WO2014056379A1 - 下变频装置及其实现方法、接收机 - Google Patents

下变频装置及其实现方法、接收机 Download PDF

Info

Publication number
WO2014056379A1
WO2014056379A1 PCT/CN2013/083154 CN2013083154W WO2014056379A1 WO 2014056379 A1 WO2014056379 A1 WO 2014056379A1 CN 2013083154 W CN2013083154 W CN 2013083154W WO 2014056379 A1 WO2014056379 A1 WO 2014056379A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency signal
gain
module
power
Prior art date
Application number
PCT/CN2013/083154
Other languages
English (en)
French (fr)
Inventor
段亚娟
李香玲
张国俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13845425.1A priority Critical patent/EP2899891A4/en
Priority to JP2015535965A priority patent/JP6238992B2/ja
Publication of WO2014056379A1 publication Critical patent/WO2014056379A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage

Definitions

  • the present invention relates to the field of mobile communications, and more particularly to a downconversion device applied to a receiver and an implementation method thereof. Background technique
  • the traditional receiver is mainly composed of a gain attenuating unit, a gain amplifying unit and a down-conversion module with variable gain.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • the receiver needs to be designed according to the requirements of the GSM standard, and the attenuation of the RF signal by the gain attenuation unit is relatively large.
  • the gain amplification unit When the receiver is used in a system with low linearity requirements such as LTE, after the gain attenuation unit performs gain attenuation on the input RF signal, the gain amplification unit is also required to perform gain amplification on the attenuated RF signal, so that the attenuation is first performed.
  • the act of re-amplification not only causes a waste of gain, but also increases the power consumption of the receiver. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a down-conversion device capable of reducing power consumption of a receiver and an implementation method thereof.
  • the embodiment of the present invention provides the technical solution as follows:
  • the embodiment of the present invention provides a down-conversion device, configured to down-convert a first radio frequency signal received by a receiver antenna, and the down-conversion device include:
  • the control module is configured to output a control signal according to the power of the first radio frequency signal;
  • the gain processing module is configured to perform gain amplification or power attenuation on the first radio frequency signal according to the control signal to obtain a second radio frequency signal;
  • the down conversion module is configured to downconvert the second RF signal to an intermediate frequency and output an intermediate frequency signal.
  • the down conversion device further includes:
  • An image frequency improvement module configured to filter the second radio frequency signal
  • the down conversion module is further configured to down convert the signal output by the image frequency improvement module to an intermediate frequency, and output the intermediate frequency signal.
  • the gain processing module includes:
  • a gain amplifying module configured to perform gain amplification on the first radio frequency signal or directly output the first radio frequency signal according to the control signal
  • a gain attenuating module configured to perform power attenuation on the signal output by the gain amplifying module according to the control signal.
  • control module is configured to output a first control signal to the gain processing module when the power of the first radio frequency signal is greater than a preset threshold;
  • the gain amplifying module is configured to directly output the first radio frequency signal to the gain attenuating module according to the first control signal;
  • the gain attenuating module is configured to perform power attenuation on the first radio frequency signal according to a preset attenuation amount.
  • control module is configured to output a second control signal to the gain processing module when the power of the first radio frequency signal is not greater than a preset threshold;
  • the gain amplifying module is configured to perform a preset multiple gain amplification on the first radio frequency signal according to the second control signal;
  • the gain attenuating module is configured to perform OdB power attenuation on a signal output by the gain amplifying module.
  • Embodiments of the present invention also provide a receiver comprising the downconversion device for downconverting a radio frequency signal received by a receiver antenna as described above.
  • the embodiment of the present invention further provides a method for implementing down-conversion, which is used for down-converting a first radio frequency signal received by a receiver antenna, where the method includes:
  • the down conversion device detects the power of the first radio frequency signal received by the receiver antenna
  • the down conversion device performs gain amplification or power attenuation on the first radio frequency signal according to the power of the first radio frequency signal to obtain a second radio frequency signal;
  • the downconverting device downconverts the second radio frequency signal to an intermediate frequency and outputs an intermediate frequency signal.
  • the method further includes:
  • the down conversion device filters the second radio frequency signal.
  • the down conversion device performs gain amplification or power attenuation on the first RF signal according to the power of the first radio frequency signal, and obtaining the second radio frequency signal includes:
  • the down conversion device When the power of the first radio frequency signal is greater than a preset threshold, the down conversion device performs power attenuation on the first radio frequency signal according to a preset attenuation amount to obtain a second radio frequency signal.
  • the down conversion device performs gain amplification or power attenuation on the first RF signal according to the power of the first radio frequency signal, and obtaining the second radio frequency signal includes:
  • the down conversion device When the power of the first radio frequency signal is not greater than a preset threshold, the down conversion device performs a gain amplification of a preset multiple of the first radio frequency signal to obtain a second radio frequency signal.
  • Embodiments of the present invention have the following beneficial effects: When the multi-standard system index is met, the gain amplification or gain attenuation of the radio frequency signal can be dynamically determined according to the received power of different radio frequency signals, thereby avoiding the behavior of attenuating and re-amplifying the radio frequency signal, thereby reducing the overall reception. Machine power consumption. DRAWINGS
  • FIG. 1 is a schematic structural diagram of a structure of a down conversion device according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for implementing down conversion according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for implementing down conversion according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a down conversion device applied to a frequency division duplex and a time division duplex system according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention is directed to the prior art in the multi-mode system, the behavior of attenuating and re-amplifying not only causes waste of waste, but also increases the power consumption of the receiver, and provides a device capable of reducing power consumption of the receiver. Down conversion device, implementation method thereof, and receiver.
  • the down-conversion device includes:
  • the control module 10 is configured to output a control signal according to the power of the first radio frequency signal;
  • the gain processing module 12 is configured to perform gain amplification or power attenuation on the first radio frequency signal according to the control signal to obtain a second radio frequency signal;
  • the down conversion module 14 is configured to downconvert the second RF signal to the intermediate frequency and output the intermediate frequency signal.
  • the down conversion device further includes:
  • the image frequency improvement module 16 is configured to output a second RF signal to the gain processing module 12 Filtering;
  • the down conversion module 14 is further configured to downconvert the signal output by the image frequency improvement module 16 to the intermediate frequency and output the intermediate frequency signal.
  • the gain processing module 12 includes:
  • the gain amplifying module 11 is configured to perform gain amplification on the first radio frequency signal according to the control signal or directly output the first radio frequency signal;
  • the gain attenuating module 13 is configured to perform power attenuation on the signal output from the gain amplifying module 11 according to the control signal.
  • the control module 10 is configured to output a first control signal to the gain processing module 12 when the power of the first radio frequency signal is greater than a preset threshold;
  • the gain amplifying module 11 is configured to directly output the first radio frequency signal to the gain attenuating module 13 according to the first control signal;
  • the gain attenuation module 13 is configured to perform power attenuation on the first RF signal according to a preset attenuation amount.
  • the control module 10 is configured to output a second control signal to the gain processing module 12 when the power of the first radio frequency signal is not greater than a preset threshold;
  • the gain amplifying module 11 is configured to perform a preset multiple gain amplification on the first radio frequency signal according to the second control signal;
  • the gain attenuation module 13 is configured to perform OdB power attenuation on the signal output from the gain amplification module 11.
  • the control module 10 in the down conversion device may be implemented by a central processing unit (CPU) in the device, or a digital signal processor (DSP), or a programmable gate array.
  • Field1 Field-Programmable Gate Array, FPGA
  • the down conversion module 14 in the device can be implemented by a down converter or a down conversion circuit in the device
  • the gain processing module 12 in the device Submodule: increase
  • the gain amplification module 11 can be implemented by a gain amplifier or a gain amplification circuit in the device
  • a sub-module of the gain processing module 12 in the device the gain attenuation module 13 can be used by a gain attenuator in the device in practical applications.
  • a gain reduction circuit is implemented
  • the image frequency improvement module 16 in the device can be implemented by a filter or a filter circuit in the device in practical applications.
  • the embodiment of the present invention further provides a method for implementing down-conversion, that is, a working method of the above-mentioned down-conversion device, configured to down-convert a first radio frequency signal received by a receiver antenna, as shown in FIG. 2, the method Includes:
  • Step 201 The down conversion device detects the power of the first radio frequency signal received by the receiver antenna.
  • Step 202 The down conversion device performs gain amplification or power attenuation on the first radio frequency signal according to the power of the first radio frequency signal to obtain a second radio frequency signal.
  • Step 203 The down conversion device downconverts the second RF signal to the intermediate frequency and outputs the intermediate frequency signal.
  • the method further includes: filtering, by the down conversion device, the second radio frequency signal.
  • filtering by the down conversion device, the second radio frequency signal.
  • Step 301 The down conversion device detects a power level of the first radio frequency signal received by the receiver.
  • Step 302 The down conversion device determines whether the power of the first radio frequency signal is greater than a preset threshold. If yes, go to step 303; if no, go to step 306.
  • the down conversion device determines that the power of the first radio frequency signal is greater than a preset threshold, the interference signal received by the receiver is larger, and the linearity requirement for the system is higher, and the process proceeds to step 303; the power of the first radio frequency signal is determined by the down conversion device.
  • the threshold is not greater than the preset threshold, the linearity requirement for the receiver is low at this time, and the process proceeds to step 306.
  • Step 303 The control module determines that the operating mode of the down conversion device is a high linear operation mode, and improves the capability of the receiver to resist large interference signals.
  • the control module may be a serial peripheral interface (SPI, Serial Peripheral).
  • SPI serial peripheral interface
  • the control module is connected to the gain attenuating module and the gain amplifying module through the SPI, and the bias circuit of the gain amplifying module and the gain attenuating module is controlled by the SPI control switch to control the working state of the gain attenuating module and the gain amplifying module.
  • Step 304 The control module controls the gain amplification module to be in a bypass state, and performs direct processing on the received first RF signal, and simultaneously powers off the gain amplification module.
  • Step 305 Set an appropriate attenuation amount to perform power attenuation on the first RF signal.
  • the receiver antenna Setting an appropriate attenuation amount according to the power level of the first radio frequency signal received by the receiver antenna, ensuring that the receiver analog-to-digital conversion module is not saturated, moderately attenuating the power of the first radio frequency signal, and performing power attenuation on the first radio frequency signal.
  • the second RF signal After the second RF signal, the second RF signal is downconverted to obtain an intermediate frequency signal.
  • Step 306 The control module determines that the operating mode of the down conversion device is a low power operation mode, and saves power consumption of the receiver.
  • the control module may specifically be an SPI control module, connected to the gain attenuating module and the gain amplifying module through the SPI control module, and the biasing circuit of the gain amplifying module and the gain attenuating module is controlled by the SPI control module to control the gain attenuating module and gain amplification.
  • the working state of the module may specifically be an SPI control module, connected to the gain attenuating module and the gain amplifying module through the SPI control module, and the biasing circuit of the gain amplifying module and the gain attenuating module is controlled by the SPI control module to control the gain attenuating module and gain amplification.
  • Step 307 The control module controls the gain amplification module to amplify the first radio frequency signal.
  • the image frequency improving module can also be used to filter the gain-amplified RF signal, and then steps 305 and 308 are performed.
  • the down conversion device of the embodiment of the present invention places the gain amplifying module in front of the gain attenuating module.
  • the gain amplifying module is directly bypassed and the gain attenuating module is appropriately adjusted, so that Will cause waste of waste and reduce the linear pressure of the mixer Force, and can obtain better noise figure to improve sensitivity index;
  • This device has two modes of operation: low power consumption and high linearity. It can switch between different working modes through SPI control, which reduces the power consumption of the receiver.
  • the existing receiver gain dynamics only originate from the attenuation range of the power attenuation module used in the receiver.
  • the gain dynamics of the receiver include the gain attenuation module and the gain with bypass.
  • the amplifying module provides a larger gain dynamic range for the receiver; and the down-converting device of the present invention is applicable to various systems, which improves the integration of the device, saves PCB cost and device cost, and reduces the cost of the receiver.
  • Embodiments of the present invention also provide a receiver comprising the downconversion device as described above for downconverting a radio frequency signal received by a receiver antenna.
  • FIG. 4 is a schematic diagram showing the application of the down converter of the present invention to a frequency division duplex (FDD) and a time division duplex (TDD) system, as shown in FIG. 4, the down converter 22 is connected to the low noise amplification module 21 and the intermediate frequency anti-aliasing suppression module 23, the intermediate frequency anti-aliasing suppression module 23 is connected to the intermediate frequency gain module 24, and the intermediate frequency gain module 24 is connected to the analog to digital conversion module 25.
  • FDD frequency division duplex
  • TDD time division duplex
  • the FDD system requires a higher noise figure index under the receiver sensitivity, so it is necessary to place a large gain low noise amplification module 21 in front of the down conversion device 22 to ensure that the total noise coefficient does not change with other factors.
  • the down-conversion device 22 of the embodiment of the present invention operates in a maximum gain state and a low-power operation mode; when the high-power interference signal is input, the gain is amplified in the down-conversion device 22 of the embodiment of the present invention.
  • the module bypass only performs signal attenuation and frequency conversion.
  • the low-power mode is used for the GSM standard small-signal input, and the down-conversion device is in the high-linear operation mode when the large intermodulation signal is input.
  • the inverter device works in a low-power operation mode to meet system specifications and save linearity and power consumption.
  • the image rejection module can be flexibly used for the link design to meet the requirements, and the image rejection module can be placed according to the position in FIG. It can also be placed in front of the downconverting device to filter the radio frequency signal before the radio frequency signal enters the downconverting device.
  • the downconversion device has two applications in the TDD system:
  • a single-stage 15dB gain low noise amplifier can be placed in front of the downconverter 22.
  • the down-conversion device 22 When the low-power radio frequency signal is input, the down-conversion device 22 operates in the maximum gain state, and the down-conversion module of the down-conversion device 22 can operate in a low-power mode to meet the system requirements.
  • TDD does not require a linear index of the system.
  • the gain amplifying module of the down-converting device is bypassed, and the down-converting device can always operate in a low-power mode to meet the requirement.
  • a 30 dB gain LNA is still placed in front of the downconverting device 22, but the gain amplifying module in the downconverting device 22 is always bypassed.
  • the gain amplifying module of the down-converting device 22 is bypassed, and the down-conversion module can operate in the low-power mode.
  • the gain amplification module of the down-conversion device is bypassed, and the down-conversion module can also operate in a low-power mode, and the gain is adjusted only by the gain attenuation module.
  • the down-conversion device of the embodiment of the present invention is applicable to the TDD and FDD systems, and can realize the requirements of the TDD and FDD common platforms.
  • the down-conversion device of the embodiment of the present invention increases the bypass function of the gain amplification module under the FDD system, and needs to receive When the linear index of the machine is good, the gain amplification module can be bypassed, which reduces the linearity index of the gain amplifier and saves power, and meets the requirements of multiple standards.
  • the embodiment of the invention improves the integration degree of the device through the integration technology, saves PCB cost and device cost, reduces the complexity of the design, improves the cost advantage of the transceiver to a certain extent, and improves the reliability of the product.
  • the module can be implemented by software, so as to be executed by various types of processors.
  • an identified executable code module can comprise one or more physical or logical blocks of computer instructions, which can be constructed, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different physicalities. When these instructions are logically combined, they form a module and implement the specified purpose of the module. .
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed over a plurality of different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data can be identified within the module and can be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software. Without considering the cost, a person skilled in the art can construct a corresponding hardware circuit to implement the corresponding function.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • Modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • sequence numbers of the steps are not used to limit the sequence of the steps.
  • the steps of the steps are changed without any creative work. It is also within the scope of the invention.
  • the embodiment of the present invention detects the power of the first radio frequency signal received by the receiver antenna, performs gain amplification or power attenuation on the first radio frequency signal according to the power of the first radio frequency signal, to obtain a second radio frequency signal,
  • the second RF signal is down-converted to an intermediate frequency and output an intermediate frequency signal.
  • the gain amplification or gain of the RF signal can be dynamically determined according to the received power of different RF signals. Attenuation avoids the behavior of attenuating and amplifying the RF signal first, which can reduce the power consumption of the entire receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本发明实施例公开了一种应用于接收机的下变频装置及其实现方法,属于移动通信领域。其中,所述下变频装置,用于对接收机天线接收到的第一射频信号进行下变频,所述下变频装置包括:控制模块,配置为根据所述第一射频信号的功率输出控制信号;增益处理模块,配置为根据所述控制信号对所述第一射频信号进行增益放大或功率衰减,得到第二射频信号;下变频模块,配置为将所述第二射频信号下变频到中频频率,并输出中频信号。采用本发明实施例的技术方案,能够根据接收到的不同射频信号的功率,动态地决定对射频信号进行增益放大或增益衰减,避免了对射频信号先衰减再放大的行为,能够降低整个接收机的功耗。

Description

下变频装置及其实现方法、 接收机 技术领域
本发明涉及移动通信领域, 特别是指一种应用于接收机的下变频装置 及其实现方法。 背景技术
随着通讯事业的发展, 产品的多模应用和产品支持载频数的增加已经 成为目前通讯技术的主要设计目标。 对于多通讯制式的融合使用, 在射频 硬件部分的电路设计中, 器件的性能要满足最严格的指标。
在多模系统中不同制式对接收机线性要求不同, 为了满足多模的需求, 传统的接收机要按照最严格的要求设计。 传统的接收机主要是由增益衰减 单元, 增益放大单元和有变频增益的下变频模块组成, 当多模系统中同时 包括长期演进 ( LTE, Long Term Evolution )和全球移动通讯系统( GSM, Global System of Mobile communication )等制式时, 由于 GSM制式对接收 机的增益动态范围和线性指标都较其他制式要高, 这样接收机需要按照 GSM制式的要求设计, 增益衰减单元对射频信号的衰减比较大。 当接收机 用在如 LTE等对线性要求较低的制式时, 在增益衰减单元对输入的射频信 号进行增益衰减之后, 还需要利用增益放大单元对衰减后的射频信号进行 增益放大, 这样先衰减再放大的行为不仅导致增益的浪费, 还增加了接收 机的功耗。 发明内容
本发明要解决的技术问题是提供一种能够降低接收机的功耗的下变频 装置及其实现方法。 为解决上述技术问题, 本发明的实施例提供技术方案如下: 本发明实施例提供了一种下变频装置, 用于对接收机天线接收到的第 一射频信号进行下变频, 所述下变频装置包括:
控制模块, 配置为根据所述第一射频信号的功率输出控制信号; 增益处理模块, 配置为根据所述控制信号对所述第一射频信号进行增 益放大或功率衰减, 得到第二射频信号;
下变频模块, 配置为将所述第二射频信号下变频到中频频率, 并输出 中频信号。
优选地, 所述下变频装置还包括:
镜像频率改善模块, 配置为对所述第二射频信号进行滤波;
所述下变频模块, 还配置为将所述镜像频率改善模块输出的信号下变 频到中频频率, 并输出中频信号。
优选地, 所述增益处理模块包括:
增益放大模块, 配置为根据所述控制信号对所述第一射频信号进行增 益放大或将所述第一射频信号直接输出;
增益衰减模块, 配置为根据所述控制信号对所述增益放大模块输出的 信号进行功率衰减。
优选地, 所述控制模块, 配置为在所述第一射频信号的功率大于预设 阈值时, 输出第一控制信号至所述增益处理模块;
所述增益放大模块, 配置为根据所述第一控制信号将所述第一射频信 号直接输出至所述增益衰减模块;
所述增益衰减模块, 配置为根据预设的衰减量对所述第一射频信号进 行功率衰减。
优选地, 所述控制模块, 配置为在所述第一射频信号的功率不大于预 设阈值时, 输出第二控制信号至所述增益处理模块; 所述增益放大模块, 配置为根据所述第二控制信号对所述第一射频信 号进行预设倍数的增益放大;
所述增益衰减模块, 配置为对所述增益放大模块输出的信号进行 OdB 的功率衰减。
本发明实施例还提供了一种接收机, 包括如上所述的用于对接收机天 线接收到的射频信号进行下变频的下变频装置。
本发明实施例还提供了一种下变频的实现方法, 用于对接收机天线接 收到的第一射频信号进行下变频, 所述方法包括:
下变频装置检测接收机天线接收到的第一射频信号的功率;
所述下变频装置根据所述第一射频信号的功率对所述第一射频信号进 行增益放大或功率衰减, 得到第二射频信号;
所述下变频装置将所述第二射频信号下变频到中频频率, 并输出中频 信号。
优选地, 所述下变频装置将所述第二射频信号下变频到中频频率之前, 所述方法还包括:
所述下变频装置对第二射频信号进行滤波。
优选地, 所述下变频装置根据所述第一射频信号的功率对所述第一射 频信号进行增益放大或功率衰减, 得到第二射频信号包括:
所述下变频装置在所述第一射频信号的功率大于预设阈值时, 根据预 设的衰减量对所述第一射频信号进行功率衰减, 得到第二射频信号。
优选地, 所述下变频装置根据所述第一射频信号的功率对所述第一射 频信号进行增益放大或功率衰减, 得到第二射频信号包括:
所述下变频装置在所述第一射频信号的功率不大于预设阈值时, 对所 述第一射频信号进行预设倍数的增益放大, 得到第二射频信号。
本发明的实施例具有以下有益效果: 在满足多制式系统指标的情况下, 能够根据接收到的不同射频信号的 功率, 动态地决定对射频信号进行增益放大或增益衰减, 避免了对射频信 号先衰减再放大的行为, 能够降低整个接收机的功耗。 附图说明
图 1为本发明实施例的下变频装置的组成结构示意图;
图 2为本发明实施例一的下变频的实现方法的流程示意图;
图 3为本发明实施例二的下变频的实现方法的流程示意图;
图 4为本发明实施例的下变频装置应用于频分双工和时分双工系统时 的示意图。 具体实施方式
为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下面将结合附图及具体实施例进行详细描述。
本发明的实施例针对现有技术中在多模系统中, 先衰减再放大的行为 不仅导致增益的浪费, 还增加了接收机的功耗的问题, 提供一种能够降低 接收机的功耗的下变频装置及其实现方法、 接收机。
图 1为本发明实施例的下变频装置的结构示意图, 如图 1所示, 所述 下变频装置包括:
控制模块 10, 配置为根据第一射频信号的功率输出控制信号; 增益处理模块 12, 配置为根据控制信号对第一射频信号进行增益放大 或功率衰减, 得到第二射频信号;
下变频模块 14, 配置为将第二射频信号下变频到中频频率, 并输出中 频信号。
优选地, 如图 1所示, 下变频装置还包括:
镜像频率改善模块 16,配置为对增益处理模块 12输出的第二射频信号 进行滤波;
下变频模块 14,还配置为将镜像频率改善模块 16输出的信号下变频到 中频频率, 并输出中频信号。
如图 1所示, 增益处理模块 12包括:
增益放大模块 11 , 配置为根据控制信号对第一射频信号进行增益放大 或将第一射频信号直接输出;
增益衰减模块 13 ,配置为根据控制信号对增益放大模块 11输出的信号 进行功率衰减。
其中, 控制模块 10, 配置为在第一射频信号的功率大于预设阈值时, 输出第一控制信号至增益处理模块 12;
增益放大模块 11 , 配置为根据第一控制信号将第一射频信号直接输出 至增益衰减模块 13;
增益衰减模块 13 , 配置为根据预设的衰减量对第一射频信号进行功率 衰减。
控制模块 10, 配置为在第一射频信号的功率不大于预设阈值时, 输出 第二控制信号至增益处理模块 12;
增益放大模块 11 , 配置为根据第二控制信号对第一射频信号进行预设 倍数的增益放大;
增益衰减模块 13 ,配置为对增益放大模块 11输出的信号进行 OdB的功 率衰减。
其中, 所述下变频装置中的控制模块 10在实际应用中, 可由装置中的 中央处理器(Central Processing Unit, CPU ), 或数字信号处理器(Digital Signal Processor, DSP )、 或可编程门阵歹l ( Field-Programmable Gate Array, FPGA ) 实现; 所述装置中的下变频模块 14在实际应用中, 可由装置中的 下变频器或下变频电路实现; 所述装置中的增益处理模块 12的子模块: 增 益放大模块 11在实际应用中, 可由装置中的增益放大器或增益放大电路实 现; 所述装置中的增益处理模块 12的子模块: 增益衰减模块 13在实际应 用中, 可由装置中的增益衰减器或增益衰减电路实现; 所述装置中的镜像 频率改善模块 16在实际应用中, 可由装置中的滤波器或滤波电路实现。
本发明实施例还提供了一种下变频的实现方法, 即上述下变频装置的 工作方法, 用于对接收机天线接收到的第一射频信号进行下变频, 如图 2 所示, 所述方法包括:
步驟 201 : 下变频装置检测接收机天线接收到的第一射频信号的功率。 步驟 202:下变频装置根据第一射频信号的功率对第一射频信号进行增 益放大或功率衰减, 得到第二射频信号。
步驟 203: 下变频装置将第二射频信号下变频到中频频率, 并输出中频 信号。
优选地, 步驟 203之前还包括: 下变频装置对第二射频信号进行滤波。 下面结合图 3对本发明实施例二的下变频装置用在 GSM制式的下变频 的实现方法作进一步介绍, 具体包括以下步驟:
步驟 301 : 下变频装置检测接收机接收到的第一射频信号的功率大小。 步驟 302: 下变频装置判断第一射频信号的功率是否大于预设阈值,如 果是, 转向步驟 303; 如果否, 转向步驟 306。
在下变频装置判断第一射频信号的功率大于预设阈值时, 此时接收机 接收到的干扰信号较大, 对系统的线性要求较高, 转向步驟 303; 在下变频 装置判断第一射频信号的功率不大于预设阈值时, 此时对接收机的线性要 求较低, 转向步驟 306。
步驟 303: 控制模块确定下变频装置的工作模式为高线性工作模式,提 高接收机抵抗大干扰信号的能力。
其中, 控制模块具体可以为串行外设接口 (SPI , Serial Peripheral Interface )控制模块, 通过 SPI与增益衰减模块和增益放大模块连接, 通过 SPI控制开关切换增益放大模块和增益衰减模块的偏压电路控制增益衰减 模块和增益放大模块的工作状态。
步驟 304: 控制模块控制增益放大模块处于旁路状态,对接收到的第一 射频信号进行直通处理, 同时将增益放大模块下电。
步驟 305: 设置合适的衰减量, 对第一射频信号进行功率衰减。
根据接收机天线接收到的第一射频信号的功率大小设置合适的衰减 量, 保证接收机模数转换模块不饱和, 对第一射频信号适度的功率衰减, 在对第一射频信号进行功率衰减得到第二射频信号之后, 再对第二射频信 号进行下变频得到中频信号。
步驟 306: 控制模块确定下变频装置的工作模式为低功耗工作模式, 节 约接收机的功耗。
其中,控制模块具体可以为 SPI控制模块,通过 SPI控制模块与增益衰 减模块和增益放大模块连接, 通过 SPI控制模块控制开关切换增益放大模 块和增益衰减模块的偏压电路控制增益衰减模块和增益放大模块的工作状 态。
步驟 307: 控制模块控制增益放大模块对第一射频信号进行放大。 步驟 308: 控制模块将增益衰减模块的衰减量设为 OdB, 对经过增益放 大的第一射频信号 OdB衰减得到第二射频信号之后, 再对第二射频信号进 行下变频得到中频信号。
优选地, 在执行上述步驟 304和 307后, 还可以利用镜像频率改善模 块, 对经过增益放大的射频信号进行滤波处理, 然后执行步驟 305和 308。
本发明实施例的下变频装置将增益放大模块放置在增益衰减模块的前 面, 如图 1 所示, 在需要小增益时直接先将增益放大模块旁路再适当地调 整增益衰减模块, 如此则不会造成增益的浪费而且减轻了混频器的线性压 力, 并且能够获得更优的噪声系数提高灵敏度指标; 本装置有低功耗和高 线性两种工作模式, 可以通过 SPI控制进行不同工作模式下的切换, 降低 了接收机的功耗。 另外现有的接收机增益动态仅来源于接收机内使用的功 率衰减模块的衰减范围, 使用本发明实施例的下变频装置, 使得接收机的 增益动态包括了增益衰减模块和带旁路的增益放大模块, 为接收机提供较 大的增益动态范围; 并且本发明的下变频装置适用于多种制式中, 提高了 器件的集成度, 节省了 PCB成本和器件成本, 降低了接收机的成本。
本发明实施例还提供了一种接收机, 包括如上所述的下变频装置, 用 于对接收机天线接收到的射频信号进行下变频。
图 4 显示了本发明的下变频装置应用于频分双工 (FDD, Frequency Division Duplexing )和时分双工 ( TDD, Time Division Duplexing ) 系统时 的示意图, 如图 4所示, 所述下变频装置 22与低噪声放大模块 21和中频 抗混叠抑制模块 23连接, 所述中频抗混叠抑制模块 23与中频增益模块 24 连接, 所述中频增益模块 24与模数转换模块 25连接。
其中, FDD 系统要求接收机灵敏度下噪声系数指标较高, 因此需要在 所述下变频装置 22前放置一个大增益低噪声放大模块 21 ,保证总的噪声系 数不随其他因素的变化而变化。 在小功率射频信号输入时, 本发明实施例 的下变频装置 22工作在最大增益状态和低功耗工作模式; 在大功率干扰信 号输入时, 本发明实施例的下变频装置 22中的增益放大模块旁路只进行信 号的衰减和变频,对于 GSM制式小信号输入时该下变频装置处于低功耗模 式, 大互调信号输入时该下变频装置处于高线性工作模式, 对于 LTE 和 UMTS 制式所述下变频装置工作在低功耗工作模式, 就可以满足系统指标 要求, 节约线性和功耗。
在下变频装置 22应用于不同的系统中时, 可以灵活的使用镜频抑制模 块进行链路设计以满足要求, 镜频抑制模块可以按照图 1 中的位置放置, 也可以放置到所述下变频装置的前面, 在射频信号进入下变频装置之前对 射频信号进行滤波。
所述下变频装置在 TDD系统中有两种应用方式:
第一种: 由于 TDD系统要求增益和噪声系数指标较低, 因此可以在所 述下变频装置 22前面放置一个单级 15dB增益的低噪声放大器( LNA, Low Noise Amplifier )。 在小功率射频信号输入时, 所述下变频装置 22工作在最 大增益状态, 且所述下变频装置 22的下变频模块可以工作在低功耗模式, 满足系统要求。 在大功率射频信号输入时, TDD对系统的线性指标要求也 不高, 所述下变频装置的增益放大模块旁路, 且所述下变频装置可以一直 工作在低功耗模式就可以满足要求。
第二种:所述下变频装置 22前面仍旧放置一个 30dB增益的 LNA, 但 是所述下变频装置 22中的增益放大模块一直旁路。 在小功率射频信号输入 时, 所述下变频装置 22的增益放大模块旁路, 下变频模块可以工作在低功 耗模式。 在大功率射频信号输入时, 所述下变频装置的增益放大模块旁路, 下变频模块还可以工作在低功耗模式, 只通过增益衰减模块来调整增益。
本发明实施例的下变频装置适用于 TDD和 FDD制式, 可以实现 TDD 和 FDD共平台的需求; 本发明实施例的下变频装置在 FDD制式下, 增加 增益放大模块的旁路功能, 在需要接收机的线性指标较好时可以旁路增益 放大模块, 降低了增益放大器的线性指标又节省功耗, 同时满足多制式要 求。 本发明实施例通过集成技术提高了器件集成度的同时, 节省了 PCB成 本和器件成本、 降低了设计的复杂程度, 在一定程度上提高了收发信机的 成本优势, 提升了产品的可靠性。
此说明书中所描述的许多功能部件都被称为模块, 以便更加特别地强 调其实现方式的独立性。
本发明实施例中, 模块可以用软件实现, 以便由各种类型的处理器执 行。 举例来说, 一个标识的可执行代码模块可以包括计算机指令的一个或 多个物理或者逻辑块, 举例来说, 其可以被构建为对象、 过程或函数。 尽 管如此, 所标识模块的可执行代码无需物理地位于一起, 而是可以包括存 储在不同物理上的不同的指令, 当这些指令逻辑上结合在一起时, 其构成 模块并且实现该模块的规定目的。
实际上, 可执行代码模块可以是单条指令或者是许多条指令, 并且甚 至可以分布在多个不同的代码段上, 分布在不同程序当中, 以及跨越多个 存储器设备分布。 同样地, 操作数据可以在模块内被识别, 并且可以依照 任何适当的形式实现并且被组织在任何适当类型的数据结构内。 所述操作 数据可以作为单个数据集被收集, 或者可以分布在不同位置上(包括在不 同存储设备上), 并且至少部分地可以仅作为电子信号存在于系统或网络 上。
在模块可以利用软件实现时, 考虑到现有硬件工艺的水平, 所以可以 以软件实现的模块, 在不考虑成本的情况下, 本领域技术人员都可以搭建 对应的硬件电路来实现对应的功能, 所述硬件电路包括常规的超大规模集 成(VLSI ) 电路或者门阵列以及诸如逻辑芯片、 晶体管之类的现有半导体 或者是其它分立的元件。 模块还可以用可编程硬件设备, 诸如现场可编程 门阵列、 可编程阵列逻辑、 可编程逻辑设备等实现。
在本发明各方法实施例中, 所述各步驟的序号并不能用于限定各步驟 的先后顺序, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提 下, 对各步驟的先后变化也在本发明的保护范围之内。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改 进和润饰, 这些改进和润饰也应视为本发明的保护范围。 工业实用性
本发明实施例通过检测接收机天线接收到的第一射频信号的功率, 根 据所述第一射频信号的功率对所述第一射频信号进行增益放大或功率衰 减, 得到第二射频信号, 将所述第二射频信号下变频到中频频率, 并输出 中频信号, 如此, 在满足多制式系统指标的情况下, 能够根据接收到的不 同射频信号的功率, 动态地决定对射频信号进行增益放大或增益衰减, 避 免了对射频信号先衰减再放大的行为, 能够降低整个接收机的功耗。

Claims

权利要求书
1. 一种下变频装置, 用于对接收机天线接收到的第一射频信号进行下 变频, 所述下变频装置包括:
控制模块, 配置为根据所述第一射频信号的功率输出控制信号; 增益处理模块, 配置为根据所述控制信号对所述第一射频信号进行增 益放大或功率衰减, 得到第二射频信号;
下变频模块, 配置为将所述第二射频信号下变频到中频频率, 并输出 中频信号。
2. 根据权利要求 1所述的下变频装置, 其中, 所述下变频装置还包括: 镜像频率改善模块, 配置为对所述第二射频信号进行滤波;
所述下变频模块, 还配置为将所述镜像频率改善模块输出的信号下变 频到中频频率, 并输出中频信号。
3. 根据权利要求 1或 2所述的下变频装置, 其中, 所述增益处理模块 包括:
增益放大模块, 配置为根据所述控制信号对所述第一射频信号进行增 益放大或将所述第一射频信号直接输出;
增益衰减模块, 配置为根据所述控制信号对所述增益放大模块输出的 信号进行功率衰减。
4. 根据权利要求 3所述的下变频装置, 其中,
所述控制模块, 配置为在所述第一射频信号的功率大于预设阈值时, 输出第一控制信号至所述增益处理模块;
所述增益放大模块, 配置为根据所述第一控制信号将所述第一射频信 号直接输出至所述增益衰减模块;
所述增益衰减模块, 配置为根据预设的衰减量对所述第一射频信号进 行功率衰减。
5. 根据权利要求 3所述的下变频装置, 其中,
所述控制模块, 配置为在所述第一射频信号的功率不大于预设阈值时, 输出第二控制信号至所述增益处理模块;
所述增益放大模块, 配置为根据所述第二控制信号对所述第一射频信 号进行预设倍数的增益放大;
所述增益衰减模块, 配置为对所述增益放大模块输出的信号进行 OdB 的功率衰减。
6. 一种接收机, 所述接收机包括权利要求 1至 5任一项所述的用于对 接收机天线接收到的射频信号进行下变频的下变频装置。
7. 一种下变频的实现方法, 用于对接收机天线接收到的第一射频信号 进行下变频, 所述方法包括:
下变频装置检测接收机天线接收到的第一射频信号的功率;
所述下变频装置根据所述第一射频信号的功率对所述第一射频信号进 行增益放大或功率衰减, 得到第二射频信号;
所述下变频装置将所述第二射频信号下变频到中频频率, 并输出中频 信号。
8. 根据权利要求 7所述的下变频的实现方法, 其中, 所述下变频装置 将所述第二射频信号下变频到中频频率之前, 所述方法还包括:
所述下变频装置对第二射频信号进行滤波。
9. 根据权利要求 7或 8所述的下变频的实现方法, 其中, 所述下变频 装置根据所述第一射频信号的功率对所述第一射频信号进行增益放大或功 率衰减, 得到第二射频信号包括:
所述下变频装置在所述第一射频信号的功率大于预设阈值时, 根据预 设的衰减量对所述第一射频信号进行功率衰减, 得到第二射频信号。
10. 根据权利要求 7或 8所述的下变频的实现方法, 其中, 所述下变 频装置根据所述第一射频信号的功率对所述第一射频信号进行增益放大或 功率衰减, 得到第二射频信号包括:
所述下变频装置在所述第一射频信号的功率不大于预设阈值时, 对所 述第一射频信号进行预设倍数的增益放大, 得到第二射频信号。
PCT/CN2013/083154 2012-10-10 2013-09-09 下变频装置及其实现方法、接收机 WO2014056379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13845425.1A EP2899891A4 (en) 2012-10-10 2013-09-09 FREQUENCY LOWERING DEVICE AND ITS IMPLEMENTING AND RECEIVING METHOD
JP2015535965A JP6238992B2 (ja) 2012-10-10 2013-09-09 ダウンコンバージョン装置とその実行方法及び受信機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210381339.1 2012-10-10
CN2012103813391A CN102932021A (zh) 2012-10-10 2012-10-10 下变频装置及其实现方法、接收机

Publications (1)

Publication Number Publication Date
WO2014056379A1 true WO2014056379A1 (zh) 2014-04-17

Family

ID=47646745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083154 WO2014056379A1 (zh) 2012-10-10 2013-09-09 下变频装置及其实现方法、接收机

Country Status (4)

Country Link
EP (1) EP2899891A4 (zh)
JP (1) JP6238992B2 (zh)
CN (1) CN102932021A (zh)
WO (1) WO2014056379A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168001A (zh) * 2014-05-27 2014-11-26 北京遥测技术研究所 一种八通道增益可控下变频器
CN111323758A (zh) * 2019-12-30 2020-06-23 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种雷达与对抗双模双工的多功能变频组件
CN112737620A (zh) * 2020-12-29 2021-04-30 京信网络系统股份有限公司 增益控制装置、方法、计算机设备和存储介质
CN115037319A (zh) * 2022-03-23 2022-09-09 哈尔滨工程大学 一种侦察、干扰、探测、通信射频一体化集成装置
CN117269991A (zh) * 2023-11-22 2023-12-22 北京李龚导航科技有限公司 一种卫星导航抗干扰终端的基本型装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932021A (zh) * 2012-10-10 2013-02-13 中兴通讯股份有限公司 下变频装置及其实现方法、接收机
CN106330224B (zh) 2016-08-31 2019-07-12 华为技术有限公司 接收机以及无线通信装置
US10608592B2 (en) * 2017-02-23 2020-03-31 Mediatek Inc. Linear amplifier having higher efficiency for envelope tracking modulator
CN111257880B (zh) * 2018-11-30 2022-10-04 深圳市海思半导体有限公司 一种雷达以及目标探测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239610A (zh) * 1997-09-30 1999-12-22 夸尔柯姆股份有限公司 用于增加接收机抗干扰性的方法和装置
CN101335530A (zh) * 2008-07-30 2008-12-31 京信通信系统(中国)有限公司 载波型数字射频拉远系统及其底噪关断方法和装置
CN101944924A (zh) * 2010-09-30 2011-01-12 东南大学 用于下一代无线通信网络的宽带mimo射频收发系统
CN102932021A (zh) * 2012-10-10 2013-02-13 中兴通讯股份有限公司 下变频装置及其实现方法、接收机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254733B2 (ja) * 1992-06-16 2002-02-12 松下電器産業株式会社 自動利得制御回路
US5722061A (en) * 1994-12-16 1998-02-24 Qualcomm Incorporated Method and apparatus for increasing receiver immunity to interference
US5627857A (en) * 1995-09-15 1997-05-06 Qualcomm Incorporated Linearized digital automatic gain control
JP3504071B2 (ja) * 1996-06-27 2004-03-08 松下電器産業株式会社 ダイレクトコンバージョン受信機
JP3848445B2 (ja) * 1997-09-26 2006-11-22 松下電器産業株式会社 複数通信方式対応の無線機
DE19838244A1 (de) * 1998-08-22 2000-02-24 Daimler Chrysler Ag Verfahren zum Empfang verschiedenartiger Funkstandards
US6603825B1 (en) * 1999-01-12 2003-08-05 Motorola Inc. Automatic gain control for a receiver and method therefor
US6625433B1 (en) * 2000-09-29 2003-09-23 Agere Systems Inc. Constant compression automatic gain control circuit
US6960962B2 (en) * 2001-01-12 2005-11-01 Qualcomm Inc. Local oscillator leakage control in direct conversion processes
JP3746209B2 (ja) * 2001-07-05 2006-02-15 株式会社東芝 無線送受信機
JP2003046403A (ja) * 2001-08-01 2003-02-14 Nec Corp ダイレクトコンバージョン受信機
KR100548321B1 (ko) * 2003-01-07 2006-02-02 엘지전자 주식회사 동위상 합성 다이버시티 수신 장치 및 방법
EP1627472B1 (en) * 2003-05-23 2019-05-08 Skyworks Solutions, Inc. Shared functional block multi-mode multi-band communication transceivers
JP3875244B2 (ja) * 2003-09-30 2007-01-31 シャープ株式会社 無線通信用回路、無線通信装置、無線通信システム
TW200518450A (en) * 2003-11-26 2005-06-01 Niigata Seimitsu Co Ltd Automatic gain control device
JP2005167417A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 複数の無線システムに対応可能な無線通信装置
JP2007110696A (ja) * 2005-09-16 2007-04-26 Toshiba Corp アナログ信号処理回路およびそれを用いた通信装置
JP2010004342A (ja) * 2008-06-20 2010-01-07 Nec Corp 無線基地局装置、受信装置、その障害検出方法、及びプログラム
US8055229B2 (en) * 2008-07-22 2011-11-08 Maxrise Inc. Low noise, highly linear amplifying stage and signal receiver using the same
DE102011006566A1 (de) * 2011-03-31 2012-10-04 Rohde & Schwarz Gmbh & Co. Kg Vorrichtungen zum automatischen Einstellen eines Verstärkungs- bzw. Dämpfungsfaktors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239610A (zh) * 1997-09-30 1999-12-22 夸尔柯姆股份有限公司 用于增加接收机抗干扰性的方法和装置
CN101335530A (zh) * 2008-07-30 2008-12-31 京信通信系统(中国)有限公司 载波型数字射频拉远系统及其底噪关断方法和装置
CN101944924A (zh) * 2010-09-30 2011-01-12 东南大学 用于下一代无线通信网络的宽带mimo射频收发系统
CN102932021A (zh) * 2012-10-10 2013-02-13 中兴通讯股份有限公司 下变频装置及其实现方法、接收机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168001A (zh) * 2014-05-27 2014-11-26 北京遥测技术研究所 一种八通道增益可控下变频器
CN111323758A (zh) * 2019-12-30 2020-06-23 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种雷达与对抗双模双工的多功能变频组件
CN112737620A (zh) * 2020-12-29 2021-04-30 京信网络系统股份有限公司 增益控制装置、方法、计算机设备和存储介质
CN112737620B (zh) * 2020-12-29 2022-07-22 京信网络系统股份有限公司 增益控制装置、方法、计算机设备和存储介质
CN115037319A (zh) * 2022-03-23 2022-09-09 哈尔滨工程大学 一种侦察、干扰、探测、通信射频一体化集成装置
CN117269991A (zh) * 2023-11-22 2023-12-22 北京李龚导航科技有限公司 一种卫星导航抗干扰终端的基本型装置
CN117269991B (zh) * 2023-11-22 2024-04-05 北京李龚导航科技有限公司 一种卫星导航抗干扰终端的基本型装置

Also Published As

Publication number Publication date
JP6238992B2 (ja) 2017-11-29
EP2899891A4 (en) 2015-11-11
JP2015534791A (ja) 2015-12-03
EP2899891A1 (en) 2015-07-29
CN102932021A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
WO2014056379A1 (zh) 下变频装置及其实现方法、接收机
CN107769814B (zh) 提升主集接收灵敏度的电路、移动终端及信号处理方法
US8222956B2 (en) Amplifying device and signal processing method based on amplifying device
KR101452750B1 (ko) 동시대기 단말의 수신경로 제어회로 및 방법
EP4005097B1 (en) Receiver circuits with blocker attenuating rf filter
JP4894503B2 (ja) 無線通信装置
EP3542466B1 (en) Desktop signal booster
WO2013063921A1 (zh) 多模射频接收处理芯片和多模终端
US11201632B2 (en) High-frequency front-end module and communication device
WO2023147749A1 (zh) 信号发射装置及射频前端模块、设备
US20110159833A1 (en) Active antenna array for a mobile communications network with a plurality of gain switches and a method for adjusting a signal level of individual radio signals
JP2007074420A (ja) 送受信モジュール
US20200328769A1 (en) Signal receiving circuit, signal processing chip, communications device, and signal receiving method
JP6631276B2 (ja) 無線装置及び受信方法
WO2005055450A2 (ja) 受信装置及び受信方法
EP3033836B1 (en) Radio receiver circuit, communication apparatus, and adaptation method
CN114039619B (zh) 零中频射频前端电路、系统、射频单元保护方法和介质
CN109067413B (zh) 一种高动态范围的超短波信道接收机
CN111049562A (zh) 用于中继器中增强的交叉衰减的中频(if)滤波
JP4087031B2 (ja) 高周波用無線装置
CN109462883A (zh) 一种通信设备和通信系统
JP2000022575A (ja) 受信機及びプログラムを記憶した記憶媒体
KR20150042512A (ko) 전자 장치에서 수신기의 동작 모드 제어 방법 및 장치
US20240080103A1 (en) Repeater with Field-Configured Fiber/Radio Frequency (RF) Mode
JP2004147004A (ja) ブースター装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013845425

Country of ref document: EP