JP2016063718A - 給電システム、給電方法、及びプログラム - Google Patents

給電システム、給電方法、及びプログラム Download PDF

Info

Publication number
JP2016063718A
JP2016063718A JP2014192450A JP2014192450A JP2016063718A JP 2016063718 A JP2016063718 A JP 2016063718A JP 2014192450 A JP2014192450 A JP 2014192450A JP 2014192450 A JP2014192450 A JP 2014192450A JP 2016063718 A JP2016063718 A JP 2016063718A
Authority
JP
Japan
Prior art keywords
power
cluster
supplied
amount
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014192450A
Other languages
English (en)
Inventor
政俊 則竹
Masatoshi Noritake
政俊 則竹
武田 隆
Takashi Takeda
隆 武田
英徳 松尾
Hidenori Matsuo
英徳 松尾
一史 湯淺
Kazufumi Yuasa
一史 湯淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2014192450A priority Critical patent/JP2016063718A/ja
Publication of JP2016063718A publication Critical patent/JP2016063718A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】直流電力を効率よく融通できるようにする。
【解決手段】給電システム1は、電力を消費するクラスタに電力を供給する。給電システム1は、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出する料金算出部と、を備える。
【選択図】図1

Description

本発明は、給電システム、給電方法、及びプログラムに関する。
近年、給電システムにおいて、太陽光発電設備の導入やスマートメーターの導入についての検討が進められている(例えば、非特許文献1から3参照)。太陽光発電設備によって得られた電力は、同設備を設置したユーザーが自ら利用する他、商用電力系統に逆潮流することにより余剰電力を売電することができる。また、非特許文献2、3に記載のスマートメーターは、電力会社(商用電力系統)、太陽光発電、燃料電池、蓄電池、EVなどから供給される電力量を検出し、検出した電力量の情報を提供することができる。
「電力品質確保に係る系統連系技術要件ガイドライン」、資源エネルギー庁、[online]、平成25年5月31日、[平成26年1月6日検索]< http://www.enecho.meti.go.jp/denkihp/genjo/rule/keito_guideline.pdf> 「スマートメーター制度検討会(第13回)‐配布資料(資料3)」、資源エネルギー庁、[online]、平成25年11月26日、[平成25年12月10日検索]< http://www.meti.go.jp/committee/summary/0004668/013_haifu.html> 「ECHONET Lite規格書(Version1.10)」、エコーネットコンソーシアム、平成25年5月31日
しかしながら、非特許文献1に示されているように、一般に、太陽光発電設備によって発電された電力を売電する場合には、需要家は電気事業者に対して売電する。その際、太陽光発電設備によって得られた直流電力を交流電力に変換した後に、その交流電力を商用電力系統に逆潮流させている。このように、商用電力系統(交流系統)を利用して他のユーザーに直流から交流へ変換された後の交流電力を融通するように構成する場合、太陽光発電設備によって得られた直流電力の一部は、交流電力に変換される際の損失に費やされてしまう。
また、上述の非特許文献2、3に記載されているスマートメーターは、交流電力の電力量を測定するものとして規定されているに過ぎない。
本発明は、斯かる実情に鑑みてなされたものであり、生成した直流電力を効率よく利用することができる給電システム、給電方法、及びプログラムを提供するものである。
[1]上述した課題を解決するためになされたものであり、本発明の一態様は、電力を消費するクラスタに電力を供給する給電システムであって、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出する料金算出部と、を備えることを特徴とする給電システムである。
[2]また、本発明の一態様は、上記給電システムにおいて、前記料金算出部は、前記検出された電力量から前記第1クラスタが供給した電力の電力提供料金を算出することを特徴とする。
[3]また、本発明の一態様は、上記給電システムにおいて、前記第1クラスタから前記第2クラスタに給電線を介して供給する電力を、クラスタに供給する他の電力に重畳させることなく、当該電力を供給するように制御する制御部を備えることを特徴とする。
[4]また、本発明の一態様は、上記給電システムにおいて、前記第1クラスタから前記第2クラスタに供給する電力は、直流電力のみ又は直流電力と交流電力の双方の電力の何れかの電力とし、前記検出部は、前記交流電力を供給する場合に、前記第1クラスタから前記第2クラスタに供給された交流電力の電力量をさらに検出することを特徴とする。
[5]本発明の一態様は、上記給電システムにおいて、前記制御部は、前記第1クラスタから前記第2クラスタに直流電力が供給されていない場合に前記第2クラスタ内で供給されている直流電力の電圧より、前記第1クラスタから前記第2クラスタに供給される直流電力の電圧が高くなるように制御して、前記直流電力の供給を開始することを特徴とする。
[6]また、本発明の一態様は、上記給電システムにおいて、前記第1クラスタと前記第2クラスタの何れとも異なる第3クラスタがあり、前記第1クラスタから前記第3クラスタのそれぞれは、共通の給電経路を介して互いに接続されており、前記給電経路を介して前記直流電力を自クラスタから他のクラスタに供給することが可能であり、前記制御部は、前記第1クラスタから供給される直流電力の電圧が、前記第3クラスタ内で供給されている直流電力の電圧より低くなるように制御することを特徴とする。
[7]また、本発明の一態様は、上記給電システムにおいて、前記第1クラスタから第3クラスタのそれぞれは、前記給電経路と各クラスタの内部給電経路との間に設けられ、その間に流す電流を整流する整流部と、前記整流部と並列になるように設けられる遮断器とを備えることを特徴とする。
[8]また、本発明の一態様は、電力を消費するクラスタに電力を供給する給電システムにおける給電方法であって、給電システムは、検出部が、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出し、料金算出部が、前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出することを特徴とする給電方法である。
[9]また、本発明の一態様は、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、前記検出された電力量から電力量料金を算出する料金算出部と、を備える給電システムのコンピュータに、前記検出部が、前記第2クラスタに供給される電力の電力量を検出するステップと、前記料金算出部が、前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出するステップとを実行させるためのプログラムである。
本発明によれば、直流電力を効率よく利用することができるようにする給電システム、給電方法、及びプログラムを提供できる。
本発明の第1実施形態に係る給電システムの概略構成を示す構成図である。 本実施形態のEMSの概略構成を示す構成図である。 本実施形態の電力供給処理の手順を示す説明図(その1)である。 本実施形態の電力供給処理の手順を示す説明図(その2)である。 第2実施形態における検出部の構成を示す構成図である。
以下、本発明の実施形態について添付図面を参照して説明する。
(概要)
以下、本発明の幾つかの実施形態について説明するが、最初に、その概要について説明する。本発明の実施形態における給電システムは、電力を消費するクラスタに電力を供給する給電システムである。この給電システムは、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、検出部によって検出された電力量から電力量料金を算出する料金算出部と、を備える。これにより、給電システムの検出部は、第2クラスタに供給される直流電力の電力量を検出し、料金算出部は、検出部によって検出された電力量から第2クラスタに供給された直流電力の電力量料金を算出する。
このような給電システムは、上記のように電力を生成する第1クラスタから第2クラスタに直流電力の供給を行い、その供給される直流電力の電力量の検出を可能とする。また、この給電システムでは、検出された電流量と前記供給された電力の電圧とから電力量料金を算出するように構成されている。
このように構成された給電システムは、上記のように第1クラスタ内で生成した直流電力を第2クラスタに供給することにより、直流電力を効率よく利用することができるようにするものである。
なお、上記の給電システムは、電力を生成する第1クラスタから第2クラスタに供給される電力の電流量を検出する検出部と、検出部によって検出された電流量と第2クラスタに供給された電力の電圧とから電力量料金を算出する料金算出部と、を備えるものであってもよい。この場合、給電システムの検出部は、前記第2クラスタに供給される直流電力の電流量を検出し、料金算出部は、検出部によって検出された電流量と第2クラスタに供給された電力の電圧とから前記第2クラスタに供給された直流電力の電力量料金を算出する。
このような給電システムは、上記のように電力を生成する第1クラスタから第2クラスタに直流電力の供給を行い、その供給される直流電力の電力量の検出を可能とする。また、この給電システムでは、検出された電流量と前記供給された電力の電圧とから電力量料金を算出するように構成されている。
このように構成された給電システムは、上記のように第1クラスタ内で生成した直流電力を第2クラスタに供給することにより、直流電力を効率よく利用することができるようにするものである。
[第1実施形態]
以下、図を参照して、本発明の実施形態に係る給電システムについて説明する。
(給電システム1の概略構成)
図1は、本発明の実施形態に係る給電システム1の概略構成を示す構成図である。
同図に示される給電システム1は、クラスタ100と、クラスタ200と、クラスタ300と、クラスタ400と、エネルギー管理装置(EMS)7とを備える。クラスタ100と、クラスタ200と、クラスタ300と、クラスタ400とが、ACバス151とDCバス152とを介して互いに接続され、互いに電力を融通可能に構成されている。ここでは、給電システム1が4つのクラスタを備えた構成例を示しているが、クラスタの数は任意である。
なお、ACバス151は、クラスタ100と、クラスタ200と、クラスタ300と、クラスタ400とを共通接続して交流電力を融通するための給電バスとなる給電経路であり、以下の説明では、ACバス151を一次側ACバス151と呼ぶことがある。また、DCバス152は、クラスタ100と、クラスタ200と、クラスタ300と、クラスタ400とを共通接続して直流電力を融通するための給電バスとなる給電経路であり、以下の説明では、DCバス152を一次側DCバス152と呼ぶことがある。
また、クラスタ100、クラスタ200、クラスタ300、及びクラスタ400の内部において、交流電力を配電する給電経路を二次側ACバスと呼び、直流電力を配電する給電経路を二次側DCバスと呼ぶことがある。
この給電システム1において、クラスタ100、クラスタ200、クラスタ300、及びクラスタ400の各制御部と各検出部は、通信網5を介して、エネルギー管理装置(EMS)7に接続されている。このエネルギー管理装置(EMS)7は、各クラスタにおける電力の給電状態を監視するとともに、各クラスタの制御部に指令信号を送信してその動作を制御する。例えば、エネルギー管理装置(EMS)7は、各クラスタにおける電力消費量と、発電装置の発電量と、蓄電装置の充電状態(例えば、蓄電池残容量SOC(State Of Charge))の情報を収集し、この収集した情報に基づいて、各クラスタ間における電力消費のバランスを取るように電力融通の制御を行う。また、エネルギー管理装置(EMS)7は、クラスタ間において融通する電力の給電経路を、電力の利用効率が高くなるように選択する。
なお、本実施形態における用語「クラスタ」とは、再生可能エネルギー利用の分散型電源から構成される発電装置、負荷装置、蓄電装置などを備える需要家を1単位(例えば、ビル単位の需要家)とする電力クラスタ(Electricity Cluster)を意味している。
例えば、クラスタ200と、クラスタ300と、クラスタ400とのそれぞれは、再生可能エネルギーを利用する発電装置(例えば、太陽光発電装置)と、エネルギー貯蔵システムとなる蓄電装置と、需要家の負荷装置とを備えている。クラスタ200と、クラスタ300と、クラスタ400とのそれぞれは、自クラスタ内において発電装置が発電した電力や蓄電装置に充電された電力を負荷装置に供給するとともに、供給可能な電力に余裕がある場合には他のクラスタに融通することや、自クラスタ内の負荷装置へ供給する電力が不足している場合には、電力に余裕がある他のクラスタから融通された電力を受け取ることができる。なお、ここではクラスタ100のみが、商用電力系統2から供給される商用電力を受け取る構成を備えている例を示しており、クラスタ100は受け取った商用電力を他のクラスタに配電することが可能である。
給電システム1において、クラスタ100は、制御部110、電圧変換部120、を備えている。
このクラスタ100において、電圧変換部120は、商用電力系統2から供給される高圧交流電圧(例えば、3相AC6600V)を所定の低圧交流電圧(例えば、3相AC400V)に降圧し、この低圧交流電圧に変換した後の電力をACバス151に供給する。ACバス151に供給される電力は、クラスタ200、クラスタ300、クラスタ400に供給される。
制御部110は、このクラスタ100の全体の動作を統括して制御する。制御部110は、例えば、マイクロコンピュータとその周辺回路とを用いて構成されており、クラスタ100の各部に設置した図示していない電流や電圧の検知部で検知された電流や電圧の検知信号に応じて電圧変換部120を制御する。また、制御部110は、電圧変換部120を介して供給される電力量を示す電力量情報を収集し、この収集した電力量情報を、エネルギー管理装置(EMS)7に対して送信する。
このクラスタ100において、クラスタ200は、制御部210、直交変換部221、遮断器222、検出部231、検出部232、発電装置242、交流負荷装置(AC負荷装置)243、直流負荷装置(DC負荷装置)244、蓄電装置245を備えている。
クラスタ300は、制御部310、直交変換部321、遮断器322、検出部331、検出部332、発電装置342、交流負荷装置(AC負荷装置)343、直流負荷装置(DC負荷装置)344、蓄電装置345を備えている。
ここでは、クラスタ200、クラスタ300、及びクラスタ400のそれぞれが同様の構成であるとして、クラスタ200の構成を代表として説明する。なお、クラスタ200、クラスタ300、及びクラスタ400のそれぞれの構成は、全て同じ構成でなくともよく部分的に異なる構成としてもよい。
このクラスタ200において、制御部210は、クラスタ200の全体の動作を統括して制御する。
このクラスタ200には、直流電力を配給する2次側DCバス252と、交流電力を配給する2次側ACバス251とが設けられている。2次側DCバス252には、直交変換部221、発電装置242、直流負荷装置(DC負荷装置)244、蓄電装置245及び検出部232が接続されている。2次側ACバス251には、直交変換部221、交流負荷装置(AC負荷装置)243及び遮断器222が接続されている。
まず、クラスタ200における直流系の構成について説明する。
直交変換部221は、2次側DCバス252と2次側ACバス251の双方にそれぞれ接続され、直流電力と直流電力との間で双方向に電力変換を行う。例えば、直交変換部221の直流側端子が、2次側DCバス252に接続されており、直交変換部221の交流側端子が、2次側ACバス251に接続されている。このように接続された直交変換部221は、2次側DCバス252から供給される直流電力を交流電力に変換して、変換後の交流電力を2次側ACバス251に供給する。また、直交変換部221は、2次側ACバス251から供給される交流電力を直流電力に変換して、変換後の直流電力を2次側DCバス252に供給する。
直流負荷装置(DC負荷装置)244は、直流電力によって動作する装置であり、例えば、直流家電、LED照明、パソコンやサーバなどの情報機器等である。直流負荷装置244は、直交変換部221、発電装置242、蓄電装置245から供給される電力と、他のクラスタから1次側DCバス152を介して供給される電力とを消費する。
発電装置242は、例えば、太陽光発電、風力発電等の自然エネルギー型の発電装置や、エンジン発電装置や、燃料電池等の発電部と発電装置242の発電電力を所定の直流電力に変換して出力するパワーコンディショナとを備える。また、発電装置242は、発電した電力を、2次側DCバス252を介して他の装置に供給する。パワーコンディショナが出力する電圧は、制御により調整可能とする。
蓄電装置245は、例えば、リチウムイオン電池、鉛電池、ニッケル水素電池等の2次電池を備える。この蓄電装置245は、2次側DCバス252を介して供給される電力によって充電される。例えば、蓄電装置245は、発電装置242や直流負荷装置244から供給される電力により充電される。また、蓄電装置245は、蓄えた電荷により、2次側DCバス252を介して他の装置に電力を供給する。
検出部232は、1次側DCバス152と2次側DCバス252との間に接続され、1次側DCバス152と2次側DCバス252との間に流れる電力量を検出する。検出部232は、EMS7からの要求に応じて、検出した電力量を出力する。さらに、検出部232は、EMS7からの要求に応じて、検出した電力の積算電力量を出力してもよい。
また、検出部232は、EMS7からの制御に応じて、直流電力を供給する場合と直流電力の供給を受ける場合に限り、1次側DCバス152と2次側DCバス252との間を導通させるようにして、他の場合には、1次側DCバス152と2次側DCバス252との間を遮断する。
次に、クラスタ200における交流系の構成について説明する。
交流負荷装置(AC負荷装置)243は、交流電力によって動作する装置であり、例えば、直流家電、LED照明、パソコンやサーバなどの情報機器等である。上記のような交流負荷装置243は、例えば低圧の交流電力によって動作することにより、直交変換部241から供給される電力と、他のクラスタから1次側ACバス151を介して供給される電力とを消費する。
遮断器222は、制御部210の制御に応じて、1次側ACバス151と2次側ACバス251との間の接続を遮断する。遮断器222が導通状態にある場合には、1次側ACバス151と2次側ACバス251との間の電力の供給を双方向に行うことができる。
検出部231は、1次側ACバス151と2次側ACバス251との間に接続され、1次側ACバス151と2次側ACバス251との間に流れる電力量を検出する。また、検出部231は、EMS7からの要求に応じて、検出した電力量を出力する。さらに、検出部231は、EMS7からの要求に応じて、検出した電力の積算電力量を出力してもよい。
上記のように構成されたクラスタ200は、外部の各クラスタから電力の供給を受けるだけでなく、内部に備える直交変換部221、発電装置242、蓄電装置245からの電力を外部に供給することができる。さらにクラスタ200は、電力を送る経路を制限する遮断器222、検出部232を備えている。上記の内部の各装置の出力状態と、遮断器222、検出部232の状態とに応じて、電力を送る経路を調整することができる。
また、同図には、4つの電力供給のパスが示されている。この4つの電力供給のパスは、EMS7からの制御に応じて何れかが選択されるものとする。
第1のパスは、商用電力系統2から交流負荷装置(AC負荷装置)343に至る経路を示す。
第2のパスは、発電装置242から交流負荷装置(AC負荷装置)343に至る経路を示す。なお、この第2のパスは1次側ACバス151を経由する。
第3のパスは、発電装置242から交流負荷装置(AC負荷装置)343に至る経路を示す。なお、この第3のパスは1次側DCバス152を経由する。
第4のパスは、発電装置242から直流負荷装置(DC負荷装置)344に至る経路を示す。なお、この第4のパスは1次側DCバス152を経由する。
この給電システム1では、上記以外の他のパスを設定することができる。
図2を参照して、EMS7の概略構成について説明する。同図は、EMS7の概略構成を示す構成図である。
EMS7は、制御部710、記憶部720を備える。
記憶部720は、クラスタ対情報記憶部DB721、基準単価情報DB723、積算電力量情報DB724、電力料金情報DB725を備える。
クラスタ対情報記憶部DB721には、クラスタ対選択部711によって選択されたクラスタの組を示す情報が記憶される。
基準単価情報DB723には、電力量当たりの電気料金の単価が記憶される。ここで記憶する電気料金の単価は、電力を供給した側の売電料金を算出するための売電単価情報と、電力の供給を受けた側の買電料金を算出するための買電単価情報である。
積算電力量情報DB724には、積算電力情報取得部714によって収集したクラスタごとの積算電力情報が記憶される。
電力料金情報DB725には、料金算出部715によって算出された電力料金情報が記憶される。電力料金情報には、供給した電力の電力提供料金と供給された電力の電力量料金とが含まれる。
制御部710は、クラスタ対選択部711、給電制御部712、基準単価設定部713、積算電力情報取得部714、料金算出部715を備える。
クラスタ対選択部711、給電制御部712、基準単価設定部713、積算電力情報取得部714、料金算出部715の詳細は後述する。
図3と4を参照して、本実施形態の処理の手順について説明する。
図3と4は、本実施形態の電力供給処理の手順を示す説明図である。
図3に示される処理では、クラスタ300からクラスタ200に電力を供給する際に、所望の電力量の供給の終了をクラスタ300側から通知する場合を示す。
最初に、EMS7のクラスタ対選択部711は、各クラスタの状態を示す情報の通知を各クラスタに要求する(ステップS110)。ここで要求するクラスタの状態を示す情報は、各クラスタの発電装置における発電状態、蓄電装置の蓄電量、各検出部によって検出された電力量、線間電圧などが含まれる。
クラスタ200は、その要求を受信して、受信した要求に応じて、EMS7に自クラスタ内の状態を通知する(ステップS112)。また、クラスタ300は、その要求に応じて、EMS7に自クラスタ内の状態を通知する(ステップS113)。
次に、EMS7のクラスタ対選択部711は、各クラスタが通知した情報を収集して、収集した情報に基づいて、電力を融通するクラスタ対を選択する(ステップS120)。
なお、クラスタ対の選択は、予め定められた選択ルールに従って実施する。選択ルールの詳細については後述する。ここでは、その選択ルールに従って選択された結果、例えば、クラスタ300を電力の供給元に、クラスタ200をその電力の供給先になった上記のクラスタ対が形成されたものとする。
次に、EMS7の積算電力情報取得部714は、電力の供給先として選択したクラスタに、現在の積算電力量の送信を要求する(ステップS130)。例えば、EMS7の積算電力情報取得部714は、クラスタ対として選択されたクラスタ200に対してその要求を通知する。クラスタ200は、その要求を受信して、その要求に応じて、EMS7に自クラスタにおける積算電力量IPCAを送付する(ステップS132)。ここで送付する積算電力量IPCAは、電力の融通が開始される前の積算電力量である。積算電力情報取得部714は、積算電力量IPCAを受信して、積算電力量情報DB724に受信した積算電力量IPCAを記憶させる。
次に、EMS7の給電制御部712は、選択したクラスタ対の各クラスタに、電力の融通を指示する(ステップS140)。この指示には、電力の供給元になるクラスタを指定する情報、電力の供給先になるクラスタを指定する情報、融通する電力の電力量、電力を融通する際に使用する経路を指定する情報などが含まれる。
クラスタ200は、その電力の融通の指示に応じて、融通された電力の受電を行う準備の処理を実施する(ステップS142)。また、クラスタ300は、その電力の融通の指示に応じて、電力を供給するための準備の処理を実施した後、クラスタ200への給電を開始する(ステップS143)。
ここで、クラスタ300はクラスタ200に対して電力の供給を行う。クラスタ200は、クラスタ300から供給された電力の電力量を検出し、検出した電力量から積算電力量を求めて、その値を更新する(ステップS144)。
クラスタ300は、所定の判定条件が満たされたことを検出すると、クラスタ200への給電を停止するとともに、EMS7に給電完了を通知する(ステップS145)。例えば、所定の判定条件は、EMS7から指示された期間(時間)が終了したこと、電力の供給を継続することが困難な状況が生じたことなどが挙げられる。電力の供給を継続することが困難な状況としては、発電装置における発電量の予定外の減少、負荷装置における負荷の予定外の増大、蓄電装置における蓄電量の予定外の減少等の要因により、他のクラスタに供給可能と見込んでいた電力量が当初の見込み量に対して不足するようになった場合や、不足が見込まれる場合などが挙げられる。
次に、給電完了の通知を受けて、EMS7の給電制御部712は、選択していたクラスタ200とクラスタ300に電力の融通終了を通知する(ステップS150)。クラスタ200は、融通終了の通知を受け、受電終了の処理を実施する(ステップS152)。その後、クラスタ200は、EMS7に、積算電力量IPCBを送付する(ステップS154)。
次に、EMS7の積算電力情報取得部714は、積算電力量IPCBを受信した後、融通した電力量PCを算出する(ステップS160)。上記の電力量PCは、式(1)に基づいて算出される。
電力量PC=積算電力量IPCB−積算電力量IPCA ・・・(1)
次に、EMS7の料金算出部715は、電力量PCを算出した後、融通した電力の電力料金情報を算出する(ステップS170)。上記の電力料金情報は、式(2)と式(3)とに基づいてそれぞれ算出される。なお、料金算出部715によって算出される電力料金情報には、供給した電力の電力提供料金と供給された電力の電力量料金とが含まれる。
売電電力料金情報=売電単価情報×電力量PC ・・・(2)
買電電力料金情報=買電単価情報×電力量PC ・・・(3)
以上に示す手順により、EMS7は、電力の供給を受けるクラスタ200に設けられた検出部によって検出された積算電力量に基づいて、供給された電力量PCを算出する。さらに、算出された電力量PCから、クラスタ200が供給を受けた電力の買電電力料金と、クラスタ300が供給した電力の売電電力料金の双方の電力料金をそれぞれ得ることができる。
上記のように、クラスタ200が供給を受けた電力量と、クラスタ300が供給した電力量の双方に、電力量PCを適用することができる。
なお、クラスタ300側の要因により電力の供給を中断することが生じた場合でも、上記の手順と同様の手順によって処理を行うことができる。これにより、クラスタ300側に不測の事態が生じて電力の供給を中断することになったとしても、クラスタ200側で供給を受けた電力の積算電力量から融通された電力量を正確に得ることができる。
図4に示される処理では、クラスタ300からクラスタ200に電力を供給する際に、所望の電力量の供給の終了をクラスタ200側から通知する場合を示す。
同図におけるステップS110からステップS144までの各ステップの処理は、前述の図3において同じ符号を附した処理と同じである。
ステップS144の処理が行われた後、クラスタ200は、所定の判定条件が満たされたことを検出すると、受電を停止するとともに、EMS7に受電終了を通知する(ステップS146)。例えば、所定の判定条件は、EMS7から指示された期間(時間)が終了したこと、電力の受電を継続することが困難な状況が生じたことなどが挙げられる。電力の受電を継続することが困難な状況としては、負荷装置における負荷の予定外の減少、蓄電装置における満充電に至ったこと等の要因により、他のクラスタから受電可能と見込んでいた電力量が当初の見込み量に対して不足するようになった場合や、不足が見込まれる場合などが挙げられる。
次に、EMS7の給電制御部712は、受電終了の通知を受けて、選択していたクラスタ200とクラスタ300に電力の融通終了を通知する(ステップS150A)。クラスタ300は、融通終了の通知を受け、給電終了の処理を実施する(ステップS153)。その後、クラスタ200は、EMS7に、積算電力量IPCBを送付する(ステップS154)。
次に、EMS7の積算電力情報取得部714は、積算電力量IPCBを受信した後、融通した電力量PCを算出する(ステップS160)。上記の電力量PCは、前述の式(1)に基づいて算出される。
次に、EMS7の料金算出部715は、電力量PCを算出した後、融通した電力の電力料金情報を算出する(ステップS170)。上記の電力料金情報は、前述の式(2)と式(3)とに基づいてそれぞれ算出される。
以上に示す手順により、EMS7は、電力の供給を受けるクラスタ200に設けられた検出部によって検出された積算電力量に基づいて、供給された電力量PCを算出する。さらに、EMS7は、算出された電力量PCから、クラスタ200が供給を受けた電力の買電電力料金と、クラスタ300が供給した電力の売電電力料金の双方の電力料金をそれぞれ算出することができる。
このように、クラスタ200側の要因により電力の受電を中断することが生じた場合でも、上記の手順と同様の手順によって処理を行うことができる。これにより、クラスタ300側に不測の事態が生じて電力の供給を中断することになったとしても、クラスタ200側で供給を受けた電力の積算電力量から融通された電力量を正確に得ることができる。
上記のように、クラスタ200が供給を受けた電力量と、クラスタ300が供給した電力量の双方に、電力量PCを適用することにより、供給する電力量を検出する検出部を設けることなく、供給した電力量を得ることができる。これにより、給電システム1の構成を簡素化することができる。
(クラスタ対の選択ルール)
続いて、電力の供給元のクラスタと供給先のクラスタとからなるクラスタ対の選択ルールについて説明する。クラスタ対の選択ルールは、例えば下記の2段階に分けて行うように規定する。
第1のステップとして、供給元のクラスタと供給先のクラスタの候補を抽出する。
例えば、クラスタ内の各負荷装置による消費電力量と蓄電装置に蓄電させる電力量との合計に対し、発電装置による発電量に余剰電力量が見込まれるクラスタを供給元のクラスタの候補として抽出する。
また、クラスタ内の各負荷装置による消費電力量の合計が比較的大きな値を示すクラスタ、蓄電装置の蓄電量が比較的少なく、蓄電するための電力量が比較的大きな値を示すクラスタを供給先のクラスタの候補として抽出する。
第2のステップとして、給電経路の設定が可能と判定されるクラスタ対を、第1ステップにおいて抽出された候補の中から選択する。
より具体的に示すと下記のようになる。供給元のクラスタが供給できる電力量と供給先のクラスタが必要とする電力量とのバランスが取れるように、候補として抽出された供給元のクラスタの内の何れかのクラスタと、候補として抽出された供給先のクラスタの内の何れかのクラスタとの組を定める。定めた組のクラスタ間で電力の供給を可能とする経路を選択する。
例えば、図1に示す複数の経路(第2から第4の経路)の内から、電力の供給が可能であり、供給時の電力損失が少なくなる経路を優先して適した経路を選択する。その選択の際、下記の条件を選定の条件に含めるようにしてもよい。
・他のクラスタに電力を供給する際に、交流電力により供給する組より直流電力により供給する組を優先して選択するように優先度を定め、その優先度に従って選択する。
例えば、発電装置が直流を出力する場合、交流電力によって給電するためには、少なくとも直流から交流に変換することが必要とされる。さらに、負荷装置が直流電力を消費する場合には更に交流から直流に変換することが必要とされる。これに対し、直流電力によって供給する場合、これらの変換による変換損失をなくすことができる。上記により、交流電力を供給する経路より、直流電力を供給する経路を優先して選択できるように優先度を設定する。
・組にしたクラスタ間で給電線(1次側ACバス151、1次側DCバス152)を介して供給する際に、クラスタに供給する他の電力を重畳させることなく、当該電力を供給可能とする組を、優先度を高めて選択する。
例えば、1次側ACバス151は、商用電力系統からの交流電力が供給されている場合がある。この場合、さらにクラスタ200から交流電力を供給すると、商用電力系統からの交流電力に重畳させることになる。このような場合には、交流電力による供給を選択しないように優先度を低くするように設定する。
次に、図1を参照して、クラスタ200(第1クラスタ)がクラスタ300(第2クラスタ)に電力を供給する場合の詳細について説明する。
本実施形態では、電力を供給するクラスタ200側では、供給する電力の電力量の検出を実施せず、供給を受けるクラスタ300側でその検出を実施する。このように構成することにより、供給する電力を検出するための検出部(計器)を不要にした。
また、本実施形態では、前述のとおりクラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に対して電力を送る給電経路に、1次側ACバス151と1次側DCバス152がある。EMS7(制御部)は、1次側ACバス151と1次側DCバス152の何れかの1つの給電経路を利用して、並行して給電を可能にするクラスタの組を1つに制限する。このように制限することにより、クラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に供給する電力を、1次側ACバス151や1次側DCバス152などの給電経路を介して送られる他の電力に重畳させることなく、その給電経路を介して当該電力を供給することができる。
続いて、送電に係る電力損失に対する基本的な考えを整理する。送電する際に、送電に係る電力損失が生じる。そのため、クラスタ200から供給した電力の電力量には、クラスタ300に供給された電力の電力量の他に、その送電によって生じた電力損失が含まれることになる。上記のように、供給側のクラスタ200で電力量を検出しない場合には、その電力損失を正確に検出することができない。
そこで、本実施形態では、送電損失を次に示す何れかの方法で処理をすることができる。
(1)発生する電力損失を無視するようにして電力量を扱うようにする。
低い電圧で送電する場合より、より高い電圧で送電することにより発生する電力損失を低減することができる。また、送電距離が短ければ、比較的抵抗率が小さな給電線を、電力損失を少なくするために敷設することも容易である。上記のようにすることにより、発生する電力損失を少なくすることができる。発生する電力損失を少なくして送電を行って、その電力損失を無視して電力量を扱うことにする。
(2)発生する電力損失の大きさを仮定して、仮定した電力損失に基づいて電力量を扱うようにする。
クラスタ間に設けられた給電線の亘長と種別が分かる場合、給電線における電力損失を予め算定しておき、その算定値の電力損失が発生するものと仮定することができる。或いは、クラスタ間の給電線の損失を予め計量できる場合には、給電線における電力損失を予め計量しておき、その計量値から対象区間のインピーダンスを求める。求めたインピーダンスを基にインピーダンスマップを予め作成しておき、そのインピーダンスマップから発生しうる電力損失を推定することができる。
そこで、発生する電力損失の大きさを推定して、推定した電力損失に基づいて電力量を扱うことにする。
(3)発生する電力損失の大きさを仮定して、仮定した電力損失に基づいて電力量を扱うようにする。
クラスタ間に設けられた給電線の亘長と種別が分からない場合には、給電線における電力損失を予め所定の値に仮定しておき、その所定の値の電力損失が発生するものと仮定することができる。
そこで、の大きさを仮定して、仮定した電力損失に基づいて電力量を扱うことにする。
上記の何れかの方法を採ることにより、供給側のクラスタにおいて、供給する電力量の検出を行うことを省略することができる。
以上に示したように給電システム1は、クラスタ200の発電装置242によって生成された直流電力を他のクラスタに効率よく供給することができることから、生成した直流電力を効率よく利用することができる。
[第2実施形態]
図1から5を参照して本実施形態の給電システムについて説明する。
本実施形態における給電システム1Aは、前述の図1に示す給電システム1と同様の構成を備えており、図1を参照して以下の説明を行う。
給電システム1Aは、前述の図1に示す給電システム1が検出部232を備えていたのに対し、検出部232に代え検出部232Aを備える点が異なる。
(検出部における電力量の検出方法)
ここで電力量の検出方法の一実施例について説明する。
比較のため標準的なスマートメーターの概略仕様を以下に示す。
・交流電力の電力量を計量する。
・電力量の計量結果を「瞬時消費電力量」又は「積算消費電力量」として出力することができる。
・「積算消費電力量」の履歴情報を、30分単位で記憶する。
・電力が供給される方向を管理して、「正方向」と「逆方向」の双方の計量結果を出力することができる。
ただし、上記のような標準的なスマートメーターを用いて、交流の商用電源系統に逆潮流させる電力量を計量する場合には、逆潮流させて売電する電力の電力量と、商用電源系統から受電して買電する電力の電力量とを分けて計量することが必要になる。
本実施形態の検出部は、以下の特徴を有するものとする。
・直流電力の電力量を計量する。
・電力量の計量結果を、EMS7からの要求に応じて、その要求を受けたタイミングの積算電力量を出力する。
・電力が供給される方向(電流の方向)を管理して、他のクラスタから買電する電力の電力量を計量する。なお、交流電力を検出する場合、商用電力から買電する電力の電力量の計量も可能とする。
図5は、本実施形態における検出部の構成を示す構成図である。同図では、電力系統の接続を単線結線図で示している。
同図に示される検出部232Aは、電流検出部261、電圧検出部262、電圧検出部263、整流部264、遮断器265、通信制御部266、記憶部267、計器制御部268を備える。
検出部232Aは、クラスタ外側のDCバス132とクラスタ内側のDCバス252を繋ぐ経路において、互いに並列になる2つの経路に分けて構成されている。
第1の経路である経路PSIは、1次側DCバス152側から2次側DCバス252側に向かう電流を流す経路である。この経路PSIには、電流検出部261、整流部264が直列に設けられている。第2の経路である経路PSOは、2次側DCバス252側から1次側DCバス152側に向かう電流を流す経路である。この経路PSOには、遮断器265が設けられている。
電流検出部261は、経路PSIに流れる電流Iを検出する。
整流部264は、1次側DCバス152から2次側DCバス252に向かう方向に電流を流す。
電圧検出部262は、1次側DCバス152の線間電圧V1を検出する。
電圧検出部263は、2次側DCバス252の線間電圧V2を検出する。
記憶部267は、検出部232Aを制御するための各種設定情報と、電流検出部261によって検出された電流情報、電圧検出部262、263によって検出された電圧情報と、上記の電流と電圧とから算出された電力量(瞬時電力量)と、積算電力量とを記憶する。
通信制御部266は、EMS7との通信を制御するとともに、EMS7から受信した情報を計器制御部268に送る。また、通信制御部266は、計器制御部268から要求に応じて、EMS7に情報を送信する。
計器制御部268は、EMS7からの制御に応じて検出部232A内の各部を制御するための各種設定情報を記憶部267に記憶させるとともに、検出部232A内の各部を制御する。
計器制御部268は、検出部232A内の各部から情報を収集して、収集した情報を記憶部267に記憶させるとともに、下記の処理を制御する。例えば、計器制御部268は、下記のようにして電力量(瞬時電力量、積算電力量)を算出する。
計器制御部268は、電圧検出部262によって検出されたクラスタ外側のDCバス132側の線間電圧(電圧V1)と電流検出部261によって検出されたクラスタ外側のDCバス132からクラスタ内に向かう経路に流れる電流Iとから、クラスタ外側のDCバス132側からクラスタ内に供給された電力の電力量を算出し、算出した電力量(瞬時電力量)を記憶部267に記憶させる。
計器制御部268は、上記の算出された電力量(瞬時電力量)と記憶部267に記憶されている積算電力量とから、新たな積算電力量の値を算出して、新たに算出された積算電力量の値に基づいて記憶部267に記憶された値を更新する。
計器制御部268は、電圧検出部262によって検出されたクラスタ外側のDCバス132側の線間電圧(電圧V1)と、電流検出部261によって検出されたクラスタ外側のDCバス132からクラスタ内に向かう経路に流れる電流Iとから、クラスタ外側のDCバス132側クラスタ内に供給された電力の電力量を算出し、算出した電力量(瞬時電力量)を記憶部267に記憶させる。
また、計器制御部268は、EMS7などの外部機器からの要求に応じて、記憶部267に記憶させた情報をEMS7などの外部機器に送信するように制御する。
上記のように構成した検出部232Aでは、例えば、1次側DCバス152側から2次側DCバス252側に向かう方向に電流を流す場合、遮断器265を遮断させた状態(開状態)に制御して、1次側DCバス152側の線間電圧V1が2次側DCバス252側の線間電圧V2より高くなるように調整する。1次側DCバス152側から2次側DCバス252側に向かう方向に電流を遮断する場合、遮断器265を遮断させた状態を維持したままで、1次側DCバス152側の線間電圧V1が2次側DCバス252側の線間電圧V2より低くなるように調整する。このように、1次側DCバス152側の線間電圧V1と2次側DCバス252側の線間電圧V2との大小関係を調整することによって、1次側DCバス152側から2次側DCバス252側に向かう方向に電流を調整することができる。
上記のように、1次側DCバス152側の線間電圧V1と2次側DCバス252側の線間電圧V2との大小関係を調整することで、検出部232Aは、1次側DCバス152側から2次側DCバス252側に向かう方向に電流を流すことができる。
一方、線間電圧V1と線間電圧V2との大小関係を調整するだけでは、検出部232Aは、2次側DCバス252側から1次側DCバス152側に向かう方向の電流を調整することができない。
そこで、2次側DCバス252側から1次側DCバス152側に向かう方向の電流を流す場合には、検出部232Aは、遮断器265を導通させた状態(閉状態)にするとともに、1次側DCバス152側の線間電圧V1が2次側DCバス252側の線間電圧V2より低くなるように調整する。
上記のように、検出部232Aは、遮断器265の開閉状態と、1次側DCバス152側の線間電圧V1と2次側DCバス252側の線間電圧V2との大小関係を調整することにより、検出部232Aを介して流れる電流を制御することが可能にする。
なお、2次側DCバス252側の線間電圧V2は、直交変換部221、発電装置242、蓄電装置245から供給される電力の電圧を制御することにより調整することができる。また、1次側DCバス152側の線間電圧V1は、他のクラスタの直交変換部、発電装置、蓄電装置から供給される電力の電圧を制御することにより調整することができる。
続いて、給電システム1Aが直流電力を供給する方法について説明する。
EMS7は、各クラスタに対して下記のように制御する。以下、クラスタ200からクラスタ300に直流電力を供給する場合の一例を示す。
EMS7は、クラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に直流電力が供給されていない初期状態において、クラスタ300内で供給されている直流電力の電圧V2(線間電圧)をクラスタ300に検出させる。直流電力の供給を開始する場合、EMS7は、クラスタ300内で供給されている直流電力の電圧(線間電圧)より、クラスタ200からクラスタ300に供給される直流電力の電圧(線間電圧)が高くなるように制御する。これにより、整流部264を介してクラスタ200からクラスタ300に直流電力が供給されるようになる。
また、前述のとおり、クラスタ200、300、400のそれぞれは、共通の1次側ACバス151(給電経路)を介して互いに接続されており、1次側DCバス152を介して直流電力を互いに供給することが可能である。
このように接続されたクラスタ200、300、400のそれぞれは、特定のクラスタに対して電力を供給するようにするために、他のクラスタに電力を供給するクラスタ200において下記の制御を行う。
EMS7は、クラスタ200(第1クラスタ)から供給される直流電力の電圧(線間電圧)が、直流電力の供給を受けないクラスタ400(第3クラスタ)内で供給されている直流電力の電圧(線間電圧)より低くなるように制御する。
このようにクラスタ200供給される直流電力の電圧(線間電圧)を、クラスタ400内で供給されている直流電力の電圧(線間電圧)より低くしたことにより、検出部332の整流部264によって、クラスタ400への電力の供給が遮断されるようになる。
以上に示したように給電システム1Aは、クラスタ200の発電装置242によって生成された直流電力を他のクラスタに効率よく供給することができることから、生成した直流電力を効率よく利用することができる。
以上、本発明の実施形態について説明したが、上記実施形態において、給電システム1(1A)、各クラスタの制御部、検出部及びEMS7内の各処理部の機能は専用のハードウェアにより実現されるものであってもよく、また、各処理部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりその機能を実現させるものであってもよい。
すなわち、給電システム1(1A)、各クラスタの制御部、検出部及びEMS7内の各処理部は内部にコンピュータシステムを有している。そして、上述した処理に関する一連の処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。また、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
なお、ここで、本発明と上述した実施形態との対応関係について補足して説明する。
発明における給電システムは、給電システム1(1A)が対応する。また、本発明における検出部は、検出部232(232A)が対応する。また、本発明における料金算出部は、EMS装置11、制御部710、料金算出部715が対応する。また、本発明における制御部は、EMS装置11、クラスタ制御部210、310が対応する。また、本発明における第1クラスタ、第2クラスタ、第3クラスタは、それぞれクラスタ200、クラスタ300、クラスタ400が対応する。また、本発明における整流部は、整流部264が対応する。また、本発明における遮断器は、遮断器265が対応する。
[1]そして上記実施形態において、給電システム1(給電システム)は、電力を消費するクラスタに電力を供給する給電システムであって、電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出する料金算出部と、を備えることを特徴とする。
このような構成の給電システム1では、検出部332(332A)は、電力を生成するクラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に供給される電力の電力量を検出する。料金算出部715は、検出部332(332A)によって検出された電力量からクラスタ300(第2クラスタ)に供給された電力の電力量料金を算出する。
これにより、給電システム1は、電力を生成するクラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に供給される電力の電力量から、クラスタ300(第2クラスタ)に供給された電力の電力量料金を算出して課金できるようになる。このことから、余剰電力を無駄なく利用できるようになり、直流電力を効率よく利用することができる。
[2]また、上記実施形態の給電システム1において、料金算出部は、前記検出された電力量から前記第1クラスタが供給した電力の電力提供料金を算出することを特徴とする。
このような給電システム1(給電システム)では、料金算出部が、検出部332(332A)によって検出された電力量からクラスタ200(第1クラスタ)が供給した電力の電力提供料金を算出する。
これにより、クラスタ200(第1クラスタ)が供給した電力の電力提供料金を算出することにより、余剰電力を無駄なく利用できるようになり、直流電力を効率よく利用することができる。
[3]また、上記実施形態の給電システム1は、前記第1クラスタから前記第2クラスタに給電線を介して供給する電力を、クラスタに供給する他の電力に重畳させることなく、当該電力を供給するように制御する制御部を備えることを特徴とする。
このような給電システム1(給電システム)では、EMS7(制御部)は、クラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に給電線(1次側DCバス152、1次側ACバス151)を介して供給する電力を、クラスタに供給する他の電力に重畳させることなく、当該電力を供給するように制御する。
これにより、クラスタ200(第1クラスタ)が供給する電力を、クラスタに供給する他の電力に重畳させることなく、他の電力を分けて供給することができるようになり、クラスタ200が供給する電力の電力提供料金の算出が容易となる。このことから、余剰電力を無駄なく利用できるようになり、直流電力を効率よく利用することができる。
[4]また、上記実施形態の給電システム1において、前記第1クラスタから前記第2クラスタに供給する電力は、直流電力のみ又は直流電力と交流電力の双方の電力の何れかの電力とし、前記検出部は、前記交流電力を供給する場合に、前記第1クラスタから前記第2クラスタに供給された交流電力の電力量をさらに検出することを特徴とする。
このような給電システム1(給電システム)では、前記第1クラスタから前記第2クラスタに供給する電力は、直流電力のみ又は直流電力と交流電力の双方の何れかとすることができる。ここで、交流電力を供給する場合に、クラスタ200からクラスタ300に供給された交流電力の電力量を検出部331が検出するように構成する。
これにより、直流電力のみ又は直流電力と交流電力の双方の何れかの電力の供給が可能になることから、供給経路を分散することで変換損失を低減できるようになり、直流電力を効率よく利用することができる。
[5]また、上記実施形態の給電システム1において、前記制御部は、前記第1クラスタから前記第2クラスタに直流電力が供給されていない場合に前記第2クラスタ内で供給されている直流電力の電圧より、前記第1クラスタから前記第2クラスタに供給される直流電力の電圧が高くなるように制御して、前記直流電力の供給を開始することを特徴とする。
このような給電システム1(給電システム)では、EMS装置11(制御部)は、クラスタ200(第1クラスタ)からクラスタ300(第2クラスタ)に直流電力が供給されていない場合にクラスタ300内で供給されている直流電力の電圧より、クラスタ200からクラスタ300に供給される直流電力の電圧が高くなるように制御して、直流電力の供給を開始する。
これにより、供給側で供給する電力の電圧を制御することにより、電力の供給を制御することが可能になり、直流電力を効率よく利用することができる。
[6]また、上記実施形態の給電システム1において、前記第1クラスタと前記第2クラスタの何れとも異なる第3クラスタがあり、前記第1クラスタから前記第3クラスタのそれぞれは、共通の給電経路を介して互いに接続されており、前記給電経路を介して前記直流電力を自クラスタから他のクラスタに供給することが可能であり、前記制御部は、前記第1クラスタから供給される直流電力の電圧が、前記第3クラスタ内で供給されている直流電力の電圧より低くなるように制御することを特徴とする。
このような給電システム1(給電システム)では、クラスタ200(第1クラスタ)、クラスタ300(第2クラスタ)、クラスタ400(第3クラスタ)のそれぞれは、共通の給電経路を介して互いに接続されており、前記給電経路を介して直流電力を自クラスタから他のクラスタに供給することが可能である。EMS7は、クラスタ200から供給される直流電力の電圧が、クラスタ400内で供給されている直流電力の電圧より低くなるように制御する。
これにより、供給側で供給する電力の電圧を制御することにより、クラスタ200が供給する電力をクラスタ400に供給しないように制御することが可能になり、直流電力を効率よく利用することができる。
[7]また、上記実施形態の給電システム1において、前記第1クラスタから第3クラスタのそれぞれは、前記給電経路と各クラスタの内部給電経路との間に設けられ、その間に流す電流を整流する整流部と、前記整流部と並列になるように設けられる遮断器とを備えることを特徴とする。
このような給電システム1(給電システム)では、クラスタ200(第1クラスタ)、クラスタ300(第2クラスタ)、クラスタ400(第3クラスタ)のそれぞれは、同様の構成を有する検出部を備える。例えば、検出部232Aでは、整流部264は、給電経路と各クラスタの内部給電経路との間に設けられ、その間に流す電流を整流する。遮断器265は、前記整流部と並列になるように設けられている。
これにより、直流電力の供給を制御することが可能になり、直流電力を効率よく利用することができる。
以上、本発明の実施の形態について説明したが、本発明の給電システムは、上述の図示例にのみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、上記の例では、クラスタ200からクラスタ300に電力を供給する場合を例示したが、上記と逆の方向に電力を供給したり、他のクラスタの組のクラスタ同士で電力を供給したりするようにしてもよい。
1、1A・・・給電システム、
2・・・商用電力系統、
100、200、300、400・・・クラスタ、
110、210、310・・・制御部、
231、232、232A、331、332、332A・・・検出部、
221、321・・・直交変換部、
222、265、322・・・遮断器、
242、342・・・発電装置、
243、343・・・交流負荷装置、
244、344・・・直流負荷装置、
245、345・・・蓄電装置、
261・・・電流検出部、262、263・・・電圧検出部、264・・・整流器、
7・・・EMS、710・・・制御部、711・・・クラスタ対選択部、
712・・・給電制御部、713・・・基準単価設定部、
714・・・積算電力情報取得部、715・・・料金算出部、
720・・・記憶部、721・・・クラスタ対情報記憶部DB、
723・・・基準単価情報DB、724・・・積算電力量情報DB、
725・・・電力料金情報DB

Claims (9)

  1. 電力を消費するクラスタに電力を供給する給電システムであって、
    電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、
    前記検出された電力量から前記第2クラスタに供給された電力の電力量料金を算出する料金算出部と、
    を備えることを特徴とする給電システム。
  2. 前記料金算出部は、
    前記検出された電力量から前記第1クラスタが供給した電力の電力提供料金を算出する
    ことを特徴とする請求項1に記載の給電システム。
  3. 前記第1クラスタから前記第2クラスタに給電線を介して供給する電力を、クラスタに供給する他の電力に重畳させることなく、当該電力を供給するように制御する制御部
    を備えることを特徴とする請求項1又は2に記載の給電システム。
  4. 前記第1クラスタから前記第2クラスタに供給する電力は、直流電力のみ又は直流電力と交流電力の双方の電力の何れかの電力とし、
    前記検出部は、
    前記交流電力を供給する場合に、前記第1クラスタから前記第2クラスタに供給された交流電力の電力量をさらに検出する
    ことを特徴とする請求項3に記載の給電システム。
  5. 前記制御部は、
    前記第1クラスタから前記第2クラスタに直流電力が供給されていない場合に前記第2クラスタ内で供給されている直流電力の電圧より、前記第1クラスタから前記第2クラスタに供給される直流電力の電圧が高くなるように制御して、前記直流電力の供給を開始する
    ことを特徴とする請求項4に記載の給電システム。
  6. 前記第1クラスタと前記第2クラスタの何れとも異なる第3クラスタがあり、
    前記第1クラスタから前記第3クラスタのそれぞれは、
    共通の給電経路を介して互いに接続されており、前記給電経路を介して前記直流電力を自クラスタから他のクラスタに供給することが可能であり、
    前記制御部は、
    前記第1クラスタから供給される直流電力の電圧が、前記第3クラスタ内で供給されている直流電力の電圧より低くなるように制御する
    ことを特徴とする請求項4又は5に記載の給電システム。
  7. 前記第1クラスタから第3クラスタのそれぞれは、
    前記給電経路と各クラスタの内部給電経路との間に設けられ、その間に流す電流を整流する整流部と、
    前記整流部と並列になるように設けられる遮断器と
    を備えることを特徴とする請求項6に記載の給電システム。
  8. 電力を消費するクラスタに電力を供給する給電システムにおける給電方法であって、
    給電システムは、
    電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、
    前記検出された電力量から電力量料金を算出する料金算出部と、を備え、
    前記検出部は、
    前記第2クラスタに供給される直流電力の電力量を検出し、
    前記料金算出部は、
    前記検出された電力量から前記第2クラスタに供給された直流電力の電力量料金を算出する
    ことを特徴とする給電方法。
  9. 電力を生成する第1クラスタから第2クラスタに供給される電力の電力量を検出する検出部と、前記検出された電力量から電力量料金を算出する料金算出部と、を備える給電システムのコンピュータに、
    前記検出部が、前記第2クラスタに供給される直流電力の電力量を検出するステップと、
    前記料金算出部が、前記検出された電力量から前記第2クラスタに供給された直流電力の電力量料金を算出するステップと
    を実行させるためのプログラム。
JP2014192450A 2014-09-22 2014-09-22 給電システム、給電方法、及びプログラム Pending JP2016063718A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192450A JP2016063718A (ja) 2014-09-22 2014-09-22 給電システム、給電方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192450A JP2016063718A (ja) 2014-09-22 2014-09-22 給電システム、給電方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2016063718A true JP2016063718A (ja) 2016-04-25

Family

ID=55796297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192450A Pending JP2016063718A (ja) 2014-09-22 2014-09-22 給電システム、給電方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2016063718A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153203A1 (ja) * 2020-01-31 2021-08-05 Ntn株式会社 電力需給調整システムおよび電力需給調整方法
WO2022145336A1 (ja) * 2021-01-04 2022-07-07 国立大学法人東北大学 ネットワークシステム及びネットワークシステムの制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153203A1 (ja) * 2020-01-31 2021-08-05 Ntn株式会社 電力需給調整システムおよび電力需給調整方法
JP2021121160A (ja) * 2020-01-31 2021-08-19 Ntn株式会社 電力需給調整システムおよび電力需給調整方法
JP7393229B2 (ja) 2020-01-31 2023-12-06 Ntn株式会社 電力需給調整システムおよび電力需給調整方法
WO2022145336A1 (ja) * 2021-01-04 2022-07-07 国立大学法人東北大学 ネットワークシステム及びネットワークシステムの制御方法

Similar Documents

Publication Publication Date Title
US11993171B2 (en) Method and apparatus for charging a battery using local power grid topology information
US9991718B2 (en) Power interchange system, power transmitting/receiving device, power interchange method, and program
US11241975B2 (en) Electric vehicle home microgrid power system
JP2018130021A (ja) 電池制御装置、制御装置、電池制御システム、電池制御方法および電池制御支援方法
WO2013136839A1 (ja) 電力系統制御装置及び電力系統制御方法
WO2014033892A1 (ja) 電力融通ルート作成方法、並びに電力融通ルート作成装置
JP2016213954A (ja) 再生可能エネルギー電力の分散型蓄電システム
US9804212B2 (en) Energy management system
KR101587581B1 (ko) 수요반응형 전기자동차 교류 충전 방법 및 장치
CN109873498A (zh) 一种含分布式光伏的低压配电网电能质量综合监测方法
JP2017060230A (ja) 電力管理システム、電力管理方法及びプログラム
JP7484842B2 (ja) 電力管理システム、充電設備、サーバおよび電力需給バランスの調整方法
Ghai et al. DC picogrids: A case for local energy storage for uninterrupted power to DC appliances
JP2016063718A (ja) 給電システム、給電方法、及びプログラム
JP5377435B2 (ja) 充電制御装置、充電制御方法
JP5952065B2 (ja) 地域内給電システム
Sakagami et al. Simulation to optimize a DC microgrid in Okinawa
JP6128999B2 (ja) 電力融通システム及び該電力融通システム用の制御手順決定装置
WO2020234953A1 (ja) 貯蔵電力由来管理装置、方法、およびプログラム
JP2016012983A (ja) 蓄電設備監視装置及び方法
JP5268977B2 (ja) 電力供給システムの制御方法、及び電力供給システム
Dias et al. Simulation of a distributed generator with wireless communication using TrueTime and PLECS
JP6936071B2 (ja) 発電設備の制御方法および発電設備の制御装置
JP7406436B2 (ja) 電力融通システム
Liu et al. Design and optimization of DC-grids power exchange