WO2014056445A1 - 一种路由转发的方法、系统及控制器 - Google Patents

一种路由转发的方法、系统及控制器 Download PDF

Info

Publication number
WO2014056445A1
WO2014056445A1 PCT/CN2013/084990 CN2013084990W WO2014056445A1 WO 2014056445 A1 WO2014056445 A1 WO 2014056445A1 CN 2013084990 W CN2013084990 W CN 2013084990W WO 2014056445 A1 WO2014056445 A1 WO 2014056445A1
Authority
WO
WIPO (PCT)
Prior art keywords
agw
flow table
enb
controller
routing flow
Prior art date
Application number
PCT/CN2013/084990
Other languages
English (en)
French (fr)
Inventor
梁爽
霍玉臻
王静
周娜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13846060.5A priority Critical patent/EP2908464A4/en
Priority to US14/435,148 priority patent/US9787483B2/en
Publication of WO2014056445A1 publication Critical patent/WO2014056445A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method, system, and controller for routing and forwarding. Background technique
  • FIG. 1 shows a schematic structural diagram of an EPS.
  • the entire EPS includes a wireless access network and a core network.
  • the core network includes a Home Subscriber Server (HSS), a Mobility Management Entity (MME), a Serving GPRS Support Node (SGSN), and a Policy and Charging Rule Function.
  • HSS Home Subscriber Server
  • MME Mobility Management Entity
  • SGSN Serving GPRS Support Node
  • PCRF Policy and Charging Rule Function
  • SGW Serving Gateway
  • PGW Packet Data Gateway
  • PDN Packet Data Network
  • the HSS which contains all the functions of the Home Location Register (HLR), is the permanent storage location of the user's subscription data, and is located in the home network to which the user subscribes.
  • HLR Home Location Register
  • the MME is the location where the subscriber subscription data is stored in the current network, and is responsible for terminal-to-network non-access stratum signaling management, terminal security verification function, terminal mobility management, user idle mode tracking and paging management functions, and Bearer management.
  • SGSN is a service support point for GSM EDGE Radio Access Network (GERAN) and UTRAN users accessing the core network. It is similar in function to the mobility management entity. User location update, paging management and bearer management functions.
  • GERAN GSM EDGE Radio Access Network
  • the service gateway is a gateway of the core network to the wireless system, and is responsible for the user plane bearer of the terminal to the core network, the data buffer in the terminal idle mode, the function of initiating the service request by the network side, the lawful interception and the packet data routing and forwarding function; It is responsible for counting the situation in which the user terminal uses the wireless network, and generates the CDR of the terminal using the wireless network, and transmits it to the charging gateway.
  • the packet data gateway is a gateway of the evolved system and the external packet data network of the system. It is connected to the Internet and the packet data network, and is responsible for the Internet Protocol (IP) address allocation, charging function, packet filtering, and policy of the terminal. Control and other functions.
  • IP Internet Protocol
  • the Gateway GPRS Support Node supports the edge routing function of the GPRS network. That is, the GGSN is responsible for routing and forwarding data of the GPRS network, and through the firewall and filtering functions. To protect the integrity of GPRS network data.
  • the GGSN also has a charging function.
  • the PGW contains all the functions of the GGSN, and the GGSN can be considered as a sub-function of the PGW and embedded in the PGW. Therefore, the SGSN can connect directly to the PGW and use the Gn/Gp interface.
  • the packet data network is the operator's IP service network, which provides IP services to users through the carrier's core network.
  • the policy charging rule function entity is a server in the evolution system responsible for providing rules for charging control, online credit control, threshold control, and quality of service (QoS) policies.
  • the radio access network is composed of an evolved base station (E-UTRAN NodeB, eNB) and a 3G radio network controller (RNC), which is mainly responsible for transmitting and receiving wireless signals, and communicating with the terminal through the air interface to manage the air interface. Radio resources, resource scheduling, access control.
  • E-UTRAN NodeB evolved base station
  • RNC 3G radio network controller
  • the main purpose of the embodiments of the present invention is to provide a method, a system, and a controller for routing and forwarding, which can establish a routing forwarding path through the extended OpenFlow protocol, and reduce network operating costs.
  • a method for routing forwarding comprising:
  • the controller sends the pre-generated routing flow table to the base station (eNB) and the access gateway (AGW) respectively;
  • the eNB and the AGW perform data distribution according to the received routing flow table, respectively.
  • the method further includes:
  • the controller acquires the identifier of the UE and related information of the UE;
  • the controller generates a routing flow table according to the identifier of the UE and the related information of the UE, where the related information of the UE includes the UE subscription information and the UE policy information.
  • the controller acquires the identifier of the UE and the UE subscription information, where:
  • the controller receives the create session request sent by the mobility management entity (MME), and obtains the identifier of the UE and the UE subscription information included in the create session request; or
  • the controller receives the create session request sent by the MME, obtains the identifier of the UE included in the create session request, and acquires the UE subscription information by interacting with the home subscriber server (HSS).
  • HSS home subscriber server
  • the controller obtains policy information, which is:
  • the controller acquires the pre-configured policy information or obtains the policy information from the policy charging rule function entity PCRF.
  • the controller sends the pre-generated routing flow table to the eNB, where: the controller sends the routing flow table to the eNB by sending an add message to the eNB;
  • the eNB performs data distribution according to the received routing flow table, which is:
  • the eNB establishes a wireless bearer according to the QoS information and the bearer identification information in the routing flow table, and notifies the MME after the completion of the 7-load establishment;
  • the controller sends the pre-generated routing flow table to the AGW, which is:
  • the routing flow table is sent to the AGW by sending an add message to the AGW.
  • the controller sends the pre-generated routing flow table to the eNB and the AGW respectively: the controller sends the added flow message to the eNB and the AGW, and sends the routing flow table to the eNB and the AGW;
  • the eNB performs data distribution according to the received routing flow table, which is:
  • the eNB establishes a wireless bearer according to the QoS information and the bearer identification information in the routing flow table, and notifies the MME after the establishment of the bearer.
  • the routing flow table sent to the AGW includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the method further includes:
  • the controller After confirming that the radio bearer is established, the controller sends an update message to the AGW to notify the AGW to stop buffering the downlink data.
  • the AGW performs data distribution according to the received routing flow table, and the AGW establishes a distribution path according to the QoS information and the bearer identification information in the routing flow table, and performs data distribution.
  • the controller sends the pre-generated routing flow table to the eNB and the AGW respectively, as follows: After the controller confirms that the radio bearer is established, it sends an add message to the eNB and the AGW, and sends the routing flow table to the eNB and the AGW.
  • the controller sends the pre-generated routing flow table to the eNB and the AGW respectively, as follows:
  • the eNB After receiving the uplink data sent by the UE, the eNB sends a routing flow table request to the controller according to the pre-configured controller address or the controller address delivered by the MME;
  • the controller After receiving the routing flow table request, the controller sends an add message to the eNB and the AGW, and sends the routing flow table to the eNB and the AGW.
  • the controller sends the pre-generated routing flow table to the AGW, as follows:
  • the controller sends the routing flow table to the AGW by sending an add message to the AGW.
  • the routing flow table includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the controller sends the pre-generated routing flow table to the eNB, after the controller confirms that the radio bearer is established, sends an add message to the eNB, and sends the routing flow table to the eNB;
  • the AGW performs data distribution according to the received routing flow table, and is:
  • the controller After the controller confirms that the radio bearer is established, it sends an update message to the AGW, and the notification is sent.
  • the AGW stops buffering the downlink data, and distributes the received downlink data according to the routing flow table.
  • a system for routing and forwarding including a UE and an MME, further includes: a controller, an eNB, and an AGW;
  • the controller is configured to deliver the pre-generated routing flow table to the eNB and the AGW respectively; and the eNB and the AGW are respectively configured to perform data distribution according to the received routing flow table.
  • the controller is further configured to acquire an identifier of the UE and related information of the UE; Generating a routing flow table according to the identifier of the UE and the related information of the UE, where the related information of the UE includes the UE subscription information and the UE policy information.
  • the controller is configured to receive a create session request sent by the MME, obtain the identifier of the UE and the UE subscription information included in the create session request, or receive a create session request sent by the MME, and obtain the The identifier of the UE in the create session request; interacting with the HSS to obtain the UE subscription information.
  • the controller is specifically configured to obtain the pre-configured policy information or obtain the policy information from the PCRF.
  • the controller is specifically configured to send the routing flow table to the eNB by sending an add message to the eNB. After the acknowledgment that the radio bearer is established, the controller further configures the routing flow by sending an add message to the AGW.
  • the table is sent to the AGW;
  • the eNB is specifically configured to establish a radio bearer according to the QoS information and the bearer identification information in the routing flow table, and notify the MME after the completion of the bearer.
  • the controller is specifically configured to send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the AGW.
  • the eNB is specifically configured to establish a radio bearer according to the QoS information and the bearer identification information in the routing flow table, and notify the MME after the completion of the bearer.
  • the routing flow table sent to the AGW includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the controller is further configured to: after confirming that the radio bearer is established, send an update message to the AGW, and notify the AGW to stop buffering the downlink data.
  • the AGW is specifically configured to establish a distribution path according to the QoS information and the bearer identification information in the routing flow table, and perform data distribution.
  • the controller is specifically configured to send an add message to the eNB and the AGW, and then send the routing flow table to the eNB and the AGW.
  • the eNB is configured to: after receiving the uplink data sent by the UE, send a routing flow table request to the controller according to the preset controller address or the controller address delivered by the MME;
  • the controller is configured to send an add message to the eNB and the AGW respectively after receiving the routing flow table request, and send the routing flow table to the eNB and the AGW.
  • the controller is specifically configured to send the routing flow table to the AGW by sending an add message to the AGW, where the routing flow table includes, when the AGW receives the downlink data, buffering the After the acknowledgment of the establishment of the radio bearer, the eNB sends an add message to the eNB, sends the routing flow table to the eNB, and sends an update message to the AGW, informing the AGW to stop buffering the downlink data, and according to the route
  • the flow table distributes the received downlink data.
  • a controller including a sending module, configured to send a pre-generated routing flow table to an eNB and an AGW, respectively.
  • the sending module is further configured to acquire an identifier of the UE and related information of the UE, and generate a routing flow table according to the identifier of the UE and the related information of the UE, where the related information of the UE includes UE subscription information, UE policy information.
  • the sending module is configured to send the routing flow table to the eNB by sending an add message to the eNB, and configured to: after confirming that the radio bearer is established, send the added message to the AGW to send the routing flow.
  • the table is sent to the AGW.
  • the sending module is specifically configured to send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the AGW.
  • the routing flow table sent to the AGW includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the sending module is further configured to: after confirming that the radio bearer is established, send an update message to the AGW, and notify the AGW to stop buffering the downlink data.
  • the sending module is specifically configured to: after confirming that the radio bearer is established, send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the AGW.
  • the sending module is configured to send an add message to the eNB and the AGW respectively after receiving the routing flow table request sent by the eNB, and send the routing flow table to the eNB and the AGW.
  • the sending module is specifically configured to send the routing flow table to the AGW by sending an add message to the AGW, where the routing flow table includes, when the AGW receives the downlink data, cache the After the acknowledgment of the establishment of the radio bearer, the eNB sends an add message to the eNB, sends the routing flow table to the eNB, and sends an update message to the AGW, informing the AGW to stop buffering the downlink data, and according to the route
  • the flow table distributes the received downlink data.
  • the controller sends the routing flow table to the eNB and the AGW, and the extended OpenFlow protocol can be applied to the EPS, which reduces the cost of the network upgrade, can simplify the network upgrade, and shorten the network upgrade period.
  • the extended OpenFlow protocol can be applied to the EPS, which reduces the cost of the network upgrade, can simplify the network upgrade, and shorten the network upgrade period.
  • FIG. 1 is a schematic structural view of an existing EPS system
  • FIG. 2 is a schematic flowchart of a method for implementing route forwarding according to an embodiment of the present invention
  • Embodiment 3 is a schematic flowchart of an implementation manner of Embodiment 1 of a method for routing and forwarding according to the present invention
  • Embodiment 4 is a schematic flowchart of an implementation process of Embodiment 2 of a method for routing and forwarding according to the present invention
  • FIG. 5 is a schematic flowchart of an implementation manner of Embodiment 3 of a method for routing and forwarding according to the present invention
  • FIG. 6 is a schematic flowchart of an implementation process of Embodiment 4 of a method for routing and forwarding according to the present invention
  • Embodiment 7 is a schematic flowchart of an implementation process of Embodiment 5 of a method for routing and forwarding according to the present invention
  • Embodiment 8 is a schematic flowchart of an implementation process of Embodiment 6 of a method for routing and forwarding according to the present invention
  • Embodiment 9 is a schematic flowchart of an implementation process of Embodiment 7 of a method for routing and forwarding according to the present invention.
  • FIG. 10 is a schematic structural diagram of a system for routing and forwarding according to an embodiment of the present invention. detailed description
  • OpenFlow OpenFlow protocol
  • the external control plane entity uses the OpenFlow protocol to control the forwarding plane device to implement various forwarding logics.
  • the main function of the forwarding plane device is to control according to OpenFlow.
  • the flow table sent by the device performs controlled forwarding, and its behavior is standardized: after receiving a packet, the field value of the header is taken out, and the flow table is searched as a key. After matching an entry, the entry is based on the entry.
  • the instruction set in the content transforms the message field, and then forwards it to a logical or physical port according to the indication.
  • the protocol is further evolved into Software Defined Network (SDN) technology, which can implement various complex network applications by software programming on the control plane, and the forwarding plane device does not need any change, because the control plane adopts general-purpose server + universal
  • SDN Software Defined Network
  • the operating system and can be implemented using a common software programming tool or a scripting language such as Python, which makes the support of the new network protocol very simple, and the new technology deployment cycle is greatly shortened.
  • the controller sends the pre-generated routing flow table to the base station eNB and the access gateway AGW, respectively; and the eNB and the AGW respectively distribute the data according to the received routing flow table.
  • FIG. 2 is a flowchart showing an implementation process of a route forwarding method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 The controller sends the pre-generated routing flow table to the eNB and the AGW respectively. Specifically, the controller sends the routing flow table by sending an Add message to the eNB. And sending the routing flow table to the AGW by sending an add message to the AGW after confirming that the radio bearer is established; or
  • the controller may send the routing flow table to the eNB and the AGW by sending an add message to the eNB and the AGW respectively.
  • the routing flow table sent to the AGW may further include, when the AGW receives the downlink data. And buffering the buffering indication of the downlink data; or, after the controller confirms that the radio bearer is established, sending an add message to the eNB and the AGW, and sending the routing flow table to the eNB and the AGW; or
  • the eNB When the eNB receives the uplink data sent by the UE, sends a routing flow table request to the controller according to the pre-configured controller address or the controller address delivered by the MME; after receiving the routing flow table request, the controller receives the routing flow table request And sending an add message to the eNB and the AGW, and sending the routing flow table to the eNB and the AGW; or
  • the controller sends the routing flow table to the AGW by sending an add message to the AGW.
  • the routing flow table includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the controller After confirming that the radio bearer is established, the controller sends an add message to the eNB, and sends the routing flow table to the eNB.
  • the foregoing adding message may specifically send a message to the routing flow table.
  • the method may further include: the controller acquiring the identifier of the UE and the related information of the UE; the controller generates a routing flow table according to the identifier of the UE and the related information of the UE, where the UE Relevant information includes UE subscription information and UE policy information;
  • the controller obtains the identifier of the UE and the UE subscription information as follows: The controller receives the create session request sent by the MME, and obtains the identifier of the UE and the UE subscription information included in the create session request, or the controller Receiving a create session request sent by the MME, acquiring an identifier of the UE included in the create session request, and acquiring the UE subscription information and the charging information by interacting with the HSS.
  • the controller acquires the policy information as: the controller acquires a pre-configured policy letter Or obtain policy information from the PCRF.
  • Step 202 The eNB and the AGW respectively perform data distribution according to the received routing flow table. After the eNB receives the routing flow table sent by the controller by sending the added message, the eNB performs QoS according to the routing flow table. The information and the bearer identification information are used to establish a radio bearer, and the MME is notified after the bearer is established;
  • the routing flow table received by the AGW further includes: a buffering indication for buffering the downlink data when the AGW receives the downlink data, where The eNB establishes a radio according to the QoS information and the bearer identification information in the routing flow table, and sends an initial context setup response or a bearer setup response to the MME;
  • the controller After confirming that the radio bearer is established, the controller sends an update message to the AGW, notifying the AGW to stop buffering the downlink data, and distributing the received downlink data according to the routing flow table; or
  • the controller After the routing flow table received by the AGW includes the buffering indication, and the controller confirms that the radio bearer is sent to the eNB after the radio bearer is established, the controller sends an update message to the AGW after confirming that the radio bearer is established.
  • the AGW stops buffering the downlink data, and distributes the received downlink data according to the routing flow table.
  • the SGW and the PGW can be combined in a non-roaming situation or a local access situation of a roaming scenario.
  • the access gateway AGW
  • the two network elements of the SGW and the PGW do not need to establish a forwarding path by themselves, and the establishment of the forwarding path is performed by the controller.
  • the PGW's original assignment or assistance in assigning IP addresses, policy delivery, and other functions are also performed by the controller.
  • it will be considered in the subsequent process according to the combined network element AGW.
  • the scenario of the scenario is taken as an example. For a non-concatenated scenario, the controller needs to separately send a routing flow table to the two network elements, and the process is similar.
  • FIG. 3 is a flowchart showing an implementation process of Embodiment 1 of a method for routing and forwarding according to the present invention.
  • the first embodiment specifically describes the process of generating a routing flow table in the attaching process. As shown in FIG. 3, the first embodiment includes the following steps:
  • Steps 301 ⁇ 302 the UE initiates an attach request to the MME by using the eNB;
  • Step 303 The MME determines whether an authentication process is to be initiated for the UE, and if necessary, completes an authentication process between the UE, the MME, and the HSS.
  • Step 304 The MME interacts with the HSS to perform a location update process, and obtains subscription data of the user.
  • Step 305 the MME selects a suitable controller to serve the user
  • the MME may select an appropriate controller through local pre-configuration, or may dynamically query the address information of the acquiring controller through a domain name resolution server (DNS).
  • DNS domain name resolution server
  • the fully qualified domain name/FQDN can be configured by using the base station identifier, the tracking area identifier or the access point name (APN) to construct a fully qualified domain name (FQDN) in a manner similar to the current selection of the SGW/PGW. Controller address.
  • Step 306 The MME sends a create session request to the selected controller, where the identifier of the UE is carried.
  • the creating session request may optionally further carry the QoS information, the charging information, and the like allowed by the UE to be subscribed.
  • the controller does not perform step 307 and directly performs step 308.
  • Step 307 When the MME does not send the QoS information, the charging information, and the like allowed by the UE to the controller, the controller acquires the subscription data of the UE by interacting with the HSS.
  • Step 308 The controller acquires policy information of the UE.
  • the controller may also interact with the PCRF and obtain the policy information generated by the PCRF for the UE; otherwise, the controller directly utilizes the locally pre-configured related policy information.
  • Step 309 The controller selects an appropriate AGW for the UE according to the acquired information of the UE. And generating a routing flow table according to the UE related information and related policy information;
  • Step 310 The controller returns a create session response message to the MME.
  • the second embodiment to the sixth embodiment of FIG. 4 to FIG. 9 are applicable to the data path establishing process after the attach process, the service request process, the TAU process, and the PDN connection establishment process.
  • FIG. 4 shows an implementation flow of Embodiment 2 of the method for routing and forwarding according to the present invention.
  • the second embodiment is the first implementation manner of establishing a route forwarding path.
  • This embodiment is suitable for the controller to obtain the notification of the MME in the previous process, generate a routing flow table or has obtained the necessary information for generating the routing flow table. For example, during the attach process, the MME notifies the controller to generate a corresponding routing flow table by creating a session request.
  • Step 400 Perform an attach, a service request, a tracking area update process, and the like;
  • the controller has obtained the necessary information to generate the flow table, or has generated the flow table.
  • Steps 401-402 the controller distributes according to the generated routing flow table, sends an adding message to the eNB, and delivers a corresponding routing flow table for the eNB;
  • the routing flow table includes information such as extended user identification information, a user plane forwarding address, and a bearer identifier.
  • the GPRS Tunneling Protocol for the User Plane (GTP-U) is used as the routing and forwarding protocol in the network, and the routing flow table further includes the tunnel end identifier and address of the AGW and the eNB.
  • PMIP Proxy Mobile IP
  • the routing flow table further includes a general routing encapsulation identifier of the AGW and the eNB.
  • the added message may be a non-response message or a response message.
  • the eNB returns a response message to the controller after receiving the routing flow table.
  • Step 403 The MME generates a corresponding Non-Access Stratum (NAS) message according to the information previously obtained from the controller. Specifically, for example, in the attaching process, the controller creates a session corresponding message sent by the MME, and the MME generates an attach accept message; in the public data network (PDN) connection request process, the MME needs to generate a PDN connection establishment accept message. In the TRACKING AREA UPDATE (TAU) process, the MME needs to generate a TAU accept message. In particular, the process does not generate any NAS messages during the service request process. Therefore, this step is skipped during the business request process.
  • PDN public data network
  • TAU TAU
  • Step 404 The MME sends an initial context setup request or a bearer setup request to the eNB.
  • the MME generates the NAS message in step 403
  • the NAS message is also included in the message.
  • Step 405 The eNB establishes a radio bearer according to the QoS information and bearer identification information in the received routing flow table.
  • Step 406 After completing the establishment of the radio bearer, the eNB sends an initial context setup response or a bearer setup response to the MME.
  • Step 407 The MME sends a modify session request to the controller.
  • Step 408 The controller knows in step 407 that the radio bearer has been successfully established. The controller sends an add message to the AGW to deliver a corresponding routing flow table for the AGW.
  • the routing flow table includes extended user identification information, a user plane forwarding address, a bearer identifier, and the like.
  • the routing flow table further includes the tunnel end identifier and address of the AGW and the eNB.
  • the routing flow table further includes a general routing encapsulation identifier of the AGW and the eNB.
  • the added message may be a non-response message or a response message; when it is a response message, the AGW returns a response message to the control after receiving the routing flow table. Device.
  • Step 409 The controller returns a modification session response to the MME.
  • FIG. 5 is a flowchart showing an implementation process of Embodiment 3 of a method for routing and forwarding according to the present invention.
  • the third is to implement the second implementation of the route forwarding path.
  • This embodiment is similar to the application scenario of the second embodiment, and the process is similar, except that step 502 and step 508 are omitted.
  • Step 502 The controller sends an add message to the eNB and the AGW, and sends a corresponding route flow table.
  • the routing flow table includes extended user identification information, a user plane forwarding address, a bearer identifier, and the like.
  • the routing flow table further includes the tunnel end identifier and address of the AGW and the eNB.
  • the routing flow table further includes a general routing encapsulation identifier of the AGW and the eNB.
  • the routing flow table sent by the controller to the AGW further needs to include a buffer indication, and is used to instruct the AGW to buffer the downlink data when the AGW receives the downlink data.
  • the added message may be a non-response message or a response message; when it is a response message, after receiving the routing flow table, the eNB and the AGW respectively return a response message to the controller.
  • Step 508 The controller learns in step 507 that the radio bearer has been successfully established, sends an update message to the AGW, notifies the AGW to stop caching data, and starts distributing data according to the previously received flow table information.
  • FIG. 6 shows an implementation flow of Embodiment 4 of the method for routing and forwarding according to the present invention.
  • the fourth embodiment is Embodiment 3 of establishing a route forwarding path.
  • This embodiment is similar to the application scenario of the third embodiment, and the process is similar. The difference is that after step 602, and after step 607, other similar steps are not described again.
  • Step 602 is different from step 502 in that the routing flow table sent by the controller to the AGW does not include a cache indication.
  • the AGW receives the downlink data, it can directly send the information to the eNB according to the information contained in the flow table. If the eNB does not establish the radio bearer at this time, the eNB will locally cache the data. These data, wait until the radio bearer is established and send the data directly.
  • steps 607 and subsequent steps are optional steps.
  • FIG. 7 shows an implementation flow of Embodiment 5 of the method for routing and forwarding according to the present invention.
  • the fifth embodiment is Embodiment 4 of establishing a route forwarding path.
  • the fifth embodiment is applicable to the controller obtaining the notification of the MME in the previous process, generating the flow table or having obtained the necessary information for generating the flow table. For example, during the attach process, the MME notifies the controller to generate a corresponding flow table by creating a session request.
  • Step 700 performing an attach, a service request process, a tracking area update process, and the like;
  • the controller has generated a flow table or has obtained necessary information for generating a flow table.
  • the authorized QoS and bearer identification information are notified to the MME.
  • Step 701 The MME generates a corresponding NAS message according to the information previously obtained from the controller. Specifically, for example, in the attaching process, the controller sends a session corresponding message to the MME, and the MME generates an attach accept message; In the process, the MME needs to generate a PDN connection establishment accept message; in the TAU process, the MME needs to generate a TAU accept message. In particular, the process does not generate any NAS messages during the service request process. Therefore, this step is skipped during the business request process.
  • Step 702 The MME sends an initial context setup request or a bearer setup request to the eNB.
  • the foregoing message includes the information necessary for the eNB to establish a bearer, including the bearer identifier, the carried QoS parameter, and the like.
  • the MME When the MME generates a NAS message in step 701, the NAS message is also included in the above message.
  • Step 703 After receiving the message of step 702, the eNB establishes a radio bearer according to the QoS information and the bearer identification information in the routing flow table.
  • Step 704 After completing the establishment of the radio bearer, the eNB sends an initial context setup response or a bearer setup response to the MME.
  • Step 705 The MME sends a modify session request to the controller.
  • Steps 706-707 the controller knows in step 705 that the radio bearer has been successfully established.
  • the controller sends an add message to the eNB and the AGW, respectively, and sends a corresponding route flow table to the eNB and the AGW respectively.
  • the routing flow table includes extended user identification information, a user plane forwarding address, a bearer identifier, and the like.
  • the routing flow table further includes the tunnel end identifier and address of the AGW and the eNB.
  • the routing flow table further includes a general routing encapsulation identifier of the AGW and the eNB.
  • the added message may be a non-response message or a response message; when it is a response message, after receiving the routing flow table, the eNB and the AGW respectively return a response message to the controller.
  • Step 708 the controller returns a modification session response to the MME.
  • FIG. 8 is a flowchart showing an implementation process of Embodiment 6 of the route forwarding method of the present invention.
  • Embodiment 6 is Embodiment 5 of establishing a route forwarding path.
  • the sixth embodiment is similar to the fifth embodiment. The difference is how to trigger the manner of sending the routing flow table, that is, the related processing after step 804.
  • the processing of steps 800 to 804 is similar to steps 700 to 704, and will not be described here.
  • step 802 the MME sends an initial context setup request or a bearer setup request to the eNB.
  • the initial context setup request or bearer setup request may also include the address of the controller.
  • the data link between the UE and the eNB is established, and the UE sends uplink data (UL DATA) to the eNB.
  • UL DATA uplink data
  • Step 805 The eNB may send a routing flow table request to the controller according to the address of the locally pre-configured controller or according to the address of the controller delivered by the MME.
  • Steps 806-807 the controller performs the distribution according to the generated routing flow table, and specifically sends an add message to the eNB and the AGW, respectively, and sends a corresponding routing flow table to the eNB and the AGW, where the routing flow table includes the extension.
  • User identification information, user plane forwarding address, bearer identifier, and other information When the GTP-U is used as the routing and forwarding protocol in the network, the routing flow table further includes the tunnel end identifier and address of the AGW and the eNB. When the PMIP is used as the routing and forwarding protocol in the network, the routing flow table further includes a general routing encapsulation identifier of the AGW and the eNB.
  • the added message may be a non-response message or a response message; when it is a response message, after receiving the routing flow table, the eNB and the AGW respectively return a response message to the controller.
  • FIG. 9 shows an implementation flow of Embodiment 7 of the method for routing and forwarding according to the present invention.
  • the seventh embodiment is Embodiment 6 of establishing a route forwarding path.
  • the seventh embodiment is similar to the third embodiment, and the difference is in the flow table delivery process to the eNB. That is, step 902 is different from step 909, and other steps are similar, and will not be described here.
  • Step 902 The difference from step 502 is that, in step 902, the controller sends the routing flow table to the AGW by adding a message, but does not deliver the routing flow table to the eNB.
  • the eNB is configured to trigger the establishment of the radio bearer according to the initial context setup request or the bearer setup request sent by the MME in step 904.
  • the message includes the QoS parameters and bearer identifiers required for establishing the radio bearer.
  • Step 909 similar to step 508, after receiving the modify session request sent by the MME, the controller sends a routing flow table to the eNB in addition to sending an update request to the AGW.
  • routing flow table sent to the eNB is similar to the routing flow table sent to the eNB in 502, and is not mentioned here.
  • the foregoing embodiment may also be used to send a flow table to the target eNB and the AGW to establish a forwarding path during the handover process.
  • the controller may send flow table information to the eNB and the AGW after the handover preparation or the UE has switched to the target side, and the foregoing
  • the controller in the embodiment selects the radio resource before the completion of the establishment of the radio resource, or the flow table is similar after the radio resource is completed.
  • the controller notifies the AGW to stop the buffered data as well as the above embodiment.
  • the triggering controller sends the flow table to modify the session request information from the MME, or the AGW or the eNB initiates the request flow table message after the uplink and downlink data arrives at the AGW or the eNB; the process is similar, and details are not described herein again.
  • the embodiment of the present invention further provides a system for routing and forwarding, including a UE and an MME, where the system further includes: a controller, an eNB, and an AGW;
  • the controller is configured to deliver the pre-generated routing flow table to the eNB and the AGW respectively; and the eNB and the AGW are respectively configured to perform data distribution according to the received routing flow table.
  • the controller is further configured to acquire the identifier of the UE and the related information of the UE, and generate a routing flow table according to the identifier of the UE and the related information of the UE, where the related information of the UE includes the subscription information of the UE. , UE policy information.
  • the controller is configured to receive a create session request sent by the MME, obtain the identifier of the UE and the UE subscription information included in the create session request, or receive a create session request sent by the MME, and obtain the The identifier of the UE in the create session request; interacting with the HSS to obtain the UE subscription information.
  • the controller is specifically configured to obtain the pre-configured policy information or obtain the policy information from the PCRF.
  • the controller is specifically configured to send the routing flow table to the eNB by sending an add message to the eNB. After the acknowledgment that the radio bearer is established, the controller further configures the routing flow by sending an add message to the AGW.
  • the table is sent to the AGW;
  • the eNB is specifically configured to establish a radio bearer according to the QoS information and the bearer identifier information in the routing flow table, and notify the MME after the completion of the bearer setup.
  • the controller is specifically configured to send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the AGW.
  • the eNB is specifically configured to establish a radio bearer according to the QoS information and the bearer identification information in the routing flow table, and notify the MME after the completion of the bearer.
  • the routing flow table sent to the AGW includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the controller is further configured to: after confirming that the radio bearer is established, send an update message to the AGW, and notify the AGW to stop buffering the downlink data.
  • the AGW is specifically configured to establish a distribution path according to the QoS information and the bearer identification information in the routing flow table, and perform data distribution.
  • the controller is specifically configured to send an add message to the eNB and the AGW, and then send the routing flow table to the eNB and the AGW.
  • the eNB is configured to: after receiving the uplink data sent by the UE, send a routing flow table request to the controller according to the pre-configured controller address or the controller address delivered by the MME;
  • the controller is configured to send an add message to the eNB and the AGW respectively after receiving the routing flow table request, and send the routing flow table to the eNB and the AGW.
  • the controller is specifically configured to send the routing flow table to the AGW by sending an add message to the AGW, where the routing flow table includes, when the AGW receives the downlink data, buffering the After the acknowledgment of the establishment of the radio bearer, the eNB sends an add message to the eNB, sends the routing flow table to the eNB, and sends an update message to the AGW, informing the AGW to stop buffering the downlink data, and according to the route
  • the flow table distributes the received downlink data.
  • FIG. 10 is an example of an EUTRAN access network, and may also be described by using UTRAN access as an example.
  • the difference is that in FIG. 10 The eNB is replaced with the RNC, the MME is replaced with the SGSN, and other functions and delivery messages are similar.
  • the UE when implementing the foregoing routing and forwarding system provided by the embodiment of the present invention, the UE has the same function as the UE in the existing EPS; the eNB needs to perform the function enhancement, and the controller network element sends the routing flow table information, and The flow table information can be associated with the bearer established by the air interface to complete the mapping of the uplink and downlink data paths.
  • the MME needs to be stripped of some functions in the embodiment of the present invention, and some functions need to be enhanced; wherein the MME performs path selection before, for example, SGW.
  • the selection function of /PGW, the establishment of a data path between the eNB and the GW, and the forwarding path will be completed by the controller.
  • the original authentication, access control, and NAS functions of the domain support terminal of the MME are retained.
  • the SGW and the PGW can be combined into an AGW.
  • the forwarding path is not required to be established by itself, and the establishment of the forwarding path can be completed by the controller.
  • the PGW's original assignment or assistance in assigning IP addresses, policy delivery, and other functions are also performed by the controller.
  • the controller is a new network element introduced in the EPC. It is a key network element that introduces OpenFlow into the EPC. In addition to supporting the original OpenFlow protocol, it also needs to support the functions unique to the EPC network, including but not limited to one of the following: Supports EPC related forwarding methods, such as GTP-U, PMIP, 3GPP QoS, charging policy delivery, 3GPP defined bearer identification, and 3GPP defined user ID. These enhanced functions are either reflected in the mapping of these parameters to the parameters in the existing flow table, or the related parameters need to be added to the flow table. In order to generate the corresponding flow table information, the controller also needs to know the topology of the network, the load information of the relevant network element, etc., to select the most suitable route, and the information can be pre-configured on the controller.
  • the embodiment of the present invention further provides a controller, including a sending module, where the sending module can pass through a central processing unit (CPU), a digital signal processor (DSP) in the controller. Or a Field-Programmable Gate Array (FPGA) implementation configured to split the pre-generated routing stream table Do not send it to the eNB and AGW.
  • a controller including a sending module, where the sending module can pass through a central processing unit (CPU), a digital signal processor (DSP) in the controller.
  • DSP digital signal processor
  • FPGA Field-Programmable Gate Array
  • the sending module in the controller is further configured to acquire the identifier of the UE and the related information of the UE, and generate a routing flow table according to the identifier of the UE and the related information of the UE, where the UE is related.
  • the information includes UE subscription information and UE policy information.
  • the sending module in the controller is specifically configured to send the routing flow table to the eNB by sending an add message to the eNB, and configured to send an add message to the AGW after confirming that the radio bearer is established.
  • the routing flow table is delivered to the AGW.
  • the sending module in the controller is specifically configured to send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the AGW.
  • the routing flow table sent to the AGW includes a cache indication for buffering the downlink data when the AGW receives the downlink data.
  • the sending module in the controller is further configured to: after confirming that the radio bearer is established, send an update message to the AGW, and notify the AGW to stop buffering the downlink data.
  • the sending module in the controller is specifically configured to: after confirming that the radio bearer is established, send an add message to the eNB and the AGW, and send the routing flow table to the eNB and the sending in the controller.
  • the module is configured to send an add message to the eNB and the AGW respectively after receiving the routing flow table request sent by the eNB, and send the routing flow table to the eNB and the AGW.
  • the sending module in the controller is configured to send the routing flow table to the AGW by sending an add message to the AGW, where the routing flow table is included when the AGW receives the downlink data. And buffering the buffered indication of the downlink data; after confirming that the radio bearer is established, sending an add message to the eNB, sending the routing flow table to the eNB, and sending an update message to the AGW, informing the AGW to stop buffering the downlink data, and The received downlink data is distributed according to the routing flow table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种路由转发的方法及系统,所述方法包括:控制器将预先生成的路由流表分别下发至eNB和AGW;eNB和AGW分别根据收到的路由流表,进行数据的分发。本发明还提供了一种控制器。本发明通过所述控制器将路由流表发送至eNB和AGW,能够实现将扩展的OpenFlow协议应用于EPS中,降低了网络升级的成本,能够简化网络升级,缩短网络升级的周期。

Description

一种路由转发的方法、 系统及控制器 技术领域
本发明涉及移动通信领域, 尤其涉及一种路由转发的方法、 系统及控 制器。 背景技术
为了保持第三代移动通信系统在通信领域的竟争力, 为用户提供速率 更快、 时延更低、 更加个性化的移动通信服务, 降低运营商的运营成本, 第三代合作伙伴计划 ( 3rd Generation Partnership Project, 3GPP )标准工作 组正致力于演进分组系统( Evolved Packet System, EPS ) 的研究。 图 1示 出了 EPS的结构示意图, 如图 1所示, 整个 EPS包括无线接入网和核心网 两部分。 核心网包括归属用户服务器 (Home Subscriber Server, HSS )、 移 动性管理实体 ( Mobility Management Entity, MME )、 服务 GPRS支持节点 ( Serving GPRS Support Node , SGSN )、 策略计费规则功能 (Policy and Charging Rule Function, PCRF )、 月良务网关 ( Serving Gateway, SGW )、 分 组数据网关( PDN Gateway, PGW )和分组数据网络( Packet Data Network, PDN )。 下面详细各部分功能:
HSS, 包含了归属位置寄存器( Home Location Register, HLR )的所有 功能, 是用户签约数据的永久存放地点, 位于用户签约的归属网。
MME, 是用户签约数据在当前网络的存放地点, 负责终端到网络的非 接入层信令管理、 终端的安全验证功能、 终端的移动性管理、 用户空闲模 式下的跟踪和寻呼管理功能和承载管理。
SGSN, 是( GSM EDGE Radio Access Network, GERAN )和 UTRAN 用户接入核心网络的业务支持点, 功能上与移动性管理实体类似, 负责用 户的位置更新、 寻呼管理和承载管理等功能。
服务网关, 是核心网到无线系统的网关, 负责终端到核心网的用户面 承载、 终端空闲模式下的数据緩存、 网络侧发起业务请求的功能、 合法监 听和分组数据路由和转发功能; 服务网关负责统计用户终端使用无线网的 情况, 并产生终端使用无线网的话单, 传送给计费网关。
分组数据网关, 是演进系统和该系统外部分组数据网络的网关, 它连 接到因特网和分组数据网络上, 负责终端的互联网协议( Internet Protocol, IP )地址分配、 计费功能、 分组包过滤、 策略控制等功能。
GPRS ( General Packet Radio Service, 通用无线分组业务) 网关支持节 点 ( Gateway GPRS Support Node, GGSN ), 支持 GPRS网络的边缘路由功 能, 即 GGSN负责将 GPRS网络的数据进行路由转发, 并通过防火墙和过 滤功能来保护 GPRS网络数据的完整性。 GGSN还具有计费功能。
PGW包含了 GGSN的全部功能, 即可认为 GGSN作为 PGW的一个子 功能, 内嵌在 PGW内。 因此 SGSN可以直接和 PGW连接, 使用 Gn/Gp接 口。
分组数据网络, 是运营商的 IP业务网络, 该网络通过运营商的核心网 为用户提供 IP服务。
策略计费规则功能实体, 是演进系统中负责提供计费控制、 在线信用 控制、 门限控制、 服务质量(Quality of Service, QoS ) 策略方面规则的服 务器。
无线接入网, 是由演进基站(E-UTRAN NodeB, eNB )和 3G无线网 络控制器( Radio Network Control, RNC )组成, 它主要负责无线信号的收 发, 通过空中接口和终端联系, 管理空中接口的无线资源、 资源调度、 接 入控制。
EPS自从 2006年从 3GPP R8阶段引入以来, 经过六年的发展, 逐渐引 入新的功能, 而每一次功能的引入几乎都要涉及上述这些功能网元的修改。 这种修改一方面使得运营商网络升级成本变高, 另一方面由于不同的设备 是不同设备商提供, 不同网元对不同的功能的支持程度不统一还会带来很 多对接测试问题。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种路由转发的方法、 系统及控制器, 能够通过扩展的 OpenFlow协议建立路由转发路径, 降低网 络运营成本。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种路由转发的方法, 所述方法包括:
控制器将预先生成的路由流表分别下发至基站 (eNB ) 和接入网关 ( AGW );
eNB和 AGW分别根据收到的路由流表, 进行数据的分发。
优选地, 所述方法还包括:
控制器获取 UE的标识和 UE的相关信息;
控制器根据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE的相关信息包括 UE签约信息、 UE策略信息。
其中, 所述控制器获取 UE的标识和 UE签约信息, 为:
控制器接收移动管理实体(MME )发来的创建会话请求, 获取包含于 所述创建会话请求中的 UE的标识和 UE签约信息; 或者,
控制器接收 MME发来的创建会话请求, 获取包含于所述创建会话请 求中的 UE的标识; 与归属用户服务器 (HSS ) 交互获取 UE签约信息。
其中, 所述控制器获取策略信息, 为:
所述控制器获取自身预先配置的策略信息或从策略计费规则功能实体 PCRF中获取策略信息。 其中, 所述控制器将预先生成的路由流表下发至 eNB, 为: 控制器通过向 eNB发送添加消息, 将所述路由流表下发至 eNB;
所述 eNB根据收到的路由流表, 进行数据的分发, 为:
所述 eNB根据所述路由流表中的 QoS信息、承载标识信息建立无线承 载, 完成 7 载建立后通知 MME;
所述控制器将预先生成的路由流表下发至 AGW, 为:
所述控制器确认无线承载建立完成后, 通过向 AGW发送添加消息, 将所述路由流表下发至 AGW。
其中,所述控制器将预先生成的路由流表分别下发至 eNB和 AGW为: 控制器通过分别向 eNB和 AGW发送添加消息, 将所述路由流表下发 给 eNB和 AGW;
所述 eNB根据收到的路由流表, 进行数据的分发, 为:
所述 eNB根据所述路由流表中的 QoS信息、承载标识信息建立无线承 载, 完成 7 载建立后通知 MME。
其中,所述发送至所述 AGW的路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示;
相应地, 在所述 AGW根据收到的路由流表, 进行数据的分发之前, 所述方法还包括:
所述控制器确认无线承载建立完成后, 向 AGW发送更新消息, 通知 AGW停止緩存下行数据。
其中, 所述 AGW根据收到的路由流表, 进行数据的分发, 为: 所述 AGW根据所述路由流表中的 QoS信息、 承载标识信息建立分发 路径, 进行数据的分发。
其中, 所述控制器将预先生成的路由流表分别下发至 eNB和 AGW, 为: 所述控制器确认无线承载建立完成后, 分别向 eNB和 AGW发送添加 消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述控制器将预先生成的路由流表分别下发至 eNB和 AGW, 为:
当 eNB接收到 UE发来的上行数据后, 根据预先配置的控制器地址或 MME下发的控制器地址, 向控制器发送路由流表请求;
所述控制器接收到所述路由流表请求后, 分别向 eNB和 AGW发送添 加消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述控制器将预先生成的路由流表下发至 AGW, 为:
控制器通过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 其 中,所述路由流表中包括用于当 AGW接收到下行数据时,緩存所述下行数 据的緩存指示;
相应地, 所述控制器将预先生成的路由流表下发至 eNB, 为: 所述控制器确认无线承载建立完成后, 向 eNB发送添加消息, 将所述 路由流表下发至 eNB;
所述 AGW根据收到的路由流表, 进行数据的分发, 为:
所述控制器确认无线承载建立完成后, 向 AGW发送更新消息, 通知
AGW停止緩存下行数据, 并根据所述路由流表将收到的下行数据进行分 发。
一种路由转发的系统,包括 UE、 MME,还包括:控制器、 eNB和 AGW; 其中,
所述控制器, 配置为将预先生成的路由流表分别下发至 eNB和 AGW; 所述 eNB和 AGW, 分别配置为根据收到的路由流表, 进行数据的分 发。
优选地, 所述控制器, 还配置为获取 UE的标识和 UE的相关信息; 并 根据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE的 相关信息包括 UE签约信息、 UE策略信息。
其中, 所述控制器, 具体配置为接收 MME发来的创建会话请求, 获 取包含于所述创建会话请求中的 UE的标识和 UE签约信息; 或者, 接收 MME发来的创建会话请求,获取包含于所述创建会话请求中的 UE的标识; 与 HSS交互获取 UE签约信息。
其中, 所述控制器, 具体配置为获取自身预先配置的策略信息或从 PCRF中获取策略信息。
其中, 所述控制器, 具体配置为通过向 eNB发送添加消息, 将所述路 由流表下发至 eNB; 还配置为确认无线承载建立完成后, 通过向 AGW发 送添加消息, 将所述路由流表下发至 AGW;
所述 eNB, 具体配置为根据所述路由流表中的 QoS信息、 承载标识信 息建立无线 7 载, 完成 7|载建立后通知 MME。
其中, 所述控制器, 具体配置为分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW;
所述 eNB, 具体配置为根据所述路由流表中的 QoS信息、 承载标识信 息建立无线 7 载, 完成 7|载建立后通知 MME。
其中,所述发送至所述 AGW的路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示;
所述控制器, 还配置为确认无线承载建立完成后, 向 AGW发送更新 消息, 通知 AGW停止緩存下行数据。
其中, 所述 AGW, 具体配置为根据所述路由流表中的 QoS信息、 承 载标识信息建立分发路径, 进行数据的分发。
其中,所述控制器,具体配置为确认无线承载建立完成后,分别向 eNB 和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。 其中, 所述 eNB, 具体配置为在接收到 UE发来的上行数据后, 根据 预先配置的控制器地址或 MME下发的控制器地址,向控制器发送路由流表 请求;
所述控制器, 具体配置为接收到所述路由流表请求后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述控制器, 具体配置为通过向 AGW发送添加消息, 将所述 路由流表下发至 AGW; 其中, 所述路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示; 当确认无线承载建立完成后, 向 eNB发送添加消息, 将所述路由流表下发至 eNB, 并向 AGW发送更新 消息,通知 AGW停止緩存下行数据,并根据所述路由流表将收到的所述下 行数据进行分发。
一种控制器, 包括发送模块, 配置为将预先生成的路由流表分别下发 至 eNB和 AGW。
优选地, 所述发送模块, 还配置为获取 UE的标识和 UE的相关信息; 并才艮据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE 的相关信息包括 UE签约信息、 UE策略信息。
其中, 所述发送模块, 具体配置为通过向 eNB发送添加消息, 将所述 路由流表下发至 eNB;还配置为确认无线承载建立完成后,通过向 AGW发 送添加消息, 将所述路由流表下发至 AGW。
其中, 所述发送模块, 具体配置为分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中,所述发送至所述 AGW的路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示;
所述发送模块, 还配置为确认无线承载建立完成后, 向 AGW发送更 新消息, 通知 AGW停止緩存下行数据。 其中, 所述发送模块, 具体配置为确认无线承载建立完成后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中,所述发送模块,具体配置为接收到 eNB发来的路由流表请求后, 分别向 eNB和 AGW发送添加消息,将所述路由流表下发给 eNB和 AGW。
其中, 所述发送模块, 具体配置为通过向 AGW发送添加消息, 将所 述路由流表下发至 AGW; 其中, 所述路由流表中包括用于当 AGW接收到 下行数据时, 緩存所述下行数据的緩存指示; 当确认无线承载建立完成后, 向 eNB发送添加消息, 将所述路由流表下发至 eNB, 并向 AGW发送更新 消息,通知 AGW停止緩存下行数据,并根据所述路由流表将收到的所述下 行数据进行分发。
本发明实施例通过控制器将路由流表发送至 eNB和 AGW, 能够实现 将扩展的 OpenFlow协议应用于 EPS 中, 降低了网络升级的成本, 能够简 化网络升级, 缩短网络升级的周期。 附图说明
图 1为现有 EPS系统的结构示意图;
图 2为本发明实施例路由转发的方法实现流程示意图;
图 3为本发明路由转发的方法实施例一的实现流程示意图;
图 4为本发明路由转发的方法实施例二的实现流程示意图;
图 5为本发明路由转发的方法实施例三的实现流程示意图;
图 6为本发明路由转发的方法实施例四的实现流程示意图;
图 7为本发明路由转发的方法实施例五的实现流程示意图;
图 8为本发明路由转发的方法实施例六的实现流程示意图;
图 9为本发明路由转发的方法实施例七的实现流程示意图;
图 10为本发明实施例路由转发的系统结构示意图。 具体实施方式
美国斯坦福大学于 2008年提出了一种 OpenFlow协议, 该协议采用转 发 /控制分离架构, 外置控制面实体采用 OpenFlow协议控制转发面设备实 现各种转发逻辑,而转发面设备主要功能就是根据 OpenFlow控制器下发的 流表执行受控转发, 其行为是标准化的:收到一条报文, 取出其头部相关字 段值, 以其作为关键字查找流表, 匹配到一个表项后, 根据表项内容中的 指令集对报文字段进行变换, 完毕后根据指示转发到某一逻辑或物理端口。 该协议进一步演进, 成为软件定义网络( Software Defined Network, SDN ) 技术, 即可以在控制面采用软件编程实现各种复杂的网络应用, 而转发面 设备无需任何改变, 由于控制面采用通用服务器 +通用操作系统, 并且可以 使用通用的软件编程工具, 也可以使用 Python这样的脚本编程语言实现, 这使得新的网络协议的支持变得非常简单, 而且新技术部署周期大大缩短。
然而, 可以看出如果将 SDN的思想引入 EPS , 可以解决上述在 EPS网 络中引入新功能所带来的问题。而 OpenFlow协议目前的涉及都是基于二层 交换或者三层路由的, 因此为了将其在 EPS网络中引入, 也需要做相应做 一定的扩展以便其能够 EPS所需要的必要的功能。
本发明的实施例中: 控制器将预先生成的路由流表分别下发至基站 eNB和接入网关 AGW; eNB和 AGW分别根据收到的路由流表, 进行数据 的分发。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 2示出了本发明实施例路由转发的方法实现流程, 如图 2所示, 所 述方法包括:
步骤 201, 控制器将预先生成的路由流表分别下发至 eNB和 AGW; 具体地, 控制器通过向 eNB发送添加 ( Add ) 消息, 将所述路由流表 下发至 eNB; 所述控制器确认无线承载建立完成后, 通过向 AGW发送添 加消息, 将所述路由流表下发至 AGW; 或者,
控制器通过分别向 eNB和 AGW发送添加消息, 将所述路由流表下发 给 eNB和 AGW; 其中,所述发送至所述 AGW的路由流表中还可以包括用 于当 AGW接收到下行数据时, 緩存所述下行数据的緩存指示; 或者, 所述控制器接确认无线承载建立完成后, 分别向 eNB和 AGW发送添 加消息, 将所述路由流表下发给 eNB和 AGW; 或者,
当 eNB接收到 UE发来的上行数据时, 根据预先配置的控制器地址或 MME下发的控制器地址, 向控制器发送路由流表请求; 所述控制器接收到 所述路由流表请求后, 分别向 eNB和 AGW发送添加消息, 将所述路由流 表下发给 eNB和 AGW; 或者,
控制器通过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 其 中,所述路由流表中包括用于当 AGW接收到下行数据时,緩存所述下行数 据的緩存指示; 所述控制器确认无线承载建立完成后, 向 eNB发送添加消 息, 将所述路由流表下发至 eNB。 这里, 上述添加消息具体可以为路由流 表下发消息。
另外, 在本步骤之前, 所述方法还可以包括: 控制器获取 UE的标识和 UE的相关信息; 控制器根据所述 UE的标识和 UE的相关信息, 生成路由 流表; 其中, 所述 UE的相关信息包括 UE签约信息、 UE策略信息;
具体地, 控制器获取 UE的标识和 UE签约信息的方式如下: 控制器接 收 MME发来的创建会话请求,获取包含于所述创建会话请求中的 UE的标 识和 UE签约信息, 或者, 控制器接收 MME发来的创建会话请求, 获取包 含于所述创建会话请求中的 UE的标识; 与 HSS交互获取 UE签约信息、 计费信息。
所述控制器获取策略信息为: 所述控制器获取自身预先配置的策略信 息或从 PCRF中获取策略信息。
步骤 202, eNB和 AGW分别根据收到的路由流表, 进行数据的分发; 当 eNB接收到控制器通过发送添加消息下发的路由流表后, 所述 eNB 根据所述路由流表中的 QoS信息、 承载标识信息建立无线承载, 完成承载 建立后通知 MME;
或者, 当 eNB接收到控制器下发的路由流表, 且所述 AGW接收到的 路由流表中还包括: 用于当 AGW接收到下行数据时,緩存所述下行数据的 緩存指示, 所述 eNB根据所述路由流表中的 QoS信息、 承载标识信息建立 无线 7|载, 并发送初始上下文建立响应或 7|载建立响应给 MME;
所述控制器确认无线承载建立完成后, 向 AGW发送更新消息, 通知 AGW停止緩存下行数据, 并根据所述路由流表将收到的下行数据进行分 发; 或者,
在 AGW接收到的路由流表包括緩存指示, 且控制器确认无线承载建 立完成后下发路由流表至 eNB的情况下, 所述控制器确认无线承载建立完 成后, 向 AGW发送更新消息, 通知 AGW停止緩存下行数据, 并根据所述 路由流表将收到的下行数据进行分发。
下面以具体的实施例对上述方法进行进一步说明,其中, SGW和 PGW 在非漫游情况下、 或者漫游场景的本地访问情况下可以合设。 当合设时, 将其称其为接入网关 (AGW )。 SGW和 PGW两个网元在本发明实施例中 不需要自己交互建立转发路径, 转发路径的建立都是通过控制器完成的。 此外 PGW原有的分配或者协助分配 IP地址、 策略下发等功能也都由控制 器完成。 在本发明实施例中都在后续的流程中都将按照合设网元 AGW 考 虑。 本发明实施例中, 都以这种合设的场景为例, 对于非合设的场景, 控 制器需要对两个网元分别下发路由流表, 过程类似。
图 3 示出了本发明路由转发的方法实施例一的实现流程, 这里所述实 施例一具体说明了附着过程中路由流表的生成过程, 如图 3 所示, 所述实 施例一包括下述步骤:
步骤 301~302, UE通过 eNB向 MME发起附着请求;
步骤 303, MME判断是否要对 UE发起鉴权过程, 若需要, UE、 MME 和 HSS之间完成鉴权过程;
步骤 304, MME与 HSS交互进行位置更新过程, 并获取用户的签约数 据;
步骤 305, MME选择合适的控制器为用户服务;
这里, MME可以通过本地预先配置选择合适的控制器, 也可以通过域 名解析服务器 (DNS ) 来动态查询获取控制器的地址信息。 当采用后面一 种方式, 可以用类似现在选择 SGW/PGW的方式, 通过基站标识、 跟踪区 标识或接入点名称 (APN )构造完全合格域名 /全称域名 (Fully Qualified Domain Name, FQDN ) 来查询控制器地址。
步骤 306, MME向所选择的控制器发送创建会话请求, 其中携带 UE 的标识;
其中, 所述创建会话请求可选地还可以携带 UE签约所允许的 QoS信 息, 计费信息等, 当携带上述信息时, 控制器不执行步骤 307, 直接执行步 骤 308。
步骤 307, 当 MME没有将 UE签约所允许的 QoS信息, 计费信息等发 送给控制器时, 控制器通过与 HSS交互获取 UE的签约数据;
步骤 308, 控制器获取 UE的策略信息;
具体地, 当网络中部署了 PCRF, 控制器还可以与 PCRF交互, 并获取 PCRF为 UE生成的策略信息; 否则, 控制器直接利用本地预先配置的相关 策略信息。
步骤 309, 控制器根据获取的 UE的信息, 为 UE选择合适的 AGW, 并根据 UE相关信息以及相关的策略信息生成路由流表;
步骤 310, 控制器向 MME返回创建会话响应消息。
如下图 4〜图 9的实施例二〜实施例六,都是可以应用于附着流程、业务 请求流程、 TAU流程以及 PDN连接建立过程之后的数据路径建立过程。
图 4示出了本发明路由转发的方法实施例二的实现流程, 所述实施例 二是建立路由转发路径的实施方式一。 该实施方式适用于控制器在之前的 过程中得到 MME的通知,生成路由流表或者已经获得了生成路由流表的必 要信息。 例如在附着过程中, MME通过创建会话请求通知控制器生成相应 的路由流表。
步骤 400, 执行附着、 业务请求以及跟踪区更新过程等;
在该过程中, 控制器已经获得了生成流表的必要信息, 或者已经生成 了流表。
步骤 401~402, 控制器根据生成的路由流表进行分发, 向 eNB发送添 加消息, 为 eNB下发相应的路由流表;
其中, 所述路由流表包含扩展的用户的标识信息、 用户面转发地址、 承载标识等信息。 当网络中使用用户层面的 GPRS 隧道协议 (GPRS Tunnelling Protocol for the User plane, GTP-U )作为路由转发协议, 所述路 由流表还包含 AGW和 eNB的隧道端标识和地址。 当网络中使用代理移动 IP协议(Proxy Mobile IP, PMIP )作为路由转发协议, 所述路由流表还包 含 AGW和 eNB的通用路由封装标识。
进一步地, 所述添加消息可以是无响应消息, 也可以是有应答的消息, 当是有应答的消息时, eNB 收到路由流表后, 还会返回一个响应消息给控 制器。
步骤 403, MME根据之前从控制器获取的信息, 生成相应的非接入层 ( Non- Access Stratum, NAS ) 消息; 具体地,例如在附着过程中,控制器向 MME发送的创建会话相应消息, MME生成附着接受消息; 在公用数据网 (Public Data Network, PDN )连 接请求过程中, MME 需要生成 PDN 连接建立接受消息; 在跟踪区更新 ( TRACKING AREA UPDATE, TAU ) 过程中, MME需要生成 TAU接受 消息。 特别地, 在业务请求过程中, 该过程不会生成任何 NAS消息。 因此 在业务请求过程中, 该步骤会跳过。
步骤 404, MME向 eNB发送初始上下文建立请求或者承载建立请求; 这里, 当步骤 403中 MME生成了 NAS消息,该 NAS消息也包含在上 述消息中。
步骤 405, eNB根据收到的路由流表中的 QoS信息、 承载标识信息建 立无线承载;
步骤 406, eNB完成无线承载建立后, 向 MME发送初始上下文建立响 应或者承载建立响应;
步骤 407, MME向控制器发送修改会话请求;
步骤 408,控制器通过步骤 407得知无线承载已经成功建立。控制器向 AGW发送添加消息, 为 AGW下发相应的路由流表;
这里, 所述路由流表包含扩展的用户的标识信息、 用户面转发地址、 承载标识等信息。 当网络中使用 GTP-U作为路由转发协议, 所述路由流表 还包含 AGW和 eNB的隧道端标识和地址。 当网络中使用 PMIP作为路由 转发协议, 所述路由流表还包含 AGW和 eNB的通用路由封装标识。
与步骤 402类似, 进一步地, 所述添加消息可以是无响应消息, 也可 以是有应答的消息; 当是有应答的消息时, AGW收到路由流表后, 还会返 回一个响应消息给控制器。
步骤 409, 控制器向 MME返回修改会话响应。
图 5示出了本发明路由转发的方法实施例三的实现流程, 所述实施例 三是建立路由转发路径的实施方式二。 该实施方式与实施例二的应用场景 类似, 过程也类似, 不同之处在于步骤 502和步骤 508, 其他类似步骤不再 赘述。
步骤 502, 控制器分别向 eNB和 AGW发送添加消息, 下发相应的路 由流表;
这里, 所述路由流表包含扩展的用户的标识信息、 用户面转发地址、 承载标识等信息。 当网络中使用 GTP-U作为路由转发协议, 所述路由流表 还包含 AGW和 eNB的隧道端标识和地址。 当网络中使用 PMIP作为路由 转发协议, 所述路由流表还包含 AGW和 eNB的通用路由封装标识。
其中,所述控制器向 AGW发送的路由流表中还需要包含緩存指示,用 于在 AGW收到下行数据时, 指示所述 AGW緩存所述下行数据。
这里, 所述添加消息可以是无响应消息, 也可以是有应答的消息; 当 是有应答的消息时, eNB和 AGW收到路由流表后, 还会分别返回一个响 应消息给控制器。
步骤 508, 控制器通过步骤 507得知无线承载已经成功建立, 向 AGW 发送更新消息,通知 AGW停止緩存数据,根据之前收到的流表信息开始分 发数据。
应当注意, 所述步骤 508和步骤 509之间没有执行的先后关系。
图 6示出了本发明路由转发的方法实施例四的实现流程, 所述实施例 四是建立路由转发路径的实施方式三。 该实施方式与实施例三的应用场景 类似, 过程也类似, 不同之处在于步骤 602, 以及步骤 607之后, 其他类似 步骤不再赘述。
步骤 602与步骤 502不同在于,控制器向 AGW下发的路由流表中并不 包含緩存指示。如此, 当 AGW收到下行数据时, 可以根据流表中包含的信 息直接下发给 eNB, eNB若此时并没有建立好无线承载, 会在本地緩存这 些数据, 等到无线承载建立好后直接下发这些数据。
由于下发给 AGW的路由流表中没有緩存指示,因此控制器不需要通知 AGW停止緩存下行数据, 故步骤 607及之后的步骤都为可选步骤。
图 7示出了本发明路由转发的方法实施例五的实现流程, 所述实施例 五是建立路由转发路径的实施方式四。 所述实施例五适用于控制器在之前 的过程中得到 MME 的通知, 生成流表或者已经获得了生成流表的必要信 息。 例如在附着过程中, MME通过创建会话请求通知控制器生成相应的流 表。
步骤 700, 执行附着、 业务请求流程以及跟踪区更新过程等;
具体地, 在上述过程中, 控制器已经生成流表或者已经获得了生成流 表的必要信息。 并将授权的 QoS、 承载标识信息通知给了 MME。
步骤 701, MME根据之前从控制器获取的信息,生成相应的 NAS消息; 具体地, 例如: 在附着过程中, 控制器向 MME发送的创建会话相应消息, MME生成附着接受消息; 在 PDN连接请求过程中, MME需要生成 PDN 连接建立接受消息; 在 TAU过程中, MME需要生成 TAU接受消息。 特别 地, 在业务请求过程中, 该过程不会生成任何 NAS消息。 因此在业务请求 过程中, 该步骤会跳过。
步骤 702, MME向 eNB发送初始上下文建立请求或者承载建立请求; 其中, 上述消息中包含 eNB建立承载的必要信息, 包括承载标识、 承 载的 QoS参数等。 当步骤 701 中 MME生成了 NAS消息, NAS消息也包 含在上述消息中。
步骤 703, eNB收到步骤 702的消息后, 根据路由流表中的 QoS信息、 承载标识信息建立无线承载;
步骤 704, eNB完成无线承载建立后, 向 MME发送初始上下文建立响 应或者承载建立响应; 步骤 705, MME向控制器发送修改会话请求;
步骤 706~707,控制器通过步骤 705得知无线承载已经成功建立。控制 器分别向 eNB和 AGW发送添加消息, 分别为 eNB和 AGW下发相应的路 由流表;
具体地, 所述路由流表包含扩展的用户的标识信息、 用户面转发地址、 承载标识等信息。 当网络中使用 GTP-U作为路由转发协议, 所述路由流表 还包含 AGW和 eNB的隧道端标识和地址。 当网络中使用 PMIP作为路由 转发协议, 所述路由流表还包含 AGW和 eNB的通用路由封装标识。
这里, 所述添加消息可以是无响应消息, 也可以是有应答的消息; 当 是有应答的消息时, eNB和 AGW收到路由流表后, 还会分别返回一个响 应消息给控制器。
步骤 708, 控制器向 MME返回修改会话响应。
应当理解, 步骤 706~707和步骤 708之间没有严格的先后关系。
图 8示出了本发明路由转发的方法实施例六的实现流程, 所述实施例 六是建立路由转发路径的实施方式五。 所述实施例六与实施例五类似, 不 同的在于如何触发下发路由流表的方式, 即步骤 804之后的相关处理。 其 中步骤 800~804的处理与步骤 700~704类似, 这里不做赘述。
步骤 802中, MME向 eNB发送初始上下文建立请求或者承载建立请 求;
这里, 所述初始上下文建立请求或者承载建立请求还可以包含所述控 制器的地址。
步骤 804之后, 无线承载建立完成后, UE与 eNB之间的数据链路已 经建立, UE向 eNB发送上行数据 ( UL DATA );
步骤 805, eNB可以根据本地预先配置的控制器的地址,或者根据 MME 下发的控制器的地址, 向该控制器发送路由流表请求。 步骤 806~807, 控制器根据生成的路由流表, 进行分发, 具体可以分别 向 eNB和 AGW发送添加消息,分别为 eNB和 AGW下发相应的路由流表; 其中, 所述路由流表包含扩展的用户的标识信息、 用户面转发地址、 承载标识等信息。 当网络中使用 GTP-U作为路由转发协议, 所述路由流表 还包含 AGW和 eNB的隧道端标识和地址。 当网络中使用 PMIP作为路由 转发协议, 所述路由流表还包含 AGW和 eNB的通用路由封装标识。
这里, 所述添加消息可以是无响应消息, 也可以是有应答的消息; 当 是有应答的消息时, eNB和 AGW收到路由流表后, 还会分别返回一个响 应消息给控制器。
图 9示出了本发明路由转发的方法实施例七的实现流程, 所述实施例 七是建立路由转发路径的实施方式六。 所述实施例七与实施例三类似, 不 同的在于对 eNB的流表下发过程。 即步骤 902和步骤 909不同, 其他步骤 类似, 这里不做赘述。
步骤 902, 与步骤 502不同的是, 步骤 902中控制器通过添加消息将路 由流表下发至 AGW, 但并不向 eNB下发路由流表。
而 eNB是根据步骤 904中 MME下发初始上下文建立请求或者承载建 立请求触发建立无线承载的; 该消息中包含建立无线承载所需要的 QoS参 数和承载标识。
步骤 909,与步骤 508类似,控制器收到 MME发送的修改会话请求后, 除了向 AGW发送更新请求之外, 还向 eNB下发路由流表;
这里,下发至 eNB的路由流表与 502中下发给 eNB的路由流表内容类 似, 这里不做赞述。
上述实施方式还可以用于在切换过程中, 控制器如何向目标 eNB 和 AGW下发流表, 建立转发路径。 在切换过程中, 控制器可以在切换准备或 者 UE已经切换到目标侧之后为 eNB和 AGW下发流表信息, 与上述几个 实施例中的控制器选择无线资源建立完成前, 或者无线资源完成后下发流 表类似。
此外,通过 MME更新消息通知控制器切换完成,控制器通知 AGW停 止緩存数据也与上述实施例类似。 触发控制器下发流表可是来自于 MME 的修改会话请求信息, 也可以是上下行数据到达 AGW或者 eNB后, AGW 或者 eNB发起请求流表消息; 过程类似, 这里也不再赘述。
本发明实施例还提供一种路由转发的系统, 包括 UE、 MME, 所述系 统还包括: 控制器、 eNB和 AGW; 其中,
所述控制器, 配置为将预先生成的路由流表分别下发至 eNB和 AGW; 所述 eNB和 AGW, 分别配置为根据收到的路由流表, 进行数据的分 发。
其中, 所述控制器, 还配置为获取 UE的标识和 UE的相关信息; 并根 据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE的相 关信息包括 UE签约信息、 UE策略信息。
其中, 所述控制器, 具体配置为接收 MME发来的创建会话请求, 获 取包含于所述创建会话请求中的 UE的标识和 UE签约信息; 或者, 接收 MME发来的创建会话请求,获取包含于所述创建会话请求中的 UE的标识; 与 HSS交互获取 UE签约信息。
其中, 所述控制器, 具体配置为获取自身预先配置的策略信息或从 PCRF中获取策略信息。
其中, 所述控制器, 具体配置为通过向 eNB发送添加消息, 将所述路 由流表下发至 eNB; 还配置为确认无线承载建立完成后, 通过向 AGW发 送添加消息, 将所述路由流表下发至 AGW;
所述 eNB, 具体配置为根据所述路由流表中的 QoS信息、 承载标识信 息建立无线 7 载, 完成 7|载建立后通知 MME。 其中, 所述控制器, 具体配置为分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW;
所述 eNB, 具体配置为根据所述路由流表中的 QoS信息、 承载标识信 息建立无线 7 载, 完成 7|载建立后通知 MME。
其中,所述发送至所述 AGW的路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示;
所述控制器, 还配置为确认无线承载建立完成后, 向 AGW发送更新 消息, 通知 AGW停止緩存下行数据。
其中, 所述 AGW, 具体配置为根据所述路由流表中的 QoS信息、 承 载标识信息建立分发路径, 进行数据的分发。
其中,所述控制器,具体配置为确认无线承载建立完成后,分别向 eNB 和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述 eNB, 具体配置为在接收到 UE发来的上行数据后, 根据 预先配置的控制器地址或 MME下发的控制器地址,向控制器发送路由流表 请求;
所述控制器, 具体配置为接收到所述路由流表请求后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述控制器, 具体配置为通过向 AGW发送添加消息, 将所述 路由流表下发至 AGW; 其中, 所述路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示; 当确认无线承载建立完成后, 向 eNB发送添加消息, 将所述路由流表下发至 eNB, 并向 AGW发送更新 消息,通知 AGW停止緩存下行数据,并根据所述路由流表将收到的下行数 据进行分发。
另外, 图 10是以 EUTRAN接入网为例进行的示意, 也可以以 UTRAN 接入为例进行说明, 在 UTRAN接入的场景中, 不同之处在于将图 10中的 eNB替换为 RNC, 将 MME替换为 SGSN, 其他功能和传递消息都是类似 的。
综上所述, 在实现本发明实施例提供的上述路由转发系统时, UE与现 有 EPS中的 UE功能基本相同; eNB需要做功能增强, 支持控制器网元下 发路由流表信息, 并且能够将流表信息与空口建立的承载对应起来, 完成 上下行数据路径的映射; MME, 在本发明实施例中需要剥离一部分功能, 也需要增强一部分功能; 其中 MME以前完成的路径选择,例如 SGW/PGW 的选择功能、 在 eNB和 GW间建立数据路径以及转发路径等功能, 将由控 制器完成。 但是 MME原有的鉴权、 接入控制、 支持域终端的 NAS功能等 依然保留。
SGW和 PGW可以合并为 AGW,在该系统中不需要自己交互建立转发 路径, 转发路径的建立可以通过控制器完成的。 此外 PGW原有的分配或者 协助分配 IP地址、 策略下发等功能也都由控制器完成。
控制器, 是在 EPC中引入的新网元, 是将 OpenFlow引入 EPC的关键 网元, 除了支持原有的 OpenFlow协议, 还需要支持 EPC网络所特有的功 能, 包括并不局限于以下之一: 支持 EPC的相关转发方式, 例如 GTP-U、 PMIP, 支持 3GPP的 QoS、 计费策略传递, 支持 3GPP定义的承载标识、 支持 3 GPP定义的用户标识等。增强的这些功能或者体现为这些参数与现有 流表中参数的映射, 或者需要在流表中增加相关参数。 为了生成相应的流 表信息, 控制器还需要获知网络的拓朴结构、 相关网元的负荷信息等, 以 选择最合适的路由, 这些信息可以预先配置在控制器上。
如此, 本发明实施例还提供一种控制器, 包括发送模块, 所述发送模 块可通过所述控制器中的中央处理器 (Central Processing Unit, CPU ), 数 字信号处理器( Digital Signal Processor, DSP )或可编程逻辑阵列 (Field - Programmable Gate Array, FPGA ) 实现, 配置为将预先生成的路由流表分 别下发至 eNB和 AGW。
进一步地, 所述控制器中的发送模块, 还配置为获取 UE的标识和 UE 的相关信息; 并根据所述 UE的标识和 UE的相关信息, 生成路由流表; 其 中, 所述 UE的相关信息包括 UE签约信息、 UE策略信息。
其中, 所述控制器中的发送模块, 具体配置为通过向 eNB发送添加消 息, 将所述路由流表下发至 eNB; 还配置为确认无线承载建立完成后, 通 过向 AGW发送添加消息, 将所述路由流表下发至 AGW。
其中, 所述控制器中的发送模块, 具体配置为分别向 eNB和 AGW发 送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中,所述发送至所述 AGW的路由流表中包括用于当 AGW接收到下 行数据时, 緩存所述下行数据的緩存指示;
所述控制器中的发送模块, 还配置为确认无线承载建立完成后, 向 AGW发送更新消息, 通知 AGW停止緩存下行数据。
其中, 所述控制器中的发送模块, 具体配置为确认无线承载建立完成 后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 其中, 所述控制器中的发送模块, 具体配置为接收到 eNB发来的路由 流表请求后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
其中, 所述控制器中的发送模块, 具体配置为通过向 AGW发送添加 消息, 将所述路由流表下发至 AGW; 其中, 所述路由流表中包括用于当 AGW接收到下行数据时, 緩存所述下行数据的緩存指示; 当确认无线承载 建立完成后,向 eNB发送添加消息,将所述路由流表下发至 eNB,并向 AGW 发送更新消息,通知 AGW停止緩存下行数据,并根据所述路由流表将收到 的下行数据进行分发。 以上所述, 仅为本发明的较佳实施例, 并非用于限定本发明的保护范

Claims

权利要求书
1、 一种路由转发的方法, 所述方法包括:
控制器将预先生成的路由流表分别下发至基站 eNB和接入网关 AGW; eNB和 AGW分别根据收到的路由流表, 进行数据的分发。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 控制器获取 UE的标识和 UE的相关信息;
控制器根据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE的相关信息包括 UE签约信息、 UE策略信息。
3、 根据权利要求 2所述的方法, 其中, 所述控制器获取 UE的标识和 UE签约信息, 为:
控制器接收移动管理实体 MME发来的创建会话请求, 获取包含于所 述创建会话请求中的 UE的标识和 UE签约信息; 或者,
控制器接收 MME发来的创建会话请求, 获取包含于所述创建会话请 求中的 UE的标识; 与归属用户服务器 HSS交互获取 UE签约信息。
4、根据权利要求 2所述的方法, 其中, 所述控制器获取策略信息, 为: 所述控制器获取自身预先配置的策略信息或从策略计费规则功能实体
PCRF中获取策略信息。
5、 根据权利要求 1所述的方法, 其中, 所述控制器将预先生成的路由 流表下发至 eNB, 为:
控制器通过向 eNB发送添加消息, 将所述路由流表下发至 eNB;
所述 eNB根据收到的路由流表, 进行数据的分发, 为:
所述 eNB根据所述路由流表中的 QoS信息、承载标识信息建立无线承 载, 完成 7 载建立后通知 MME;
所述控制器将预先生成的路由流表下发至 AGW, 为:
所述控制器确认无线承载建立完成后, 通过向 AGW发送添加消息, 将所述路由流表下发至 AGW。
6、 根据权利要求 1所述的方法, 其中, 所述控制器将预先生成的路由 流表分别下发至 eNB和 AGW为:
控制器通过分别向 eNB和 AGW发送添加消息, 将所述路由流表下发 给 eNB和 AGW;
所述 eNB根据收到的路由流表, 进行数据的分发, 为:
所述 eNB根据所述路由流表中的 QoS信息、承载标识信息建立无线承 载, 完成 7 载建立后通知 MME。
7、 根据权利要求 6所述的方法, 其中, 所述发送至所述 AGW的路由 流表中包括: 用于当 AGW接收到下行数据时,緩存所述下行数据的緩存指 示;
相应地, 在所述 AGW根据收到的路由流表, 进行数据的分发之前, 所述方法还包括:
所述控制器确认无线承载建立完成后, 向 AGW发送更新消息, 通知 AGW停止緩存下行数据。
8、 根据权利要求 6或 7所述的方法, 其中, 所述 AGW根据收到的路 由流表, 进行数据的分发为:
所述 AGW根据所述路由流表中的 QoS信息、 承载标识信息建立分发 路径, 进行数据的分发。
9、 根据权利要求 1所述的方法, 其中, 所述控制器将预先生成的路由 流表分别下发至 eNB和 AGW, 为:
所述控制器确认无线承载建立完成后, 分别向 eNB和 AGW发送添加 消息, 将所述路由流表下发给 eNB和 AGW。
10、 根据权利要求 1 所述的方法, 其中, 所述控制器将预先生成的路 由流表分别下发至 eNB和 AGW, 为: 当 eNB接收到 UE发来的上行数据后, 根据预先配置的控制器地址或 MME下发的控制器地址, 向控制器发送路由流表请求;
所述控制器接收到所述路由流表请求后, 分别向 eNB和 AGW发送添 加消息, 将所述路由流表下发给 eNB和 AGW。
11、 根据权利要求 1 所述的方法, 其中, 所述控制器将预先生成的路 由流表下发至 AGW, 为:
控制器通过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 其 中, 所述路由流表中包括: 用于当 AGW接收到下行数据时,緩存所述下行 数据的緩存指示;
相应地, 所述控制器将预先生成的路由流表下发至 eNB, 为: 所述控制器确认无线承载建立完成后, 向 eNB发送添加消息, 将所述 路由流表下发至 eNB;
所述 AGW根据收到的路由流表, 进行数据的分发, 为:
所述控制器确认无线承载建立完成后, 向 AGW发送更新消息, 通知
AGW停止緩存下行数据,并根据所述路由流表将收到的所述下行数据进行 分发。
12、 一种路由转发的系统, 包括 UE和 MME, 所述系统还包括: 控制 器、 eNB和 AGW; 其中,
所述控制器, 配置为将预先生成的路由流表分别下发至 eNB和 AGW; 所述 eNB和 AGW, 分别配置为根据收到的路由流表, 进行数据的分 发。
13、 根据权利要求 12所述的系统, 其中, 所述控制器, 还配置为获取 UE的标识和 UE的相关信息; 并才艮据所述 UE的标识和 UE的相关信息, 生成路由流表; 其中, 所述 UE的相关信息包括: UE签约信息、 UE策略 信息。
14、 根据权利要求 13 所述的系统, 其中, 所述控制器, 配置为接收 MME发来的创建会话请求, 获取包含于所述创建会话请求中的 UE的标识 和 UE签约信息; 或者,
接收 MME发来的创建会话请求, 获取包含于所述创建会话请求中的 UE的标识; 与 HSS交互获取 UE签约信息。
15、 根据权利要求 13所述的系统, 其中, 所述控制器, 配置为获取自 身预先配置的策略信息或从 PCRF中获取策略信息。
16、 根据权利要求 12所述的系统, 其中, 所述控制器, 配置为通过向 eNB发送添加消息, 将所述路由流表下发至 eNB; 还配置为确认无线承载 建立完成后, 通过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 所述 eNB, 配置为根据所述路由流表中的 QoS信息、 承载标识信息建 立无线 7 载, 完成 7|载建立后通知 MME。
17、 根据权利要求 12所述的系统, 其中, 所述控制器, 配置为分别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW;
所述 eNB, 配置为根据所述路由流表中的 QoS信息、 承载标识信息建 立无线 7 载, 完成 7|载建立后通知 MME。
18、 根据权利要求 17所述的系统, 其中, 所述发送至所述 AGW的路 由流表中包括: 用于当 AGW接收到下行数据时,緩存所述下行数据的緩存 指示;
所述控制器, 还配置为确认无线承载建立完成后, 向 AGW发送更新 消息, 通知 AGW停止緩存下行数据。
19、 根据权利要求 17或 18所述的系统, 其中, 所述 AGW, 配置为根 据所述路由流表中的 QoS信息、 承载标识信息建立分发路径, 进行数据的 分发。
20、 根据权利要求 12所述的系统, 其中, 所述控制器, 配置为确认无 线承载建立完成后, 分别向 eNB和 AGW发送添加消息, 将所述路由流表 下发给 eNB和 AGW。
21、 根据权利要求 12所述的系统, 其中, 所述 eNB, 配置为在接收到 UE发来的上行数据后, 根据预先配置的控制器地址或 MME下发的控制器 地址, 向控制器发送路由流表请求;
所述控制器,配置为接收到所述路由流表请求后,分别向 eNB和 AGW 发送添加消息, 将所述路由流表下发给 eNB和 AGW。
22、 根据权利要求 12所述的系统, 其中, 所述控制器, 配置为通过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 其中, 所述路由流表 中包括: 用于当 AGW接收到下行数据时, 緩存所述下行数据的緩存指示; 还配置为当确认无线承载建立完成后, 向 eNB发送添加消息, 将所述 路由流表下发至 eNB,并向 AGW发送更新消息,通知 AGW停止緩存下行 数据, 并根据所述路由流表将收到的所述下行数据进行分发。
23、 一种控制器, 所述控制器, 包括发送模块, 配置为将预先生成的 路由流表分别下发至 eNB和 AGW。
24、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 还配置为 获取 UE的标识和 UE的相关信息; 并才艮据所述 UE的标识和 UE的相关信 息, 生成路由流表; 其中, 所述 UE 的相关信息包括: UE签约信息、 UE 策略信息。
25、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 配置为通 过向 eNB发送添加消息, 将所述路由流表下发至 eNB; 还配置为确认无线 承载建立完成后, 通过向 AGW 发送添加消息, 将所述路由流表下发至
26、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 配置为分 别向 eNB和 AGW发送添加消息, 将所述路由流表下发给 eNB和 AGW。
27、 根据权利要求 26所述的控制器, 其中, 所述发送至所述 AGW的 路由流表中包括: 用于当 AGW接收到下行数据时,緩存所述下行数据的緩 存指示;
所述发送模块, 还配置为确认无线承载建立完成后, 向 AGW发送更 新消息, 通知 AGW停止緩存下行数据。
28、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 配置为确 认无线承载建立完成后, 分别向 eNB和 AGW发送添加消息, 将所述路由 流表下发给 eNB和 AGW。
29、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 配置为接 收到 eNB发来的路由流表请求后, 分别向 eNB和 AGW发送添加消息, 将 所述路由流表下发给 eNB和 AGW。
30、 根据权利要求 23所述的控制器, 其中, 所述发送模块, 配置为通 过向 AGW发送添加消息, 将所述路由流表下发至 AGW; 其中, 所述路由 流表中包括: 用于当 AGW接收到下行数据时,緩存所述下行数据的緩存指 示;
还配置为当确认无线承载建立完成后, 向 eNB发送添加消息, 将所述 路由流表下发至 eNB,并向 AGW发送更新消息,通知 AGW停止緩存下行 数据, 并根据所述路由流表将收到的所述下行数据进行分发。
PCT/CN2013/084990 2012-10-11 2013-10-10 一种路由转发的方法、系统及控制器 WO2014056445A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13846060.5A EP2908464A4 (en) 2012-10-11 2013-10-10 PROCESS, SYSTEM AND CONTROL FOR ROUTING FORWARDING
US14/435,148 US9787483B2 (en) 2012-10-11 2013-10-10 Method, system, and controller for routing forwarding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210384607.5 2012-10-11
CN201210384607.5A CN103731901A (zh) 2012-10-11 2012-10-11 一种路由转发的方法、系统及控制器

Publications (1)

Publication Number Publication Date
WO2014056445A1 true WO2014056445A1 (zh) 2014-04-17

Family

ID=50455789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084990 WO2014056445A1 (zh) 2012-10-11 2013-10-10 一种路由转发的方法、系统及控制器

Country Status (4)

Country Link
US (1) US9787483B2 (zh)
EP (1) EP2908464A4 (zh)
CN (1) CN103731901A (zh)
WO (1) WO2014056445A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289732A4 (en) * 2015-05-13 2018-03-28 Huawei Technologies Co., Ltd. Systems and methods for making and disseminating local policy decisions in a software programmable radio network

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244211A (zh) * 2013-06-07 2014-12-24 阿尔卡特朗讯 一种用于确定pcrf的方法与设备
EP3094051B1 (en) * 2014-01-29 2018-08-15 Huawei Technologies Co., Ltd. Data transmission method, transmission control method and device
EP3107351B1 (en) * 2014-03-05 2018-05-23 Huawei Technologies Co., Ltd. Data forwarding control method, controller and access point
US9407541B2 (en) * 2014-04-24 2016-08-02 International Business Machines Corporation Propagating a flow policy by control packet in a software defined network (SDN) based network
EP3145229B1 (en) * 2014-06-05 2020-03-11 Huawei Technologies Co. Ltd. Method and device for sending packet
CN105357112B (zh) * 2014-08-19 2018-08-14 华为技术有限公司 一种软件定义网络中的通信方法及装置
CN105376811B (zh) * 2014-08-25 2019-03-15 中国电信股份有限公司 在软件化移动网络架构下实现切换的方法和系统
TWI552638B (zh) 2014-11-06 2016-10-01 財團法人工業技術研究院 軟體定義網路與其行動管理方法與控制器
JP6462879B2 (ja) * 2014-12-09 2019-01-30 華為技術有限公司Huawei Technologies Co.,Ltd. 適応的フローテーブルを処理する方法及び装置
CN107113229B (zh) * 2014-12-27 2019-11-29 华为技术有限公司 一种通告消息处理方法和装置
US10855645B2 (en) * 2015-01-09 2020-12-01 Microsoft Technology Licensing, Llc EPC node selection using custom service types
EP3298734B1 (en) 2015-06-17 2020-08-05 Huawei Technologies Co., Ltd. Method and apparatus for handling data flow in wireless communication networks
CN106712987A (zh) * 2015-08-12 2017-05-24 中兴通讯股份有限公司 网络控制的处理方法、装置及软件定义网络系统
WO2017091986A1 (zh) * 2015-12-01 2017-06-08 华为技术有限公司 业务流转发功能部署方法、装置及系统
CN106937408B (zh) * 2015-12-31 2020-04-10 上海诺基亚贝尔股份有限公司 一种LTE网络的会话管理方法、基站及OpenFlow控制器
CN106131914B (zh) * 2016-07-15 2019-12-20 北京邮电大学 业务请求的处理方法及处理装置
US10972552B2 (en) * 2016-09-30 2021-04-06 Huawei Technologies Co., Ltd. Method and system for user plane path selection
CN106604306B (zh) * 2016-12-15 2020-02-21 北京锐安科技有限公司 数据分发方法和系统
US10548140B2 (en) 2017-05-02 2020-01-28 Affirmed Networks, Inc. Flexible load distribution and management in an MME pool
JP7178365B2 (ja) 2017-05-05 2022-11-25 マイクロソフト テクノロジー ライセンシング,エルエルシー サービス能力公開機能(scef)ベースのインターネットオブシングス(iot)通信の方法とシステム
JP7234141B2 (ja) 2017-05-31 2023-03-07 マイクロソフト テクノロジー ライセンシング,エルエルシー Ipsecの地理的冗長性のための分離した制御プレーンおよびデータプレーンの同期
CN109150729B (zh) * 2017-06-28 2021-11-19 中国移动通信有限公司研究院 一种数据转发控制方法、装置、系统、介质和计算设备
US10856134B2 (en) 2017-09-19 2020-12-01 Microsoft Technolgy Licensing, LLC SMS messaging using a service capability exposure function
CN109699013B (zh) * 2017-10-24 2020-08-25 华为技术有限公司 一种通信系统、通信方法及其装置
CN109729011B (zh) * 2017-10-31 2021-11-05 中国电信股份有限公司 流量转发方法、装置和计算机可读存储介质
WO2019164864A1 (en) 2018-02-20 2019-08-29 Affirmed Networks, Inc. Dynamic selection of network elements
SG11202008717SA (en) 2018-03-20 2020-10-29 Affirmed Networks Inc Systems and methods for network slicing
CN110365591B (zh) 2018-04-09 2021-11-19 华为技术有限公司 数据包处理方法、装置及设备
EP3827577B1 (en) 2018-07-23 2023-09-13 Microsoft Technology Licensing, LLC System and method for intelligently managing sessions in a mobile network
EP3915233A1 (en) 2019-01-23 2021-12-01 Nokia Solutions and Networks Oy Marking an uplink data packet
CN113286347A (zh) 2020-02-19 2021-08-20 摩点物联创意科技股份有限公司 无线网络建构方法
TWI725853B (zh) * 2020-05-18 2021-04-21 摩點物聯創意科技股份有限公司 用於被監控裝置的無線裝置建構方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033117A1 (ja) * 2010-09-09 2012-03-15 日本電気株式会社 ネットワークシステム、及びネットワーク管理方法
CN102656911A (zh) * 2009-12-18 2012-09-05 日本电气株式会社 移动通信系统、移动通信系统的构成装置、通信均衡化方法以及程序

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2074842T3 (en) * 2006-10-12 2018-12-17 Ericsson Telefon Ab L M Efficient MBMS backbone distribution using a single tunnel access
CN102349268B (zh) * 2009-03-09 2015-11-25 日本电气株式会社 OpenFlow通信系统和OpenFlow通信方法
KR20120070442A (ko) 2010-12-21 2012-06-29 한국전자통신연구원 사물통신 그룹 기반 터널링을 이용한 데이터 전송 방법, 그리고 이를 이용하는 이동통신 시스템
US9572096B2 (en) * 2011-09-07 2017-02-14 Lg Electronics Inc. Method and apparatus for remote-accessing in wireless communication system
JP5800025B2 (ja) * 2011-09-29 2015-10-28 日本電気株式会社 移動通信ネットワークシステム、通信制御方法およびそのプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656911A (zh) * 2009-12-18 2012-09-05 日本电气株式会社 移动通信系统、移动通信系统的构成装置、通信均衡化方法以及程序
WO2012033117A1 (ja) * 2010-09-09 2012-03-15 日本電気株式会社 ネットワークシステム、及びネットワーク管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2908464A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289732A4 (en) * 2015-05-13 2018-03-28 Huawei Technologies Co., Ltd. Systems and methods for making and disseminating local policy decisions in a software programmable radio network
US10791048B2 (en) 2015-05-13 2020-09-29 Futurewei Technologies, Inc. System and method for making and disseminating local policy decisions in a software programmable radio network

Also Published As

Publication number Publication date
US20150280927A1 (en) 2015-10-01
US9787483B2 (en) 2017-10-10
CN103731901A (zh) 2014-04-16
EP2908464A1 (en) 2015-08-19
EP2908464A4 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2014056445A1 (zh) 一种路由转发的方法、系统及控制器
US11606727B2 (en) Handover of a wireless device in a network
US11979778B2 (en) Release of a second session of a wireless device by an access and mobility management function
KR101731095B1 (ko) 네트워크에 액세스하는 시스템 및 방법
JP5536954B2 (ja) 回路交換ドメインからパケット交換ドメインへのハンドオーバー方法、装置、および通信システム
US9113436B2 (en) Method and system for information transmission
WO2014000265A1 (zh) 在线签约数据配置方法、装置及系统
WO2009094837A1 (en) A method for selecting a policy and charging rules function server on a non-roaming scene
WO2011011943A1 (zh) 一种承载绑定和事件报告功能的重选方法
WO2013016968A1 (zh) 一种接入方法、系统及移动智能接入点
US9544832B2 (en) Method, apparatus and system for policy control
WO2010081329A1 (zh) 业务流迁移过程中对网络资源进行控制的方法和系统
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2016180113A1 (zh) WiFi语音业务发起的方法、LTE通信设备、终端及通信系统
WO2010133107A1 (zh) 家用基站网关转发消息至家用基站的方法及系统
WO2012126302A1 (zh) 一种支持双模双待终端同时通信的方法和系统
EP2790457B1 (en) Method and device for processing local access connection
JP6446546B2 (ja) データ処理方法、装置、端末、モビリティ管理エンティティ、およびシステム
WO2012068946A1 (zh) 查询网关的方法及系统
WO2011017979A1 (zh) 支持ip分流的通信系统中资源管理方法与装置
WO2011038609A1 (zh) 本地连接信息的发送方法及装置
WO2011134324A1 (zh) 一种数据分流的动态控制方法及系统
WO2016086611A1 (zh) 获取PGW FQDN的方法、Home PGW及系统
WO2011032522A1 (zh) 一种实现本地接入的系统及方法
WO2013131427A1 (zh) 一种支持无线局域网接入的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14435148

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013846060

Country of ref document: EP