JP5015834B2 - Wheel slip detection device - Google Patents

Wheel slip detection device Download PDF

Info

Publication number
JP5015834B2
JP5015834B2 JP2008074121A JP2008074121A JP5015834B2 JP 5015834 B2 JP5015834 B2 JP 5015834B2 JP 2008074121 A JP2008074121 A JP 2008074121A JP 2008074121 A JP2008074121 A JP 2008074121A JP 5015834 B2 JP5015834 B2 JP 5015834B2
Authority
JP
Japan
Prior art keywords
wheel
driving force
transmission
idling
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008074121A
Other languages
Japanese (ja)
Other versions
JP2009227072A (en
Inventor
秀樹 佐藤
隆 広瀬
真 飯島
貴博 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2008074121A priority Critical patent/JP5015834B2/en
Publication of JP2009227072A publication Critical patent/JP2009227072A/en
Application granted granted Critical
Publication of JP5015834B2 publication Critical patent/JP5015834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、高摩擦係数路や低摩擦係数路における車輪の空転を検出する車輪の空転検出装置に関する。   The present invention relates to a wheel idling detection device for detecting idling of a wheel on a high friction coefficient road or a low friction coefficient road.

従来、車両のホイルスピンのような車輪の駆動スリップ(空転)を検出する技術としては、駆動輪と被駆動輪とが存在する2輪駆動車では、例えば特許文献1に開示されているように、駆動輪と被駆動輪との車輪加速度比から検出する技術が一般的に採用されている。一方、被駆動輪が存在しない全輪駆動車では、車輪の加速度が閾値を越えたときにスリップが生じていると判定する技術が一般的に採用されている。
特開平10−217933号公報
Conventionally, as a technique for detecting a driving slip (idling) of a wheel such as a wheel spin of a vehicle, as disclosed in Patent Document 1, for example, in a two-wheel drive vehicle in which a drive wheel and a driven wheel exist. In general, a technique of detecting from a wheel acceleration ratio between a driving wheel and a driven wheel is employed. On the other hand, for all-wheel drive vehicles that do not have driven wheels, a technique is generally adopted in which it is determined that slip has occurred when the wheel acceleration exceeds a threshold value.
JP 10-217933 A

しかしながら、上述したような従来の技術では、変速機のギヤのガタ分や駆動系の捩れ等によって瞬間的に過大な加速度が発生した場合、例えば乾燥路面の全開発進でもスリップ発生と誤判定してしまう可能性がある。これを防ぐために判定の閾値を高くすると、今度は路面摩擦係数が低い路面でのスリップの検出が遅くなる可能性があり、最適値の設定が極めて困難である。   However, in the conventional technology as described above, if excessive acceleration occurs instantaneously due to the gear backlash of the transmission or torsion of the drive system, for example, it is erroneously determined that slip has occurred even in all the development progress of the dry road surface. There is a possibility. If the determination threshold is increased to prevent this, the detection of slip on the road surface with a low road surface friction coefficient may be delayed this time, and it is extremely difficult to set an optimum value.

従って、従来、スポーツ用途の車両では高摩擦係数の乾燥路面での全開発進性能を重視した設定にする、一般用途の車両では低摩擦係数路でのスリップ検出を優先した設定にする等といったように、車両のタイプに応じて択一的な設定を行わざるを得ず、一つの設定で全ての路面状況において確実に車輪の空転を検出することは困難であった。   Therefore, in the past, sports vehicles have a setting that emphasizes all-developed performance on dry road surfaces with a high friction coefficient, and general vehicles have priority on slip detection on low friction coefficient roads. Therefore, alternative settings must be made according to the type of vehicle, and it is difficult to reliably detect idling of the wheels in all road conditions with one setting.

本発明は上記事情に鑑みてなされたもので、路面状況に拘わらず同じ判定基準を用いながら、誤判定を生じることなく早期に車輪空転を検出することのできる車輪の空転検出装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a wheel idling detection device capable of detecting wheel idling early without causing erroneous judgment while using the same criterion regardless of road surface conditions. It is an object.

上記目的を達成するため、本発明による車輪の空転検出装置は、駆動源から変速機への入力と該変速機の作動状態とに基づいて、車輪に与えられる駆動力を算出する駆動力算出部と、上記車輪の速度に基づいて、少なくとも車体に働く空気抵抗を含む車両の走行抵抗を算出する走行抵抗算出部と、上記車輪に与えられる駆動力から上記走行抵抗を減算することにより、車両の余裕駆動力を算出する余裕駆動力算出部と、上記余裕駆動力が予め設定した閾値以下になったとき、上記車輪に空転が発生していると判定する空転判定部とを有することを特徴とする。   In order to achieve the above object, an idling detection device for a wheel according to the present invention calculates a driving force applied to a wheel based on an input from a driving source to the transmission and an operating state of the transmission. And a running resistance calculation unit for calculating a running resistance of the vehicle including at least air resistance acting on the vehicle body based on the speed of the wheel, and by subtracting the running resistance from the driving force applied to the wheel, A margin driving force calculation unit that calculates margin driving force, and an idling determination unit that determines that idling has occurred in the wheel when the margin driving force falls below a preset threshold value. To do.

本発明によれば、路面状況に拘わらず同じ判定基準を用いながら、誤判定を生じることなく早期に車輪空転を検出することができ、高摩擦係数路での急発進時にも誤判定を生じることがなく、また、低摩擦係数路において早期に車輪空転を検出することができる。   According to the present invention, it is possible to detect wheel slipping early without causing erroneous determination while using the same determination criterion regardless of road surface conditions, and erroneous determination occurs even when suddenly starting on a high friction coefficient road. In addition, it is possible to detect wheel slipping early on a low friction coefficient road.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図3は本発明の実施の一形態に係り、図1は車両制御系の全体構成図、図2は車輪空転検出処理に係る機能ブロック図、図3は車輪空転検出処理のフローチャートである。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 relate to an embodiment of the present invention, FIG. 1 is an overall configuration diagram of a vehicle control system, FIG. 2 is a functional block diagram relating to wheel slip detection processing, and FIG. 3 is a flowchart of wheel slip detection processing. is there.

図1において、符号10は、変速機を制御する変速機コントロールユニット(以下、変速機ECU)であり、本実施の形態においては、ロックアップクラッチ付きトルクコンバータを有する変速機の制御を実行すると共に、本発明に係る車輪の空転検出処理を実行する。変速機ECU10は、エンジンを制御するエンジンコントロールユニット(以下、エンジンECU)20、車両の駆動力制御及びABS装置35を介した制動力制御を行うトラクションコントロールユニット(以下、トラクションECU)30,インストルメントパネルに配設された表示装置45やメータ類を制御するインストルメントパネルコントロールユニット(以下、インパネECU)40等の他の車載コントロールユニットと、例えばCAN(Controller Area Network)等の通信プロトコルに基づくネットワーク100を介して接続され、制御情報や制御指示を双方向で送出する。   In FIG. 1, reference numeral 10 denotes a transmission control unit (hereinafter referred to as a transmission ECU) that controls the transmission. In the present embodiment, control of the transmission having a torque converter with a lock-up clutch is executed. The wheel idling detection process according to the present invention is executed. The transmission ECU 10 includes an engine control unit (hereinafter referred to as an engine ECU) 20 that controls the engine, a traction control unit (hereinafter referred to as a traction ECU) 30 that performs vehicle driving force control and braking force control via the ABS device 35, and an instrument. Other in-vehicle control units such as an instrument panel control unit (hereinafter referred to as instrument panel ECU) 40 that controls the display device 45 and meters arranged on the panel, and a network based on a communication protocol such as CAN (Controller Area Network) 100 and is connected via 100 to send control information and control instructions in both directions.

また、変速機ECU10には、車輪の速度を検出する車輪速センサ11,変速機への入力回転数を検出する変速機入力回転数センサ12が接続されている。これらのセンサ11,12からの信号、ネットワーク100を介したエンジンECU20からのエンジントルク信号及びエンジン回転数信号が変速機ECU10へ入力され、車輪の空転を検出したとき、変速機ECU10から、エンジンECU20へのトルクダウン指示、トラクションECU30へのブレーキ制御指示、運転者への報知のためのインパネECU40への指示が出力される。   The transmission ECU 10 is connected to a wheel speed sensor 11 that detects the speed of the wheel and a transmission input rotation speed sensor 12 that detects the input rotation speed to the transmission. When signals from these sensors 11, 12 and an engine torque signal and an engine speed signal from the engine ECU 20 via the network 100 are input to the transmission ECU 10, and the idling of the wheel is detected, the transmission ECU 10 sends the engine ECU 20 to the engine ECU 20. Torque down instruction, brake control instruction to traction ECU 30, and instruction to instrument panel ECU 40 for notification to the driver are output.

尚、変速機ECU10内でロックアップの締結/解放を判断していない場合には、エンジンECU20からロックアップクラッチのON/OFF信号が変速機ECU10へ入力される。   If it is not determined in the transmission ECU 10 that the lockup is to be engaged / released, an ON / OFF signal for the lockup clutch is input from the engine ECU 20 to the transmission ECU 10.

変速機ECU10による車輪の空転検出は、以下の(1)式に示すように、車輪で発生する発生駆動力F1と、この発生駆動力F1に対する走行抵抗F2との差を余裕駆動力F3として定義し、この余裕駆動力F3を予め設定した判定閾値と比較することにより、車輪が空転状態か否かを判定する。
F3=F1−F2 …(1)
As shown in the following equation (1), the idling detection of the wheel by the transmission ECU 10 is defined as a marginal driving force F3 that is a difference between the generated driving force F1 generated at the wheel and the running resistance F2 with respect to the generated driving force F1. Then, it is determined whether or not the wheel is idling by comparing the margin driving force F3 with a predetermined determination threshold value.
F3 = F1-F2 (1)

詳細には、発生駆動力F1は、エンジンから変速機及び終減速機を経て車輪に与えられる駆動力であり、以下の(2)式に示すように、エンジンから変速機に入力される変速機入力トルクTinに、総変速比iと効率ηとを乗算して求められる。
F1=Tin×i×η …(2)
Specifically, the generated driving force F1 is a driving force that is applied from the engine to the wheels through the transmission and the final reduction gear, and is a transmission that is input from the engine to the transmission as shown in the following equation (2). It is obtained by multiplying the input torque Tin by the total gear ratio i and the efficiency η.
F1 = Tin × i × η (2)

また、走行抵抗F2は、以下の(3)式に示すように、車両重量Wと加速度αとによる加速抵抗Rα、車両の前面投影面積Aと空気抵抗係数Cdと車輪速度Vの2乗とによる空気抵抗Rd、転がり抵抗係数μと車両重量Wとによる車輪の転がり抵抗Reとの合計で求められる。
F2=Rα+Rd+Re …(3)
但し、Rα=W×α
Rd=Cd×A×V2
Re=μ×W
Further, as shown in the following equation (3), the running resistance F2 depends on the acceleration resistance Rα due to the vehicle weight W and the acceleration α, the front projection area A of the vehicle, the air resistance coefficient Cd, and the square of the wheel speed V. It is obtained as a sum of the rolling resistance Re of the wheel by the air resistance Rd, the rolling resistance coefficient μ and the vehicle weight W.
F2 = Rα + Rd + Re (3)
However, Rα = W × α
Rd = Cd × A × V 2
Re = μ × W

従って、(1)式は、以下の(4)式で表すことができ、余裕駆動力F3は、車両重量W、加速度α、車両の前面投影面積A、空気抵抗係数Cd、車輪速度V、転がり抵抗係数μ等のパラメータ、駆動源としてのエンジンの出力、及び変速機の作動状態に基づいて算出することができる。
F3=Tin×i×η−(W×α+Cd×A×V2+μ×W) …(4)
Therefore, the expression (1) can be expressed by the following expression (4). The margin driving force F3 is the vehicle weight W, acceleration α, front projection area A of the vehicle, air resistance coefficient Cd, wheel speed V, rolling. It can be calculated based on parameters such as the resistance coefficient μ, the output of the engine as the drive source, and the operating state of the transmission.
F3 = Tin × i × η− (W × α + Cd × A × V 2 + μ × W) (4)

(4)式は、路面の摩擦係数が低い状態で車輪の空転(ホイルスピン)が発生すると、急激に車輪速度Vが上昇し、空気抵抗Rdの計算結果が急激に大きな値となり、余裕駆動力F3の計算結果が負の値となることを示している。一方、路面の摩擦係数が高いドライ路面での全開発進時等には、ホイルスピンが発生しないため、(4)式から余裕駆動力F3の計算結果は負にならないことを示している。従って、余裕駆動力F3の大小関係を調べることにより、車輪の空転を検出することができる。   In the equation (4), when the idling of the wheel (foil spin) occurs when the friction coefficient of the road surface is low, the wheel speed V increases rapidly, the calculation result of the air resistance Rd becomes a large value, and the marginal driving force It shows that the calculation result of F3 is a negative value. On the other hand, when all development progresses on a dry road surface with a high friction coefficient on the road surface, no wheel spin occurs, and therefore, the calculation result of the marginal driving force F3 does not become negative from the equation (4). Therefore, the idling of the wheel can be detected by examining the magnitude relationship of the margin driving force F3.

このため、変速機ECU10は、車輪の空転検出処理に係る機能として、図2に示すように、発生駆動力算出部15,走行抵抗算出部16、余裕駆動力算出部17、空転判定部18を有している。   Therefore, the transmission ECU 10 includes a generated driving force calculation unit 15, a running resistance calculation unit 16, a margin driving force calculation unit 17, and an idling determination unit 18, as shown in FIG. Have.

発生駆動力算出部15は、ロックアップの有無、トルクコンバータの入出力回転数(エンジン回転数と変速機入力回転数)によりトルクコンバータのトルク増幅率を算出し、このトルクコンバータのトルク増幅率とエンジンECUから送信されるエンジントルクとに基づいて、変速機入力トルクTinを算出し、総変速比i、効率ηを用いて、前述の(2)式により発生駆動力F1を算出する。尚、変速機が手動変速機である場合には、エンジントルクを変速機入力トルクTinとする。   The generated driving force calculation unit 15 calculates the torque amplification factor of the torque converter based on the presence / absence of lockup and the input / output rotation speed of the torque converter (engine rotation speed and transmission input rotation speed). The transmission input torque Tin is calculated based on the engine torque transmitted from the engine ECU, and the generated driving force F1 is calculated by the above-described equation (2) using the total transmission ratio i and the efficiency η. When the transmission is a manual transmission, the engine torque is the transmission input torque Tin.

その際、総変速比iに関しては、変速機がCVTの場合には、プーリ比を変速機ECU10内で算出し、CVTで無い場合(有段自動変速機、手動変速機等)は、選択されている変速段を変速機ECU20で検出して変速比を求める。そして、プーリ比或いは変速段による変速比と車両諸元により決まるその他の減速比とから総変速比iを算出する。   At this time, regarding the total gear ratio i, when the transmission is CVT, the pulley ratio is calculated in the transmission ECU 10, and when it is not CVT (stepped automatic transmission, manual transmission, etc.) is selected. The transmission gear stage is detected by the transmission ECU 20 to obtain the gear ratio. Then, the total speed ratio i is calculated from the speed ratio based on the pulley ratio or speed and the other speed reduction ratio determined by the vehicle specifications.

また、変速機の効率ηに関しては、対象となる変速機の特性を考慮して予め実験或いはシミュレーション等によって求め、変速機ECU10内に制御定数として保持しておく。尚、プーリ比或いは変速段により効率が変化するような場合には、変速機ECU10内にマップとして効率ηを保持し、プーリ比或いは変速段毎にマップを参照して読み出す。   Further, the transmission efficiency η is obtained in advance by experiment or simulation in consideration of the characteristics of the target transmission, and is stored as a control constant in the transmission ECU 10. When the efficiency changes depending on the pulley ratio or the shift speed, the efficiency η is held as a map in the transmission ECU 10 and is read with reference to the map for each pulley ratio or the shift speed.

走行抵抗算出部16は、車両重量W、空気抵抗係数Cd、車両の前面投影面積A、転がり抵抗係数μ、車輪速度V、加速度α等のパラメータから前述の(3)式に従って走行抵抗F2を算出する。   The running resistance calculation unit 16 calculates the running resistance F2 from the vehicle weight W, the air resistance coefficient Cd, the front projection area A of the vehicle, the rolling resistance coefficient μ, the wheel speed V, the acceleration α, and the like according to the above equation (3). To do.

車両重量W、空気抵抗係数Cd、及び前面投影面積Aは、それぞれ車両諸元により事前に求められる値であり、変速機ECU10内に予め保存されている。但し、空気抵抗係数Cd及び前面投影面積Aは、両者の乗算値Cd×Aを変速機ECU10内に保存しておく。また、転がり抵抗係数μは、事前に実験或いはシミュレーション等により求められ、同様に変速機ECU10内に保存されている。一方、車輪速度Vは、車輪速センサ11によって検出した値を用い、加速度αは車輪速度Vから算出する。   The vehicle weight W, the air resistance coefficient Cd, and the front projection area A are values obtained in advance according to vehicle specifications, and are stored in advance in the transmission ECU 10. However, as for the air resistance coefficient Cd and the front projection area A, the multiplication value Cd × A of both is stored in the transmission ECU 10. Further, the rolling resistance coefficient μ is obtained in advance by experiments or simulations, and is similarly stored in the transmission ECU 10. On the other hand, the wheel speed V is a value detected by the wheel speed sensor 11 and the acceleration α is calculated from the wheel speed V.

余裕駆動力算出部17は、発生駆動力F1と走行抵抗F2との差を余裕駆動力F3として算出し、空転判定部18に送出する。空転判定部18は、余裕駆動力F3を予め設定された判定閾値Fsと比較し、余裕駆動力F3が判定閾値Fs以下になったとき、車輪が空転していると判定する。判定閾値Fsは、エンジン、変速機、タイヤ特性等を考慮して予め実験或いはシミュレーションによって求められた値であり、余裕駆動力F3との関係において、車輪が空転しているか否かを判定するための値である。   The marginal driving force calculation unit 17 calculates the difference between the generated driving force F1 and the running resistance F2 as the marginal driving force F3 and sends it to the idling determination unit 18. The idling determination unit 18 compares the margin driving force F3 with a preset determination threshold Fs, and determines that the wheel is idling when the margin driving force F3 becomes equal to or less than the determination threshold Fs. The determination threshold Fs is a value obtained in advance by experiment or simulation in consideration of the engine, transmission, tire characteristics, etc., and is used to determine whether or not the wheel is idling in relation to the marginal driving force F3. Is the value of

この車輪空転を判定したときには、変速機ECU10から、エンジンECU20,トラクションECU30に、それぞれ、エンジン出力を下げてトルクダウンさせる制御指示、ABS装置35を介したブレーキ制御指示を出力する。更に、インパネECU40に報知指示を出して、表示装置45の警告灯等を点灯させ、ドライバの注意を喚起して警告を発する。   When this wheel idling is determined, the transmission ECU 10 outputs to the engine ECU 20 and the traction ECU 30 a control instruction for reducing the engine output to reduce the torque and a brake control instruction via the ABS device 35, respectively. Further, a notification instruction is issued to the instrument panel ECU 40, a warning lamp of the display device 45 is turned on, and the driver's attention is given and a warning is issued.

以上の車輪の空転検出処理は、具体的には、図3のフローチャートに示すプログラム処理によって実施される。次に、このプログラム処理について説明する。   More specifically, the wheel idling detection process described above is performed by the program process shown in the flowchart of FIG. Next, this program processing will be described.

先ず、ステップS1で、本処理の実施条件が成立するか否かを調べる。本処理の実施条件は、例えば、以下の(j1),(j2)の何れかの条件が成立するときであり、実施条件成立後、以下の(j3)〜(j5)の何れかの条件が成立したときには、本処理の実施が解除される。   First, in step S1, it is checked whether or not an execution condition for this process is satisfied. The execution condition of this process is, for example, when any of the following conditions (j1) and (j2) is satisfied. After the execution condition is satisfied, any of the following conditions (j3) to (j5) When established, the execution of this process is cancelled.

[実施条件]
(j1)他の優先する制御が実行中でない(例えば、雪道走行用のスノーモード又はホールドモード等の制御)。
(j2)車輪減速度≧設定値(実験等で決定される値)、且つ発生駆動力F1≦設定値(実験等で決定される値)
[Conditions]
(J1) Other priority control is not being executed (for example, control in snow mode or hold mode for running on a snowy road).
(J2) Wheel deceleration ≧ setting value (value determined by experiment etc.) and generated driving force F1 ≦ setting value (value determined by experiment etc.)

[解除条件]
(j3)他の優先する制御(例えば、スノーモード又はホールドモード)の実施条件が成立したとき
(J4)ホイルスピンモード判定中(車輪空転判定中)、且つアクセルペダル踏込み→開放後に、設定時間(実験等で決定される時間)が経過したとき
(j5)車輪減速度<設定値、且つ車輪減速度<設定値となってから設定時間内(実験等で決定される時間内)
[Release condition]
(J3) When an execution condition for other priority control (for example, snow mode or hold mode) is satisfied (J4) During wheel spin mode determination (wheel idling determination) and when the accelerator pedal is depressed → released, the set time ( (J5) Wheel deceleration <setting value, and wheel deceleration <setting value, within set time (within time determined by experiment)

そして、ステップS1において実施条件が成立しないとき或いは解除されたときには、そのままルーチンを抜け、実施条件が成立するとき、ステップS2へ進んで車輪速センサ11や変速機入力回転数センサ12からの信号、エンジンECU20からのエンジン回転数やエンジントルクを入力すると共に、変速機ECU10内に保存されている車両重量W、加速度α、空気抵抗係数Cdと前面投影面積Aとの乗算値Cd×A、転がり抵抗係数μ、変速機の効率η等のパラメータを読み込み、ステップS3へ進む。   When the execution condition is not satisfied or canceled in step S1, the routine is exited as it is. When the execution condition is satisfied, the process proceeds to step S2, and the signals from the wheel speed sensor 11 and the transmission input rotation speed sensor 12, While inputting the engine speed and engine torque from the engine ECU 20, the vehicle weight W stored in the transmission ECU 10, the acceleration α, the air resistance coefficient Cd multiplied by the front projection area A, Cd × A, rolling resistance Parameters such as coefficient μ and transmission efficiency η are read, and the process proceeds to step S3.

ステップS3では、ロックアップの有無、トルクコンバータのトルク増幅率、エンジントルクに基づいて、変速機入力トルクTinを算出すると共に、変速機の現在の変速段を検出して総変速比iを求める。そして、変速機入力トルクTin、総変速比i、効率ηを用いて発生駆動力F1を算出する。   In step S3, the transmission input torque Tin is calculated based on the presence / absence of lockup, the torque amplification factor of the torque converter, and the engine torque, and the current gear position of the transmission is detected to determine the total gear ratio i. Then, the generated driving force F1 is calculated using the transmission input torque Tin, the total transmission ratio i, and the efficiency η.

続くステップS4では、車両重量Wと加速度αとによる加速抵抗Rα、車両の前面投影面積Aと空気抵抗係数Cdと車輪速度Vの2乗とによる空気抵抗Rd、転がり抵抗係数μと車両重量Wとによる車輪の転がり抵抗Reをそれぞれ算出し、加速抵抗Rαと空気抵抗Rdと転がり抵抗Reとを合計して走行抵抗F2を算出する。   In the subsequent step S4, acceleration resistance Rα due to vehicle weight W and acceleration α, air resistance Rd due to vehicle front projection area A, air resistance coefficient Cd and square of wheel speed V, rolling resistance coefficient μ and vehicle weight W The rolling resistance Re of the wheel is calculated, and the acceleration resistance Rα, the air resistance Rd, and the rolling resistance Re are totaled to calculate the running resistance F2.

その後、ステップS5へ進み、発生駆動力F1から走行抵抗F2を減算して余裕駆動力F3を算出すると、ステップS6で余裕駆動力F3が判定閾値Fs以下か否かを調べる。その結果、F3>Fsの場合には、車輪に空転が発生していないと判定して本処理を抜け、F3≦Fsの場合、ステップS7で車輪が空転していると判定する。   Thereafter, the process proceeds to step S5, and when the marginal driving force F3 is calculated by subtracting the running resistance F2 from the generated driving force F1, it is checked in step S6 whether the marginal driving force F3 is equal to or less than the determination threshold Fs. As a result, if F3> Fs, it is determined that no idling has occurred in the wheel and the process is exited. If F3 ≦ Fs, it is determined in step S7 that the wheel is idling.

そして、ステップS8で、エンジンECU20にトルクダウン指示を送信すると共に、トラクションECU30にブレーキ制御指示を送信し、車輪の空転を抑制する制御を実施する。更に、ステップS9で、ドライバの警告を報知するため、インパネECU40に報知指示を送信し、本処理を抜ける。   In step S8, a torque down instruction is transmitted to the engine ECU 20, and a brake control instruction is transmitted to the traction ECU 30 to perform control for suppressing idling of the wheels. Further, in step S9, in order to notify the driver's warning, a notification instruction is transmitted to the instrument panel ECU 40, and the process is exited.

このように本実施の形態においては、余裕駆動力F3の概念を導入することで、あらゆる路面状況に対して車輪空転の誤判定や検出ミスを生じることなく、統一した判定基準を用いることができる。これにより、高摩擦係数路での急発進時にも誤判定を生じることがなく、また、低摩擦係数路において早期に車輪空転を検出することができ、制御性及び信頼性を向上することができる。   As described above, in the present embodiment, by introducing the concept of the marginal driving force F3, a unified determination criterion can be used without causing erroneous determination or detection error of wheel slipping for any road surface condition. . As a result, erroneous determination does not occur even when suddenly starting on a high friction coefficient road, and wheel idling can be detected early on a low friction coefficient road, thereby improving controllability and reliability. .

車両制御系の全体構成図Overall configuration diagram of vehicle control system 車輪空転検出処理に係る機能ブロック図Functional block diagram related to wheel slip detection processing 車輪空転検出処理のフローチャートWheel slip detection process flowchart

符号の説明Explanation of symbols

10 変速機コントロールユニット(変速機ECU)
15 発生駆動力算出部
16 走行抵抗算出部
17 余裕駆動力算出部
18 空転判定部
F1 発生駆動力
F2 走行抵抗
F3 余裕駆動力
Fs 判定閾値
Rd 空気抵抗
Re 転がり抵抗
Rα 加速抵抗
Tin 変速機入力トルク
10 Transmission control unit (Transmission ECU)
DESCRIPTION OF SYMBOLS 15 Generated driving force calculation part 16 Traveling resistance calculation part 17 Marginal driving force calculation part 18 Idling judgment part F1 Generated driving force F2 Running resistance F3 Marginal driving force Fs judgment threshold Rd Air resistance Re Rolling resistance Rα Acceleration resistance Tin Transmission input torque

Claims (1)

駆動源から変速機への入力と該変速機の作動状態とに基づいて、車輪に与えられる駆動力を算出する駆動力算出部と、
上記車輪の速度に基づいて、少なくとも車体に働く空気抵抗を含む車両の走行抵抗を算出する走行抵抗算出部と、
上記車輪に与えられる駆動力から上記走行抵抗を減算することにより、車両の余裕駆動力を算出する余裕駆動力算出部と、
上記余裕駆動力が予め設定した閾値以下になったとき、上記車輪に空転が発生していると判定する空転判定部と
を有することを特徴とする車輪の空転検出装置。
A driving force calculation unit for calculating a driving force applied to the wheel based on an input from the driving source to the transmission and an operating state of the transmission;
Based on the speed of the wheel, a running resistance calculation unit that calculates a running resistance of the vehicle including at least air resistance acting on the vehicle body,
A margin driving force calculation unit that calculates a margin driving force of the vehicle by subtracting the running resistance from the driving force applied to the wheels;
An idling determination unit for a wheel, comprising: an idling determination unit that determines that idling has occurred in the wheel when the marginal driving force is equal to or less than a preset threshold value.
JP2008074121A 2008-03-21 2008-03-21 Wheel slip detection device Expired - Fee Related JP5015834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074121A JP5015834B2 (en) 2008-03-21 2008-03-21 Wheel slip detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074121A JP5015834B2 (en) 2008-03-21 2008-03-21 Wheel slip detection device

Publications (2)

Publication Number Publication Date
JP2009227072A JP2009227072A (en) 2009-10-08
JP5015834B2 true JP5015834B2 (en) 2012-08-29

Family

ID=41242999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074121A Expired - Fee Related JP5015834B2 (en) 2008-03-21 2008-03-21 Wheel slip detection device

Country Status (1)

Country Link
JP (1) JP5015834B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260190B2 (en) * 1993-01-08 2002-02-25 株式会社日立製作所 Vehicle output shaft torque estimation device and vehicle weight calculation device
JP3685834B2 (en) * 1995-03-02 2005-08-24 本田技研工業株式会社 Vehicle traction control device
JP2000050416A (en) * 1998-07-31 2000-02-18 Honda Motor Co Ltd Speed control equipment
JP3885420B2 (en) * 1999-07-19 2007-02-21 日産自動車株式会社 Vehicle travel control device
JP4076740B2 (en) * 2001-06-22 2008-04-16 住友ゴム工業株式会社 Road surface gradient determination apparatus and method, and gradient determination program
JP4535785B2 (en) * 2004-06-15 2010-09-01 日立オートモティブシステムズ株式会社 Vehicle running resistance detection device

Also Published As

Publication number Publication date
JP2009227072A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US9783182B2 (en) Control method for front and rear wheel torque distribution of electric 4 wheel drive hybrid electric vehicle
US8560188B2 (en) Control apparatus for vehicle automatic transmission
JP6055334B2 (en) Accelerator pedal misoperation control device
JP4881384B2 (en) Selective anti-lock braking system
US20070010929A1 (en) Traction control device for preventing engine stalling
CN104276162A (en) System and method of controlling starting of vehicle
JP2004515402A (en) Device for detecting the risk of aquaplaning occurring during the driving mode of a vehicle
JP4539623B2 (en) Vehicle and its running state determination method
JP5003580B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP2970353B2 (en) Road surface condition detection device
JP5015834B2 (en) Wheel slip detection device
KR100535417B1 (en) Creep torque control method of 4wd hybrid electric vehicle
JP4712307B2 (en) Driving force control device for four-wheel drive vehicle
JP6243684B2 (en) Vehicle control device
JP7219649B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP4062199B2 (en) Vehicle and vehicle control method
JP2016215737A (en) Road gradient estimation apparatus
JP4796444B2 (en) Vehicle control device
JP4015591B2 (en) Vehicle traction control device
JP2004161174A (en) Brake control device for vehicle
JP2009298277A (en) Braking force control device for vehicle
JP2006123631A (en) Control device of vehicle
JP2021141628A (en) Control device for electric vehicle
JP3520912B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP6235500B2 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees