後加速度検出器
18 車輪スリップ検出器
19 勾配検出器
DESCRIPTION OF SYMBOLS 1 Engine 2 Continuously variable transmission 3 Front differential 4 Rear differential 5 Right front wheel 6 Left front wheel 7 Right rear wheel 8 Left rear wheel 9 Torque distribution actuator 10 Torque distribution controller 10a Estimated main drive wheel allowable torque calculation part 10b Target transmission torque setting part 10c Actuator control section 10d Target transmission torque lower limit holding section 11 Right front wheel speed sensor 12 Left front wheel speed sensor 13 Right rear wheel speed sensor 14 Right rear wheel speed sensor 15 Accelerator opening sensor 16 Engine controller 17 Longitudinal acceleration detector 18 Wheel slip Detector 19 Gradient detector

Claims (5)

車両の駆動源である原動機の出力トルクを、前輪および後輪のうちの一方である主駆動輪に伝達するとともに、トルク配分アクチュエータを介して前輪および後輪のうちの他方である副駆動輪に伝達する四輪駆動車の、前記トルク配分アクチュエータの作動を制御して、前記主駆動輪と前記副駆動輪とのトルク配分を車両状態に応じたものとする駆動力配分制御装置において、
各々所定時間ごとに繰返し処理を行う推定主駆動輪許容トルク算出手段と目標伝達トルク設定手段とアクチュエータ制御手段とを具え、
前記推定主駆動輪許容トルク算出手段は、前記主駆動輪の推定荷重に基づき推定主駆動輪許容駆動トルクを算出し、
前記目標伝達トルク設定手段は、前記原動機の出力トルクに基づく総駆動トルクから前記推定主駆動輪許容駆動トルクを減算した値を前記副駆動輪への目標伝達トルクとして設定して記憶し、次回の処理でより高い駆動トルクが要求された場合に、主駆動輪と副駆動輪との回転差が所定以上発生していなければ前記記憶した目標伝達トルクの値を副駆動輪への目標伝達トルクとして設定し、
前記アクチュエータ制御手段は、前記目標伝達トルク設定手段が設定した目標伝達トルクを前記副駆動輪に伝達するように前記トルク配分アクチュエータの作動を制御することを特徴とする、四輪駆動車の駆動力配分制御装置。
The output torque of the prime mover that is the drive source of the vehicle is transmitted to the main drive wheel that is one of the front wheels and the rear wheels, and the auxiliary drive wheel that is the other of the front wheels and the rear wheels via the torque distribution actuator. In the driving force distribution control device that controls the operation of the torque distribution actuator of the four-wheel drive vehicle that transmits the torque distribution between the main drive wheel and the sub drive wheel according to the vehicle state,
An estimated main driving wheel allowable torque calculating means, a target transmission torque setting means, and an actuator control means, each of which repeatedly performs processing at predetermined time intervals,
The estimated main driving wheel allowable torque calculating means calculates an estimated main driving wheel allowable driving torque based on the estimated load of the main driving wheel,
The target transmission torque setting means sets and stores a value obtained by subtracting the estimated main driving wheel allowable driving torque from the total driving torque based on the output torque of the prime mover as the target transmission torque to the auxiliary driving wheel, When a higher driving torque is required in the processing, if the rotational difference between the main driving wheel and the sub driving wheel is not greater than a predetermined value, the stored target transmission torque value is used as the target transmission torque to the sub driving wheel. Set,
The actuator control means controls the operation of the torque distribution actuator so as to transmit the target transmission torque set by the target transmission torque setting means to the auxiliary drive wheels. Distribution controller.
前記目標伝達トルク設定手段は、目標伝達トルク下限値を有し、前記設定した目標伝達トルクとその目標伝達トルク下限値とのうち高い方の値を改めて目標伝達トルクとして設定することを特徴とする、請求項1記載の四輪駆動車の駆動力配分制御装置。   The target transmission torque setting means has a target transmission torque lower limit value, and sets the higher value of the set target transmission torque and the target transmission torque lower limit value as the target transmission torque again. The driving force distribution control device for a four-wheel drive vehicle according to claim 1. 前記駆動力配分制御装置は、前記車両の前後加速度を検出する前後加速度検出手段を具え、
前記主駆動輪推定許容トルク算出手段は、前記前後加速度検出手段が検出した車両の前後加速度の大きさに応じて前記主駆動輪の推定荷重を補正することを特徴とする、請求項1記載の四輪駆動車の駆動力配分制御装置。
The driving force distribution control device comprises longitudinal acceleration detection means for detecting longitudinal acceleration of the vehicle,
2. The main driving wheel estimated allowable torque calculating means corrects the estimated load of the main driving wheel according to the magnitude of longitudinal acceleration of the vehicle detected by the longitudinal acceleration detecting means. Driving force distribution control device for four-wheel drive vehicles.
前記駆動力配分制御装置は、前記車両の前記主駆動輪のスリップを検出する主駆動輪スリップ検出手段を具え、
前記主駆動輪推定許容トルク算出手段は、前記主駆動輪スリップ検出手段が主駆動輪のスリップを検出した場合に、前記主駆動輪の推定許容トルクを小さくすることを特徴とする、請求項1記載の四輪駆動車の駆動力配分制御装置。
The driving force distribution control device comprises main driving wheel slip detection means for detecting slip of the main driving wheel of the vehicle,
The main driving wheel estimated allowable torque calculating means reduces the estimated allowable torque of the main driving wheel when the main driving wheel slip detecting means detects a slip of the main driving wheel. A drive force distribution control device for a four-wheel drive vehicle as described.
前記主駆動輪は前記車両の前輪であり、
前記駆動力配分制御装置は、前記車両が走行している路面の上り勾配を検出する上り勾配検出手段を具え、
前記目標伝達トルク設定手段は、上り勾配検出手段が上り勾配を検出した場合に、前記目標伝達トルクを勾配がない場合より大きく設定することを特徴とする、請求項1記載の四輪駆動車の駆動力配分制御装置。
The main drive wheel is a front wheel of the vehicle;
The driving force distribution control device comprises an ascending slope detecting means for detecting an ascending slope of a road surface on which the vehicle is traveling,
2. The four-wheel drive vehicle according to claim 1, wherein the target transmission torque setting means sets the target transmission torque to be larger than when there is no gradient when the ascending gradient detecting means detects the ascending gradient. Driving force distribution control device.
JP2008110586A 2008-04-21 2008-04-21 Driving force distribution control device for four-wheel drive vehicles Expired - Fee Related JP5003580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110586A JP5003580B2 (en) 2008-04-21 2008-04-21 Driving force distribution control device for four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110586A JP5003580B2 (en) 2008-04-21 2008-04-21 Driving force distribution control device for four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JP2009262584A true JP2009262584A (en) 2009-11-12
JP5003580B2 JP5003580B2 (en) 2012-08-15

Family

ID=41389016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110586A Expired - Fee Related JP5003580B2 (en) 2008-04-21 2008-04-21 Driving force distribution control device for four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP5003580B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091333A (en) * 2011-10-24 2013-05-16 Aisin Ai Co Ltd Vehicle drive device
JP2017100477A (en) * 2015-11-30 2017-06-08 株式会社Subaru Vehicle control device
JP6465461B1 (en) * 2017-08-31 2019-02-06 マツダ株式会社 Wheel load estimation method for four-wheel drive vehicles
JP2020104747A (en) * 2018-12-27 2020-07-09 ダイハツ工業株式会社 Control device for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976779A (en) * 1995-09-12 1997-03-25 Hitachi Ltd Torque distribution controller of four-wheel drive vehicle
JP2003159952A (en) * 2001-11-26 2003-06-03 Hitachi Unisia Automotive Ltd Control system of four wheel drive
JP2005088770A (en) * 2003-09-18 2005-04-07 Advics:Kk Front-rear wheel driving force distribution control device of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976779A (en) * 1995-09-12 1997-03-25 Hitachi Ltd Torque distribution controller of four-wheel drive vehicle
JP2003159952A (en) * 2001-11-26 2003-06-03 Hitachi Unisia Automotive Ltd Control system of four wheel drive
JP2005088770A (en) * 2003-09-18 2005-04-07 Advics:Kk Front-rear wheel driving force distribution control device of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091333A (en) * 2011-10-24 2013-05-16 Aisin Ai Co Ltd Vehicle drive device
JP2017100477A (en) * 2015-11-30 2017-06-08 株式会社Subaru Vehicle control device
JP6465461B1 (en) * 2017-08-31 2019-02-06 マツダ株式会社 Wheel load estimation method for four-wheel drive vehicles
JP2019043258A (en) * 2017-08-31 2019-03-22 マツダ株式会社 Wheel load estimation method of four-wheel drive vehicle
JP2020104747A (en) * 2018-12-27 2020-07-09 ダイハツ工業株式会社 Control device for vehicle
JP7362199B2 (en) 2018-12-27 2023-10-17 ダイハツ工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP5003580B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US8700280B2 (en) Road surface frictional coefficient estimation device, driving force distribution control device and four-wheel-drive vehicle
JP6055334B2 (en) Accelerator pedal misoperation control device
CN107521338B (en) Control device for four-wheel drive vehicle and gradient value setting device for vehicle
JP6504223B2 (en) Vehicle driving force control method
US7610982B2 (en) Front and rear drive power distribution control device for vehicle
JP6366745B2 (en) Torque control device and torque control method for vehicle
JP5003580B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP5848149B2 (en) Control device for controlling driving force acting on vehicle
JP2002211377A (en) Braking and driving force controller
JP7442764B2 (en) Vehicle driving force distribution control system
JP2006200526A (en) Output characteristic control device for vehicle
US8725377B2 (en) Control device for controlling drive force that operates on vehicle
JP4443582B2 (en) Understeer suppression device
JP5900003B2 (en) Control device for controlling driving force acting on vehicle
JP2018017372A (en) Automatic shift controller
JP5918564B2 (en) Control device for controlling driving force acting on vehicle
JP2009127817A (en) Neutral control device of automatic transmission
US20030214181A1 (en) Traction control system including automatic engine torque increase during mu-split starting operations
JP2022065291A (en) Vehicle control system
US8386143B2 (en) Control device for controlling drive force that operates on vehicle
JP4424195B2 (en) Vehicle control device
JP5806628B2 (en) Control device for controlling driving force acting on vehicle
JP5015834B2 (en) Wheel slip detection device
JP2015031323A (en) Vehicle transmission control device
JP2003170755A (en) Controller for distribution of driving force in four- wheel drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130625

LAPS Cancellation because of no payment of annual fees