WO2014057601A1 - 電力融通システム、送受電装置、電力融通方法およびプログラム - Google Patents

電力融通システム、送受電装置、電力融通方法およびプログラム Download PDF

Info

Publication number
WO2014057601A1
WO2014057601A1 PCT/JP2013/004979 JP2013004979W WO2014057601A1 WO 2014057601 A1 WO2014057601 A1 WO 2014057601A1 JP 2013004979 W JP2013004979 W JP 2013004979W WO 2014057601 A1 WO2014057601 A1 WO 2014057601A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
reception device
information
transmission
Prior art date
Application number
PCT/JP2013/004979
Other languages
English (en)
French (fr)
Inventor
礼明 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to AU2013328198A priority Critical patent/AU2013328198B2/en
Priority to US14/434,030 priority patent/US9991718B2/en
Priority to EP13846214.8A priority patent/EP2908400A4/en
Priority to JP2014540723A priority patent/JP6245176B2/ja
Publication of WO2014057601A1 publication Critical patent/WO2014057601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a power accommodation system, a power transmission / reception device, a power accommodation method, and a program.
  • Patent Document 1 describes that each power receiving facility is classified into a plurality of groups based on conditions such as a power consumption pattern, and marginal power is exchanged between the groups.
  • the present inventor considered that it is important to prioritize and use a suitable power source in order to compensate for power loss and stably supply energy during power interchange.
  • An object of the present invention is to provide a power interchange system, a power transmission / reception device, a power interchange method, and a program for preferentially using a suitable power source when power is interchanged.
  • the power interchange system is arranged for each power system, and is connected to the power transmission / reception device that transmits power from the power system to another power system via a transmission line, and the power transmission / reception device via a communication line.
  • a controller for receiving and transmitting / receiving means for receiving information on the power transmission / reception apparatus from the power transmission / reception apparatus, power transmission / reception apparatus information storage means for storing information on the power transmission / reception apparatus, and in the power system.
  • Priority information storage means for storing the priority of the power source, the power transmission / reception device and the amount of power transmission are determined based on the information on the power transmission / reception device and the priority of the power source, and based on the determination
  • An information control unit that creates a control instruction for causing the power transmission / reception device to perform power transmission, and the transmission / reception unit transmits the control instruction to at least the power transmission / reception device of the power transmission source.
  • Said transmitting and receiving apparatus performs transmission in accordance with the control instruction, a power interchange system for interchange power between said plurality of power system.
  • a power transmission / reception device is a power transmission / reception device that is arranged for each power system and that sends power from the power system to another power system via a power transmission line, and the power transmission / reception device via a communication line. And a controller connected to the power transmission / reception unit for receiving information on the power transmission / reception device from the power transmission / reception device, a power transmission / reception device information storage unit for storing information on the power transmission / reception device, and a priority of the power source in the power system.
  • Priority information storage means for storing the power transmission / reception device and the power supply priority based on the power transmission / reception device and the power supply priority, and based on the determination, the power transmission / reception device
  • An information control unit that creates a control instruction for performing power transmission, and is a power transmission / reception device that performs power transmission according to the control instruction transmitted from the transmission / reception unit.
  • the controller according to the present invention is arranged for each power system, and is connected to a power transmission / reception device that transmits power from the power system to another power system via a transmission line via a communication line, and from the power transmission / reception device to the power transmission / reception device Transmission / reception means for receiving information related to the power transmission / reception apparatus; power transmission / reception apparatus information storage means for storing information related to the power transmission / reception apparatus; priority information storage means for storing priority of power sources in the power system; Information control means for determining a power transmission / reception device and a power transmission amount of a power transmission source based on information on the power reception device and the priority of the power source, and creating a control instruction for causing the power transmission / reception device to perform power transmission based on the determination
  • the transmission / reception means is a controller that further transmits the control instruction to the power transmission / reception device.
  • the power interchange method is arranged for each power system, acquires information about a power transmission / reception device that sends power from the power system to another power system via a transmission line, and Obtain priority information, determine the power transmission / reception device and power transmission amount of the power transmission source based on the information on the power transmission / reception device and the priority of the power source, and instruct the power transmission / reception device to transmit power based on the determination
  • the power transmission / reception apparatus performs power transmission according to the instruction.
  • the non-transitory computer-readable medium of the present invention stores a program that causes a computer to function as a device that manages power interchange among a plurality of power systems, and for each power system, from the power system to another power system.
  • the program receives a function for receiving information about the power transmission / reception device, and power transmission / reception device information for acquiring information about the power transmission / reception device Based on the acquisition function, the priority information acquisition function for acquiring the priority of the power source in the power system, the information on the power transmission / reception device and the priority of the power source, the power transmission / reception device and the power transmission amount of the power transmission source are determined.
  • a suitable power source can be preferentially accommodated during power accommodation.
  • the “priority” can be interpreted as a degree indicating whether each power source is suitable as a power source used to compensate for power loss with respect to each power source in the power system. To do.
  • each power source is “preferable” means that each power source is “a power source whose output is easy to adjust”, “a power source with a low environmental load”, or “renewable energy”. It may depend on whether or not it has such characteristics. However, “whether or not it is suitable” is not limited to such an example.
  • a power accommodation system 90 shown in FIG. 1 accommodates power between a plurality of power systems 103 (between power systems).
  • the power interchange system 90 includes a power transmission / reception device 101.
  • the power transmission / reception device 101 is arranged for each power system 103.
  • the power transmission / reception device 101 transmits power from an arbitrary power system 103 to another power system 103 via the transmission line 106.
  • the controller 100 is connected to the power transmission / reception device 101 via the communication line 105.
  • the controller 100 includes a transmission / reception unit 300 which is an aspect of transmission / reception means.
  • the transmission / reception unit 300 receives information related to each power transmission / reception device 101 from each power transmission / reception device 101.
  • the controller 100 further includes a storage unit 310.
  • the storage unit 310 may be divided into a power transmission / reception device information storage unit 302 and a priority information storage unit 303.
  • the power transmission / reception device information storage unit 302 is an embodiment of the power transmission / reception device information storage means.
  • the priority information storage unit 303 is an aspect of priority information storage means.
  • the storage unit 310 stores power transmission / reception device information and priority information.
  • the power transmission / reception device information relates to each power transmission / reception device 101.
  • the power transmission / reception device information has a format such as a power transmission / reception device information table 304 shown in FIG.
  • the priority information relates to the priority of the power source in each power system 103.
  • the power source is, for example, the load 104a shown in FIG. 3 or the power generation device 104b in the power generation device 104b.
  • the priority information has a format such as a priority management table 305 in FIG.
  • the controller 100 further includes an information control unit 301 which is an aspect of the information control unit.
  • the information control unit 301 selects or determines the power transmission / reception device 101 that is the power transmission source based on the power transmission / reception device information and the priority information. Further, the information control unit 301 determines the amount of power transmitted from the power transmission / reception device 101.
  • the information control unit 301 further creates a control instruction for causing the power transmitting and receiving device 101 to perform power transmission based on the determination.
  • the control instruction includes information on the power transmission amount as information.
  • the transmission / reception unit 300 further transmits a control instruction to the selected power transmission / reception device.
  • a power interchange system includes a controller 100, a network 102, a power system 103, a power transmission / reception device 101, a communication line 105, a power transmission line 106, Consists of
  • the controller 100 is a computer that can have a function according to the power interchange method of the present embodiment by predetermined program control.
  • the controller 100 manages power transmission / reception contents and device information of each power transmission / reception device 101, and information on power sources such as power generation devices and batteries in the power system 103 in which the power transmission / reception devices are arranged. Then, the controller 100 determines a power transmission / reception device that is a power transmission source, a power transmission / reception device that is a power transmission destination, and the amount of power to be transmitted when power is interchanged.
  • the power system 103 includes a set of consumers who use power.
  • the power system 103 is an area where characteristics such as power frequency are the same.
  • the power transmission / reception device 101 connects the power systems 103 having different characteristics.
  • the power system 103 is connected to the backbone system 107 managed by the power company, and receives power from the backbone system 107.
  • the power system 103 includes a power source 104 such as a power generation device and a battery, or a load 104.
  • the power generation device 104 supplies power to the power system 103.
  • the power system 103 can perform power supply and demand adjustment independently from the backbone system 107 by receiving power interchange through transmission from another power system 103. Further, the power system 103 performs power interchange with the power system 103 by transmitting power to the other power system 103.
  • the power transmission / reception device 101 is arranged in each power system 103.
  • the power transmission / reception device 101 transmits a specified amount of power to one or more other power transmission / reception devices 101 in accordance with an instruction from the controller 100.
  • the designation of the amount of power may be made for each power transmission / reception device 101 that receives power.
  • power is transmitted and received within the power system 103.
  • the power transmission / reception device 101 may manage the power demand and supply status of the power system 103.
  • the network 102 is an information infrastructure used for exchanging information between the controller 100 and the power transmission / reception device 101.
  • the network 102 is the Internet
  • the communication line 200 is configured by an optical cable or a twisted pair cable.
  • the communication line 105 connects the controller 100 and the power transmission / reception device 101 via the network 102.
  • the power transmission line 106 connects between the power transmission and reception apparatuses 101 to perform power transmission.
  • the power transmission line 106 supplies power from the backbone system 107 to the power system 103.
  • FIG. 3 is a diagram illustrating the details of the controller 100 in detail.
  • the controller 100 includes a transmission / reception unit 300, an information control unit 301, a power transmission / reception device information storage unit 302, and a priority information storage unit 303.
  • the transmission / reception unit 300 receives information on the power transmission / reception device from the power transmission / reception device 101. Then, the transmission / reception unit 300 transfers information related to the power transmission / reception device to the information control unit 301. The transmission / reception unit 300 transmits the control instruction received from the information control unit 301 to the power transmission / reception device 101.
  • the information control unit 301 analyzes the information received from the transmission / reception unit 300.
  • the information control unit 301 performs registration and deletion of information in the power transmission / reception device information storage unit 302 according to the content of the information.
  • the information control unit 301 determines a power transmission / reception device as a power transmission source, a power transmission / reception device as a power transmission destination, and an amount of power to be transmitted. For this determination, the information control unit 301 refers to information in the power transmission / reception device information storage unit 302 and the priority information storage unit 303. Then, the information control unit 301 creates a control instruction that instructs the power transmission / reception device 101 to transmit power, and transmits the control instruction to the transmission / reception unit 300. Detailed operation of the information control unit 301 will be described later.
  • the power transmission / reception device information storage unit 302 stores device information and statistical information of the power transmission / reception device 101 under control.
  • FIG. 4 shows a configuration example of the power transmission / reception device information table 304 held by the power transmission / reception device information storage unit 302.
  • the power transmission / reception device information table 304 includes a set of rows for each power transmission task of the power transmission / reception device 101.
  • One row has items of the device number of the power transmitting / receiving device 101 of the power transmission source, the device number of the power transmitting / receiving device 101 of the power transmission destination, the type of the power generation device (power source) of the power transmission source, the maximum power amount and the minimum power amount that can be transmitted.
  • a plurality of power transmission paths may exist.
  • one or more power transmission / reception devices are interposed between a power transmission source and a power transmission / reception device.
  • different power transmission tasks may be used for different power transmission paths.
  • Priority information storage unit 303 manages the priority of the power generation device.
  • FIG. 5 shows a configuration example of the priority management table 305 managed by the priority information storage unit.
  • the priority management table 303 includes a set of rows for each priority.
  • One line in the priority management table 303 has items of a priority number and a type of power generation device (power source).
  • the information control unit 301 sets the higher priority, for example, the lower the number.
  • the information control unit 301 may set a plurality of priorities for one number.
  • the information control unit 301 may fix the contents of the table.
  • the information control unit 301 may register and delete the contents of the table according to the situation. For example, the information control unit 301 sets the priority based on the type of power source, the amount of power that can be generated, and the cost.
  • the power transmission / reception device information storage unit 302 and the priority information storage unit 303 may be outside the controller.
  • the controller acquires power transmission / reception device information and priority information from the power transmission / reception device information storage unit and the priority information storage unit outside the controller.
  • Each power transmission / reception device 101 has a different version number depending on the members constituting the device.
  • the power interchange system, the controller 100, the transmission / reception unit 300, the information control unit 301, the power transmission / reception device information storage unit 302, and the priority information storage unit 303 can be distinguished from each other.
  • the version numbers of power transmission / reception devices 101 having the same configuration may be the same.
  • the power transmission / reception device 101 performs power conversion.
  • the controller 100 or the like can grasp the power loss at the time of conversion from the version number of each power transmission / reception device 101 or device.
  • the power transmission / reception device 101 has a device number as information for distinguishing itself from other power transmission / reception devices 101.
  • FIG. 6 shows a configuration example of the power transmission / reception device 101.
  • the power transmission / reception device includes a power processing unit 501 and an information processing unit 502.
  • the power processing unit is connected to the other power transmission / reception device 101, the power generation device, and the load 104 via the power transmission line 106.
  • the power processing unit 501 is responsible for power transmission / reception inside and outside the power system according to the content of the control instruction received from the controller.
  • the power processing unit 501 adjusts the output of voltage and frequency when transmitting and receiving power with different power systems.
  • the power processing unit 501 considers the following elements in the output adjustment method. For example, the power transmission capacity of the power transmission line 106 between the power transmitting and receiving apparatuses 101, the amount of power that can be transmitted from the power system 103, the type of power to be transmitted, and the like can be mentioned. Further, the power processing unit 501 transmits information such as a power transmission destination and a power transmission amount to the information processing unit 502.
  • the information processing unit 502 is connected to the controller via a communication line and receives a control instruction from the controller.
  • the information processing unit 502 instructs the power processing unit to transmit power based on the content of the control instruction.
  • the information processing unit 502 is connected to the network 102 through the communication line 200.
  • the information processing unit 502 transmits information such as its own device number and version number and information received from the power processing unit 501 to the controller 100.
  • the power transmission / reception device 101 may manage the power supply / demand situation of the power system 103. Specifically, the power transmission / reception device 101 manages the power generation status and load status of the power generation device, and controls the adjustment of power supply and demand.
  • FIG. 7 is a flowchart showing the overall operation of the system. This will be described below in order.
  • Step S1000 Request information from the controller to the power transmitting / receiving device. Specifically, the controller 100 requests the power transmission / reception device 101 as the accommodation destination to transmit “required power transmission amount” from the power transmission / reception device 101.
  • the controller 100 sends, to each power transmission / reception device 101 serving as the interchange source, from each power transmission / reception device 101, “power transmission source device number”, “power transmission destination device number”, “power transmission type”, “minimum power transmission amount”. , Request to transmit “maximum amount of power transmission”.
  • the power transmission / reception device 101 of the accommodation destination may request the controller 100 for the accommodation of the necessary amount of power based on the power supply / demand situation of the individual power system 103.
  • the power transmission / reception device 101 as the accommodation destination may make a request for accommodation of the necessary amount of power transmission (request for accommodation) to the controller 100 when the power in the power system 103 is insufficient (insufficient power).
  • Step S1001 Information is transmitted from the power transmitting / receiving device to the controller. Specifically, the power transmission / reception device 101 as illustrated in FIGS. 1 and 3 transmits the requested information to the controller 100.
  • Step S1002 The controller registers information on the power transmission / reception device in the power transmission / reception device information table. Specifically, the controller 100 as shown in FIGS. 1 and 3 registers the information received from the power transmission / reception device 101 in the power transmission / reception device information table 304 as shown in FIG.
  • Step S1003 The controller 100 as shown in FIGS. 1 and 3 determines the power transmission / reception device and power transmission amount of the power transmission source. The determination of the power transmission / reception device and the power transmission amount is based on the required power transmission amount, information from the power transmission / reception device information storage unit 302, and information from the priority information storage unit 303 in the information control unit 301.
  • Step S1004 The controller instructs each power transmitting / receiving device to transmit power.
  • the controller 100 as shown in FIGS. 1 and 3 creates a control instruction including a power transmission / reception device as a power transmission destination, a power transmission / reception device as a power transmission source, and a power transmission amount based on the determined contents. Further, the controller 100 sends a control instruction to each power transmitting / receiving device 101.
  • Step S1005 Each power transmitting / receiving device transmits power according to the instruction. Specifically, the power transmission / reception device 101 as shown in FIGS. 1 and 3 transmits a specified amount of power to the specified power transmission / reception device according to the control instruction.
  • FIG. 8 is a flowchart showing a series of flows when the information control unit 301 determines each power transmission / reception device 101 corresponding to the power transmission source and the power transmission amount.
  • the information control unit 301 determines the power transmission source and the power transmission amount for each power transmission / reception device 101 corresponding to a specific power transmission destination. This is the detail of step S1003 in FIG. This will be described below in order.
  • step S1100 the information control unit collects the same power transmission destination from the power transmission / reception device information table. Specifically, the information control unit 301 as illustrated in FIGS. 1 and 3 acquires a set of rows having the same “power transmission destination device number” from the power transmission and reception device information table 304 as illustrated in FIG.
  • step S1101 the information control unit rearranges the order of the power sources in the order of priority of the power sources.
  • the information control unit 301 as shown in FIGS. 1 and 3 refers to the “power type” of the row set acquired in step S1100 and the priority management table 305 as shown in FIG. Further, the information control unit 301 rearranges the row set in the priority management table 305 in the order of power sources with the highest priority.
  • the information control unit 301 determines the order with reference to other items. For example, the information control unit 301 determines the order in consideration of power transmission amount and power loss.
  • step S1102 the information control unit determines whether or not the formula (required power transmission amount) ⁇ (power generation problem of the power transmission task with the highest priority) is satisfied. Specifically, the information control unit 301 as illustrated in FIGS. 1 and 3 checks whether the maximum power transmission amount of the power transmission task with the highest priority is larger than the necessary power transmission amount. If the maximum power transmission amount is larger than the required power transmission amount, the process proceeds to step S1103, and if it is smaller, the process proceeds to step S1104.
  • step S1103 the information control unit determines the power transmission / reception device of the power transmission task with the highest priority as the power transmission source and the maximum power transmission amount as the power transmission amount. Specifically, the information control unit 301 as illustrated in FIGS. 1 and 3 determines the power transmission / reception device of the power transmission task compared with the necessary power transmission amount in S1102 as the power transmission source. Further, the information control unit 301 determines the necessary power transmission amount as the power transmission amount. In step S1105, the information control unit 301 instructs each power transmission / reception device to transmit power.
  • step S1104 the information control unit 301 sets the power amount obtained by subtracting the maximum power amount of the power transmission / reception device having the highest priority from the necessary power transmission amount as the necessary power transmission amount. Then, the information control unit 301 excludes the power transmission task with the highest priority from the set described in step S1100. Then, returning to step S1102, the information control unit 301 compares the maximum power transmission amount of the transmission / reception task with the highest priority with the required power transmission amount.
  • the power interchange system operates. For this reason, according to the first embodiment, the power accommodation system can carry out power accommodation based on the priority set according to the type of power supply.
  • the power interchange system sets the priority of the priority management table 305 in consideration of whether or not the power generation device serving as the power source is renewable energy.
  • Other parts are the same as those of the first embodiment, and the description of the same parts is omitted.
  • the power interchange system raises these priorities.
  • the information control unit 301 registers the priority of the power source based on the renewable energy as the priority 1 in the priority management table 305. Based on this, the information control unit 301 determines a power transmission source according to the flow of FIG.
  • the power interchange system may give priority to the power based on the power source using renewable energy. Further, the power interchange system may give further priority depending on the type of renewable energy.
  • the third embodiment is different from the previous embodiment in that the power interchange system determines the power transmission source and the power transmission amount based on the priority of the power source and the amount of power that can be transmitted by the power transmission task.
  • a set of power transmission tasks constitutes information related to the power transmission / reception device 101 shown in FIG.
  • a set of power transmission tasks includes a power transmission / reception device 101 that is a power transmission destination, a power transmission / reception device 101 that is a power transmission source, a power source of the power transmission source, that is, a power generation device 104b, and a maximum power transmission amount and a minimum power transmission amount that can be transmitted. including.
  • the information control unit 301 shown in FIG. Such determination is based on at least one of the maximum power transmission amount and the minimum power transmission amount shown in FIG.
  • the power interchange system When there are a plurality of tasks having the same priority in step S1101 of FIG. 8, the power interchange system considers the minimum power transmission amount and the maximum power transmission amount in the power transmitting / receiving device information table 304.
  • the power interchange system selects a task having a large maximum power amount, and sets the maximum power transmission amount of the task as the power transmission amount.
  • the power interchange system selects a task having a larger maximum power amount, and determines a transmission source by combining them.
  • the third embodiment can improve power transmission efficiency.
  • the power interchange system can select and combine a plurality of tasks with a small minimum power amount.
  • the power interchange system can determine a power transmission source so as to select all tasks having the same priority. As a result, the power transmission sources can be distributed, so that the power accommodation system can perform power accommodation more reliably.
  • the fourth embodiment is different from the previous embodiment in that the power transmission source and the power transmission amount are determined in consideration of the priority of the power source and the required power transmission time.
  • the information regarding the power transmission / reception device 101 illustrated in FIG. 4 further includes a time during which the power transmission / reception device 101 that is a candidate for the power transmission source can transmit power (not illustrated).
  • the information control unit 301 shown in FIG. 1 collates the time required for power interchange included in the request from the power transmission / reception device 101 that is a candidate for the power transmission destination with the time for power transmission.
  • the information control unit 301 determines the power transmission / reception device 101 that is the power transmission source based on the verification.
  • the controller 100 requests the power transmission / reception device 101 to transmit the “required power transmission amount” and the time required for power transmission (request time) from the power transmission / reception device 101.
  • the request time is, for example, a predetermined length of time starting from a predetermined time at which power accommodation is required in the power system 103 of the accommodation destination.
  • the predetermined time may be constant or may vary depending on the situation.
  • the predetermined length may be constant or may vary depending on the situation.
  • the controller 100 requests each power transmission / reception device 101 serving as the interchange source to transmit “power transmission possible time” from the power transmission / reception device 101 together with the power transmission / reception device information.
  • the time during which power can be transmitted is a predetermined length of time starting from a predetermined time when power can be interchanged in the power system 103 of the interchange source.
  • the predetermined time may be constant or may vary depending on the situation.
  • the predetermined length may be constant or may vary depending on the situation.
  • step S1002 the controller 100 registers the information received from the power transmission / reception device 101 of the accommodation destination and / or the accommodation source in the power transmission / reception device information table 304.
  • step S1003 the information control unit 301 of the controller 100 determines a power transmission source and a power transmission amount.
  • the determination of the power transmission source and the power transmission amount is based on information from the necessary power transmission amount and the required time, the power transmission / reception device information storage unit 302, and the priority information storage unit 303. Specifically, in step S1101 of FIG. 8, after rearranging the row sets in the order of the power sources with the highest priority, those whose request time falls within the transmittable time are determined as power transmission sources.
  • step S1105 the controller 100 creates a control instruction by designating the power transmission time for both the power transmission source and the power transmission amount.
  • the power transmitting / receiving device transmits power at a specified time according to the control instruction.
  • the power system or each power transmission / reception device 101 can transmit or receive power necessary for the time when power is required. For this reason, the power accommodation system can perform power accommodation more finely.
  • the power transmission / reception device information table 304 of the power interchange system according to the fifth embodiment is different from the power transmission / reception device information table 304 of the first embodiment in that “power generation unit price” is added.
  • Such a power interchange system can add “power generation unit price” to the power transmitting and receiving apparatus information table 304 of the first embodiment.
  • this electric power interchange system correct
  • this power interchange system determines a power transmission priority in order with a low power generation unit price.
  • the power accommodation system to give priority to the electricity from renewable energy.
  • the unit price of power generation can be corrected for any power source, or the priority can be adjusted, so that more flexible operation is possible.
  • the power interchange system according to the sixth embodiment is a modification of the first embodiment.
  • the power conversion efficiency of the controller 100 that has been a fixed value is changed so as to calculate the conversion efficiency according to the amount of power transmission.
  • the power conversion efficiency can be dynamically determined for the information on the power generation amount transmitted from the power transmission / reception device 101.
  • the controller can instruct each power transmission / reception device 101 to transmit power at a power amount with higher conversion efficiency. For this reason, the power accommodation system can perform power accommodation more efficiently than simply instructing power transmission at the maximum amount of power.
  • the power interchange system according to the seventh embodiment is a modification of the first embodiment.
  • Each power transmission / reception device 101 holds, as information, a physical distance from an adjacent power transmission / reception device 101 in advance.
  • each power transmission / reception device 101 transmits the information simultaneously with other information when the controller 100 requests information. Thereby, the controller 100 can estimate and calculate the power loss during power transmission between the power transmitting and receiving apparatuses 101.
  • the power transmission distance may be registered for each power transmission task in the power transmission / reception device information table 302.
  • the seventh embodiment since it is possible to take into account the power loss during power transmission in addition to the loss during power conversion, more efficient power transmission priority can be determined. .
  • the power interchange system reduces the power transmission amount of the lower power transmission / reception device 101 when the surplus power of the power transmission / reception device 101 with higher priority has a sufficient margin. Specifically, in step S1102 of FIG. 8, the power accommodation system rewrites the maximum power transmission amount of the power source of the power source with low priority in a predetermined case.
  • the predetermined case is a case where the maximum power transmission amount of the power transmission task with the highest priority is larger than the necessary power transmission amount, and the difference is a certain value or more.
  • the power interchange system rewrites the power transmission device information table 302 so that the maximum power transmission amount of the power source other than the renewable energy is reduced by a certain value.
  • the eighth embodiment it is possible to further increase the utilization rate of renewable energy and suppress the utilization rate of thermal power generation and the like.
  • controller 100 may control the backbone system 107 for power interchange in the same manner as the power system 103. *
  • the controller 100 may send a control instruction indicating the required power transmission amount, the power transmission destination, and the priority of the power transmission / reception device serving as the power transmission source to each power transmission / reception device 101.
  • the power transmission / reception device 101 may determine the power transmission source.
  • the power interchange system controls the power transmission / reception device to distribute power to a plurality of other power transmission / reception devices. Also good.
  • the power interchange system may not only manage the power transmission device information table 304 with the power transmission / reception device number.
  • the power interchange system may register the power transmission / reception device number together with the terminal number of the power transmission / reception device. In this case, the power interchange system may transmit power by designating a terminal of the power transmission / reception device. This makes it possible to control power transmission more flexibly and accurately.
  • the power interchange system may set the priority of the power supply in real time according to the power generation status of the power supply. According to this, the power interchange system can perform power interchange with high accuracy corresponding to the power generation situation at that time and the predicted power generation amount.
  • the power source can be replaced with a power storage device such as a primary battery or a secondary battery as well as a power generation device.
  • FIG. 9 is a block diagram illustrating a hardware configuration example of the controller 100 as an example of various configurations according to the present embodiment.
  • the controller 100 is mounted on one server 800.
  • the server 800 includes a central processing unit (CPU) 801, a memory 802, and a network interface card (NIC) 803.
  • the function of the controller 100 is realized by the cooperation of these hardware and a computer program. More specifically, the CPU 801 functions as the information control unit 301, the memory 802 functions as the power transmission / reception device management table 302, the priority management table 303, and the NIC 803 functions as the transmission / reception unit 300 of the controller 100.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Such a program causes a computer represented by the server 800 to function as a device that manages power interchange between the plurality of power systems 103 shown in FIG.
  • a power transmission / reception device 101 that transmits power from one power system 103 to another power system 103 via a transmission line 106 is arranged.
  • Such a program gives (provides) a computer with a function of receiving information related to the power transmitting and receiving apparatus 101, that is, a receiving function.
  • Such a program gives a computer a function of acquiring information related to the power transmission / reception device 101, that is, a function of acquiring power transmission / reception device information.
  • Such a program gives a computer a function of acquiring the priority of the power source (power generation device 104b) in the power system 103, that is, a priority information acquisition function.
  • Such a program gives a computer a function of determining a power transmission / reception device 101 and a power transmission amount based on information on the power transmission / reception device 101 and power priority.
  • Such a program gives a computer a function of creating a control instruction for causing the power transmitting / receiving apparatus 101 to transmit power based on the determination.
  • Such a program gives a computer a function of transmitting a control instruction to at least the power transmission / reception device 101 of the power transmission source.
  • Thermal power generation has a high environmental load among power sources, and it is not desirable for thermal power generation to continue to bear losses in consideration of concerns about depletion of fossil fuels and consideration for the environment. It is necessary to share this burden with other power sources. In order to compensate for the burden of thermal power generation, it is desirable to use a power source with a lower environmental load. Renewable energy is an appropriate candidate.
  • DESCRIPTION OF SYMBOLS 90 Power interchange system 100 Controller 101 Power transmission / reception apparatus 102 Network 103 Power system 104 Load or power generation apparatus 104a Load 104b Power generation apparatus 105 Communication line 106 Transmission line 107 Core system 300 Transmission / reception part 301 Information control part 302 Power transmission / reception apparatus information storage part 303 Priority Degree information storage unit 501 power processing unit 502 information processing unit 800 server 801 CPU 802 Memory 803 NIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 好適な電源を優先して電力融通する電力融通システム。コントローラ(100)は、送受電装置(101)から送受電装置(101)に関する情報を受信する送受信手段(300)と、送受電装置(101)に関する情報を記憶する送受電装置情報記憶手段(310)と、電力系統(103)内の電源(104b)の優先度を記憶する優先度情報記憶手段(310)と、送受電装置(101)に関する情報と電源(104b)の優先度に基づいて、送電元の送受電装置(101)および送電量を決定し、決定に基づいて送受電装置(101)へ送電の指示を行う制御指示を作成する情報制御手段(301)と、を有する。送受信手段(300)は制御指示を少なくとも送電元の送受電装置(101)へ送信し、送受電装置(101)は制御指示に従って送電を行い、電力融通システム(90)は複数の電力系統(103)間で電力を融通する。

Description

電力融通システム、送受電装置、電力融通方法およびプログラム
 本発明は電力融通システム、送受電装置、電力融通方法およびプログラムに関する。
 電力需給バランスの調整を行うため、電力をある地点からある地点へ送る電力融通取引が必要とされている。特許文献1には、各受電施設を電力消費パターンなどの条件のもとに複数のグループに分類し、グループ間で余裕電力を融通取引することが記載されている。
 このような電力融通の際には、送電線の抵抗や交流/直流変換等により、電力の損失が発生する。高圧送電や電力変換の効率向上等により損失を改善出来るが、無損失にすることは困難である。需要側が一定の電力を要求する場合、供給側は損失分を考慮して電力を提供しなければならない。
特開2003-32887号公報
 本発明者は、電力融通の際、電力損失を補いエネルギーを安定して供給するため、好適な電源を優先して利用することが重要であると考えた。
 [発明の目的]
 本発明の目的は、電力融通の際、好適な電源を優先して利用するための電力融通システム、送受電装置、電力融通方法およびプログラムを提供することにある。
 本発明にかかる電力融通システムは、電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置と、前記送受電装置と通信回線を介して接続するコントローラと、を備え、前記コントローラは、前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、前記送受信手段は前記制御指示を少なくとも前記送電元の送受電装置へ送信し、前記送受電装置は前記制御指示に従って送電を行い、前記複数の電力系統間で電力を融通する電力融通システムである。
 本発明にかかる送受電装置は、電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置であって、前記送受電装置と通信回線を介して接続するコントローラが、前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、前記送受信手段から送信される前記制御指示に従って送電を行う送受電装置である。
 本発明にかかるコントローラは、電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置と通信回線を介して接続し、前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、前記送受信手段はさらに前記制御指示を前記送受電装置に送信するコントローラである。
 本発明にかかる電力融通方法は、電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置に関する情報を取得し、前記電力系統内の電源の優先度情報を取得し、前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置へ送電の指示を行い、前記送受電装置は前記指示に従って送電を行う電力融通方法である。
 本発明の非一時的なコンピュータ可読媒体は、コンピュータに、複数の電力系統間での電力融通を管理する装置として機能させるプログラムを格納し、前記電力系統ごとに前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置が配置されている場合に、前記プログラムは、前記送受電装置に関する情報を受信する受信機能と、前記送受電装置に関する情報を取得する送受電装置情報取得機能と、前記電力系統内の電源の優先度を取得する優先度情報取得機能と、前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する機能と、前記制御指示を少なくとも前記送電元の送受電装置へ送信する機能と、をもたせることを特徴とする非一時的なコンピュータ可読媒体である。
本発明によれば、電力融通の際、好適な電源を優先して融通することができる。
本発明の実施形態における電力融通システムを示す図である。 本発明の実施形態における電力網および通信網を示す図である。 本発明の実施形態におけるコントローラ100の構成を示す図である。 本発明の実施形態における送受電装置情報テーブル304の構成を示す図である。 本発明の実施形態における優先度管理テーブル305の構成を示す図である。 本発明の送受電装置101の構成を示す図である。 本発明の実施形態におけるシステム全体の動作フローである。 本発明の実施形態におけるコントローラ100内の情報制御部301の動作フローである。 本発明の実施形態におけるコントローラ100の実際の機器での実現例を示す図である。
 以下、本発明の実施形態について詳細に説明する。
 上述の通り、電力融通の際、好適な電源を優先して利用することが重要であると考えられる。以下の実施形態において「優先度」とは、電力系統内の各電源に関して、各電源が電力損失を補うために利用する電源として好適であるか否かを示す度合であると解釈可能なものとする。
 以下の実施形態において、各電源が「好適であるか否か」は、各電源が「出力を調整しやすい電源である」、「環境負荷の低い電源である」、「再生可能エネルギーである」といった特徴を有するか否かに依拠する場合がある。しかしながら「好適であるか否か」は、かかる例に限定して決定されるものではない。
 はじめに各実施形態に関連する電力融通システムの基本構成について説明する。図1に示す電力融通システム90は、複数の電力系統103の間(電力系統間)で電力を融通する。電力融通システム90は、送受電装置101を備える。送受電装置101は電力系統103ごとに配置される。送受電装置101は任意の電力系統103から他の電力系統103へ送電線106を介して電力を送る。コントローラ100は、送受電装置101と通信回線105を介して接続する。
 コントローラ100は送受信手段の一態様である送受信部300を備える。送受信部300は各送受電装置101からそれぞれの送受電装置101に関する情報を受信する。コントローラ100はさらに記憶部310を備える。
 図3に示すように記憶部310は送受電装置情報記憶部302と優先度情報記憶部303とに分かれていてもよい。送受電装置情報記憶部302は送受電装置情報記憶手段の一態様である。優先度情報記憶部303は優先度情報記憶手段の一態様である。記憶部310は送受電装置情報と優先度情報とを記憶する。
 送受電装置情報は各送受電装置101に関するものである。送受電装置情報は例えば後述する図4の送受電装置情報テーブル304のような形式を有する。優先度情報は各電力系統103内の電源の優先度に関するものである。電源は例えば図3に示す負荷104a又は発電装置104b中の発電装置104bである。優先度情報は例えば後述する図5の優先度管理テーブル305のような形式を有する。
 コントローラ100はさらに情報制御手段の一態様である情報制御部301を備える。情報制御部301は送受電装置情報と優先度情報とに基づいて、送電元となる送受電装置101を選択又は決定をする。また情報制御部301はかかる送受電装置101からの送電量の決定を行う。情報制御部301はさらに、決定に基づいて、送受電装置101に送電を行わせる制御指示を作成する。制御指示は情報として送電量の情報を含む。送受信部300はさらに制御指示を、選択又は決定された送受電装置に送信する。
〔第1の実施形態〕
 まず、本発明の第1の実施形態について説明する。図2を参照すると、本発明の第1の実施形態にかかる電力融通システムは、コントローラ100と、ネットワーク102と、電力系統103と、送受電装置101と、通信回線105と、送電線106と、から構成される。
 コントローラ100は所定のプログラム制御により、本実施形態の電力融通方法にかかる機能をもつことができるコンピュータである。コントローラ100は、各送受電装置101の送受電の内容と装置情報、送受電装置が配置される電力系統103内にある発電装置、電池などの電源の情報を管理する。そして、コントローラ100は、電力融通に際して送電元の送受電装置、送電先の送受電装置、送電すべき電力量を決定する。
 電力系統103は、電力を利用する需要家の集合を含む。電力系統103は、電力の周波数等の特性が同一となる地域である。送受電装置101は、特性が異なる電力系統103間を接続する。
 電力系統103は一態様において電力会社が管理する基幹系統107に接続し、基幹系統107から電力の供給を受ける。また、電力系統103は発電装置、電池などの電源104又は負荷104を有している。発電装置104は電力系統103に電力供給を行う。
 さらに、電力系統103は、他の電力系統103からの送電により電力の融通を受けることで、基幹系統107から自立して電力の需給調整を行うこともできる。また電力系統103は、他の電力系統103への送電により、電力系統103に対し電力の融通を行う。
 送受電装置101は、各電力系統103に配置される。送受電装置101は、コントローラ100からの指示に従って、一以上の他の送受電装置101に対して指定された量の電力を送る。かかる電力量の指定は電力を受ける各送受電装置101に対してなされてもよい。また、電力系統103内での送受電を行う。送受電装置101は電力系統103の電力需要と供給の状況を管理しても良い。
 ネットワーク102は、コントローラ100と送受電装置101間で情報を交換するために利用される情報基盤である。例えば、ネットワーク102はインターネットであり、通信回線200は光ケーブルやツイストペアケーブルで構成される。
 通信回線105はネットワーク102を介してコントローラ100と送受電装置101を接続する。送電線106は送受電装置101間を接続し送電を行う。また送電線106は基幹系統107から電力系統103へ電力を供給する。
 図3は、コントローラ100の内容を詳細に説明した図である。コントローラ100は、送受信部300、情報制御部301、送受電装置情報記憶部302、優先度情報記憶部303から構成される。
 送受信部300は、送受電装置101から送受電装置に関する情報を受信する。そして送受信部300は、送受電装置に関する情報を情報制御部301に転送する。また送受信部300は、情報制御部301から受信した制御指示を送受電装置101へ送信する。
 情報制御部301は、送受信部300から受信した情報を解析する。情報制御部301は、当該情報の内容に応じて、送受電装置情報記憶部302への情報の登録、および削除を実行する。
 また情報制御部301は、送電元となる送受電装置、送電先となる送受電装置、および送電すべき電力量を決定する。かかる決定のため、情報制御部301は、送受電装置情報記憶部302および優先度情報記憶部303の情報を参照する。そして情報制御部301は、送受電装置101へ送電を指示する制御指示を作成し、これを送受信部300へ送信する。情報制御部301の詳しい動作については後述する。
 送受電装置情報記憶部302は、制御下にある送受電装置101の機器情報および統計情報を記憶する。図4は、送受電装置情報記憶部302が保持する送受電装置情報テーブル304の構成例を示す。
 送受電装置情報テーブル304は、送受電装置101の送電タスクごとの行の集合で構成される。一行は送電元の送受電装置101の装置番号、送電先の送受電装置101の装置番号、送電元の発電装置(電源)の種類、送電可能な最大電力量と最小電力量の項目を持つ。
 また送電元と送電先の送受電装置が同じである場合、複数の送電経路が存在することがある。例えば、送電元と送電先の送受電装置間に一以上の送受電装置が介する場合である。この場合には送電経路ごとに異なる送電タスクとしても良い。
 優先度情報記憶部303は発電装置の優先度を管理する。図5は、優先度情報記憶部が管理する優先度管理テーブル305の構成例を示す。優先度管理テーブル303は、優先度ごとの行の集合で構成される。優先度管理テーブル303中の一行は優先度番号、発電装置(電源)の種類、の項目を持つ。
 優先度管理テーブル303において、情報制御部301は優先度の高さを、例えば番号が若いほど高く設定する。情報制御部301は一つの番号に対して複数の優先度を設定しても良い。
 情報制御部301はテーブルの内容を固定してもよい。情報制御部301は、状況に応じてテーブルの内容の登録および削除を行なっても良い。例えば情報制御部301が、電源の種類や発電可能な電力量、コストに基づいて優先度を設定する。
 送受電装置情報記憶部302、優先度情報記憶部303はコントローラの外にあってもよい。その場合にはコントローラがコントローラの外にある送受電装置情報記憶部と優先度情報記憶部から送受電装置情報と優先度情報を取得する。
 各送受電装置101は装置を構成する部材等により異なるバージョン番号を持つ。電力融通システム、コントローラ100、送受信部300、情報制御部301、送受電装置情報記憶部302、及び優先度情報記憶部303はこれらを区別可能である。構成が同様の送受電装置101のバージョン番号は同一であってもよい。
 送電の際、送受電装置101は電力変換を行う。この場合、コントローラ100等は変換時の電力損失を各送受電装置101又は機器のバージョン番号によって把握できるものとする。また、送受電装置101は他の送受電装置101と自身を区別するための情報として、装置番号を持つ。
 図6に送受電装置101の構成例を示す。送受電装置は、電力処理部501と情報処理部502から構成される。電力処理部は送電線106を介して他の送受電装置101、発電装置や負荷104と接続する。そして電力処理部501は、コントローラから受信する制御指示の内容にしたがって電力系統内外の送受電を担う。
 電力処理部501は、異なる電力系統と送受電する場合、電圧や周波数の出力調整を行う。電力処理部501は、出力調整の方法に際し、下記に挙げる要素を考慮する。例えば、送受電装置間101の送電線106の送電容量や、電力系統103から送電可能な電力量、送電する電源の種別等が挙げられる。また、電力処理部501は、送電先や送電量等の情報を情報処理部502へ送信する。
 情報処理部502は通信回線を介してコントローラと接続し、コントローラから制御指示を受信する。情報処理部502は制御指示の内容をもとに電力処理部に送電を指示する。
 また情報処理部502は、通信回線200によってネットワーク102に接続する。情報処理部502は、自身の装置番号やバージョン番号等の情報、および電力処理部501から受信した情報をコントローラ100へ送信する。
 また、送受電装置101は電力系統103の電力の需給状況を管理してもよい。具体的には送受電装置101は発電装置の発電状況、負荷の状況を管理し電力の需給の調整を制御する。
 図7は、システム全体の動作を示すフローチャートである。以下に順を追って説明する。
 ステップS1000:コントローラから送受電装置に情報要求する。具体的にはコントローラ100は、融通先の送受電装置101に対し、送受電装置101から「必要送電量」を送信することを要求する。
 コントローラ100は、融通元となる各送受電装置101に対し、各送受電装置101から、「送電元の装置番号」、「送電先の装置番号」、「送電源種別」、「最小送電量」、「最大送電量」を送信することを要求する。
 または融通先の送受電装置101が個々の電力系統103の電力の需給状況にもとづき、コントローラ100に対して必要送電量の電力の融通の要求を行っても良い。例えば融通先の送受電装置101は電力系統103中の電力が足りない場合(電力の不足)にコントローラ100に対して必要送電量の電力の融通の要求(融通の求め)を行っても良い。
 ステップS1001:送受電装置からコントローラに情報送信する。具体的には図1,3に示すような送受電装置101は、要求された情報を、コントローラ100に送信する。
 ステップS1002:コントローラは送受電装置の情報を送受電装置情報テーブルに登録する。具体的には図1,3に示すようなコントローラ100は、送受電装置101から受信した情報を、図4に示すような送受電装置情報テーブル304に登録する。
 ステップS1003:図1,3に示すようなコントローラ100が送電元の送受電装置、送電量を決定する。送受電装置、送電量の決定は情報制御部301にて必要送電量、送受電装置情報記憶部302からの情報、および優先度情報記憶部303からの情報に基づく。
 ステップS1004:コントローラは各送受電装置に送電を指示する。具体的には図1,3に示すようなコントローラ100は、決定した内容に基づき送電先の送受電装置、送電元の送受電装置、および送電量を含む制御指示を作成する。さらにコントローラ100は各々の送受電装置101に対し、制御指示を送付する。
 ステップS1005:各送受電装置は指示に従い送電する。具体的には図1,3に示すような送受電装置101は、制御指示に従って指定された量の電力を指定された送受電装置に送る。
 図8は、情報制御部301が、送電元にあたる各送受電装置101と送電量を決定する際の、一連の流れを示すフローチャートである。情報制御部301はかかる送電元と送電量を特定の送電先にあたる各送受電装置101に対して決定する。図7のステップS1003の詳細となる。以下に順を追って説明する。
 ステップS1100では情報制御部が、送受電装置情報テーブルから送電先が同じものを集める。具体的には図1,3に示すような情報制御部301は、図4に示すような送受電装置情報テーブル304より、「送電先の装置番号」が同一である行の集合を取得する。
 ステップS1101では情報制御部が、電源の順番を電源の優先度順に並べ替える。具体的にはまず図1,3に示すような情報制御部301は、ステップS1100で取得した行集合の「電源種別」と、図5に示すような優先度管理テーブル305を参照する。さらに情報制御部301は、優先度の高い電源順に優先度管理テーブル305中の行集合を並べ替える。
 優先度が同一の電源が存在する場合、情報制御部301は、他の項目を参照して順番を決定する。例えば情報制御部301は、送電量や電力損失を考慮するなどして、順番を決定する。
 ステップS1102では情報制御部が、式(必要送電量)<(優先度が一番高い送電タスクの発電症)に合致するか否か判断する。具体的には図1,3に示すような情報制御部301は、優先度の一番高い送電タスクの、最大送電量が、必要送電量よりも大きいかをチェックする。最大送電量が、必要送電量よりも大きい場合はステップS1103へ、小さい場合はステップS1104へ進む。
 ステップS1103では情報制御部が、優先度の一番高い送電タスクの送受電装置を送電元、最大送電量を送電量と決定する。具体的には図1,3に示すような情報制御部301は、S1102で必要送電量と比較した送電タスクの送受電装置を送電元に決定する。また、情報制御部301は、かかる必要送電量を送電量として決定する。ステップS1105にて情報制御部301は、各送受電装置に送電の指示を行う。
 ステップS1104で情報制御部301は、必要送電量から優先度の一番高い送受電装置の最大電力量を差し引いた電力量を、必要送電量に設定する。そして、情報制御部301は、優先度の一番高い送電タスクを、ステップS1100で説明した集合から除外する。そしてステップS1102に戻り、情報制御部301は、優先度が一番高い送受タスクの最大送電量と必要送電量とを比較する。
 以上のように、電力融通システムが動作する。このため、第1の実施形態によれば、電力融通システムは電源の種別に応じて設定された優先度に基づいて電力融通することが可能である。
〔第2の実施形態〕
 第2の実施の形態は、電力融通システムが、電源となる発電装置が再生可能エネルギーか否かを考慮して、優先度管理テーブル305の優先度を設定する。その他の部分については第1の実施の形態と同様であり、同様の部分は説明を省略する。
 送受電装置101が管理する発電装置が太陽光、風力、水力、地熱、バイオマスなどの再生可能エネルギーを利用したものである場合、電力融通システムはこれらの優先度を高くする。
 具体的には、情報制御部301が、再生可能エネルギーによる電源の優先度を優先度1として優先度管理テーブル305に登録する。これに基づき情報制御部301が、図8のフローに従って電力融通の送電元を決定する。
 これにより電力融通システムは再生可能エネルギーを利用した電源に基づく電力を優先して融通することが可能である。また、電力融通システムは再生可能エネルギーの種類に応じてさらなる優先度をつけてもよい。
〔第3の実施形態〕
 第3の実施形態は、電力融通システムが電源の優先度と送電タスクの送電可能な量にもとづいて送電元、送電量を決定する点が先の実施の形態と異なる。
 第3の実施形態では、送電タスクの集合は図1に示す送受電装置101に関する情報を構成する。図4に示すように、送電タスクの集合は、送電先の送受電装置101、送電元の送受電装置101、送電元の電源、すなわち発電装置104b、および送電可能な最大送電量と最小送電量を含む。
 図1に示す電力融通システム90において、図1に示す情報制御部301は、送電元の送受電装置101と送電量を決定する。かかる決定は、図4に示す最大送電量と最小送電量の両方または少なくともいずれか一方に基づく。
 図8のステップS1101において優先度が同一のタスクが複数存在した場合、電力融通システムは送受電装置情報テーブル304の最小送電量と最大送電量を考慮する。
 例えば、電力融通システムは送電元の数を少なくする場合には最大電力量が大きいタスクを選択し、そのタスクの最大送電量を送電量とする。送電量が要求量に満たない場合には電力融通システムはさらに最大電力量が大きいタスクを選択し、それらを組み合わせて送電元と決定する。第3の実施形態は、送電効率を向上させることが可能である。
 一方、送電元の数を多くする場合には電力融通システムは最小電力量が小さいタスクを複数選択し組み合わせることができる。または電力融通システムは優先度が同一のタスクをすべて選択するように送電元を決定することができる。これにより送電元を分散することができるので電力融通システムは電力融通をより確実に行うことができる。
〔第4の実施形態〕
 第4実施形態は、電源の優先度と必要送電量の時間を考慮して送電元、送電量を決定する点が先の実施の形態と異なる。図4に示す送受電装置101に関する情報は、さらに送電元の候補となる送受電装置101が送電可能な時間を含む(不図示)。
 図1に示す情報制御部301は、送電先の候補となる送受電装置101からの要求に含まれる電力の融通が必要な時間と、送電可能な時間とを照合する。情報制御部301は、かかる照合に基づき送電元の送受電装置101を決定する。
 図7のステップS1000において、コントローラ100は、融通先の送受電装置101に対し、送受電装置101から「必要送電量」と送電が必要な時間(要求時間)を送信することを要求する。
 要求時間は、例えば、融通先の電力系統103において電力の融通が必要な、所定の時刻から始まる、所定の長さの時間である。所定の時刻は一定でもよく、状況に応じて変化してもよい。所定の長さは一定でもよく、状況に応じて変化してもよい。
 そして、コントローラ100は、融通元となる各送受電装置101に対し、送受電装置101から、送受電装置情報と共に「送電可能な時間」を送信することを要求する。送電可能な時間は、融通元の電力系統103において電力の融通が可能な、所定の時刻から始まる、所定の長さの時間である。所定の時刻は一定でもよく、状況に応じて変化してもよい。所定の長さは一定でもよく、状況に応じて変化してもよい。
 ステップS1002にてコントローラ100は、融通先及び/又は融通元の送受電装置101から受信した情報を、送受電装置情報テーブル304に登録する。そしてステップS1003において、コントローラ100の情報制御部301は、送電元、送電量を決定する。
 送電元、送電量の決定は、必要送電量と要求時間、送受電装置情報記憶部302、および優先度情報記憶部303からの情報に基づく。具体的には図8のステップS1101において、優先度の高い電源順に行集合を並べ替えた後、要求時間が送電可能時間内に入るものを送電元として決定する。
 そしてステップS1105においてコントローラ100は送電元、送電量ともに送電時間を指定して制御指示を作成する。送受電装置は制御指示に従って指定された時間に送電を行う。
 第4の実施形態によれば電力系統、又は各送受電装置101は電力が要求される時間に必要な電力を送電し、又は受電することができる。このため電力融通システムは電力の融通をよりきめ細かく行うことができる。
〔第5の実施形態〕
 第5の実施形態による電力融通システムの送受電装置情報テーブル304は、第1の実施の形態の送受電装置情報テーブル304に比べ、「発電単価」が追加されている点が異なる。かかる電力融通システムは第1の実施の形態の送受電装置情報テーブル304に「発電単価」を追加することができる。
 そして、かかる電力融通システムはこの発電単価に対して、優先度管理テーブル303に基づいた「電源」による補正を行う。そして、かかる電力融通システムは発電単価の低い順に送電優先度を決定する。
 例えば再生可能エネルギーの単価を低減する補正を行うことができる。これにより、例えば再生可能エネルギーの単価が他の電源より高かった場合でも、再生可能エネルギーについて高い優先度が得られ、また電力融通システムはこれを決定できる。
 これにより電力融通システムは再生可能エネルギーによる電力を優先して融通することが可能となる。また、再生可能エネルギーに限らず、任意の電源に対して発電単価を補正可能、又は優先度を調整可能であるため、より柔軟な運用が可能となる。
〔第6の実施形態〕
 第6の実施形態による電力融通システムは、第1の実施形態の変形である。第1の実施形態において、固定値としていたコントローラ100の電力変換効率を、送電量に応じた変換効率を算出するように変更する。これにより送受電装置101から送信される発電量の情報に対し、動的に電力変換効率を決定することが可能となる。
 以上のように、第6の実施形態によれば、コントローラは各送受電装置101に対し、より変換効率の高い電力量での送電を指示することが可能となる。このため、電力融通システムは単純に最大電力量での送電指示をする場合よりも効率的な電力融通を行うことができる。
〔第7の実施形態〕
 第7の実施形態による電力融通システムは、第1の実施形態の変形である。各送受電装置101があらかじめ、隣接する送受電装置101との物理的距離を情報として保持する。
 各送受電装置101はさらに、コントローラ100からの情報要求の際、他の情報と同時に送信する。これにより、コントローラ100は送受電装置101間の送電時の電力損失を推定して算出することが可能となる。
 または、送受電装置情報テーブル302において送電タスクごとに送電距離を登録するようにしてもよい。
 以上のように、第7の実施形態によれば、電力変換時の損失に加え、送電時の電力損失を加味することが可能となるため、より効率的な送電優先度を決定することができる。
〔第8の実施形態〕
 第8の実施形態による電力融通システムは、優先度上位の送受電装置101の余剰電力に十分な余裕がある場合、より下位の送受電装置101の送電量を削減する。具体的には、図8のステップS1102にて、電力融通システムは、所定の場合に優先度の低い電源の電源の最大送電量を書き換える。
 所定の場合とは、優先度の一番高い送電タスクの最大送電量が必要送電量よりも大きく、その差が一定の値以上の場合である。電力融通システムは、例えば再生可能エネルギー以外の電源の最大送電量を、一定の値分削減した値にするよう、送電装置情報テーブル302を書き換える。
 第8の実施形態によれば、更に再生可能エネルギーの利用率を高め、火力発電等の利用率を抑えることが可能となる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 これらは本発明の例示であり、上記の組み合わせや上記以外の様々な構成を採用することができる。例えば、コントローラ100が基幹系統107を電力系統103と同様に電力融通のため、制御をしてもよい。 
 例えば、コントローラ100が各送受電装置101に対して、必要送電量、送電先、および送電元となる送受電装置の優先度を示す制御指示を送ってもよい。かかる場合に送受電装置101が送電元を決定してもよい。
 また、優先度の高い電源を管理する送受電装置101において余剰電力がある場合には、電力融通システムは、その送受電装置から複数の他の送受電装置に電力を分配するように制御しても良い。
 また、電力融通システムは、送電装置情報テーブル304を送受電装置番号で管理するだけでなくともよい。電力融通システムは、送受電装置番号を送受電装置の端子番号と共に登録してもよい。この場合、電力融通システムは、送受電装置の端子を指定して送電しても良い。これによればより柔軟で正確に送電の制御が可能である。
 さらに、電力融通システムは、電源の優先度を電源の発電状況に応じてリアルタイムに設定してもよい。これによれば電力融通システムは、その時々の発電状況や予測される発電量に対応する精度の高い電力融通を実施することが可能となる。
 加えて、電源は発電装置のみならず一次電池や二次電池などの蓄電装置に置き換えることも可能である。
 図9は、本実施の形態に係る様々な構成の一例として、コントローラ100のハードウェア構成例を示すブロック図である。
 コントローラ100は1台のサーバ800に実装される。サーバ800は、中央処理装置(CPU)801、メモリ802、及びネットワークインタフェースカード(NIC)803を備えている。コントローラ100の機能は、これらハードウェアとコンピュータプログラムとの協働によって実現される。より詳細には、CPU801は情報制御部301、メモリ802は送受電装置管理テーブル302、優先度管理テーブル303、NIC803はコントローラ100の送受信部300の機能をそれぞれ担う。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 かかるプログラムは、図1に示す複数の電力系統103間での電力融通を管理する装置、すなわちコントローラ100として、サーバ800に代表されるコンピュータを機能させる。かかる構成の一例では、電力系統103ごとに、一の電力系統103から他の電力系統103へ、送電線106を介して電力を送る送受電装置101が配置している。
 かかるプログラムは、送受電装置101に関する情報を受信する機能、すなわち受信機能をコンピュータに付与する(もたせる)。かかるプログラムは、送受電装置101に関する情報を取得する機能、すなわち送受電装置情報取得機能をコンピュータに付与する。かかるプログラムは、電力系統103内の電源(発電装置104b)の優先度を取得する機能、すなわち優先度情報取得機能をコンピュータに付与する。
 かかるプログラムは、送受電装置101に関する情報と電源の優先度に基づいて、送電元の送受電装置101および送電量を決定する機能をコンピュータに付与する。かかるプログラムは、その決定に基づいて送受電装置101に送電を行わせる制御指示を作成する機能をコンピュータに付与する。かかるプログラムは、制御指示を少なくとも送電元の送受電装置101へ送信する機能をコンピュータに付与する。
[関連技術]
 上述の通り、需要側が一定の電力を要求する場合、供給側は損失分を考慮して電力を提供しなければならない。このような損失を補い、エネルギーを安定して供給するため、電源の組み合わせによる発電量の調整が行われている。この調整を電力のベストミックスと呼ぶことがある。
 電力のベストミックスでは、安定した出力が得られるので、水力や原子力等がベース電力となる。その一方で出力を調整しやすいので、火力発電や揚水発電等が、その電力を調整して、需要のピークに合わせて電力を供給する役目を負う。
 一方で近年、化石燃料の枯渇の懸念や環境への配慮等から、太陽光、風力、水力、地熱、バイオマス等の再生可能エネルギーを利用した発電に対する需要が高まっている。これに対応して、法的施策により再生可能エネルギーの買取価格を調整し、利用者の負担を軽減することで再生可能エネルギーの利用が推進されている。さらに、グリーン電力証書により、電気そのものの価値の他に環境付加価値を証書の形で加えることで再生可能エネルギーの利用を促進するシステムが提示されている。
 現在、電力損失を負担しているのは主に火力発電である。電源の中でも火力発電の環境負荷は高く、化石燃料の枯渇の懸念、環境への配慮を考慮すると、火力発電が損失を負担し続けることは望ましくない。この負担を他の電源で分担する必要がある。火力発電の負担を補うには、より環境負荷の低い電源を利用することが望ましい。再生可能エネルギーはその候補として適切であるといえる。
 しかしながら、電力融通の際、再生可能エネルギーの利用を十分に促進できていない。例えば、上述の再生可能エネルギーの利用を促進する施策では、買取価格の調整、託送料、証明書の申請や発行などの手続きが必要となり積極的な利用が困難である。
 この出願は、2012年10月9日に出願された日本出願特願2012-224126を基礎とする優先権を主張し、その開示の全てをここに取り込む。
  90  電力融通システム
 100  コントローラ
 101  送受電装置
 102  ネットワーク
 103  電力系統
 104  負荷又は発電装置
 104a 負荷
 104b 発電装置
 105  通信回線
 106  送電線
 107  基幹系統
 300  送受信部
 301  情報制御部
 302  送受電装置情報記憶部
 303  優先度情報記憶部
 501  電力処理部
 502  情報処理部
 800  サーバ
 801  CPU
 802  メモリ
 803  NIC

Claims (13)

  1.  電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置と、
     前記送受電装置と通信回線を介して接続するコントローラと、を備え、
     前記コントローラは、
     前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、
     前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、
     前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、
     前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、
     前記送受信手段は前記制御指示を少なくとも前記送電元の送受電装置へ送信し、
     前記送受電装置は前記制御指示に従って送電を行い、
     複数の前記電力系統間で電力を融通することを特徴とする電力融通システム。
  2.  前記情報制御手段は、再生可能エネルギーを利用した電源の前記優先度を高く設定し、設定した優先度を前記優先度情報記憶手段に記憶することを特徴とする請求項1に記載の電力融通システム。
  3.  前記送受電装置に関する情報は、送電先の前記送受電装置、送電元の前記送受電装置、送電元の電源、および送電可能な最大送電量と最小送電量を含む送電タスクの集合で構成され、
     前記情報制御手段は、前記最大送電量と前記最小送電量の両方または少なくともいずれか一方に基づいて、送電元の前記送受電装置と送電量を決定することを特徴とする請求項1または2に記載の電力融通システム。
  4.  前記制御指示に従って、一以上の前記送受電装置が一以上の他の送受電装置に送電することを特徴とする請求項1から3のいずれか一項に記載の電力融通システム。
  5.  前記送受電装置は、前記送受電装置が配置される前記電力系統の電力需給の状況を管理し、
     前記電力系統内の電力が不足する場合に、前記コントローラに対して、電力の融通を求める必要送電量および電力の融通が必要な時間を示す要求を送信することを特徴とする請求項1から4のいずれか一項に記載の電力融通システム。
  6.  前記送受電装置に関する情報は前記電源の発電単価を含み、
     前記情報制御手段は、前記発電単価に対して再生可能エネルギーを考慮した補正を行い、再生可能エネルギーに基づく電源の前記優先度を高く設定することを特徴とする請求項1から5のいずれか一項に記載の電力融通システム。
  7.  前記送受電装置に関する情報は送電における電力損失を含み、
     前記情報制御手段は、前記電力損失に基づいて、前記送電元の送受電装置と前記送電量を決定することを特徴とする請求項1から6のいずれか一項に記載の電力融通システム。
  8.  前記送受電装置に関する情報は前記送電元の送受電装置が送電可能な時間を含み、
     前記情報制御手段は、前記送受電装置からの前記要求に含まれる電力の融通が必要な時間と、前記送電可能な時間と、を照合し、
     前記送電元の送受電装置を決定することを特徴とする請求項5に記載の電力融通システム。
  9.  前記情報制御手段は、前記最大送電量が大きい送電タスクを優先して選択することにより、送電元の送受電装置と送電量を決定することを特徴とする請求項3に記載の電力融通システム。
  10.  電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置であって、
     前記送受電装置と通信回線を介して接続するコントローラが、
     前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、
     前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、
     前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、
     前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、
     前記送受信手段から送信される前記制御指示に従って送電を行うことを特徴とする送受電装置。
  11.  電力系統ごとに配置され前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置と、通信回線を介して接続し、
     前記送受電装置から前記送受電装置に関する情報を受信する送受信手段と、
     前記送受電装置に関する情報を記憶する送受電装置情報記憶手段と、
     前記電力系統内の電源の優先度を記憶する優先度情報記憶手段と、
     前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する情報制御手段と、を有し、
     前記送受信手段はさらに前記制御指示を前記送受電装置に送信するコントローラ。
  12.  電力系統ごとに配置され、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置に関する情報を取得し、
     前記電力系統内の電源の優先度情報を取得し、
     前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、
     前記決定に基づいて前記送受電装置へ送電の指示を行い、
     前記送受電装置は前記指示に従って送電を行うことを特徴とする電力融通方法。
  13.  コンピュータに、複数の電力系統間での電力融通を管理する装置として機能させるプログラムを格納し、
     前記電力系統ごとに、前記電力系統から他の前記電力系統へ送電線を介して電力を送る送受電装置が配置されている場合に、
     前記プログラムは、
     前記送受電装置に関する情報を受信する受信機能と、
     前記送受電装置に関する情報を取得する送受電装置情報取得機能と、
     前記電力系統内の電源の優先度を取得する優先度情報取得機能と、
     前記送受電装置に関する情報と前記電源の優先度に基づいて、送電元の前記送受電装置および送電量を決定し、前記決定に基づいて前記送受電装置に送電を行わせる制御指示を作成する機能と、
     前記制御指示を少なくとも前記送電元の送受電装置へ送信する機能と、をもたせることを特徴とする非一時的なコンピュータ可読媒体。
PCT/JP2013/004979 2012-10-09 2013-08-23 電力融通システム、送受電装置、電力融通方法およびプログラム WO2014057601A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2013328198A AU2013328198B2 (en) 2012-10-09 2013-08-23 Power interchange system, power transmitting /receiving device, power interchange method, and program
US14/434,030 US9991718B2 (en) 2012-10-09 2013-08-23 Power interchange system, power transmitting/receiving device, power interchange method, and program
EP13846214.8A EP2908400A4 (en) 2012-10-09 2013-08-23 ELECTRIC POWER EXCHANGE SYSTEM, ELECTRICITY TRANSMITTING / RECEIVING DEVICE, ELECTRIC POWER EXCHANGING METHOD, AND PROGRAM
JP2014540723A JP6245176B2 (ja) 2012-10-09 2013-08-23 電力融通システム、送受電装置、電力融通方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224126 2012-10-09
JP2012-224126 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057601A1 true WO2014057601A1 (ja) 2014-04-17

Family

ID=50477085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004979 WO2014057601A1 (ja) 2012-10-09 2013-08-23 電力融通システム、送受電装置、電力融通方法およびプログラム

Country Status (5)

Country Link
US (1) US9991718B2 (ja)
EP (1) EP2908400A4 (ja)
JP (1) JP6245176B2 (ja)
AU (1) AU2013328198B2 (ja)
WO (1) WO2014057601A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010276A (ja) * 2014-06-26 2016-01-18 三菱電機株式会社 エネルギーマネジメントシステム
JP2016073133A (ja) * 2014-09-30 2016-05-09 Kddi株式会社 電力管理システム、送電管理装置、受電管理装置、電力管理装置、電力管理方法、及びコンピュータプログラム
JP2017046428A (ja) * 2015-08-25 2017-03-02 大和ハウス工業株式会社 電力融通システム
JP2017511683A (ja) * 2014-04-23 2017-04-20 日本電気株式会社 実時間演算のための動的で協調的なマイクログリッドを有する電力分配システム
JPWO2016021371A1 (ja) * 2014-08-05 2017-05-18 ソニー株式会社 直流電力送電装置、直流電力受電装置及び直流電力送電システム
JPWO2017191754A1 (ja) * 2016-05-02 2018-09-20 三菱電機株式会社 電力融通制御装置、電力融通制御方法および電力融通制御システム
WO2021161464A1 (ja) * 2020-02-13 2021-08-19 日本電信電話株式会社 電力管理装置、配電制御方法、及びプログラム
JP7461769B2 (ja) 2020-03-25 2024-04-04 本田技研工業株式会社 エネルギー供給システム、エネルギー供給方法
WO2024090623A1 (ko) * 2022-10-27 2024-05-02 (주)누리플렉스 발전자원 거래에 대한 신뢰성 분류를 이용한 자원 거래 방법 및 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880740B2 (ja) * 2014-11-04 2021-06-02 ソニーグループ株式会社 直流電力制御装置、直流電力制御方法及び直流電力制御システム
US10865774B2 (en) * 2016-08-09 2020-12-15 Mhi Vestas Offshore A/S Wind turbine control method and system
EP3518369A1 (de) * 2018-01-30 2019-07-31 Siemens Aktiengesellschaft Verfahren und regelvorrichtung zur regelung eines elektrischen leistungstransfers sowie stromnetz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281666A (ja) * 2001-03-15 2002-09-27 Toshiba Corp 電力融通システム
JP2003032887A (ja) 2001-07-12 2003-01-31 Nippon Telegr & Teleph Corp <Ntt> 広域電力融通取引方法および広域電力融通取引システム
JP2004015882A (ja) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd 分散電源システムおよびその運用方法、並びに運用プログラム
WO2012124368A1 (ja) * 2011-03-14 2012-09-20 オムロン株式会社 需給電力制御装置およびその制御方法、並びに制御プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782924B2 (ja) * 2000-07-27 2006-06-07 日本電信電話株式会社 分散型エネルギーコミュニティーシステムとその制御方法
US9605591B2 (en) * 2000-10-09 2017-03-28 Energy Transfer Group, L.L.C. Arbitrage control system for two or more available power sources
EP1263108A1 (en) * 2001-06-01 2002-12-04 Roke Manor Research Limited Community energy comsumption management
US7359878B2 (en) * 2001-12-07 2008-04-15 Siemens Power Transmission & Distribution, Inc. Pricing apparatus for resolving energy imbalance requirements in real-time
US7844370B2 (en) * 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
US8364287B2 (en) * 2007-07-25 2013-01-29 Trulite, Inc. Apparatus, system, and method to manage the generation and use of hybrid electric power
US20120053751A1 (en) * 2009-02-03 2012-03-01 Dong Energy Power A/S Distributed electrical power production system and method of control thereof
US8401709B2 (en) 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
EP2504949B1 (en) * 2009-11-24 2019-05-01 LG Electronics Inc. Network system and method of controlling network system
JP5677161B2 (ja) * 2011-03-28 2015-02-25 株式会社東芝 充放電判定装置及びプログラム
US8326467B2 (en) * 2011-09-06 2012-12-04 General Electric Company Controller and method of controlling a power system
US20140006137A1 (en) * 2012-06-28 2014-01-02 Toyota Infotechnology Center Co., Ltd. Event Control Schedule Management
US8849715B2 (en) * 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281666A (ja) * 2001-03-15 2002-09-27 Toshiba Corp 電力融通システム
JP2003032887A (ja) 2001-07-12 2003-01-31 Nippon Telegr & Teleph Corp <Ntt> 広域電力融通取引方法および広域電力融通取引システム
JP2004015882A (ja) * 2002-06-05 2004-01-15 Mitsubishi Heavy Ind Ltd 分散電源システムおよびその運用方法、並びに運用プログラム
WO2012124368A1 (ja) * 2011-03-14 2012-09-20 オムロン株式会社 需給電力制御装置およびその制御方法、並びに制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2908400A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10284011B2 (en) 2014-04-23 2019-05-07 Nec Corporation Electricity distribution system with dynamic cooperative microgrids for real-time operation
JP2017511683A (ja) * 2014-04-23 2017-04-20 日本電気株式会社 実時間演算のための動的で協調的なマイクログリッドを有する電力分配システム
JP2016010276A (ja) * 2014-06-26 2016-01-18 三菱電機株式会社 エネルギーマネジメントシステム
JPWO2016021371A1 (ja) * 2014-08-05 2017-05-18 ソニー株式会社 直流電力送電装置、直流電力受電装置及び直流電力送電システム
EP3179588A4 (en) * 2014-08-05 2017-12-27 Sony Corporation Dc power transmission device, dc power reception device, and dc power transmission system
JP2016073133A (ja) * 2014-09-30 2016-05-09 Kddi株式会社 電力管理システム、送電管理装置、受電管理装置、電力管理装置、電力管理方法、及びコンピュータプログラム
JP2017046428A (ja) * 2015-08-25 2017-03-02 大和ハウス工業株式会社 電力融通システム
JPWO2017191754A1 (ja) * 2016-05-02 2018-09-20 三菱電機株式会社 電力融通制御装置、電力融通制御方法および電力融通制御システム
WO2021161464A1 (ja) * 2020-02-13 2021-08-19 日本電信電話株式会社 電力管理装置、配電制御方法、及びプログラム
JPWO2021161464A1 (ja) * 2020-02-13 2021-08-19
US11750019B2 (en) 2020-02-13 2023-09-05 Nippon Telegraph And Telephone Corporation Power management apparatus, power distribution control method and program
JP7420154B2 (ja) 2020-02-13 2024-01-23 日本電信電話株式会社 電力管理装置、配電制御方法、及びプログラム
JP7461769B2 (ja) 2020-03-25 2024-04-04 本田技研工業株式会社 エネルギー供給システム、エネルギー供給方法
WO2024090623A1 (ko) * 2022-10-27 2024-05-02 (주)누리플렉스 발전자원 거래에 대한 신뢰성 분류를 이용한 자원 거래 방법 및 장치

Also Published As

Publication number Publication date
EP2908400A4 (en) 2016-05-25
US20150255986A1 (en) 2015-09-10
JP6245176B2 (ja) 2017-12-13
AU2013328198A1 (en) 2015-04-30
US9991718B2 (en) 2018-06-05
JPWO2014057601A1 (ja) 2016-08-25
EP2908400A1 (en) 2015-08-19
AU2013328198B2 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6245176B2 (ja) 電力融通システム、送受電装置、電力融通方法およびプログラム
Kong et al. Charging schemes for plug-in hybrid electric vehicles in smart grid: A survey
EP2505421B1 (en) System and method for optimal load planning of electric vehicle charging
JP5563008B2 (ja) 充放電制御装置、充放電監視装置、充放電制御システム及び充放電制御プログラム
US9423849B2 (en) Electric power management system and electric power management method
US20140217989A1 (en) Battery control system, battery controller, battery control method, and recording medium
TW201717576A (zh) 用於分配能量系統之微電力網控制器
JP5795611B2 (ja) 電力小売管理装置および電力小売管理方法
WO2018043662A1 (ja) 電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システム
JP2013207982A (ja) 充放電制御装置、充放電制御システム及び充放電制御プログラム
WO2019150814A1 (ja) 電力管理サーバ及び電力管理方法
WO2020045357A1 (ja) 電力管理システム、電力管理サーバ、及び電力管理方法
JP2018186607A (ja) 優先度付加装置及び優先度付加プログラム
JP6903531B2 (ja) 分散型電源制御装置、分散型電源制御システム及び分散型電源制御方法
US20120068534A1 (en) Power Supply System Including Alternative Sources-Control and Communication
JP2013162560A (ja) 需給調整システム
JP2014236602A (ja) 複数蓄電池の複数目的制御装置、複数目的制御システム及びプログラム
JP7178429B2 (ja) 電力供給方法及び電力管理装置
JP7084296B2 (ja) 電力管理装置、電力管理システム及び電力管理方法
JP2016063718A (ja) 給電システム、給電方法、及びプログラム
VC et al. Management of Unprioritized Loads in an Islanded Microgrid: Algorithms for Scheduling of Historic Load Data and Real-Time Load Management
JP2017108526A (ja) 電力管理装置、電力管理方法およびプログラム
JP6109892B2 (ja) 電力小売管理装置および電力小売管理方法
WO2019150883A1 (ja) 電力管理システム、電力管理サーバ及び電力管理方法
Lim et al. OPTIMIZATION OF RESIDENTIAL ELECTRICAL CONSUMPTION WITH ELECTRIC CONSUMPTION SCHEDULING AND DISTRIBUTED ENERGY STORAGE DEVICES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540723

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14434030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013846214

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013328198

Country of ref document: AU

Date of ref document: 20130823

Kind code of ref document: A