WO2014056291A1 - 一种带偏心自锁结构的适用于内燃机的可变压缩比装置 - Google Patents

一种带偏心自锁结构的适用于内燃机的可变压缩比装置 Download PDF

Info

Publication number
WO2014056291A1
WO2014056291A1 PCT/CN2013/000267 CN2013000267W WO2014056291A1 WO 2014056291 A1 WO2014056291 A1 WO 2014056291A1 CN 2013000267 W CN2013000267 W CN 2013000267W WO 2014056291 A1 WO2014056291 A1 WO 2014056291A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
assembly
gear
crankshaft
compression ratio
Prior art date
Application number
PCT/CN2013/000267
Other languages
English (en)
French (fr)
Inventor
沈大兹
Original Assignee
Shen Dazi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012103796485A external-priority patent/CN102889142A/zh
Priority claimed from CN201210548124.4A external-priority patent/CN103047002B/zh
Application filed by Shen Dazi filed Critical Shen Dazi
Publication of WO2014056291A1 publication Critical patent/WO2014056291A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/22Cranks; Eccentrics
    • F16C3/28Adjustable cranks or eccentrics

Definitions

  • the invention relates to a strip ii, a self-locking structure of the inner «, can belong to the technical field of m ⁇ . Background
  • the internal lffi ratio is generally the maximum cylinder volume to the minimum cylinder volume ratio, which is an important performance parameter. ratio
  • VCR Engine Variable Compression Ratio Engine
  • _b ⁇ 3 ⁇ 4 has the technique ⁇ 3 ⁇ 4 has 3 ⁇ 4 self-different deficiencies, or g3 ⁇ 4 leads to low reliability, vibration generated after the force, can not detect the exact position of the piston stroke accurate control, ⁇ " no multi-cylinder tet
  • the ratio of the ratio is adjusted synchronously.
  • the disadvantage of 3 ⁇ 4 ⁇ is that the huge explosion ffi force in the cylinder is due to the self-locking mechanism of the 3 ⁇ 4, and the mechanism is damaged.
  • the object of the present invention is to overcome the deficiencies of the prior art, «the type of eccentric self-locking structure of the inner 3's 3 ⁇ 4)5 shrink tt3 ⁇ 4S, which is mounted on the crankshaft connecting rod journal eccentric bushing assembly and 311 ⁇ 2 turn
  • the assembly changes the compression ratio.
  • the eccentric bushing assembly is locked by the eccentric bushing assembly to the crankshaft when the torque from the top of the piston is greatly generated to generate the torque of the eccentric bushing.
  • the profit is not allowed to move, so that the torque is blocked without the Si drive tooth fiber continuation, thereby reducing the damage to the transmission system and improving its reliability; and when the ratio needs to be changed, the drive only needs to be removed.
  • Another object of the present invention is to change the condition of the majority of the former 3 ⁇ 4JM St 3 ⁇ 4fi structure _ ⁇ «, and to change the structure of the traditional inner body to a small change, low and strong Small, simple, and compact 3 ⁇ 4E ⁇ than 3 ⁇ 4fi, to make design and manufacturing techniques and equipment in the past.
  • Still another object of the present invention is to make the stroke change amount of the internal combustion engine as large as possible while ensuring that the strength of all members is greatly improved to meet the needs of various types of long and short stroke internal combustion engines.
  • the invention provides a variable compression ratio device suitable for an internal combustion engine with an eccentric self-locking structure, comprising a crankshaft having a plurality of cylindrical holes on each main journal;
  • Piston connecting rod assembly including a connecting rod big head bearing
  • An eccentric bushing assembly rotatably disposed between the connecting rod journal of the crankshaft and the connecting rod big bearing bush, having an inner cylindrical surface and an outer cylindrical surface, wherein the inner and outer cylindrical surfaces have an eccentricity e;
  • a driver assembly is disposed on the main journal of one end of the crankshaft and coupled to the drive shaft and the gear assembly to drive the drive shaft and the gear assembly to rotate.
  • variable compression ratio device further includes a control valve assembly coupled to the drive assembly and hydraulically coupled thereto to drive the driver assembly; the plurality of cylindrical holes The centerline coincides with the crankshaft centerline.
  • the eccentric bushing assembly is formed by two semi-circular eccentric sleeves, and the outer cylindrical surface of the eccentric bushing assembly is in contact with the inner cylindrical surface of the connecting rod big bearing bush, and the inner cylindrical surface thereof
  • the outer cylindrical surface of the connecting rod journal of the crankshaft is in contact with each other, and both end faces of the eccentric bushing assembly are respectively provided with gears, and the gear is a full-shaped gear or a sector-shaped gear, and the pitch center and the eccentric bushing are total The center of the inner cylindrical surface coincides.
  • the transmission shaft and gear assembly includes a drive shaft, a plurality of transmission shafts and a plurality of transmission gears, and the drive shaft and the plurality of transmission shafts are respectively inserted into the cylindrical holes of the main journal of the crankshaft and surround the crankshaft center
  • the plurality of transmission gears are a full-shaped gear or a sector-shaped gear, which are respectively fixed to one end of the drive shaft and the two ends of the plurality of transmission shafts, and are meshed with the gears on both end faces of the eccentric bushing assemblies.
  • the driver assembly includes a housing, an outer wheel, an inner wheel, a front cover, a rear cover, a phase gear and a phase sensor.
  • the outer wheel is fixedly disposed on an inner wall of the outer casing, and the front cover and the rear cover are respectively sealingly fixed to the outer casing.
  • the front cover, the rear cover, the outer wheel and the outer casing are fixedly mounted on the main journal of one end of the crankshaft, and the inner wheel is disposed in the inner cavity of the outer casing and is combined with the outer wheel, the outer casing, the front cover and the rear
  • the covers together form two pressure chambers that are fixedly mounted on the drive shaft and rotate about the crankshaft centerline, the phase sensor being mounted beside the phase gear.
  • the pressure chambers are one or more pairs.
  • the control valve assembly includes a hydraulic pump, a hydraulic control valve and a fuel tank, and the hydraulic control valve is connected to the fuel tank and the drive total And a controller of the internal combustion engine, and controlled by the controller, the hydraulic pump is connected between the liquid 1 ⁇ control valve and the oil tank.
  • the hydraulic pump is an internal combustion engine lubricating oil pump.
  • the hydraulic control valve includes a valve body and a plunger, the plunger sliding in the valve body and capable of being in three positions, wherein the three positions respectively correspond to the inner wheel rotating relative to the outer wheel, counterclockwise The hour hand rotates and the three states are fixed.
  • the gears on both end faces of the eccentric bushing assembly are internal gears and form internal engagement with the drive shafts on the drive shaft and the drive shaft.
  • the transmission shaft and the gear assembly are replaced by a transmission sleeve and a gear assembly.
  • the transmission sleeve and the gear assembly include a plurality of transmission sleeves and a plurality of transmission gears, and each transmission sleeve is fixed by two semi-circular sleeves.
  • the plurality of transmission sleeves are respectively sleeved on the outer circumference of the main journal of the crankshaft and rotate around the center line of the crankshaft.
  • the plurality of transmission gears are internal gears and are respectively fixed at two ends of the plurality of transmission sleeves, and are respectively combined with the eccentric bushings.
  • the gears at both end faces form an internal engagement
  • the front cover, the rear cover, the outer casing, the outer wheel and the phase gear of the driver assembly are fixedly mounted on the foremost transmission sleeve
  • the inner wheel is fixedly mounted on the
  • the main shaft of one end of the crankshaft rotates around the centerline of the crankshaft.
  • the crankshaft is a disc-shaped spindle type crankshaft including a crankshaft front end journal connected in order from front to rear, a first disc-shaped main journal, a plurality of connecting rod journals, a plurality of second disc-shaped main journals and a crankshaft rear a first bearing cylinder hole having a center line and a center line of the crankshaft is not disposed on the first disc-shaped main journal, and the center line of the second disc-shaped main shaft is not coincident with the center line of the crankshaft.
  • Second support cylindrical hole including a crankshaft front end journal connected in order from front to rear, a first disc-shaped main journal, a plurality of connecting rod journals, a plurality of second disc-shaped main journals and a crankshaft rear a first bearing cylinder hole having a center line and a center line of the crankshaft is not disposed on the first disc-shaped main journal, and the center line of the second disc-shaped main shaft is not coincident with the center line of the crankshaft.
  • the transmission shaft and gear assembly includes a pair of transition gears, a transition drive shaft, a plurality of pairs of intermediate transmission gears, and a plurality of transmission shafts rotatably inserted through the first disc-shaped main journal a plurality of transmission shafts rotatably respectively inserted into the second support cylinder bores of the second disc-shaped main journal, the pair of transition gears being fixed to the two ends of the transition drive shaft And one of the transition gears forms a gear connection with the adjacent eccentric bushing assembly, and the other transition gear forms a gear connection with the driver assembly, the plurality of pairs of intermediate transmission gears are respectively fixed at the two ends of the respective transmission shafts, and
  • the adjacent eccentric bushing assembly forms a gear connection;
  • the driver assembly is disposed on a crankshaft front end journal at one end of the crankshaft, and is coupled to the transmission shaft of the transmission shaft and the gear assembly and drives the transmission shaft and the gear assembly to rotate.
  • the eccentric bushing assembly comprises an eccentric sleeve and a pair of eccentric sleeve gears, the outer cylindrical surface of the eccentric sleeve is in contact with the inner cylindrical surface of the connecting rod big head bearing, and the inner cylindrical surface and the connecting rod of the crankshaft
  • the outer cylindrical surface of the journal is in contact with each other, and the pair of eccentric sleeve gears are fixed to both ends of the eccentric sleeve, and the pitch circle center of the eccentric sleeve gear coincides with the center of the inner cylindrical surface of the eccentric sleeve, and the eccentric sleeve gear Engage with adjacent intermediate drive gears or transition gears, respectively.
  • the driver assembly includes a driving sleeve, a driving sleeve gear, a casing, an inner wheel and an outer wheel, and the driving sleeve is rotatably sleeved on the front end journal of the crankshaft, and the driving sleeve gear is fixedly connected coaxially a rear end of the drive sleeve and engaging with a transition gear of the drive shaft and the gear assembly, the inner and outer wheels being disposed in a closed outer casing, the inner wheel being coaxially with the crankshaft front end journal
  • the fixed connection is fixedly connected coaxially with the front end of the driving sleeve, and the outer wheel and the inner wheel are capable of relative rotational movement about the crankshaft center line.
  • the position of the first supporting cylindrical hole must ensure that the transition gear meshes with the driving sleeve gear, and the transition gear of the first cylinder installed at the other end of the transition transmission shaft just meshes with the eccentric bushing gear in the first cylinder.
  • the position of the second supporting cylindrical hole must ensure that the intermediate transmission gear in one cylinder meshes with the eccentric bushing gear in the cylinder, and the intermediate transmission gear mounted on the other end of the transmission shaft in the adjacent cylinder just coincides with the cylinder The eccentric bushing gears in the mesh are engaged.
  • the eccentric sleeve is a unitary structure, the crankshaft is a combined structure, the crankshaft front end journal, the first disc-shaped main journal, the plurality of connecting rod journals, the plurality of second disc-shaped main journals and the crankshaft
  • the rear journals are separate components.
  • the eccentric sleeve is formed by two eccentric half sleeves, and the crankshaft is a unitary structure.
  • variable compression ratio device satisfies the following self-locking conditions:
  • the static friction coefficient between the inner cylindrical surface of the eccentric bushing assembly and the outer cylindrical surface of the connecting rod journal of the crankshaft is ⁇ 0.1.
  • the drive torque of the driver assembly satisfies the following driving conditions:
  • T 3 drive torque from the driver assembly to the eccentric bushing assembly.
  • the inner cylindrical surface of the eccentric bushing assembly is provided with an oil groove and a plurality of oil drain grooves, and the oil groove is provided with sealing bands on both sides thereof, and the oil drain groove communicates with the crankcase of the internal combustion engine, and the shape thereof is a straight line or any curved shape. .
  • the surface topography of the inner cylindrical surface of the eccentric bushing assembly and the outer cylindrical surface of the crankshaft connecting rod of the eccentric bushing assembly are: a plurality of microscopic tooth tips and tooth grooves are formed along the axial direction of the crankshaft, and the two surfaces are The crest and the tooth groove are fitted to each other.
  • the number of the drive assemblies is one.
  • variable compression ratio device is suitable for one or more cylinders, in-line, V-type, W-type, star or opposed internal combustion engines.
  • the useful ship of the present invention is:
  • the compression ratio is easy to adjust and control, consume less power, ⁇ realize the synchronous adjustment of the multi-cylinder compression ratio.
  • the invention uses the same driver to drive 3 ⁇ 4g of the shaft and gear assembly of each cylinder, and then drives the eccentricity.
  • the total rotation of the bushings realizes the synchronous adjustment of the reduction ratio of each cylinder; the body drive torque required to change the ⁇ -shrink ratio is very small, and the 3 ⁇ 43 ⁇ 4" adjustment is convenient.
  • the structure is simple, it will be ⁇ ij, itffl in the existing «design and system itS surgery and set ⁇ ⁇
  • the structure of the invention only partially modified the structure of the traditional inner L, it will not change the inner l and 3 ⁇ 43 ⁇ 4 device ⁇
  • the structure of the 13 ⁇ 4 system which rarely produces the inner structure, does not change the operating law of the piston, and also the combustion efficiency obtained by the existing internal combustion; at the same time, the invention does not cause the increase of the reciprocating inertia force of the piston. It will not cause an increase in internal floating vibration.
  • One of the technical solutions of the present invention sets the center line of the plurality of transmission shafts in the transmission shaft and the gear assembly so as not to coincide with the center line of the crankshaft, and uses a disk shape.
  • the crankshaft combines the crank arm with the disc-shaped main journal to allow the members to adopt a larger structural size to enhance the strength.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded view of the structure of a first embodiment of the present invention.
  • Fig. 2 is a schematic view showing the total eccentric bushing of the present invention
  • Figure 4 is a cross-sectional view showing a first embodiment of the present invention.
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 4 .
  • Figure 7 is a partial enlarged view of M of Figure 4 .
  • Figure 8 is a schematic view showing the inner surface structure of the eccentric bushing assembly of the present invention.
  • FIGS 9a, 9b, 9c are schematic illustrations of the overall working position of the drive of the present invention.
  • Figure 10 is the ratio control system intention.
  • Figure 11 is a exploded view of the structure of the second embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing the second embodiment of the present invention.
  • Figure 13 is a cross-sectional view taken along line A-A of Figure 12;
  • Figure 14 is a structural exploded view of a third embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing a third embodiment of the present invention.
  • Figure 16 is a cross-sectional view taken along line A-A of Figure 15;
  • Figure 17 is a structural exploded view of the fourth embodiment of the present invention.
  • Figure 18 is a diagram showing an IJ of the fourth embodiment of the present invention.
  • Figure 19 is a cross-sectional view showing a fourth embodiment of the present invention.
  • Figure 1 shows an exploded view of a first embodiment of a strip-stable, self-locking structure for an internal combustion engine that can be »stt3 ⁇ 4a.
  • the 3 ⁇ 4 «1*3 ⁇ 45 includes: crankshaft 1, eccentric bushing assembly 2, drive shaft and gear assembly 3, piston rod assembly 4, drive assembly 5 and control valve assembly 6 (see Figure 10).
  • the difficult crankshaft 1 is provided with a main journal 16 at the end, a spindle main journal 18 and a Xuan Lian Pu neck 14, and the miscellaneous neck 14 is formed with a fftt cylindrical surface 15; the crankshaft center line 13 is centered, the journal A cylindrical hole 11 is defined in the 16th.
  • a plurality of cylindrical holes 12 are defined in the spindle neck 18, and the center line of the cylindrical hole 11 and the plurality of cylindrical holes 12 completely coincide with the crankshaft center line 13.
  • the piston rod assembly 4 of the leg includes a piston 41, m 42 , a connecting rod head bush 43 and 44, a connecting rod cover 45 and a connecting rod bolt 46, and the piston connecting rod assembly 4 is in the cylinder liner. 71 is internally reciprocating (see Figures 4 and 5).
  • the number of eccentric bushing assemblies 2 is equal to the number of connecting rod journals 14 of the internal combustion engine.
  • the eccentric bushing assembly 2 is between the neck 14 of the crankshaft 1 and the boss head bushes 43 and 44; the eccentric bushing assembly 2 has two cylindrical surfaces: an inner cylindrical surface 27 and an outer Cylindrical surface 26, please refer to Fig.
  • the eccentric bushing assembly 2 is formed by two semi-circular eccentric sleeves 21 and 22, and the coupling faces 24 of the two eccentric sleeves 21 and 22 are provided with screw holes 25 and positioning.
  • the pin hole 201 see Fig. 8
  • the bolt 23 and the positioning pin connect the two semicircular eccentric sleeves 21 and 22 together, thereby eccentrically eccentric bushing assembly 2.
  • the inner cylindrical surface 27 of the ship's eccentric bushing assembly 2 is viewed from the outer cylindrical surface 15 of the neck 14 (lower) In the enamel of the face, the reference numerals 27 and 15 refer to the same 3 ⁇ 4M face, also referred to as the self-locking surface), and the outer cylindrical surface 26 of the eccentric bushing assembly 2 is in contact with the inner surface of the inner cylindrical surfaces 43 and 44 of the large-sized bush of the household. This contact surface is also numbered 26.
  • the end faces of the eccentric bushing assembly 2 of the cymbal 2 are each a gear 20, the center of the pitch circle of the gear 20 and the center of the inner cylindrical surface 27 of the eccentric bushing assembly 2. O, coincident, the gear 20 is externally meshed with the transmission gear 33.
  • the drive shaft and gear assembly 3 is toothed with the household eccentric bushing assembly 2 and drives the 3 ⁇ 43 ⁇ 4 mandrel bushing assembly 2
  • the drive shaft and gear assembly 3 of the household includes a drive shaft 31, a 3T4 drive shaft 32 and a transmission gear 33; the drive shaft 31 of the m is rotatably inserted into the cylindrical bore 11 of the crankshaft 1, which is a 131
  • the key 34 is fixedly coupled to the inner wheel 53 of the driver assembly 5, and the other key 35 is coupled to the transmission gear 33 ⁇ 3 ⁇ 4: the drive shaft 32 is rotatably disposed in the cylindrical bore 12 of the crankshaft 1, The two ends are fixedly connected to the transmission gear 33 by a key 35, respectively.
  • the drive shaft 31, the drive shafts 32 and the transmission gears 33 are always rotated about the crankshaft centerline 13, and the plurality of transmission gears 33 are externally engaged with the gears 20 on both end faces of each of the eccentric bushing assemblies 2.
  • the driver assembly 5 is fixedly coupled to the main journal 16 at one end of the crankshaft 1, and is coupled to the drive shaft and the gear assembly 3 to drive the drive shaft and the gear assembly 3 to rotate.
  • the drive assembly 5 includes a housing 51, an outer wheel 52, an inner wheel 53, a front cover 54, a rear cover 55, a shaft seal 56, a fixing bolt 57, a phase gear 58 and a phase transfer 59.
  • the outer wheel 52 of the household M is fixed to the inner side of the outer casing 51, and the front cover 54 and the rear cover 55 are respectively fixedly fixed to both ends of the outer casing 51.
  • the cover 54, the rear cover 55, the outer wheel 52 and the outer casing 51 are fixedly attached to the main journal 16 at one end of the crankshaft 1 and along with the crankshaft 1
  • the inner ring 53 and the phase gear 58 of the crucible are fixedly mounted on the drive shaft 31 of the motor M, and are rotatable about the crankshaft center line 13 as the drive shaft 31 rotates.
  • the phase sensor 59 is mounted beside the phase gear 58 for detecting the angle of rotation of the inner wheel 53 and the drive shaft 31 with respect to the crankshaft 1.
  • the inner ring 53 is formed in the inner cavity of the shell 51, and together with the outer wheel 52, the outer casing 51, the front cover 54 and the rear cover 55 constitute two pressure chambers 510 and 511, the pressure chamber 510 and 511 is always formed, and may be one or more pairs, such as two pairs, three pairs or four pairs. In this embodiment, the force chambers 510 and 511 are two pairs.
  • the sealing strip 503 is specially formed, and in each sealing strip 503 and the inner wheel 53 are mounted with a spring piece 504 between the wheel 52 and guide a small amount of leaking hard oil to the oil chamber 509, and the final ship opens the oil drains 301 and 306 on the drive shaft 31,
  • the inner fiber crankcase (not shown) is introduced, which reduces the pressure in the oil return chamber 509 so as not to leak the oil shaft seal 56 to the inside.
  • the drive assembly 5 of the household M also includes a stop t3 ⁇ 4 pin 506, a spring 507 and a spring cover 500, see Fig. 10.
  • Cover 55 has a stop
  • the 505, m ⁇ S06 is mounted on the inner wheel 53, the spring 507 and the spring cover 500 amp 3 ⁇ 43 ⁇ 4 the stop «pin 506 3 ⁇ 43 ⁇ 4.
  • the driver assembly 5 runs the inner wheel 53 to the stop position under the indication of the stop signal, and the stop pin 506 is inserted into the pin hole 505 in the rear cover 55 under the action of the spring force.
  • the inner wheel 53 and the rear cover 55 are fixed together so as not to reciprocate each other so that the actuator assembly 5 does not fail due to insufficient pressure of the fox oil.
  • the stop tfia pin 506 placed in the leg drive assembly 5 is in the stop position, and the internal pressure is ⁇ 3 ⁇ 43 ⁇ 4 ⁇ 3 ⁇ 4*, and the oil pressure will stop.
  • the 506 pushes the stop pin hole 505, and the inner wheel 53 enters a freely rotatable state, at which time the compression ratio ⁇ is changed.
  • the drive assembly 5 is provided with 3 ⁇ 4 ⁇ oil 3 ⁇ 41 after the relevant surface leaks, the back of the 3 ⁇ 43 ⁇ 431 ⁇ 3 ⁇ 4 will leak the hydraulic oil back to the 1 ⁇ crankcase, while the PiiS ⁇ back 3 ⁇ 4®3 ⁇ 4 pressure, avoiding oil leakage to Drive assembly 5 is outside.
  • the eccentric self-locking structure of the present invention is adapted to the inner L of the 3 ⁇ 4Mtb3 ⁇ 4S, 3 ⁇ 4S-drive assembly 5 for driving the internal eccentric bushing assembly 2.
  • the control valve assembly 6 is coupled to the drive assembly 5 and hydraulically coupled thereto to drive the actuator assembly 5.
  • the control valve assembly 6 includes a hydraulic pump 608, a hydraulic control valve, and a fuel tank 610.
  • the control valve is used to generate different flow directions of the oil, which is connected to the fuel tank 610, the actuator assembly 5 and the controller ECU of the inner fiber, ⁇ R ⁇ i m ECU control.
  • the control valve of the household includes a valve body 603 and a plunger 604.
  • the plunger 604 is detachably mounted in the valve body 603.
  • the left and right movement of the plunger 604 is controlled by a coil 613 mounted at one end thereof; the plunger 604 is at the valve body.
  • the 603 can be in the left, middle, and right positions, and the three positions respectively correspond to the three rotations of the inner wheel 53 with respect to the outer wheel 52, such as a clockwise rotation, a counterclockwise rotation, and a fixed state, and the BP, the household control
  • the three » of the valves correspond to the three operating states of the drive assembly 5, see Figure 9.
  • the ⁇ 3 ⁇ 43 ⁇ 411 pump 608 is used to generate a pressure of 3 ⁇ 4 ⁇ 4 to drive the actuator assembly 5, which is connected between the hydraulic control valve and the fuel tank 610.
  • the pump 608 can be used in a thin 3-way configuration or directly in the original lubricant pump.
  • the mixture H8 is connected to the liquid H3 ⁇ 4 of the actuator assembly 5 as shown in Figs. 9 and 10.
  • the pair of pressure chambers 510 communicate with the crankshaft oil passage 101 through the oil passage 513, and the other pair of pressure chambers 511 pass.
  • the oil passage 512 is in communication with the crankshaft oil passage 102; the crankshaft oil passages 101, 103 pass through the oil groove 704 on the inner cylinder and the oil passage 701 and the hydraulically controlled wide oil pipe 602.
  • the crank oil passages 102, 104 pass through the cylinder block of the internal combustion engine.
  • the oil sump 703 and the oil passage 702 are in communication with the hydraulically controlled wide oil pipe 601.
  • the above content is the main structure of the first embodiment of the present invention.
  • Figure 3a shows the position of the eccentric bushing assembly 2 relative to the corner of the paste neck 14 when the stroke S is the maximum. It is set that the angle of the joint surface 24 of the sleeve assembly 2 with the cylinder center line 72 is ⁇ , and the piston 41 is at the position of the ⁇ 1h point (TDC_Top Dead Center) of the inner l.
  • Figure 3b 3 ⁇ 4S shows the angular position of the eccentric bushing assembly 2 relative to the shed neck 14 when the inner ship stroke is at its maximum. It is set that the angle between the joint surface 24 of the eccentric bushing assembly 2 and the cylinder center line 72 is ⁇ , and the piston 41 is at the bottom dead center (BDC ⁇ BottomDeadCenter) position of the inner «.
  • Figure 3c 3 ⁇ 4 ⁇ 4 shows the angular position of the eccentric bushing assembly 2 relative to the shed neck 14 when the inner ship stroke 3 ⁇ 4 is at a minimum. It is set that the angle of the joint surface 24 of the eccentric bushing assembly 2 with the cylinder center line 72 is (180_ ⁇ ), and the piston 41 is at the inner «il stop point (TDC) position.
  • Figure 3d shows the position of the eccentric bushing assembly 2 relative to the corner of the neck 14 when the inner stroke l ⁇ 4 is at a minimum. It is set that the angle between the joint surface 24 of the eccentric bushing assembly 2 and the cylinder center line 72 is (18 (MD), and the piston 41 is at the inner bottom dead center (BDC) position.
  • the maximum change amount ⁇ of the internal combustion engine stroke depends on the rotation angle of the eccentric bushing assembly 2 with respect to the connecting rod journal 14 ⁇ .
  • the maximum change amount ⁇ is sufficient to make the gasoline engine compression ratio range reach 6:1 to 20:1, or the diesel compression ratio range is 10:1 to 30:1. .
  • the old picture 9, the inner wheel 53 and the eve wheel 52 can be rotated around the crankshaft 1 center line 13 clockwise relative to the clockwise direction, and 4 extreme positions, see Figure 9a and Figure 9c.
  • the inner wheel 53 is in the position of Fig. 9a
  • the inner wheel 53 and the outer wheel 52 are in contact with the contact surface 501.
  • the eccentric bushing assembly 2 is just in the position of FIG. 3c and FIG. 3d, at this time, the internal combustion engine is in the minimum compression ratio state; when the inner wheel 53 is in the position of FIG.
  • the signal 3 ⁇ 4513 ⁇ 4 of the phase transmission 59 is obtained by the phase gear 58 fixed to the inner wheel 53, and is compared with the inner crankshaft 1 corner signal (not shown), which indicates the inner wheel 53 and the crankshaft 1. Relative corners.
  • the oil groove 704, the oil hole 701 and the oil pipe 602, the valve body 603, the oil pipes 606, 612 are integrated into the oil tank 610.
  • the inner wheel 53 is counterclockwise with respect to the outer wheel 52 under the push of the oil pressure (observed from the inner ship), and is turned over.
  • the shaft 31 and the transmission gear 33 rotate counterclockwise, and further the eccentric bushing assembly 2 of the ship is rotated clockwise, so that the crank is reduced, the inner ship stroke is reduced, and the earning ratio is reduced.
  • the self-locking condition will now be described in conjunction with FIG.
  • the eccentric bushing assembly 2 In order to prevent the internal combustion engine from changing the compression ratio, the eccentric bushing assembly 2 is not affected by the internal combustion force and the rotation of the internal combustion engine causes a change in the compression ratio of the internal combustion engine, and it is necessary to ensure the self-locking of the mechanism at this time.
  • the self-locking condition is: The eccentric bushing assembly 2 of the leg, when the pressure from the top of the piston 41 is generated to cause the rotational torque T of the eccentric bushing assembly 2, is to lock the eccentric bushing assembly 2 to the neck. 14 does not move, without the relative rotation of the eccentric bushing assembly 2 on the male cage neck 14, 3 ⁇ 43 ⁇ 4ff must meet the structural parameter dimension
  • the eccentric bushing assembly 2 Z ⁇ , 3 ⁇ 43 ⁇ 4 41 Mi ⁇ rod 42 from the top of the piston 41, the force F is applied perpendicularly to the contact portion D of the 3 ⁇ 4 eccentric bushing assembly 2, This in turn produces a clockwise rotation of the circle around the rim 14 (the pin journal centerline 17) 3 ⁇ 43 ⁇ 4T F*e, which is the ftS of the maximum value of the torque.
  • the static friction coefficient between the eccentric bushing assembly 2 and the contact surface 27 of the fftt neck 14 is fi, where C produces a rotational torque T of one clockwise direction Ffi*n, and at the same time the connecting rod big head bushes 43 and 44
  • the counter-clockwise torque Ff 2 *r 2 is generated at the D of the joint surface 26 of the outer cylindrical surface of the eccentric bushing assembly 2, if the ffiil actuator assembly 5 produces a driving torque acting on the eccentric bushing assembly 2! ⁇
  • the torque T 3 takes a positive sign, otherwise it is a negative sign.
  • the self-locking of the «Heart sleeve assembly 2 relative to the fftt neck 14 ⁇ ⁇ is:
  • Fr ⁇ eccentric bushing is the coefficient of motion between the cylindrical surface and the inner cylindrical surface of the connecting rod big head bush.
  • the structure of the present invention is full; self-locking ⁇ ⁇ ⁇ ⁇ * ⁇ ⁇ + * ⁇ 2 , so that the inner corner of the crank angle area 3 ⁇ 4 ⁇ of the internal force pulse has a self-locking function, and the ⁇ receives the giant force of the top of the piston, so that the 3 ⁇ 43 ⁇ 4 Force does not pass the i ⁇ 3 ⁇ 4 drive, thus avoiding the damage to the transmission system and improving the reliability of the money.
  • the 3 ⁇ 411 shrink tb3 ⁇ 4S of the eccentric self-locking structure of the ⁇ 1 ⁇ 2 is basically sufficient for the self-locking cow, it is also allowed.
  • the meaning is: If the self-locking cake is satisfied, the ship's eccentric bushing assembly 2 will be fixed on the 3 ⁇ 4f3 ⁇ 4 crankshaft neck 14 and the eccentric bushing assembly 2 will not be the transmission gear 33, the drive shaft 32 and the drive shaft 31. Out of the torque; if the self-locking cake is not satisfied, the eccentric bushing assembly 2 will apply an additional torque to the drive gear 33, the drive shaft 32 and the drive shaft 31, as long as the additional attachment of the legs is not large enough to damage the drive train.
  • the value of the eccentricity e 3 ⁇ 43 ⁇ 4 apology should be made, that is, fi* ri +f 2 *r 2 should be as large as possible, where ri and no major change,
  • the coefficient of motion f 2 cannot be increased, and the theory ⁇ may be small. Therefore, only the static friction coefficient fl is increased by ⁇ 3 ⁇ 43 ⁇ 4, otherwise the friction of the inner fiber is increased, and the reliability is lowered.
  • the present invention takes a number of modifications in the structure and its lth3 ⁇ 4 to meet the self-locking conditions. Please refer to Figure 7 and Figure 8.
  • the inner cylindrical surface 27 of the eccentric bushing assembly 2 is provided with an oil groove 207 and an oil hole 202 as an oil passage, and is provided with sealing bands 204, 206 and a plurality of oil drain grooves 203.
  • the lubricating oil must have a face 26 between the large head bushes 43, 44 and the eccentric bushing assembly, the inner surface of the cylindrical surface is so lubricated, so that the lubricating oil is turned from the oil pump 611 leg cylinder (not shown) Displaying, and the crankshaft oil hole 111, ⁇ oil hole 110, the oil groove 207, the oil hole 202, reaching the contact surface 26 formed by the connecting rod big head bushes 43, 44 and the outer cylindrical surface of the eccentric bushing assembly 2, and The face 26 is made and lubricated.
  • a sealing strip 204 and 206 are respectively arranged on both sides of the oil groove 207, and the function is to isolate the lubricating oil in the oil of the h3 ⁇ 4a oil so that the lubricating oil does not, the 3 ⁇ 4Wfe «A self-locking surface.
  • a series of drain grooves 203 are formed in the inner cylindrical surface 27 of the eccentric bushing assembly 2 with an inner crankcase (not shown) for guiding the lubricating oil of the self-locking surface to the inner crankshaft. Box, the position of the drain tank 203 can be ⁇ line or ff ⁇ curve position. , the eccentric bushing assembly
  • the inner cylindrical surface 27 and the surface of the outer cylindrical surface 15 of the fftt neck 14 are of a special value, and the surface features of the surface are: a plurality of micro-tops and slots are formed along the axial direction of the crankshaft, and two The crests and slots of the surfaces 27 and 15 are fitted to each other to prevent the mutual movement between the two surfaces 27 and 15.
  • the topographical features of the self-locking surface may also exhibit different characteristics due to different processing methods, but the static «coefficient f ⁇ ⁇ 0.1 of the self-locking surface should be ensured.
  • the sealing strips 204, 206 and the surface of the self-locking surface ⁇ [not the only technical solution, but no matter what the scheme, the principle spirit is to full; self-locking cake.
  • the eccentric self-locking structure can be used for the internal combustion engine to reduce the driving torque of the valve assembly 6 and the driver assembly 5 to the eccentric bushing assembly 2.
  • ⁇ 3 must satisfy the following drivers ⁇ # :
  • the driving torque required for clockwise and counterclockwise directions is different.
  • it can be designed to the same size, which is based on one of the two formulas.
  • the time when the ⁇ is adjusted in the direction of decreasing is somewhat, and the pro-has is the adjustment direction of the increased load of the vine, which can better solve the problem of "knocking combustion".
  • the actual ⁇ S ⁇ force F occurs at the grapple piston 41 at the g ⁇ point (TDC) TO.
  • TDC g ⁇ point
  • the force F 3 ⁇ 43 ⁇ 4 It drops to 10% to 20% of the maximum force F. Therefore, the actual driving torque T 3 required to change the ship's reduction ratio is not large, so the driving coefficient of 0.1 is used in the formula. That is, within the crank angle, because the ⁇ 3 ⁇ 4 ⁇ meets the self-locking cake, the strip II, the sleeve assembly 2 and the connecting neck 14 are fixed, and after the range of the crank angle of 0.60 degrees, it is only modest.
  • the drive torque ⁇ 3 is an integral adjustment, which is also the greatest advantage of the present invention.
  • the eccentric self-locking structure is deleted from the inside «3 ⁇ 43 ⁇ 4 « than 3 ⁇ 43 ⁇ 4 can be used directly inside the oil as the drive 3 ⁇ 415 oil.
  • This embodiment ⁇ SS ⁇ is within the longer stroke reciprocating piston structure.
  • FIG. 12 and FIG. 13 are schematic views of the second embodiment, and the second embodiment is the same as the first embodiment except that the eccentric bushing assembly 2 of the first embodiment is difficult to be the eccentric bushing assembly 2'.
  • the eccentric bushing assembly 2's end gears 28 are sector-shaped internal gears having a corner angle of less than 360 degrees, as shown in Fig. 13, and are internally meshed with the drive shaft 31 and the transmission gear 33 on the drive shaft 32.
  • the rotation directions of the inner leg wheel 53 and the horn wheel 52 are opposite to those of the first embodiment.
  • the angle of rotation of the inner wheel 53 needs to be larger.
  • the parameters of the meshing gear pairs 33 and 28 need to be modified accordingly. If necessary, an inner wheel 53 and an outer wheel 52 can be thinned « 3 ⁇ 4 actuator assembly 5, at which point there is only one pair of pressure chambers 510 and 511.
  • the inner ML stroke can be designed to be smaller, and the inner stroke of the reciprocating piston is higher than that of the first stroke of the embodiment.
  • Embodiment 3 14, FIG. 15, and FIG. 16 are schematic views of the third embodiment, which are substantially the same as those of the first embodiment, except that the transmission shaft and the gear assembly 3 of the first embodiment are replaced with a 3 ⁇ 4 shaft and a gear assembly 3'.
  • the transmission shaft and gear assembly 3' includes a 3 ⁇ 4 transmission sleeve 36 and a 3 ⁇ 4 ⁇ transmission gear 361; each transmission sleeve 36 is formed by two semi-circular sleeves being fixedly coupled, and each transmission sleeve 36 is respectively sleeved
  • the outer circumferences of the main journals 16, 18 of the crankshaft 1 rotate around the crankshaft center line 13; the oscillating transmission gears 361 are internal gears and are respectively fixed to one or both ends of the respective transmission sleeves 36, and the transmission gears 361 are less than 360 degrees.
  • the fan-shaped internal gears of the corners, the gears 361 and the gears 20 on both ends of the mandrel sleeve assembly 2 form an inner joint (see Fig. 16).
  • the front cover 54, the rear cover 55, the outer casing 51, the outer wheel 52 and the phase gear 58 of the f3 ⁇ 4 actuator assembly 5 are fixedly mounted on the foremost set 36, while the inner wheel 53 is fixed at the end of the crankshaft 1 of the 3 ⁇ 43 ⁇ 4.
  • a money is 13 male. Since the angle ratio of the inner wheel 53 is required to be much smaller in the third embodiment, the pressure chambers 510 and 511 can be much more, such as two pairs, or four pairs.
  • Embodiment 3 3 ⁇ 4@ ⁇
  • the meshing gears of the male example can be a fine 360-degree full-shaped gear, or a sector gear having a corner angle of less than 360 degrees.
  • the corner ⁇ should be equal to zero (see Figure 3).
  • the chain body 42!Bif is pressed against the joint faces 24 of the two semi-circular eccentric sleeves of the eccentric bushing assembly 2, which will result in early damage of the eccentric bushing assembly 2.
  • the eccentric bushing assembly is used, and the corner ⁇ body can be zero.
  • FIG. 17, FIG. 18 and FIG. 19 are schematic structural views of a fourth embodiment, which includes a crankshaft 1", an eccentric bushing assembly 2", a transmission shaft and a gear assembly 3", a connecting rod piston assembly 4, and a driver.
  • the specific structure of the assembly 5 of the rod piston assembly 4 is the same as that of the corresponding component assembly of the first embodiment.
  • the crankshaft is a disc-shaped main shaft crankshaft formed by combining a conventional engine main journal and a crank arm, and includes a crankshaft front 3 ⁇ 4tt neck 19, a first disc-shaped main journal 17", and a plurality of connecting rod journals a plurality of second disc-shaped main journals 18" and a rear end journal of the crankshaft, which are front to rear according to the crankshaft front end journal 19, the first disc-shaped main journal 17", a connecting rod journal, and a second disc shape
  • the main journal 18", a connecting rod journal, a second disc-shaped main journal 18", ... the rear end journal of the crankshaft are sequentially connected together.
  • the first disc-shaped spindle The neck 17" is provided with a first support circle tt3 ⁇ 4 11" (see Fig. 19c), the center line of which is not coincident with the crankshaft center line 13"; and the second disc-shaped main journal 18" is provided with a second support cylinder hole 12" (see Figure 19a), likewise, its centerline does not coincide with the crankshaft centerline 13".
  • the eccentric bushing assembly 2" is rotatably sleeved between each of the connecting rod journals of the crankshaft and the connecting rod head bearing, and has an inner cylindrical surface and an outer cylindrical surface, the inner and outer surfaces The center of the two cylindrical surfaces does not coincide and has an eccentricity of 6.
  • the eccentric bushing assembly includes an eccentric bushing and a pair of eccentric bushing gears 20"; the outer cylindrical surface of the eccentric bushing is The inner cylindrical surface of the connecting rod big head bearing is in contact with the inner cylindrical surface contacting the outer cylindrical surface of the connecting rod journal of the crankshaft; the pair of eccentric bushing gears 20" are respectively fixed at the two ends of the eccentric sleeve The center of the pitch circle of the eccentric shaft «wheel 20" coincides with the center of the inner cylindrical surface of the eccentric sleeve, and the eccentric sleeve gear 20" meshes with the adjacent transition gear 32" or the intermediate transmission gear 34", respectively.
  • the eccentric bushing assembly 2" is a unitary structure, and the crankshaft ⁇ is a combined structure, that is, the crankshaft front neck 19 and the first disc shape.
  • the main journal 17", the plurality of connecting rod journals, the plurality of second disc-shaped main journals 18" and the rear end journal of the crankshaft are independent members which are separately machined and combined into a crankshaft 1".
  • the integral eccentric bushing assembly 2" increases strength, even forces and improves reliability.
  • the combined crankshaft is designed to facilitate the assembly of the overall eccentric bushing assembly 2".
  • the drive shaft and gear assembly 3" forms a gear connection with the eccentric bushing assembly 2" and drives the eccentric bushing assembly to rotate.
  • the transmission shaft and gear assembly 3" includes a pair of transition gears 32", a transition drive shaft 33", and a plurality of pairs of intermediate transmissions.
  • the transition drive shaft 33" is rotatably inserted into the first support cylindrical bore 11" of the first disc-shaped main journal 17", and the plurality of drive shafts 35" are rotatably inserted into the second The second spindle bore 12" of the disc-shaped main journal 18" is in the middle.
  • the pair of transition gears 32" are fixed to both ends of the transition shaft 33", and one of the transition gears 32" forms a gear mesh with the eccentric shaft *3 ⁇ 4 wheel 20" of the adjacent eccentric bushing assembly 2", The other transition gear 32" meshes with the drive wheel 31" of the driver assembly 5.
  • the plurality of pairs of intermediate drive gears 34" are respectively fixed to the ends of each of the drive shafts 35" and are adjacent to the adjacent eccentric bushing assembly 2"
  • the eccentric bushing gear 20" forms a gear mesh.
  • the driver assembly 5 is disposed on the crankshaft front end journal 19 at one end of the crankshaft 1", and is coupled to the transmission shaft and the gear assembly 3" transition gear 32" and drives the transmission shaft and the gear assembly 3 "Rotate.
  • the driver assembly 5 includes a drive sleeve 30", a drive *3 ⁇ 4 wheel 31", a housing 51, a rear cover 55, an inner wheel 53, an outer wheel 52, and a phase gear 58.
  • the drive sleeve 30" is rotatably sleeved on the crankshaft front end journal 19.
  • the drive sleeve gear 31" is coaxially fixedly coupled to the rear end of the drive sleeve 30" and is coupled to the drive shaft and A transition gear 32" of the gear assembly 3" is engaged.
  • the inner wheel 53 and the outer wheel 52 are disposed in a closed outer casing 51, and the inner wheel 53 is fixedly connected coaxially with the crankshaft front end journal 19 and Rotating with the crankshaft 1", the outer wheel 52 is fixedly connected coaxially with the front end S31 of the driving sleeve 30" and the rear cover 55, and rotates with the driving sleeve 30, the outer wheel 52 and the inner wheel 53 are capable of relative rotational movement about the crankshaft centerline 13".
  • the phase gear 58 is fixedly mounted on the front end of the drive sleeve 30" and rotates with the drive sleeve 30", and the side
  • the crank angle sensor (not shown) cooperates to detect the relative rotation angle of the inner wheel 53 and the outer wheel 52, that is, the rotation angle of the drive sleeve 30 with respect to the crankshaft.
  • the positions of the center lines of the first support cylindrical bore 11" and the second support cylindrical bore 12" are determined according to mechanical principles such as various structural elements of the engine and the apparatus, and gear meshing conditions.
  • the first support cylindrical bore 11" (see Fig. 19c) must be guaranteed to be ⁇ 32" and drive «3 ⁇ 4 wheel 31" While being engaged, the transition gear 32, which is mounted on the other end of the shuttle shaft 33" at the first cylinder, just engages the eccentric bushing gear 20" in the first cylinder.
  • the structure of the fifth embodiment is basically the same as that of the fourth embodiment, except that the eccentric bushing assembly 2" is fixed by two eccentric half sleeves, and the bolt and the positioning pin connect the two eccentric half sleeves. Together, the joint faces of the two eccentric half sleeves are just on the extension of the eccentricity e, while the crankshaft 1 "is a unitary structure, and the integral structure increases the strength of the crankshaft 1".
  • the invention can be applied not only to a single-cylinder internal combustion engine but also to a multi-cylinder internal combustion engine such as a 2-cylinder, a 3-cylinder up to an 8-cylinder; the present invention is not only applicable to an in-line internal combustion engine but also to a V-type, a W-type, a star-shaped arrangement and an opposite type.
  • Arranged internal combustion engine especially suitable for internal combustion of various fuels for vehicles, such as Baopeng oil machine, diesel engine, etc., but not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种带偏心自锁结构的适用于内燃机的可变压缩比装置,所述的可变压缩比装置包括有:曲轴(1),其各主轴颈(18)上设有若干圆柱孔(12);活塞连杆总成(4),包括有连杆大头轴瓦(43,44);偏心轴套总成(2),可旋转地套置在所述曲轴(1)的连杆轴颈(14)与所述连杆大头轴瓦(43,44)之间,其具有内圆柱表面(27)和外圆柱表面(26),该内、外两圆柱表面(27,26)具有偏心距为e;传动轴及齿轮总成(3),可旋转地穿置于所述主轴颈(18)的圆柱孔(12)中,与所述偏心轴套总成(2)形成齿轮连接并驱动该偏心轴套总成(2)旋转;驱动器总成(5),设置于所述曲轴(1)一端的主轴颈(18)上,且与所述传动轴及齿轮总(3)成连接并驱动该传动轴及齿轮总成(3)旋转;所述偏心距e满足自锁条件:e≤f1×r1+f2×r2。所述可变压缩比装置通过偏心轴套总成绕连杆轴颈旋转,使曲柄臂长度发生变化,从而改变压缩比;由于自锁作用,连杆轴颈与偏心轴套总成之间不会发生相对转动,发动机爆发压力无法传递到传动系统,因而极大地提高了装置的可靠性。所述可变压缩比装置能精确同步调整各缸的压缩比,具有调节合控制方便、消耗功率少、结构简单、成本低的优点,适用于各类内燃机。

Description

一种带偏心自锁 的 jtffl于内皿的¾]^1«^2 领域
本发明涉及一种带條 ii、自锁结构的 于内 «的可 ¾® ti^s, 属于 m≡技术领域。 背景
内 lffi縮比一般^义为最大气缸容积与最小气缸容积 比, 它是内 一个重要性能参数。 比
^^影响内舰的诸多因素, 如: 扭矩、 功率、 細经济性、 排放指标、 气缸压力和髓等。
一个具有固定 β比的内 L ^iia各种 的选择使其性 折中。例如, 使其压縮比足够大, 保 ¾B顿利地 ift 启动, 又要保证在全负荷时气缸内压力不倉 高。 因此, 具有固 缩比的内赚δ«使 项参数的组合¾¾最佳。 可变压缩比发动机(VCR Engine) 是当今世界上最有发展潜力的发动机之 一, 其可以控制 Ji¾比的变化, 使内 «的各项性能聽到显著改善。
近年来全球各公司和研究机构竞相研究并申请有关此方面的专利达数百上千件, 以求获得该发动 机技术上的领先地位。 ^^实现内燃机^ 縮比的结构有许多种类型, 在曲轴连杆轴颈上安装偏心轴套是 其中的一 案。当偏心轴 «^Ftt纖转一角度时, 曲轴曲柄判彌发生改变, 因而内 j mffi^比也得以 改变。经检索可知, 以下已公开的专利 &^¾属于¾»案。
美国专利:
3,180,178 Apr.27,1965 Brown
3,686,972 Aug.29,1972 McWhorter
4,044,629 Aug.30,1977 Clarke
4,152,955 May.8,1979 McWhorter
4,301,695 Nov.24,1981 Reiher
4,406,256 Sep.27,1983 Akkerman
5,040,502 Aug.20,1991 Lassiter
5,158,047 Oct.27,1992 Schaal , et al.
5,165,368 Nov.24,1992 Schechter
5,562,068 Oct.8,1996 Sugimoto, et al.
5,908,014 Jun.1,1999 Leithinger
5,927,236 Jul.27,1999 Gonzalez
5,960,750 Oct.5,1999 Kreuter
6,247,430 Jun.19,2001 Yapici
6,349,684 Feb.26,2002 de Gooijer
6,450,136 Sep.17,2002 Klomp , et al.
7,174,865 Feb.13,2007 Sakita
8,267,055 Sep.18,2012 Pattakos, et al.
_b^¾有技^ ¾具有¾ 自不同的不足, 或者 g¾导致可靠性低, 受力后产生 的振动, 无法检测到活塞冲程的准确位 ΚϋΐΜ 比的 精确控制, ^"无 多缸内 各 tet间的^ 比同 步调整。而¾±要的缺陷是,气缸中巨大的爆 ffi力因 ¾1当的自锁机构而 «¾直¾^11¾¾∞¾比机构中, 从而导致机构遭受破坏, 术无 ¾SA«*S用的主要原因。 发明内容
本发明的目的在于 艮现有技术的不足, «—种带偏心自锁结构的 于内 «的¾)5縮 tt¾S, 其 在曲轴连杆轴颈上安装偏心轴套总成并通 31½转该总成来改变压縮比。该偏心轴套总成在受到来自于活塞顶部 极大的爆飾力而产生使该偏心轴套总赃连機 转的扭矩时, m.自锁结构 将该偏心轴套总成锁 定于曲轴连赚肚不动, 使该扭矩阻断而无 Si传动齿纖续^ H 麵器, 从而减小其对传动系统的破 坏, 提髙其可靠性; 而当需要改 比时, 驱动器只须撤较小的驱动扭矩, 在内 WSffi力脉冲的曲轴 转角之外区域(如 ±^¾, 曲轴转角区域内偏心轴套总成与连 fftt颈锁定不动), 職精确调整和控制偏 心轴套总細对 欄颈的转角位置, 以改躯缩比。
本发明的另一个目的在于,改«前大多数 ¾JM St ¾fi结构 _§«内« ^构进行默改变的状 况, 撤一种只对传统内 身的结构进行较小改变, 鮮低、 受力小、 结构简单、 側小巧的 ¾E ^比 ¾fi, 以糊于现存内赚设计和制造技术及设备。
本发明的又一目的在于, 在保证所有构件的强度都得到极大提高的同时, 使内燃机的冲程改变 量尽可能地增大, 以满足各类不同长短冲程内燃机的需要。
本发明 ¾ΐϋ¾]下财方案实现的- 一种带偏心自锁结构的适用于内燃机的可变压縮比装置, 其包括有- 曲轴, 其各主轴颈上设有若干圆柱孔;
活塞连杆总成, 包括有连杆大头轴瓦;
偏心轴套总成, 可旋转地套装在所述曲轴的连杆轴颈与所述连杆大头轴瓦之间, 其具有内圆柱表 面和外圆柱表面, 该内、 外两圆柱表面具有偏心距为 e;
传动轴及齿轮总成, 可旋转地穿置于所述主轴颈的圆柱孔中, 与所述偏心轴套总成形成齿轮连接 并驱动该偏心轴套总成旋转;
驱动器总成, 设置于所述曲轴一端的主轴颈上, 且与所述传动轴及齿轮总成连接并驱动所述传动 轴及齿轮总成旋转。
所述的可变压縮比装置还包括有控制阀总成, 该控制阔总成连接所述驱动器总成并与之形成液压 传动, 以驱动该驱动器总成; 所述的若干园柱孔的中心线与所述曲轴中心线重合。
所述的偏心轴套总成由两个半圆的偏心套对合固接而成, 该偏心轴套总成的外圆柱表面与所述连 杆大头轴瓦内圆柱表面相接触, 其内圆柱表面与所述曲轴的连杆轴颈外圆柱表面相接触, 所述偏心轴 套总成的两端面各自设有齿轮, 该齿轮为全形齿轮或者扇形齿轮, 其节圆圆心与所述偏心轴套总成的 内圆柱表面的圆心重合。
所述的传动轴及齿轮总成包括有一驱动轴、 若干传动轴和若干传动齿轮, 该驱动轴和若干传动轴 分别穿置于所述曲轴的主轴颈的各园柱孔中并绕该曲轴中心线旋转, 该若干传动齿轮为全形齿轮或者 扇形齿轮, 其分别固定于驱动轴的一端和若干传动轴的两端, 并且与各偏心轴套总成两端面的齿轮一 一啮合。
所述的驱动器总成包括有外壳、 外轮、 内轮、 前盖、 后盖、 相位齿轮和相位传感器, 所述外轮固 定设置于该外壳的内壁上, 前盖和后盖分别密封地固定于外壳的两端, 该前盖、 后盖、 外轮和外壳一 起固定地安装在所述曲轴一端的主轴颈上, 所述内轮设置于该外壳的内腔中并与外轮、 外壳、 前盖和 后盖共同构成两压力腔, 该内轮和相位齿轮固定地安装在所述驱动轴上并随之绕曲轴中心线旋转, 所 述相位传感器安装在该相位齿轮的侧旁。
所述的压力腔为一对或多对。
所述的控制阀总成包括有液压泵、 液压控制阀和油箱, 所述液压控制阀连接所述油箱、 驱动器总 成和内燃机的控制器, 并且受该控制器控制, 所述液压泵连接于液 1Ϊ控制阀与油箱之间。 所述的液压泵为内燃机润滑油泵。
所述的液压控制阀包括有阀体和柱塞, 该柱塞在所述阀体中滑动并能够处于 3个位置, 该 3个位 置分别对应于所述内轮相对于外轮正时针旋转、 逆时针旋转以及固定不动 3种状态。
所述的偏心轴套总成两端面的齿轮为内齿轮且与所述驱动轴和传动轴上的传动齿轮形成内啮合。 所述的传动轴及齿轮总成替换为传动套及齿轮总成, 该传动套及齿轮总成包括有若干传动套和若 干传动齿轮, 每一传动套由两个半圆轴套对合固接而成, 该若干传动套分别套置于所述曲轴的主轴颈 的外周并绕曲轴中心线旋转, 该若干传动齿轮为内齿轮且分别固定于若干传动套的两端, 并与各偏心 轴套总成两端面的齿轮一一形成内啮合, 所述驱动器总成的前盖、 后盖、 外壳、 外轮和相位齿轮一起 固定地安装在最前一传动套上, 所述内轮固定地安装在所述曲轴一端的主轴颈上并随之绕曲轴中心线 旋转。
所述的曲轴为盘形主轴式曲轴, 其包括由前至后依次连接的曲轴前端轴颈、 第一盘形主轴颈、 多 个连杆轴颈、 多个第二盘形主轴颈和曲轴后端轴颈, 该第一盘形主轴颈上开设有中心线与该曲轴中心 线不重合的第一支承圆柱孔, 该第二盘形主轴颈上开设有中心线与该曲轴中心线不重合的第二支承圆 柱孔;
所述的传动轴及齿轮总成包括有一对过渡齿轮、一过渡传动轴、 多对中间传动齿轮和多根传动轴, 该过渡传动轴可旋转地穿置于所述第一盘形主轴颈的第一支承圆柱孔中, 该多根传动轴分别可旋转地 穿置于所述第二盘形主轴颈的第二支承圆柱孔中, 该一对过渡齿轮固定于所述过渡传动轴的两端, 并 且其中的一个过渡齿轮与相邻偏心轴套总成形成齿轮连接, 另一个过渡齿轮与驱动器总成形成齿轮连 接, 该多对中间传动齿轮分别固定于各传动轴的两端, 并且与相邻偏心轴套总成形成齿轮连接;
所述的驱动器总成设置于所述曲轴一端的曲轴前端轴颈上, 与所述传动轴及齿轮总成的过渡齿轮 连接并驱动该传动轴及齿轮总成旋转。
所述的偏心轴套总成包括偏心套和一对偏心套齿轮, 该偏心套的外圆柱表面与所述连杆大头轴瓦 的内圆柱表面相接触, 其内圆柱表面与所述曲轴的连杆轴颈的外圆柱表面相接触, 该一对偏心套齿轮 固定于所述偏心套的两端, 该偏心套齿轮的节圆圆心与所述偏心套的内圆柱表面的圆心重合, 该偏心 套齿轮分别与相邻的中间传动齿轮或过渡齿轮相啮合。
所述的驱动器总成包括有驱动套、 驱动套齿轮、 外壳、 内轮和外轮, 所述驱动套可旋转地套置于 所述曲轴前端轴颈上, 所述驱动套齿轮同轴心地固定连接于该驱动套的后端且与所述传动轴及齿轮总 成的一过渡齿轮啮合, 所述内轮和外轮设置于封闭的外壳内, 该内轮与所述曲轴前端轴颈同轴心地相 固定连接, 该外轮与所述驱动套的前端同轴心地相固定连接, 所述外轮与内轮能够绕所述曲轴中心线 作相对旋转运动。
所述的第一支承圆柱孔的位置必须保证使过渡齿轮与驱动套齿轮啮合的同时, 安装在过渡传动轴 另一端处于第一气缸的过渡齿轮恰好与第一气缸中的偏心轴套齿轮相啮合; 第二支承圆柱孔的位置必 须保证使处于一气缸的中间传动齿轮与该气缸中的偏心轴套齿轮相啮合的同时, 安装在传动轴另一端 处于相邻气缸的中间传动齿轮恰好与该气缸中的偏心轴套齿轮相啮合。
所述的偏心套为整体结构, 所述的曲轴为组合式结构, 所述的曲轴前端轴颈、 第一盘形主轴颈、 多个连杆轴颈、 多个第二盘形主轴颈和曲轴后端轴颈均为独立构件。
所述的偏心套由两个偏心半套对合固接而成, 所述的曲轴为整体结构。
所述的可变压缩比装置的结构满足下列自锁条件:
Figure imgf000005_0001
其中, e 偏心轴套总成内、 外两圆柱表面的偏心距,
fr-偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数, 偏心轴套总成外圆柱表面与连杆大头轴瓦内圆柱表面之间的动摩擦系数, Π—偏心轴套总成内圆柱面的半径,
偏心轴套总成外圆柱面的半径。
所述的偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数 ≥0.1。
所述驱动器总成的驱动扭矩满足下列驱动条件:
T3>0.10F* (e -f^ri^*^) 当偏心轴套总成逆内燃机旋转方向调整时,
T^O.IOF* (fj*r,+f2*r2-e) 当偏心轴套总成顺内燃机旋转方向调整时,
其中, F—从活塞连杆总成传递到偏心轴套总成的最大压力,
T3—从驱动器总成向偏心轴套总成提供的驱动扭矩, 当不需改变压縮比时, Τ3=0, e 偏心轴套总成内、 外两圆柱表面的偏心距,
--偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数, 偏心轴套总成外圆柱表面与连杆大头轴瓦内圆柱表面之间的动摩擦系数, Π—偏心轴套总成内圆柱面的半径,
偏心轴套总成外圆柱面的半径。
所述的偏心轴套总成的内园柱表面设有油槽和若干泄油槽, 该油槽两侧设置有密封带, 该泄油槽 与所述内燃机的曲轴箱相通, 其形状是直线或任何曲线形状。
所述偏心轴套总成的内圆柱表面和与其接触的曲轴连杆轴颈外圆柱表面的表面形貌特征是: 沿曲 轴轴向开设多个微观的齿顶和齿槽, 该两表面上的齿顶和齿槽相互嵌合。
所述的驱动器总成的数量为一个。
所述的可变压縮比装置适合于一缸或多缸、 直列、 V型、 W型、 星型或对置内燃机。
本发明的有益舰是:
1、 ^^承受活塞顶部的巨^ Λ:ΕΕ力 ~~ 缩比 ¾S的结构尺寸要 «足自锁 牛, 由此在内 M躯力脉冲的曲轴转角区¾^内具有自锁功能, 使其即 i¾«气缸内的活塞顶部承受巨鳩躯力时, 压 力也不会(S¾¾^、的)传 3Ιί幅动器, 从而避免了对传动系统的破坏, 提高了縫的可靠性。
2、 压縮比的调节和控制方便, 消耗功率少, ^^实现内 «多缸压缩比的同步调整一本发明采用同一 驱动器驱动 ¾g于各缸的^轴及齿轮总成, 并进而驱动偏心轴套总 «转, 从而实现了各缸 it缩比的同步调 整; , 改 β缩比时所需要的躯驱动力矩非常小, ¾¾」了调节方便的 ¾¾。
3、 结构简单, 便 ^ij造, itffl于现存内«设计和制 itS术及设^ ~本发明的结构只对传统内 L的 结构作了局部改动, 也不会改变内 l与 ¾¾器^1¾统的结构, 几乎很少对内 结构产 响, 不会改变活塞的运行规律, 也麟了现有内赚己取得的燃烧效率; 同时, 本发明不会导致活塞往复惯性力的 增大, 也不会导致内飄振动的加剧。
4、 极大地提高了所有构件的强度——本发明的技术方案之一将传动轴及齿轮总成中的多根传 动轴的中心线设置为与曲轴中心线不重合,并且釆用了盘形曲轴, 使曲柄臂与盘形主轴颈合二为一, 从而使各构件能够采用更大的结构尺寸以提髙强度。
5、 增大了压縮比冲程改变量, 扩大了可变压縮比的调节范围——由于结构空间的增大增加 了偏心距 e增大的余地, 满足了各类不同长短冲程发动机的需要。 附图说明 图 1是本发明实施例一的结构爆炸图。
图 2是本发明偏心轴套总;^力自锁 牛示意图。
图 3a, 3b, 3c, 3d ¾B 比变化的示意图。
图 4是本发明实施例一 ,剖面图。
图 5是图 4的 A-A剖面图。
图 6是图 4的 B-B剖面图。
图 7是图 4的 M局部放大图。
图 8是本发明偏心轴套总成内表面结构示意图。
图 9a, 9b, 9c是本发明驱动器总 同工作位置的示意图。
图 10 縮比控制系 意图。
图 11是本发明实施例二的结构爆炸图。
图 12是本发明实施例二 剖面图。
图 13是图 12的 A-A剖面图。
图 14是本发明实施例三的结构爆炸图。
图 15是本发明实施例三 ^剖面图。
图 16是图 15的 A-A剖面图。
图 17是本发明实施例四的结构爆昨图。
图 18是本发明实施例四的, IJ图。
图 19是本发明实施例四的剖面图。
下面结合附图和实施例对本发明作进一^细说明。
实施例一
首先请参阅图 i, 图 1显示的是本发明所述带條 1、自锁结构的适用于内燃机的可 »stt¾a的第一种方 案的爆炸图。 的¾«1*¾5包括有: 曲轴 1、偏心轴套总成 2、传动轴及齿轮总成 3、活塞连杆总成 4、 驱动器总成 5以及控制阀总成 6 (见图 10)。
難的曲轴 1设有一位于端部的主轴颈 16、 軒主轴颈 18和轩连浦颈 14, 雜機颈 14夕卜周形成 连 fftt 卜圆柱面 15; 以曲轴中心线 13为中心, 轴颈 16内开设有一圆柱孔 11, 在轩主轴颈 18内开设 有若干圆柱孔 12, 该圆柱孔 11和若干园柱孔 12的中心线与该曲轴中心线 13完全重合。
与普通内舰一样, 腿的活塞连杆总成 4包括有活塞 41、 m 42、 连杆大头轴瓦 43和 44、 连杆盖 45和连杆螺栓 46, 而活塞连杆总成 4在缸套 71内作上下往复运动(见图 4和图 5)。
请参阅图 4, 所述的偏心轴套总成 2的数量与所述内燃机的连杆轴颈 14的数量相等。 请参阅图 5, 该偏 心轴套总成 2可 地 曲轴 1的连 颈 14与^ 杆大头轴瓦 43和 44之间; 的偏心轴套 总成 2具有两个圆柱表面: 内圆柱表面 27和外圆柱表面 26, 请参阅图 2, 该内圆柱表面 27的圆心 0,与外圆 柱表面 26的圆心 (¾不重合, 圆心 与圆心(¾之间的距离为偏心距 e, BP, 内、夕卜两圆柱表面 27和 26具有 偏心距为 e; 请参阅图 5, 杆体 42、连杆大头轴瓦 43和 44以及连杆盖 45可^ ¾安装在偏心轴套总成
2的外圆柱表面 26上。
请参阅图 5, 所述的偏心轴套总成 2由两个半圆的偏心套 21和 22对合固接而成, 该两偏心套 21和 22 的结合面 24上设有螺孔 25和定位销孔 201 (见图 8), 螺栓 23和定位销将两个半圆偏心套 21和 22连接在一 起, 从而誠偏心轴套总成 2。舰的偏心轴套总成 2的内圆柱面 27与连擁颈 14的外圆柱面 15相觀(下 面的繊中, 标号 27与 15指同一 ¾M面, 也称自锁表面), 偏心轴套总成 2的外圆柱面 26与戶 ¾¾杆大头轴 瓦内圆柱表面 43及 44的内表面相接触, 该接触面也 标号 26。
结合参阅图 6和图 7, 繊的偏心轴套总成 2的两端面各 ¾£一个齿轮 20, 该齿轮 20的节圆圆心与所 述的偏心轴套总成 2的内圆柱表面 27的圆心 O,重合, 所述的齿轮 20与传动齿轮 33外啮合。
合参阅图 1和图 4, 的传动轴及齿轮总成 3与戶 ¾偏心轴套总成 2形成齿 接, 并且驱动¾¾ 心轴套总成 2 »。 戶 的传动轴及齿轮总成 3包括有一驱动轴 31、 ¾T传动轴 32和 ¾^传动齿轮 33; m 的驱动轴 31可旋转地穿置 ^¾曲轴 1的圆柱孔 11内, 其一 ^131键 34与驱动器总成 5的内轮 53固定连接 在一起, 另一 键 35与传动齿轮 33 ^¾一起: 的^ F传动轴 32可旋转地穿置在曲轴 1的 ¾^圆 柱孔 12内,其两端分别通过键 35与传动齿轮 33固定连接在一起。所述驱动轴 31、各传动轴 32和传动齿轮 33始终绕曲轴中心线 13旋转,并且该若干传动齿轮 33与各偏心轴套总成 2两端面的齿轮 20—一外啮 合。
当所述驱动轴 31和各传动轴 32相对于曲轴中心线 13旋转时,所述的传动齿轮 33也一并同步旋转, 并同时驱动所述偏心轴套总成 2相对于所述曲轴 1的连杆轴颈中心线 17相应旋转。
所述的驱动器总成 5固定连接于所述曲轴 1一端的主轴颈 16上,且与所述传动轴及齿轮总成 3连 接并驱动该传动轴及齿轮总成 3旋转。
请参阅图 1 , 的驱动器总成 5包括有外壳 51、 夕卜轮 52、 内轮 53、前盖 54、 后盖 55、 轴封 56、 固定 螺栓 57、 相位齿轮 58以及相位传戲 59。
戶 M的外轮 52固定體于外壳 51的内 ¾±, 前盖 54和后盖 55分别密纖固定于外壳 51的两端。 鋪 盖 54、后盖 55、夕卜轮 52和外壳 51一起固定地安 曲轴 1一端的主轴颈 16上, 并随曲轴 1一
动。
繊的内轮 53和相位齿轮 58固定地安装^ M的驱动轴 31上, 并可随该驱动轴 31的旋转而绕曲轴中心 线 13旋转。 所述的相位传感器 59安装在该相位齿轮 58的侧旁, 用于探测所述的内轮 53和驱动轴 31相对于 曲轴 1的转角。
雜合参阅图 9, 耐内轮 53體于 卜壳 51的内腔中, 并且与外轮 52、外壳 51、前盖 54和后盖 55共 同构成两个压力腔 510和 511, 该压力腔 510和 511总是 形成, 可以为一对或多对, 如两对、三对或四对, 本实施例中, 力腔 510和 511为两对。
雜合参阅图 10, 为了防 ihfM的压力腔 510和 511内的狐油概力作用下 形戯力腔 510和 511 的夕 «缝隙 508流出, 特别體了密封条 503, 并在每一个密封条 503与内轮 53以 ¾^卜轮 52之间安装了弹簧 片 504, 并引导少量泄漏的難油 ¾Λ回油腔 509, 最终舰开设在驱动轴 31上的排油道 301和 306, 将其导 入内纖曲轴箱(附图未显示), 这使得回油腔 509的压力减小, 不至于使 油謝轴封 56泄漏至内 « 外。
戶 M的驱动器总成 5还包括有停 t¾ 销 506、 弹簧 507和弹簧盖 500, 见图 10。 盖 55上开设有停
505, m ^ S06安装在内轮 53上, 弹簧 507和弹簧盖 500安¾¾该停 «销 506 ¾¾。 当内燃机停止运行前, 驱动器总成 5在停机信号指示下, 将内轮 53运行至停机位置, 该停枳插销 506在 弹簧力作用下插入后盖 55中的插销孔 505,此时,停 506将内轮 53与后盖 55固定在一起, 使之相互不 以便在内腿再 动时, 不因狐油压力不够而使驱动器总成 5失效。 当内飄开启时, 置于腿 驱动器总成 5内的停 tfia销 506处于停机位置, 内»^动后 油压力 Μ¾¾ΪΖ¾*, 该油压将停
506推出停积插销孔 505, 所述内轮 53进入可自由旋转状态, 此时, 压縮比 ^^被改变。
的驱动器总成 5设有回 当 ¾^油¾1各相关表面泄露以后, 的回 ¾¾31^¾将泄露的液 压油回 ι| ^曲轴箱, 同时 PiiS ^回 ¾®¾的压力, 避免 油泄露至驱动器总成 5之外。 参见图 4, 本发明所述带偏心自锁结构的适用于内 L的可 ¾Mtb¾S 、¾S—个驱动器总成 5, 用以 驱动内 有的偏心轴套总成 2。当内轮 53绕曲轴中心线 13转动时,鄉^]驱动轴 31及其一端的传动齿 轮 33绕曲轴中心线 13转动, 进而带动位于第^缸的偏心轴套总成 2的齿轮 20相应 颈中' 11、线 17
(其贯穿細心轴套总成 2内圆柱表面 27的圆心 o, )糊,再由该偏心轴套总成 2另一端的齿轮 20 齿轮 33、传动轴 32及其另一端的传动齿轮 33,进而 处于第二气缸的偏心轴套总成 2糊,运动依次传递, 最终逐一地使所有连杆轴颈 14上的偏心轴套总成 2同时 fftt颈中心线 17转动。所有偏心轴套总成 2的同 时转动意味着所有气缸内的压縮比被同步改变。 只采用一个驱动器总成 5就使所有气缸的偏心轴套总成 2 同时转动而改变角度, 从而达到各气缸的压缩比同步改变的目的, 这是本发明的重大有益效果之一。
所述的控制阀总成 6连接驱动器总成 5并与之形成液压传动, 以驱动该驱动器总成 5。 请参阅图 10, 所述控制阀总成 6包括有液压泵 608、 液压控制阀和油箱 610。
控制阀用以产生或 油的不同流动方向, 其连接^ &油箱 610、 驱动器总成 5和内纖的 控制器 ECU, ^R^i m ECU控制。 戶 的 控制阀包括有阀体 603和柱塞 604, 柱塞 604可 地 安装在阀体 603之中, 柱塞 604的左右移动 安装在其一端的电霞圈 613控制; 柱塞 604在阀体 603中能 够处于左中右三个位置, 该三个位置分别对应于所述内轮 53相对于外轮 52正时针旋转、逆时针旋转以及固定 不动三种牝态, BP, 戶 ¾的雜控制阀的三种»对应于驱动器总成 5的三种工作柷态, 见图 9。
^¾¾11泵 608用于产生¾1¾压力,驱动所述的驱动器总成 5,该液压泵 608连接于液压控制阀与油箱 610 之间。 繊的 泵 608可以細 3拉结构形式, 也可以直嫉用内 mi原有的润滑油泵。
0¾¾制阔总成 6与驱动器总成 5的液 H¾接如图 9和图 10所示, 所述一对压力腔 510通过油道 513与 曲轴油道 101相连通, 另一对压力腔 511通过油道 512与曲轴油道 102相连通; 该曲轴油道 101、 103通过内 l缸体上的油槽 704以及油道 701与液压控制阔的油管 602 该曲轴油道 102、 104通过内燃机缸体上 的油槽 703以及油道 702与液压控制阔的油管 601连通。
上述内容为本发明实施例一的主要结构。
以下结合附图说明本发明改 ¾Ε縮比的原理:
请参阅图 3, 当偏心轴套总成 2在连糊颈 14上雜浦颈中心线 17麟时, 内舰曲柄判 δ r 发 生改变, 进而改变内«冲程的¾¾, 引 feffi缩比的改变。
图 3a 示当内應冲程 S,为最大时,其偏心轴套总成 2相对 糊颈 14的转角位置。设定, 套总成 2的结合面 24与气缸中心线 72的夹角为 Φ, 而活塞 41处于内 l的 ±ih点(TDC— Top Dead Center) 位置。
图 3b ¾S示当内舰冲程 为最大时,其偏心轴套总成 2相对于连棚颈 14的转角位置。设定,偏心轴 套总成 2的结合面 24与气缸中心线 72的夹角为 Φ,而活塞 41处于内«的下止点 (BDC~BottomDeadCenter) 位置。
结合图 3a和图 3b观察, 此时, 内燃 W tk¾¾最大, 内燃机曲柄半径 r的增加量 p为:
P=e*cosO,
其最大冲程为:
Figure imgf000009_0001
图 3c ¾¾示当内舰冲程 ¾为最小时,其偏心轴套总成 2相对 棚颈 14的转角位置。设定,偏心轴 套总成 2的结合面 24与气缸中心线 72的夹角为 (180_Φ), 而活塞 41处于内 «il止点(TDC)位置。
图 3d ¾ 示当内 l冲程 ¾为最小时,其偏心轴套总成 2相对 ^«颈 14的转角位置。设定,偏心轴 套总成 2的结合面 24与气缸中心线 72的夹角为 (18(MD), 而活塞 41处于内讓下止点 (BDC)位置。
结合图 3c和图 3d观察, 此时, 内燃fLE^tt¾5撮小, 其内燃机曲柄半径 r的增加量 p为: P=-e*cos ,
其最小冲程为:
Figure imgf000010_0001
从图 3a b,3c和 3d可以看出, 内燃机冲程的最大改变量 Δ为:
A= Si- S2=4e* (cos )=
由上式可知, 当偏心轴套总成 2的内、 外两圆柱表面的偏心距 e确定后, 内燃机冲程的最大改变量 Δ取决于偏心轴套总成 2相对于连杆轴颈 14的转角 φ。 当内燃 构参 i½择洽当时, 这个最大改变量 Δ足以使汽油机的压缩比范围达到 6: 1至 20: 1的水平, 或者使柴油机的压縮比范围达到 10: 1至 30: 1的水 平。
本发明实 ¾1縮比改变的过程如下:
首先舊阅图 9,艇内轮 53与夕卜轮 52可绕曲轴 1中心线 13正时针 时针方向相对旋转,并 4两个 极限位置, 见图 9a和图 9c。 当内轮 53处于图 9a位置时, 内轮 53与夕卜轮 52在接触面 501相接触。 通过不同 的齿轮传动参数, 使偏心轴套总成 2刚好处于图 3c和图 3d的位置, 此时, 内燃机处于最小压縮比状态; 当内 轮 53处于图 9c位置时, 内轮 53与外轮 52在接触面 502相接触, 所述的偏心轴套总成 2刚好处于图 3a和图 3b的位置,此时, 内纖处于最 比牝态。当内轮 53处于±¾两个极限位置之间的某一位置时,如图 9b, 腿的偏心轴套总成 2将处于最大和最小 li^tt 间的对应位置。 因此, ^整内轮 53与外轮 52的相 对旋转角度 a, 贝 lj可^调 比的相对大小。
当内 «需要改 ¾Bg比时, 内 制器 ECUfflW内 和 的相位传! ¾ 59以及 油门 踏板位置(图中未显示) ^ &号的采集和处麵, 对控制阀总成 6发出指令, 控制闽总成 6控制躯油在魏 内的流动方向。
其中, 相位传 59的信号 ¾51¾集与内轮 53固定在一起的相位齿轮 58而获得, 通与内鎮曲轴 1 转角信号(图中未标示)对比, 该信号指明了内轮 53与曲轴 1的相对转角。
请参阅图 10, 当柱塞 604处于阀体 603的左端时, 油在 ¾E泵 611的驱动下, ^όίΠ^Λ阀体 603, 并; ί¾Λ1¾601, 再 ¾a在缸体上的油孔 702、油槽 703 ¾Λ在曲轴 1上开设的油孔 104、 102, 最终謝 驱动器总成 5的油道 512进入所述的压力腔 511, 见图 9; 同时, 压力腔 510内的液压油通过驱动器总成 5上 的 1¾ 513流出到曲轴 1上开设的另一油孔 101、 103, 请参阅图 10, 并进一 体上的油槽 704、 油孔 701以及油管 602、 阀体 603、油管 606、 612回到油箱 610。 当 油通过油道 512¾Λ压力腔 511, 而液压油 舰油道 513 力腔 510排出时, 内轮 53在油压推动下相对于外轮 52作逆时针雄(从内舰觸观测), 并翻驱动轴 31和传动齿轮 33逆时针旋转, 再进一步翻舰的偏心轴套总成 2顺时针旋转, 从而曲柄判 Γ减小, 内舰冲程减小, 赚比减小。
与之相反, 当柱塞 604处于阀体 603的右端时, 狐油流向与 方向相反, 狐油 ¾Λ压力腔 510, 而 力腔 511排出, 从而舰的偏心轴套总成 2作逆时针旋转, 曲柄雜 r增大, 内舰冲程增大, 内 縮比增大。
当不需要改 ¾1¾縮比时, t 阅图 10, 电繊圈 613断电, 阀体 603内的弹簧 605和 614将柱塞 604推向 阀体 603的中间部位, 油泵 611泵出的 ¾E油同时 ¾Λ魏 601和 ¾¾ 602, 并最终同时 ¾Λ压力腔 510 和 511, 多余的液压油贝 泄压阔 608、油管 609返回到油箱 610。此时, 压力腔 510和 511内的压力完全相 等, 将内轮 53锁定 卜轮 52的某一位置上, 如图%, 使内轮 53和外轮 52之间不再有相对旋 动, 而腿 的偏心轴套总成 2与连 fftt颈 14之间也不再有相对旋 $f¾动, E ^是普通内 β—样运转。
现结合图 2说明自锁条件。为了使内燃机不需要改变压縮比时, 偏心轴套总成 2不致受内燃 #1^发力 影响而发生旋转导致内燃机压縮比的改变, 就必须确保机构在此时的自锁。 所说的自锁条件是指: 当 腿的偏心轴套总成 2在 来自于活塞 41顶部压力而产生使该偏心轴套总成 2雜龍颈 14的旋转扭矩 T 时, 为了^^将该偏心轴套总成 2锁定¾欄颈 14上不动, 而不使该偏心轴套总成 2雄籠颈 14上发生 相对旋转, ¾¾ff必须满足的结构参数維
来自于活塞 41顶部的内 力 F雌¾|¾^¾的偏心轴套总成 2 Z±, ¾¾ 41 Mi ^杆 42将该 力 F垂直作用在 ¾的偏心轴套总成 2的接触部位 D, 进而产生一个绕连棚颈 14圆点 (连杆轴颈中心线 17)的顺时针方向的旋转 ¾¾T=F*e, 图 2 位置是该扭矩的最大值的 ftS。设偏心轴套总成 2与连 fftt颈 14接触面 27之间的静摩擦系数为 fi,则此处 C产生一 时针方向的旋转扭矩 T产 Ffi*n,同时在连杆大头轴瓦 43和 44与偏心轴套总成 2外圆柱表面之结合面 26的 D处产生一个逆时针方向的扭矩 Ff2*r2, 如果 ffiil驱 动器总成 5产生的作用在偏心轴套总成 2上的驱动扭矩!^与 方向一致, 扭矩 T3则取正号, 否则为负号。于 «心轴套总成 2相对于连 fftt颈 14固定不动的自锁^ ί牛为:
Fe
Figure imgf000011_0001
T3 当 Τ3=0时, 简化为自锁^ ί牛:
e<fi*r1+f2*r2
其中, 偏心轴套总成内、 外两圆柱表面的偏心距,
fi一偏心轴套总成内圆柱表面与曲轴的连 fftt^卜圆柱表面之间的静 系数,
fr~偏心轴套总 卜圆柱表面与连杆大头轴瓦内圆柱表面之间的动雜系数,
Γι一偏心轴套总成内圆柱面的 ,
rr~«心轴套总 卜圆柱面的雜。
也就是说, 只要 e , fl, r„ f2, 等 «择洽当, 即可满足该自锁餅, 而只要驱动扭矩丁3为零, 则自 锁^ ί牛与内 L»^E力 F无关!换句 ¾½, 縮比内 l在不需改¾1縮比而正常运转时, ¾ ^内 l 爆; E力 F的大小, #| ^需 SMWii可驱动扭矩 T3, 偏心轴套总成 2与连機颈 14之间也不会产生相对雄 的运动, 普通的内纖一样运动。
本发明的结构 取值满; 自锁^ #ε≤ϋ*Γι+ *Γ2,从而在内 ^ E力脉冲的曲轴转角区 ¾ ^内 具有自锁功能, 軎 承受活塞顶部的巨 力, 使 ¾¾力不会传 i§¾驱动器, 从而避免了对传动系统的破 坏, 提髙了錢的可靠性。
如果^ ½的带偏心自锁结构的¾11缩 tb¾S基本上满足自锁 牛, 也是允许的。其含义是: 如果满足自 锁餅, 舰的偏心轴套总成 2将固定 ¾f¾的曲轴连欄颈 14上不动, 偏心轴套总成 2对传动齿轮 33、 传 动轴 32和驱动轴 31没擁出扭矩; 如果没有满足自锁餅, 偏心轴套总成 2将对传动齿轮 33、传动轴 32和 驱动轴 31施加一个附加扭矩, 只要腿的附加攝不大, 就不足以损坏传动系统。
根据自锁餅, 为了产生默的赚比变化量,应使偏心距 e ¾¾歉的值, 即, fi*ri+f2*r2应该尽可能的 大, 其中 ri和 己无多大的改 间, 而动雜系数 f2也不能增大, 理论 ^可能小, 因此只^ ¾¾增 大静摩擦系数 fl, 否则内纖的摩翻失增大, 且可靠性下降。
本发明在结构及其 lth¾取了许多改 施, 以满足 的自锁条件。 请参阅图 7和图 8。 所述的偏心 轴套总成 2的内圆柱表面 27设有油槽 207和油孔 202作为过油通道, 还设有密封带 204、 206以及若干泄油槽 203。
由于润滑油必需¾¾¾杆大头轴瓦 43、 44与偏心轴套总成 2夕卜圆柱表面之间的觀面 26, 使内 常 润滑与 , 因此该润滑油从油泵 611腿缸翻孔(图中未显示), 并 ¾Λ曲轴油孔 111, ^^油孔 110、 油 槽 207、 油孔 202, 到达连杆大头轴瓦 43、 44与偏心轴套总成 2外圆柱表面形成的接触面 26, 并对该撫面 26进行 与润滑。然而为了尽可能增大自锁表面(偏心轴套总成 2的内圆柱面 27与连 fftt颈 14的外圆柱面 15的魏面)的静摩擦系数 fi, 并不希望润滑油滞留在该自锁表面, 为此, 特在油槽 207的两侧各设置一条密 封带 204和 206, 其作用是隔离^ h¾a油 中的润滑油, 使润滑油不 ,¾Wfe«A自锁表面。 S卩使润 滑油^ r避^ ifeax自锁表面, 也要 a¾将 ax的润滑油从该自锁表面中疏导出来, 勿使润滑油在自锁表面停 留而形戯压油膜, 只要棘压油膝在, 就会形/ ¾m¾摩顧牛, 导致自锁嫩。 为此, 在偏心轴套总成 2 的内圆柱表面 27开设一系列 与内舰曲轴箱(图中未显示) 的泄油槽 203,其作用是将已 έ¾ίλ自锁 表面的润滑油引导至内 曲轴箱, 该泄油槽 203的職可以 ^线或 ff^曲线職。 , 该偏心轴套总成
2内圆柱表面 27和连 fftt颈 14外圆柱表面 15的表面粗^ S ¾I¾¾取特别数值, 其^¾的表面 特征是: 沿曲轴轴向开设多个微观的齿顶和齿槽, 并使两表面 27与 15的齿顶和齿槽相互嵌合在一起, 以 [S止该两表面 27与 15之间的相互移动。该自锁表面的形貌特征也可能因为不同加工方法而呈现不同的特征, 但均应保证自 锁表面的静 «系数 f\≥0.1。 的密封带 204、 206和自锁表面的表面^ [不是唯一的技术方案, 但 无论是何种方案, 其原则精神都是为了满; 自锁餅。
而当压縮比需要变化时, 所述带偏心自锁结构的适用于内燃机的可 ¾11縮1:^¾£½¾制阀总成 6和驱动器 总成 5对偏心轴套总成 2的驱动扭矩 Τ3须满足下列驱动^ #:
T^O.IOF* (e-fi*rrf2*r2) 当偏心轴套总雌内 lS ^方向调整时,
T^O.IOF* (¾*Γ,+¾*Γ2-β) 当偏心轴套总 顿内 ΐ¾ ίΙ方向调整时,
其中, F—从活塞连杆总成 31到偏心轴套总成的最 力,
T「从驱动器总成向偏心轴套总成蒙的驱动擁, 当不需改 比时, T3=0,
e "偏心轴套总成内、 夕两圆柱表面的偏心距,
f\ -偏心轴套总成内圆柱表面与曲轴的连棚 卜圆柱表面之间的静雜系数,
fr ^心轴套总 卜圆柱表面与连杆大头轴瓦内圆柱表面之间的动摩擦系数,
r「偏心轴套总成内圆柱面的判 ,
rr~偏心轴套总戯卜圆柱面的判 ,
0.1—驱动系数。
通常顺时针和逆时针方向所需的驱动扭矩大小不一样, 为控制方便可以设计为同样大小的 , 以两个公 式计算结果駄的一个麵为准。此时, 将繊比朝减小方向调整的时间 一些, 親常是内藤负荷增加 的调整方向, 可以更好的解决"爆震燃烧"问题。
实际 ±S ^发力 F发生在内脆活塞 41处 发冲 g±±点 (TDC) TO, 随着曲轴 1的旋转, 一般 而言, 在大约为曲轴 60度转角时, 其作用力 F ¾¾下降至最大作用力 F的 10%〜20%, 因此, 实际的改舰 缩比所需的驱动扭矩 T3并不大, 因此 公式中采用 0.1的驱动系数。即做 度曲轴转角内, 由 Τ¾ϊ 满足自锁餅的原因, 使條 II、轴套总成 2与连機颈 14固定不动, 而超出 0·60度曲轴转角范围后, 则只謙 小的驱动扭矩 Τ3即可完 比的调整, 这也是本发明的最大优点。
带偏心自锁结构的删于内 «的¾¾«比¾¾可以直接釆用内 l润滑油作为驱动¾15油。 本实施例^ SS^ 较长冲程往复活塞结构的内 。
实施例二
图 11、 图 12和图 13是实施例二的示意图, 实施例二大^实施例一相同,所不同的只是将实施例一的偏 心轴套总成 2難为偏心轴套总成 2'。趣偏心轴套总成 2'两端面的齿轮 28为小于 360度转角的扇形内齿轮, 见图 13, 并且与驱动轴 31和传动轴 32上的传动齿轮 33形成内啮合。
当繊比需 效救小时, 腿内轮 53和夕卜轮 52的旋转方向与实施例一相反。
为了提供足够的冲程改变量, 内轮 53的旋转角度需要更大, 啮合齿轮对 33和 28 (见图 13) 的参数需要 作相应的修改, 必要时可細一个内轮 53和一个外轮 52 «¾动器总成 5, 此时只有一对压力腔 510和 511。
实施例二可以将内 ML冲程设计得小一些, ¾@合于比实施例一冲程 ^的往复活塞的内»。
实施例三 图 14、图 15和图 16是实施例三的示意图,其大体与实施例一相同,所不同的只是将实施例一的传动轴及 齿轮总成 3替换为 ¾轴及齿轮总成 3'。 该传动轴及齿轮总成 3'包括有 ¾ 传动套 36和 ¾^传动齿轮 361; 每一传动套 36由两个半圆轴套对合固接而成, 各传动套 36分别套置于所述曲轴 1的主轴颈 16、 18的外周并 绕该曲轴中心线 13旋转; 该若千传动齿轮 361为内齿轮且分别固定于各传动套 36的一端或两端, 该传动齿轮 361为小于 360度转角的扇形内齿轮, 各齿轮 361与 心轴套总成 2两端面的齿轮 20—一形成内啮^ (见图 16)。 f¾驱动器总成 5的前盖 54、后盖 55、外壳 51、外轮 52和相位齿轮 58—起固定地安装在最前一 套 36上, 而内轮 53则固 ¾¾安¾¾^¾曲轴 1一端的主轴颈 16上并 曲轴中 A钱 13雄。 由于实施例三 需要内轮 53赚的角度比 例一小很多, 因此, 压力腔 510和 511可以 ¾S得多一些, 如两对、 或四 对。
实施例三 ¾@合于短冲程往复活塞的内 «。
为了曲轴 1的平衡, 个雄例的啮合齿轮, 如齿轮 20、传动齿轮 33, 可以細 的 360度全形 齿轮, 也可以从 虑, 小于 360度转角的扇形齿轮。
实施例四
如 JJ¾, 内飄冲程的最大改翅厶为: A= S,- S2==4e* (α»Φ)。理论上, 为了 iiflj最 縮比,转角 Φ 应等于零(见图 3)。但是, ±¾Ξ个实施例中, 偏心轴套总成 2均是由两个半圆的偏心套对合固接而成, 而 Φ =0 塞 41顶部的爆;^力最大, ¾ΒΕ力 Mil活塞 41 链杆体 42 !Bif压在偏心轴套总成 2的两个半圆偏心 套的结合面 24上, 这将导致偏心轴套总成 2的早期损坏。
本实施例就是为了解决±¾问题, 其采用辦式偏心轴套总成, 雜就可以将转角 Φ體为零。
图 17、 图 18和图 19是实施例四的结构示意图, 该实施例四包括曲轴 1"、偏心轴套总成 2"、 传动轴及齿 轮总成 3"、连杆活塞总成 4和驱动器总成 5, 杆活塞总成 4的具体结构与实施例一相应部件总成的结构相 同。
所述曲轴 Γ为盘形主轴式曲轴, 是传统发动机主轴颈与曲柄臂合二为一而形成的, 其包括曲轴前 ¾tt颈 19、 第一盘形主轴颈 17"、 多个连杆轴颈、 多个第二盘形主轴颈 18"和曲轴后端轴颈, 它们 由前至后依照曲轴前端轴颈 19、 第一盘形主轴颈 17"、 一个连杆轴颈、 一个第二盘形主轴颈 18"、 一个连杆轴颈、 一个第二盘形主轴颈 18" ......曲轴后端轴颈的顺序依次连接在一起。 请参阅图 19, 所述第一盘形主轴颈 17"上开设有第一支承圆 tt¾ 11" (见图 19c), 其中心线与该曲轴中心线 13"不 重合; 所述第二盘形主轴颈 18"上开设有第二支承圆柱孔 12" (见图 19a), 同样地, 其中心线与该曲 轴中心线 13"不重合。
所述的偏心轴套总成 2"可旋转地套置在所述曲轴 Γ的各连杆轴颈与所述连杆大头轴瓦之间,其具有 内圆柱表面和外圆柱表面, 该内、 外两圆柱表面的圆心不重合, 并且具有偏心距 6。 请参阅图 18, 所 述的偏心轴套总成包括偏心套和一对偏心轴套齿轮 20"; 该偏心套的外圆柱表面与所述连杆大头轴瓦的 内圆柱表面相接触,其内圆柱表面与所述曲轴的连杆轴颈的外圆柱表面相接触;该一对偏心轴套齿轮 20" 分别固定于所述偏心套的两端,该偏心轴«轮20"的节圆圆心与所述偏心套的内圆柱表面的圆心重合, 该偏心轴套齿轮 20"分别与相邻的过渡齿轮 32"或中间传动齿轮 34"相啮合。
与前述三个实施例不同的是,本实施例中,所述的偏心轴套总成 2"为整体结构, 同时所述的曲轴 Γ 为组合式结构, 即曲轴前 颈 19、第一盘形主轴颈 17"、多个连杆轴颈、多个第二盘形主轴颈 18" 和曲轴后端轴颈均为独立构件, 它们是分别加工后再组合成曲轴 1"。 整体型偏心轴套总成 2"提高了 强度, 均匀了受力, 提高了可靠性。 组合式曲轴是为了便于整体偏心轴套总成 2"的装配。
所述的传动轴及齿轮总成 3"与所述偏心轴套总成 2"形成齿轮连接, 并且驱动该偏心轴套总成旋转。 请参阅图 18, 所述的传动轴及齿轮总成 3"包括有一对过渡齿轮 32"、 一过渡传动轴 33"、 多对中间传动 齿轮 34"以及多根传动轴 35"。 该过渡传动轴 33"可旋转地穿置于所述第一盘形主轴颈 17"的第一支 承圆柱孔 11"中, 该多根传动轴 35"分别可旋转地穿置于所述第二盘形主轴颈 18"的第二支承圆柱孔 12"中。 该一对过渡齿轮 32"固定于所述过渡传动轴 33"的两端, 并且其中的一个过渡齿轮 32"与相邻 偏心轴套总成 2"的偏心轴 *¾轮 20"形成齿轮啮合,另一个过渡齿轮 32"与驱动器总成 5的驱动 轮 31" 啮合。 该多对中间传动齿轮 34"分别固定于各传动轴 35"的两端, 并且与相邻偏心轴套总成 2"的偏心 轴套齿轮 20"形成齿轮啮合。
所述的驱动器总成 5设置于所述曲轴 1"一端的曲轴前端轴颈 19上, 与所述传动轴及齿轮总成 3"的过 渡齿轮 32"连接并驱动该传动轴及齿轮总成 3"旋转。请参阅图 18,该驱动器总成 5包括有驱动套 30"、 驱 动 *¾轮31"、 夕卜壳 51、后盖 55、 内轮 53、 外轮 52和相位齿轮 58。所述驱动套 30"可旋转地套置于所述 曲轴前端轴颈 19上。 所述驱动套齿轮 31"同轴心地固定连接于该驱动套 30"的后端, 并且与所述传动轴 及齿轮总成 3"的一过渡齿轮 32"啮合。 所述内轮 53和外轮 52设置于封闭的夕卜壳 51内, 该内轮 53与所 述曲轴前端轴颈 19同轴心地相固定连接并随曲轴 1"一起旋转运动, 该外轮 52与所述驱动套 30"的前端 S31^卜壳 51和后盖 55同轴心地相固定连接, 并且与驱动套 30"—起旋转运动, 所述外轮 52与内轮 53 能够绕所述曲轴中心线 13"作相对旋转运动。 所述的相位齿轮 58固定地安装在驱动套 30"的前端并与 驱动套 30"—起旋转运动, 其与侧旁的曲轴转角传感器(图中未显示) 配合用于探测所述内轮 53和外轮 52的相对转角, 即驱动套 30"相对于曲轴 Γ的转角。
在所述曲轴 Γ中, 所述第一支承圆柱孔 11"和第二支承圆柱孔 12" 的中心线的位置根据发动机和 本装置各结构要素以及齿轮啮合条件等机械原理确定。 为了保证内轮 53和外轮 52的相对旋转运动传 递到第 ~^缸, 第一支承圆柱孔 11" (见图 19c) 的 fe£ 必须保证 ί©±渡齿轮 32"与驱动 «¾轮31"啮合的 同时, 安装在迚渡传动轴 33"另一端处于第一气缸的过渡齿轮 32"恰好与第一气缸中的偏心轴套齿轮 20"相啮 合。为了保证内轮 53和外轮 52的相对旋艇动 缸 ¾¾所有气缸,第二支承圆柱孔 12" (见图 19a) 的位置, 必须保证慨于第^缸的中间传动齿轮 34"与该气缸中的偏心轴 «¾轮 20"相啮合的同时, 安装 在传动轴 35"另一端处于第二气缸的中间传动齿轮 34"恰好与该气缸中的偏心轴套齿轮 20"相啮合。依此类推, 方能保证将运动 ¾¾第三、 第四气缸(见图 18)。
本实施例的工作原理与实施例一大翻同。 当外轮 52和内轮 53绕曲轴中心线 13"相对旋转时, 驱动套 30"和驱动 «轮 31"也相对曲轴中心线 13"繊, 进^, 渡齿轮 32"、 id?渡传动轴 33"、 位于第一 气缸侧的过渡齿轮 32"和位于第一气缸的偏心轴套齿轮 20", 驱动第一气缸的偏心轴套总成 2", 这样, 内轮 53和外轮 52的相对; 动转化为第^ ^缸的偏心轴套总成 2"相对于第 颈中心 14"的½$ ¾动 (见图 1%); 进而, iia多个偏心轴套齿轮 20"、 多对中间传动齿轮 34"以及多根传动轴 35"将旋转运 动传递给各气缸的偏心轴套总成 2", 从而达到同步改变各气缸的压縮比的目的。
实施例五
实施例五的结构与实施例四基本相同,所不同的只是所述的偏心轴套总成 2"由两个偏心半套对合固 接而成, 螺栓和定位销将两个偏心半套连接在一起, 该两偏心半套的结合面恰好处在所述偏心距 e的 延长线上, 同时所述的曲轴 1 "为整体式结构, 整体式结构提高了曲轴 1 "的强度。
本发明不仅能够用于单缸内燃机, 也适用于 2缸、 3缸直至 8缸等多缸内燃机; 本发明不仅 Sffl于直列式 内燃机, 也适用于 V型、 W型、 星型布置和对置式布置的内燃机; 特别适用于车辆用的各种燃料的内燃 ΛίΡ 外賺, 包鹏油机、 柴油机等, 但不限于此。

Claims

权 利 要 求
1、一种带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述的可变压缩比装置 包括有:
曲轴, 其各主轴颈上设有若干圆柱孔;
活塞连杆总成, 包括有连杆大头轴瓦;
偏心轴套总成, 可旋转地套装在所述曲轴的连杆轴颈与所述连杆大头轴瓦之间, 其具有内圆柱表 面和外圆柱表面, 该内、 外两圆柱表面具有偏心距为 e;
传动轴及齿轮总成, 可旋转地穿置于所述主轴颈的圆柱孔中, 与所述偏心轴套总成形成齿轮连接 并驱动该偏心轴套总成旋转;
驱动器总成, 设置于所述曲轴一端的主轴颈上, 且与所述传动轴及齿轮总成连接并驱动所述传动 轴及齿轮总成旋转。
2、根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的可变压縮比装置还包括有控制阀总成, 该控制阀总成连接所述驱动器总成并与之形成液压传动, 以 驱动该驱动器总成; 所述的若干园柱孔的中心线与所述曲轴中心线重合。
3、 根据权利要求 2所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的偏心轴套总成由两个半圆的偏心套对合固接而成, 该偏心轴套总成的外圆柱表面与所述连杆大头轴 瓦内圆柱表面相接触, 其内圆柱表面与所述曲轴的连杆轴颈外圆柱表面相接触, 所述偏心轴套总成的 两端面各自设有齿轮, 该齿轮为全形齿轮或者扇形齿轮, 其节圆圆心与所述偏心轴套总成的内圆柱表 面的圆心重合。
4、根据权利要求 3所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的传动轴及齿轮总成包括有一驱动轴、 若干传动轴和若干传动齿轮, 该驱动轴和若干传动轴分别穿置 于所述曲轴的主轴颈的各园柱孔中并绕该曲轴中心线旋转,该若干传动齿轮为全形齿轮或者扇形齿轮, 其分别固定于驱动轴的一端和若干传动轴的两端, 并且与各偏心轴套总成两端面的齿轮一一啮合。
5、根据权利要求 4所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的驱动器总成包括有外壳、 外轮、 内轮、 前盖、 后盖、 相位齿轮和相位传感器, 所述外轮固定设置于 该外壳的内壁上, 前盖和后盖分别密封地固定于外壳的两端, 该前盖、 后盖、 外轮和外壳一起固定地 安装在所述曲轴一端的主轴颈上, 所述内轮设置于该外壳的内腔中并与外轮、 外壳、 前盖和后盖共同 构成两压力腔, 该内轮和相位齿轮固定地安装在所述驱动轴上并随之绕曲轴中心线旋转, 所述相位传 感器安装在该相位齿轮的侧旁。
6、根据权利要求 5所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的压力腔为一对或多对。
7、根据权利要求 5所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的控制阀总成包括有液压泵、 液压控制阀和油箱, 所述液压控制阔连接所述油箱、 驱动器总成和内燃 机的控制器, 并且受该控制器控制, 所述液压泵连接于液压控制阀与油箱之间。
8、根据权利要求 7所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所述 的液压泵为内燃机润滑油泵。
9、根据权利要求 7所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所述 的液压控制阀包括有阀体和柱塞, 该柱塞在所述阔体中滑动并能够处于 3个位置, 该 3个位置分别对 应于所述内轮相对于外轮正时针旋转、 逆时针旋转以及固定不动 3种状态。
10、 根据权利要求 7所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述的偏心轴套总成两端面的齿轮为内齿轮且与所述驱动轴和传动轴上的传动齿轮形成内啮合。
11、 根据权利要求 7所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的传动轴及齿轮总成替换为传动套及齿轮总成, 该传动套及齿轮总成包括有若干传动套和若干传动 齿轮, 每一传动套由两个半圆轴套对合固接而成, 该若干传动套分别套置于所述曲轴的主轴颈的外周 并绕曲轴中心线旋转, 该若干传动齿轮为内齿轮且分别固定于若干传动套的两端, 并与各偏心轴套总 成两端面的齿轮一一形成内啮合, 所述驱动器总成的前盖、 后盖、 外壳、 外轮和相位齿轮一起固定地 安装在最前一传动套上, 所述内轮固定地安装在所述曲轴一端的主轴颈上并随之绕曲轴中心线旋转。
12、 根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的曲轴为盘形主轴式曲轴, 其包括由前至后依次连接的曲轴前端轴颈、 第一盘形主轴颈、 多个连杆 轴颈、 多个第二盘形主轴颈和曲轴后端轴颈, 该第一盘形主轴颈上开设有中心线与该曲轴中心线不重 合的第一支承圆柱孔, 该第二盘形主轴颈上开设有中心线与该曲轴中心线不重合的第二支承圆柱孔; 所述的传动轴及齿轮总成包括有一对过渡齿轮、一过渡传动轴、 多对中间传动齿轮和多根传动轴, 该过渡传动轴可旋转地穿置于所述第一盘形主轴颈的第一支承圆柱孔中, 该多根传动轴分别可旋转地 穿置于所述第二盘形主轴颈的第二支承圆柱孔中, 该一对过渡齿轮固定于所述过渡传动轴的两端, 并 且其中的一个过渡齿轮与相邻偏心轴套总成形成齿轮连接, 另一个过渡齿轮与驱动器总成形成齿轮连 接, 该多对中间传动齿轮分别固定于各传动轴的两端, 并且与相邻偏心轴套总成形成齿轮连接; 所述的驱动器总成设置于所述曲轴一端的曲轴前端轴颈上, 与所述传动轴及齿轮总成的过渡齿轮 连接并驱动该传动轴及齿轮总成旋转。
13、 根据权利要求 12所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述的偏心轴套总成包括偏心套和一对偏心套齿轮, 该偏心套的外圆柱表面与所述连杆大头轴瓦的内圆 柱表面相接触, 其内圆柱表面与所述曲轴的连杆轴颈的外圆柱表面相接触, 该一对偏心套齿轮固定于 所述偏心套的两端, 该偏心套齿轮的节圆圆心与所述偏心套的内圆柱表面的圆心重合, 该偏心套齿轮 分别与相邻的中间传动齿轮或过渡齿轮相啮合。
14、根据权利要求 13所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述的驱动器总成包括有驱动套、 驱动套齿轮、 外壳、 内轮和外轮, 所述驱动套可旋转地套置于所述曲 轴前端轴颈上, 所述驱动套齿轮同轴心地固定连接于该驱动套的后端且与所述传动轴及齿轮总成的一 过渡齿轮啮合, 所述内轮和外轮设置于封闭的外壳内, 该内轮与所述曲轴前端轴颈同轴心地相固定连 接, 该外轮与所述驱动套的前端同轴心地相固定连接, 所述外轮与内轮能够绕所述曲轴中心线作相对 旋转运动。
15、根据权利要求 14所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的第一支承圆柱孔的位置必须保证使过渡齿轮与驱动套齿轮啮合的同时, 安装在过渡传动轴另一端 处于第一气缸的过渡齿轮恰好与第一气缸中的偏心轴套齿轮相啮合; 第二支承圆柱孔的位置必须保证 使处于一气缸的中间传动齿轮与该气缸中的偏心轴套齿轮相啮合的同时, 安装在传动轴另一端处于相 邻气缸的中间传动齿轮恰好与该气缸中的偏心轴套齿轮相啮合。
16、根据权利要求 14所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的偏心套为整体结构, 所述的曲轴为组合式结构, 所述的曲轴前端轴颈、 第一盘形主轴颈、 多个连 杆轴颈、 多个第二盘形主轴颈和曲轴后端轴颈均为独立构件。
17、 根据权利要求 14所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的偏心套由两个偏心半套对合固接而成, 所述的曲轴为整体结构。
18、根据权利要求 2或 12所述的带偏心自锁结构的适用于内燃机的可变压縮比装置,其特征在于, 所述的可变压縮比装置的结构满足下列自锁条件:
e <f|*r!+f2*r2
其中, e 偏心轴套总成内、 外两圆柱表面的偏心距,
--偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数, 偏心轴套总成外圆柱表面与连杆大头轴瓦内圆柱表面之间的动摩擦系数, Γι_偏心轴套总成内圆柱面的半径,
偏心轴套总成外圆柱面的半径。
19、 根据权利要求 18所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述的偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数 f≥0.1。
20、 根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压縮比装置, 其特征在于, 所 述驱动器总成的驱动扭矩满足下列驱动条件:
T3>0.10F* ( e -f^n-fz*^) 当偏心轴套总成逆内燃机旋转方向调整时,
T3>0.10F* (f^n+f ^-e) 当偏心轴套总成顺内燃机旋转方向调整时,
其中, F—从活塞连杆总成传递到偏心轴套总成的最大压力,
T3_从驱动器总成向偏心轴套总成提供的驱动扭矩, 当不需改变压縮比时, Τ3=0, e-偏心轴套总成内、 外两圆柱表面的偏心距,
--偏心轴套总成内圆柱表面与曲轴的连杆轴颈外圆柱表面之间的静摩擦系数,
f2—偏心轴套总成外圆柱表面与连杆大头轴瓦内圆柱表面之间的动摩擦系数,
一偏心轴套总成内圆柱面的半径,
Γ2~偏心轴套总成外圆柱面的半径。
21、 根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述的偏心轴套总成的内园柱表面设有油槽和若干泄油槽, 该油槽两侧设置有密封带, 该泄油槽与所述 内燃机的曲轴箱相通, 其形状是直线或任何曲线形状。
22、 根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述偏心轴套总成的内圆柱表面和与其接触的曲轴连杆轴颈外圆柱表面的表面形貌特征是: 沿曲轴轴向 开设多个微观的齿顶和齿槽, 该两表面上的齿顶和齿槽相互嵌合。
23、 根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压缩比装置, 其特征在于, 所 述的驱动器总成的数量为一个。
24、根据权利要求 1所述的带偏心自锁结构的适用于内燃机的可变压缩比装置,其特征在于, 所述的可变压縮比装置适合于一缸或多缸、 直列、 V型、 W型、 星型或对置内燃机。
PCT/CN2013/000267 2012-10-08 2013-03-12 一种带偏心自锁结构的适用于内燃机的可变压缩比装置 WO2014056291A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2012103796485A CN102889142A (zh) 2012-10-08 2012-10-08 一种带自锁结构的可变压缩比装置
CN201210379648.5 2012-10-08
CN201210548124.4A CN103047002B (zh) 2012-12-17 2012-12-17 一种连杆轴颈偏心套可变压缩比装置
CN201210548124.4 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014056291A1 true WO2014056291A1 (zh) 2014-04-17

Family

ID=50476939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000267 WO2014056291A1 (zh) 2012-10-08 2013-03-12 一种带偏心自锁结构的适用于内燃机的可变压缩比装置

Country Status (1)

Country Link
WO (1) WO2014056291A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608523A1 (en) * 2018-08-09 2020-02-12 Gomecsys B.V. An eccentric member and a v-type internal combustion engine
US20210396173A1 (en) * 2018-09-26 2021-12-23 Miroslaw SZYMKOWIAK Internal combustion engine with variable compression ratio and mechanism for changing the compression ratio
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device
AT524321B1 (de) * 2021-03-12 2022-05-15 Roland Kirchberger Dipl Ing Dr Techn Verbrennungskraftmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR986605A (fr) * 1943-11-23 1951-08-02 Dispositif de variation, en marche, du rapport volumétrique d'un moteur
JPH0331535A (ja) * 1989-06-28 1991-02-12 Suzuki Motor Corp エンジンの圧縮比可変装置
JPH04119212A (ja) * 1990-09-10 1992-04-20 Tadao Takamizawa ピストンクランク機構
CN1176678A (zh) * 1995-02-28 1998-03-18 Tk设计股份公司 变压缩比的往复活塞发动机式内燃机
JP2008088953A (ja) * 2006-10-05 2008-04-17 Honda Motor Co Ltd ストローク特性可変エンジン
CN101324202A (zh) * 2007-08-09 2008-12-17 孙德全 活塞式倍行程连杆无摆动发动机
CN102889142A (zh) * 2012-10-08 2013-01-23 沈大兹 一种带自锁结构的可变压缩比装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR986605A (fr) * 1943-11-23 1951-08-02 Dispositif de variation, en marche, du rapport volumétrique d'un moteur
JPH0331535A (ja) * 1989-06-28 1991-02-12 Suzuki Motor Corp エンジンの圧縮比可変装置
JPH04119212A (ja) * 1990-09-10 1992-04-20 Tadao Takamizawa ピストンクランク機構
CN1176678A (zh) * 1995-02-28 1998-03-18 Tk设计股份公司 变压缩比的往复活塞发动机式内燃机
JP2008088953A (ja) * 2006-10-05 2008-04-17 Honda Motor Co Ltd ストローク特性可変エンジン
CN101324202A (zh) * 2007-08-09 2008-12-17 孙德全 活塞式倍行程连杆无摆动发动机
CN102889142A (zh) * 2012-10-08 2013-01-23 沈大兹 一种带自锁结构的可变压缩比装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608523A1 (en) * 2018-08-09 2020-02-12 Gomecsys B.V. An eccentric member and a v-type internal combustion engine
US20210396173A1 (en) * 2018-09-26 2021-12-23 Miroslaw SZYMKOWIAK Internal combustion engine with variable compression ratio and mechanism for changing the compression ratio
US11560835B2 (en) * 2018-09-26 2023-01-24 Miroslaw SZYMKOWIAK Internal combustion engine with variable compression ratio and mechanism for changing the compression ratio
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device
US11879400B2 (en) * 2019-07-28 2024-01-23 Almir Gonçalves Pereira Variable compression ratio device
AT524321B1 (de) * 2021-03-12 2022-05-15 Roland Kirchberger Dipl Ing Dr Techn Verbrennungskraftmaschine
AT524321A4 (de) * 2021-03-12 2022-05-15 Roland Kirchberger Dipl Ing Dr Techn Verbrennungskraftmaschine
WO2022187881A1 (de) 2021-03-12 2022-09-15 Kirchberger, Roland Verbrennungskraftmaschine mit variablem hub

Similar Documents

Publication Publication Date Title
KR100476362B1 (ko) 실린더모듈을구비한내연기관
WO2008032439A1 (en) Engine with variable stroke characteristics
CN101696653A (zh) 旋转翼活塞发动机
EP2907986B1 (en) A four-stroke internal combustion engine with variable compression ratio
JP2005330963A (ja) シリンダータイプロータリー動力伝達装置
WO2014056291A1 (zh) 一种带偏心自锁结构的适用于内燃机的可变压缩比装置
US8393307B2 (en) Variable compression ratio device
CN102889142A (zh) 一种带自锁结构的可变压缩比装置
CN106958488B (zh) 一种可变压缩比发动机
CA2818778C (en) Variable radial fluid device with counteracting cams
CA2818047C (en) Variable radial fluid device with differential piston control
TW200306383A (en) Engine with variable compression ratio
KR101642172B1 (ko) 낮은 소비량 및 낮은 배출량을 갖는 2-행정 엔진
EP1065358A1 (en) Internal combustion cylinder engine
JP7058889B2 (ja) 内燃エンジン
CN113250819A (zh) 一种用直杆活塞七轮传动机构传输动力的装置及其用途
WO2005111464A1 (ja) シリンダータイプロータリー動力伝達装置
CN209469705U (zh) 组合式偏心轴及可变压缩比发动机
CN106321236B (zh) 一种径向多缸对置活塞二冲程柴油机
CN112963506B (zh) 一种可变压缩比的电动传动装置
CN101122244A (zh) 旋转轴阀式发动机配气机构
WO2010017778A1 (zh) 一种摇阀转缸式变容机构及其旋转发动机
CN108691745A (zh) 空气压缩机结构
CN213953746U (zh) 副轴输出式可变压缩比发动机
WO2011034657A2 (en) A supercharged internal combustion engine including a pressurized fluid outlet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845233

Country of ref document: EP

Kind code of ref document: A1