WO2014050892A1 - Perforated cast product and method for manufacturing same - Google Patents

Perforated cast product and method for manufacturing same Download PDF

Info

Publication number
WO2014050892A1
WO2014050892A1 PCT/JP2013/075916 JP2013075916W WO2014050892A1 WO 2014050892 A1 WO2014050892 A1 WO 2014050892A1 JP 2013075916 W JP2013075916 W JP 2013075916W WO 2014050892 A1 WO2014050892 A1 WO 2014050892A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
temperature
casting
mold
hole
Prior art date
Application number
PCT/JP2013/075916
Other languages
French (fr)
Japanese (ja)
Inventor
俊雄 羽賀
Original Assignee
学校法人常翔学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人常翔学園 filed Critical 学校法人常翔学園
Priority to JP2014538532A priority Critical patent/JP6400476B2/en
Publication of WO2014050892A1 publication Critical patent/WO2014050892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/101Permanent cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a method for producing a cast product having a through hole or a bottomed hole.
  • Porous materials have been proposed as metal materials used for heat sinks, shock absorbers, lightweight materials, and the like (see Non-Patent Document 1). Since this type of porous material is porous, it is expected to be used as a heat sink because of its large specific surface area, good air permeability and water permeability, and excellent thermal characteristics. Moreover, since the said porous material is a low density and is lightweight, the use to an impact-absorbing material or a lightweight material is anticipated.
  • the porous material is produced by dissolving a gas (foaming agent or the like) in a molten metal and releasing the gas during solidification to form bubbles (so-called “foaming method”). For this reason, it is difficult to adjust the size and position of the hole, and a vacuum vessel or the like is required to perform this operation. The manufacturing apparatus is expensive and it is difficult to increase the productivity. .
  • Patent Documents 1 to 5 have been proposed as methods for forming through holes or bottomed holes (hereinafter simply referred to as “holes”) in a metal material. These patent documents utilize a die-cast method.
  • a die casting mold is opened by injecting a molten casting material into the die casting mold by a jet jet or the like and maintaining the casting pressure at 50 to 100 MPa or more.
  • a hole is formed by inserting a core pin in a direction parallel to the direction and extracting the core pin before the molten metal solidifies.
  • a cast pin is inserted in a direction perpendicular to the mold opening direction of the mold.
  • Patent Document 6 there is a method in which a hole is formed while pouring molten metal into a mold in a state in which a cast pin is provided in a mold including a sand mold and vibrating the cast pin at 100 Hz or higher while cooling the cast pin. Proposed.
  • Patent Documents 1 to 5 are based on die-casting, and it is necessary to pour the molten metal under high pressure, a very large pressure-resistant mold and an apparatus for injecting and injecting molten metal at high pressure Need.
  • it is difficult to open a large number of through holes because there is a possibility that a long hole exceeding 100 mm is opened or the hole is crushed. The degree is low.
  • the core pin may be deformed by the cast material to be injected.
  • Patent Document 6 a cooling mechanism for the core pin is necessary, and the core pin becomes expensive. Further, since a cooling mechanism is required, a cast pin having a small diameter cannot be used. The purpose is to homogenize the casting material around the core pin. Since the casting material is rapidly solidified by cooling, the hot water becomes worse and the distance between the core pins is not widened. I do not get. Therefore, there are significant restrictions on the size and interval of the holes to be formed. Furthermore, since the sand mold may collapse when vibration is applied, it is also difficult to improve the water temperature by vibrating the sand mold.
  • An object of the present invention is to provide a method for producing a perforated cast product capable of forming a through hole having a high degree of freedom with a simple apparatus and method.
  • the method for producing a perforated casting according to the present invention is as follows. After pouring a molten metal of the casting material (except for Al-Mg alloy and Al-Si-Mg alloy) into the casting mold, the rod-shaped mold placed in the casting mold is pulled out, so that A method for producing a perforated cast product in which a hole is formed in a portion having the rod-shaped mold, A pouring step of pouring the casting material at less than 10 MPa; The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole.
  • Tp ° C.
  • the upper limit temperature is Th (° C.)
  • the lower limit temperature for drawing is Tx (° C.)
  • the melting point, the eutectic temperature or the peritectic temperature is the lower one, Ts (° C.)
  • Tx Ts ⁇ d, 0 ⁇ d ⁇ 100
  • Ts ° C.
  • the eutectic temperature refers to the temperature of the eutectic point
  • the peritectic temperature refers to the temperature of the peritectic point.
  • the eutectic point and peritectic point of the present invention are the eutectic point or peritectic point that appears first in the direction in which the main component of the alloy decreases.
  • the solidus temperature is the temperature of the solidus that appears first in the direction in which the main component of the alloy decreases.
  • the casting material is an Al—Si based alloy or an Al—Cu based alloy, and the d may be 5 ° C.
  • the casting material is an Al—Mn alloy, and the d can be 90 ° C.
  • the casting material is a Cu—Zn alloy, and the d can be set to 50 ° C.
  • the casting material may be pure Al, and the d may be 115 ° C.
  • the casting material is pure Cu, and the d may be 18 ° C.
  • the method for producing a perforated casting according to the present invention is as follows.
  • a method for manufacturing a product A pouring step of pouring the casting material at less than 10 MPa; The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole.
  • the upper limit temperature is Th (° C)
  • the lower limit temperature for drawing is Tx (° C)
  • the solidus temperature is Ts (° C)
  • the method for producing a perforated casting according to the present invention is as follows. After pouring a molten Al—Si—Mg alloy into the casting mold, a hole is formed in the portion of the casting material where the rod-shaped mold is located by pulling out the rod-shaped mold disposed in the casting mold.
  • a method for manufacturing a hole casting product A pouring step of pouring the casting material at less than 10 MPa; The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole.
  • the upper limit temperature is Th (° C)
  • the lower limit temperature for drawing is Tx (° C)
  • the solidus temperature or eutectic temperature is Ts (° C)
  • the rod-shaped mold disposed in the casting mold has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ). 15 ⁇ a / b, b ⁇ 25 It is desirable that The longitudinal dimension of the rod-shaped mold is the dimension of the portion inserted into the casting mold, but in the case of a casting mold divided into a plurality of sections, the total of the dimensions of each section is the longitudinal dimension of the rod-shaped mold.
  • the perforated casting according to the present invention is A perforated cast product having holes in the cast product, There is no abrupt change in tissue between the inner surface of the hole wall of the hole and the inside of 1 mm from the inner surface.
  • the hole has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ). 15 ⁇ a / b, b ⁇ 25 It can be.
  • the cast product is Al—Si, and Si ⁇ 15% by mass.
  • the casting is Al—SiC p , and SiC p ⁇ 10% by volume.
  • the rod-shaped mold is pulled out within the range of the temperature Tp (° C.) defined above, or the hole diameter is expanded within the temperature range of Tp (° C.).
  • Tp temperature
  • the trace of the rod-shaped mold being pulled out remains as a hole, so that a cast product with a hole can be easily produced.
  • the diameter, number, arrangement, depth, etc. of the holes can be easily adjusted by appropriately adjusting the thickness, number, arrangement, and penetration length of the rod-shaped mold provided in the casting mold.
  • the present invention can be applied to a wide range of metals such as aluminum having a relatively low melting point, an aluminum alloy, a composite material having an aluminum base as a matrix, copper having a high melting point, and a copper alloy as a casting material. Since the obtained perforated casting product is determined to be a simple casting mold and a rod-shaped mold, the width, length, size and shape in the height direction can be freely made. It can be suitably used for heat sinks, shock absorbing materials, sound absorbing materials, lightweight materials, and the like. According to the method for manufacturing a perforated cast product according to the present invention, pouring into a casting mold can be performed under a low pressure of less than 10 MPa.
  • the apparatus can be simplified and a perforated cast product can be obtained at low cost.
  • a simple mold having an open upper surface can be used, so that the mold cost is low.
  • the apparatus is inexpensive.
  • the apparatus can be further simplified by pouring the molten metal directly into the casting mold from the crucible. Further, even for an alloy such as Al—SiC p that is difficult to pass through with a drill or the like, a perforated cast product can be easily manufactured.
  • FIG. 1 is a perspective view of a perforated cast product of the present invention.
  • FIG. 2 is a perspective view showing a state in which the rod-shaped mold is removed from the casting mold for producing the perforated cast product of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a casting material is poured into the casting mold.
  • FIG. 4 is a cross-sectional view showing a state where the rod-shaped mold is pulled out from the casting mold after pouring.
  • FIG. 5 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter and when the expansion is started in the hypoeutectic of the Al—Si binary alloy.
  • FIG. 6 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter and when the expansion is started in the hypereutectic of the Al—Si binary alloy.
  • FIG. 7 is a diagram showing a temperature range in which the rod-shaped mold can be drawn after the diameter of the Al—Si binary alloy is expanded in the temperature range indicated by the shaded area A in FIG.
  • FIG. 8 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Cu binary alloy.
  • FIG. 9 is a diagram showing a range of the temperature Tp (° C.) in the case where the drawing step is performed without expanding the diameter of the Al—Mn binary alloy.
  • FIG. 10 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Cu—Zn binary alloy.
  • FIG. 11 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Mg binary alloy.
  • FIG. 12 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Si—Mg ternary alloy (however, the Al—Si binary alloy is shown).
  • FIG. 13 is an enlarged photograph of the holes formed in the perforated casting formed in Al-6% Si.
  • FIG. 14 is a photograph of the end face of a perforated casting formed on Al-25% Si.
  • FIG. 15 shows an example of a bar-shaped mold having a different shape.
  • FIG. 16 is an end view of a perforated cast product produced using the rod-shaped mold of FIG.
  • FIG. 17 is an explanatory view showing a cross-section of a casting mold in which a rod-shaped mold is inserted vertically.
  • FIG. 18 is an explanatory view showing a cross section of a casting mold partitioned into a plurality of parts by a partition plate.
  • FIG. 19 is an explanatory view showing a cross section of an electric furnace for continuously carrying out the present invention.
  • FIG. 20 is a cross-sectional view along a rod-shaped mold showing another embodiment of the casting mold.
  • FIG. 21 is a cross-sectional view of the casting mold of FIG.
  • FIG. 22 is an explanatory view showing a state in which vibration or the like is applied to the casting mold shown in FIGS. 20 and 21.
  • FIG. 23 is a photograph of the end face of the perforated cast product produced as described in Example 1.
  • FIG. 24 is a photograph of the end face of the perforated cast product produced in the manner of Example 2.
  • FIG. 25 is a photograph of the end face of the perforated casting produced in the manner of Example 3.
  • FIG. 26 is an enlarged photograph of the holes indicated by the circled numbers 1, 5 and 9 in FIG.
  • FIG. 27 is a photograph of the end face of the perforated casting produced in the same manner as in Example 4.
  • FIG. 28 is an enlarged photograph of the holes indicated by the circled numbers 1 to 3 in FIG.
  • FIG. 29 is a photograph of the end face of the perforated cast product produced in the manner of Example 5.
  • FIG. 30 is an overall photograph of a perforated cast product produced according to the procedure of Example 5.
  • FIG. 31 is a photograph of the end face of the perforated cast product produced in the manner of Example 6.
  • FIG. 32 is a photograph of the end face of the perforated casting produced in the same manner as in Example 7.
  • FIG. 33 is a photograph of the end face of the perforated casting produced in the manner of Example 8.
  • FIG. 34 is a photograph of the end face of the perforated casting produced in the same manner as in Example 9.
  • FIG. 35 is a photograph of the end face of the perforated cast product produced in the manner of Example 10.
  • FIG. 36 is a photograph of the end face of a perforated cast product produced in the manner of Example 11.
  • FIG. 37 is a photograph of the end face of the perforated cast product produced in the manner of Example 12.
  • FIG. 38 is a photograph of the end face of the perforated cast product produced in the manner of Example 13.
  • FIG. 39 is a photograph of the end face of the perforated casting product created in the manner of Example 14.
  • FIG. 40 is a photograph of the end face of the perforated cast product created in the manner of Example 15.
  • the perforated cast product (10) of the present invention is one in which one or a plurality of through holes (12) or a bottomed hole is formed in the longitudinal direction as shown in FIG.
  • the perforated cast product (10) of the present invention has one or more holes (12) formed therein, has a large specific surface area, and is lightweight, so that it can be used as a heat radiating member for CPUs, machine tools, electric vehicles and the like. It can be used for heat sinks used, shock absorbing materials for vehicles, sound absorbing materials, lightweight materials, and the like.
  • Casting materials used for the perforated casting product (10) having the above-described structure are aluminum, Al—Si alloy, Al—Mg alloy, Al—Cu alloy, Al—Mn alloy, Al—Si—Mg alloy.
  • aluminum alloys such as, an aluminum group, such as Al-SiC p can be exemplified composite material whose matrix, copper, copper alloys such as Cu-Zn alloys containing brass, magnesium, magnesium alloys. Of course, it is not limited to these materials.
  • the perforated casting product (10) of the present invention can be produced using a casting mold (20) having an open upper surface as shown in FIG. Note that the pouring can be performed not only under normal pressure but also under reduced pressure, and further under a pressure of less than 10 MPa. When casting is performed under reduced pressure or under pressure, the casting mold (20) may be accommodated in the cavity.
  • the present invention can be produced using a very simple apparatus as compared with the above-described foaming method or die casting, which is usually performed in a sealed space under a pressure of 50 MPa or more.
  • the casting mold (20) has a casting portion (22) formed in a substantially rectangular parallelepiped shape in the drawing, and the upper surface of the casting portion (22) is open. Yes.
  • the rod-shaped mold (30) is inserted from the side into the cast-in part (22).
  • the rod-shaped mold (30) can be formed so as to be able to penetrate the casting portion (22), and the casting mold (20) has an insertion hole (24) that matches the shape of the rod-shaped mold (30). .
  • the rod-shaped mold (30) can be exemplified by a rigid rod, a wire such as a piano wire, a needle-shaped material, a pipe and the like. Further, a taper can be provided at the tip in the insertion direction of the casting mold (20) or the whole. Furthermore, a curved shape such as an arc shape may be used as long as it can be extracted, but a straight shape is preferable because it can be easily extracted.
  • the rod-shaped mold preferably has a portion inserted into the casting mold, a protruding portion, a grip margin for pulling out from the casting mold, and a member for gripping. Furthermore, in order to facilitate the diameter expansion and drawing, it is preferable that the end of the rod-shaped mold is bent in an L shape.
  • the rod-shaped mold (30) is made of a material that does not react with the casting material used.
  • the rod-shaped mold (30) include metals such as iron-based materials having a melting point higher than that of the casting material (40), or ceramics. It is preferable to select an appropriate combination of the linear expansion coefficients of the rod-shaped mold (30) and the casting material (40). If necessary, the rod-shaped mold (30) can be coated or sprayed with a release agent such as boron nitride (boron nitride), graphite (graphite), or ceramic.
  • rod-shaped molds (30) there are four rod-shaped molds (30), each having a circular cross section.
  • the number, diameter, and length of the rod-shaped mold (30) can be appropriately set according to the required number of holes (12), the inner diameter, and the depth.
  • the rod-shaped mold (30) can be, for example, a wire having a diameter of 8 mm or less, a needle-shaped material having a diameter of 1 mm or less, which is impossible with a cast pin, and a length of 50 mm or more.
  • the rod-shaped mold used is 15 ⁇ a / b, b ⁇ b, where the longitudinal dimension of the portion inserted into the casting mold is a (mm) and the cross-sectional area perpendicular to the longitudinal direction is b (mm 2 ). Even a thin rod-shaped mold such as 25 can be suitably implemented.
  • Such a small-diameter long hole could not be formed by drilling, bending or bending of the drill in drilling operations. Furthermore, with a material having high hardness such as Al—Si or Al—SiC p , the drill was worn out, and thus a long hole could not be formed. In the processing by laser or water jet, there are problems that the length of the hole is limited, the inner wall of the hole is roughened, and it is difficult to control the cross-sectional shape in the longitudinal direction of the hole. For this reason, the application of the present invention is suitable.
  • the production method of the present invention is suitable for forming narrow and long holes (12) that could not be established conventionally.
  • the length is 50 mm or more.
  • the diameter is 5 mm, the length is 500 mm.
  • the hole diameter and the length are not limited as long as the rod-shaped mold can be pulled out, and the rod-shaped mold has enough strength to be pulled out.
  • the hole (12) to be opened has 15 ⁇ a / b and b ⁇ 25 when the longitudinal dimension is a (mm) and the cross-sectional area perpendicular to the longitudinal direction is b (mm 2 ). is there.
  • the rod-shaped mold (30) passes through the cast-in part (22), and the hole (12) formed is also a through-hole, but the rod-shaped mold (30) has a length up to the middle of the cast mold (20). By doing so, a bottomed hole can be formed.
  • heat insulating material (28) on the inner surface of the casting mold (20) so as to surround the casting portion (22).
  • the heat insulating material (28) for example, fibers in which alumina and silica or the like as main components are processed into a sheet-like, cotton-like, plate-like, or blanket-like woven or non-woven fabric can be exemplified.
  • the heat insulating material (28) By arranging the heat insulating material (28), it is possible to prevent rapid cooling due to the outside air of the casting material (40) at the time of casting, and when inserting the rod-shaped mold (30) from the side, the heat insulating material ( 28), during the pouring, after pouring, and even after pulling out the rod-shaped mold (30), the casting material (40) from the insertion hole (24) or the gap between the insertion hole (24) and the rod-shaped mold (30). ) Can be prevented from spilling.
  • the rod-shaped mold (30) may be inserted into the casting mold (20) before pouring, or may be inserted into the casting mold (20) after pouring.
  • the hole diameter is limited because the thin rod-shaped mold is easily deformed during insertion. Therefore, when forming a thin hole, it is desirable to insert it into the mold before pouring.
  • the rod-shaped mold (30) is inserted into the casting mold (20) before pouring will be described.
  • the molten casting material (40) is poured into the casting part (22).
  • the pouring step can be performed using a crucible (42) as shown.
  • the flow promotion step can be performed, for example, by applying vibration, swinging, rotation, and / or impact to the rod-shaped mold (30) and / or the casting mold (20).
  • the flow promotion step can be performed, for example, by applying vibration, swinging, rotation, and / or impact to the rod-shaped mold (30) and / or the casting mold (20).
  • a temperature sensor such as a thermocouple (50) (see FIG. 3) can be arranged in the casting part (22). It is desirable to arrange the temperature sensor so that the temperature in the vicinity of one or more rod-shaped molds (30) can be measured.
  • the temperature measurement can be omitted in the subsequent operation.
  • the casting mold (20) may be provided with a temperature control function such as a heating mechanism or a cooling mechanism to control the temperature management and cooling rate of the casting material (40).
  • a temperature control function such as a heating mechanism or a cooling mechanism to control the temperature management and cooling rate of the casting material (40).
  • a cooling rate suitable for the production method of the present invention is 0.05 ° C./second to 500 ° C./second.
  • the entire casting mold is preheated with an electric furnace or the like before pouring (for example, 500 ° C.), the cooling rate can be suppressed, so the time width of the drawing timing can be taken and the hot water is also improved.
  • the drawing step may be performed by heating the once solidified casting material (40) to the following temperature range in which holes can be formed.
  • the rod-shaped die (30) is pulled out from a state of standing in the casting material, and the rod-shaped die (30) is rotated, eccentrically rotated, vibrated, etc. so that the hole diameter formed in the casting material is expanded.
  • the rod-shaped mold (30) After performing the diameter expansion step.
  • the temperature of the casting material in the vicinity of the rod-shaped die (30) is Tp (° C.), and the rod-shaped die (30) is being drawn or
  • the upper limit temperature at which the hole wall does not collapse after drawing and the liquid phase oozes into the hole and does not fill the hole is Th (° C)
  • the lower limit temperature for drawing is Tx (° C)
  • the diameter-expanding step is performed by setting the temperature of the casting material in the vicinity of the rod-shaped die (30) to Tp (° C.) and the rod-shaped die (30).
  • the upper limit temperature at which the hole wall does not collapse during or after drawing and the liquid phase leaches into the hole and does not fill the hole is set to Th (° C)
  • the lower limit temperature for drawing is set to Tx (° C)
  • the melting point When Ts (° C.) is the lower one of the crystallization temperature and the peritectic temperature, the temperature starts in a temperature range where Ts ⁇ Tp ⁇ Th.
  • the rod-shaped mold (30) may be pulled out from the casting material. Since the hole is formed by the diameter expansion step, the temperature at which the rod-shaped mold (30) is extracted may be extracted even near room temperature depending on the casting material and the diameter expansion method, as shown in FIG. is there.
  • the temperature Tp (° C) varies depending on the alloy composition.
  • the casting material having the main composition and the temperature Tp (° C.) which is the temperature range in which the hole can be formed will be described.
  • FIG. 5 shows an equilibrium diagram of an Al—Si based binary alloy with a temperature range in which the Al—Si based binary alloy can be drilled superimposed.
  • the Al—Si binary alloy has a eutectic point when the Si content is about 12% by mass.
  • a composition in which the Si content, which is the main component of the alloy, is smaller than the eutectic point is called hypoeutectic, and a composition having a large Si content is called hypereutectic.
  • the Al—Si binary alloy is further cooled, and when the Si content is less than about 1.6% by mass, it crosses the solidus and becomes an ⁇ phase. When the amount of Si is more than about 1.6% by mass, a ( ⁇ + ⁇ ) phase is formed across the eutectic isotherm.
  • the temperature Tp (° C.) of the temperature range in which the hole can be formed in the drawing step is indicated by the hatched portion A in FIG. 5 in the hypoeutectic range where the Si amount is smaller than the eutectic point.
  • the region is Tx ⁇ Tp ⁇ Th.
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG. In FIG. 5, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. Referring to FIG. 5, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion A, and otherwise the through hole cannot be formed.
  • a range indicated by a hatched portion A ′′ in FIG. 6 is a temperature range in which holes can be formed.
  • the casting material changes from a molten phase to a semi-solidified state as it approaches the solidus from the liquidus, and solidifies when it exceeds the solidus, but is slightly soft under the solidus.
  • the rod-shaped mold (30) can be pulled out.
  • the casting material 40 is semi-solidified or solidified but still in a soft state. As shown in FIG. 4, when the rod-shaped mold (30) is pulled out, the trace of the rod-shaped mold (30) remains as a hole (12).
  • the temperature Tp (° C.) that is the temperature range in which the hole can be formed is By performing the diameter expansion step, the rod-shaped mold (30) can be pulled out in the range of the hatched portion B shown in FIG.
  • the diameter expansion step is performed at the temperature Tp (° C.) shown in FIG. 5
  • the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower temperature, as shown by the circle in FIG. It can be seen that the through hole was formed.
  • a rod-shaped die having a diameter of 2 mm and a casting die having a hole diameter of 3 mm through which the rod-shaped die passes were used, and the diameter was increased by rotating or swinging the rod-shaped die.
  • FIG. 8 shows an equilibrium diagram of an Al—Cu binary alloy with a temperature range in which the Al—Cu binary alloy can be formed overlapped.
  • Tp the temperature of the temperature range in which the hole can be formed in the drawing step
  • Th the temperature of the temperature range in which the hole can be formed in the drawing step
  • the rod-shaped mold (30) was drawn, and it was examined whether or not a through hole was formed.
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG. In FIG. 8, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. Referring to FIG. 8, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion D, and the through hole cannot be formed otherwise.
  • the drawing step of the rod-shaped mold (30) can be performed at the temperature Tp (° C.) or lower. Can be implemented.
  • FIG. 9 shows an equilibrium diagram of an Al—Mn binary alloy with a temperature range in which the Al—Mn binary alloy can be formed being overlapped.
  • Tp the temperature of the temperature range in which the hole can be formed in the drawing step
  • Th is 660 ° C. which is the melting point of Al
  • D the melting point of Al
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG.
  • those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
  • Tp ° C.
  • the diameter expansion step is performed at the temperature Tp (° C.), so that the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower. Can be implemented.
  • FIG. 10 shows the equilibrium state diagram of a Cu—Zn binary alloy with the temperature range in which the Cu—Zn binary alloy can be formed overlapped.
  • Tp ° C.
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG. In FIG. 10, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. Referring to FIG. 10, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion F, and otherwise the through hole cannot be formed.
  • the diameter expansion step is performed at the temperature Tp (° C.), whereby the drawing step of the rod-shaped mold (30) can be performed at the temperature Tp (° C.) or lower. Can be implemented.
  • the temperature Tp (° C.) in the temperature range in which the hole can be formed in the drawing step is a region of Tx ⁇ Tp ⁇ Th indicated by a line A ′ in FIG.
  • Th is a melting point of 660 ° C.
  • the temperature Tp (° C.) in the temperature range in which the hole can be formed in the drawing step is a region of Tx ⁇ Tp ⁇ Th indicated by a line E ′ in FIG.
  • Th is a melting point of 1083 ° C.
  • the rod-shaped mold (30) was pulled out at different pulling temperatures, and it was examined whether or not through holes were formed.
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results for pure Al are shown in FIG. 5, and the results for pure Cu are shown in FIG.
  • those with through holes formed are marked with a circle, those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. .
  • Tp ° C.
  • the step of pulling out the rod-shaped mold (30) is performed at the temperature Tp (° C.) or lower by performing the diameter expansion step at the temperature Tp (° C.). Can do.
  • FIG. 11 shows an equilibrium diagram of an Al—Mg-based binary alloy with a temperature range in which the Al—Mg-based binary alloy can be formed overlapped.
  • Tp ° C.
  • Th 660-9.7x (° C.) when the Mg content is x%
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG. In FIG. 11, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. Referring to FIG. 11, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion C, and otherwise the through hole cannot be formed.
  • the diameter expansion step is performed at the temperature Tp (° C.), so that the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower. Can be implemented.
  • FIG. 12 shows the temperature range in which Al—Si—Mg ternary alloy can be formed.
  • the eutectic temperature TEu of a multi-element alloy containing Al as a main component and containing Si is calculated by the B. R. Krohn equation (Modern Casting magazine 75 (1985) 21., Japanese Patent Laid-Open No. 2001-99797).
  • 6061 JIS standard: A6061
  • TEu (Ts) 458 ° C.
  • pure Al can be drawn up to 545 ° C.
  • Ts (572 ° C.)> 545 ° C.
  • 6061 is Ts (458 ° C.) ⁇ 545 ° C.
  • Al—Mg system is applied
  • the rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm.
  • the results are shown in FIG. In FIG. 12, a circle mark is given to those in which the through holes are formed, and a cross mark is given to those in which the through holes are not formed or those in which the rod-shaped mold (30) has not been pulled out.
  • Tp ° C.
  • the rod-shaped mold (30) is drawn at the temperature Tp (° C.) or lower by performing the diameter expansion step at the temperature Tp (° C.). Steps can be performed.
  • the same temperature range in which holes can be made is also applied to the metals exemplified above, pure metals other than alloys, binary alloys, and ternary alloys or more.
  • the casting material is an Al—Si based binary alloy, it becomes hard when Si is contained, so if Si ⁇ 15% by mass, the casting material is a composite with an aluminum group such as Al—SiC p as a matrix.
  • SiC p is hard, when SiC p is 10% by volume or more, drilling with a drill or the like becomes difficult, and the usefulness of the present invention increases.
  • the holes (12) of the casting (10) obtained as shown in FIGS. 13 and 14 have a structure in the shape, size, and distribution of crystals between the inner surface of the hole wall and the inside of 1 mm. There is no sudden change. This is because the structure grows evenly as a result of cooling the casting material (40) during the formation of the holes (12). Moreover, the grown dendrite is not cut. On the other hand, when a hole is formed by drilling, laser, or water jet processing, the structure of the inner surface of the hole wall breaks or melts and re-solidifies. There are sudden changes in the organization.
  • the cast product (10) having the obtained hole (12) is used after being subjected to machining or grinding as necessary.
  • FIG. 15 is a different embodiment of the rod-shaped mold (30), and FIG. 15 (a) is an embodiment in which a plate material having a cross section bent at a substantially right angle is adopted as the rod-shaped mold (30), and FIG. FIG. 15 (c) is an embodiment in which a hollow pipe is used as the rod-shaped die (30), and the heat capacity compared to the solid state. Can be reduced.
  • FIG. 16 shows a cast product (10) having a hole (12) produced using the rod-shaped mold (30).
  • FIG. 16 (a) shows a cast product (10) produced by adopting the rod-shaped mold (30) of FIG. 15 (a), and the hole (12) is bent at a substantially right angle.
  • FIGS. 16 (b) and 16 (c) show a cast product (10) produced by employing the rod-shaped mold (30) shown in FIGS. 15 (b) and 15 (c), respectively. .
  • the degree of freedom in design such as the number, shape, diameter and depth of the holes (12) can be increased as much as possible.
  • the rod-shaped mold (30) is arranged in advance in the casting mold (20), but after the pouring step, the rod-shaped mold (30) until the casting material (40) reaches the above temperature range. May be inserted through the insertion hole (24).
  • the rod-shaped mold (30) is preferably preheated in order to prevent solidification due to rapid cooling of the casting material (40).
  • it is more desirable that the rod-shaped mold (30) and / or the casting mold (20) is subjected to vibration, swinging, rotation and / or impact.
  • the rod-shaped mold (30) is rotated, eccentrically rotated, vibrated, reciprocated, or given an impact within the temperature Tp (° C.) range.
  • solidification proceeds in a state where the inner diameter of the hole (12) to be opened is enlarged, so that the rod-shaped mold (30) can be easily pulled out.
  • FIG. 17 shows an embodiment in which the rod-shaped mold (30) whose upper surface is opened is inserted from the upper side of the casting mold (20).
  • the rod-shaped mold (30) has a proximal end projecting downward from a plate-shaped holding member (32).
  • the rod-shaped mold (30) is cast in the state of the liquidus temperature Tl (° C.) or higher.
  • Tl liquidus temperature
  • the molten metal can be supplied while reducing the pressure in the casting portion (22) by a suction pump (not shown). By doing so, the amount of hot water between the rod-shaped molds (30) can be improved.
  • the rod-shaped mold (30) After the rod-shaped mold (30) is inserted into the casting material (40), when the temperature Tp (° C.) of the casting material (40) in the vicinity of the rod-shaped mold (30) reaches the temperature range similar to the above, the rod-shaped mold (30 ) May be pulled out together with the holding member (32).
  • FIG. 18 shows that a plurality of partition plates (60) are inserted into the casting mold (20), and the rod-shaped mold (30) is inserted into the insertion holes (24) and (62) penetrating the casting mold (20) and the partition plate (60). Is to be inserted.
  • the casting material (40) is poured into each section partitioned by the partition plate (60), and the rod-shaped mold (30) is pulled out at the above-mentioned temperature range. A hole can be opened.
  • the rod-shaped mold (30) is pulled out in the cooling process of the casting material (40) after pouring.
  • the rod-shaped mold (30) can be pulled out by heating again to raise the temperature to the above temperature range.
  • FIG. 19 shows an electric furnace (70) having a heating mechanism (72) such as a heater, and in the electric furnace (70), a cast material (40) after pouring or a solidified cast material (40) is placed.
  • a conveyor (74) for conveying the contained casting mold (20) is provided. By placing the casting mold (20) containing the casting material (40) from the upstream side on the conveyor (74), the casting material (40) is heated by the heating mechanism (72) until it reaches the downstream side, as described above.
  • the rod-shaped mold (30) may be pulled out when the temperature reaches the temperature range and reaches the downstream side of the conveyor (74) (see the casting mold (20) at the right end in the figure).
  • the casting material (40) can be soaked and the drawing timing of the rod-shaped mold (30) can be easily determined. Further, the production efficiency of the perforated casting product (10) can be increased as much as possible by flowing the casting mold (20) containing the casting material (40) continuously onto the conveyor (74).
  • the casting material (40) is subjected to vibration while being conveyed by the conveyor (74), so that the formation of nests in the casting material (40) is also suppressed.
  • this effect can be further enhanced by providing a mechanism for vibrating the casting mold (20) during conveyance by the conveyor (74).
  • the casting mold (20) includes a groove mold (26) bent in a U-shape and a pair of horizontal molds (27) that close the groove mold (26) from both sides.
  • the horizontal molds (27) can be assembled by connecting the mounting bolts (29).
  • the horizontal mold (27) has one or more insertion holes (24) opened therethrough, and the assembled casting mold (20) has one or more rod-shaped molds (30 through the insertion hole (24). ) Can be inserted.
  • the interior of the casting mold (20) is covered with a heat insulating material (28).
  • the casting material (40) is poured from the crucible (42) into the casting mold (20). At this time, as shown, vibration, rotation, and impact are applied to the rod-shaped die (30), and the rod-shaped die (30) is reciprocated in the longitudinal direction to promote the hot water around the rod-shaped die (30). can do.
  • a direct impact may be applied to the casting mold (20) to promote the hot water around the rod-shaped mold (30).
  • vertical and horizontal vibrations may be applied to the table (80) on which the casting mold (20) is placed to promote the hot water around the rod-shaped mold (30).
  • the casting mold (20) is swung, thereby promoting the hot water around the rod-shaped mold (30). You can also.
  • a perforated cast product was produced by the production method of the present invention, and the end face was polished and a photograph was taken.
  • casting mold temperature is the temperature at which the casting mold was preheated
  • experimental sample is the composition of the casting material
  • % means mass%, for example, Al-5% Si
  • the notation means Si 5% by mass, the balance Al and unavoidable impurities.
  • pouring temperature means the temperature when the molten metal of the casting material is taken out of the electric furnace
  • bar-shaped mold means the material and diameter of the rod-shaped mold.
  • Drawing temperature Tp (° C.) indicates the temperature of the casting material when the rod-shaped mold is drawn, and for the various changes in the drawing temperature Tp (° C.), the corresponding temperature is shown in circles. Yes.
  • an iron bottom plate and upper and lower side plates are combined with left and right side plates with a 5.5 mm diameter hole penetrating a bar-shaped die at the corresponding position, and the upper part opens.
  • a rectangular mold having a length of 50 mm, a width of 65 mm, and a depth of 40 mm is formed on the inner side, and an alumina / silica nonwoven fabric (isowool) is formed on the inner surfaces of the upper, lower, left and right side plates and the inner surface of the bottom plate. (Registered trademark) paper) 2 mm thick.
  • the alumina / silica non-woven fabric covering the holes was pierced into the holes of the left and right side plates in advance so that the other end of the rod-shaped mold protruded from the mold.
  • FIG. 23 A photograph of the perforated cast product of Example 1 is shown in FIG. 23 (band saw cut surface). As can be seen with reference to the figure, it can be seen that the holes penetrating the cast product were formed in a staggered manner.
  • Example 2 The procedure was the same as in Example 1 except for the conditions described below. After pouring, the mold was struck multiple times to give an impact, and the hot water was promoted to obtain a perforated material as shown in FIG.
  • Casting mold temperature 500 ° C
  • Rod type 2 mm diameter, 100 mm overall length (50 mm in the casting mold inner dimension) stainless steel bar casting mold side plate hole diameter: 3 mm diameter Drawing temperature (Tp): 580 ° C
  • FIG. 1 A photograph of the perforated cast product of Example 2 is shown in FIG. As can be seen with reference to the figure, it can be seen that the holes penetrating the cast product were formed in a staggered manner.
  • Example 3 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample 6061 (Al-0.4 to 0.8% Si-0.7% or less Fe-0.15 to 0.4% Cu-0.8 to 1.2% Mg)
  • Liquidus temperature (Tl) 652 ° C
  • Solidus temperature (Ts) 582 ° C
  • Hot water temperature 680 ° C
  • Rod-shaped mold Diameter of stainless steel wire casting mold side plate of 0.5 mm in diameter and 100 mm in total length (50 mm in casting mold dimensions): 3 mm in diameter Drawing temperature (Tp): 605 ° C to 645 ° C every 5 ° C
  • FIG. 25 A photograph of the perforated cast product of Example 3 is shown in FIG. 25 (polished surface). As can be seen with reference to the figure, it can be seen that holes were formed in the cast product within the above-mentioned temperature range of the drawing temperature (Tp).
  • FIG. 26 is an enlarged view of the circled numbers 1, 5 and 9 in the hole of FIG. Referring to the figure, it can be seen that the roundness of the hole increases as the rod-shaped mold is pulled out at a temperature close to the solidus temperature Ts (° C.). Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Example 4 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample 6061 (Al-0.4 to 0.8% Si-0.7% or less Fe-0.15 to 0.4% Cu-0.8 to 1.2% Mg)
  • Rod-shaped mold Diameter of stainless steel wire casting mold side plate of 0.5 mm in diameter and 100 mm in total length (50 mm in casting mold dimensions): 3 mm in diameter Drawing temperature (Tp): 605 ° C
  • FIG. 27 A photograph of the perforated cast product of Example 4 is shown in FIG. 27 (polished surface). As can be seen from the figure, it can be seen that a hole has been opened in the cast product.
  • FIG. 28 is an enlarged view of the circled numbers 1, 2 and 3 in the hole of FIG. It can be seen that a hole with a high roundness is opened in all cases. Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Example 5 The procedure was the same as in Example 1 except for the conditions described below.
  • Rod-shaped mold outer diameter 6 mm, total length 600 mm (inside casting mold dimension 500 mm), 1 mm thick stainless steel pipe casting mold side plate hole diameter: 6.5 mm diameter
  • Example 5 the experiment was conducted with a perforated cast product having a cross section of 25 mm ⁇ 25 mm and a length of 500 mm, and a rod-shaped mold (pipe) arranged in the longitudinal direction of the perforated cast product.
  • FIG. 29 shows an end face of the obtained perforated cast product
  • FIG. 30 shows an overall appearance.
  • FIG. 29 band saw cut surface
  • Example 6 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-25% Si Liquidus temperature (Tl): 760 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 1 mm and a total length of 100 mm (inside casting mold size: 50 mm).
  • FIG. 31 A photograph of the perforated cast product of Example 6 is shown in FIG. 31 (polished surface). As can be seen with reference to the figure, it can be seen that holes were formed in a staggered pattern in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Example 7 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-3% Si Liquidus temperature (Tl): 641 ° C Eutectic temperature (Ts): 577 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm)
  • Hole diameter of casting mold side plate diameter 3 mm
  • FIG. 7 A photograph of the perforated cast product of Example 7 is shown in FIG. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Tp drawing temperature
  • Example 8> The procedure was the same as in Example 1 except for the conditions described below.
  • FIG. 7 shows a lower limit temperature at which pulling can be performed when diameter is expanded by pressing another rod against the L-shaped portion of the rod-shaped mold and rotating the rod-shaped mold.
  • Example 9 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-0.5% Si Liquidus temperature (Tl): 657 ° C
  • Solidus temperature 636 ° C
  • Eutectic temperature (Ts) 577 ° C
  • Hot water temperature 720 ° C
  • Rod type 2mm diameter stainless steel rod coated with BN
  • Hole diameter of casting mold side plate 3mm diameter Drawing temperature (Tp): 625 ° C to 640 ° C every 5 ° C
  • FIG. 34 shows a photograph of the perforated casting product of Example 9. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Tp drawing temperature
  • Example 10 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-10% Si Liquidus temperature (Tl): 594 ° C Eutectic temperature (Ts): 577 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm)
  • Hole diameter of casting mold side plate diameter 3 mm
  • Drawing temperature (Tp) 575 ° C to 590 ° C
  • FIG. 35 shows a photograph of the perforated cast product of Example 10.
  • Tp drawing temperature
  • Example 11 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-12% Si Liquidus temperature (Tl): 581 ° C
  • Pouring temperature 650 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm)
  • Hole diameter of casting mold side plate diameter 3 mm
  • FIG. 36 A photograph of the perforated cast product of Example 11 is shown in FIG. 36 (milled surface).
  • Tp drawing temperature
  • Ts liquidus temperature
  • Example 12 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Al-15% Si Liquidus temperature (Tl): 613 ° C Eutectic temperature (Ts): 577 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm)
  • Hole diameter of casting mold side plate diameter 3 mm
  • FIG. 37 shows a photograph of the perforated cast product of Example 12. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
  • Tp drawing temperature
  • Example 13 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature 500 ° C
  • Experimental sample Brass (Cu-15% Zn)
  • Hot water temperature 1200 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm)
  • Hole diameter of casting mold side plate diameter 3 mm
  • FIG. 38 A photograph of a perforated cast product of Example 13 is shown in FIG. 38 (milled surface). As can be seen with reference to the drawing, it can be seen that brass was able to open a hole in the cast product even when the drawing temperature Tp (° C.) was changed.
  • Example 14 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature room temperature
  • Experimental sample Al-30% SiC p (AC4C base: Si 6.5 to 7.5%, Fe 0.55% or less, Cu: 0.25% or less, Mg 0.2 to 0.45%)
  • Hot water temperature 800 ° C
  • Bar-shaped mold BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (within casting mold dimensions of 50 mm).
  • FIG. 14 A photograph of the perforated cast product of Example 14 is shown in FIG. As can be seen with reference to the figure, it can be seen that Al-SiC p was also able to open holes in the cast product.
  • Example 15 The procedure was the same as in Example 1 except for the conditions described below.
  • Casting mold temperature room temperature
  • Experimental sample Al-30% SiC p (AC4C base: Si 6.5 to 7.5%, Fe 0.55% or less, Cu: 0.25% or less, Mg 0.2 to 0.45%)
  • Hole diameter of casting mold side plate diameter 5.5mm Drawing temperature (Tp): 550 ° C
  • Tp Drawing temperature
  • the diameter of the rod was increased by pressing another rod against the L-shaped bent portion of the rod and rotating the rod in one direction.
  • FIG. 15 A photograph of the perforated cast product of Example 15 is shown in FIG. As can be seen with reference to the figure, it can be seen that Al-SiC p was also able to open holes in the cast product.
  • the present invention is useful as a method for producing a perforated cast product in which through holes can be formed with a simple apparatus and method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A method for manufacturing a perforated cast product whereby a molten casting material is poured into a casting mold, after which rod-shaped forms arranged within the casting mold are withdrawn, thereby forming holes in the casting material where the rod-shaped forms existed, said method having: a pouring step, wherein the casting material is poured at less than 10 MPa; a withdrawal step, wherein the rod-shaped forms are withdrawn from the casting material in a temperature range of Tx≤Tp≤Th (where Tx=Ts-d and 0<d<100), or wherein an enlargement of the diameters of the holes is begun in a temperature range of Ts<Tp≤Th, after which the rod-shaped forms are withdrawn from the casting material, with Tp(°C) being the temperature of the cast material in the vicinity of the rod-shaped forms, Th(°C) being the upper limit temperature for which the hole walls do not collapse and the liquid phase does not penetrate and fill the holes during the withdrawal of the rod-shaped forms or after the withdrawal of the rod-shaped forms, Tx(°C) being the lower limit withdrawal temperature, and Ts(°C) being whichever is the lowest of the melting point, the eutectic temperature, or the peritectic temperature; and a removal step, wherein the cast product is removed from the casting mold.

Description

[規則37.2に基づきISAが決定した発明の名称] 有孔鋳造品及びその製造方法[Name of invention determined by ISA based on Rule 37.2] Perforated castings and their manufacturing method
 本発明は、貫通孔又は有底孔を有する鋳造品の製造方法に関するものである。 The present invention relates to a method for producing a cast product having a through hole or a bottomed hole.
 ヒートシンク、衝撃吸収材や軽量材などに用いられる金属材料として、ポーラス材(多孔質材)が提案されている(非特許文献1参照)。
 この種のポーラス材は多孔質であるが故、比表面積が大きく、通気性や通水性がよく、熱特性にすぐれることからヒートシンクへの用途が期待されている。
 また、上記ポーラス材は、低密度であり、軽量であることから、衝撃吸収材や軽量材への用途が期待されている。
Porous materials (porous materials) have been proposed as metal materials used for heat sinks, shock absorbers, lightweight materials, and the like (see Non-Patent Document 1).
Since this type of porous material is porous, it is expected to be used as a heat sink because of its large specific surface area, good air permeability and water permeability, and excellent thermal characteristics.
Moreover, since the said porous material is a low density and is lightweight, the use to an impact-absorbing material or a lightweight material is anticipated.
 一般的に、上記ポーラス材は、溶湯にガス(発泡剤等)を溶解させて、凝固時にガスを放出して気泡化させることで作製される(所謂「発泡法」)。このため、孔の大きさや位置などを調整することは困難であり、また、この操作を行なうためには真空容器等が必要となり、製造装置が高価であると共に、その生産性を高めることも難しい。 Generally, the porous material is produced by dissolving a gas (foaming agent or the like) in a molten metal and releasing the gas during solidification to form bubbles (so-called “foaming method”). For this reason, it is difficult to adjust the size and position of the hole, and a vacuum vessel or the like is required to perform this operation. The manufacturing apparatus is expensive and it is difficult to increase the productivity. .
 また、溶融金属材料の凝固方向を制御することで、気泡の成長方向を制御し、長孔を形成したロータス(蓮根)型ポーラス材も提案されている(同文献)。
 しかしながら、この場合においても、孔の長さや位置などを調整することは困難であり、材料を貫通する孔を形成することもできない。
In addition, a lotus-type porous material in which a growth direction of bubbles is controlled by controlling a solidification direction of a molten metal material to form a long hole has been proposed (the same document).
However, even in this case, it is difficult to adjust the length and position of the hole, and it is not possible to form a hole penetrating the material.
 一方、金属材料に貫通孔又は有底孔(以下単に「孔」と称する)を形成する方法として、特許文献1乃至特許文献5が提案されている。これら特許文献は、ダイキャスト法を利用したものである。 On the other hand, Patent Documents 1 to 5 have been proposed as methods for forming through holes or bottomed holes (hereinafter simply referred to as “holes”) in a metal material. These patent documents utilize a die-cast method.
 より詳細には、これら特許文献では、ダイキャスト金型内にジェット噴流等により鋳造材料の溶湯を射出して充填し、50~100MPa以上の鋳造圧力で維持した状態にて、金型の型開き方向と平行な向きに鋳抜きピンを挿入し、溶湯が凝固する前に鋳抜きピンを引き抜くことで孔を形成している。なお、特許文献5では、金型の型開き方向と垂直な向きに鋳抜きピンが挿入されている。 More specifically, in these patent documents, a die casting mold is opened by injecting a molten casting material into the die casting mold by a jet jet or the like and maintaining the casting pressure at 50 to 100 MPa or more. A hole is formed by inserting a core pin in a direction parallel to the direction and extracting the core pin before the molten metal solidifies. In Patent Document 5, a cast pin is inserted in a direction perpendicular to the mold opening direction of the mold.
 さらに、特許文献6では、砂型を含む鋳型内に鋳抜きピンが設けられた状態で、鋳型に溶湯を注湯し、鋳抜きピンを冷却しつつ100Hz以上で振動させながら孔を形成する方法が提案されている。 Further, in Patent Document 6, there is a method in which a hole is formed while pouring molten metal into a mold in a state in which a cast pin is provided in a mold including a sand mold and vibrating the cast pin at 100 Hz or higher while cooling the cast pin. Proposed.
特開2000-102850号公報JP 2000-102850 A 特開2004-202539号公報JP 2004-202539 A 特開平10-113758号公報Japanese Patent Laid-Open No. 10-113758 特開2008-229638号公報JP 2008-229638 A 特開平07-40028号公報Japanese Patent Application Laid-Open No. 07-40028 特開2000-42707号公報JP 2000-42707 A
 しかしながら、上記特許文献1乃至特許文献5は何れもダイキャストによるものであり、溶湯を高圧下で注湯する必要があるため、極めて大掛かりな耐圧性の金型と高圧で溶湯を射出注入させる装置を必要とする。
 また、上記特許文献では、100mmを越える長孔を開設したり、孔が潰れてしまう虞があるため多数本の通孔を密に開設することは困難であり、形成される通孔の設計自由度が低い。
 さらには予め金型に鋳抜きピンを配置した状態では、射出される鋳造材料によって鋳抜きピンが変形してしまう虞がある。また鋳抜きピンが多い、あるいは鋳抜きピン間の間隔が狭いと、湯流れ及び湯回りを阻害し、健全な製品を作製し難くなる。このため通常鋳抜きピンの挿入は鋳造材料を充填した後に行なわざるを得ない。後挿入方法では、しかし細い鋳抜きピンを挿入することは、座屈を起こしやすく、困難である。
 加えて、ダイキャストでは型開き方向に厚みのある鋳造品は作製できないから、作製できる鋳造品の大きさ、形状にも制約を受ける。
However, since all of the above Patent Documents 1 to 5 are based on die-casting, and it is necessary to pour the molten metal under high pressure, a very large pressure-resistant mold and an apparatus for injecting and injecting molten metal at high pressure Need.
In the above-mentioned patent document, it is difficult to open a large number of through holes because there is a possibility that a long hole exceeding 100 mm is opened or the hole is crushed. The degree is low.
Furthermore, in the state where the core pin is previously arranged in the mold, the core pin may be deformed by the cast material to be injected. Moreover, when there are many cast pins or the space | interval between cast pins is narrow, a hot-water flow and a hot-water supply will be inhibited, and it will become difficult to produce a healthy product. For this reason, it is usually necessary to insert the cast pin after filling the casting material. In the post-insertion method, however, it is difficult to insert a thin core pin because it tends to buckle.
In addition, since a cast product having a thickness in the mold opening direction cannot be produced by die casting, the size and shape of the cast product that can be produced are also limited.
 特許文献6については、鋳抜きピンの冷却機構が必要であり、鋳抜きピンが高価になってしまう。また、冷却機構を必要とするから、径の細い鋳抜きピンを使用することはできない。鋳抜きピンの周りの鋳造材料の均質化を図ることを目的とするものであり、鋳造材料を冷却により急速に凝固させることから、湯回りが悪くなり、鋳抜きピンどうしの間隔は広くせざるを得ない。従って、形成される孔の大きさや間隔にも大きな制約を受ける。さらには、砂型は振動を加えると崩落する虞があるから、砂型を振動させて湯回りの向上を図ることも困難である。 For Patent Document 6, a cooling mechanism for the core pin is necessary, and the core pin becomes expensive. Further, since a cooling mechanism is required, a cast pin having a small diameter cannot be used. The purpose is to homogenize the casting material around the core pin. Since the casting material is rapidly solidified by cooling, the hot water becomes worse and the distance between the core pins is not widened. I do not get. Therefore, there are significant restrictions on the size and interval of the holes to be formed. Furthermore, since the sand mold may collapse when vibration is applied, it is also difficult to improve the water temperature by vibrating the sand mold.
 本発明の目的は、簡易な装置及び方法で自由度の高い通孔を形成することのできる有孔鋳造品の製造方法を提供することである。 An object of the present invention is to provide a method for producing a perforated cast product capable of forming a through hole having a high degree of freedom with a simple apparatus and method.
 本発明に係る有孔鋳造品の製造方法は、
 鋳造型内に鋳造材料(但し、Al-Mg合金及びAl-Si-Mg合金を除く)の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
 前記鋳造材料を10MPa未満で注湯する注湯ステップ、
 前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、融点、共晶温度または包晶温度の何れか低い方をTs(℃)とすると、
 Tx≦Tp≦Th(但し、Tx=Ts-d、0<d<100)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
 及び、
 前記鋳造型から鋳造品を取り出すステップ、
 を有する。
The method for producing a perforated casting according to the present invention is as follows.
After pouring a molten metal of the casting material (except for Al-Mg alloy and Al-Si-Mg alloy) into the casting mold, the rod-shaped mold placed in the casting mold is pulled out, so that A method for producing a perforated cast product in which a hole is formed in a portion having the rod-shaped mold,
A pouring step of pouring the casting material at less than 10 MPa;
The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C.), the lower limit temperature for drawing is Tx (° C.), the melting point, the eutectic temperature or the peritectic temperature is the lower one, Ts (° C.)
The rod-shaped mold is pulled out of the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 0 <d <100), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
as well as,
Removing the cast from the casting mold;
Have
 本発明では、共晶温度とは共晶点の温度のことを言い、包晶温度とは包晶点の温度のことを言う。なお、本発明の共晶点、包晶点とは合金の主成分が減少する方向で最初に現れる共晶点もしくは包晶点のことである。また、固相線温度も同様に、合金の主成分が減少する方向で最初に現れる固相線の温度のことである。 In the present invention, the eutectic temperature refers to the temperature of the eutectic point, and the peritectic temperature refers to the temperature of the peritectic point. The eutectic point and peritectic point of the present invention are the eutectic point or peritectic point that appears first in the direction in which the main component of the alloy decreases. Similarly, the solidus temperature is the temperature of the solidus that appears first in the direction in which the main component of the alloy decreases.
 前記鋳造材料は、Al-Si系合金、又は、Al-Cu系合金であり、前記dは5℃とすることができる。 The casting material is an Al—Si based alloy or an Al—Cu based alloy, and the d may be 5 ° C.
 前記鋳造材料は、Al-Mn系合金であり、前記dは90℃とすることができる。 The casting material is an Al—Mn alloy, and the d can be 90 ° C.
 前記鋳造材料は、Cu-Zn系合金であり、前記dは50℃とすることができる。 The casting material is a Cu—Zn alloy, and the d can be set to 50 ° C.
 前記鋳造材料は、純Alであり、前記dは115℃とすることができる。 The casting material may be pure Al, and the d may be 115 ° C.
 前記鋳造材料は、純Cuであり、前記dは18℃とすることができる。 The casting material is pure Cu, and the d may be 18 ° C.
 また、本発明に係る有孔鋳造品の製造方法は、
 鋳造型内にAl-Mg合金の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
 前記鋳造材料を10MPa未満で注湯する注湯ステップ、
 前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、固相線温度をTs(℃)とすると、
 Tx≦Tp≦Th(但し、Tx=Ts-d、80<d<110)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
 及び、
 前記鋳造型から鋳造品を取り出すステップ、
 を有する。
In addition, the method for producing a perforated casting according to the present invention is as follows.
A perforated casting in which a hole is formed in a portion of the casting material where the rod-shaped mold is present by pouring a molten Al-Mg alloy into the casting mold and then pulling out the rod-shaped mold disposed in the casting mold. A method for manufacturing a product,
A pouring step of pouring the casting material at less than 10 MPa;
The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C), the lower limit temperature for drawing is Tx (° C), and the solidus temperature is Ts (° C),
The rod-shaped mold is pulled out from the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 80 <d <110), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
as well as,
Removing the cast from the casting mold;
Have
 また、本発明に係る有孔鋳造品の製造方法は、
 鋳造型内にAl-Si-Mg合金の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
 前記鋳造材料を10MPa未満で注湯する注湯ステップ、
 前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、固相線温度または共晶温度をTs(℃)とすると、
 Tx≦Tp≦Th(但し、Tx=Ts-d、5<d<110)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
 及び、
 前記鋳造型から鋳造品を取り出すステップ、
 を有する。
In addition, the method for producing a perforated casting according to the present invention is as follows.
After pouring a molten Al—Si—Mg alloy into the casting mold, a hole is formed in the portion of the casting material where the rod-shaped mold is located by pulling out the rod-shaped mold disposed in the casting mold. A method for manufacturing a hole casting product,
A pouring step of pouring the casting material at less than 10 MPa;
The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C), the lower limit temperature for drawing is Tx (° C), and the solidus temperature or eutectic temperature is Ts (° C),
The rod-shaped mold is pulled out from the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 5 <d <110), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
as well as,
Removing the cast from the casting mold;
Have
 何れの方法においても、前記鋳造型内に配置された棒状型は、長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)とすると、
 15≦a/b、b≦25
 であることが望ましい。
 なお、棒状型の長手寸法とは、鋳造型に挿入されている部分の寸法であるが、複数に区画した鋳造型の場合は、各区画の寸法の累計を棒状型の長手寸法とする。
In any method, the rod-shaped mold disposed in the casting mold has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ).
15 ≦ a / b, b ≦ 25
It is desirable that
The longitudinal dimension of the rod-shaped mold is the dimension of the portion inserted into the casting mold, but in the case of a casting mold divided into a plurality of sections, the total of the dimensions of each section is the longitudinal dimension of the rod-shaped mold.
 また、本発明に係る有孔鋳造品は、
 鋳造品中に孔を有する有孔鋳造品であって、
 前記孔の孔壁の内面と、該内面よりも1mm内部との間に組織の急激な変化がない。
The perforated casting according to the present invention is
A perforated cast product having holes in the cast product,
There is no abrupt change in tissue between the inner surface of the hole wall of the hole and the inside of 1 mm from the inner surface.
 前記孔は、長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)とすると、
 15≦a/b、b≦25
 とすることができる。
The hole has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ).
15 ≦ a / b, b ≦ 25
It can be.
 前記鋳造品は、Al-Siであり、Si≧15質量%とすることができる。 The cast product is Al—Si, and Si ≧ 15% by mass.
 前記鋳造品は、Al-SiCであり、SiC≧10体積%とすることができる。 The casting is Al—SiC p , and SiC p ≧ 10% by volume.
 本発明に係る有孔鋳造品の製造方法によれば、上記にて規定された温度Tp(℃)の範囲内で棒状型を引き抜く、または、Tp(℃)の温度範囲で孔径を拡大する拡径を開始した後に、棒状型を引き抜くことにより、棒状型を引き抜いた跡は孔として残るため、容易に孔付きの鋳造品を作製することができる。
 また、鋳造型へ配備される棒状型の太さ、本数、配置、侵入長さを適宜調整することで、孔の直径、数、配置、深さなどを容易に調整することができる。
 さらに、鋳造材料として、比較的融点の低いアルミニウム、アルミニウム合金、アルミニウム基をマトリックスとする複合材料、融点の高い銅、銅合金など、幅広い金属に本発明を適用することができる。
 得られた有孔鋳造品は、簡易な鋳造型と棒状型に定まるため、幅、長さ、高さ方向の大きさ及び形状も自由に作ることができる。ヒートシンク、衝撃吸収材、吸音材、軽量材等へ好適に使用することができる。
 本発明に係る有孔鋳造品の製造方法によれば、鋳造型への注湯は10MPa未満の低圧下で行なうことができるから、高圧下で注湯を行なうダイキャストに比して装置を極めて簡素化でき、安価に有孔鋳造品を得ることができる。特に、鋳造型は、上面が開口した簡易型を用いることができることから、金型コストが安価である。
 以上のような点から装置が安価である。
 また、注湯もるつぼから直接鋳造型に注湯することで、さらに装置を簡素化することができる。
 さらに、Al-SiCのようにドリル等で通孔することが困難な合金でも、有孔鋳造品が容易に製造できる。
According to the method for manufacturing a perforated cast product according to the present invention, the rod-shaped mold is pulled out within the range of the temperature Tp (° C.) defined above, or the hole diameter is expanded within the temperature range of Tp (° C.). By pulling out the rod-shaped mold after starting the diameter, the trace of the rod-shaped mold being pulled out remains as a hole, so that a cast product with a hole can be easily produced.
In addition, the diameter, number, arrangement, depth, etc. of the holes can be easily adjusted by appropriately adjusting the thickness, number, arrangement, and penetration length of the rod-shaped mold provided in the casting mold.
Further, the present invention can be applied to a wide range of metals such as aluminum having a relatively low melting point, an aluminum alloy, a composite material having an aluminum base as a matrix, copper having a high melting point, and a copper alloy as a casting material.
Since the obtained perforated casting product is determined to be a simple casting mold and a rod-shaped mold, the width, length, size and shape in the height direction can be freely made. It can be suitably used for heat sinks, shock absorbing materials, sound absorbing materials, lightweight materials, and the like.
According to the method for manufacturing a perforated cast product according to the present invention, pouring into a casting mold can be performed under a low pressure of less than 10 MPa. It can be simplified and a perforated cast product can be obtained at low cost. In particular, as the casting mold, a simple mold having an open upper surface can be used, so that the mold cost is low.
In view of the above, the apparatus is inexpensive.
Moreover, the apparatus can be further simplified by pouring the molten metal directly into the casting mold from the crucible.
Further, even for an alloy such as Al—SiC p that is difficult to pass through with a drill or the like, a perforated cast product can be easily manufactured.
図1は、本発明の有孔鋳造品の斜視図である。FIG. 1 is a perspective view of a perforated cast product of the present invention. 図2は、本発明の有孔鋳造品を製造するための鋳造型から棒状型を取り外した状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which the rod-shaped mold is removed from the casting mold for producing the perforated cast product of the present invention. 図3は、鋳造型に鋳造材料を注湯している状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which a casting material is poured into the casting mold. 図4は、注湯後、鋳造型から棒状型を引き抜いている状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state where the rod-shaped mold is pulled out from the casting mold after pouring. 図5は、Al-Si二元合金の亜共晶において、拡径することなく引抜ステップを行なう場合及び拡径を開始する場合の温度Tp(℃)の範囲を示す図である。FIG. 5 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter and when the expansion is started in the hypoeutectic of the Al—Si binary alloy. 図6、Al-Si二元合金の過共晶において、拡径することなく引抜ステップを行なう場合及び拡径を開始する場合の温度Tp(℃)の範囲を示す図である。FIG. 6 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter and when the expansion is started in the hypereutectic of the Al—Si binary alloy. 図7は、Al-Si二元合金について、図5の斜線部Aに示す温度範囲で拡径を行なった後、棒状型を引き抜くことのできた温度の範囲を示す図である。FIG. 7 is a diagram showing a temperature range in which the rod-shaped mold can be drawn after the diameter of the Al—Si binary alloy is expanded in the temperature range indicated by the shaded area A in FIG. 図8は、Al-Cu二元合金について、拡径することなく引抜ステップを行なう場合の温度Tp(℃)の範囲を示す図である。FIG. 8 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Cu binary alloy. 図9は、Al-Mn二元合金について、拡径することなく引抜ステップを行なう場合の温度Tp(℃)の範囲を示す図である。FIG. 9 is a diagram showing a range of the temperature Tp (° C.) in the case where the drawing step is performed without expanding the diameter of the Al—Mn binary alloy. 図10は、Cu-Zn二元合金について、拡径することなく引抜ステップを行なう場合の温度Tp(℃)の範囲を示す図である。FIG. 10 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Cu—Zn binary alloy. 図11は、Al-Mg二元合金について、拡径することなく引抜ステップを行なう場合の温度Tp(℃)の範囲を示す図である。FIG. 11 is a diagram showing a range of the temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Mg binary alloy. 図12は、Al-Si-Mg三元合金(但し図示はAl-Siの二元系合金)について、拡径することなく引抜ステップを行なう場合の温度Tp(℃)の範囲を示す図である。FIG. 12 is a diagram showing a range of temperature Tp (° C.) when the drawing step is performed without expanding the diameter of the Al—Si—Mg ternary alloy (however, the Al—Si binary alloy is shown). . 図13は、Al-6%Siに形成された有孔鋳造品に形成された孔の拡大写真である。FIG. 13 is an enlarged photograph of the holes formed in the perforated casting formed in Al-6% Si. 図14は、Al-25%Siに形成された有孔鋳造品の端面の写真である。FIG. 14 is a photograph of the end face of a perforated casting formed on Al-25% Si. 図15は、形状の異なる棒状型の一例を示している。FIG. 15 shows an example of a bar-shaped mold having a different shape. 図16は、図15の棒状型を用いて作製された有孔鋳造品の端面図である。FIG. 16 is an end view of a perforated cast product produced using the rod-shaped mold of FIG. 図17は、棒状型を縦向きに差し込む鋳造型を断面して示す説明図である。FIG. 17 is an explanatory view showing a cross-section of a casting mold in which a rod-shaped mold is inserted vertically. 図18は、仕切り板により複数に区画した鋳造型を断面して示す説明図である。FIG. 18 is an explanatory view showing a cross section of a casting mold partitioned into a plurality of parts by a partition plate. 図19は、連続的に本発明の実施を行なう電気炉を断面して示す説明図である。FIG. 19 is an explanatory view showing a cross section of an electric furnace for continuously carrying out the present invention. 図20は、鋳造型の他の実施例を示す棒状型に沿う断面図である。FIG. 20 is a cross-sectional view along a rod-shaped mold showing another embodiment of the casting mold. 図21は、説明のため図20の鋳造型において取付ボルト及び棒状型を通るように切断した断面図である。FIG. 21 is a cross-sectional view of the casting mold of FIG. 20 cut through the mounting bolt and the rod-shaped mold for the sake of explanation. 図22は、図20及び図21に示す鋳造型に振動等を与えている状態を示す説明図である。FIG. 22 is an explanatory view showing a state in which vibration or the like is applied to the casting mold shown in FIGS. 20 and 21. 図23は、実施例1の要領にて作製された有孔鋳造品の端面の写真である。FIG. 23 is a photograph of the end face of the perforated cast product produced as described in Example 1. 図24は、実施例2の要領にて作製された有孔鋳造品の端面の写真である。FIG. 24 is a photograph of the end face of the perforated cast product produced in the manner of Example 2. 図25は、実施例3の要領にて作製された有孔鋳造品の端面の写真である。FIG. 25 is a photograph of the end face of the perforated casting produced in the manner of Example 3. 図26は、図25中丸数字1、5及び9で示す孔の拡大写真である。FIG. 26 is an enlarged photograph of the holes indicated by the circled numbers 1, 5 and 9 in FIG. 図27は、実施例4の要領にて作製された有孔鋳造品の端面の写真である。FIG. 27 is a photograph of the end face of the perforated casting produced in the same manner as in Example 4. 図28は、図27中丸数字1~3で示す孔の拡大写真である。FIG. 28 is an enlarged photograph of the holes indicated by the circled numbers 1 to 3 in FIG. 図29は、実施例5の要領にて作製された有孔鋳造品の端面の写真である。FIG. 29 is a photograph of the end face of the perforated cast product produced in the manner of Example 5. 図30は、実施例5の要領にて作製された有孔鋳造品の全体写真である。FIG. 30 is an overall photograph of a perforated cast product produced according to the procedure of Example 5. 図31は、実施例6の要領にて作製された有孔鋳造品の端面の写真である。FIG. 31 is a photograph of the end face of the perforated cast product produced in the manner of Example 6. 図32は、実施例7の要領にて作製された有孔鋳造品の端面の写真である。FIG. 32 is a photograph of the end face of the perforated casting produced in the same manner as in Example 7. 図33は、実施例8の要領にて作製された有孔鋳造品の端面の写真である。FIG. 33 is a photograph of the end face of the perforated casting produced in the manner of Example 8. 図34は、実施例9の要領にて作製された有孔鋳造品の端面の写真である。FIG. 34 is a photograph of the end face of the perforated casting produced in the same manner as in Example 9. 図35は、実施例10の要領にて作製された有孔鋳造品の端面の写真である。FIG. 35 is a photograph of the end face of the perforated cast product produced in the manner of Example 10. 図36は、実施例11の要領にて作製された有孔鋳造品の端面の写真である。FIG. 36 is a photograph of the end face of a perforated cast product produced in the manner of Example 11. 図37は、実施例12の要領にて作製された有孔鋳造品の端面の写真である。FIG. 37 is a photograph of the end face of the perforated cast product produced in the manner of Example 12. 図38は、実施例13の要領にて作製された有孔鋳造品の端面の写真である。FIG. 38 is a photograph of the end face of the perforated cast product produced in the manner of Example 13. 図39は、実施例14の要領にて作成された有孔鋳造品の端面の写真である。FIG. 39 is a photograph of the end face of the perforated casting product created in the manner of Example 14. 図40は、実施例15の要領にて作成された有孔鋳造品の端面の写真である。FIG. 40 is a photograph of the end face of the perforated cast product created in the manner of Example 15.
 本発明の有孔鋳造品(10)は、図1に示すように、長手方向に1又は複数の貫通孔(12)又は有底孔を形成したものである。 The perforated cast product (10) of the present invention is one in which one or a plurality of through holes (12) or a bottomed hole is formed in the longitudinal direction as shown in FIG.
 本発明の有孔鋳造品(10)は、内部に1又は複数の孔(12)が形成されており、比表面積が大きく、軽量であるため、CPUや工作機械、電気自動車などの放熱部材として利用されるヒートシンク、車両などの衝撃吸収材、吸音材、軽量材などに用いることができる。 The perforated cast product (10) of the present invention has one or more holes (12) formed therein, has a large specific surface area, and is lightweight, so that it can be used as a heat radiating member for CPUs, machine tools, electric vehicles and the like. It can be used for heat sinks used, shock absorbing materials for vehicles, sound absorbing materials, lightweight materials, and the like.
 上記構成の有孔鋳造品(10)に用いられる鋳造材料として、アルミニウム、Al-Si系合金、Al-Mg系合金、Al-Cu系合金、Al-Mn系合金、Al-Si-Mg系合金などのアルミニウム合金、Al-SiCなどのアルミニウム基をマトリックスとする複合材料、銅、真鍮を含むCu-Zn系合金などの銅合金、マグネシウム、マグネシウム合金を例示することができる。勿論、これら材料に限定されるものではない。 Casting materials used for the perforated casting product (10) having the above-described structure are aluminum, Al—Si alloy, Al—Mg alloy, Al—Cu alloy, Al—Mn alloy, Al—Si—Mg alloy. aluminum alloys such as, an aluminum group, such as Al-SiC p can be exemplified composite material whose matrix, copper, copper alloys such as Cu-Zn alloys containing brass, magnesium, magnesium alloys. Of course, it is not limited to these materials.
 本発明の有孔鋳造品(10)は、図2に示すように、上面が開口した鋳造型(20)を用いて作製することができる。なお、注湯は、常圧下のみならず、減圧下でも実施することができ、さらには、10MPa未満の加圧下でも実施することができる。減圧下、または、加圧下で鋳造を実施する場合、鋳造型(20)をキャビティに収容して実施すればよい。本発明は、前述の発泡法やダイキャストに密閉空間において通常50MPa以上の加圧下にて行なわれる方法に比して、極めて簡素な装置を用いて作製することができる。 The perforated casting product (10) of the present invention can be produced using a casting mold (20) having an open upper surface as shown in FIG. Note that the pouring can be performed not only under normal pressure but also under reduced pressure, and further under a pressure of less than 10 MPa. When casting is performed under reduced pressure or under pressure, the casting mold (20) may be accommodated in the cavity. The present invention can be produced using a very simple apparatus as compared with the above-described foaming method or die casting, which is usually performed in a sealed space under a pressure of 50 MPa or more.
 より詳細には、図2に示すように、鋳造型(20)は、図示では略直方体形状に形成された鋳込み部(22)を有しており、鋳込み部(22)の上面は開口している。 More specifically, as shown in FIG. 2, the casting mold (20) has a casting portion (22) formed in a substantially rectangular parallelepiped shape in the drawing, and the upper surface of the casting portion (22) is open. Yes.
 鋳込み部(22)には、側方から棒状型(30)が挿入される。棒状型(30)は、鋳込み部(22)を貫通可能に形成することができ、鋳造型(20)には、棒状型(30)の形状に合わせた挿通孔(24)が開設されている。 The rod-shaped mold (30) is inserted from the side into the cast-in part (22). The rod-shaped mold (30) can be formed so as to be able to penetrate the casting portion (22), and the casting mold (20) has an insertion hole (24) that matches the shape of the rod-shaped mold (30). .
 棒状型(30)は、剛性を有する棒材、ピアノ線の如き線材、針状材、パイプなどを例示することができる。また、鋳造型(20)への挿入方向の先端又は全体にテーパを設けることもできる。さらに、引き抜くことができれば、弧状などの曲線状でも構わないが、直線状の方が引き抜きやすく好ましい。なお、棒状型は、鋳造型に挿入されている部分と、はみ出した部分、および鋳造型から引き抜くための掴みしろや、掴むための部材が付いていることが好ましい。さらに言えば、拡径や引き抜きを容易に行なうためには、棒状型の端はL字形に曲がっているもの等が好適である。 The rod-shaped mold (30) can be exemplified by a rigid rod, a wire such as a piano wire, a needle-shaped material, a pipe and the like. Further, a taper can be provided at the tip in the insertion direction of the casting mold (20) or the whole. Furthermore, a curved shape such as an arc shape may be used as long as it can be extracted, but a straight shape is preferable because it can be easily extracted. The rod-shaped mold preferably has a portion inserted into the casting mold, a protruding portion, a grip margin for pulling out from the casting mold, and a member for gripping. Furthermore, in order to facilitate the diameter expansion and drawing, it is preferable that the end of the rod-shaped mold is bent in an L shape.
 棒状型(30)は、使用される鋳造材料に反応しない材料が用いられる。棒状型(30)として、鋳造材料(40)よりも融点の高い鉄系材料などの金属又はセラミックスを例示することができる。棒状型(30)と鋳造材料(40)の線膨張係数を適宜組み合わせて選択することが好ましい。なお、必要に応じて、棒状型(30)には、窒化ホウ素(ボロンナイトライド)系、黒鉛(グラファイト)系、セラミックス系などの離型剤を塗布やスプレーすることができる。 The rod-shaped mold (30) is made of a material that does not react with the casting material used. Examples of the rod-shaped mold (30) include metals such as iron-based materials having a melting point higher than that of the casting material (40), or ceramics. It is preferable to select an appropriate combination of the linear expansion coefficients of the rod-shaped mold (30) and the casting material (40). If necessary, the rod-shaped mold (30) can be coated or sprayed with a release agent such as boron nitride (boron nitride), graphite (graphite), or ceramic.
 図示の実施例では、棒状型(30)は4本であり、夫々断面円形のものを採用している。棒状型(30)の本数、直径及び長さは、要求される孔(12)の本数、内径、深さに応じて適宜設定することができる。棒状型(30)は、例えば、鋳抜きピンでは不可能であった直径8mm以下の線材、1mm以下の針状材とすることができ、長さは50mm以上とすることができる。 In the illustrated embodiment, there are four rod-shaped molds (30), each having a circular cross section. The number, diameter, and length of the rod-shaped mold (30) can be appropriately set according to the required number of holes (12), the inner diameter, and the depth. The rod-shaped mold (30) can be, for example, a wire having a diameter of 8 mm or less, a needle-shaped material having a diameter of 1 mm or less, which is impossible with a cast pin, and a length of 50 mm or more.
 使用される棒状型は、鋳造型に挿入されている部分の長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)としたときに、15≦a/b、b≦25のような細い棒状型でも好適に実施できる。 The rod-shaped mold used is 15 ≦ a / b, b ≦ b, where the longitudinal dimension of the portion inserted into the casting mold is a (mm) and the cross-sectional area perpendicular to the longitudinal direction is b (mm 2 ). Even a thin rod-shaped mold such as 25 can be suitably implemented.
 このような小径の長孔は、ドリルなどによる穴あけ作業では、ドリルの焼き付き、ドリルの折れや曲がりなどでできなかった。さらに、Al-SiやAl-SiCなどの硬度の高い材料では、ドリルが減耗するため、長孔は形成できなかった。レーザーやウォータージェットによる加工では、孔の長さに制約があったり、孔の内壁が粗面になったり、孔の長手方向における断面形状の制御が困難である問題があった。このため、本発明の適用が好適である。 Such a small-diameter long hole could not be formed by drilling, bending or bending of the drill in drilling operations. Furthermore, with a material having high hardness such as Al—Si or Al—SiC p , the drill was worn out, and thus a long hole could not be formed. In the processing by laser or water jet, there are problems that the length of the hole is limited, the inner wall of the hole is roughened, and it is difficult to control the cross-sectional shape in the longitudinal direction of the hole. For this reason, the application of the present invention is suitable.
 特に、本発明の製造方法は、従来開設することができなかった細く長い孔(12)の形成に好適である。例えば、直径0.5mmの場合は長さ50mm以上のものができる。直径5mmの場合は長さ500mmのものができる。これらは、内面が平滑で、孔が変形していない。
 原理的には、棒状型を引き抜くことができれば良く、棒状型が引き抜きに堪えうる強度があれば、孔径や長さは制限されない。なお、望ましくは、開設される孔(12)は、長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)としたときに、15≦a/b、b≦25である。
In particular, the production method of the present invention is suitable for forming narrow and long holes (12) that could not be established conventionally. For example, when the diameter is 0.5 mm, the length is 50 mm or more. When the diameter is 5 mm, the length is 500 mm. These have a smooth inner surface and no deformation of the holes.
In principle, the hole diameter and the length are not limited as long as the rod-shaped mold can be pulled out, and the rod-shaped mold has enough strength to be pulled out. Desirably, the hole (12) to be opened has 15 ≦ a / b and b ≦ 25 when the longitudinal dimension is a (mm) and the cross-sectional area perpendicular to the longitudinal direction is b (mm 2 ). is there.
 図示では棒状型(30)は鋳込み部(22)を貫通しており、形成される孔(12)も貫通孔となるが、棒状型(30)を鋳造型(20)の途中までの長さにすることで、有底孔を形成することができる。 In the figure, the rod-shaped mold (30) passes through the cast-in part (22), and the hole (12) formed is also a through-hole, but the rod-shaped mold (30) has a length up to the middle of the cast mold (20). By doing so, a bottomed hole can be formed.
 鋳造型(20)の内面には、鋳込み部(22)を囲むように断熱材(28)を配置することが望ましい。断熱材(28)として、例えば、アルミナとシリカ等を主成分とする繊維を、シート状、綿状、板状、ブランケット状の織布や不織布に加工したものを挙げることができる。 It is desirable to arrange a heat insulating material (28) on the inner surface of the casting mold (20) so as to surround the casting portion (22). As the heat insulating material (28), for example, fibers in which alumina and silica or the like as main components are processed into a sheet-like, cotton-like, plate-like, or blanket-like woven or non-woven fabric can be exemplified.
 断熱材(28)を配置することで、鋳込み時の鋳造材料(40)の外気による急激な冷却を阻止することができ、また、側方から棒状型(30)を挿入する場合、断熱材(28)によって、注湯中、注湯後、さらには、棒状型(30)の引き抜き後にも、挿通孔(24)又は挿通孔(24)と棒状型(30)との隙間から鋳造材料(40)が零れ出すことを防止できる。 By arranging the heat insulating material (28), it is possible to prevent rapid cooling due to the outside air of the casting material (40) at the time of casting, and when inserting the rod-shaped mold (30) from the side, the heat insulating material ( 28), during the pouring, after pouring, and even after pulling out the rod-shaped mold (30), the casting material (40) from the insertion hole (24) or the gap between the insertion hole (24) and the rod-shaped mold (30). ) Can be prevented from spilling.
 棒状型(30)は、注湯前に鋳造型(20)に挿入しておいてもよいし、注湯後に鋳造型(20)に挿入してもよい。注湯後に挿入する場合は、細い棒状型が挿入時に変形しやすいため、孔径には制約がある。従って、細い孔を形成する場合は、注湯前に鋳型に挿入しておくことが望ましい。なお、以下では棒状型(30)を注湯前に鋳造型(20)に挿入した実施形態について説明する。 The rod-shaped mold (30) may be inserted into the casting mold (20) before pouring, or may be inserted into the casting mold (20) after pouring. When inserting after pouring, the hole diameter is limited because the thin rod-shaped mold is easily deformed during insertion. Therefore, when forming a thin hole, it is desirable to insert it into the mold before pouring. In the following, an embodiment in which the rod-shaped mold (30) is inserted into the casting mold (20) before pouring will be described.
 図3に示すように、鋳造型(20)に棒状型(30)を挿入した状態で、溶解させた鋳造材料(40)を鋳込み部(22)に注湯する。注湯ステップは、図示のようにるつぼ(42)を用いて行なうことができる。 As shown in FIG. 3, with the rod-shaped mold (30) inserted into the casting mold (20), the molten casting material (40) is poured into the casting part (22). The pouring step can be performed using a crucible (42) as shown.
 なお、注湯中及び/又は注湯後に棒状型(30)間への湯回りを促進する流動促進ステップを行なうことが好適である。流動促進ステップは、例えば、棒状型(30)及び/又は鋳造型(20)を振動、揺動、回転、及び/又は衝撃を与えることで行なうことができる。特に、孔が長い場合や棒状型と棒状型の間隔または、棒状型と鋳造型の間隔が狭い場合は、湯回りを促進することが重要である。このために鋳造型(20)自体を振動、揺動、回転、及び/又は衝撃を与えることで湯回りをさらに促進できる。 In addition, it is preferable to perform a flow promotion step that promotes the hot water flow between the rod-shaped molds (30) during and / or after pouring. The flow promotion step can be performed, for example, by applying vibration, swinging, rotation, and / or impact to the rod-shaped mold (30) and / or the casting mold (20). In particular, when the hole is long, or when the distance between the rod-shaped mold and the rod-shaped mold or the distance between the rod-shaped mold and the casting mold is narrow, it is important to promote the hot water run. For this reason, hot water can be further promoted by applying vibration, swinging, rotation, and / or impact to the casting mold (20) itself.
 鋳造材料(40)の鋳込み部(22)内における温度を測定するために、鋳込み部(22)には熱電対(50)(図3参照)等の温度センサーを配置することができる。温度センサーは、1又は複数の棒状型(30)の近傍の温度を測定可能となるように配置することが望ましい。勿論、連続的に有孔鋳造品(10)の製造作業を行なう場合には、一旦温度測定を行なえば、その後の操業では温度測定を省略することもできる。 In order to measure the temperature in the casting part (22) of the casting material (40), a temperature sensor such as a thermocouple (50) (see FIG. 3) can be arranged in the casting part (22). It is desirable to arrange the temperature sensor so that the temperature in the vicinity of one or more rod-shaped molds (30) can be measured. Of course, when the manufacturing operation of the perforated cast product (10) is continuously performed, once the temperature is measured, the temperature measurement can be omitted in the subsequent operation.
 なお、鋳造型(20)が加熱機構や冷却機構などの温度コントロール機能を具備することで、鋳造材料(40)の温度管理や冷却速度を制御するようにしてもよい。 It should be noted that the casting mold (20) may be provided with a temperature control function such as a heating mechanism or a cooling mechanism to control the temperature management and cooling rate of the casting material (40).
 注湯後、冷却を行なって、鋳造材料(40)の温度が後述する製孔可能な温度範囲となると、図4に示すように、鋳造材料(40)から棒状型(30)を引き抜く引抜ステップを行なう。冷却は、徐冷又は自然冷却とすることで、引き抜くタイミングの時間幅をとることもでき、また、結晶を肥大化させることができる。一方、冷却時に急冷すれば、結晶組織の成長を抑えることができる。本発明の製造方法に好適な冷却速度は、0.05℃/秒~500℃/秒である。 After the pouring, cooling is performed, and when the temperature of the casting material (40) falls within a temperature range in which holes can be formed, which will be described later, as shown in FIG. 4, a drawing step of pulling out the rod-shaped mold (30) from the casting material (40) To do. The cooling can be slow cooling or natural cooling so that the time width of the extraction timing can be taken, and the crystal can be enlarged. On the other hand, if it is cooled rapidly during cooling, the growth of the crystal structure can be suppressed. A cooling rate suitable for the production method of the present invention is 0.05 ° C./second to 500 ° C./second.
 また、注湯前に鋳造型全体を電気炉などで予熱(例えば500℃)しておけば、冷却速度を抑えることができため、引き抜くタイミングの時間幅を取ることができ、湯回りもよくなる。 Also, if the entire casting mold is preheated with an electric furnace or the like before pouring (for example, 500 ° C.), the cooling rate can be suppressed, so the time width of the drawing timing can be taken and the hot water is also improved.
 なお、後述するとおり、一旦凝固した鋳造材料(40)を下記の製孔可能な温度範囲まで加熱して、引抜ステップを実施しても構わない。 As will be described later, the drawing step may be performed by heating the once solidified casting material (40) to the following temperature range in which holes can be formed.
 引抜ステップは、棒状型(30)を鋳造材料中で静置した状態から引き抜く場合と、鋳造材料中に、形成される孔径が拡大するように棒状型(30)を回転、偏心回転、振動などさせる拡径ステップを実施した後、棒状型(30)を引き抜く場合の二通りある。 In the drawing step, the rod-shaped die (30) is pulled out from a state of standing in the casting material, and the rod-shaped die (30) is rotated, eccentrically rotated, vibrated, etc. so that the hole diameter formed in the casting material is expanded. There are two ways to pull out the rod-shaped mold (30) after performing the diameter expansion step.
 まず、棒状型(30)を鋳造材料中で静置した状態から引き抜く引抜ステップの場合、棒状型(30)の近傍の鋳造材料の温度をTp(℃)、棒状型(30)を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が孔中に浸み出して孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、融点、共晶温度または包晶温度の何れか低い方をTs(℃)とすると、Tx≦Tp≦Th(但し、Tx=Ts-d、0<d<100)となる製孔可能な温度範囲で、鋳造材料から棒状型(30)を引き抜く。なお、dは鋳造材料の組成によって決定される。 First, in the case of a drawing step in which the rod-shaped die (30) is pulled out from a state of being left standing in the casting material, the temperature of the casting material in the vicinity of the rod-shaped die (30) is Tp (° C.), and the rod-shaped die (30) is being drawn or The upper limit temperature at which the hole wall does not collapse after drawing and the liquid phase oozes into the hole and does not fill the hole is Th (° C), the lower limit temperature for drawing is Tx (° C), the melting point, the eutectic temperature or If the lower peritectic temperature is Ts (° C.), Tx ≦ Tp ≦ Th (however, Tx = Ts−d, 0 <d <100). Pull out the mold (30). Note that d is determined by the composition of the casting material.
 また、拡径ステップの後、棒状型(30)の引き抜きを行なう引抜ステップ場合、拡径ステップは、棒状型(30)の近傍の鋳造材料の温度をTp(℃)、棒状型(30)を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が孔中に浸み出して孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、融点、共晶温度または包晶温度の何れか低い方をTs(℃)とすると、Ts<Tp≦Thとなる製孔可能な温度範囲に開始する。拡径ステップ終了後、鋳造材料から棒状型(30)を引き抜けばよい。拡径ステップによって孔が形成されているから、棒状型(30)を引き抜く温度は、後述する図7に示すように、鋳造材料と拡径の仕方によっては、常温近くでも引き抜くことができる場合がある。 Further, in the drawing step of drawing the rod-shaped die (30) after the diameter-expanding step, the diameter-expanding step is performed by setting the temperature of the casting material in the vicinity of the rod-shaped die (30) to Tp (° C.) and the rod-shaped die (30). The upper limit temperature at which the hole wall does not collapse during or after drawing and the liquid phase leaches into the hole and does not fill the hole is set to Th (° C), the lower limit temperature for drawing is set to Tx (° C), the melting point, When Ts (° C.) is the lower one of the crystallization temperature and the peritectic temperature, the temperature starts in a temperature range where Ts <Tp ≦ Th. After completion of the diameter expansion step, the rod-shaped mold (30) may be pulled out from the casting material. Since the hole is formed by the diameter expansion step, the temperature at which the rod-shaped mold (30) is extracted may be extracted even near room temperature depending on the casting material and the diameter expansion method, as shown in FIG. is there.
 温度Tp(℃)は合金組成によって異なる。以下、主たる組成の鋳造材料とその製孔可能な温度範囲である温度Tp(℃)について説明する。 The temperature Tp (° C) varies depending on the alloy composition. Hereinafter, the casting material having the main composition and the temperature Tp (° C.) which is the temperature range in which the hole can be formed will be described.
<Al-Si系二元合金>
 図5は、Al-Si系二元合金の平衡状態図に、Al-Si系二元合金の製孔可能な温度範囲を重ねたものである。図5を参照してわかるとおり、Al-Si系二元合金では、Si量が約12質量%で共晶点を有する。共晶点よりも合金主成分であるSi量が少ない組成は亜共晶、Si量が多い組成は過共晶と称される。
<Al-Si binary alloys>
FIG. 5 shows an equilibrium diagram of an Al—Si based binary alloy with a temperature range in which the Al—Si based binary alloy can be drilled superimposed. As can be seen with reference to FIG. 5, the Al—Si binary alloy has a eutectic point when the Si content is about 12% by mass. A composition in which the Si content, which is the main component of the alloy, is smaller than the eutectic point is called hypoeutectic, and a composition having a large Si content is called hypereutectic.
 亜共晶及び過共晶の範囲においては、何れも溶融状態である液相から液相線を横切って半凝固(準液相)となる。この液相線を横切る温度が液相線温度Tl(℃)である。 In the range of hypoeutectic and hypereutectic, both become semi-solid (quasi-liquid phase) across the liquidus from the liquid phase in the molten state. The temperature crossing the liquidus is the liquidus temperature Tl (° C.).
 上記Al-Si系二元合金は、さらに冷却することで、Si量が約1.6質量%より少ないときは、固相線を横切りα相となる。Si量が約1.6質量%より多ときは、共晶等温線を横切り(α+β)相となる。 The Al—Si binary alloy is further cooled, and when the Si content is less than about 1.6% by mass, it crosses the solidus and becomes an α phase. When the amount of Si is more than about 1.6% by mass, a (α + β) phase is formed across the eutectic isotherm.
 Al-Si系二元合金では、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、共晶点よりSi量が少ない亜共晶の範囲では、図5にて斜線部Aで示すTx≦Tp≦Thの領域となる。ここで、Thは、Siの含有量をx%としたときに、Th=660-9.5x(℃)で近似することができ、共晶点近傍では、Th≦Ts+5℃且つ液相線温度Tl(℃)以下、Txは、Ts(共晶温度:577℃)-d(=5℃)である。 In the Al—Si based binary alloy, the temperature Tp (° C.) of the temperature range in which the hole can be formed in the drawing step is indicated by the hatched portion A in FIG. 5 in the hypoeutectic range where the Si amount is smaller than the eutectic point. The region is Tx ≦ Tp ≦ Th. Here, Th can be approximated by Th = 660-9.5x (° C.) when the Si content is x%. Th ≦ Ts + 5 ° C. and the liquidus temperature near the eutectic point Below Tl (° C.), Tx is Ts (eutectic temperature: 577 ° C.) − D (= 5 ° C.).
 上記Al-Si系二元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図5に示す。図5中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図5を参照すると、斜線部Aで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the Al—Si based binary alloy, various components and the drawing temperature were changed, and the rod-shaped mold (30) was drawn to examine whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 5, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
Referring to FIG. 5, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion A, and otherwise the through hole cannot be formed.
 一方、Al-Si二元合金が過共晶となる範囲、即ち、Siが約12質量%を越える組成では、Ts-5℃≦Tp≦Ts+5℃且つ液相線温度Tl(℃)以下となる図6中斜線部A”で示す範囲が製孔可能な温度範囲となる。 On the other hand, in the range where the Al—Si binary alloy is hypereutectic, that is, in the composition where Si exceeds about 12% by mass, Ts−5 ° C. ≦ Tp ≦ Ts + 5 ° C. and the liquidus temperature Tl (° C.) or less. A range indicated by a hatched portion A ″ in FIG. 6 is a temperature range in which holes can be formed.
 何れの場合も、液相線から固相線に近づくにつれて鋳造材料は溶融状態から半凝固状態となり、固相線を越えると凝固するが、固相線直下の状態ではわずかに柔らかい状態であるため、棒状型(30)の引き抜きを行なうことができる。 In either case, the casting material changes from a molten phase to a semi-solidified state as it approaches the solidus from the liquidus, and solidifies when it exceeds the solidus, but is slightly soft under the solidus. The rod-shaped mold (30) can be pulled out.
 上述の製孔可能な温度範囲(図5中の斜線部A及び図6の斜線部A”)では、鋳造材料(40)は半凝固状態又は凝固はしているが未だ柔らかい状態にあり、図4に示すように、棒状型(30)を引き抜いたときに、棒状型(30)のあった跡が孔(12)として残る。 In the above-described temperature range in which holes can be formed (shaded portion A in FIG. 5 and hatched portion A ″ in FIG. 6), the casting material 40 is semi-solidified or solidified but still in a soft state. As shown in FIG. 4, when the rod-shaped mold (30) is pulled out, the trace of the rod-shaped mold (30) remains as a hole (12).
 なお、Al-Si二元合金においては、固相線又は共晶温度Ts(℃)-5℃未満の場合であっても、上記製孔可能な温度範囲である温度Tp(℃)にて、拡径ステップを実施することで、棒状型(30)の引抜は、図7に示す斜線部Bの範囲で実施できる。図5に示す温度Tp(℃)において拡径ステップを実施した場合、図7中丸印で示すように、温度Tp(℃)又はこれよりも低い温度で棒状型(30)を引き抜くことができ、貫通孔が形成できたことがわかる。
本実施例においては、直径2mmの棒状型と棒状型が通る孔径が3mmの鋳造型を使用し、棒状型を回転、または揺動させることにより拡径を行なった。
In the Al—Si binary alloy, even when the solidus or eutectic temperature Ts (° C.) is less than −5 ° C., the temperature Tp (° C.) that is the temperature range in which the hole can be formed is By performing the diameter expansion step, the rod-shaped mold (30) can be pulled out in the range of the hatched portion B shown in FIG. When the diameter expansion step is performed at the temperature Tp (° C.) shown in FIG. 5, the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower temperature, as shown by the circle in FIG. It can be seen that the through hole was formed.
In this example, a rod-shaped die having a diameter of 2 mm and a casting die having a hole diameter of 3 mm through which the rod-shaped die passes were used, and the diameter was increased by rotating or swinging the rod-shaped die.
<Al-Cu系二元合金>
 図8は、Al-Cu系二元合金の平衡状態図に、Al-Cu系二元合金の製孔可能な温度範囲を重ねたものである。図8を参照してわかるとおり、Al-Cu系二元合金では、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図8にて斜線部Dで示すTx≦Tp≦Thの領域となる。ここで、Thは、Cuの含有量をx%としたときに、Th=660-5.1x(℃)で近似することができ共晶点近傍では、Th≦Ts+5℃且つ液相線温度Tl(℃)以下、で表わすことができ、Txは、Ts(共晶温度:450℃)-d(=5℃)である。
<Al-Cu binary alloy>
FIG. 8 shows an equilibrium diagram of an Al—Cu binary alloy with a temperature range in which the Al—Cu binary alloy can be formed overlapped. As can be seen with reference to FIG. 8, in the Al—Cu based binary alloy, the temperature Tp (° C.) of the temperature range in which the hole can be formed in the drawing step is Tx ≦ Tp ≦ Th indicated by the hatched portion D in FIG. It becomes an area. Here, Th can be approximated by Th = 660−5.1x (° C.) when the Cu content is x%, and in the vicinity of the eutectic point, Th ≦ Ts + 5 ° C. and the liquidus temperature Tl. (° C.) The following can be expressed by: Tx is Ts (eutectic temperature: 450 ° C.) − D (= 5 ° C.).
 上記Al-Cu系二元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図8に示す。図8中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図8を参照すると、斜線部Dで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the above-mentioned Al—Cu based binary alloy, various components and the drawing temperature were changed, the rod-shaped mold (30) was drawn, and it was examined whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 8, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
Referring to FIG. 8, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion D, and the through hole cannot be formed otherwise.
 なお、Al-Cu二元合金においても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 In addition, even in the Al—Cu binary alloy, by performing the diameter expansion step at the temperature Tp (° C.), the drawing step of the rod-shaped mold (30) can be performed at the temperature Tp (° C.) or lower. Can be implemented.
<Al-Mn系二元合金>
 図9は、Al-Mn系二元合金の平衡状態図に、Al-Mn系二元合金の製孔可能な温度範囲を重ねたものである。図9を参照してわかるとおり、Al-Mn系二元合金では、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図9にて斜線部Eで示すTx≦Tp≦Thの領域となる。ここで、Thは、Alの融点である660℃であり、Txは、Ts(=658.5℃)-d(=90℃)=568.5℃である。
<Al-Mn binary alloy>
FIG. 9 shows an equilibrium diagram of an Al—Mn binary alloy with a temperature range in which the Al—Mn binary alloy can be formed being overlapped. As can be seen with reference to FIG. 9, in the Al—Mn based binary alloy, the temperature Tp (° C.) of the temperature range in which the hole can be formed in the drawing step is Tx ≦ Tp ≦ Th indicated by the hatched portion E in FIG. It becomes an area. Here, Th is 660 ° C. which is the melting point of Al, and Tx is Ts (= 658.5 ° C.) − D (= 90 ° C.) = 568.5 ° C.
 上記Al-Mn系二元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図9に示す。図9中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図9を参照すると、斜線部Eで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the Al—Mn binary alloy, the various components and the drawing temperature were changed, the rod-shaped mold (30) was drawn, and it was examined whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 9, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
Referring to FIG. 9, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion E, and otherwise the through hole cannot be formed.
 なお、Al-Mn二元合金においても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 Even in the Al—Mn binary alloy, the diameter expansion step is performed at the temperature Tp (° C.), so that the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower. Can be implemented.
<Cu-Zn系二元合金>
 図10は、Cu-Zn系二元合金の平衡状態図に、Cu-Zn系二元合金の製孔可能な温度範囲を重ねたものである。図10を参照してわかるとおり、Cu-Zn系二元合金では、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図10にて斜線部Fで示すTx≦Tp≦Thの領域となる。ここで、Thは、Znの含有量をx%としたときに、Th=1083-4x(℃)で表わすことができ、Txは、Ts(=952℃)-d(=50℃)である。
<Cu-Zn binary alloys>
FIG. 10 shows the equilibrium state diagram of a Cu—Zn binary alloy with the temperature range in which the Cu—Zn binary alloy can be formed overlapped. As can be seen with reference to FIG. 10, in the Cu—Zn based binary alloy, the temperature Tp (° C.) in the temperature range in which the hole can be formed in the drawing step is Tx ≦ Tp ≦ Th indicated by the hatched portion F in FIG. It becomes an area. Here, Th can be expressed as Th = 1083-4x (° C.) where the Zn content is x%, and Tx is Ts (= 952 ° C.) − D (= 50 ° C.). .
 上記Cu-Zn系二元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図10に示す。図10中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図10を参照すると、斜線部Fで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the above Cu—Zn-based binary alloy, various components and the drawing temperature were changed, and the rod-shaped mold (30) was drawn to examine whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 10, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
Referring to FIG. 10, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion F, and otherwise the through hole cannot be formed.
 なお、Cu-Zn二元合金においても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 Even in the Cu—Zn binary alloy, the diameter expansion step is performed at the temperature Tp (° C.), whereby the drawing step of the rod-shaped mold (30) can be performed at the temperature Tp (° C.) or lower. Can be implemented.
<純金属>
 純Alの場合、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図5中、線A’で示すTx≦Tp≦Thの領域となる。ここで、Thは、融点660℃であり、Txは、Ts(=660℃)-d(=115℃)=545℃である。
<Pure metal>
In the case of pure Al, the temperature Tp (° C.) in the temperature range in which the hole can be formed in the drawing step is a region of Tx ≦ Tp ≦ Th indicated by a line A ′ in FIG. Here, Th is a melting point of 660 ° C., and Tx is Ts (= 660 ° C.) − D (= 115 ° C.) = 545 ° C.
 純Cuの場合、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図10中、線E’で示すTx≦Tp≦Thの領域となる。ここで、Thは、融点1083℃であり、Txは、Ts(=1083℃)-d(=18℃)=1065℃である。 In the case of pure Cu, the temperature Tp (° C.) in the temperature range in which the hole can be formed in the drawing step is a region of Tx ≦ Tp ≦ Th indicated by a line E ′ in FIG. Here, Th is a melting point of 1083 ° C., and Tx is Ts (= 1083 ° C.) − D (= 18 ° C.) = 1065 ° C.
 上記純Al、純Cuについて、引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。純Alについての結果を図5、純Cuについての結果を図10に夫々示す。図5及び図10中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図5及び図10を参照すると、斜線部Eで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the pure Al and pure Cu, the rod-shaped mold (30) was pulled out at different pulling temperatures, and it was examined whether or not through holes were formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results for pure Al are shown in FIG. 5, and the results for pure Cu are shown in FIG. In FIG. 5 and FIG. 10, those with through holes formed are marked with a circle, those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross. .
Referring to FIGS. 5 and 10, it can be seen that the through hole was formed at the temperature Tp (° C.) indicated by the hatched portion E, and the through hole could not be formed otherwise.
 純Al、純Cuについても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 For pure Al and pure Cu, the step of pulling out the rod-shaped mold (30) is performed at the temperature Tp (° C.) or lower by performing the diameter expansion step at the temperature Tp (° C.). Can do.
<Al-Mg系二元合金>
 図11は、Al-Mg系二元合金の平衡状態図に、Al-Mg系二元合金の製孔可能な温度範囲を重ねたものである。図11を参照してわかるとおり、Al-Mg系二元合金では、引抜ステップにおける製孔可能な温度範囲の温度Tp(℃)は、図11にて斜線部Cで示すTx≦Tp≦Thの領域となる。ここで、Thは、Mgの含有量をx%としたときに、Th=660-9.7x(℃)で近似することができ、Txは、Ts(固相線温度)-d(=80℃<d<110℃))である。
<Al-Mg based binary alloy>
FIG. 11 shows an equilibrium diagram of an Al—Mg-based binary alloy with a temperature range in which the Al—Mg-based binary alloy can be formed overlapped. As can be seen with reference to FIG. 11, in the Al—Mg based binary alloy, the temperature Tp (° C.) of the temperature range in which the hole can be formed in the drawing step is Tx ≦ Tp ≦ Th indicated by the hatched portion C in FIG. It becomes an area. Here, Th can be approximated by Th = 660-9.7x (° C.) when the Mg content is x%, and Tx is Ts (solidus temperature) −d (= 80 ° C <d <110 ° C)).
 上記Al-Mg系二元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図11に示す。図11中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図11を参照すると、斜線部Cで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the Al—Mg-based binary alloy, various components and the drawing temperature were changed, and the rod-shaped mold (30) was drawn to examine whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 11, those with through holes formed are marked with a circle, and those with no through holes formed, or those with the rod-shaped mold (30) not pulled out are marked with a cross.
Referring to FIG. 11, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion C, and otherwise the through hole cannot be formed.
 なお、Al-Mg二元合金においても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 Even in the Al—Mg binary alloy, the diameter expansion step is performed at the temperature Tp (° C.), so that the rod-shaped mold (30) can be pulled out at the temperature Tp (° C.) or lower. Can be implemented.
<Al-Si-Mg系三元合金>
 図12は、Al-Si-Mg系三元合金の製孔可能な温度範囲を記載したものである。
 Alを主成分としSiを含む多元合金の共晶温度TEuは、B. R. Krohnの式(Modern Casting誌75 (1985) 21.、特開2001-99797号)で計算される。
<Al-Si-Mg ternary alloy>
FIG. 12 shows the temperature range in which Al—Si—Mg ternary alloy can be formed.
The eutectic temperature TEu of a multi-element alloy containing Al as a main component and containing Si is calculated by the B. R. Krohn equation (Modern Casting magazine 75 (1985) 21., Japanese Patent Laid-Open No. 2001-99797).
式1:
TEu=577-12.5×(4.43(%Mg)+1.43(%Fe)+1.93(%Cu)+1.7(%Zn)+3.0(%Mn)+4.0(%Ni))/%Si
Formula 1:
TEu = 577-12.5 × (4.43 (% Mg) +1.43 (% Fe) +1.93 (% Cu) +1.7 (% Zn) +3.0 (% Mn) +4.0 (% Ni)) /% Si
 上記式1に従えば、AC4C合金は、TEu(Ts)=572℃、6061(JIS規格:A6061)は、TEu(Ts)=458℃となる。
 Al-Si-Mg系三元合金について、今回実験により、純Alは545℃まで引き抜き可能で、共晶温度が前記純Alの引き抜き可能温度より高い場合はAl-Si系の式Tx=Ts(共晶温度)-dが適用でき、合金の共晶温度が前記純Alの引き抜き可能温度より低い場合はAl-Mg系の式Tx=Ts(固相線温度)-dが適用できることを見出した。
According to the above formula 1, the AC4C alloy has TEu (Ts) = 572 ° C., and 6061 (JIS standard: A6061) has TEu (Ts) = 458 ° C.
With regard to the Al—Si—Mg ternary alloy, pure Al can be drawn up to 545 ° C., and when the eutectic temperature is higher than the temperature at which the pure Al can be drawn, the Al—Si type Tx = Ts ( The eutectic temperature) -d is applicable, and when the eutectic temperature of the alloy is lower than the temperature at which the pure Al can be drawn, the Al-Mg-based formula Tx = Ts (solidus temperature) -d can be applied. .
 よって、AC4Cは、Ts(572℃)>545℃であり、Al-Si系の式を適用し、Tx=Ts(共晶温度)-d=572-27=545℃となる。また、6061は、Ts(458℃)<545℃であり、Al-Mg系を適用し、Tx=Ts(固相線温度)-d=582-55=527℃となる。 Therefore, in AC4C, Ts (572 ° C.)> 545 ° C., and by applying an Al—Si type equation, Tx = Ts (eutectic temperature) −d = 572-27 = 545 ° C. 6061 is Ts (458 ° C.) <545 ° C., and Al—Mg system is applied, and Tx = Ts (solidus temperature) −d = 582-55 = 527 ° C.
 上記Al-Si-Mg系三元合金について、種々成分と引き抜き温度を変えて、棒状型(30)を引き抜き、貫通孔が形成されるかどうかを調べた。なお、棒状型(30)は、全長100mm(鋳造型内寸法50mm)、直径2mmの断面円形のステンレス鋼製である。結果を図12に示す。図12中、貫通孔が形成されたものには丸印、貫通孔が形成されなかったもの、または、棒状型(30)が引き抜けなかったものにはバツ印を付している。
 図12を参照すると、斜線部Eで示す温度Tp(℃)で貫通孔が形成されており、それ以外では貫通孔が形成できなかったことがわかる。
With respect to the Al—Si—Mg ternary alloy, the various components and the drawing temperature were changed, the rod-shaped mold (30) was drawn, and it was examined whether or not a through hole was formed. The rod-shaped mold (30) is made of stainless steel having a total length of 100 mm (cast mold inner dimension: 50 mm) and a circular section of 2 mm. The results are shown in FIG. In FIG. 12, a circle mark is given to those in which the through holes are formed, and a cross mark is given to those in which the through holes are not formed or those in which the rod-shaped mold (30) has not been pulled out.
Referring to FIG. 12, it can be seen that the through hole is formed at the temperature Tp (° C.) indicated by the hatched portion E, and otherwise the through hole could not be formed.
 なお、Al-Si-Mg三元合金においても、上記温度Tp(℃)にて、拡径ステップを実施することで、上記温度Tp(℃)またはこれより低い温度で棒状型(30)の引抜ステップを実施することができる。 In the Al—Si—Mg ternary alloy, the rod-shaped mold (30) is drawn at the temperature Tp (° C.) or lower by performing the diameter expansion step at the temperature Tp (° C.). Steps can be performed.
 上記に例示した金属、合金以外の純金属、二元系、三元系以上の合金についても、同様の製孔可能な温度範囲が適用される。なお、鋳造材料がAl-Si系二元合金であればSiが含まれると硬質になるのでSi≧15質量%の場合、また、鋳造材料がAl-SiC等のアルミニウム基をマトリックスとする複合材料であれば、SiCが硬質であるのでSiCが10体積%以上の場合、ドリル等での孔あけ加工が難しくなるため、本発明の有用性が高くなる。 The same temperature range in which holes can be made is also applied to the metals exemplified above, pure metals other than alloys, binary alloys, and ternary alloys or more. If the casting material is an Al—Si based binary alloy, it becomes hard when Si is contained, so if Si ≧ 15% by mass, the casting material is a composite with an aluminum group such as Al—SiC p as a matrix. In the case of a material, since SiC p is hard, when SiC p is 10% by volume or more, drilling with a drill or the like becomes difficult, and the usefulness of the present invention increases.
 引抜ステップにおいて、図4では、上側の棒状型(30)から先に引き抜きを行なっているが、これは、断熱材(28)を配置し、上面が開口した鋳造型(20)では、上部から冷却が始まるためである。 In the drawing step, in FIG. 4, the upper rod-shaped mold (30) is pulled first, but this is because the heat-insulating material (28) is arranged and the casting mold (20) with the upper surface opened from above. This is because cooling begins.
 なお、上記温度範囲Tp(℃)を超える温度で棒状型(30)を引き抜くと、浸みだしてきた液相の鋳造材料(40)によって孔(12)の形状が押し潰されて、孔(12)が形成されない。一方、上記温度範囲Tp(℃)未満の温度では、鋳造材料は凝固により、引き抜き抵抗が高くなるから、拡径ステップを温度範囲Tp(℃)で実施しなければ、棒状型(30)の引き抜きを行なうことができない。 When the rod-shaped mold (30) is pulled out at a temperature exceeding the above temperature range Tp (° C.), the shape of the hole (12) is crushed by the liquid phase casting material (40) that has oozed out. ) Is not formed. On the other hand, at a temperature lower than the above temperature range Tp (° C.), the casting material becomes solidified due to solidification, so that the drawing resistance becomes high. Therefore, if the diameter expansion step is not performed in the temperature range Tp (° C.), Can not be done.
 棒状型(30)を引き抜き、鋳造材料(40)をさらに自然冷却した後、鋳造型(20)から取り出すことで、図1に示すような孔(12)を有する鋳造品(10)を得ることができる。図13、図14に示すように得られた鋳造品(10)の孔(12)は、孔壁の内面と、それよりも1mm内部との間に、結晶の形状、寸法、分布において組織の急激な変化は見られない。これは、孔(12)の形成途上で鋳造材料(40)が冷却される結果、組織が均等に成長するためである。また、成長したデンドライトが切断されていない。
 一方、ドリルやレーザー、ウォータージェット加工により孔を形成した場合には、孔壁の内面の組織が破断したり、溶融して再凝固するため、孔壁の内面と、それよりも1mm内部との間に組織の急激な変化が見られる。
Pulling out the rod-shaped mold (30), further cooling the casting material (40) naturally, and then removing it from the casting mold (20) to obtain a cast product (10) having a hole (12) as shown in FIG. Can do. The holes (12) of the casting (10) obtained as shown in FIGS. 13 and 14 have a structure in the shape, size, and distribution of crystals between the inner surface of the hole wall and the inside of 1 mm. There is no sudden change. This is because the structure grows evenly as a result of cooling the casting material (40) during the formation of the holes (12). Moreover, the grown dendrite is not cut.
On the other hand, when a hole is formed by drilling, laser, or water jet processing, the structure of the inner surface of the hole wall breaks or melts and re-solidifies. There are sudden changes in the organization.
 得られた孔(12)を有する鋳造品(10)は、必要に応じて機械加工や研削加工を施して使用される。 The cast product (10) having the obtained hole (12) is used after being subjected to machining or grinding as necessary.
 本発明の有孔鋳造品(10)の製造方法の変形例を以下で説明する。 A modification of the method for producing the perforated cast product (10) of the present invention will be described below.
 図15は、棒状型(30)の異なる実施例であって、図15(a)は、断面が略直角に屈曲した板材を棒状型(30)として採用した実施例、図15(b)は、断面が六角形の棒状部材を棒状型(30)として採用した実施例、図15(c)は、中空のパイプを棒状型(30)として採用した実施例であり、中実に比して熱容量を小さくすることができる。 FIG. 15 is a different embodiment of the rod-shaped mold (30), and FIG. 15 (a) is an embodiment in which a plate material having a cross section bent at a substantially right angle is adopted as the rod-shaped mold (30), and FIG. FIG. 15 (c) is an embodiment in which a hollow pipe is used as the rod-shaped die (30), and the heat capacity compared to the solid state. Can be reduced.
 図16は、上記棒状型(30)を用いて作製された孔(12)を有する鋳造品(10)を示している。図16(a)は、図15(a)の棒状型(30)を採用して作製された鋳造品(10)であり、孔(12)は、断面が略直角に屈曲している。このような形状の孔(12)を形成することで、衝撃吸収材等の用途において、衝撃吸収方向に対する塑性、座屈変形を制御することができる。同様に、図16(b)、図16(c)は、夫々図15(b)及び図15(c)に示した棒状型(30)を採用して作製された鋳造品(10)である。 FIG. 16 shows a cast product (10) having a hole (12) produced using the rod-shaped mold (30). FIG. 16 (a) shows a cast product (10) produced by adopting the rod-shaped mold (30) of FIG. 15 (a), and the hole (12) is bent at a substantially right angle. By forming the hole (12) having such a shape, it is possible to control plasticity and buckling deformation in the direction of shock absorption in applications such as shock absorbers. Similarly, FIGS. 16 (b) and 16 (c) show a cast product (10) produced by employing the rod-shaped mold (30) shown in FIGS. 15 (b) and 15 (c), respectively. .
 本発明によれば、孔(12)の数、形状、直径、深さ等の設計自由度を可及的に高めることができる利点がある。 According to the present invention, there is an advantage that the degree of freedom in design such as the number, shape, diameter and depth of the holes (12) can be increased as much as possible.
 上記実施形態では、棒状型(30)は、予め鋳造型(20)に配置しているが、注湯ステップの後、鋳造材料(40)が上記温度範囲に達するまでに、棒状型(30)を挿通孔(24)から挿入するようにしてもよい。
 この場合、棒状型(30)は鋳造材料(40)の急激な冷却による凝固を防ぐために予熱しておくことが望ましい。また、鋳造材料(40)の湯回りをよくするために、棒状型(30)及び/又は鋳造型(20)を振動、揺動、回転及び/又は衝撃を与えるようにすることがより望ましい。
In the above embodiment, the rod-shaped mold (30) is arranged in advance in the casting mold (20), but after the pouring step, the rod-shaped mold (30) until the casting material (40) reaches the above temperature range. May be inserted through the insertion hole (24).
In this case, the rod-shaped mold (30) is preferably preheated in order to prevent solidification due to rapid cooling of the casting material (40). In order to improve the temperature of the casting material (40), it is more desirable that the rod-shaped mold (30) and / or the casting mold (20) is subjected to vibration, swinging, rotation and / or impact.
 また、拡径ステップを実施する場合、温度Tp(℃)の範囲において、棒状型(30)を回転、偏心回転、振動、往復運動させたり、衝撃を与える。これにより、開設される孔(12)の内径が拡大した状態で凝固が進むから、棒状型(30)の引き抜きを容易に行なうことができる。 Also, when the diameter expansion step is performed, the rod-shaped mold (30) is rotated, eccentrically rotated, vibrated, reciprocated, or given an impact within the temperature Tp (° C.) range. As a result, solidification proceeds in a state where the inner diameter of the hole (12) to be opened is enlarged, so that the rod-shaped mold (30) can be easily pulled out.
 図17は、上面が開口した棒状型(30)を鋳造型(20)の上側から挿入する実施形態である。図に示すように、棒状型(30)は、基端が板状の保持部材(32)から下向きに突設される。
 本実施形態では、鋳造材料(40)を注湯後、図17(a)乃至(c)に示すように液相線温度Tl(℃)以上の状態で棒状型(30)が鋳造材料(40)に侵入するように保持部材(32)を下ろす。このとき、棒状型(30)間への湯回りをよくするために、棒状型(30)を振動、揺動、回転及び/又は衝撃を与えることが望ましい。
 また、図17(c)に示すように棒状型(30)が鋳造型(20)の底に到達した後、図示省略する吸引ポンプにより鋳込み部(22)内を減圧しつつ、溶湯を供給できるようにすることで、棒状型(30)間への湯回りをよくすることもできる。
FIG. 17 shows an embodiment in which the rod-shaped mold (30) whose upper surface is opened is inserted from the upper side of the casting mold (20). As shown in the figure, the rod-shaped mold (30) has a proximal end projecting downward from a plate-shaped holding member (32).
In the present embodiment, after pouring the casting material (40), as shown in FIGS. 17 (a) to 17 (c), the rod-shaped mold (30) is cast in the state of the liquidus temperature Tl (° C.) or higher. ) Lower the holding member (32) so as to enter. At this time, in order to improve the hot water flow between the rod-shaped molds (30), it is desirable to vibrate, swing, rotate and / or impact the rod-shaped mold (30).
Also, as shown in FIG. 17 (c), after the rod-shaped mold (30) reaches the bottom of the casting mold (20), the molten metal can be supplied while reducing the pressure in the casting portion (22) by a suction pump (not shown). By doing so, the amount of hot water between the rod-shaped molds (30) can be improved.
 棒状型(30)を鋳造材料(40)に挿入した後、上記と同様の温度範囲に棒状型(30)の近傍の鋳造材料(40)の温度Tp(℃)が到達すると、棒状型(30)を保持部材(32)と共に引き抜けばよい。 After the rod-shaped mold (30) is inserted into the casting material (40), when the temperature Tp (° C.) of the casting material (40) in the vicinity of the rod-shaped mold (30) reaches the temperature range similar to the above, the rod-shaped mold (30 ) May be pulled out together with the holding member (32).
 図18は、鋳造型(20)内に複数の仕切り板(60)を挿入し、鋳造型(20)及び仕切り板(60)を貫通する挿通孔(24)(62)に棒状型(30)を差し込むようにしたものである。仕切り板(60)により仕切られた各区画に鋳造材料(40)を注湯し、上記した温度範囲にて棒状型(30)の引き抜きを行なうことで、複数の鋳造品(10)に一度に孔を開設することができる。 FIG. 18 shows that a plurality of partition plates (60) are inserted into the casting mold (20), and the rod-shaped mold (30) is inserted into the insertion holes (24) and (62) penetrating the casting mold (20) and the partition plate (60). Is to be inserted. The casting material (40) is poured into each section partitioned by the partition plate (60), and the rod-shaped mold (30) is pulled out at the above-mentioned temperature range. A hole can be opened.
 また、上記実施形態では、注湯後、鋳造材料(40)の冷却過程において、棒状型(30)の引き抜きを行なっている。しかしながら、例えば、棒状型(30)を突き刺したまま凝固させた後、再度加熱することで上記した温度範囲まで昇温させて棒状型(30)の引き抜きを行なうこともできる。 Further, in the above embodiment, the rod-shaped mold (30) is pulled out in the cooling process of the casting material (40) after pouring. However, for example, after solidifying the stick-shaped mold (30) while being pierced, the rod-shaped mold (30) can be pulled out by heating again to raise the temperature to the above temperature range.
 図19は、ヒーター等の加熱機構(72)を具える電気炉(70)であり、電気炉(70)内には、注湯後の鋳造材料(40)又は凝固した鋳造材料(40)を収容した鋳造型(20)を搬送するコンベア(74)を具える。上流側から鋳造材料(40)を収容した鋳造型(20)をコンベア(74)に置くことで、加熱機構(72)によって下流側に至るまでに鋳造材料(40)が加熱されて、上記した温度範囲まで昇温し、コンベア(74)の下流側(図中右端の鋳造型(20)参照)に到達したときに棒状型(30)の引き抜きを行なえばよい。これによれば、鋳造材料(40)を均熱化することができ、棒状型(30)の引き抜きタイミングも容易に判定できる利点がある。また、連続的に鋳造材料(40)を収容した鋳造型(20)をコンベア(74)に流すことで、有孔鋳造品(10)の生産効率を可及的に高めることができる。 FIG. 19 shows an electric furnace (70) having a heating mechanism (72) such as a heater, and in the electric furnace (70), a cast material (40) after pouring or a solidified cast material (40) is placed. A conveyor (74) for conveying the contained casting mold (20) is provided. By placing the casting mold (20) containing the casting material (40) from the upstream side on the conveyor (74), the casting material (40) is heated by the heating mechanism (72) until it reaches the downstream side, as described above. The rod-shaped mold (30) may be pulled out when the temperature reaches the temperature range and reaches the downstream side of the conveyor (74) (see the casting mold (20) at the right end in the figure). According to this, there is an advantage that the casting material (40) can be soaked and the drawing timing of the rod-shaped mold (30) can be easily determined. Further, the production efficiency of the perforated casting product (10) can be increased as much as possible by flowing the casting mold (20) containing the casting material (40) continuously onto the conveyor (74).
 なお、コンベア(74)で搬送中に鋳造材料(40)が振動を受けることで、鋳造材料(40)中の巣の発生を抑える効果もある。勿論、コンベア(74)で搬送中に鋳造型(20)を振動させる機構を具備することで、この効果をさらに高めることもできる。 It should be noted that the casting material (40) is subjected to vibration while being conveyed by the conveyor (74), so that the formation of nests in the casting material (40) is also suppressed. Of course, this effect can be further enhanced by providing a mechanism for vibrating the casting mold (20) during conveyance by the conveyor (74).
 図20乃至図22は、鋳造型(20)の異なる実施例を示している。図20及び図21に示すように、鋳造型(20)は、コ字状に屈曲された溝型(26)と、該溝型(26)を両側から塞ぐ一対の横鋳型(27)から構成され、横鋳型(27)どうしを取付ボルト(29)で連結して組み立てることができる。横鋳型(27)には、1又は複数の挿通孔(24)が貫通開設されており、組み立てられた鋳造型(20)には、前記挿通孔(24)を通して1又は複数の棒状型(30)が挿入可能となっている。また、鋳造型(20)の内部は断熱材(28)で覆っている。 20 to 22 show different embodiments of the casting mold (20). As shown in FIGS. 20 and 21, the casting mold (20) includes a groove mold (26) bent in a U-shape and a pair of horizontal molds (27) that close the groove mold (26) from both sides. Thus, the horizontal molds (27) can be assembled by connecting the mounting bolts (29). The horizontal mold (27) has one or more insertion holes (24) opened therethrough, and the assembled casting mold (20) has one or more rod-shaped molds (30 through the insertion hole (24). ) Can be inserted. The interior of the casting mold (20) is covered with a heat insulating material (28).
 図22に示すように、鋳造型(20)には、るつぼ(42)から鋳造材料(40)が注湯される。このとき、図示のように、棒状型(30)に振動や回転、衝撃を加えたり、棒状型(30)を長手方向に往復移動させることで、棒状型(30)の周囲の湯回りを促進することができる。 As shown in FIG. 22, the casting material (40) is poured from the crucible (42) into the casting mold (20). At this time, as shown, vibration, rotation, and impact are applied to the rod-shaped die (30), and the rod-shaped die (30) is reciprocated in the longitudinal direction to promote the hot water around the rod-shaped die (30). can do.
 また、図22に示すように、鋳造型(20)に直接衝撃を加えて、棒状型(30)の周囲の湯回りを促進してもよい。
 同様に、鋳造型(20)が載置される台(80)に上下方向の振動や水平方向の振動を加えて、棒状型(30)の周囲の湯回りを促進してもよい。
 さらには、鋳造型(20)が載置される台(80)を揺動や回転させることで、鋳造型(20)を揺することで、棒状型(30)の周囲の湯回りを促進することもできる。
Further, as shown in FIG. 22, a direct impact may be applied to the casting mold (20) to promote the hot water around the rod-shaped mold (30).
Similarly, vertical and horizontal vibrations may be applied to the table (80) on which the casting mold (20) is placed to promote the hot water around the rod-shaped mold (30).
Furthermore, by swinging or rotating the base (80) on which the casting mold (20) is placed, the casting mold (20) is swung, thereby promoting the hot water around the rod-shaped mold (30). You can also.
 本発明の製造方法により有孔鋳造品を作製し、端面を研磨して写真を撮影した。
 以下で列挙する実験条件について、「鋳造型温度」とは鋳造型を予熱した温度、「実験試料」とは鋳造材料の組成であって%は質量%を意味し、例えばAl-5%Siの表記は、Si5質量%、残部Al及び不可避的不純物を意味する。鋳造材料に材質記号がある場合にはその材質記号を先に記載している。「液相線温度Tl(℃)」と「固相線温度Ts(℃)」は、鋳造材料の各々の液相線温度と固相線温度を示している。
A perforated cast product was produced by the production method of the present invention, and the end face was polished and a photograph was taken.
Regarding the experimental conditions listed below, “casting mold temperature” is the temperature at which the casting mold was preheated, “experimental sample” is the composition of the casting material,% means mass%, for example, Al-5% Si The notation means Si 5% by mass, the balance Al and unavoidable impurities. When the casting material has a material symbol, the material symbol is described first. The “liquidus temperature Tl (° C.)” and “solidus temperature Ts (° C.)” indicate the liquidus temperature and solidus temperature of each casting material.
 さらに、「注湯温度」とは鋳造材料の溶湯を電気炉から出したときの温度、「棒状型」は棒状型の材質、直径等を意味する。「引き抜き温度Tp(℃)」は、棒状型を引き抜いたときの鋳造材料の温度を示しており、引き抜き温度Tp(℃)を種々変化させたものについては丸数字で対応する温度を図示している。 Furthermore, “pouring temperature” means the temperature when the molten metal of the casting material is taken out of the electric furnace, and “bar-shaped mold” means the material and diameter of the rod-shaped mold. “Drawing temperature Tp (° C.)” indicates the temperature of the casting material when the rod-shaped mold is drawn, and for the various changes in the drawing temperature Tp (° C.), the corresponding temperature is shown in circles. Yes.
<実施例1>
鋳造型温度:500℃
実験試料:AC4CH(Al-6.5~7.5%Si-0.2%以下Fe-0.2%以下Cu-0.25~0.45%Mg)
液相線温度(Tl):610℃
固相線温度:555℃
共晶温度(Ts):572℃
注湯温度:800℃
棒状型:直径5mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材
鋳造型側板の孔径:直径5.5mm
引き抜き温度(Tp):580℃
<Example 1>
Casting mold temperature: 500 ° C
Experimental sample: AC4CH (Al-6.5 to 7.5% Si-0.2% or less Fe-0.2% or less Cu-0.25 to 0.45% Mg)
Liquidus temperature (Tl): 610 ° C
Solidus temperature: 555 ° C
Eutectic temperature (Ts): 572 ° C
Hot water temperature: 800 ° C
Rod-shaped mold: diameter of 5 mm, hole length of stainless steel rod casting mold side plate having a total length of 100 mm (inner dimension of casting mold: 50 mm): diameter of 5.5 mm
Drawing temperature (Tp): 580 ° C
実施条件
 厚さ3~5mmの鉄板を用い、鉄製の底板と上下の側板と、対応する位置に棒状型の貫通する直径5.5mmの孔をあけた左右の側板とを組み合わせて、上方が開口した内側が長さ(左右の側板の間隔)50mm、幅65mm、深さ40mmの四角形状の型枠を作り、型枠の上下左右の側板の内面と底板内面に、アルミナ・シリカ製不織布(イソウール(登録商標)ペーパー)の2mm厚を設置した。
 左右の側板の孔部に予め、孔を覆うアルミナ・シリカ性不織布を突き破って棒状型の他端が金型からはみ出すように挿通した。
Implementation conditions Using an iron plate with a thickness of 3 to 5 mm, an iron bottom plate and upper and lower side plates are combined with left and right side plates with a 5.5 mm diameter hole penetrating a bar-shaped die at the corresponding position, and the upper part opens. A rectangular mold having a length of 50 mm, a width of 65 mm, and a depth of 40 mm is formed on the inner side, and an alumina / silica nonwoven fabric (isowool) is formed on the inner surfaces of the upper, lower, left and right side plates and the inner surface of the bottom plate. (Registered trademark) paper) 2 mm thick.
The alumina / silica non-woven fabric covering the holes was pierced into the holes of the left and right side plates in advance so that the other end of the rod-shaped mold protruded from the mold.
 次に、AC4CHを電気炉で溶かし、電気炉中の溶湯の温度を測定し800℃の溶湯をラドルで掬い、型枠の上面開口から流しこんだ。なお、型枠内の溶湯中の棒状型の近傍に温度センサーの端子を設置し温度を測定した。室内で自然冷却し棒状型近傍の温度が580℃になった時に棒状型の片方の端を掴み、手で引き抜いた。 Next, AC4CH was melted in an electric furnace, the temperature of the molten metal in the electric furnace was measured, the molten metal at 800 ° C. was poured with a ladle, and poured from the upper surface opening of the mold. A temperature sensor terminal was installed in the vicinity of the rod-shaped mold in the molten metal in the mold and the temperature was measured. When the chamber was naturally cooled and the temperature in the vicinity of the rod-shaped mold reached 580 ° C., one end of the rod-shaped mold was grasped and pulled out by hand.
 実施例1の有孔鋳造品の写真を図23(帯鋸切断面)に示す。図を参照してわかるとおり、千鳥状に鋳造製品を貫通する孔が開設できたことがわかる。 A photograph of the perforated cast product of Example 1 is shown in FIG. 23 (band saw cut surface). As can be seen with reference to the figure, it can be seen that the holes penetrating the cast product were formed in a staggered manner.
<実施例2>
 下記特記する条件以外は実施例1と同様に行なった。
 注湯後に金型を複数回叩いて衝撃を与え、湯回りを促進し、図15に示すような有孔材を得た。
鋳造型温度:500℃
実験試料:AC4C(Al-6.5~7.5%Si-0.55%以下Fe-0.25%以下Cu-0.2~0.45%Mg)
液相線温度(Tl):610℃
固相線温度:555℃
共晶温度(Ts):572℃
注湯温度:800℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):580℃
<Example 2>
The procedure was the same as in Example 1 except for the conditions described below.
After pouring, the mold was struck multiple times to give an impact, and the hot water was promoted to obtain a perforated material as shown in FIG.
Casting mold temperature: 500 ° C
Experimental sample: AC4C (Al-6.5 to 7.5% Si-0.55% or less Fe-0.25% or less Cu-0.2 to 0.45% Mg)
Liquidus temperature (Tl): 610 ° C
Solidus temperature: 555 ° C
Eutectic temperature (Ts): 572 ° C
Hot water temperature: 800 ° C
Rod type: 2 mm diameter, 100 mm overall length (50 mm in the casting mold inner dimension) stainless steel bar casting mold side plate hole diameter: 3 mm diameter
Drawing temperature (Tp): 580 ° C
 実施例2の有孔鋳造品の写真を図24(帯鋸切断面)に示す。図を参照してわかるとおり、千鳥状に鋳造製品を貫通する孔が開設できたことがわかる。 A photograph of the perforated cast product of Example 2 is shown in FIG. As can be seen with reference to the figure, it can be seen that the holes penetrating the cast product were formed in a staggered manner.
<実施例3>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:6061(Al-0.4~0.8%Si-0.7%以下Fe-0.15~0.4%Cu-0.8~1.2%Mg)
液相線温度(Tl):652℃
固相線温度(Ts):582℃
注湯温度:680℃
棒状型:直径0.5mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の線材
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):605℃~645℃で5℃毎
<Example 3>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: 6061 (Al-0.4 to 0.8% Si-0.7% or less Fe-0.15 to 0.4% Cu-0.8 to 1.2% Mg)
Liquidus temperature (Tl): 652 ° C
Solidus temperature (Ts): 582 ° C
Hot water temperature: 680 ° C
Rod-shaped mold: Diameter of stainless steel wire casting mold side plate of 0.5 mm in diameter and 100 mm in total length (50 mm in casting mold dimensions): 3 mm in diameter
Drawing temperature (Tp): 605 ° C to 645 ° C every 5 ° C
 実施例3の有孔鋳造品の写真を図25(研磨面)に示す。図を参照してわかるとおり、引き抜き温度(Tp)が上記温度範囲で鋳造製品に孔が開設できたことがわかる。なお、図26は、図25の孔のうち、丸数字1、5及び9を拡大したものである。図を参照すると、固相線温度Ts(℃)に近い温度で棒状型を引き抜くほど、孔の真円度が高くなっていることがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 A photograph of the perforated cast product of Example 3 is shown in FIG. 25 (polished surface). As can be seen with reference to the figure, it can be seen that holes were formed in the cast product within the above-mentioned temperature range of the drawing temperature (Tp). FIG. 26 is an enlarged view of the circled numbers 1, 5 and 9 in the hole of FIG. Referring to the figure, it can be seen that the roundness of the hole increases as the rod-shaped mold is pulled out at a temperature close to the solidus temperature Ts (° C.). Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例4>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:6061(Al-0.4~0.8%Si-0.7%以下Fe-0.15~0.4%Cu-0.8~1.2%Mg)
液相線温度(Tl):652℃
固相線温度(Ts):582℃
注湯温度:670℃
棒状型:直径0.5mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の線材
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):605℃
<Example 4>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: 6061 (Al-0.4 to 0.8% Si-0.7% or less Fe-0.15 to 0.4% Cu-0.8 to 1.2% Mg)
Liquidus temperature (Tl): 652 ° C
Solidus temperature (Ts): 582 ° C
Hot water temperature: 670 ° C
Rod-shaped mold: Diameter of stainless steel wire casting mold side plate of 0.5 mm in diameter and 100 mm in total length (50 mm in casting mold dimensions): 3 mm in diameter
Drawing temperature (Tp): 605 ° C
 実施例4の有孔鋳造品の写真を図27(研磨面)に示す。図を参照してわかるとおり、鋳造製品に孔が開設できたことがわかる。なお、図28は、図27の孔のうち、丸数字1、2及び3を拡大したものである。何れも真円度の高い孔が開設されていることがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 A photograph of the perforated cast product of Example 4 is shown in FIG. 27 (polished surface). As can be seen from the figure, it can be seen that a hole has been opened in the cast product. FIG. 28 is an enlarged view of the circled numbers 1, 2 and 3 in the hole of FIG. It can be seen that a hole with a high roundness is opened in all cases. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例5>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:AC4C(Al-6.5~7.5%Si-0.55%以下Fe-0.25%以下Cu-0.2~0.45%Mg)
液相線温度(Tl):610℃
固相線温度:555℃
共晶温度(Ts):572℃
注湯温度:800℃
棒状型:外径6mm、全長600mm(鋳造型内寸法500mm)、厚さ1mmのステンレス鋼製パイプ
鋳造型側板の孔径:直径6.5mm
引き抜き温度(Tp):555℃
<Example 5>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: AC4C (Al-6.5 to 7.5% Si-0.55% or less Fe-0.25% or less Cu-0.2 to 0.45% Mg)
Liquidus temperature (Tl): 610 ° C
Solidus temperature: 555 ° C
Eutectic temperature (Ts): 572 ° C
Hot water temperature: 800 ° C
Rod-shaped mold: outer diameter 6 mm, total length 600 mm (inside casting mold dimension 500 mm), 1 mm thick stainless steel pipe casting mold side plate hole diameter: 6.5 mm diameter
Drawing temperature (Tp): 555 ° C
 実施例5では、有孔鋳造品を断面25mm×25mm、長さ500mmとし、有孔鋳造品の長手方向に棒状型(パイプ)を配置して実験を行なった。得られた有孔鋳造品の端面を図29、全体外観を図30に示している。図29(帯鋸切断面)を参照して判るように、長さが500mmの鋳造品であっても孔が開設できたことがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 In Example 5, the experiment was conducted with a perforated cast product having a cross section of 25 mm × 25 mm and a length of 500 mm, and a rod-shaped mold (pipe) arranged in the longitudinal direction of the perforated cast product. FIG. 29 shows an end face of the obtained perforated cast product, and FIG. 30 shows an overall appearance. As can be seen with reference to FIG. 29 (band saw cut surface), it can be seen that a hole could be opened even in a cast product having a length of 500 mm. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例6>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-25%Si
液相線温度(Tl):760℃
共晶温度(Ts):577℃
注湯温度:780℃
棒状型:直径1mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):579℃
<Example 6>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-25% Si
Liquidus temperature (Tl): 760 ° C
Eutectic temperature (Ts): 577 ° C
Pouring temperature: 780 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 1 mm and a total length of 100 mm (inside casting mold size: 50 mm).
Drawing temperature (Tp): 579 ° C
 実施例6の有孔鋳造品の写真を図31(研磨面)に示す。図を参照してわかるとおり、鋳造製品に千鳥状に孔が開設できたことがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 A photograph of the perforated cast product of Example 6 is shown in FIG. 31 (polished surface). As can be seen with reference to the figure, it can be seen that holes were formed in a staggered pattern in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例7>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-3%Si
液相線温度(Tl):641℃
共晶温度(Ts):577℃
注湯温度:700℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):580℃~630℃で10℃毎
<Example 7>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-3% Si
Liquidus temperature (Tl): 641 ° C
Eutectic temperature (Ts): 577 ° C
Pouring temperature: 700 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm) Hole diameter of casting mold side plate: diameter 3 mm
Drawing temperature (Tp): 580 ° C to 630 ° C every 10 ° C
 実施例7の有孔鋳造品の写真を図32に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)を変えても鋳造製品に孔が開設できたことがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 A photograph of the perforated cast product of Example 7 is shown in FIG. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例8>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-1%Si
液相線温度(Tl):654℃
固相線温度:611℃
共晶温度(Ts):577℃
注湯温度:720℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング、端部をL字形に屈曲
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):650℃~655℃で1℃毎
<Example 8>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-1% Si
Liquidus temperature (Tl): 654 ° C
Solidus temperature: 611 ° C
Eutectic temperature (Ts): 577 ° C
Hot water temperature: 720 ° C
Bar-shaped mold: 2mm diameter, 100mm overall length (cast mold inner dimension 50mm) stainless steel rod coated with BN, end bent into an L shape, hole diameter of casting mold side plate: diameter 3mm
Drawing temperature (Tp): 650 ° C to 655 ° C every 1 ° C
 実施例8の有孔鋳造品の写真を図33に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)を変えても鋳造製品に孔が開設できたことがわかる。丸数字1は、孔が塞がっている。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。
 さらに、棒状型のL字状に曲がった部分に他の棒を押し当て棒状型を回動させることにより拡径を行なった場合の引き抜き可能な下限温度を図7に示す。
A photograph of the perforated cast product of Example 8 is shown in FIG. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. The circled number 1 indicates that the hole is closed. Although it is difficult to see in the figure, the hole penetrates the cast product.
Further, FIG. 7 shows a lower limit temperature at which pulling can be performed when diameter is expanded by pressing another rod against the L-shaped portion of the rod-shaped mold and rotating the rod-shaped mold.
<実施例9>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-0.5%Si
液相線温度(Tl):657℃
固相線温度:636℃
共晶温度(Ts):577℃
注湯温度:720℃
棒状型:直径2mmのステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):625℃~640℃で5℃毎
<Example 9>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-0.5% Si
Liquidus temperature (Tl): 657 ° C
Solidus temperature: 636 ° C
Eutectic temperature (Ts): 577 ° C
Hot water temperature: 720 ° C
Rod type: 2mm diameter stainless steel rod coated with BN Hole diameter of casting mold side plate: 3mm diameter
Drawing temperature (Tp): 625 ° C to 640 ° C every 5 ° C
 実施例9の有孔鋳造品の写真を図34に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)を変えても鋳造製品に孔が開設できたことがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 FIG. 34 shows a photograph of the perforated casting product of Example 9. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例10>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-10%Si
液相線温度(Tl):594℃
共晶温度(Ts):577℃
注湯温度:650℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):575℃~590℃
<Example 10>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-10% Si
Liquidus temperature (Tl): 594 ° C
Eutectic temperature (Ts): 577 ° C
Pouring temperature: 650 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm) Hole diameter of casting mold side plate: diameter 3 mm
Drawing temperature (Tp): 575 ° C to 590 ° C
 実施例10の有孔鋳造品の写真を図35(フライス加工面)に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)が液相線温度Ts(℃)-5℃を越える高い丸数字1の590℃、同2の585℃、同3の583℃では、孔は形成されていない。これは、棒状型を引き抜いた後に鋳造材料が孔に流れ込んで孔を塞いでしまったためである。一方丸数字4以降の引き抜き温度Tp(℃)が580℃以下のものについては、鋳造製品に孔が開設できたことがわかる。なお、図ではわかりにくいが、丸数字4~9は、孔が鋳造製品を貫通している。 FIG. 35 (milled surface) shows a photograph of the perforated cast product of Example 10. As can be seen from the figure, when the drawing temperature Tp (° C.) is higher than the liquidus temperature Ts (° C.) − 5 ° C., 590 ° C., 585 ° C., 2 585 ° C., and 583 ° C. Is not formed. This is because the casting material flowed into the hole after the rod-shaped mold was pulled out and closed the hole. On the other hand, when the drawing temperature Tp (° C.) after the circled number 4 is 580 ° C. or less, it can be seen that a hole was opened in the cast product. Although it is difficult to understand in the figure, the round numbers 4 to 9 indicate that the hole penetrates the cast product.
<実施例11>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-12%Si
液相線温度(Tl):581℃
注湯温度:650℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):575℃~590℃
<Example 11>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-12% Si
Liquidus temperature (Tl): 581 ° C
Pouring temperature: 650 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm) Hole diameter of casting mold side plate: diameter 3 mm
Drawing temperature (Tp): 575 ° C to 590 ° C
 実施例11の有孔鋳造品の写真を図36(フライス加工面)に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)が液相線温度Ts(℃)-5℃を越える高い丸数字1の590℃、同2の585℃では、孔は形成されていない。これは、棒状型を引き抜いた後に鋳造材料が孔に流れ込んで孔を塞いでしまったためである。一方丸数字3以降の引き抜き温度Tp(℃)が580℃以下のものについては、鋳造製品に孔が開設できたことがわかる。なお、図ではわかりにくいが、丸数字4~9は、孔が鋳造製品を貫通している。特に丸数字7については孔が形成されていないように見えるが、実際は孔が形成されている。 A photograph of the perforated cast product of Example 11 is shown in FIG. 36 (milled surface). As can be seen with reference to the figure, when the drawing temperature Tp (° C.) is higher than the liquidus temperature Ts (° C.) − 5 ° C. of 590 ° C. and 585 ° C. of 2 which are high, no holes are formed. This is because the casting material flowed into the hole after the rod-shaped mold was pulled out and closed the hole. On the other hand, when the drawing temperature Tp (° C.) after the circled number 3 is 580 ° C. or less, it can be seen that a hole was opened in the cast product. Although it is difficult to understand in the figure, the round numbers 4 to 9 indicate that the hole penetrates the cast product. In particular, for the round numeral 7, it seems that no hole is formed, but actually a hole is formed.
<実施例12>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:Al-15%Si
液相線温度(Tl):613℃
共晶温度(Ts):577℃
注湯温度:700℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):573℃~580℃
<Example 12>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Al-15% Si
Liquidus temperature (Tl): 613 ° C
Eutectic temperature (Ts): 577 ° C
Pouring temperature: 700 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm) Hole diameter of casting mold side plate: diameter 3 mm
Drawing temperature (Tp): 573 ° C to 580 ° C
 実施例12の有孔鋳造品の写真を図37(フライス加工面)に示す。図を参照してわかるとおり、引き抜き温度Tp(℃)を変えても鋳造製品に孔が開設できたことがわかる。なお、図ではわかりにくいが、孔は鋳造製品を貫通している。 FIG. 37 (milled surface) shows a photograph of the perforated cast product of Example 12. As can be seen with reference to the figure, it can be seen that even if the drawing temperature Tp (° C.) was changed, a hole was formed in the cast product. Although it is difficult to see in the figure, the hole penetrates the cast product.
<実施例13>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:500℃
実験試料:黄銅(Cu-15%Zn)
注湯温度:1200℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):970℃、990℃、1010℃
<Example 13>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: 500 ° C
Experimental sample: Brass (Cu-15% Zn)
Hot water temperature: 1200 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (inside dimension of casting mold: 50 mm) Hole diameter of casting mold side plate: diameter 3 mm
Drawing temperature (Tp): 970 ° C, 990 ° C, 1010 ° C
 実施例13の有孔鋳造品の写真を図38(フライス加工面)に示す。図を参照してわかるとおり、黄銅についても、引き抜き温度Tp(℃)を変えても鋳造製品に孔が開設できたことがわかる。 A photograph of a perforated cast product of Example 13 is shown in FIG. 38 (milled surface). As can be seen with reference to the drawing, it can be seen that brass was able to open a hole in the cast product even when the drawing temperature Tp (° C.) was changed.
<実施例14>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:室温
実験試料:Al-30%SiC(AC4Cベース:Si6.5~7.5%、Fe0.55%以下、Cu:0.25%以下、Mg0.2~0.45%)
AC4Cの液相線温度(Tl):610℃
AC4Cの固相線温度(Ts):555℃
注湯温度:800℃
棒状型:直径2mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング
鋳造型側板の孔径:直径3mm
引き抜き温度(Tp):580℃
<Example 14>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: room temperature Experimental sample: Al-30% SiC p (AC4C base: Si 6.5 to 7.5%, Fe 0.55% or less, Cu: 0.25% or less, Mg 0.2 to 0.45%)
Liquidus temperature of AC4C (Tl): 610 ° C
AC4C solidus temperature (Ts): 555 ° C
Hot water temperature: 800 ° C
Bar-shaped mold: BN coated on a stainless steel rod with a diameter of 2 mm and a total length of 100 mm (within casting mold dimensions of 50 mm).
Drawing temperature (Tp): 580 ° C
 実施例14の有孔鋳造品の写真を図39に示す。図を参照してわかるとおり、Al-SiCについても、鋳造製品に孔が開設できたことがわかる。 A photograph of the perforated cast product of Example 14 is shown in FIG. As can be seen with reference to the figure, it can be seen that Al-SiC p was also able to open holes in the cast product.
<実施例15>
 下記特記する条件以外は実施例1と同様に行なった。
鋳造型温度:室温
実験試料:Al-30%SiC(AC4Cベース:Si6.5~7.5%、Fe0.55%以下、Cu:0.25%以下、Mg0.2~0.45%)
AC4Cの液相線温度(Tl):610℃
AC4Cの固相線温度(Ts):555℃
注湯温度:800℃
棒状型:直径5mm、全長100mm(鋳造型内寸法50mm)のステンレス鋼製の棒材にBNをコーティング。端部がL字状に屈曲したもの。
鋳造型側板の孔径:直径5.5mm
引き抜き温度(Tp):550℃
 なお、620℃~580℃までの間、棒状型のL字状に曲がった部分に他の棒を押し当て棒状型を一方向に回動させることにより拡径を行なった。
<Example 15>
The procedure was the same as in Example 1 except for the conditions described below.
Casting mold temperature: room temperature Experimental sample: Al-30% SiC p (AC4C base: Si 6.5 to 7.5%, Fe 0.55% or less, Cu: 0.25% or less, Mg 0.2 to 0.45%)
Liquidus temperature of AC4C (Tl): 610 ° C
AC4C solidus temperature (Ts): 555 ° C
Hot water temperature: 800 ° C
Bar-shaped mold: BN is coated on a stainless steel bar with a diameter of 5 mm and a total length of 100 mm (with a casting mold size of 50 mm). The end is bent in an L shape.
Hole diameter of casting mold side plate: diameter 5.5mm
Drawing temperature (Tp): 550 ° C
In addition, between 620 ° C. and 580 ° C., the diameter of the rod was increased by pressing another rod against the L-shaped bent portion of the rod and rotating the rod in one direction.
 実施例15の有孔鋳造品の写真を図40に示す。図を参照してわかるとおり、Al-SiCについても、鋳造製品に孔が開設できたことがわかる。 A photograph of the perforated cast product of Example 15 is shown in FIG. As can be seen with reference to the figure, it can be seen that Al-SiC p was also able to open holes in the cast product.
 本発明は、簡易な装置及び方法で通孔を形成することのできる有孔鋳造品の製造方法として有用である。 The present invention is useful as a method for producing a perforated cast product in which through holes can be formed with a simple apparatus and method.
(10) 鋳造品
(12) 孔
(20) 鋳造型
(24) 挿通孔
(30) 棒状型
(40) 鋳造材料
(10) Cast products
(12) Hole
(20) Casting mold
(24) Insertion hole
(30) Rod type
(40) Casting material

Claims (13)

  1.  鋳造型内に鋳造材料(但し、Al-Mg合金及びAl-Si-Mg合金を除く)の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
     前記鋳造材料を10MPa未満で注湯する注湯ステップ、
     前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、融点、共晶温度または包晶温度の何れか低い方をTs(℃)とすると、
     Tx≦Tp≦Th(但し、Tx=Ts-d、0<d<100)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
     及び、
     前記鋳造型から鋳造品を取り出すステップ、
     を有することを特徴とする有孔鋳造品の製造方法。
    After pouring a molten metal of the casting material (except for Al-Mg alloy and Al-Si-Mg alloy) into the casting mold, the rod-shaped mold placed in the casting mold is pulled out, so that A method for producing a perforated cast product in which a hole is formed in a portion having the rod-shaped mold,
    A pouring step of pouring the casting material at less than 10 MPa;
    The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C.), the lower limit temperature for drawing is Tx (° C.), the melting point, the eutectic temperature or the peritectic temperature is the lower one, Ts (° C.)
    The rod-shaped mold is pulled out of the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 0 <d <100), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
    as well as,
    Removing the cast from the casting mold;
    A method for producing a perforated cast product, comprising:
  2.  前記鋳造材料は、Al-Si系合金、又は、Al-Cu系合金であり、前記dは5℃である、
     請求項1に記載の有孔鋳造品の製造方法。
    The casting material is an Al—Si based alloy or an Al—Cu based alloy, and the d is 5 ° C.
    The method for producing a perforated cast product according to claim 1.
  3.  前記鋳造材料は、Al-Mn系合金であり、前記dは90℃である、
     請求項1に記載の有孔鋳造品の製造方法。
    The casting material is an Al—Mn alloy, and d is 90 ° C.
    The method for producing a perforated cast product according to claim 1.
  4.  前記鋳造材料は、Cu-Zn系合金であり、前記dは50℃である、
     請求項1に記載の有孔鋳造品の製造方法。
    The casting material is a Cu—Zn alloy, and the d is 50 ° C.
    The method for producing a perforated cast product according to claim 1.
  5.  前記鋳造材料は、純Alであり、前記dは115℃である、
     請求項1に記載の有孔鋳造品の製造方法。
    The casting material is pure Al, and the d is 115 ° C.
    The method for producing a perforated cast product according to claim 1.
  6.  前記鋳造材料は、純Cuであり、前記dは18℃である、
     請求項1に記載の有孔鋳造品の製造方法。
    The casting material is pure Cu and the d is 18 ° C.
    The method for producing a perforated cast product according to claim 1.
  7.  鋳造型内にAl-Mg合金の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
     前記鋳造材料を10MPa未満で注湯する注湯ステップ、
     前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、固相線温度をTs(℃)とすると、
     Tx≦Tp≦Th(但し、Tx=Ts-d、80<d<110)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
     及び、
     前記鋳造型から鋳造品を取り出すステップ、
     を有することを特徴とする有孔鋳造品の製造方法。
    A perforated casting in which a hole is formed in a portion of the casting material where the rod-shaped mold is present by pouring a molten Al-Mg alloy into the casting mold and then pulling out the rod-shaped mold disposed in the casting mold. A method for manufacturing a product,
    A pouring step of pouring the casting material at less than 10 MPa;
    The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C), the lower limit temperature for drawing is Tx (° C), and the solidus temperature is Ts (° C),
    The rod-shaped mold is pulled out from the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 80 <d <110), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
    as well as,
    Removing the cast from the casting mold;
    A method for producing a perforated cast product, comprising:
  8.  鋳造型内にAl-Si-Mg合金の溶湯を注湯後、前記鋳造型内に配置された棒状型を引き抜くことで、前記鋳造材料中の前記棒状型のあった部分に孔を形成する有孔鋳造品の製造方法であって、
     前記鋳造材料を10MPa未満で注湯する注湯ステップ、
     前記棒状型の近傍の前記鋳造材料の温度をTp(℃)、前記棒状型を引抜き中又は引抜き後に孔壁が崩落せず、且つ、液相が前記孔中に浸み出して前記孔を埋めない上限の温度をTh(℃)、引抜きの下限温度をTx(℃)、固相線温度または共晶温度をTs(℃)とすると、
     Tx≦Tp≦Th(但し、Tx=Ts-d、5<d<110)である温度範囲で、前記鋳造材料から前記棒状型を引き抜く、または、Ts<Tp≦Thの温度範囲で孔径を拡大する拡径を開始した後、前記鋳造材料から前記棒状型を引き抜く、引抜ステップ、
     及び、
     前記鋳造型から鋳造品を取り出すステップ、
     を有することを特徴とする有孔鋳造品の製造方法。
    After pouring a molten Al—Si—Mg alloy into the casting mold, a hole is formed in the portion of the casting material where the rod-shaped mold is located by pulling out the rod-shaped mold disposed in the casting mold. A method for manufacturing a hole casting product,
    A pouring step of pouring the casting material at less than 10 MPa;
    The temperature of the casting material in the vicinity of the rod-shaped mold is Tp (° C.), the hole wall does not collapse during or after the rod-shaped mold is drawn, and a liquid phase oozes into the hole to fill the hole. If the upper limit temperature is Th (° C), the lower limit temperature for drawing is Tx (° C), and the solidus temperature or eutectic temperature is Ts (° C),
    The rod-shaped mold is pulled out from the casting material in the temperature range of Tx ≦ Tp ≦ Th (where Tx = Ts−d, 5 <d <110), or the hole diameter is expanded in the temperature range of Ts <Tp ≦ Th. After starting the diameter expansion, pulling out the rod-shaped mold from the casting material,
    as well as,
    Removing the cast from the casting mold;
    A method for producing a perforated cast product, comprising:
  9.  前記鋳造型内に配置された棒状型は、長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)とすると、
     15≦a/b、b≦25
     である請求項1乃至請求項8の何れかに記載の有孔鋳造品の製造方法。
    The rod-shaped mold disposed in the casting mold has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ).
    15 ≦ a / b, b ≦ 25
    The method for producing a perforated cast product according to any one of claims 1 to 8.
  10.  鋳造品中に孔を有する有孔鋳造品であって、
     前記孔の孔壁の内面と、該内面よりも1mm内部との間に組織の急激な変化がないことを特徴とする有孔鋳造品。
    A perforated cast product having holes in the cast product,
    A perforated cast product characterized in that there is no sudden change in structure between the inner surface of the hole wall of the hole and the inside of 1 mm from the inner surface.
  11.  前記孔は、長手寸法をa(mm)、長手方向に垂直な断面積をb(mm)とすると、
     15≦a/b、b≦25
     であることを特徴とする請求項10に記載の有孔鋳造品。
    The hole has a longitudinal dimension of a (mm) and a cross-sectional area perpendicular to the longitudinal direction of b (mm 2 ).
    15 ≦ a / b, b ≦ 25
    The perforated cast product according to claim 10, wherein
  12.  前記鋳造品は、Al-Siであり、Si≧15質量%である、
     請求項請求項10又は請求項11に記載の有孔鋳造品。
    The casting is Al—Si, and Si ≧ 15% by mass.
    The perforated cast product according to claim 10 or 11.
  13.  前記鋳造品は、Al-SiCであり、SiC≧10体積%である、
     請求項10又は請求項11に記載の有孔鋳造品。
    The casting is Al-SiC p , SiC p ≧ 10% by volume,
    The perforated cast product according to claim 10 or 11.
PCT/JP2013/075916 2012-09-25 2013-09-25 Perforated cast product and method for manufacturing same WO2014050892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538532A JP6400476B2 (en) 2012-09-25 2013-09-25 Perforated cast product and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210445 2012-09-25
JP2012-210445 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050892A1 true WO2014050892A1 (en) 2014-04-03

Family

ID=50388287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075916 WO2014050892A1 (en) 2012-09-25 2013-09-25 Perforated cast product and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6400476B2 (en)
WO (1) WO2014050892A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155271A (en) * 2016-02-29 2017-09-07 学校法人早稲田大学 Production intermediate body of porous structure, and method for producing porous structure
WO2020246588A1 (en) * 2019-06-07 2020-12-10 株式会社ロータスマテリアル研究所 Perforated casting and manufacturing method therefor
WO2021020529A1 (en) * 2019-07-30 2021-02-04 株式会社ロータスマテリアル研究所 Heat sink
WO2022024930A1 (en) * 2020-07-28 2022-02-03 岩谷産業株式会社 Method for producing perforated cast product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210913A1 (en) * 2020-08-28 2022-03-03 Oskar Frech Gmbh + Co. Kg Casting component with anti-corrosion layer structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122650A (en) * 1987-11-05 1989-05-15 Honda Motor Co Ltd Method for pulling out pin for hole as-cast in casting apparatus
JP2000301314A (en) * 1999-04-14 2000-10-31 Denso Corp Casting method and casting device
JP2001246453A (en) * 2000-03-01 2001-09-11 Mikuni Corp Die casting method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4986199A (en) * 1998-07-13 2000-02-01 Hayes Lemmerz International, Inc. Method and apparatus for casting vehicle wheels
JP2002059256A (en) * 2000-08-08 2002-02-26 Daido Steel Co Ltd Sucking-up casting method and sucking-up casting apparatus
JP2005193262A (en) * 2004-01-06 2005-07-21 Ryoei Engineering Kk Gravity casting method and apparatus therefor
JP5597984B2 (en) * 2009-12-16 2014-10-01 株式会社デンソー Casting equipment that casts inner diameter forming parts with high accuracy
JP2011161463A (en) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd Mold and casting method
JP2011167728A (en) * 2010-02-19 2011-09-01 National Institute Of Advanced Industrial Science & Technology Vibration solidification casting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122650A (en) * 1987-11-05 1989-05-15 Honda Motor Co Ltd Method for pulling out pin for hole as-cast in casting apparatus
JP2000301314A (en) * 1999-04-14 2000-10-31 Denso Corp Casting method and casting device
JP2001246453A (en) * 2000-03-01 2001-09-11 Mikuni Corp Die casting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155271A (en) * 2016-02-29 2017-09-07 学校法人早稲田大学 Production intermediate body of porous structure, and method for producing porous structure
WO2020246588A1 (en) * 2019-06-07 2020-12-10 株式会社ロータスマテリアル研究所 Perforated casting and manufacturing method therefor
JPWO2020246588A1 (en) * 2019-06-07 2020-12-10
JP7420353B2 (en) 2019-06-07 2024-01-23 株式会社ロータスマテリアル研究所 Manufacturing method for perforated castings
WO2021020529A1 (en) * 2019-07-30 2021-02-04 株式会社ロータスマテリアル研究所 Heat sink
JP2021027357A (en) * 2019-07-30 2021-02-22 株式会社ロータスマテリアル研究所 heat sink
JP7165361B2 (en) 2019-07-30 2022-11-04 株式会社ロータスマテリアル研究所 heatsink
WO2022024930A1 (en) * 2020-07-28 2022-02-03 岩谷産業株式会社 Method for producing perforated cast product

Also Published As

Publication number Publication date
JPWO2014050892A1 (en) 2016-08-22
JP6400476B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
Nafisi et al. Semi-solid processing of aluminum alloys
JP6400476B2 (en) Perforated cast product and method for manufacturing the same
US8992705B2 (en) Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same
US10118219B2 (en) Semisolid casting/forging apparatus and method as well as a cast and forged product
Zhang et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting
EP3256275B1 (en) Ultrasonic grain refining
JP4836244B2 (en) Casting method
Barbosa et al. Ultrasonic melt processing in the low pressure investment casting of Al alloys
JPH05505343A (en) Controlled casting of hypereutectic A1-Si alloy
Khalifa et al. Microstructure characteristics and tensile property of ultrasonic treated-thixocast A356 alloy
Nafisi et al. Semi-solid metal processing routes: an overview
Wessén et al. The RSF technology–a possible breakthrough for semi-solid casting processes
Gjestland et al. Optimizing the magnesium die casting process to achieve reliability in automotive applications
JP2004202539A (en) Method for working hole of metal cast product
Fan et al. Effect of holding pressure on density and cooling rate of cast Al-Si alloy during additive pressure casting
JP2008540129A (en) How to form a sea cucumber and a sea cucumber
Maube et al. Effect of cooling rate and heat treatment on the microstructure and impact resistance of recycled aluminium sand cast alloy
US20050103461A1 (en) Process for generating a semi-solid slurry
Haghayeghi Effect of external forces on microstructural evolution and mechanical properties of high pressure die cast AA5754 alloy
JP7220428B2 (en) Method for manufacturing spheroidal graphite cast iron casting
Hernández et al. Comparison of non-dendritic A380 alloy modified by Sr addition, high cooling rate and pouring in angular channel with rheocasting
Colak et al. Investigation and modelling of the effects of solidification time and grain refinement on the grain size of a sand-cast Al4Cu alloy
Mao et al. Preparation and rheo-die casting of semi-solid A356 aluminum alloy slurry through a serpentine pouring channel
Tupaj et al. Fatigue Properties of AlSi7Mg Alloy with Diversified Microstructure
JP6823311B2 (en) Chill-free spheroidal graphite cast iron semi-solidified mold casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840692

Country of ref document: EP

Kind code of ref document: A1