WO2014054492A1 - Cooling structure for engine - Google Patents

Cooling structure for engine Download PDF

Info

Publication number
WO2014054492A1
WO2014054492A1 PCT/JP2013/076003 JP2013076003W WO2014054492A1 WO 2014054492 A1 WO2014054492 A1 WO 2014054492A1 JP 2013076003 W JP2013076003 W JP 2013076003W WO 2014054492 A1 WO2014054492 A1 WO 2014054492A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
engine
air
cylinder head
cooling
Prior art date
Application number
PCT/JP2013/076003
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 勝谷
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201380051542.5A priority Critical patent/CN104685181B/en
Publication of WO2014054492A1 publication Critical patent/WO2014054492A1/en
Priority to IN1739DEN2015 priority patent/IN2015DN01739A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders

Definitions

  • the present invention relates to an engine cooling structure, and more particularly to an engine cooling structure provided with an air guide member.
  • an injector for controlling the supply of fuel to the combustion chamber is disposed in the vicinity of the cylinder head of the engine.
  • the injector becomes hot due to heat from the cylinder and the cylinder head, the fuel in the injector is vaporized, causing problems such as unstable engine speed and reduced output. Therefore, in the cooling structure described in Patent Document 1, a flow path that guides the air that has passed through the cylinder and the cylinder head to the injector is formed so that the injector is cooled.
  • the present invention has been made in view of such a point, and an object thereof is to provide an engine cooling structure capable of appropriately cooling components such as an injector and the like that are affected by heat of an engine cylinder and a cylinder head.
  • An engine cooling structure of the present invention provided to solve the above-described problems covers a part of an engine cylinder and a cylinder head, and forms a cooling flow path that guides cooling air to the cylinder and the cylinder head.
  • a cooling structure for an engine comprising: an air guide member that performs air blowing; and a blower member that sends the air to the cooling flow path, wherein the air guide member includes a body portion that forms the cooling passage, the cylinder, and the cylinder A branching channel for guiding the air to a part different from the cylinder and the cylinder head at a position away from the cylinder head; and a shielding part formed by branching the cooling channel.
  • the air guide member has the shielding part that forms the branch flow path that guides the air to a component different from the main body part, and therefore, air different from the air that cools the cylinder and the cylinder head of the engine. Can cool parts. Further, since the branch flow path is formed at a position away from the cylinder and the cylinder head, the propagation of heat from the cylinder and the cylinder head to the branch flow path can be suppressed, and the cooling efficiency of the parts can be increased. Therefore, an engine cooling structure capable of appropriately cooling components affected by the heat of the cylinder and the cylinder head is realized.
  • the shielding portion branches the cooling flow path at a position before the air from the blowing member reaches the cylinder and the cylinder head. According to this structure, since the shielding part branches the cooling flow path at a position before the air from the air blowing member reaches the cylinder and the cylinder head, the air flowing through the branch flow path due to the heat of the cylinder and the cylinder head. Temperature rise can be prevented. Therefore, the cooling efficiency of components can be improved.
  • the branch flow path may be formed along the inner wall surface of the air guide member so as to sandwich the cooling flow path between the cylinder and the cylinder head.
  • the branch flow path is formed along the inner wall surface of the air guide member so as to sandwich the cooling flow path between the cylinder and the cylinder head. Can further suppress the propagation of heat. Further, since the cooling channel is not blocked by the branch channel, the cooling efficiency of the cylinder and the cylinder head can be maintained high.
  • the shielding portion is separate from the main body portion of the air guide member and is formed of a member formed of a different material. According to this configuration, since the degree of freedom of the shape is increased as compared with the case where the air guide member and the shielding portion are integrally formed, the cooling flow path and the branch flow path are reliably separated from the cylinder and the cylinder head. The propagation of heat to the branch channel can be suppressed. Further, since the material of the air guide member and the material of the shielding part can be changed, the heat insulating effect of the shielding part can be enhanced, and the propagation of heat from the cylinder and the cylinder head to the branch channel can be further suppressed.
  • the another component may be a fuel injection device. According to this configuration, since the fuel injection device can be appropriately cooled by the air supplied through the branch flow path, the fuel can be stably supplied by preventing the fuel from evaporating in the fuel injection device.
  • an engine cooling structure capable of appropriately cooling components such as an injector affected by the heat of the cylinder and the cylinder head.
  • FIG. 1 is a perspective view showing an appearance of a motorcycle to which an embodiment of the present invention can be applied.
  • Fig. 2 is a left side view showing a structure around a rear wheel of the motorcycle shown in Fig. 1.
  • Fig. 2 is a right side view showing a structure around a rear wheel of the motorcycle shown in Fig. 1.
  • FIG. 2 is a perspective view showing a structure of the engine of the motorcycle shown in FIG. 1 and its surroundings.
  • FIG. 5 is a cross-sectional view of the engine shown in FIG. 4 cut along a plane perpendicular to the vehicle width direction.
  • It is a perspective view for demonstrating the cooling structure of the engine shown by FIG.
  • It is a perspective view which shows the shape of the shroud in the cooling structure of the engine shown by FIG.
  • It is a perspective view of the shielding part in an engine cooling structure.
  • It is a schematic diagram which shows the flow of the air in a shroud shown by FIG.
  • the scooter type motorcycle 1 is configured by attaching various covers as a vehicle body exterior to an underbone frame 11 made of steel or aluminum alloy.
  • a leg shield 21 that protects the driver's legs is provided at the front of the motorcycle 1, and a step board 22 on which the legs are placed is disposed behind the leg shield 21.
  • a side cover 23 that covers the side surface of the vehicle body is provided behind the step board 22.
  • the front fork 31 is rotatably supported at the front of the vehicle body via a steering shaft (not shown).
  • a handlebar 32 for steering the front wheel 3 is provided above the front fork 31.
  • a brake lever 33 is provided on the handle bar 32, and a headlamp 34 is disposed in front of the handle bar 32.
  • a front fender 35 that covers the upper part of the front wheel 3 is installed at the lower part of the front fork 31 while the front wheel 3 is rotatably supported.
  • the front wheel 3 is provided with a brake disk and a caliper (both not shown) that sandwich the brake disk.
  • the seat 5 is disposed above the side cover 23, and a tail lamp 47 and a rear fender 48 are provided at the rear of the side cover 23.
  • a fuel tank (not shown) is disposed below the seat 5, and an engine 6 is provided further below the fuel tank.
  • an injector (fuel injection device) 7 that controls fuel supply is attached to the left front portion of the engine 6. Fuel is sent from the fuel tank to the injector 7 through the fuel hose 71.
  • a shroud 101 is attached as a wind guide member that covers a part of the engine 6.
  • An opening 1O1a is provided on the right side surface of the shroud 101, and a fan 102 as a blower member is disposed inside the shroud 101 corresponding to the opening 1O1a (see FIG. 3).
  • the fan 102 is connected to a crankshaft (not shown) so as to be rotated by the power of the engine 6 and takes air into a space covered by the shroud 101.
  • the engine 6 is forcibly cooled by the shroud 101 and the fan 102 even during idling.
  • the engine 6 and transmission are integrated with a unit swing 8 that can swing up and down.
  • a rear cushion unit 81 is attached between the unit swing 8 and the frame 11.
  • the rear wheel 4 is rotatably supported at the rear part of the unit swing 8.
  • a mission cover 41 is disposed on the left side of the rear wheel 4.
  • the power of the engine 6 is transmitted to the rear wheel 4 via a pulley and a belt (both not shown) stored in the mission cover 41.
  • a stand 42 that supports the vehicle body at the time of parking is provided in front of the mission cover 41 (lower left of the step board 22) (see FIG. 1).
  • An air cleaner box 43 is disposed above the mission cover 41.
  • the air taken into the air cleaner box 43 is sent to the engine 6 through the intake hose 44, the throttle body 45, and the intake manifold 46.
  • the combustion chamber of the engine 6 is supplied and mixed with air from the intake manifold 46 and fuel from the injector 7.
  • the gas after combustion is discharged as exhaust gas from a muffler 61 provided on the right rear side of the engine 6.
  • FIG. 5 is a cross-sectional view of the engine 6 cut along a plane perpendicular to the vehicle width direction.
  • the engine 6 includes a substantially cylindrical cylinder 112 in front of the crankcase 111, and a cylinder head 113 and a cylinder head cover 114 are attached to the front of the cylinder 112.
  • the cylinder 112 is provided with a plurality of heat radiation fins 112b.
  • a crankshaft (not shown) is accommodated in the crank chamber 111a in the crankcase 111 so that the rotation shaft is parallel to the vehicle width direction.
  • a cylindrical space 112a in the cylinder 112 accommodates a piston (not shown) that can reciprocate in the cylinder axis direction (front-rear direction).
  • the crankshaft and the piston are connected via a connecting rod (not shown) so that the reciprocating motion of the piston is converted into the rotational motion of the crankshaft.
  • the cylinder head 113 is formed with an intake port 113a for sending a mixture of air and fuel into the combustion chamber and an exhaust port 113b for discharging the gas after combustion outside the combustion chamber.
  • An intake manifold 46 and an injector 7 are connected to the intake port 113a, and air and fuel are supplied.
  • the cylinder head 113 is provided with an intake valve 113c for opening and closing the intake port 113a and an exhaust valve 113d for opening and closing the exhaust port 113b.
  • An ignition plug (not shown) is provided adjacent to the intake port 113a and the exhaust port 113b, and the air-fuel mixture in the combustion chamber can be ignited by electric discharge.
  • the intake and exhaust of the engine 6 is performed by OHC (Overhead Camshaft) that opens and closes the intake valve 113c and the exhaust valve 113d by a camshaft (not shown).
  • the camshaft includes a cam (not shown) having a shape corresponding to the opening / closing timing of the intake valve 113c or the exhaust valve 113d.
  • One end of the camshaft is connected to the crankshaft via a power transmission mechanism (not shown) such as a sprocket or a cam chain.
  • the intake valve 113c is opened, and air and fuel are sent into the combustion chamber through the intake manifold 46 and the injector 7 (intake stroke). Thereafter, the intake valve 113c is closed, and the air-fuel mixture is compressed by moving the piston toward the top dead center (compression stroke). When the piston reaches top dead center, the compressed air-fuel mixture ignited by the spark plug burns (combustion stroke). When the pressure in the combustion chamber increases due to the combustion of the air-fuel mixture, the piston moves toward the bottom dead center.
  • the valve operating apparatus including the intake valve 113c and the exhaust valve 113d provided in the cylinder head 113 enables such an operation.
  • the engine 6 converts the reciprocating motion of the piston into the rotational motion of the crankshaft by repeating the intake stroke, the compression stroke, the combustion stroke, and the exhaust stroke as described above. For this reason, the cylinder 112 and the cylinder head 113 are heated with the operation of the engine 6. In the engine 6 of the present embodiment, the cylinder 112 and the cylinder head 113 are cooled and kept at an appropriate temperature by the cooling structure including the shroud 101 and the fan 102.
  • the shroud 101 includes a right half 101R that covers the right side of the engine 6 and a left half 101L that covers the left front side of the engine 6.
  • the right half 101R extends to the left from the right wall WR covering the right front side of the engine 6, the upper right wall WRU extending leftward (inward in the vehicle width direction) from the front upper end of the right wall WR, and the front lower end of the right wall WR.
  • a right lower wall WRD and a right front wall WRF extending leftward from the front end of the right wall WR are provided.
  • the right wall WR is formed so as to cover the right side surface of the crankcase 111, the cylinder 112, and the cylinder head 113.
  • the upper right wall WRU is formed to cover the upper right side of the cylinder 112 and the cylinder head 113
  • the lower right wall WRD is formed to cover the lower right side of the cylinder 112 and the cylinder head 113.
  • the left half 101L includes a left wall WL covering the left front side of the engine 6, a left upper wall WLU extending rightward (inward in the vehicle width direction) from the upper end of the left wall WL, and a lower left wall extending rightward from the lower end of the left wall WL. WL.
  • the left wall WL is formed so as to cover the left side surfaces of the cylinder 112 and the cylinder head 113.
  • the upper left wall WLU is formed to cover the upper left side of the cylinder 112 and the cylinder head 113, and the lower left wall WLD is formed to cover the lower left side of the cylinder 112 and the cylinder head 113.
  • the right wall WR, the upper right wall WRU, the lower right wall WRD, the left wall WL, the upper left wall WLU, and the lower left wall WLD of the left half 101L are all a crankcase 111, a cylinder 112, and a cylinder head 113. It is arranged in the position away from. That is, in a state where the shroud 101 is attached to the engine 6, a space through which air flows is formed between the crankcase 111, the cylinder 112, the cylinder head 113, and the shroud 101.
  • a cylindrical portion C protruding rightward (outward in the vehicle width direction) is provided at the rear portion of the right wall WR, and an opening 1O1a serving as an intake port is provided at the right end of the cylindrical portion C. Is formed.
  • the cylindrical portion C and the opening 1O1a are provided at positions corresponding to the fan 102. That is, with the shroud 101 attached to the engine 6, the fan 102 is disposed in the space on the left side of the cylindrical portion C (in the vehicle width direction).
  • a shielding portion that branches the cooling flow path is provided in the shroud 101, and the air flow path for cooling the cylinder 112 and the cylinder head 113 and the injector 7 are cooled. Separate the air flow path.
  • FIG. 8 is a perspective view showing the configuration of the shielding part.
  • the shielding portion 103 has a curved shape along the inner wall surface of the right half portion 101 ⁇ / b> R of the shroud 101.
  • the shielding portion 103 includes an upstream portion 103a disposed along the right wall WR and the upper right wall WRU of the shroud 101, a midstream portion 103b disposed along the right front wall WRF and the upper right wall WRU, And a downstream portion 103 c that forms a flow of air toward the injector 7.
  • a branch channel that branches the cooling channel is formed.
  • an opening 1O2a for taking in air from the fan 102 into the branch flow path is formed by the upstream part 103a, the right wall WR, and the upper right wall WRU. Further, the air flowing in from the opening 1O2a is guided to the left front by the midstream portion 103b, the right front wall WRF, and the upper right wall WRU.
  • the branch flow path is formed at a position away from the cylinder 112 and the cylinder head 113 along the inner wall surface of the shroud 101, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path is prevented. It is suppressed.
  • the upstream portion 103a is positioned along the air flow from the fan 102, and the branch flow path is bent only in the boundary region between the upstream portion 103a and the midstream portion 103b. For this reason, air can flow smoothly in the branch flow path, and high cooling efficiency can be obtained.
  • a rectifying portion 103d that regulates the air flow is disposed in a region in contact with the right front wall WRF. The flow of air toward the injector 7 is adjusted by the rectifying unit 103d, and the cooling efficiency of the injector 7 is enhanced.
  • the shield 103 may be formed of a material different from that of the shroud 101. For example, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path can be further suppressed by forming the shielding portion 103 using a material having high heat insulating properties. The same effect can be obtained also when a heat insulating member is attached to the shielding part 103.
  • FIG. 9 is a schematic diagram showing an air flow in the cooling structure according to the present embodiment.
  • the air taken into the shroud 101 from the opening 1O1a is sent forward by a fan 102 (not shown in FIG. 9).
  • a part of the air is supplied to the cylinder 112 and the cylinder head 113 through the cooling flow path P1.
  • Another part of the air flows into the opening 1O2a and is blown to the injector 7 through the branch flow path P2.
  • the cylinder 112 and the cylinder head 113 are cooled by the air supplied through the cooling flow path P1, and the injector 7 is cooled by the air blown through the branch flow path P2.
  • the cooling efficiency of the injector 7 can be increased by blowing air to the injector 7 through the branch flow path P2 formed exclusively for cooling the injector 7. Since this branch channel P2 is formed so as to sandwich the cooling channel P1 between the cylinder 112 and the cylinder head 113, the cooling channel P1 is not blocked by the branch channel P2. Therefore, the cooling efficiency of the cylinder 112 and the cylinder head 113 is also maintained high.
  • the shroud (wind guide member) 101 has the shielding portion 103 that forms the branch flow path P ⁇ b> 2 that guides air to the injector (fuel injection device) 7. Therefore, the injector 7 can be cooled with air different from the air that cools the cylinder 112 and the cylinder head 113. Further, since the branch flow path P2 is formed at a position away from the cylinder 112 and the cylinder head 113, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path P2 is suppressed, and the cooling efficiency of the injector 7 is reduced. Can be increased. Therefore, an engine cooling structure capable of appropriately cooling components such as the injector 7 affected by the heat of the cylinder 112 and the cylinder head 113 is realized.
  • the shielding part 103 branched the cooling flow path P1 in the position before the air from the fan (blower member) 102 reached the cylinder 112 and the cylinder head 113, it branches by the heat of the cylinder 112 and the cylinder 113.
  • the temperature rise of the air flowing through the flow path P2 can be prevented. Therefore, the cooling efficiency of components such as the injector 7 can be increased.
  • the branch flow path P2 is formed along the inner wall surface of the shroud 101 so as to sandwich the cooling flow path P1 between the cylinder 112 and the cylinder head 113, the branch flow path P2 extends from the cylinder 112 and the cylinder head 113. The propagation of heat to P2 can be further suppressed. Further, since the cooling flow path P1 is not blocked by the branch flow path P2, the cooling efficiency of the cylinder 112 and the cylinder head 113 can be maintained high.
  • the shielding part 103 is comprised with a member different from the shroud 101, since the freedom degree of a shape increases compared with the case where the shroud 101 and the shielding part 103 are shape
  • this invention is not limited to the said embodiment, It can be implemented in various changes.
  • the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited.
  • various modifications can be made without departing from the scope of the object of the present invention.
  • the configuration in which the injector is cooled by the air flowing through the branch flow path is exemplified, but the engine cooling structure according to the present invention is not limited thereto.
  • the carburetor may be cooled with air flowing through a branch flow path.
  • the cooling target may be at least a component different from the cylinder and the cylinder head.
  • the branch flow path may be formed outside the shroud.
  • the shielding part may be configured to be detachable so that the area of the opening of the branch channel can be changed by replacing the shielding part. In this case, the flow rate of the air that cools the injector can be arbitrarily adjusted.
  • the shroud and the shielding portion are separate members, but the shroud and the shielding portion may be a single member configured integrally. When the shroud and the shielding portion are integrated, the manufacturing cost of the cooling structure can be suppressed.
  • the engine cooling structure according to the present invention is useful, for example, as an engine cooling structure in a motorcycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A cooling structure for an engine is provided to enable a component such as an injector to be appropriately cooled, the component being affected by the heat of the cylinder of the engine and the heat of the cylinder head thereof. The cooling structure for an engine comprises: an air guide member which covers portions of both the cylinder and the cylinder head of the engine and which forms a cooling channel for guiding cooling air to both the cylinder and the cylinder head; and an air delivery member for delivering air to the cooling channel. The cooling structure for an engine is characterized by being configured such that the air guide member has a body section for forming the cooling channel and also has a cover section for forming a branch channel at a position separated from both the cylinder and the cylinder head, the branch channel being branched from the cooling channel and guiding air to a component which is separate from both the cylinder and the cylinder head.

Description

エンジンの冷却構造Engine cooling structure
 本発明は、エンジンの冷却構造に関し、特に、導風部材を備えるエンジンの冷却構造に関する。 The present invention relates to an engine cooling structure, and more particularly to an engine cooling structure provided with an air guide member.
 従来より、シリンダ及びシリンダヘッドを覆うシュラウドと、送風用のファンとを備えるエンジンの冷却構造を採用した自動二輪車が知られている(例えば、特許文献1参照)。この種の自動二輪車では、シュラウドによって形成される流路を通じて送風用のファンで空気を導き、熱せられたシリンダ及びシリンダヘッドを冷却する。エンジンの動力でファンを回し、シリンダ及びシリンダヘッドを強制的に冷却するので、走行風による自然冷却と比較して高い冷却効率を得ることができる。 2. Description of the Related Art Conventionally, a motorcycle that employs an engine cooling structure including a shroud that covers a cylinder and a cylinder head and a fan for blowing air is known (for example, see Patent Document 1). In this type of motorcycle, air is guided by a fan for blowing air through a flow path formed by a shroud to cool a heated cylinder and cylinder head. Since the fan is rotated by the power of the engine and the cylinder and the cylinder head are forcibly cooled, higher cooling efficiency can be obtained compared to natural cooling by running wind.
 このような自動二輪車において、エンジンのシリンダヘッドの近傍には、燃焼室への燃料の供給を制御するインジェクタが配置されている。シリンダ及びシリンダヘッドからの熱でインジェクタが高温になると、インジェクタ内の燃料は気化し、エンジン回転数の不安定化や出力低下などの問題が発生する。そこで、特許文献1に記載される冷却構造では、シリンダ及びシリンダヘッドを通過した空気をインジェクタへと導く流路を形成し、インジェクタが冷却されるようにしている。 In such a motorcycle, an injector for controlling the supply of fuel to the combustion chamber is disposed in the vicinity of the cylinder head of the engine. When the injector becomes hot due to heat from the cylinder and the cylinder head, the fuel in the injector is vaporized, causing problems such as unstable engine speed and reduced output. Therefore, in the cooling structure described in Patent Document 1, a flow path that guides the air that has passed through the cylinder and the cylinder head to the injector is formed so that the injector is cooled.
特開2010-223211号公報JP 2010-223211
 しかしながら、特許文献1に記載のエンジンの冷却構造では、シリンダ及びシリンダヘッドを通過して温度の上昇した空気がインジェクタに導かれるので、インジェクタの冷却効率は低下してしまうことがある。この場合、インジェクタ内の燃料の気化を防ぐのは困難になる。 However, in the engine cooling structure described in Patent Document 1, since the air whose temperature has passed through the cylinder and the cylinder head is guided to the injector, the cooling efficiency of the injector may be reduced. In this case, it is difficult to prevent the fuel in the injector from being vaporized.
 本発明はかかる点に鑑みてなされたものであり、エンジンのシリンダ及びシリンダヘッドの熱の影響を受けるインジェクタなどの部品を適切に冷却可能なエンジンの冷却構造を提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide an engine cooling structure capable of appropriately cooling components such as an injector and the like that are affected by heat of an engine cylinder and a cylinder head.
 上記課題を解決するために提供される本発明のエンジンの冷却構造は、エンジンのシリンダ及びシリンダヘッドの一部を覆い、冷却用の空気を前記シリンダ及び前記シリンダヘッドへと導く冷却流路を形成する導風部材と、前記空気を前記冷却流路へと送る送風部材と、を備えるエンジンの冷却構造であって、前記導風部材は、前記冷却通路を形成する本体部と、前記シリンダ及び前記シリンダヘッドから離れた位置に、前記空気を前記シリンダ及び前記シリンダヘッドとは別の部品へと導く分岐流路を、前記冷却流路を分岐することで形成する遮蔽部とを有することを特徴とする。 An engine cooling structure of the present invention provided to solve the above-described problems covers a part of an engine cylinder and a cylinder head, and forms a cooling flow path that guides cooling air to the cylinder and the cylinder head. A cooling structure for an engine comprising: an air guide member that performs air blowing; and a blower member that sends the air to the cooling flow path, wherein the air guide member includes a body portion that forms the cooling passage, the cylinder, and the cylinder A branching channel for guiding the air to a part different from the cylinder and the cylinder head at a position away from the cylinder head; and a shielding part formed by branching the cooling channel. To do.
 この構成によれば、導風部材は、本体部とは別の部品へと空気を導く分岐流路を形成する遮蔽部を有するので、エンジンのシリンダ及びシリンダヘッドを冷却する空気とは別の空気で部品を冷却できる。また、分岐流路は、シリンダ及びシリンダヘッドから離れた位置に形成されるので、シリンダ及びシリンダヘッドから分岐流路への熱の伝播を抑制して、部品の冷却効率を高めることができる。よって、シリンダ及びシリンダヘッドの熱の影響を受ける部品を適切に冷却可能なエンジンの冷却構造が実現される。 According to this configuration, the air guide member has the shielding part that forms the branch flow path that guides the air to a component different from the main body part, and therefore, air different from the air that cools the cylinder and the cylinder head of the engine. Can cool parts. Further, since the branch flow path is formed at a position away from the cylinder and the cylinder head, the propagation of heat from the cylinder and the cylinder head to the branch flow path can be suppressed, and the cooling efficiency of the parts can be increased. Therefore, an engine cooling structure capable of appropriately cooling components affected by the heat of the cylinder and the cylinder head is realized.
 上記特徴を有する本発明のエンジンの冷却構造において、前記遮蔽部は、前記送風部材からの前記空気が前記シリンダ及び前記シリンダヘッドに至る前の位置で前記冷却流路を分岐することが好ましい。この構成によれば、遮蔽部は、送風部材からの空気がシリンダ及びシリンダヘッドに至る前の位置で冷却流路を分岐しているので、シリンダ及びシリンダヘッドの熱による分岐流路を流れる空気の温度上昇を防止できる。よって、部品の冷却効率を高めることができる。 In the engine cooling structure of the present invention having the above characteristics, it is preferable that the shielding portion branches the cooling flow path at a position before the air from the blowing member reaches the cylinder and the cylinder head. According to this structure, since the shielding part branches the cooling flow path at a position before the air from the air blowing member reaches the cylinder and the cylinder head, the air flowing through the branch flow path due to the heat of the cylinder and the cylinder head. Temperature rise can be prevented. Therefore, the cooling efficiency of components can be improved.
 また、本発明のエンジンの冷却構造において、前記分岐流路は、前記シリンダ及び前記シリンダヘッドとの間に前記冷却流路を挟むように前記導風部材の内壁面に沿って形成されることが好ましい。この構成によれば、分岐流路は、シリンダ及びシリンダヘッドとの間に冷却流路を挟むように導風部材の内壁面に沿って形成されているので、シリンダ及びシリンダヘッドから分岐流路への熱の伝播をさらに抑制できる。また、冷却流路が分岐流路で遮てられないので、シリンダ及びシリンダヘッドの冷却効率を高く維持できる。 In the engine cooling structure of the present invention, the branch flow path may be formed along the inner wall surface of the air guide member so as to sandwich the cooling flow path between the cylinder and the cylinder head. preferable. According to this configuration, the branch flow path is formed along the inner wall surface of the air guide member so as to sandwich the cooling flow path between the cylinder and the cylinder head. Can further suppress the propagation of heat. Further, since the cooling channel is not blocked by the branch channel, the cooling efficiency of the cylinder and the cylinder head can be maintained high.
 また、本発明のエンジンの冷却構造において、前記遮蔽部は、前記導風部材の本体部とは別体であり、異なる材質で形成される部材で構成されることが好ましい。この構成によれば、導風部材及び遮蔽部を一体に成形する場合と比較して形状の自由度が増すので、冷却流路と分岐流路とを確実に分離して、シリンダ及びシリンダヘッドから分岐流路への熱の伝播を抑制できる。また、導風部材の材質と遮蔽部の材質とを変えることができるので、遮蔽部の断熱効果を高め、シリンダ及びシリンダヘッドから分岐流路への熱の伝播をさらに抑制することができる。 Also, in the engine cooling structure of the present invention, it is preferable that the shielding portion is separate from the main body portion of the air guide member and is formed of a member formed of a different material. According to this configuration, since the degree of freedom of the shape is increased as compared with the case where the air guide member and the shielding portion are integrally formed, the cooling flow path and the branch flow path are reliably separated from the cylinder and the cylinder head. The propagation of heat to the branch channel can be suppressed. Further, since the material of the air guide member and the material of the shielding part can be changed, the heat insulating effect of the shielding part can be enhanced, and the propagation of heat from the cylinder and the cylinder head to the branch channel can be further suppressed.
 また、本発明のエンジンの冷却構造において、前記別の部品は、燃料噴射装置であっても良い。この構成によれば、分岐流路を通じて供給される空気により燃料噴射装置を適切に冷却できるので、燃料噴射装置内での燃料の気化を防止して燃料を安定供給できる。 Further, in the engine cooling structure of the present invention, the another component may be a fuel injection device. According to this configuration, since the fuel injection device can be appropriately cooled by the air supplied through the branch flow path, the fuel can be stably supplied by preventing the fuel from evaporating in the fuel injection device.
 上述のように、本発明によれば、シリンダ及びシリンダヘッドの熱の影響を受けるインジェクタなどの部品を適切に冷却可能なエンジンの冷却構造を提供できる。 As described above, according to the present invention, it is possible to provide an engine cooling structure capable of appropriately cooling components such as an injector affected by the heat of the cylinder and the cylinder head.
本発明実施例が適用可能な自動二輪車の外観を示す斜視図である。1 is a perspective view showing an appearance of a motorcycle to which an embodiment of the present invention can be applied. 図1に示される自動二輪車の後輪周辺の構造を示す左側面図である。Fig. 2 is a left side view showing a structure around a rear wheel of the motorcycle shown in Fig. 1. 図1に示される自動二輪車の後輪周辺の構造を示す右側面図である。Fig. 2 is a right side view showing a structure around a rear wheel of the motorcycle shown in Fig. 1. 図1に示される自動二輪車のエンジン及びその周辺の構造を示す斜視図である。FIG. 2 is a perspective view showing a structure of the engine of the motorcycle shown in FIG. 1 and its surroundings. 図4に示されるエンジンを車幅方向に垂直な平面で切断した断面図である。FIG. 5 is a cross-sectional view of the engine shown in FIG. 4 cut along a plane perpendicular to the vehicle width direction. 図4に示されるエンジンの冷却構造を説明するための斜視図である。It is a perspective view for demonstrating the cooling structure of the engine shown by FIG. 図4に示されるエンジンの冷却構造におけるシュラウドの形状を示す斜視図である。It is a perspective view which shows the shape of the shroud in the cooling structure of the engine shown by FIG. エンジンの冷却構造における遮蔽部の斜視図である。It is a perspective view of the shielding part in an engine cooling structure. 図7に示されるシュラウド内の空気の流れを示す模式図である。It is a schematic diagram which shows the flow of the air in a shroud shown by FIG.
 以下、本発明の実施形態について添付図面を参照して詳細に説明する。なお、以下においては、本発明に係るエンジンの冷却構造をスクータータイプの自動二輪車に適用した例について説明するが、適用対象はこれに限定されることなく変更可能である。例えば、本発明に係るエンジンの冷却構造を、他のタイプの自動二輪車、四輪車などに適用しても良い。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following, an example in which the engine cooling structure according to the present invention is applied to a scooter type motorcycle will be described, but the application target is not limited to this and can be changed. For example, the engine cooling structure according to the present invention may be applied to other types of motorcycles, four-wheeled vehicles, and the like.
 尚、以下の記載において、上下、左右、前後、等方向を示す表現は図示の状態または自動二輪車設置状態において使用される。例えば、以下の説明で用いる各図において、車体前方を矢印Fで示す。また、以下の各図では、説明の便宜上、一部の構成を省略することがある。 In addition, in the following description, the expressions indicating up and down, left and right, front and rear, etc. are used in the illustrated state or in the state where the motorcycle is installed. For example, the front of the vehicle body is indicated by an arrow F in each figure used in the following description. In the following drawings, some components may be omitted for convenience of explanation.
 図1から図3に示すように、スクータータイプの自動二輪車1は、鋼製又はアルミ合金製のアンダーボーン型のフレーム11に、車体外装としての各種カバーを装着して構成されている。自動二輪車1の前部には、運転者の脚部を保護するレッグシールド21が設けられ、レッグシールド21の後方には、脚部を載せるステップボード22が配置されている。また、ステップボード22の後方には、車体側面を覆うサイドカバー23が設けられている。 As shown in FIG. 1 to FIG. 3, the scooter type motorcycle 1 is configured by attaching various covers as a vehicle body exterior to an underbone frame 11 made of steel or aluminum alloy. A leg shield 21 that protects the driver's legs is provided at the front of the motorcycle 1, and a step board 22 on which the legs are placed is disposed behind the leg shield 21. A side cover 23 that covers the side surface of the vehicle body is provided behind the step board 22.
 車体前部には、ステアリングシャフト(不図示)を介してフロントフォーク31が回転可能に支持されている。フロントフォーク31の上方には、前輪3を操舵するためのハンドルバー32が設けられている。ハンドルバー32にはブレーキレバー33が設けられており、ハンドルバー32の前方にはヘッドランプ34が配置されている。フロントフォーク31の下部には前輪3が回転可能に支持されると共に、前輪3の上部を覆うフロントフェンダ35が設置されている。前輪3には、ブレーキディスクとブレーキディスクを挟持するキャリパー(共に図示せず)とが設けられている。 The front fork 31 is rotatably supported at the front of the vehicle body via a steering shaft (not shown). A handlebar 32 for steering the front wheel 3 is provided above the front fork 31. A brake lever 33 is provided on the handle bar 32, and a headlamp 34 is disposed in front of the handle bar 32. A front fender 35 that covers the upper part of the front wheel 3 is installed at the lower part of the front fork 31 while the front wheel 3 is rotatably supported. The front wheel 3 is provided with a brake disk and a caliper (both not shown) that sandwich the brake disk.
 サイドカバー23の上方には、シート5が配置されており、サイドカバー23の後部には、テールランプ47及びリヤフェンダ48が設けられている。サイドカバー23の内側には、シート5の下方に燃料タンク(不図示)が配置されており、燃料タンクのさらに下方にはエンジン6が設けられている。また、図4に示すように、エンジン6の左前部には、燃料の供給を制御するインジェクタ(燃料噴射装置)7が取り付けられている。このインジェクタ7には、燃料ホース71を通じて燃料タンクから燃料が送られる。 The seat 5 is disposed above the side cover 23, and a tail lamp 47 and a rear fender 48 are provided at the rear of the side cover 23. Inside the side cover 23, a fuel tank (not shown) is disposed below the seat 5, and an engine 6 is provided further below the fuel tank. As shown in FIG. 4, an injector (fuel injection device) 7 that controls fuel supply is attached to the left front portion of the engine 6. Fuel is sent from the fuel tank to the injector 7 through the fuel hose 71.
 エンジン6の右側には、エンジン6の一部を覆う導風部材としてのシュラウド101が取り付けられている。シュラウド101の右側面には開口部1O1aが設けられており、シュラウド101の内部には、開口部1O1aに対応して送風部材としてのファン102が配置されている(図3参照)。ファン102は、エンジン6の動力で回転されるようにクランクシャフト(不図示)と連結されており、シュラウド101によって覆われる空間に空気を取り込む。このシュラウド101及びファン102により、エンジン6はアイドリング時においても強制冷却される。 On the right side of the engine 6, a shroud 101 is attached as a wind guide member that covers a part of the engine 6. An opening 1O1a is provided on the right side surface of the shroud 101, and a fan 102 as a blower member is disposed inside the shroud 101 corresponding to the opening 1O1a (see FIG. 3). The fan 102 is connected to a crankshaft (not shown) so as to be rotated by the power of the engine 6 and takes air into a space covered by the shroud 101. The engine 6 is forcibly cooled by the shroud 101 and the fan 102 even during idling.
 エンジン6やトランスミッション(不図示)などは、上下に揺動可能なユニットスイング8と一体化されている。ユニットスイング8とフレーム11との間には、リアクッションユニット81が取り付けられている。ユニットスイング8の後部には、後輪4が回転可能に支持されている。後輪4の左側には、ミッションカバー41が配置されている。エンジン6の動力は、ミッションカバー41に格納されるプーリー及びベルト(共に不図示)を介して後輪4に伝達される。また、ミッションカバー41の前方(ステップボード22の左下)には、駐車時に車体を支持するスタンド42が設けられている(図1参照)。 The engine 6 and transmission (not shown) are integrated with a unit swing 8 that can swing up and down. A rear cushion unit 81 is attached between the unit swing 8 and the frame 11. The rear wheel 4 is rotatably supported at the rear part of the unit swing 8. A mission cover 41 is disposed on the left side of the rear wheel 4. The power of the engine 6 is transmitted to the rear wheel 4 via a pulley and a belt (both not shown) stored in the mission cover 41. In addition, a stand 42 that supports the vehicle body at the time of parking is provided in front of the mission cover 41 (lower left of the step board 22) (see FIG. 1).
 ミッションカバー41の上方には、エアクリーナボックス43が配置されている。エアクリーナボックス43に取り込まれた空気は、インテークホース44、スロットルボディ45、インテークマニホールド46を通じてエンジン6に送られる。エンジン6の燃焼室には、インテークマニホールド46からの空気とインジェクタ7からの燃料とが供給され混合される。燃焼後のガスは、エンジン6の右後方に設けられたマフラ61から排気ガスとして排出される。 An air cleaner box 43 is disposed above the mission cover 41. The air taken into the air cleaner box 43 is sent to the engine 6 through the intake hose 44, the throttle body 45, and the intake manifold 46. The combustion chamber of the engine 6 is supplied and mixed with air from the intake manifold 46 and fuel from the injector 7. The gas after combustion is discharged as exhaust gas from a muffler 61 provided on the right rear side of the engine 6.
 次に、本実施形態に係るエンジン6及びその冷却構造を説明する。図5は、エンジン6を車幅方向に垂直な平面で切断した断面図である。図4及び図5に示すように、エンジン6は、クランクケース111の前方に略筒状のシリンダ112を備え、シリンダ112の前方にはシリンダヘッド113及びシリンダヘッドカバー114が取り付けられている。また、シリンダ112には、複数の放熱フィン112bが設けられている。 Next, the engine 6 and its cooling structure according to this embodiment will be described. FIG. 5 is a cross-sectional view of the engine 6 cut along a plane perpendicular to the vehicle width direction. As shown in FIGS. 4 and 5, the engine 6 includes a substantially cylindrical cylinder 112 in front of the crankcase 111, and a cylinder head 113 and a cylinder head cover 114 are attached to the front of the cylinder 112. The cylinder 112 is provided with a plurality of heat radiation fins 112b.
 クランクケース111内のクランク室111aには、回転軸が車幅方向に対して平行となるようにクランクシャフト(不図示)が収容されている。また、シリンダ112内の筒状空間112aには、シリンダ軸線方向(前後方向)に往復可能なピストン(不図示)が収容されている。クランクシャフトとピストンとは、ピストンの往復運動がクランクシャフトの回転運動に変換されるようにコネクティングロッド(不図示)を介して連結されている。 A crankshaft (not shown) is accommodated in the crank chamber 111a in the crankcase 111 so that the rotation shaft is parallel to the vehicle width direction. A cylindrical space 112a in the cylinder 112 accommodates a piston (not shown) that can reciprocate in the cylinder axis direction (front-rear direction). The crankshaft and the piston are connected via a connecting rod (not shown) so that the reciprocating motion of the piston is converted into the rotational motion of the crankshaft.
 シリンダヘッド113には、燃焼室に空気と燃料との混合気を送り込む吸気ポート113aと、燃焼室外に燃焼後のガスを排出する排気ポート113bとが形成されている。吸気ポート113aには、インテークマニホールド46及びインジェクタ7が接続されており、空気及び燃料が供給される。また、シリンダヘッド113には、吸気ポート113aを開閉する吸気バルブ113cと、排気ポート113bを開閉する排気バルブ113dとが設けられている。吸気ポート113a及び排気ポート113bに隣接するように点火プラグ(不図示)が設けられており、燃焼室内の混合気を電気放電により着火可能になっている。 The cylinder head 113 is formed with an intake port 113a for sending a mixture of air and fuel into the combustion chamber and an exhaust port 113b for discharging the gas after combustion outside the combustion chamber. An intake manifold 46 and an injector 7 are connected to the intake port 113a, and air and fuel are supplied. The cylinder head 113 is provided with an intake valve 113c for opening and closing the intake port 113a and an exhaust valve 113d for opening and closing the exhaust port 113b. An ignition plug (not shown) is provided adjacent to the intake port 113a and the exhaust port 113b, and the air-fuel mixture in the combustion chamber can be ignited by electric discharge.
 エンジン6の吸排気は、カムシャフト(不図示)によって吸気バルブ113c及び排気バルブ113dを開閉するOHC(Overhead Camshaft)で行われる。カムシャフトは、吸気バルブ113c又は排気バルブ113dの開閉タイミングに応じた形状のカム(不図示)を備えている。カムシャフトの一端側は、スプロケットやカムチェーンなどの動力伝達機構(いずれも不図示)を介してクランクシャフトに連結されている。これにより、クランクシャフトの回転力がカムシャフトに伝達され、クランクシャフトの回転に対応するように吸気バルブ113c及び排気バルブ113dが開閉される。 The intake and exhaust of the engine 6 is performed by OHC (Overhead Camshaft) that opens and closes the intake valve 113c and the exhaust valve 113d by a camshaft (not shown). The camshaft includes a cam (not shown) having a shape corresponding to the opening / closing timing of the intake valve 113c or the exhaust valve 113d. One end of the camshaft is connected to the crankshaft via a power transmission mechanism (not shown) such as a sprocket or a cam chain. Thereby, the rotational force of the crankshaft is transmitted to the camshaft, and the intake valve 113c and the exhaust valve 113d are opened and closed so as to correspond to the rotation of the crankshaft.
 上述のようなエンジン6において、ピストンが下死点に向かって移動する際に吸気バルブ113cが開き、インテークマニホールド46及びインジェクタ7を通じて燃焼室に空気及び燃料が送り込まれる(吸気行程)。その後、吸気バルブ113cが閉じ、ピストンが上死点に向かって移動することで混合気が圧縮される(圧縮行程)。ピストンが上死点に到達すると、点火プラグで点火されて圧縮された混合気が燃焼する(燃焼行程)。混合気の燃焼によって燃焼室内の圧力が増大するとピストンが下死点に向かって移動する。その後、ピストンが下死点に到達して慣性によって再度上死点に向かって移動し始めると、排気バルブ113dが開いて排気ポート113bから燃焼後のガスが排出される(排気行程)。シリンダヘッド113が備える吸気バルブ113c及び排気バルブ113dを含む動弁装置は、このような動作を可能にしている。 In the engine 6 as described above, when the piston moves toward the bottom dead center, the intake valve 113c is opened, and air and fuel are sent into the combustion chamber through the intake manifold 46 and the injector 7 (intake stroke). Thereafter, the intake valve 113c is closed, and the air-fuel mixture is compressed by moving the piston toward the top dead center (compression stroke). When the piston reaches top dead center, the compressed air-fuel mixture ignited by the spark plug burns (combustion stroke). When the pressure in the combustion chamber increases due to the combustion of the air-fuel mixture, the piston moves toward the bottom dead center. Thereafter, when the piston reaches the bottom dead center and begins to move toward the top dead center again due to inertia, the exhaust valve 113d is opened and the burned gas is discharged from the exhaust port 113b (exhaust stroke). The valve operating apparatus including the intake valve 113c and the exhaust valve 113d provided in the cylinder head 113 enables such an operation.
 エンジン6は、上述のように、吸気行程、圧縮行程、燃焼行程、及び排気行程を繰り返すことで、ピストンの往復運動をクランクシャフトの回転運動へと変換する。このため、シリンダ112及びシリンダヘッド113は、エンジン6の動作に伴い加熱される。本実施の形態のエンジン6においては、シュラウド101及びファン102を含む冷却構造によりシリンダ112及びシリンダヘッド113は冷却されて適温の状態に保たれる。 The engine 6 converts the reciprocating motion of the piston into the rotational motion of the crankshaft by repeating the intake stroke, the compression stroke, the combustion stroke, and the exhaust stroke as described above. For this reason, the cylinder 112 and the cylinder head 113 are heated with the operation of the engine 6. In the engine 6 of the present embodiment, the cylinder 112 and the cylinder head 113 are cooled and kept at an appropriate temperature by the cooling structure including the shroud 101 and the fan 102.
 以下、本実施形態に係るエンジンの冷却構造を図6、図7を参照して説明する。 Hereinafter, the cooling structure of the engine according to the present embodiment will be described with reference to FIGS.
 図6及び図7に示すように、シュラウド101は、エンジン6の右側を覆う右半部101Rと、エンジン6の左前側を覆う左半部101Lとを含む。 6 and 7, the shroud 101 includes a right half 101R that covers the right side of the engine 6 and a left half 101L that covers the left front side of the engine 6.
 右半部101Rは、エンジン6の右前側を覆う右壁WRと、右壁WRの前側上端から左向き(車幅方向内向き)に延びる右上壁WRUと、右壁WRの前側下端から左向きに延びる右下壁WRDと、右壁WRの前端から左向きに延びる右前壁WRFとを備える。右壁WRは、クランクケース111、シリンダ112、及びシリンダヘッド113の右側面を覆うように形成されている。また、右上壁WRUは、シリンダ112及びシリンダヘッド113の上面右側を覆うように形成されており、右下壁WRDは、シリンダ112及びシリンダヘッド113の下面右側を覆うように形成されている。 The right half 101R extends to the left from the right wall WR covering the right front side of the engine 6, the upper right wall WRU extending leftward (inward in the vehicle width direction) from the front upper end of the right wall WR, and the front lower end of the right wall WR. A right lower wall WRD and a right front wall WRF extending leftward from the front end of the right wall WR are provided. The right wall WR is formed so as to cover the right side surface of the crankcase 111, the cylinder 112, and the cylinder head 113. The upper right wall WRU is formed to cover the upper right side of the cylinder 112 and the cylinder head 113, and the lower right wall WRD is formed to cover the lower right side of the cylinder 112 and the cylinder head 113.
 左半部101Lは、エンジン6の左前側を覆う左壁WLと、左壁WLの上端から右向き(車幅方向内向き)に延びる左上壁WLUと、左壁WLの下端から右向きに延びる左下壁WLとを備える。左壁WLは、シリンダ112及びシリンダヘッド113の左側面を覆うように形成されている。左上壁WLUは、シリンダ112及びシリンダヘッド113の上面左側を覆うように形成されており、左下壁WLDは、シリンダ112及びシリンダヘッド113の下面左側を覆うように形成されている。 The left half 101L includes a left wall WL covering the left front side of the engine 6, a left upper wall WLU extending rightward (inward in the vehicle width direction) from the upper end of the left wall WL, and a lower left wall extending rightward from the lower end of the left wall WL. WL. The left wall WL is formed so as to cover the left side surfaces of the cylinder 112 and the cylinder head 113. The upper left wall WLU is formed to cover the upper left side of the cylinder 112 and the cylinder head 113, and the lower left wall WLD is formed to cover the lower left side of the cylinder 112 and the cylinder head 113.
 右半部101Rの右壁WR、右上壁WRU、右下壁WRD、左半部101Lの左壁WL、左上壁WLU、左下壁WLDは、いずれも、クランクケース111、シリンダ112、及びシリンダヘッド113から離れた位置に配置される。つまり、このシュラウド101がエンジン6に取り付けられた状態で、クランクケース111、シリンダ112、及びシリンダヘッド113と、シュラウド101との間には、空気の流れる空間が形成される。 The right wall WR, the upper right wall WRU, the lower right wall WRD, the left wall WL, the upper left wall WLU, and the lower left wall WLD of the left half 101L are all a crankcase 111, a cylinder 112, and a cylinder head 113. It is arranged in the position away from. That is, in a state where the shroud 101 is attached to the engine 6, a space through which air flows is formed between the crankcase 111, the cylinder 112, the cylinder head 113, and the shroud 101.
 右半部101Rにおいて、右壁WRの後部には、右向き(車幅方向外向き)に突出する円筒部Cが設けられており、円筒部Cの右端部には、吸気口となる開口部1O1aが形成されている。円筒部C及び開口部1O1aは、ファン102に対応する位置に設けられている。つまり、シュラウド101がエンジン6に取り付けられた状態で、円筒部Cの左側(車幅方向内側)の空間にはファン102が配置される。 In the right half 101R, a cylindrical portion C protruding rightward (outward in the vehicle width direction) is provided at the rear portion of the right wall WR, and an opening 1O1a serving as an intake port is provided at the right end of the cylindrical portion C. Is formed. The cylindrical portion C and the opening 1O1a are provided at positions corresponding to the fan 102. That is, with the shroud 101 attached to the engine 6, the fan 102 is disposed in the space on the left side of the cylindrical portion C (in the vehicle width direction).
 この冷却構造においてファン102が回転すると、開口部1O1aを通じてシュラウド101内に空気が取り込まれる。シュラウド101内に取り込まれた空気は、シュラウド101とエンジン6との間に形成される空間を流れる。ファン102の回転により、シュラウド101内には、エンジン6の右後方の空間から右前方の空間を経由して左前方の空間へと向かう空気の流れが形成され、シリンダ112、シリンダヘッド113、及びインジェクタ7は冷却される。このように、シュラウド101内には、シリンダ112、シリンダヘッド113、及びインジェクタ7を冷却するための冷却流路が形成されている。 When the fan 102 rotates in this cooling structure, air is taken into the shroud 101 through the opening 1O1a. The air taken into the shroud 101 flows through a space formed between the shroud 101 and the engine 6. The rotation of the fan 102 creates an air flow in the shroud 101 from the right rear space of the engine 6 to the left front space via the right front space, and the cylinder 112, the cylinder head 113, and The injector 7 is cooled. As described above, a cooling flow path for cooling the cylinder 112, the cylinder head 113, and the injector 7 is formed in the shroud 101.
 ところで、上記冷却流路により、シリンダ112及びシリンダヘッド113を通過して温度の上昇した空気がインジェクタ7に導かれると、インジェクタ7の冷却効率は大幅に低下してしまう。そこで、本実施形態に係る冷却構造では、シュラウド101内に冷却流路を分岐する遮蔽部を設け、シリンダ112及びシリンダヘッド113を冷却するための空気の流路と、インジェクタ7を冷却するための空気の流路とを分離する。 By the way, when the air whose temperature has risen through the cylinder 112 and the cylinder head 113 is guided to the injector 7 by the cooling flow path, the cooling efficiency of the injector 7 is greatly reduced. Therefore, in the cooling structure according to the present embodiment, a shielding portion that branches the cooling flow path is provided in the shroud 101, and the air flow path for cooling the cylinder 112 and the cylinder head 113 and the injector 7 are cooled. Separate the air flow path.
 図8は、上記遮蔽部の構成を示す斜視図である。図7及び図8に示すように、遮蔽部103は、シュラウド101の右半部101Rの内壁面に沿う湾曲形状を有している。具体的には、遮蔽部103は、シュラウド101の右壁WR及び右上壁WRUに沿って配置される上流部103aと、右前壁WRF及び右上壁WRUに沿って配置される中流部103bと、インジェクタ7へと向かう空気の流れを形成する下流部103cとを有している。この遮蔽部103がシュラウド101の内壁面に取り付けられることで、上述の冷却流路を分岐する分岐流路が形成される。 FIG. 8 is a perspective view showing the configuration of the shielding part. As shown in FIGS. 7 and 8, the shielding portion 103 has a curved shape along the inner wall surface of the right half portion 101 </ b> R of the shroud 101. Specifically, the shielding portion 103 includes an upstream portion 103a disposed along the right wall WR and the upper right wall WRU of the shroud 101, a midstream portion 103b disposed along the right front wall WRF and the upper right wall WRU, And a downstream portion 103 c that forms a flow of air toward the injector 7. By attaching the shielding portion 103 to the inner wall surface of the shroud 101, a branch channel that branches the cooling channel is formed.
 遮蔽部103の取り付けられたシュラウド101の内部には、上流部103a、右壁WR、及び右上壁WRUにより、ファン102からの空気を分岐流路に取り込む開口部1O2aが形成される。また、中流部103b、右前壁WRF、及び右上壁WRUにより、開口部1O2aから流入した空気は左前方へと導かれる。このように、分岐流路は、シュラウド101の内壁面に沿ってシリンダ112及びシリンダヘッド113から離れた位置に形成されているので、シリンダ112及びシリンダヘッド113から分岐流路への熱の伝播は抑制される。 Inside the shroud 101 to which the shielding part 103 is attached, an opening 1O2a for taking in air from the fan 102 into the branch flow path is formed by the upstream part 103a, the right wall WR, and the upper right wall WRU. Further, the air flowing in from the opening 1O2a is guided to the left front by the midstream portion 103b, the right front wall WRF, and the upper right wall WRU. Thus, since the branch flow path is formed at a position away from the cylinder 112 and the cylinder head 113 along the inner wall surface of the shroud 101, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path is prevented. It is suppressed.
 上記冷却構造において、上流部103aは、ファン102からの空気の流れに沿って位置し、分岐流路は、上流部103aと中流部103bとの境界領域のみにおいて屈曲されている。このため、空気は分岐流路内をスムーズに流れ、高い冷却効率を得ることが可能である。また、下流部103cにおいて、右前壁WRFと接する領域には、空気の流れを整える整流部103dが配置されている。この整流部103dにより、インジェクタ7へと向かう空気の流れは整えられ、インジェクタ7の冷却効率は高められている。 In the above cooling structure, the upstream portion 103a is positioned along the air flow from the fan 102, and the branch flow path is bent only in the boundary region between the upstream portion 103a and the midstream portion 103b. For this reason, air can flow smoothly in the branch flow path, and high cooling efficiency can be obtained. In the downstream portion 103c, a rectifying portion 103d that regulates the air flow is disposed in a region in contact with the right front wall WRF. The flow of air toward the injector 7 is adjusted by the rectifying unit 103d, and the cooling efficiency of the injector 7 is enhanced.
 また、開口部1O2aの面積は十分に大きくなっており、インジェクタ7の冷却に必要な空気の流量は確保されている。この開口部1O2aの面積を変更することで、インジェクタ7を冷却するための空気の流量を調整することが可能である。なお、遮蔽部103はシュラウド101とは異なる材料で形成されても良い。例えば、断熱性の高い材料を用いて遮蔽部103を形成することで、シリンダ112及びシリンダヘッド113から分岐流路への熱の伝播をさらに抑制できる。遮蔽部103に断熱部材を貼付する場合にも、同様の効果を得ることができる。 Also, the area of the opening 1O2a is sufficiently large, and the flow rate of air necessary for cooling the injector 7 is secured. By changing the area of the opening 1O2a, the flow rate of air for cooling the injector 7 can be adjusted. The shield 103 may be formed of a material different from that of the shroud 101. For example, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path can be further suppressed by forming the shielding portion 103 using a material having high heat insulating properties. The same effect can be obtained also when a heat insulating member is attached to the shielding part 103.
 図9は、本実施形態に係る冷却構造における空気の流れを示す模式図である。図9に示すように、開口部1O1aからシュラウド101内に取り込まれた空気は、ファン102(図9において不図示)によって前方へと送られる。一部の空気は、冷却流路P1を通じてシリンダ112及びシリンダヘッド113に供給される。また、別の一部の空気は、開口部1O2aに流入し、分岐流路P2を通じてインジェクタ7に吹き付けられる。冷却流路P1を通じて供給される空気でシリンダ112及びシリンダヘッド113は冷却され、分岐流路P2を通じて吹き付けられる空気でインジェクタ7は冷却される。 FIG. 9 is a schematic diagram showing an air flow in the cooling structure according to the present embodiment. As shown in FIG. 9, the air taken into the shroud 101 from the opening 1O1a is sent forward by a fan 102 (not shown in FIG. 9). A part of the air is supplied to the cylinder 112 and the cylinder head 113 through the cooling flow path P1. Another part of the air flows into the opening 1O2a and is blown to the injector 7 through the branch flow path P2. The cylinder 112 and the cylinder head 113 are cooled by the air supplied through the cooling flow path P1, and the injector 7 is cooled by the air blown through the branch flow path P2.
 このように、インジェクタ7の冷却専用に形成された分岐流路P2を通じてインジェクタ7に空気を吹き付けることで、インジェクタ7の冷却効率を高めることができる。この分岐流路P2は、シリンダ112及びシリンダヘッド113との間に冷却流路P1を挟むように形成されているので、冷却流路P1は分岐流路P2で遮られない。よって、シリンダ112及びシリンダヘッド113の冷却効率も高く維持される。 Thus, the cooling efficiency of the injector 7 can be increased by blowing air to the injector 7 through the branch flow path P2 formed exclusively for cooling the injector 7. Since this branch channel P2 is formed so as to sandwich the cooling channel P1 between the cylinder 112 and the cylinder head 113, the cooling channel P1 is not blocked by the branch channel P2. Therefore, the cooling efficiency of the cylinder 112 and the cylinder head 113 is also maintained high.
 以上のように、本発明に係るエンジンの冷却構造によれば、シュラウド(導風部材)101は、インジェクタ(燃料噴射装置)7へと空気を導く分岐流路P2を形成する遮蔽部103を有するので、シリンダ112及びシリンダヘッド113を冷却する空気とは別の空気でインジェクタ7を冷却できる。また、分岐流路P2は、シリンダ112及びシリンダヘッド113から離れた位置に形成されるので、シリンダ112及びシリンダヘッド113から分岐流路P2への熱の伝播を抑制して、インジェクタ7の冷却効率を高めることができる。よって、シリンダ112及びシリンダヘッド113の熱の影響を受けるインジェクタ7などの部品を適切に冷却可能なエンジンの冷却構造が実現される。 As described above, according to the engine cooling structure of the present invention, the shroud (wind guide member) 101 has the shielding portion 103 that forms the branch flow path P <b> 2 that guides air to the injector (fuel injection device) 7. Therefore, the injector 7 can be cooled with air different from the air that cools the cylinder 112 and the cylinder head 113. Further, since the branch flow path P2 is formed at a position away from the cylinder 112 and the cylinder head 113, the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path P2 is suppressed, and the cooling efficiency of the injector 7 is reduced. Can be increased. Therefore, an engine cooling structure capable of appropriately cooling components such as the injector 7 affected by the heat of the cylinder 112 and the cylinder head 113 is realized.
 また、遮蔽部103は、ファン(送風部材)102からの空気がシリンダ112及びシリンダヘッド113に至る前の位置で冷却流路P1を分岐するようにしたので、シリンダ112及びシリンダ113の熱による分岐流路P2を流れる空気の温度上昇を防止できる。よって、インジェクタ7などの部品の冷却効率を高めることができる。 Moreover, since the shielding part 103 branched the cooling flow path P1 in the position before the air from the fan (blower member) 102 reached the cylinder 112 and the cylinder head 113, it branches by the heat of the cylinder 112 and the cylinder 113. The temperature rise of the air flowing through the flow path P2 can be prevented. Therefore, the cooling efficiency of components such as the injector 7 can be increased.
 また、分岐流路P2は、シリンダ112及びシリンダヘッド113との間に冷却流路P1を挟むようにシュラウド101の内壁面に沿って形成されているので、シリンダ112及びシリンダヘッド113から分岐流路P2への熱の伝播をさらに抑制できる。また、冷却流路P1が分岐流路P2で遮られないので、シリンダ112及びシリンダヘッド113の冷却効率を高く維持できる。 Further, since the branch flow path P2 is formed along the inner wall surface of the shroud 101 so as to sandwich the cooling flow path P1 between the cylinder 112 and the cylinder head 113, the branch flow path P2 extends from the cylinder 112 and the cylinder head 113. The propagation of heat to P2 can be further suppressed. Further, since the cooling flow path P1 is not blocked by the branch flow path P2, the cooling efficiency of the cylinder 112 and the cylinder head 113 can be maintained high.
 また、遮蔽部103は、シュラウド101とは別の部材で構成されることで、シュラウド101及び遮蔽部103を一体に成形する場合と比較して形状の自由度が増すので、冷却流路P1と分岐流路P2とを確実に分離して、シリンダ112及びシリンダヘッド113から分岐流路P2への熱の伝播を抑制できる。また、シュラウド101の材質と遮蔽部103の材質とを変えることができるので、遮蔽部103の断熱効果を高め、シリンダ112及びシリンダヘッド113から分岐流路P2への熱の伝播をさらに抑制することができる。 Moreover, since the shielding part 103 is comprised with a member different from the shroud 101, since the freedom degree of a shape increases compared with the case where the shroud 101 and the shielding part 103 are shape | molded integrally, the cooling flow path P1 and It is possible to reliably separate the branch flow path P2 and suppress the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path P2. Moreover, since the material of the shroud 101 and the material of the shielding part 103 can be changed, the heat insulation effect of the shielding part 103 is enhanced, and the propagation of heat from the cylinder 112 and the cylinder head 113 to the branch flow path P2 is further suppressed. Can do.
 なお、本発明は上記実施形態に限定されず、種々変更して実施することが可能である。上記実施形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 In addition, this invention is not limited to the said embodiment, It can be implemented in various changes. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 例えば、上記実施形態では、分岐流路を流れる空気によりインジェクタを冷却する構成を例示しているが、本発明に係るエンジンの冷却構造はこれに限られない。燃料噴射装置としてキャブレタを使用するエンジンにおいては、分岐流路を流れる空気でキャブレタを冷却しても良い。冷却の対象は、少なくとも、シリンダ及びシリンダヘッドとは別の部品であれば良い。また、本実施形態では、分岐流路をシュラウドの内側に形成しているが、分岐流路はシュラウドの外側に形成されても良い。 For example, in the above embodiment, the configuration in which the injector is cooled by the air flowing through the branch flow path is exemplified, but the engine cooling structure according to the present invention is not limited thereto. In an engine using a carburetor as a fuel injection device, the carburetor may be cooled with air flowing through a branch flow path. The cooling target may be at least a component different from the cylinder and the cylinder head. Moreover, in this embodiment, although the branch flow path is formed inside the shroud, the branch flow path may be formed outside the shroud.
 また、遮蔽部を着脱自在に構成し、遮蔽部の交換により分岐流路の開口部の面積を変更できるようにしても良い。この場合、インジェクタを冷却する空気の流量を任意に調整可能である。また、本実施形態では、シュラウドと遮蔽部とを別の部材としているが、シュラウドと遮蔽部とは一体に構成された1個の部材としても良い。シュラウドと遮蔽部とを一体とする場合には、冷却構造の製造コストを抑制することができる。 Further, the shielding part may be configured to be detachable so that the area of the opening of the branch channel can be changed by replacing the shielding part. In this case, the flow rate of the air that cools the injector can be arbitrarily adjusted. In the present embodiment, the shroud and the shielding portion are separate members, but the shroud and the shielding portion may be a single member configured integrally. When the shroud and the shielding portion are integrated, the manufacturing cost of the cooling structure can be suppressed.
 本発明に係るエンジンの冷却構造は、例えば、自動二輪車におけるエンジンの冷却構造として有用である。 The engine cooling structure according to the present invention is useful, for example, as an engine cooling structure in a motorcycle.
 1 自動二輪車
 6 エンジン
 7 インジェクタ(燃料噴射装置)
 43 エアクリーナボックス
 44 インテークホース
 45 スロットルボディ
 46 インテークマニホールド
 61 マフラ
 71 燃料ホース
 101 シュラウド(導風部材)
 101R 右半部
 101L 左半部
 102 ファン(送風部材)
 103 遮蔽部
 103a 上流部
 103b 中流部
 103c 下流部
 103d 整流部
 111 クランクケース
 112 シリンダ
 113 シリンダヘッド
 114 シリンダヘッドカバー
 C 円筒部
 1O1a,1O2a 開口部
 P1 冷却流路
 P2 分岐流路
 WL 左壁
 WLD 左下壁
 WLU 左上壁
 WR 右壁
 WRD 右下壁
 WRU 右上壁
1 Motorcycle 6 Engine 7 Injector (fuel injection device)
43 Air cleaner box 44 Intake hose 45 Throttle body 46 Intake manifold 61 Muffler 71 Fuel hose 101 Shroud (air guide member)
101R Right half 101L Left half 102 Fan (Blowing member)
103 Shielding part 103a Upstream part 103b Midstream part 103c Downstream part 103d Rectifying part 111 Crankcase 112 Cylinder 113 Cylinder head 114 Cylinder head cover C Cylindrical part 1O1a, 1O2a Opening P1 Cooling flow path P2 Branch flow path WL Left wall WLD Left lower wall WLU Upper left Wall WR right wall WRD right lower wall WRU upper right wall

Claims (5)

  1.  エンジンのシリンダ及びシリンダヘッドの一部を覆い、エンジン冷却用の空気を前記シリンダ及び前記シリンダヘッドへと導く冷却流路を形成する導風部材と、前記空気を前記冷却流路へ送る送風部材と、を備えるエンジンの冷却構造であって、
     前記導風部材は、前記冷却通路を形成する本体部と、前記シリンダ及び前記シリンダヘッドから離れた位置に、前記空気を前記シリンダ及び前記シリンダヘッドとは別の部品へと導く分岐流路を、前記冷却流路を分岐することで形成する遮蔽部とを有することを特徴とするエンジンの冷却構造。
    An air guide member that covers a part of the cylinder and cylinder head of the engine and forms a cooling flow path that guides engine cooling air to the cylinder and the cylinder head; and a blower member that sends the air to the cooling flow path An engine cooling structure comprising:
    The air guide member has a main body part that forms the cooling passage, and a branch flow path that guides the air to a part other than the cylinder and the cylinder head at a position away from the cylinder and the cylinder head. A cooling structure for an engine, comprising: a shielding portion formed by branching the cooling flow path.
  2.  前記遮蔽部は、前記送風部材からの前記空気が前記シリンダ及び前記シリンダヘッドに至る前の位置で前記冷却流路を分岐することを特徴とする請求項1に記載のエンジンの冷却構造。 The engine cooling structure according to claim 1, wherein the shielding portion branches the cooling flow path at a position before the air from the air blowing member reaches the cylinder and the cylinder head.
  3.  前記分岐流路は、前記シリンダ及び前記シリンダヘッドとの間に前記冷却流路を挟むように前記導風部材の内壁面に沿って形成されることを特徴とする請求項1又は請求項2に記載のエンジンの冷却構造。 The said branch flow path is formed along the inner wall surface of the said air guide member so that the said cooling flow path may be pinched | interposed between the said cylinder and the said cylinder head. The engine cooling structure described.
  4.  前記遮蔽部は、前記導風部材の本体部とは別体であり、異なる材質で形成される部材で構成されることを特徴とする請求項1から請求項3のいずれかに記載のエンジンの冷却構造。 The engine according to any one of claims 1 to 3, wherein the shielding portion is a separate member from the main body portion of the air guide member and is formed of a member formed of a different material. Cooling structure.
  5.  前記別の部品は、燃料噴射装置であることを特徴とする請求項1から請求項4のいずれかに記載のエンジンの冷却構造。 The engine cooling structure according to any one of claims 1 to 4, wherein the another component is a fuel injection device.
PCT/JP2013/076003 2012-10-01 2013-09-26 Cooling structure for engine WO2014054492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380051542.5A CN104685181B (en) 2012-10-01 2013-09-26 The cooling construction of engine
IN1739DEN2015 IN2015DN01739A (en) 2012-10-01 2015-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012219370A JP6003491B2 (en) 2012-10-01 2012-10-01 Engine cooling structure
JP2012-219370 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054492A1 true WO2014054492A1 (en) 2014-04-10

Family

ID=50434820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076003 WO2014054492A1 (en) 2012-10-01 2013-09-26 Cooling structure for engine

Country Status (4)

Country Link
JP (1) JP6003491B2 (en)
CN (1) CN104685181B (en)
IN (1) IN2015DN01739A (en)
WO (1) WO2014054492A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188697A (en) * 2014-03-28 2015-11-02 株式会社大一商会 Game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222822A (en) * 1990-01-29 1991-10-01 Yanmar Diesel Engine Co Ltd Air-cooled internal combustion engine
JPH0566221U (en) * 1992-02-19 1993-09-03 富士ロビン株式会社 Cooling system for 2-cycle 2-cylinder engine
JP2010223211A (en) * 2008-07-24 2010-10-07 Yamaha Motor Co Ltd Forced air-cooled engine unit for vehicle and motorcycle
JP2013044231A (en) * 2011-08-22 2013-03-04 Honda Motor Co Ltd Forced air-cooling type internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818494B2 (en) * 2001-01-12 2006-09-06 株式会社丸山製作所 Air-cooled two-cycle engine
CN1271320C (en) * 2003-02-14 2006-08-23 雅马哈发动机株式会社 Forced air-cooled engine
JP4392300B2 (en) * 2004-07-22 2009-12-24 ヤンマー株式会社 Cylinder head cooling structure
JP2010223210A (en) * 2008-07-24 2010-10-07 Yamaha Motor Co Ltd Vehicular engine unit and saddle-riding type vehicle having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222822A (en) * 1990-01-29 1991-10-01 Yanmar Diesel Engine Co Ltd Air-cooled internal combustion engine
JPH0566221U (en) * 1992-02-19 1993-09-03 富士ロビン株式会社 Cooling system for 2-cycle 2-cylinder engine
JP2010223211A (en) * 2008-07-24 2010-10-07 Yamaha Motor Co Ltd Forced air-cooled engine unit for vehicle and motorcycle
JP2013044231A (en) * 2011-08-22 2013-03-04 Honda Motor Co Ltd Forced air-cooling type internal combustion engine

Also Published As

Publication number Publication date
CN104685181B (en) 2017-06-27
JP2014070623A (en) 2014-04-21
IN2015DN01739A (en) 2015-05-29
CN104685181A (en) 2015-06-03
JP6003491B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP4732375B2 (en) Forced air-cooled internal combustion engine
JP6149664B2 (en) Intercooler cooling structure
JP4555710B2 (en) Motorcycle
EP2148058B1 (en) Forced air-cooled vehicle engine unit, and motorcycle
JP2006250129A (en) Engine exhaust system
EP2620611B1 (en) Internal combustion engine and straddle-type vehicle including the same
WO2014054492A1 (en) Cooling structure for engine
JP6215807B2 (en) Intake device for internal combustion engine
JP6116107B2 (en) Mounting structure of exhaust gas sensor for internal combustion engine
JP4414362B2 (en) Air-cooled engine warm-up control device
JP4371552B2 (en) Spark ignition 4-cycle engine
WO2018163909A1 (en) Air intake device for internal combustion engine
JP5668471B2 (en) Air-cooled engine
US9163550B2 (en) Internal combustion engine and straddle-type vehicle including the same
JP4270727B2 (en) Engine intake system
JP6576866B2 (en) Air-cooled internal combustion engine for saddle riding type vehicles
JP2019210893A (en) engine
WO2021186513A1 (en) Intake structure for internal combustion engine
JP4562780B2 (en) Unit swing engine
JP2024030702A (en) Oil passage structure of internal combustion engine
JP2019210892A (en) engine
JP2003239736A (en) Cooling device for water-cooled engine
JP2012112360A (en) Cooling structure of cylinder head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844438

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201502620

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13844438

Country of ref document: EP

Kind code of ref document: A1