WO2014051136A1 - すべり軸受組立体 - Google Patents

すべり軸受組立体 Download PDF

Info

Publication number
WO2014051136A1
WO2014051136A1 PCT/JP2013/076459 JP2013076459W WO2014051136A1 WO 2014051136 A1 WO2014051136 A1 WO 2014051136A1 JP 2013076459 W JP2013076459 W JP 2013076459W WO 2014051136 A1 WO2014051136 A1 WO 2014051136A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing assembly
sulfide
mass
dispersed
iron
Prior art date
Application number
PCT/JP2013/076459
Other languages
English (en)
French (fr)
Inventor
秀和 徳島
英昭 河田
大輔 深江
馬渡 理
秋田 秀樹
菅谷 誠
暁子 佐藤
五木田 修
櫻井 茂行
Original Assignee
日立粉末冶金株式会社
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立粉末冶金株式会社, 日立建機株式会社 filed Critical 日立粉末冶金株式会社
Priority to KR1020157010741A priority Critical patent/KR101699189B1/ko
Priority to CN201380050076.9A priority patent/CN104884827B/zh
Priority to US14/426,902 priority patent/US9404535B2/en
Priority to DE112013004670.9T priority patent/DE112013004670B4/de
Publication of WO2014051136A1 publication Critical patent/WO2014051136A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/02Trunnions; Crank-pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings

Definitions

  • the present invention relates to a sliding bearing assembly using a powder metallurgy method, and more particularly to a sliding bearing assembly for a joint of a construction machine used under high surface pressure.
  • the joint of a hydraulic excavator of a construction machine or the arm support joint of a crane is such that the shaft inserted into a bearing repeatedly swings repeatedly within a predetermined rotation angle range, and is higher than 60 MPa. Receive surface pressure.
  • a sliding bearing assembly using a material with excellent wear resistance is used as this type of bearing assembly, and the sliding surface is used with a lubricating oil, grease, wax or the like having a high viscosity interposed therebetween.
  • the lubrication oil is sufficiently supplied to the sliding surface in order to obtain a smooth bearing action by suppressing wear by preventing metal contact. It is required to be made.
  • the present invention provides a sliding bearing assembly for a joint of a construction machine in which the amount of Cu used is reduced to reduce the manufacturing cost, and the sulfide having high adhesion to the base is dispersed. For the purpose.
  • the sliding bearing assembly of the present invention is a sliding bearing assembly used for a joint of a construction machine, and includes at least a shaft and a bush made of an iron-based sintered material, which is a sliding bearing.
  • the bush of the slide bearing assembly of the present invention is mainly composed of Fe, which has higher strength than Cu, and the base structure is an iron base (iron alloy base).
  • the metal structure of the bush is a structure in which sulfides and pores are dispersed in this iron base.
  • the iron base is formed of iron powder. The pores are generated due to the powder metallurgy method, and voids between the powders when the raw material powder is compacted are left in the iron base formed by the combination of the raw material powders.
  • the iron powder contains about 0.03 to 1.0% of Mn due to the manufacturing method, and therefore the iron base contains a small amount of Mn.
  • sulfide particles such as manganese sulfide
  • S in addition to S that reacts with Mn contained in a trace amount in the base, S is further added, and this S is combined with Fe, which is the main component, to thereby convert iron sulfide (FeS). Form.
  • the sulfide particles precipitated in the matrix are mainly iron sulfide generated by Fe as a main component, and partly manganese sulfide generated by Mn as an inevitable impurity.
  • Iron sulfide is a sulfide particle of a size suitable for improving sliding characteristics as a solid lubricant, and is formed by combining with Fe, which is the main component of the base, so that it can be uniformly deposited and dispersed in the base. .
  • S in addition to S to be combined with Mn contained in the matrix, S is further added to combine with Fe as the main component of the matrix to precipitate sulfide.
  • the amount of sulfide particles precipitated and dispersed in the matrix is less than 1% by volume, a sufficient lubricating action cannot be obtained and the sliding characteristics are deteriorated.
  • the amount of sulfide particles increases, the lubricating action of the bush improves, but the amount of sulfide relative to the base becomes excessive and the strength of the bush decreases.
  • the amount of sulfide particles needs to be 7% by volume or less. That is, the amount of sulfide particles in the base is 1 to 7% by volume with respect to the base.
  • the S amount is set to 0.36 to 1.68% by mass in the entire composition.
  • the amount of S is less than 0.36% by mass, it becomes difficult to obtain a desired amount of sulfide particles, and when it exceeds 1.68% by mass, the sulfide particles are excessively precipitated.
  • S is applied in the form of iron sulfide powder that is easily decomposed, and is added by adding iron sulfide powder to the raw material powder mainly composed of iron powder.
  • iron sulfide powder decomposes during sintering to supply S, and S combines with Fe around the iron sulfide powder to produce FeS and generate a eutectic liquid phase with Fe, It becomes liquid phase sintering and promotes the growth of the neck between the powder particles.
  • S is uniformly diffused from the eutectic liquid phase into the iron matrix, a part of S is combined with Mn in the iron matrix and precipitated as manganese sulfide in the iron matrix, and the remaining S is iron sulfide. As it is deposited in the iron base.
  • sulfides such as manganese sulfide and iron sulfide combine Mn, Fe, and S in the matrix and precipitate in the iron matrix, so compared with the conventional method of adding and dispersing sulfide. Disperse uniformly. Further, since the sulfide is precipitated and dispersed, it is firmly fixed to the base and does not easily fall off during sliding, and exhibits excellent sliding characteristics over a long period of time.
  • the solid lubricant firmly fixed to the base is dispersed not only in the pores and the powder grain boundaries but also uniformly distributed in the base. Is improved, and wear resistance is improved.
  • the bush of the plain bearing assembly of the present invention can be used even at a surface pressure as high as 60 MPa, and the iron base has a metal structure mainly composed of martensite.
  • the metal structure mainly composed of martensite means that 60% or more of the iron base in the cross-sectional area ratio is martensite, and is preferably 80% or more.
  • martensite is a hard and strong structure, and by forming 60% or more of the base structure with such martensite, the plastic deformation of the base can be achieved even under sliding conditions where high surface pressure acts. Can be prevented and good sliding characteristics can be obtained.
  • the entire base structure is martensite, but a part of the iron base may be a metal structure such as sorbite, troostite, and bainite.
  • FIG. 1 (a) is a metal structure photograph
  • FIG. 1 (b) is a schematic diagram showing the positions of sulfides in gray and the pores in black in the metal structure photograph of FIG. 1 (a).
  • the white part is a part of the base structure, but this part is a martensite phase as can be seen from the metal structure photograph of FIG. 1 (a). It can be seen that some of the sulfides (gray portions) are present in the pores, but most of them are dispersed in the matrix, and are precipitated and dispersed in the matrix.
  • the amount of Cu is required to be 0.1% by mass or more. Further, when the amount of Cu is 3.5% by mass or more, supersaturated Cu precipitates and disperses in the matrix as a soft Cu phase, so that the aggressiveness to the counterpart material can be reduced. Moreover, the interface which becomes the starting point of precipitation of a sulfide is formed between surrounding Fe and Cu by Cu deposited in the Fe base.
  • the inclusion of Cu makes it easier for the sulfide to precipitate and disperse in the matrix, and the sulfide is not in a form that exists in the pores, but in a form that is firmly adhered to the matrix and dispersed.
  • the amount of Cu is excessive, the strength of the bush is lowered because a low strength copper phase is dispersed in a large amount. For this reason, the upper limit of the amount of Cu shall be 10 mass%.
  • the raw material powder becomes hard and compressibility is impaired.
  • Cu is provided in the form of copper powder.
  • the copper powder generates a Cu liquid phase at the time of sintering, wets and covers the iron powder, and diffuses into the iron powder. For this reason, even if Cu is applied in the form of copper powder, Cu is diffused uniformly to some extent in the iron matrix, coupled with the fact that the diffusion rate to the iron matrix is high.
  • a part thereof may become a copper sulfide.
  • the amount of iron sulfide is reduced by the amount of copper sulfide dispersed.
  • copper sulfide also has a lubricating action, it affects the sliding characteristics. You can give it.
  • C is used to solidify the iron base to strengthen the iron base and make the base organization a martensite organization.
  • the amount of C is poor, ferrite having low strength is dispersed in the base structure, and strength and wear resistance are lowered. For this reason, the amount of C is made 0.2 mass% or more.
  • the addition amount is excessive, brittle cementite precipitates in a network shape and cannot withstand a high pressure of 60 MPa. For this reason, the upper limit of the C amount is set to 1.2% by mass.
  • the above C is applied in the form of an iron alloy powder dissolved in Fe, the raw material powder becomes hard and compressibility is impaired. For this reason, C is applied in the form of graphite powder.
  • each of the above powders that is, (1) iron powder containing 0.03 to 1.0% by mass of Mn with the balance being Fe and inevitable impurities, (2) copper powder, (3) graphite powder, (4)
  • the total composition of the iron sulfide powder is Cu: 0.1 to 10%, C: 0.2 to 1.2%, Mn: 0.03 to 0.9%, S: 0.36 to 1.68%, balance: Fe and mixed powder added and mixed so as to be inevitable impurities are used as a raw material powder, and this raw material powder is molded, sintered, and heat-treated.
  • a bushing of the bearing assembly can be manufactured.
  • Molding is a conventional pressing method, that is, a mold having a mold hole for shaping the outer peripheral shape of the product and a mold hole of the mold are slidably fitted to form the lower end surface of the product.
  • the obtained molded body is sintered in a sintering furnace in the range of 1000 to 1200 ° C.
  • the heating temperature at this time that is, the sintering temperature
  • the sintering temperature has an important influence on the progress of sintering and the diffusion of elements.
  • the sintering temperature is below 1000 ° C.
  • the amount of Cu liquid phase generated becomes insufficient, making it difficult to obtain a desired metal structure.
  • the sintering temperature is higher than 1200 ° C., the amount of liquid phase generated becomes excessive, and the sintered body tends to be deformed.
  • the sintering temperature is preferably 1000 to 1200 ° C.
  • the obtained sintered body is quenched to make the majority of the base structure a martensite structure.
  • the quenching is performed by heating the sintered body to the austenite transformation temperature or higher and quenching in oil or water as conventionally performed.
  • the heating temperature at the time of quenching is suitably 820 to 1000 ° C.
  • the atmosphere is a non-oxidizing atmosphere and may be a carburizing atmosphere.
  • the sintered body subjected to the quenching process has a hard and brittle metal structure due to excessive accumulation of strain due to the quenching process.
  • the tempering process is performed on the sintered body after the quenching process, which is again heated to a range of 150 to 280 ° C. and cooled to room temperature.
  • the internal stress is relaxed, and the distortion caused by the quenching process can be removed without reducing the hardness of the sintered body.
  • the heating temperature for tempering is less than 150 ° C., distortion removal is incomplete, and if it exceeds 280 ° C., low carbon martensite is easily decomposed into ferrite and cementite, and the hardness is lowered.
  • the bush of the slide bearing assembly of the present invention obtained as described above has sulfide particles precipitated and dispersed in a base where the majority is martensite.
  • Sulfides are mainly dispersed as iron sulfide and partially dispersed as manganese sulfide and copper sulfide. These sulfide particles have excellent sliding characteristics and contribute to the improvement of the sliding characteristics of the bush.
  • Cu of raw material powder is 3.5 mass% or more, it becomes what the copper phase further disperse
  • S45C can be mentioned as a material of the shaft of the slide bearing assembly of the present invention, for example.
  • a plain bearing assembly including such a shaft and the above-described bush is suitable for use in a sliding environment in which a surface pressure is 60 MPa or more and a peripheral speed is a maximum speed of 1.2 to 3 m / min. .
  • FIG. 1 (a) is a metal structure photograph
  • FIG.1 (b) is a model which shows the position of the sulfide in the metal structure photograph of Fig.1 (a).
  • FIG. It is a graph which shows the relationship of the baking time with respect to the amount of S in the whole composition. It is a graph which shows the relationship of the tensile strength with respect to the amount of S in a whole composition. It is a graph which shows the relationship of the baking time with respect to the amount of C in the whole composition, and tensile strength.
  • iron powder containing 0.3% by mass of Mn iron sulfide powder (S amount: 36.48% by mass), copper powder, and graphite powder are added in the proportions shown in Table 1, and mixed to obtain a raw material powder. It was.
  • the raw material powder was molded at a molding pressure of 600 MPa to produce a ring-shaped molded body having an outer diameter of 75 mm, an inner diameter of 45 mm, and a height of 51 mm, and a prismatic molded body of 10 mm ⁇ 10 mm ⁇ 100 mm.
  • the sintered members of sample numbers 01 to 39 was prepared. Table 1 shows the overall composition of these samples.
  • the obtained sample was subjected to cross-sectional structure observation, and the ratio of sulfide area and martensite phase area was measured using image analysis software (WinROOF manufactured by Mitani Corporation). These results are also shown in Table 1.
  • the ratio of the area of the martensite phase is expressed as “Mt phase” in Table 1.
  • the ring-shaped sintered member was vacuum-impregnated with a lubricant equivalent to ISOVG 460 (kinematic viscosity at 40 ° C. of 460 cSt), and then processed into an outer diameter of 70 mm, an inner diameter of 50 mm, and a height of 50 mm using a lathe. Then, using a tempered material of SCM435H defined in the JIS standard as a counterpart material, the baking time was measured by a bearing tester. Specifically, in the bearing test, a ring-shaped sintered member was fixed to the housing, and a shaft as a mating member was inserted into the inner periphery thereof.
  • ISOVG 460 kinematic viscosity at 40 ° C. of 460 cSt
  • a prismatic sintered member is machined into the shape of a No. 10 test piece specified in JIS Z2201, and a tensile test piece is created, and is tensioned using an autograph manufactured by Shimadzu Corporation according to the method specified in JIS Z2241. Strength was measured. These results are also shown in Table 1.
  • FIG. 2 shows the relationship of the baking time to the amount of S in the entire composition for the samples of sample numbers 01 to 33 in Table 1.
  • the samples with the S content of 0.18% by mass and 0.27% by mass are the sulfides when the Cu content is 0.1% by mass, 5.0% by mass and 10.0% by mass.
  • the baking time is as short as 2 hours or less, the sample with the S content of 0.36% by mass is more remarkable than the samples with the S content of 0.18% by mass and 0.27% by mass. Has increased.
  • the baking time tends to increase as the S amount increases, but when the S amount exceeds 1.68% by mass, the S amount is increased. However, the baking time does not increase any further.
  • FIG. 3 shows the relationship of the tensile strength with respect to the amount of S in the entire composition for the samples of sample numbers 01 to 33 in Table 1.
  • FIG. 3 shows that the tensile strength tends to decrease as the S amount increases in any of the cases where the Cu amount is 0.1% by mass, 5.0% by mass, and 10.0% by mass. In particular, in the sample in which the S amount exceeds 1.68% by mass, the tensile strength tends to be remarkably reduced in any Cu amount.
  • the amount of S in the entire composition should be 0.36 to 1.68% by mass in terms of lubricity and strength.
  • the area ratio of the sulfide of the sample whose S amount is 0.36% by mass is the cross-sectional area ratio in any case where the Cu amount is 0.1% by mass, 5.0% by mass and 10.0% by mass. 1%.
  • the sample having an S amount of 1.68% by mass has a sulfide area ratio of 7%. From this, it can be seen that the area ratio of sulfide is in the range of 1 to 7%, the lubricity is good and the strength is not significantly reduced. It was also confirmed that good strength can be obtained when the Cu content is in the range of 0.1 to 10.0 mass%.
  • FIG. 4 shows the relationship between the baking time and the tensile strength with respect to the amount of C in the entire composition for samples Nos. 18 and 34 to 39 in Table 1.
  • the sample with C mass of 0% by mass has a low base strength and the baking time is 0 hours, but the sample with C content of 0.2% by mass strengthens the matrix and the baking time is remarkably improved.
  • the baking time tends to be extended until the C content reaches 1.2% by mass.
  • the baking time tends to be shortened. Is shown.
  • the sample whose C amount is 0% by mass has a low base strength and a low tensile strength.
  • a sample having a C content of 0.2% by mass has a strengthened base and an improved tensile strength.
  • the C content is 0.6% by mass
  • the tensile strength tends to increase as the C content increases.
  • the amount of C exceeds 0.6% by mass the tensile strength tends to decrease, and in the sample where the amount of C exceeds 1.2% by mass, the tensile strength significantly decreases.
  • the amount of C in the entire composition should be 0.2 to 1.2% by mass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

 Cuの使用量を低減して製造コストを低減するとともに、基地への固着性が高い硫化物を分散させた建設機械の関節用のすべり軸受組立体を提供する。 建設機械の関節に用いられるすべり軸受組立体であり、少なくとも軸とすべり軸受である鉄系焼結材からなるブッシュとからなり、ブッシュは、全体組成が、質量比で、Cu:0.1~10%、C:0.2~1.2%、Mn:0.03~0.9%、S:0.36~1.68%、残部:Feおよび不可避不純物からなり、マルテンサイト組織を主とする基地中に、気孔が分散するとともに、硫化物粒子が析出分散する金属組織を示し、硫化物粒子が、基地に対して1~7体積%の割合で分散する。

Description

すべり軸受組立体
 本発明は、粉末冶金法を用いたすべり軸受組立体に係り、特に、高面圧下で使用される建設機械の関節用のすべり軸受組立体に関する。
 一般に、建設機械の油圧ショベルの関節やクレーンのアーム支持関節は、軸受に挿入された軸が、所定の回動角度の範囲で繰り返し相対的に揺動するようになっており、60MPa以上の高い面圧を受ける。このため、この種の軸受組立体としては耐摩耗性に優れた材料を用いたすべり軸受組立体が使用され、摺動面に粘度の高い潤滑油やグリース、ワックス等を介在させて使用する。このようなすべり軸受組立体においては、高面圧下で使用しても、金属接触を防ぐことにより摩耗を抑制して円滑な軸受作用を得るため、摺動面への潤滑油の供給が十分になされることが求められる。このため、すべり軸受組立体に用いられるブッシュには炭素鋼の熱処理品や高力黄銅等の材料が適用され、近年では、例えば特許文献1等に記載されたようなCuを10~30重量%含む焼結材料の適用も具体化されている。
特開平11−117940号公報
 通常、すべり軸受組立体のブッシュに用いられる鉄基焼結合金中にCuを多量に含有させると、鉄基地中に軟質な銅相または銅合金相が分散し、これによって、相手部材への攻撃性が緩和されるとともに適度に変形可能となるため相手部材とのなじみ性が向上する。一方、鉄基地中に銅相または銅合金相が分散すると、鉄基焼結合金の強度は低下する。また、近年、銅地金の価格は高騰しているため、特許文献1のようにCuを10~30重量%使用する技術では製造コストが割高となり実用的ではない。
 しかしながら、Cuの含有量を少なくすると、鉄基地中に分散する銅相または銅合金相が少なくなって耐摩耗性が低下するとともに相手部材への攻撃性が高まる等の問題が生じる。
 これに対して、原料粉末に硫化マンガン粉末を添加し基地中に硫化マンガン相を分散させる技術があるが、この技術では硫化マンガンの基地への固着性が低く、摺動時に脱落する虞があるとともに、硫化マンガン粉末が原料粉末の焼結を阻害するため、焼結合金の強度が低くなる。
 これらのことから、本発明は、Cuの使用量を低減して製造コストを低減するとともに、基地への固着性が高い硫化物を分散させた建設機械の関節用のすべり軸受組立体を提供することを目的とする。
 本発明のすべり軸受組立体は、建設機械の関節に用いられるすべり軸受組立体であり、少なくとも軸とすべり軸受である鉄系焼結材からなるブッシュとからなり、ブッシュは、全体組成が、質量比で、Cu:0.1~10%、C:0.2~1.2%、Mn:0.03~0.9%、S:0.36~1.68%、残部:Feおよび不可避不純物からなり、マルテンサイト組織を主とする基地中に、気孔が分散するとともに、硫化物粒子が析出分散する金属組織を示し、硫化物粒子が、基地に対して1~7体積%の割合で分散することを特徴とする。
 以下、本発明のすべり軸受組立体のブッシュについて、数値限定の根拠を本発明の作用とともに説明する。なお、以下の説明において「%」は「質量%」を意味する。本発明のすべり軸受組立体のブッシュは、Cuよりも強度が高いFeを主成分とし、基地組織を鉄基地(鉄合金基地)とする。ブッシュの金属組織はこの鉄基地中に硫化物と気孔が分散する組織とする。鉄基地は、鉄粉末により形成される。そして、気孔は、粉末冶金法に起因して生じるものであり、原料粉末を圧粉成形した際の粉末間の空隙が、原料粉末の結合により形成された鉄基地中に残留したものである。
 一般に、鉄粉末は、製法に起因してMnを0.03~1.0%程度含有し、このため鉄基地は、微量のMnを含有する。そして、Sを与えることによって、固体潤滑剤として硫化マンガン等の硫化物粒子を基地中に析出させることができる。ここで、硫化マンガンは基地中に微細に析出するため、被削性改善には効果があるが、摺動特性に寄与するには微細過ぎるため、摺動特性改善効果が小さい。このため、本発明においては、基地に微量に含有されるMnと反応する分のSに加えて、さらにSを付与し、このSを主成分であるFeと結合させて硫化鉄(FeS)を形成する。このため、基地中に析出する硫化物粒子は、主成分であるFeにより生成する硫化鉄が主となり、一部が不可避不純物であるMnにより生成する硫化マンガンとなる。
 硫化鉄は、固体潤滑剤として摺動特性向上に好適な大きさの硫化物粒子であり、基地の主成分であるFeと結合させて形成するため、基地中に均一に析出分散させることができる。
 上記のように、本発明においては、基地に含有されるMnと結合させるSに加えて、さらにSを与えて、基地の主成分であるFeと結合させて硫化物を析出させる。ただし、基地中に析出分散する硫化物粒子の量が1体積%を下回ると、十分な潤滑作用が得られず、摺動特性が低下する。一方、硫化物粒子の量が増加するにしたがい、ブッシュの潤滑作用は向上するが、基地に対する硫化物の量が過多となってブッシュの強度が低下する。このため60MPaもの高圧に耐える強度を得るため、硫化物粒子の量を7体積%以下にする必要がある。すなわち、基地中の硫化物粒子の量は、基地に対して1~7体積%とする。
 この量の硫化鉄を主体とする硫化物を得るため、S量は全体組成において0.36~1.68質量%とする。S量が0.36質量%を下回ると、所望の量の硫化物粒子を得難くなり、1.68質量%を超えると、硫化物粒子が過剰に析出する。
 Sは、分解し易い硫化鉄粉末の形態で付与し、鉄粉末を主体とする原料粉末に硫化鉄粉末を添加することによって付与する。この場合、硫化鉄粉末が焼結時に分解することによりSが供給され、Sが硫化鉄粉末の周囲のFeと結合してFeSを生成するとともにFeとの間で共晶液相を発生し、液相焼結となって粉末粒子間のネックの成長を促進する。また、この共晶液相からSが鉄基地中に均一に拡散し、Sの一部は鉄基地中のMnと結合して硫化マンガンとして鉄基地中に析出するとともに、残余のSは硫化鉄として鉄基地中に析出する。
 このように、硫化マンガンおよび硫化鉄等の硫化物は、基地中のMnやFeとSを結合させて鉄基地中に析出させるため、硫化物を添加して分散させる従来の手法に比して均一に分散する。また、硫化物は析出して分散するため基地に強固に固着しており、摺動時に容易に脱落するものではなく、長期に亘って優れた摺動特性を発揮する。
 さらに、上記したように、液相焼結となるとともに、原料粉末どうしの拡散が良好に行われることから、鉄基地の強度が向上して、鉄基地の耐摩耗性が向上する。したがって、本発明のすべり軸受組立体のブッシュは、気孔中および粉末粒界のみではなく、基地に強固に固着した固体潤滑剤が、基地中に均一に分散しており、摺動特性や基地強度が改善され、耐摩耗性が向上したものとなる。
 本発明のすべり軸受組立体のブッシュは、60MPaもの高い面圧においても使用可能とするため鉄基地はマルテンサイトを主体とする金属組織とする。ここでマルテンサイトを主体とする金属組織とは、断面面積率で鉄基地の60%以上がマルテンサイトとなっていることを意味し、80%以上とすることが好ましい。すなわち、マルテンサイトは、硬く、かつ強度の高い組織であり、基地組織の60%以上をこのようなマルテンサイトで構成することにより、高い面圧が作用する摺動条件においても、基地の塑性変形を防止して、良好な摺動特性を得ることができる。基地組織の全部をマルテンサイトとすることが最も好ましいが、鉄基地の一部が、ソルバイト、トルースタイト、ベイナイト等の金属組織となっていてもよい。
 本発明のすべり軸受組立体のブッシュの金属組織の一例を図1に示す。図1(a)は、金属組織写真であり、図1(b)は、図1(a)の金属組織写真における硫化物の位置を灰色、気孔の位置を黒色として示した模式図である。図1(b)において、白色の部分は基地組織の部分であるが、この部分は図1(a)の金属組織写真から分かるようにマルテンサイト相となっている。硫化物(灰色部分)は、一部が気孔中に存在するが、大部分は基地中に分散しており、基地中に析出して分散していることが分かる。
 本発明のすべり軸受組立体のブッシュにおいては、鉄基地の強化のため、CuおよびCを鉄基地に固溶させて鉄合金として使用する。Cuは、鉄基地に固溶し鉄基地の強化に寄与する。この基地強化のためCu量は0.1質量%以上必要となる。また、Cu量を3.5質量%以上とすると過飽和なCuが軟質なCu相として基地中に析出分散するため、相手材への攻撃性を緩和することができる。また、Fe基地中に析出したCuによって、周囲のFeとCuの間に硫化物の析出の起点となる界面ができる。そのため、Cuを含有させることによって硫化物はより基地中に析出分散し易くなり、硫化物は気孔中に存在するような形態ではなく、基地に強固に密着して分散する形態となる。ただし、Cu量が過多となると、強度の低い銅相が多量に分散するため、ブッシュの強度が低下する。このためCu量の上限を10質量%とする。
 上記のCuは、Feに固溶した鉄合金粉末の形態で付与すると原料粉末が硬くなり、圧縮性が損なわれる。このため、Cuは、銅粉末の形態で付与する。銅粉末は、焼結時にCu液相を発生して鉄粉末に濡れて覆い、鉄粉末中に拡散する。このため、Cuを銅粉末の形態で付与しても、鉄基地への拡散速度が速い元素であることも相まって、Cuは鉄基地中にある程度均一に拡散する。
 なお、基地組織中に銅相が分散する場合、その一部が銅硫化物となる場合がある。このような銅硫化物が基地中に分散する場合、銅硫化物が分散する分、鉄硫化物の量が減ることになるが、銅硫化物も潤滑作用を有するため、摺動特性に影響を与えず差し支えない。
 Cは、鉄基地に固溶して鉄基地を強化するとともに、基地組織をマルテンサイト組織とするために使用される。C量が乏しいと、基地組織中に強度の低いフェライトが分散して、強度および耐摩耗性が低下する。このためC量を0.2質量%以上とする。一方、添加量が過多となると、脆いセメンタイトがネットワーク状に析出して、60MPaもの高圧に耐えることができなくなる。このためC量の上限を1.2質量%とする。上記のCは、Feに固溶した鉄合金粉末の形態で付与すると原料粉末が硬くなり、圧縮性が損なわれる。このため、Cは黒鉛粉末の形態で付与する。
 以上の各粉末、すなわち、(1)Mnを0.03~1.0質量%含有し、残部がFeおよび不可避不純物からなる鉄粉末と、(2)銅粉末と、(3)黒鉛粉末と、(4)硫化鉄粉末とを、全体組成が、質量比で、Cu:0.1~10%、C:0.2~1.2%、Mn:0.03~0.9%、S:0.36~1.68%、残部:Feおよび不可避不純物となるよう、添加して混合した混合粉末を原料粉末として用い、この原料粉末を成形、焼結して熱処理することで本発明のすべり軸受組立体のブッシュを製造することができる。
 成形は、従来から行われている押型法、すなわち、製品の外周形状を造形する型孔を有する金型と、金型の型孔と摺動自在に嵌合し、製品の下端面を造形する下パンチと、必要に応じて製品の内周形状もしくは肉抜き部を造形するコアロッドと、から形成されるキャビティに原料粉末を充填し、製品の上端面を造形する上パンチと、該下パンチとにより原料粉末を圧縮成形した後、金型の型孔から抜き出す方法により成形体に成形する。
 得られた成形体を焼結炉において1000~1200℃の範囲で焼結する。このときの加熱温度、すなわち焼結温度は、焼結の進行および元素の拡散に重要な影響を与える。ここで、焼結温度が1000℃を下回るとCu液相の発生量が不十分となり、所望の金属組織を得難くなる。一方、焼結温度が1200℃より高くなると、液相発生量が過多となって、焼結体の型くずれが生じ易くなる。このため、焼結温度は1000~1200℃が好ましい。
 得られた焼結体を基地組織の過半をマルテンサイト組織とするため、焼入れする。焼入れは、従来から行われているように、焼結体をオーステナイト変態温度以上に加熱した後、油中もしくは水中において急冷することで行われる。焼入れの際の加熱温度は、820~1000℃が適当である。また、雰囲気は、非酸化性雰囲気が用いられ、浸炭性雰囲気であってもよい。
 焼入れ処理された焼結体は、焼入れ処理により歪みが過度に蓄積され硬くかつ脆い金属組織となっている。このため、従来から行われているように、焼入れ処理後の焼結体に対して、再度、150~280℃の範囲に加熱して常温まで冷却する焼戻し処理を行う。このような焼戻し処理を行うと、内部応力が緩和され、焼結体の硬さを低下させることなく焼入れ処理によって生じた歪みを除去することができる。このとき、焼戻しの加熱温度は150℃に満たないと歪みの除去が不完全となり、280℃を超えると低炭素マルテンサイトがフェライトとセメンタイトに分解し易くなり、硬さが低下する。
 上記により得られる本発明のすべり軸受組立体のブッシュは、過半がマルテンサイトである基地中に、硫化物粒子が析出して分散するものとなる。硫化物は、主に硫化鉄として分散し、一部に硫化マンガン、硫化銅として分散する。これらの硫化物粒子は、摺動特性に優れるものでありブッシュの摺動特性の向上に寄与する。なお、原料粉末のCuが3.5質量%以上の場合は、基地中にさらに銅相が分散したものとなり、相手材への攻撃性がさらに低下されている。また、液相焼結となるとともに、原料粉末どうしの拡散が良好に行われることから、鉄基地の強度が向上して、鉄基地の耐摩耗性が向上している。したがって、気孔中および粉末粒界のみではなく、基地に強固に固着した固体潤滑剤が、基地中に均一に分散しており、摺動特性や基地強度が改善され、耐摩耗性が向上したものとなる。
 なお、本発明のすべり軸受組立体の軸の材質は、例えばS45Cを挙げることができる。このような軸と上記のブッシュとを備えたすべり軸受組立体は、面圧が60MPa以上、かつ周速が最大速度1.2~3m/分となる摺動環境下での使用に好適である。
 本発明によれば、Cuの使用量を低減して製造コストを低減するとともに、基地への固着性が高い硫化物を分散させた建設機械の関節用のすべり軸受組立体を得ることができる。
本発明のすべり軸受組立体のブッシュの金属組織の一例であり、図1(a)は金属組織写真、図1(b)は図1(a)の金属組織写真における硫化物の位置を示す模式図である。 全体組成中のS量に対する焼付時間の関係を示すグラフである。 全体組成中のS量に対する引張強さの関係を示すグラフである。 全体組成中のC量に対する焼付時間および引張強さの関係を示すグラフである。
 Mnを0.3質量%含有する鉄粉末に、硫化鉄粉末(S量:36.48質量%)、銅粉末、および黒鉛粉末を表1に示す割合で添加し、混合して原料粉末を得た。そして、原料粉末を成形圧力600MPaで成形し、外径75mm、内径45mm、高さ51mmのリング形状の成形体、および10mm×10mm×100mmの角柱形状の成形体をそれぞれ作製した。次いで、非酸化性ガス雰囲気中、1130℃で焼結したのち、浸炭ガス雰囲気中、850℃で保持後油冷を行い、さらに180℃で焼戻し処理を行って試料番号01~39の焼結部材の試料を作製した。これらの試料の全体組成を表1に併せて示す。
 得られた試料について、断面組織観察を行い、画像分析ソフトウエア(三谷商事株式会社製WinROOF)を用いて硫化物の面積およびマルテンサイト相の面積の割合を測定した。これらの結果を表1に併せて示す。なお、マルテンサイト相の面積の割合は、表1において“Mt相”と表記した。
 また、リング形状の焼結部材はISOVG 460相当(40℃における動粘度460cSt)の潤滑油を真空含浸した後、旋盤を用いて外径70mm、内径50mm、高さ50mmに加工した。そして、JIS規格に規定されたSCM435Hの調質材を相手材として用いて、軸受試験機によって、焼付時間を測定した。具体的には、軸受試験はリング形状の焼結部材をハウジングに固定し、その内周に相手材である軸を挿入した。軸にはラジアル方向の荷重を与え、面圧を60MPaとして、角度60度の範囲で滑り速度を1分間あたり2.0mの速さで揺動回転させた。振り子運動の末端位置でそれぞれ0.5秒間休止させた。そして、摩擦係数0.3を超えた状態を焼き付きと判断し、焼き付き状態となるまでの摺動時間を焼付時間として測定した。この結果についても表1に併せて示す。
 さらに、角柱形状の焼結部材について、JIS Z2201に規定の10号試験片の形状に機械加工して引張試験片を作成し、JIS Z 2241に規定の方法で島津製作所製オートグラフを用いて引張強さを測定した。これらの結果についても表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1の試料番号01~33の試料について、全体組成中のS量に対する焼付時間の関係を図2に示す。図2より、Cu量が0.1質量%、5.0質量%および10.0質量%のいずれの場合にも、S量が0.18質量%および0.27質量%の試料は硫化物の析出が乏しく、焼付時間が2時間以下と短いが、S量が0.36質量%の試料はS量が0.18質量%および0.27質量%の試料に比して焼付時間が顕著に増加している。また、いずれのCu量の場合も、S量が1.68質量%までは、S量の増加にしたがい焼付時間が増加する傾向であるが、S量が1.68質量%を超えるとS量を増加させても焼付時間はそれ以上増加していない。
 また、Cu量が0.1質量%、5.0質量%および10.0質量%の試料を比較すると、Cu量が多い試料ほど焼付時間が長くなっており、Cuによる基地強化の効果が顕著である。ただし、Cu量が0.1質量%の試料においても金属硫化物を分散させることによって焼付時間を向上させることができ、十分実用に耐えることが分かる。
 表1の試料番号01~33の試料について、全体組成中のS量に対する引張強さの関係を図3に示す。図3より、Cu量が0.1質量%、5.0質量%および10.0質量%のいずれの場合にも、S量が増加するにしたがい引張強さが低下する傾向を示している。特に、S量が1.68質量%を超える試料では、いずれのCu量の場合も、引張強さが著しく低下する傾向を示している。
 また、Cu量が0.1質量%、5.0質量%および10.0質量%の試料を比較すると、5.0質量%が最も高い引張強さを示し、5.0質量%を超えると引張強さは低下する傾向を示す。Cu量が10.0質量%の試料はまだ実用可能な引張強さであるが、Cu量がこれを超えるとさらに引張強さが低下するものと考えられることから、Cu量は10.0質量%以下とすべきである。
 以上より、潤滑性および強度の点から、全体組成中のS量が0.36~1.68質量%とすべきことが確認された。ここで、S量が0.36質量%の試料の硫化物の面積比はCu量が0.1質量%、5.0質量%および10.0質量%のいずれの場合にも断面面積率で1%となっている。また、いずれのCu量の場合も、S量が1.68質量%の試料は硫化物の面積比が7%となっている。このことから硫化物の面積比は1~7%の範囲で潤滑性が良好であり、かつ強度が顕著に低下しないことが分かる。また、Cu量は0.1~10.0質量%の範囲で良好な強度を得られることが確認された。
 表1の試料番号18、34~39の試料について、全体組成中のC量に対する焼付時間および引張強さの関係を図4に示す。図4より、C量が0質量%の試料は基地の強度が低く焼付時間が0時間と直ちに焼き付くが、C量が0.2質量%の試料では基地が強化されて焼付時間が著しく向上されている。また、C量の増加にしたがいC量が1.2質量%までは、焼付時間は延長される傾向を示すが、C量が1.2質量%を超える試料では逆に焼付時間が短くなる傾向を示している。
 引張強さはC量が0質量%の試料は基地の強度が低く引張強さが低い値となっている。一方、C量が0.2質量%の試料は基地が強化され、引張強さが向上している。また、C量が0.6質量%まではC量の増加にしたがい引張強さが増加する傾向を示している。しかしながら、C量が0.6質量%を超えると、引張強さは低下する傾向を示しており、C量が1.2質量%を超える試料では引張強さが著しく低下している。
 これらのことから全体組成中のC量は0.2~1.2質量%とすべきことが分かる。

Claims (3)

  1.  建設機械の関節に用いられるすべり軸受組立体であり、
     少なくとも軸とすべり軸受である鉄系焼結材からなるブッシュとからなり、
     前記ブッシュは、全体組成が、質量比で、Cu:0.1~10%、C:0.2~1.2%、Mn:0.03~0.9%、S:0.36~1.68%、残部:Feおよび不可避不純物からなり、マルテンサイト組織を主とする基地中に、気孔が分散するとともに、硫化物粒子が析出分散する金属組織を示し、前記硫化物粒子が、前記基地に対して1~7体積%の割合で分散することを特徴とするすべり軸受組立体。
  2.  前記マルテンサイト組織が断面面積率で前記基地の80%以上を占めることを特徴とする請求項1に記載のすべり軸受組立体。
  3.  面圧が60MPa以上、かつ周速が最大速度1.2~3m/分となる摺動環境下で使用されることを特徴とする請求項1または2に記載のすべり軸受組立体。
PCT/JP2013/076459 2012-09-25 2013-09-24 すべり軸受組立体 WO2014051136A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157010741A KR101699189B1 (ko) 2012-09-25 2013-09-24 미끄럼 베어링 조립체
CN201380050076.9A CN104884827B (zh) 2012-09-25 2013-09-24 滑动轴承组件
US14/426,902 US9404535B2 (en) 2012-09-25 2013-09-24 Sliding bearing assembly
DE112013004670.9T DE112013004670B4 (de) 2012-09-25 2013-09-24 Gleitlageranordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210499A JP2014066271A (ja) 2012-09-25 2012-09-25 すべり軸受組立体
JP2012-210499 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014051136A1 true WO2014051136A1 (ja) 2014-04-03

Family

ID=50388521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076459 WO2014051136A1 (ja) 2012-09-25 2013-09-24 すべり軸受組立体

Country Status (6)

Country Link
US (1) US9404535B2 (ja)
JP (1) JP2014066271A (ja)
KR (1) KR101699189B1 (ja)
CN (1) CN104884827B (ja)
DE (1) DE112013004670B4 (ja)
WO (1) WO2014051136A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194613B2 (ja) 2013-03-29 2017-09-13 日立化成株式会社 摺動部材用鉄基焼結合金およびその製造方法
EP3243586A1 (de) * 2016-05-10 2017-11-15 SL Gleitlagertechnik GmbH Sintereisenlager
WO2018100660A1 (ja) * 2016-11-30 2018-06-07 日立化成株式会社 鉄系焼結含油軸受

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155696A (ja) * 2007-12-27 2009-07-16 Hitachi Powdered Metals Co Ltd 摺動部材用鉄基焼結合金
JP2013076152A (ja) * 2011-09-30 2013-04-25 Hitachi Powdered Metals Co Ltd 鉄基焼結摺動部材およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662951A (en) * 1979-10-24 1981-05-29 Hitachi Ltd Sintered iron alloy
DE3005513A1 (de) 1980-02-14 1981-08-20 Schwäbische Hüttenwerke GmbH, 7080 Aalen Sintereisen-formteil und verfahren zur herstellung eines solchen formteils
JP3620673B2 (ja) * 1996-01-11 2005-02-16 大豊工業株式会社 銅系すべり軸受
JP3168538B2 (ja) 1997-04-19 2001-05-21 チャン リー ウー 滑りベアリング及びその製造方法
US6513979B2 (en) * 2000-08-22 2003-02-04 Ntn Corporation Hydrodynamic oil-impregnated sintered bearing unit
JP3978042B2 (ja) * 2002-01-22 2007-09-19 日立粉末冶金株式会社 建設機械用焼結滑り軸受
JP2005256968A (ja) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd 流体軸受装置
JP4271624B2 (ja) * 2004-06-23 2009-06-03 日立粉末冶金株式会社 建設機械の関節用すべり軸受
CN101107376B (zh) * 2005-01-31 2012-06-06 株式会社小松制作所 烧结材料、Fe系烧结滑动材料及其制造方法、滑动构件及其制造方法、连结装置
KR101240051B1 (ko) * 2006-11-20 2013-03-06 두산인프라코어 주식회사 내마모성 베어링 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155696A (ja) * 2007-12-27 2009-07-16 Hitachi Powdered Metals Co Ltd 摺動部材用鉄基焼結合金
JP2013076152A (ja) * 2011-09-30 2013-04-25 Hitachi Powdered Metals Co Ltd 鉄基焼結摺動部材およびその製造方法

Also Published As

Publication number Publication date
CN104884827A (zh) 2015-09-02
KR20150086245A (ko) 2015-07-27
DE112013004670T8 (de) 2015-10-01
DE112013004670T5 (de) 2015-08-06
US20150240870A1 (en) 2015-08-27
US9404535B2 (en) 2016-08-02
JP2014066271A (ja) 2014-04-17
DE112013004670B4 (de) 2018-09-20
CN104884827B (zh) 2017-08-08
KR101699189B1 (ko) 2017-01-23

Similar Documents

Publication Publication Date Title
JP5773267B2 (ja) 鉄基焼結摺動部材およびその製造方法
JP6194613B2 (ja) 摺動部材用鉄基焼結合金およびその製造方法
JP4183346B2 (ja) 粉末冶金用混合粉末ならびに鉄系焼結体およびその製造方法
JP5613973B2 (ja) 銅系焼結摺動部材
KR101087376B1 (ko) 슬라이드 부재용 철기 소결 합금
JP6112473B2 (ja) 鉄基焼結摺動部材
CN107008907B (zh) 铁基烧结滑动构件及其制造方法
JP2010111937A (ja) 高強度組成鉄粉とそれを用いた焼結部品
EP2087250A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP2010280957A (ja) 鉄基焼結合金、鉄基焼結合金の製造方法およびコンロッド
JP5972963B2 (ja) 耐摩耗性に優れた焼結合金
WO2014051136A1 (ja) すべり軸受組立体
JP6528899B2 (ja) 粉末冶金用混合粉および焼結体の製造方法
JP6519955B2 (ja) 鉄基焼結摺動部材およびその製造方法
JP6384687B2 (ja) 鉄基焼結摺動部材の製造方法
JP6341455B2 (ja) 鉄基焼結摺動部材の製造方法
CA3051387C (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14426902

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130046709

Country of ref document: DE

Ref document number: 112013004670

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157010741

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13840889

Country of ref document: EP

Kind code of ref document: A1