JP7420353B2 - Manufacturing method for perforated castings - Google Patents

Manufacturing method for perforated castings Download PDF

Info

Publication number
JP7420353B2
JP7420353B2 JP2021524932A JP2021524932A JP7420353B2 JP 7420353 B2 JP7420353 B2 JP 7420353B2 JP 2021524932 A JP2021524932 A JP 2021524932A JP 2021524932 A JP2021524932 A JP 2021524932A JP 7420353 B2 JP7420353 B2 JP 7420353B2
Authority
JP
Japan
Prior art keywords
heat
resistant wire
resistant
mold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021524932A
Other languages
Japanese (ja)
Other versions
JPWO2020246588A1 (en
Inventor
英雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUTE FOR LOTUS MATERIALS RESEARCH CO., LTD.
Iwatani Corp
Original Assignee
INSTITUTE FOR LOTUS MATERIALS RESEARCH CO., LTD.
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUTE FOR LOTUS MATERIALS RESEARCH CO., LTD., Iwatani Corp filed Critical INSTITUTE FOR LOTUS MATERIALS RESEARCH CO., LTD.
Publication of JPWO2020246588A1 publication Critical patent/JPWO2020246588A1/ja
Application granted granted Critical
Publication of JP7420353B2 publication Critical patent/JP7420353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ヒートシンク、航空機エンジンタービン、医療器具、工作機械、熱電変換材料など、種々の分野において新規な材料として有効に利用できる、金属又は半導体材料の有孔鋳造品およびその製造方法に関する。 The present invention relates to a perforated cast product of metal or semiconductor material that can be effectively used as a new material in various fields such as heat sinks, aircraft engine turbines, medical instruments, machine tools, thermoelectric conversion materials, etc., and a method for manufacturing the same.

多孔金属材や発泡金属材は、低密度で大きな表面積を有しており、主に軽量化材料や触媒、電極、振動吸収材、吸音材、衝撃吸収材としての応用が期待されている。多孔金属材の一つに、ロータス金属成形体が知られている。ロータス金属成形体は、高圧ガス法(Pressurized Gas Method)や熱分解法(Thermal Decomposition Method)など、公知の方法で作製され、一方向に気孔が伸びた金属成形体である(例えば、特許文献1参照。)。これを複数の板に切断することで、貫通孔を多数備えた多孔金属板(ロータス金属板)が得られる。ロータス金属板は、優れた熱伝達性を備えており、電子デバイス用のヒートシンクや各種熱交換フィンとしての利用が提案されている(たとえば、特許文献2、3参照)。 Porous metal materials and foamed metal materials have low density and large surface area, and are expected to be mainly used as lightweight materials, catalysts, electrodes, vibration absorbers, sound absorbers, and shock absorbers. A lotus metal molded body is known as one of the porous metal materials. A lotus metal molded body is a metal molded body that is produced by a known method such as a pressurized gas method or a thermal decomposition method, and has pores extending in one direction (for example, Patent Document 1 reference.). By cutting this into a plurality of plates, a porous metal plate (lotus metal plate) having a large number of through holes can be obtained. Lotus metal plates have excellent heat transfer properties, and have been proposed for use as heat sinks for electronic devices and various heat exchange fins (see, for example, Patent Documents 2 and 3).

しかしながら、ロータス金属成形体は、気孔の長さに制限があるため、ロータス金属板の孔を貫通孔とするために、その切断後の板厚には限界がある。ヒートシンク等のフィンとしてさらに優れた冷却能を確保するためには、長い孔を形成させることが望ましい。長い孔を形成できることは、上記触媒、電極、振動吸収材、吸音材、衝撃吸収材として応用する場合にも有利となる。 However, since there is a limit to the length of the pores in the lotus metal molded body, there is a limit to the thickness of the lotus metal plate after cutting, since the holes in the lotus metal plate are made into through holes. In order to ensure even better cooling performance as a fin for a heat sink or the like, it is desirable to form long holes. The ability to form long pores is also advantageous when applied to the above-mentioned catalysts, electrodes, vibration absorbers, sound absorbers, and shock absorbers.

その他の多孔金属材の製法としては、後加工で機械的にドリルで孔を穿つ方法や、電子ビーム又はレーザーを用いて金属を溶融・蒸発させて穿設する方法もある。しかし、ドリルは小さい孔になるほど折損しやすく、加工時間も長時間を要し、コスト高となり、孔の長さもドリル工具の長さにより限界がある。電子ビームは高真空設備を要し、コスト高で工業化に不適である。レーザー加工は大気中でも可能だが穿孔に多大な経費と時間を要する。また、電子ビームやレーザーによる加工も孔の直径に対する長さの比(アスペクト比)が高々10程度であり、細く長い孔を穿つには限界がある。 Other methods for producing porous metal materials include a method in which the holes are mechanically drilled in post-processing, and a method in which the holes are formed by melting and vaporizing the metal using an electron beam or laser. However, the smaller the hole, the more likely the drill will break, the longer the machining time, the higher the cost, and the length of the hole is limited by the length of the drill tool. Electron beams require high-vacuum equipment, are expensive, and are unsuitable for industrialization. Laser processing is possible even in the atmosphere, but drilling requires a great deal of expense and time. Further, even when processing with an electron beam or laser, the ratio of the length to the diameter of the hole (aspect ratio) is about 10 at most, and there is a limit to the ability to make long, thin holes.

さらに、上述した従来の多孔金属材は、いずれも一方向に伸びる直線状の孔しか有することができなかった。ロータス金属成形体はその製法上、一方向凝固を利用しており、ドリル加工、電子ビーム加工等も直線的な穿設加工となるためである。もし、より細く、より長く、且つ曲線状の孔が作製できるのであれば、上記したヒートシンクその他の応用に際し、設計の自由度が格段に向上し、優れた性能を有する基材を提供することができる。 Furthermore, all of the conventional porous metal materials described above could only have linear pores extending in one direction. This is because the Lotus metal molded body uses unidirectional solidification in its manufacturing method, and drilling, electron beam processing, etc. are also linear drilling processes. If thinner, longer, and curved holes could be made, the degree of freedom in design would be greatly improved for the above-mentioned heat sinks and other applications, and it would be possible to provide a base material with excellent performance. can.

特許第4217865号公報Patent No. 4217865 特開2018-73869号公報JP2018-73869A 特開2018-179412号公報Japanese Patent Application Publication No. 2018-179412

そこで、本発明が前述の状況に鑑み、解決しようとするところは、多孔金属材として、より低コストで、より長く、細く、曲線状の孔をも設けることが可能であり、全体の形状や寸法、ならびにその有する孔の形態・寸法を適宜、自由に設定することができ、設計の自由度が飛躍的に向上し、ヒートシンク等としての優れた冷却能や、触媒、電極、振動吸収材、吸音材、衝撃吸収材等として利用するにあたっても、より高性能なものとして低コストで提供することができる多孔金属材、およびその製造方法を提供する点にある。 Therefore, the present invention aims to solve the above-mentioned situation by making it possible to provide a porous metal material with longer, thinner, and curved holes at a lower cost, and to improve the overall shape. The dimensions and the shape and dimensions of the holes can be freely set as appropriate, dramatically increasing the degree of freedom in design. The object of the present invention is to provide a porous metal material that can be provided at a low cost and with higher performance when used as a sound absorbing material, a shock absorbing material, etc., and a method for producing the same.

本発明は、以下の発明を包含する。
(1) 金属又は半導体材料の鋳造品であって、表面に単又は複数の耐熱線引き抜き孔が開口していることを特徴とする有孔鋳造品。
The present invention includes the following inventions.
(1) A perforated cast product made of metal or semiconductor material, characterized by having one or more heat-resistant wire drawing holes opened on its surface.

(2) 前記耐熱線引き抜き孔が貫通孔である、(1)記載の有孔鋳造品。 (2) The perforated casting product according to (1), wherein the heat-resistant wire drawing hole is a through hole.

(3) 前記耐熱線引き抜き孔が、直線状、曲線状(たとえば波状、螺旋状など)、又は屈曲状(複数の方向に折れ曲がった形状)である、(1)又は(2)記載の有孔鋳造品。
(4) 前記耐熱線引き抜き孔の孔径(直径)が、100μm~20mm、好ましくは200μm~10mm、より好ましくは300μm~5mmである、(1)~(3)の何れかに記載の有孔鋳造品。
(5) 前記耐熱線引き抜き孔の孔の長さが、1mm~2000mm、好ましくは5mm~1000mm、より好ましくは10mm~300mmである、(1)~(4)の何れか1に記載の有孔鋳造品。
(6) 前記耐熱線引き抜き孔のアスペクト比が、0.05~20000、好ましくは1~1000、より好ましくは3~800である、(1)~(5)の何れかに記載の有孔鋳造品。
(3) The hole according to (1) or (2), wherein the heat-resistant wire drawing hole is linear, curved (e.g., wavy, spiral, etc.), or bent (bent in multiple directions). Cast products.
(4) The perforated casting according to any one of (1) to (3), wherein the hole size (diameter) of the heat-resistant wire drawing hole is 100 μm to 20 mm, preferably 200 μm to 10 mm, more preferably 300 μm to 5 mm. Goods.
(5) The hole according to any one of (1) to (4), wherein the length of the heat-resistant wire drawing hole is 1 mm to 2000 mm, preferably 5 mm to 1000 mm, and more preferably 10 mm to 300 mm. Cast products.
(6) The perforated casting according to any one of (1) to (5), wherein the heat-resistant wire drawing hole has an aspect ratio of 0.05 to 20,000, preferably 1 to 1,000, more preferably 3 to 800. Goods.

(7) アルミニウム又はアルミニウム合金の金属又は半導体材料の鋳造品である、(1)~(6)の何れかに記載の有孔鋳造品。 (7) The perforated cast product according to any one of (1) to (6), which is a cast product of aluminum or aluminum alloy metal or semiconductor material.

(8) 単又は複数の耐熱線を鋳型内に設け、溶融した金属又は半導体材料を供給して凝固させた後、前記耐熱線を引き抜くことで、単又は複数の耐熱線引き抜き孔が表面に開口した金属又は半導体材料の鋳造品を得ることを特徴とする、有孔鋳造品の製造方法。 (8) One or more heat-resistant wires are provided in the mold, and after the molten metal or semiconductor material is supplied and solidified, the heat-resistant wires are pulled out to open one or more heat-resistant wire drawing holes on the surface. A method for producing a perforated cast product, the method comprising obtaining a cast product of a metal or semiconductor material.

(9) 遅くとも溶融した金属又は半導体材料を供給する前に、あらかじめ前記耐熱線の表面に離型剤を被覆してなる、(8)記載の有孔鋳造品の製造方法。 (9) The method for producing a perforated cast product according to (8), wherein the surface of the heat-resistant wire is coated with a mold release agent in advance at the latest before supplying the molten metal or semiconductor material.

(10) 前記耐熱線が、所定の保形性並びに屈曲変形可能性を備えた金属細線である、(8)又は(9)記載の有孔鋳造品の製造方法。 (10) The method for manufacturing a perforated cast product according to (8) or (9), wherein the heat-resistant wire is a thin metal wire having a predetermined shape retention property and bending deformability.

(11) 前記凝固させ、脱型した後、当該金属又は半導体材料の鋳造品から前記耐熱線を引き抜くことで、単又は複数の耐熱線引き抜き孔が表面に開口した金属又は半導体材料の鋳造品を得る、(8)~(10)の何れかに記載の有孔鋳造品の製造方法。 (11) After the solidification and demolding, the heat-resistant wire is pulled out of the cast product of the metal or semiconductor material, thereby producing a cast product of the metal or semiconductor material in which one or more heat-resistant wire drawing holes are opened on the surface. The method for producing a perforated cast product according to any one of (8) to (10).

(12) 前記耐熱線が、鋳型に一体的に設けられており、脱型の際、鋳型とともに耐熱線が引き抜かれる、(8)~(10)の何れかに記載の有孔鋳造品の製造方法。 (12) The production of the perforated cast product according to any one of (8) to (10), wherein the heat-resistant wire is integrally provided with the mold, and when demolding, the heat-resistant wire is pulled out together with the mold. Method.

(13) 前記耐熱線が、直線状、曲線状(たとえば波状、螺旋状など)、又は屈曲状(複数の方向に折れ曲がった形状)であり、これを曲線状又は屈曲状の場合は屈曲変形させながら、前記引き抜くことにより、直線状、曲線状、又は屈曲状の前記耐熱線引き抜き孔を得る、(10)記載の有孔鋳造品の製造方法。 (13) The heat-resistant wire is linear, curved (for example, wavy, spiral, etc.), or bent (bent in multiple directions), and if it is curved or bent, it is deformed by bending. The method for producing a perforated cast product according to (10), wherein the heat-resistant wire drawing hole is obtained in a straight, curved, or bent shape by the drawing.

以上にしてなる本願発明によれば、耐熱線の引き抜きにより有孔鋳造品が得られるので、このような有孔鋳造品は、ロータス金属成形体の切断品や、ドリル、電子ビーム、レーザー等の後加工品などに比べ、より低コストで、より長く、細い孔を有するものを提供することが可能で、曲線状に伸びる孔とすることも可能であり、全体の形状や寸法も鋳型次第で自由に設定できるとともに、その有する孔の形態・寸法についても、耐熱線の長さ、太さ、形状などを適宜設定することで、自由に設定することができる。 According to the present invention as described above, a perforated cast product can be obtained by drawing a heat-resistant wire, so such a perforated cast product can be used as a cut product of a lotus metal molding, a drill, an electron beam, a laser, etc. Compared to post-processed products, it is possible to provide products with longer and narrower holes at a lower cost, and it is also possible to create holes that extend in a curved shape, and the overall shape and dimensions also depend on the mold. It can be set freely, and the shape and dimensions of the hole can also be set freely by appropriately setting the length, thickness, shape, etc. of the heat-resistant wire.

したがって、設計の自由度も飛躍的に向上し、ヒートシンク等としての優れた冷却能や、触媒、電極、振動吸収材、吸音材、衝撃吸収材等として利用するにあたり、より高性能なものとして低コストで提供することができる。本発明者は後述するように、アスペクト比786の長く細い孔を容易に設けることができることを確認している。また、曲線状や折れ線状の孔を設けることもできることを確認している。孔の直径は100μm~20mm程度の細孔とすることが可能である。 Therefore, the degree of freedom in design has been dramatically improved, and it has excellent cooling performance as a heat sink, etc., and it can be used as a catalyst, electrode, vibration absorbing material, sound absorbing material, shock absorbing material, etc. Can be provided at cost. The present inventor has confirmed that a long, narrow hole with an aspect ratio of 786 can be easily provided, as will be described later. It has also been confirmed that curved or polygonal holes can be provided. The diameter of the pores can be approximately 100 μm to 20 mm.

本発明の代表的実施形態に係る有孔鋳造品を示す斜視図。FIG. 1 is a perspective view showing a perforated casting product according to a representative embodiment of the present invention. 同じく有孔鋳造品の他の例を示す説明図。Explanatory drawing showing another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品のさらに他の例を示す説明図。Explanatory drawing which similarly shows yet another example of a perforated casting product. 同じく有孔鋳造品の製造手順の一例を示す説明図。An explanatory diagram showing an example of the manufacturing procedure of a perforated cast product. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の説明図。Similarly, an explanatory diagram of the manufacturing procedure. 同じく製造手順の他の例を示す説明図。Explanatory diagram showing another example of the manufacturing procedure. 耐熱線引き抜き工程(引き抜き途中)の具体例を示す説明図。An explanatory diagram showing a specific example of a heat-resistant wire drawing process (during drawing). 実施例のサンプル作製を行った製造装置、製造手順を示す説明図。FIG. 2 is an explanatory diagram showing the manufacturing equipment and manufacturing procedure used to prepare the samples of the example. 同じく製造装置、製造手順を示す説明図。An explanatory diagram showing a manufacturing device and a manufacturing procedure. 同じく製造装置、製造手順を示す説明図。An explanatory diagram showing a manufacturing device and a manufacturing procedure. 同じく製造装置、製造手順を示す説明図。An explanatory diagram showing a manufacturing device and a manufacturing procedure. 実施例のサンプル作製に使用したプレート型および耐熱線を示す写真。A photograph showing the plate mold and heat-resistant wire used in sample production in the example. 作製した実施例の複数のサンプルのX線コンピュータートモグラフィ法によって測定された3次元画像イメージ(以下、「X線CT像」と称す。)。Three-dimensional images (hereinafter referred to as "X-ray CT images") measured by X-ray computer tomography of a plurality of samples of the prepared examples. 同じく他のサンプルのX線CT像。X-ray CT image of another sample. 同じく他のサンプルのX線CT像。X-ray CT image of another sample. 同じく他のサンプルのX線CT像、およびこのサンプル作製に用いたプレート型および耐熱線の写真。Similarly, an X-ray CT image of another sample, and a photograph of the plate mold and heat-resistant wire used to prepare this sample. 他のサンプル、および該サンプル作製に用いた耐熱線、巻き尺を並べた外観写真。A photo showing the appearance of other samples, and the heat-resistant wire and tape measure used to prepare the samples. 本発明に係る有孔鋳造品のさらに他の例を示す説明図。FIG. 7 is an explanatory diagram showing still another example of the perforated cast product according to the present invention. 同じく本発明に係る有孔鋳造品のさらに他の例を示す説明図。FIG. 7 is an explanatory diagram showing still another example of a perforated cast product according to the present invention. 同じく本発明に係る有孔鋳造品のさらに他の例を示す説明図。FIG. 7 is an explanatory diagram showing still another example of a perforated cast product according to the present invention. 本発明に係る有孔鋳造品の引き抜き孔の一部に所定の線材を挿入した例を示す説明図。FIG. 3 is an explanatory diagram showing an example in which a predetermined wire rod is inserted into a part of the drawing hole of the perforated casting product according to the present invention. 同じく本発明に係る有孔鋳造品のさらに他の例を示す説明図。FIG. 7 is an explanatory diagram showing still another example of a perforated cast product according to the present invention. 同じく本発明に係る有孔鋳造品のさらに他の例を示す説明図。FIG. 7 is an explanatory diagram showing still another example of a perforated cast product according to the present invention.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。 Next, embodiments of the present invention will be described in detail based on the accompanying drawings.

本発明にかかる金属又は半導体材料の有孔鋳造品1は、図1Aや図1Bに示すように、単又は複数の耐熱線引き抜き孔10が表面に開口している。金属又は半導体材料としては、種々のものが可能である。後述する実施例のサンプルではアルミニウムとしたが、アルミニウム合金や銅、マグネシウム、鉄、コバルト、ニッケル、クロム、亜鉛、チタン、ジルコニウム、ニオブ、モリブデン、パラジウム、銀、金、カドミニウム、インジウム、錫、白金、タンタル、鉛、ビスマスや、これらの合金、シリコン、ゲルマニウムや、これらの化合物、その他の種々の金属又は半導体材料を用いることができる。耐熱線引き抜き孔10は、後述するように凝固した鋳造物から耐熱線を引き抜いて形成される孔であり、その断面形状は耐熱線の断面形状が反映され、円形以外に三角形、四角形、五角形、六角形などの多角形状や、平板状(断面長方形)、L字型、V字型、Y字型、コ(カタカナ)字型、チューブ型(中空の円筒型)、歯車型などの断面形状も含まれる。また、ネジ溝が切られた形状の内周面を有する孔(耐熱線は雄ネジ状に外周面に螺旋状の凸条を有し、回転しながら引き抜く)とすることも可能である。 As shown in FIGS. 1A and 1B, a perforated cast product 1 made of a metal or semiconductor material according to the present invention has one or more heat-resistant wire drawing holes 10 opened on its surface. Various metal or semiconductor materials are possible. Aluminum was used in the samples of the examples described later, but aluminum alloys, copper, magnesium, iron, cobalt, nickel, chromium, zinc, titanium, zirconium, niobium, molybdenum, palladium, silver, gold, cadmium, indium, tin, platinum , tantalum, lead, bismuth, alloys thereof, silicon, germanium, compounds thereof, and various other metals or semiconductor materials can be used. The heat-resistant wire drawing hole 10 is a hole formed by drawing a heat-resistant wire from a solidified casting as described later, and its cross-sectional shape reflects the cross-sectional shape of the heat-resistant wire, and may be triangular, square, pentagonal, or triangular in addition to circular. Polygonal shapes such as hexagons, cross-sectional shapes such as flat plate (rectangular in cross section), L-shape, V-shape, Y-shape, U (katakana) shape, tube-shape (hollow cylindrical shape), and gear-shape are also available. included. It is also possible to form a hole having a threaded inner circumferential surface (the heat-resistant wire has a male thread shape and has a spiral protrusion on the outer circumferential surface, and is pulled out while rotating).

断面積(開口面積)についても、耐熱線の断面積がそのまま反映され、従来のロータス成形体やドリル加工、レーザー加工等では困難であった細く長い孔を容易に形成することができる。断面積は、すべての引き抜き孔で同じサイズにする必要はない。すなわち、サイズの異なる孔より構成される有孔鋳造品も含まれる。構造部材では、負荷をかけた場合の応力集中は孔の大きさに依存して変わるので、このように大小の孔を混在させることによって応力集中による応力分布を変えることができ、応力集中を緩和させたり、制御させたりすることができる。とくにヒートシンクとして利用する場合には、冷媒を孔に流す場合の熱伝達率が孔の大小によって変化するので、このような大小の孔の混在によって熱発生分布を変化させることができ、熱伝達率を変化させたり、緩和させることができるのである。 The cross-sectional area (opening area) also directly reflects the cross-sectional area of the heat-resistant wire, making it possible to easily form long, thin holes that are difficult to form using conventional lotus molding, drilling, laser processing, etc. The cross-sectional area does not have to be the same size for all withdrawal holes. In other words, it also includes perforated cast products composed of holes of different sizes. In structural members, the stress concentration when a load is applied changes depending on the size of the holes, so by mixing large and small holes in this way, the stress distribution due to stress concentration can be changed and the stress concentration can be alleviated. It can be controlled or controlled. In particular, when used as a heat sink, the heat transfer coefficient when a refrigerant flows through the holes changes depending on the size of the holes, so the heat generation distribution can be changed by having such large and small holes mixed, and the heat transfer coefficient can be changed or relaxed.

耐熱線および引き抜き孔の断面積は、軸方向に一定でなく、不均一なものとすることもできる。一例として、耐熱線および引き抜き孔に断面積が次第に小さく(大きく)なるようにテーパーが付いていてもよい。テーパーを付けることによって、有孔鋳造品の表層側が大口径で、且つ深層部または反対側の開口側が小口径というように、直径の傾斜化を施した孔を作製することができる。耐熱線の引き抜きは、大口径となる側から行う。このテーパー付きの引き抜き孔は、熱流、電磁流体、電磁波、音波、光波、放射線の集束あるいは発散をもたらすことが可能になり、様々な応用展開が可能になる。一定のテーパー角がついた貫通した引き抜き孔を設計する場合、大口径側の開口半径をr、他方の小口径側の開口半径をr、引き抜き孔の中心軸に沿った有孔鋳造品の厚みをL、孔内周面上を中心軸方向に沿って延びる母線の延長と中心線とのなす角(テーパー角)の角度をθとすると、tanθ=(r-r)/Lの関係が得られ、このようなテーパーを有する引き抜き孔の母線の傾斜(テーパー角θ)は、0<tan-1{(r-r)/L}<(π/2)の範囲に入ることになる。このようなテーパー状の引き抜き孔はレーザービームの集光などに利用することもできる。The cross-sectional area of the heat-resistant wire and the drawing hole may not be constant in the axial direction, but may also be non-uniform. As an example, the heat-resistant wire and the drawing hole may be tapered so that the cross-sectional area becomes gradually smaller (larger). By providing a taper, it is possible to create a hole with a sloped diameter, such that the surface side of the perforated cast product has a large diameter and the deeper part or the opening side on the opposite side has a small diameter. Pull out the heat-resistant wire from the side with the larger diameter. This tapered extraction hole can provide focusing or divergence of heat flow, magnetohydrodynamics, electromagnetic waves, sound waves, light waves, and radiation, enabling a variety of applications. When designing a through hole with a constant taper angle, the opening radius on the large diameter side is r 0 , the opening radius on the other small diameter side is r f , and the perforated casting is made along the central axis of the drawing hole. If L is the thickness of the hole, and θ is the angle between the extension of the generatrix extending along the central axis direction on the inner peripheral surface of the hole and the center line (taper angle), then tanθ=(r 0 - r f )/L The following relationship is obtained, and the inclination of the generating line (taper angle θ) of such a tapered drawing hole is in the range of 0<tan −1 {(r 0 −r f )/L}<(π/2). I will be entering. Such a tapered hole can also be used for focusing a laser beam.

耐熱線引き抜き孔10の孔の長さは、1mm~2000mm、好ましくは5mm~1000mm、より好ましくは10mm~300mmとされる。2000mmより長くなると耐熱線も長くなり、鋳造物との接触面積が増え、引き抜きの際の摩擦力が増大して引き抜きが困難となる。短いほど引き抜きは容易となる。耐熱線引き抜き孔の孔径(直径)は、100μm~20mm、好ましくは200μm~10mm、より好ましくは270μm~5mmとされる。孔径が100μmより小さくなると、耐熱線もかなり細くなり、引き抜き時に破損しやすくなり製造が難しくなる。孔径が20mmよりも大きくなると、使用する耐熱線と鋳造物との接触面積が増え、引き抜きの際の摩擦力が大きくなり、引き抜きが困難になりやすい。中庸の太さの耐熱線を用いると引き抜き孔10の形成が容易である。 The length of the heat-resistant wire drawing hole 10 is 1 mm to 2000 mm, preferably 5 mm to 1000 mm, and more preferably 10 mm to 300 mm. If the length is longer than 2000 mm, the heat-resistant wire will also be long, the contact area with the casting will increase, and the frictional force during drawing will increase, making it difficult to pull out. The shorter the length, the easier it is to pull out. The hole diameter (diameter) of the heat-resistant wire drawing hole is 100 μm to 20 mm, preferably 200 μm to 10 mm, and more preferably 270 μm to 5 mm. If the pore diameter is smaller than 100 μm, the heat-resistant wire will also become considerably thinner and will be easily damaged during drawing, making manufacturing difficult. When the hole diameter is larger than 20 mm, the contact area between the heat-resistant wire used and the casting increases, the frictional force during drawing increases, and drawing becomes difficult. When a heat-resistant wire with a moderate thickness is used, the drawing hole 10 can be easily formed.

後述するサンプル作製では、太さ(直径)0.28mm~3.2mmの種々の太さの耐熱線を用いてプレート型の上面から耐熱線の上端まで溶融アルミニウムに浸漬し、凝固した鋳造物から引き抜いて貫通孔を作製することができている。すなわち、太さ(直径)0.28mmの耐熱線を引き抜いた場合に、内径0.28mm、長さ220mmの貫通孔が形成できることが確認されている。また、耐熱線引き抜き孔10は、貫通孔である必要はなく、図2A,図2Bに示すように引き抜き用に少なくとも一端が開口した有底の孔であってもよい。また、所定の保形性に加えて屈曲変形可能性を備えた金属細線を用いることで、図2C、図2D、図2E、又は図3Aに示すように曲線状(波状や螺旋状)又は折曲状して伸びる孔とすることもできる。 In the sample preparation described below, heat-resistant wires of various thicknesses (diameters) from 0.28 mm to 3.2 mm are immersed in molten aluminum from the top surface of the plate mold to the top of the heat-resistant wire, and the solidified castings are It is possible to make a through hole by pulling it out. That is, it has been confirmed that when a heat-resistant wire with a thickness (diameter) of 0.28 mm is pulled out, a through hole with an inner diameter of 0.28 mm and a length of 220 mm can be formed. Further, the heat-resistant wire drawing hole 10 does not need to be a through hole, and may be a bottomed hole with at least one end open for drawing, as shown in FIGS. 2A and 2B. In addition, by using thin metal wires that have bending deformability in addition to a predetermined shape retention property, curved (wavy or spiral) or folded It is also possible to form a hole extending in a curved manner.

これにより引き抜き孔の長さを稼ぎ、より優れた性能を備えた基材として提供することが可能となる。とくに図2Dに示すように鋳造品本体の形状に沿わせるように引き抜き孔10を適宜屈曲させて配することができ、より性能のよい基材を効率よく提供することが可能となる。このような孔は従来のロータス金属成形体を切断したものやドリル加工、電子ビーム加工、レーザー加工では形成できない。図19(a)、(b)に示すように、直線状の引き抜き孔10と曲線状(本例では螺旋状)の引き抜き孔10を組み合わせたものも好ましい例である。また、有孔鋳造品1の鋳造時に耐熱線の配置を適宜設定することで、図3B、図3Cに示すように、異なる方向に伸びる多数の貫通又は非貫通の引き抜き孔10を容易に設けることもできる。このような多方向の引き抜き孔10を備える有孔鋳造品1は、一方向気孔が形成されるロータス金属成形体では作製できず、ドリル加工や電子ビーム加工、レーザー加工も時間がかかり且つ装置も大型化してコスト高となる。このように、引き抜き孔を多方向に設定できるので、鋳造品に応力を負荷した場合における鋳造品の応力集中を抑制でき、十分な強度を有する軽量化金属又は半導体材料として提供することができる。 This makes it possible to increase the length of the drawing hole and provide a base material with better performance. In particular, as shown in FIG. 2D, the pull-out holes 10 can be appropriately bent and arranged so as to follow the shape of the cast body, making it possible to efficiently provide a base material with better performance. Such holes cannot be formed by cutting conventional lotus metal moldings, drilling, electron beam processing, or laser processing. As shown in FIGS. 19(a) and 19(b), a combination of a linear extraction hole 10 and a curved (in this example, spiral) extraction hole 10 is also a preferable example. Furthermore, by appropriately setting the arrangement of the heat-resistant wires when casting the perforated casting product 1, it is possible to easily provide a large number of through or non-through holes 10 extending in different directions, as shown in FIGS. 3B and 3C. You can also do it. Such a perforated cast product 1 having multidirectional drawn holes 10 cannot be produced using a lotus metal molded body in which pores are formed in one direction, and drilling, electron beam processing, and laser processing are time-consuming and require equipment. This increases the size and costs. In this way, since the drawing holes can be set in multiple directions, it is possible to suppress stress concentration in the cast product when stress is applied to the cast product, and it is possible to provide a lightweight metal or semiconductor material with sufficient strength.

さらに、図3Dに示すように内部途中で分岐した孔とすることも、同じく分岐する耐熱線を用いることで容易に実現できる。これもロータス金属成形体では実現できず、ドリル加工等も非常にコスト高となる。このように、貫通孔の方向や分岐を自由に設定できるので、万能な冷却路を有するヒートシンクを作製でき、各種分野に応用が期待できる。また本発明の引き抜き孔(10)は、耐熱線を完全に抜き去って貫通又は非貫通の孔とすること以外に、図16に示すように、耐熱線2の引き抜きを途中までとし、抜き出した突出部分を除去することで、内部に耐熱線の一部を残存させ、残存側が耐熱線で閉塞し、他端側のみ開口した引き抜き孔として形成することも含まれる。このような引き抜き孔によれば、耐熱線が残存している領域の強度アップを図ることができ、とくに本有孔鋳造品1を自動車などの移動体の骨格に用いる場合、引き抜き孔が存在することによる軽量化と強度維持(又は強度アップ)の両立を図ることが可能となる。すなわち、耐熱線が引き抜かれた中空軽量領域と残留された強度アップ領域とを混在させることによって軽くて強い(孔と耐熱線による)複合材料を創出することができ、引き抜き方向を設定することで前記混在の形態も容易に変えることができ、設計の自由度も高いものとなる。 Furthermore, as shown in FIG. 3D, it is possible to easily form holes that branch in the middle of the interior by using heat-resistant wires that also branch. This also cannot be achieved with a lotus metal molded body, and drilling etc. will also be extremely costly. In this way, since the direction and branching of the through holes can be freely set, a heat sink having a versatile cooling path can be manufactured, and applications in various fields can be expected. Moreover, in addition to completely removing the heat-resistant wire 2 to form a through or non-penetrating hole, the drawing hole (10) of the present invention can be made by pulling out the heat-resistant wire 2 halfway, as shown in FIG. By removing the protruding portion, a part of the heat-resistant wire may remain inside, the remaining side may be closed with the heat-resistant wire, and only the other end may be formed as a pull-out hole that is open. With such a pull-out hole, it is possible to increase the strength of the area where the heat-resistant wire remains, and especially when this perforated casting product 1 is used for the frame of a moving body such as an automobile, the pull-out hole is present. This makes it possible to achieve both weight reduction and strength maintenance (or strength increase). In other words, by mixing the hollow lightweight region from which the heat-resistant wire has been drawn and the remaining strength-enhancing region, it is possible to create a light and strong composite material (due to the holes and the heat-resistant wire), and by setting the drawing direction. The form of the mixture can also be easily changed, providing a high degree of freedom in design.

このように一つの引き抜き孔について、耐熱線を一部残存させることの他、図17(a),(b)に示すように、複数本の耐熱線のうち、一部の耐熱線をまったく引き抜かずに残存させ、当該耐熱線が残存した箇所を引き抜き孔とせずに、耐熱線が埋まった強度アップ領域とすることも好ましい実施例である。これにより、たとえば長尺の構造部材で局所的に大きな負荷荷重のかかる所(応力集中部)において、耐熱線を引き抜かずに残留させて強度アップを図り、その他の部分は耐熱線を引き抜いて引き抜き孔を形成し、軽量化を図る等することが可能となる。たとえば、上述した図19(a)、(b)に示した例において、直線状の引き抜き孔10の一部またはすべてを耐熱線を引き抜かずに耐熱線が埋まった状態とし、螺旋状の引き抜き孔の中心側を補強するようにしたり、反対に、螺旋状の引き抜き孔10を耐熱線を引き抜かずに耐熱線が埋まった状態とし、直線状の引き抜き孔の周囲を螺旋状に埋設された耐熱線で補強するようにしたものも好ましい例である。また、他の例としては、図18に示すように、本発明の有孔鋳造品を作製した後、引き抜き孔の一部に補強用の線材8を挿入することによって長尺構造部材の中心部の応力集中部だけを強化部材(線材8)で充填して補強させることも好ましい例である。この場合、部材の両端部分を有孔部とすることができる。 In addition to leaving a part of the heat-resistant wire in one drawing hole, as shown in FIGS. It is also a preferable embodiment to leave the heat-resistant wire in place, and to make the area where the heat-resistant wire remains not a pull-out hole but a strength-enhancing region filled with the heat-resistant wire. As a result, for example, in long structural members, where a large local load is applied (stress concentration area), the heat-resistant wire can be left in place without being pulled out to increase strength, and in other parts, the heat-resistant wire can be pulled out. By forming holes, it becomes possible to reduce the weight. For example, in the example shown in FIGS. 19(a) and 19(b), part or all of the linear drawing hole 10 is filled with the heat resistant wire without pulling out the heat resistant wire, and the spiral drawing hole 10 is filled with the heat resistant wire without being pulled out. On the contrary, the heat-resistant wire is buried in the spiral drawing hole 10 without pulling out the heat-resistant wire, and the heat-resistant wire is buried in a spiral shape around the straight drawing hole. A preferred example is one that is reinforced with. As another example, as shown in FIG. 18, after producing the perforated casting product of the present invention, a reinforcing wire 8 is inserted into a part of the drawing hole, so that the central part of the elongated structural member is It is also a preferable example to fill and reinforce only the stress concentration part with the reinforcing member (wire rod 8). In this case, both end portions of the member can be made into perforated portions.

有孔鋳造品1は、例えば図4Aに示すように、耐熱線2を設けた鋳型3を用いて製造することができる。図示した例では、鋳型3を、鋳造品の底面を形成するとともに耐熱線2を上方に突設した状態に支持する板状のプレート型30と、一体化されたプレート型30及び耐熱線2を内装し、鋳造品の外周面を形成する容器状の外側型31との組み合わせにより構成されている。図4Bは、プレート型30及び耐熱線2を外側型31に内装してセットした状態を示している。プレート型30の上面には耐熱線2の下端部を挿入して支持する支持用凹部が形成されることが好ましい。 The perforated cast product 1 can be manufactured using a mold 3 provided with a heat-resistant wire 2, for example, as shown in FIG. 4A. In the illustrated example, the mold 3 includes a plate-shaped plate mold 30 that forms the bottom surface of the cast product and supports the heat-resistant wire 2 in an upwardly protruding state, and an integrated plate mold 30 and the heat-resistant wire 2. It is configured in combination with a container-shaped outer mold 31 that is placed inside and forms the outer peripheral surface of the cast product. FIG. 4B shows a state in which the plate mold 30 and the heat-resistant wire 2 are set inside the outer mold 31. It is preferable that a supporting recess into which the lower end of the heat-resistant wire 2 is inserted and supported is formed on the upper surface of the plate mold 30.

少なくとも耐熱線2の外面には、離型剤が塗布される。耐熱線2以外にもプレート型30の上面、外側型31の内周面にも離型剤が塗布されることが好ましい。離型剤を塗布するタイミングは、一体化したプレート型30及び耐熱線2に対して予め離型剤を全体に塗布し、乾燥後に外側型31にセットしてもよいし、セット後に塗布することもできる。 At least the outer surface of the heat-resistant wire 2 is coated with a mold release agent. In addition to the heat-resistant wire 2, it is preferable that a mold release agent is also applied to the upper surface of the plate mold 30 and the inner peripheral surface of the outer mold 31. The timing of applying the mold release agent is that the mold release agent may be applied to the entire integrated plate mold 30 and heat-resistant wire 2 in advance, and then set in the outer mold 31 after drying, or it may be applied after the mold is set. You can also do it.

離型剤には、使用する金属又は半導体材料に応じて公知の種々の離型剤を用いることができる。具体的には、窒化ホウ素(ボロンナイトライド)や、アルミナ(アルミナセメント)、グラファイト、フラーレン、シリコン、二硫化モリブデン、酸化クロムなどを主成分とした公知の離型剤を、使用する金属又は半導体材料に応じて選択できる。たとえばアルミニウムやマグネシウムなどの場合は窒化ホウ素を主成分とした離型剤が好ましく、銅や鉄、鉄鋼、ステンレス鋼、ニッケル、金、銀、白金、シリコン、ゲルマニウム、その他多くの半導体材料などの場合はアルミナを主成分とした離型剤を用いることが好ましい。また、離型剤は、離型機能を保持し得る最高温度が使用する金属又は半導体材料の融点よりも高いものを選ばなければならない。離型剤と耐熱線材表面とのぬれ性や密着性を改善するために、離型のための主成分に、有機溶剤などを添加してもよい。しかしながら、その有機溶剤が溶融材料と反応を起こして離型機能性を低下させる場合には、離型主材料単体を耐熱線に塗布することもできる。 As the mold release agent, various known mold release agents can be used depending on the metal or semiconductor material used. Specifically, metals or semiconductors that use known mold release agents mainly containing boron nitride, alumina (alumina cement), graphite, fullerene, silicon, molybdenum disulfide, chromium oxide, etc. Can be selected depending on the material. For example, in the case of aluminum and magnesium, a mold release agent based on boron nitride is preferable, while in the case of copper, iron, steel, stainless steel, nickel, gold, silver, platinum, silicon, germanium, and many other semiconductor materials. It is preferable to use a mold release agent containing alumina as a main component. Furthermore, the mold release agent must be selected so that the maximum temperature at which it can retain its mold release function is higher than the melting point of the metal or semiconductor material used. In order to improve the wettability and adhesion between the mold release agent and the surface of the heat-resistant wire, an organic solvent or the like may be added to the main component for mold release. However, if the organic solvent causes a reaction with the molten material and reduces the mold release functionality, the main mold release material alone can be applied to the heat-resistant wire.

そして、適宜鋳型3(外側型31)を加熱した状態で、図5Aの如く、別途溶融された金属又は半導体材料(たとえば溶融アルミニウム)(以下、「溶融材料」と称す。)を、耐熱線2が立設されている鋳型3内に注湯した後、図5Bの状態で冷却し、凝固させる。溶融材料は耐熱線2間の隙間に充填され、耐熱線2と一体化された状態に凝固する。溶融材料の供給方法は、固形の金属又は半導体材料(固体材料)を鋳型上部にセットして加熱により溶融させ、下方の鋳型内に移動させるものでもよい。 Then, while heating the mold 3 (outer mold 31) as appropriate, as shown in FIG. After pouring the metal into the mold 3 in which the metal is erected, it is cooled and solidified in the state shown in FIG. 5B. The molten material fills the gap between the heat-resistant wires 2 and solidifies into a state integrated with the heat-resistant wires 2. The molten material may be supplied by setting a solid metal or semiconductor material (solid material) on the upper part of the mold, melting it by heating, and moving it into the mold below.

耐熱線2を完全に埋没させるまで注湯すれば、当該耐熱線の引き抜き孔は非貫通孔となり、耐熱線2の上端が湯面から突出状態までで注湯を止めれば、当該耐熱線の引き抜き孔は貫通孔となる。このように耐熱線の長さ又は注湯量で、引き抜き孔の貫通/非貫通を設定できる。なお、耐熱線2の間の距離が小さい場合は、溶融材料の浸漬が表面張力や粘性により不十分となる場合があるので、そのような場合は細いセラミックス棒などによる撹拌手段や、振動手段を設けることが好ましい。 If the heat resistant wire 2 is poured until it is completely buried, the hole for drawing the heat resistant wire becomes a non-penetrating hole, and if the pouring is stopped when the upper end of the heat resistant wire 2 protrudes from the surface of the molten metal, the heat resistant wire can be pulled out. The hole becomes a through hole. In this way, the penetration/non-penetration of the drawing hole can be set by the length of the heat-resistant wire or the amount of poured metal. If the distance between the heat-resistant wires 2 is small, the immersion of the molten material may be insufficient due to surface tension or viscosity. It is preferable to provide one.

溶融材料が凝固した後、図6Aに示すように、下方から図示しないピンで押し上げる等して、外側型31からプレート型30を分離し、耐熱線2と一体化した金属又は半導体材料の鋳造物4が上面側に載った状態のプレート型30を取り出す。ここで、外側型31を側壁と底壁を分離可能とし、底壁を取り外して底側から取り出すことも勿論できる。 After the molten material has solidified, as shown in FIG. 6A, the plate mold 30 is separated from the outer mold 31 by pushing it up from below with a pin (not shown), and the molded metal or semiconductor material is made integral with the heat-resistant wire 2. The plate mold 30 with 4 placed on the upper surface side is taken out. Here, it is of course possible to make the side wall and the bottom wall of the outer mold 31 separable so that the bottom wall can be removed and taken out from the bottom side.

そして、図6Bに示すように、鋳造物4の側面4bを治具5で挟持する等して支持した状態で、下面側のプレート型30を取り外し、露出(突出)した各耐熱線2の下端部2aを、図6Cに示すように挟持治具6などを用いて摘み、そのまま下方に引き抜くことにより、鋳造物4に引き抜き孔10が形成され、有孔鋳造品1が完成する。引き抜きの際の下端部2aの露出は、支持用凹部の深さ分だけ突出する。上方にも耐熱線2を露出させて貫通孔を形成する場合は、耐熱線2の上端部から上方向に引き抜くこともできる。 Then, as shown in FIG. 6B, while the side surface 4b of the casting 4 is held and supported by the jig 5, the plate mold 30 on the lower surface side is removed, and the lower end of each heat-resistant wire 2 is exposed (protruded). As shown in FIG. 6C, the portion 2a is pinched using a clamping jig 6 or the like and pulled out downward, thereby forming a pull-out hole 10 in the casting 4 and completing the perforated casting 1. When the lower end portion 2a is pulled out, the lower end portion 2a is exposed by protruding by the depth of the supporting recess. If the heat-resistant wire 2 is also exposed above to form a through hole, the heat-resistant wire 2 can be pulled upward from the upper end.

図8は、治具5、6の一例を示している。この例では、鋳造物4の側面4bを万力(治具5)で固定した状態で、鋳造物4に埋め込まれた耐熱線2の露出した下端部2aを、コレットチャック(治具6)で複数本同時に引き抜くものである。より具体的には、治具6として多芯型のコレットチャックを用い、図示したように複数の耐熱線2の各下端部2aをつかませ、下方に移動させることで耐熱線2を複数本同時に引き抜くことが好ましい例である。コレットチャック治具6は上下左右に自由に移動することができ、耐熱線2をつかみ、耐熱線2を引き抜く作業を行う。 FIG. 8 shows an example of the jigs 5 and 6. In this example, while the side surface 4b of the casting 4 is fixed with a vise (jig 5), the exposed lower end 2a of the heat-resistant wire 2 embedded in the casting 4 is held with a collet chuck (jig 6). Multiple pieces are pulled out at the same time. More specifically, a multi-core collet chuck is used as the jig 6, and as shown in the figure, the lower end portions 2a of the plurality of heat-resistant wires 2 are gripped and moved downward, thereby simultaneously holding the plurality of heat-resistant wires 2. This is a preferable example. The collet chuck jig 6 can freely move vertically and horizontally, grips the heat-resistant wire 2, and performs the work of pulling out the heat-resistant wire 2.

本例では、図6B、図6Cに示すように、鋳造物4からプレート型30を取り外した後、耐熱線2を治具6で引き抜くようにしたが、プレート型30と耐熱線2の相互を強固に固定しておくことで、プレート型30の取り外しの際に耐熱線2もプレート型30とともに下方に移動して引き抜かれるように構成することも効率上、好ましい。すなわち、脱型した後に鋳造物から耐熱線を引き抜くこともできるし、耐熱線を鋳型に一体的に設け、脱型の際、鋳型とともに耐熱線が引き抜かれるようにすることもできる。 In this example, as shown in FIGS. 6B and 6C, after removing the plate mold 30 from the casting 4, the heat-resistant wire 2 is pulled out using the jig 6. In terms of efficiency, it is also preferable for the heat-resistant wire 2 to be firmly fixed so that when the plate mold 30 is removed, the heat-resistant wire 2 also moves downward together with the plate mold 30 and is pulled out. That is, the heat-resistant wire can be pulled out from the casting after demolding, or the heat-resistant wire can be provided integrally with the mold so that the heat-resistant wire can be pulled out together with the mold during demolding.

図9A~図9Dに示す製造装置の例は、図9Aに示すように、るつぼ型の外側型31に、相互に強固に固定したプレート型30及び耐熱線2をセットするとともに、外側型31内の耐熱線2の上部に固形の金属又は半導体材料(固体材料9)を挿入し、ヒーター7で加熱することで、図9Bに示すように固体材料9を溶融させ、当該溶融材料を耐熱線2間の隙間に充填・凝固する例である。そして、図9Cに示すように耐熱線2と一体化した金属又は半導体材料の鋳造物4が上面側に載った状態のプレート型30を外側型31から取り出した後、図9Dに示すようにプレート型30を鋳造物4から分離させることで、同時に耐熱線2もプレート型30とともに引き抜かれ、有孔鋳造品を効率よく得ることができる。 In the example of the manufacturing apparatus shown in FIGS. 9A to 9D, as shown in FIG. 9A, a plate mold 30 and a heat-resistant wire 2 that are firmly fixed to each other are set in a crucible-shaped outer mold 31, and inside the outer mold 31. By inserting a solid metal or semiconductor material (solid material 9) into the upper part of the heat-resistant wire 2 and heating it with the heater 7, the solid material 9 is melted as shown in FIG. 9B, and the molten material is transferred to the heat-resistant wire 2. This is an example of filling and solidifying the gap between the particles. Then, as shown in FIG. 9C, the plate mold 30 with the metal or semiconductor material casting 4 integrated with the heat-resistant wire 2 placed on the upper surface side is taken out from the outer mold 31, and then the plate mold 30 is removed from the outer mold 31 as shown in FIG. 9D. By separating the mold 30 from the casting 4, the heat-resistant wire 2 is simultaneously pulled out together with the plate mold 30, and a perforated casting can be efficiently obtained.

以上の例は、縦方向に耐熱線を配置し、縦方向に引き抜き孔を形成する製法であるが、横方向に形成することも勿論できる。その場合は、たとえば図7に示すように、プレート型30を左右一対設け、同じく外側型31にセットし、同様に注湯、凝固、プレート型30の除去、耐熱線2の引き抜きを行うことで製造できる。この場合、プレート型30が金属又は半導体材料の鋳造品の側面を形成し、外側型31が下面を形成する。 In the above example, the heat-resistant wire is arranged in the vertical direction and the drawing holes are formed in the vertical direction, but it is of course possible to form the holes in the horizontal direction. In that case, for example, as shown in FIG. 7, a pair of left and right plate molds 30 is provided, which are also set in the outer mold 31, and the pouring, solidification, removal of the plate mold 30, and drawing of the heat-resistant wire 2 are performed in the same manner. Can be manufactured. In this case, the plate mold 30 forms the side surface of the casting of metal or semiconductor material, and the outer mold 31 forms the bottom surface.

耐熱線は、所定の保形性並びに屈曲変形可能性を備えたものであり、好ましくは金属細線が用いられる。耐熱線2は、本例のように直線状のもの以外に、曲線状(たとえば波状、螺旋状など)、又は屈曲状(複数の方向に折れ曲がった形状)にすることができ、この形状のまま金属材と一体化された鋳造物から、屈曲変形させながら耐熱線を引き抜くことで、曲線状、又は屈曲状の前記耐熱線引き抜き孔10を得ることができる。耐熱線は、溶融材料が注湯された状態で耐熱性を保持しなければならないので、その融点は溶融材料に使用される金属又は半導体材料の融点よりも高くなければならない。少なくとも100℃以上高いことが望ましい。 The heat-resistant wire has a predetermined shape retention property and bending deformability, and preferably a thin metal wire is used. In addition to being linear as in this example, the heat-resistant wire 2 can be curved (e.g., wavy, spiral, etc.) or bent (bent in multiple directions), and can be left in this shape. The heat-resistant wire drawing hole 10 having a curved or bent shape can be obtained by drawing out the heat-resistant wire from a casting integrated with a metal material while bending and deforming it. Since the heat-resistant wire must maintain heat resistance when molten material is poured into it, its melting point must be higher than the melting point of the metal or semiconductor material used for the molten material. It is desirable that the temperature be at least 100°C higher.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.

図9に示したるつぼからなる製造装置、ただしプレートと耐熱線は強固に固着していないものを用いて、本発明の有孔鋳造品の実施例にかかるサンプルを複数作製し、引き抜き孔の様子を観察した結果について説明する。 A plurality of samples according to the embodiment of the perforated casting product of the present invention were manufactured using the manufacturing apparatus consisting of the crucible shown in Fig. 9, but the plate and the heat-resistant wire were not firmly fixed, and the appearance of the drawn holes was We will explain the results of our observations.

(サンプルの作製)
形成する孔のテンプレートとなる耐熱線は、ステンレス鋼(SUS)線、銅線、白金線、モリブデン線を各々太さの異なる複数種類を用意した。ステンレス鋼線の太さは、0.28mm、0.35mm、0.45mm、0.7mm、0.85mm、1.2mm、1.6mm、2.0mm、3.2mmを用意した。銅線、白金線、モリブデン線の太さは、それぞれ1.0mm、0.6mm、1.0mmを用意した。
(Preparation of sample)
As the heat-resistant wires that serve as templates for the holes to be formed, multiple types of stainless steel (SUS) wires, copper wires, platinum wires, and molybdenum wires with different thicknesses were prepared. The thicknesses of the stainless steel wires were 0.28 mm, 0.35 mm, 0.45 mm, 0.7 mm, 0.85 mm, 1.2 mm, 1.6 mm, 2.0 mm, and 3.2 mm. The thicknesses of the copper wire, platinum wire, and molybdenum wire were 1.0 mm, 0.6 mm, and 1.0 mm, respectively.

各耐熱線は、鋳造品の下面を形成する円柱状のグラファイトディスクからなるプレート型の上面に、上方に向けて突出した状態に取り付け、これらプレート型および耐熱線の全体に離型剤を塗布した。図10は、離型剤を塗布した耐熱線およびプレート型の例を示している。図10(a)の耐熱線は、外径0.85mmのステンレス鋼(SUS304)線であり、これを9本、それぞれ約25mm突出した状態に設けたもの、図10(b)の耐熱線は、外径3.2mmのステンレス鋼(SUS304)線であり、これを7本、それぞれ約25mm突出した状態に設けたものである。 Each heat-resistant wire was attached to the upper surface of a plate mold consisting of a cylindrical graphite disk that forms the bottom surface of the cast product in a state in which it protruded upward, and a release agent was applied to the entire plate mold and heat-resistant wire. . FIG. 10 shows an example of a heat-resistant wire and plate mold coated with a mold release agent. The heat-resistant wire in Fig. 10(a) is a stainless steel (SUS304) wire with an outer diameter of 0.85 mm, and nine wires are provided with each protruding by approximately 25 mm, and the heat-resistant wire in Fig. 10(b) is , seven stainless steel (SUS304) wires with an outer diameter of 3.2 mm, each protruding by about 25 mm.

このように、耐熱線およびプレート型を、鋳造品の外周面を形成する筒状のグラファイトるつぼ型(内径15mm)内に、耐熱線が上になるように挿入してセットした。離型剤には、窒化ホウ素からなる「BNコート<M>」(株式会社オーデック製)を用いた。離型剤の塗布厚みは10~20μmとした。このるつぼ型の内部に、固体材料として所定量の固形アルミニウム(純度99.99%)を耐熱線の上端に当接させるように配置したうえで、るつぼ型全体を縦型電気炉に設置し、953Kで360秒間保持してアルミニウムを溶解し、溶融したアルミニウムを耐熱線間に落下させて耐熱線間の空隙に充填させた。上記360秒の加熱の後、縦型電気炉からるつぼ型を取出し、冷却し、内部のアルミニウムを凝固させた。 In this way, the heat-resistant wire and plate mold were inserted and set in a cylindrical graphite crucible mold (inner diameter 15 mm) forming the outer peripheral surface of the cast product, with the heat-resistant wire facing upward. "BN Coat <M>" (manufactured by Odec Co., Ltd.) made of boron nitride was used as a mold release agent. The coating thickness of the mold release agent was 10 to 20 μm. Inside this crucible mold, a predetermined amount of solid aluminum (99.99% purity) is placed as a solid material so as to be in contact with the upper end of the heat-resistant wire, and the entire crucible mold is placed in a vertical electric furnace. The aluminum was melted by holding at 953K for 360 seconds, and the molten aluminum was dropped between the heat-resistant wires to fill the voids between the heat-resistant wires. After heating for 360 seconds, the crucible mold was taken out from the vertical electric furnace and cooled to solidify the aluminum inside.

そして、るつぼ型から耐熱線およびプレート型と一体的に凝固したアルミニウム鋳造物を取り出した後、プレート型および耐熱線を鋳造物から引き抜き、複数の貫通した耐熱線引き抜き孔が表面に開口したアルミニウム鋳造品を得た。引き抜きは、より詳しくは、まずプレート型を取り外した後、耐熱線を一本ずつ、ペンチで引き抜くことで行った。 After taking out the aluminum casting that has solidified integrally with the heat-resistant wire and plate mold from the crucible mold, the plate mold and heat-resistant wire are pulled out from the casting, and the aluminum casting with a plurality of penetrating heat-resistant wire drawing holes opened on the surface is made. I got the item. More specifically, the pulling was performed by first removing the plate mold, and then pulling out the heat-resistant wires one by one with pliers.

(観察結果)
作製した多孔アルミニウム鋳造品について、X線コンピュータートモグラフィ法によって3次元画像イメージを測定した。X線管電圧は200kV、電流は250μAである。図11~図14は各サンプルのX線CT像、図15は外観写真を示す。図11の(a)は、耐熱線を外径0.28mmのステンレス鋼(SUS304)線9本とし、(b)は、耐熱線を外径0.35mmのステンレス鋼(SUS304)線9本とし、(c)は、耐熱線を外径0.45mmのステンレス鋼(SUS304)線9本とし、(d)は、耐熱線として外径0.70mmのステンレス鋼(SUS304)線21本とし、(e)は、耐熱線として外径0.85mmのステンレス鋼(SUS304)線9本とし、(f)は、耐熱線として外径1.2mmのステンレス鋼(SUS304)線21本とし、(g)は、耐熱線として外径1.6mmのステンレス鋼(SUS304)線9本とし、(h)は、耐熱線として外径2.0mmのステンレス鋼(SUS304)線9本とし、(i)は、耐熱線として外径3.2mmのステンレス鋼(SUS304)線7本として作製したものである。
(observation results)
Three-dimensional images of the produced porous aluminum castings were measured using X-ray computer tomography. The X-ray tube voltage is 200 kV and the current is 250 μA. 11 to 14 show X-ray CT images of each sample, and FIG. 15 shows an external photograph. In Fig. 11(a), the heat-resistant wires are nine stainless steel (SUS304) wires with an outer diameter of 0.28 mm, and in (b), the heat-resistant wires are nine stainless steel (SUS304) wires with an outer diameter of 0.35 mm. , (c) uses 9 stainless steel (SUS304) wires with an outer diameter of 0.45 mm as heat-resistant wires, and (d) uses 21 stainless steel (SUS304) wires with an outer diameter of 0.70 mm as heat-resistant wires, ( In e), 9 stainless steel (SUS304) wires with an outer diameter of 0.85 mm are used as heat-resistant wires, in (f), 21 stainless steel (SUS304) wires with an outer diameter of 1.2 mm are used as heat-resistant wires, and in (g) (h) is nine stainless steel (SUS304) wires with an outer diameter of 1.6 mm as heat-resistant wires, (h) is nine stainless steel (SUS304) wires with an outer diameter of 2.0 mm as heat-resistant wires, and (i) is Seven stainless steel (SUS304) wires with an outer diameter of 3.2 mm were used as heat-resistant wires.

作製されたサンプルは、るつぼ内周面の形状を反映した外径15mmの円柱形状であり、図11から分かるように、軸方向に伸びる複数の耐熱線引き抜き孔が確認できる。さらに鋳造品の上部の中央部に鋳造欠陥(引け巣)が観察され、多数の小さな球状イメージも観察された。これらは鋳造品の表面に生成された欠陥である。これは凝固過程で形成されたものであるが、耐熱線引き抜き孔は凝固時に耐熱線が存在するため、孔が詰まる等の欠陥は生じず、確実に孔空間が確保できる。アスペクト比は、耐熱線引き抜き孔の内径に対する長さの比から求めることができる。図12(a)の例は耐熱線として外径0.85mm、長さ25mm以上のステンレス鋼(SUS304)線を用いたものであり、アスペクト比29.4の引き抜き孔を得た。図12(b)の例は耐熱線として外径0.28mm、長さ76mm以上のステンレス鋼(SUS304)線を用いたものであり、アスペクト比271.4の引き抜き孔を得た。図12(c)の例は耐熱線として外径0.85mm、長さ90mm以上のステンレス鋼(SUS304)線とし、アスペクト比105.9の引き抜き孔を得た。また、図15の例は、耐熱線として外径0.28mm、長さ220mm以上のステンレス鋼(SUS304)線(1本のみ)を用いたものであり、アスペクト比786の引き抜き孔を得た。このように図15に示すサンプルで、アスペクト比は最大で786を確認できた。 The manufactured sample had a cylindrical shape with an outer diameter of 15 mm reflecting the shape of the inner peripheral surface of the crucible, and as can be seen from FIG. 11, a plurality of heat-resistant wire drawing holes extending in the axial direction can be confirmed. Furthermore, a casting defect (shrinkage cavity) was observed in the upper center of the cast product, and many small spherical images were also observed. These are defects created on the surface of the casting. This is formed during the solidification process, but since the heat-resistant wire is present in the heat-resistant wire drawing hole during solidification, defects such as hole clogging do not occur, and the hole space can be reliably secured. The aspect ratio can be determined from the ratio of the length to the inner diameter of the heat-resistant wire drawing hole. In the example shown in FIG. 12(a), a stainless steel (SUS304) wire with an outer diameter of 0.85 mm and a length of 25 mm or more was used as the heat-resistant wire, and a drawn hole with an aspect ratio of 29.4 was obtained. In the example shown in FIG. 12(b), a stainless steel (SUS304) wire with an outer diameter of 0.28 mm and a length of 76 mm or more was used as the heat-resistant wire, and a drawn hole with an aspect ratio of 271.4 was obtained. In the example shown in FIG. 12(c), a stainless steel (SUS304) wire with an outer diameter of 0.85 mm and a length of 90 mm or more was used as the heat-resistant wire, and a drawn hole with an aspect ratio of 105.9 was obtained. Further, in the example shown in FIG. 15, a stainless steel (SUS304) wire (only one wire) having an outer diameter of 0.28 mm and a length of 220 mm or more was used as the heat-resistant wire, and a drawn hole with an aspect ratio of 786 was obtained. In this way, the aspect ratio of the sample shown in FIG. 15 was confirmed to be 786 at maximum.

図13(a)は、耐熱線としてステンレス鋼線(外径0.85mm)を用いた例、図13(b)は、銅線(外径1.0mm)、白金線(外径0.6mm)、モリブデン線(外径1.0mm)の耐熱線を組み合わせた例である。もし溶融アルミニウムと耐熱線との間で相互拡散が起きるならば、相互拡散によって形成された合金層の厚みを拡散データから見積もることができる。相互拡散係数Dは、次の式(1)によって評価できる。
=cAl+cAl ・・・(1)
ここでc、Dはそれぞれ組成および固有拡散係数である。添字のAlとMはそれぞれアルミニウムと耐熱線金属である。
Fig. 13(a) shows an example in which stainless steel wire (outer diameter 0.85 mm) is used as the heat-resistant wire, and Fig. 13(b) shows an example in which copper wire (outer diameter 1.0 mm) and platinum wire (outer diameter 0.6 mm) are used. ) and a heat-resistant wire made of molybdenum wire (outer diameter 1.0 mm) are combined. If interdiffusion occurs between the molten aluminum and the refractory wire, the thickness of the alloy layer formed by the interdiffusion can be estimated from the diffusion data. The mutual diffusion coefficient D R can be evaluated using the following equation (1).
D R = c Al DM + c M D Al ... (1)
Here, c and D are the composition and intrinsic diffusion coefficient, respectively. The subscripts Al and M represent aluminum and heat-resistant wire metal, respectively.

融点直上の溶融金属中の拡散係数は10-9/sのオーダーであり、固体金属中の拡散係数よりも数桁大きい。したがって、10-10/s≦D≦10-9/sである。360s(時間t)の拡散距離は、0.4mm≦2×(Dt)1/2≦1.2mmと評価できる。このような厚みの合金層が耐熱線とアルミニウムとの間に形成されると、耐熱線が引き抜きにくくなるが、本例では、図13に示すように、どの金属の耐熱線も同様にスムーズに引き抜くことができた。これは、耐熱線とアルミニウムとの界面に離型剤が介在し、相互拡散による合金層の形成が抑えられたことを示している。The diffusion coefficient in molten metal just above the melting point is on the order of 10 −9 m 2 /s, several orders of magnitude larger than the diffusion coefficient in solid metal. Therefore, 10 −10 m 2 /s≦D R ≦10 −9 m 2 /s. The diffusion distance for 360 seconds (time t) can be evaluated as 0.4 mm≦2×(Dt) 1/2 ≦1.2 mm. When an alloy layer of such thickness is formed between the heat-resistant wire and aluminum, it becomes difficult to pull out the heat-resistant wire, but in this example, as shown in Figure 13, the heat-resistant wire of any metal can be pulled out smoothly. I was able to pull it out. This indicates that the mold release agent was present at the interface between the heat-resistant wire and aluminum, suppressing the formation of an alloy layer due to mutual diffusion.

図14(a)~(c)は、螺旋状やV字型の引き抜き孔をもつ貫通孔を設けた例である。図14(a)~(c)の下欄は、それぞれ上欄のものの製造に用いた耐熱線およびプレート型の外形写真である。このような曲線状の孔形態は、本発明の製作法に特有のものである。従来の多孔金属材では、ロータスは一方向凝固を利用し、ドリル、電子ビームも直線的な穿設加工となるため、一方向に伸びる直線状の孔しかできなかった。これに対し、本発明は直線状のみならず曲線状の孔も作製できることが分かる。 FIGS. 14(a) to 14(c) are examples in which through holes are provided with spiral or V-shaped extraction holes. The lower columns of FIGS. 14(a) to 14(c) are photographs of the external shapes of the heat-resistant wire and plate mold used in the production of the upper column, respectively. This curved hole morphology is unique to the fabrication method of the present invention. In conventional porous metal materials, Lotus uses unidirectional solidification, and drills and electron beams also perform linear drilling processes, so they can only create straight holes that extend in one direction. On the other hand, it can be seen that the present invention can produce not only straight holes but also curved holes.

1 有孔鋳造品
2 耐熱線
2a 端部
3 鋳型
4 鋳造物
4b 側面
5 治具
6 治具
7 ヒーター
8 線材
10 引き抜き孔
30 プレート型
31 外側型
9 固体材料
1 Perforated casting product 2 Heat-resistant wire 2a End portion 3 Mold 4 Casting 4b Side surface 5 Jig 6 Jig 7 Heater 8 Wire rod 10 Drawing hole 30 Plate mold 31 Outside mold 9 Solid material

Claims (2)

所定の保形性並びに屈曲変形可能性を備えた金属細線である単又は複数の耐熱線を、曲線状または折曲状に屈曲させた状態に鋳型内に配置し、
溶融した金属又は半導体材料を供給して凝固させた後、
前記曲線状または折曲状の形状のまま前記金属又は半導体材料と一体化された前記耐熱線を、前記金属又は半導体材料が凝固してなる鋳造物から屈曲変形させながら引き抜くことで、前記曲線状又は折曲状に伸びる単又は複数の耐熱線引き抜き孔が表面に開口した金属又は半導体材料の鋳造品を得る有孔鋳造品の製造方法であり、
遅くとも溶融した金属又は半導体材料を供給する前に、あらかじめ前記耐熱線の表面に離型剤を被覆してなる、有孔鋳造品の製造方法。
One or more heat-resistant wires, which are thin metal wires with predetermined shape retention and bending deformability, are arranged in a mold in a curved or bent state,
After supplying and solidifying the molten metal or semiconductor material,
By pulling out the heat-resistant wire, which is integrated with the metal or semiconductor material while maintaining the curved or bent shape, from a casting formed by solidifying the metal or semiconductor material while bending and deforming it, the curved shape is obtained. Or a method for manufacturing a perforated casting product, which obtains a casting product of a metal or semiconductor material in which one or more heat-resistant wire drawing holes extending in a bent shape are opened on the surface,
A method for manufacturing a perforated cast product, comprising coating the surface of the heat-resistant wire with a mold release agent in advance at the latest before supplying the molten metal or semiconductor material.
前記曲線状が、波状である、請求項1記載の有孔鋳造品の製造方法。 The method for manufacturing a perforated cast product according to claim 1, wherein the curved shape is wavy.
JP2021524932A 2019-06-07 2020-06-05 Manufacturing method for perforated castings Active JP7420353B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019107040 2019-06-07
JP2019107040 2019-06-07
PCT/JP2020/022310 WO2020246588A1 (en) 2019-06-07 2020-06-05 Perforated casting and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2020246588A1 JPWO2020246588A1 (en) 2020-12-10
JP7420353B2 true JP7420353B2 (en) 2024-01-23

Family

ID=73652091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524932A Active JP7420353B2 (en) 2019-06-07 2020-06-05 Manufacturing method for perforated castings

Country Status (2)

Country Link
JP (1) JP7420353B2 (en)
WO (1) WO2020246588A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022127034A (en) * 2021-02-19 2022-08-31 セイコーエプソン株式会社 Amorphous metal ribbon, method for manufacturing amorphous metal ribbon, and magnetic core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129655A (en) 1999-11-04 2001-05-15 Ykk Corp Method ad apparatus for manufacturing casting product having small mole
WO2014050892A1 (en) 2012-09-25 2014-04-03 学校法人常翔学園 Perforated cast product and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168657A (en) * 1986-01-20 1987-07-24 Toyoda Autom Loom Works Ltd Casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129655A (en) 1999-11-04 2001-05-15 Ykk Corp Method ad apparatus for manufacturing casting product having small mole
WO2014050892A1 (en) 2012-09-25 2014-04-03 学校法人常翔学園 Perforated cast product and method for manufacturing same

Also Published As

Publication number Publication date
WO2020246588A1 (en) 2020-12-10
JPWO2020246588A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Singh et al. Review of pool and flow boiling heat transfer enhancement through surface modification
US20210277502A1 (en) Feedstocks for additive manufacturing, and methods of using the same
US20160067918A1 (en) Methods and systems for making a three-dimensional object
US11578389B2 (en) Aluminum alloy feedstocks for additive manufacturing
US11674204B2 (en) Aluminum alloy feedstocks for additive manufacturing
CN111633209B (en) Steel/aluminum bimetal additive/equal material composite manufacturing method
US10150184B2 (en) Method of forming a cladding layer having an integral channel
JP7420353B2 (en) Manufacturing method for perforated castings
Nakajima Porous metals with directional pores
Murali et al. Liquid forging of thin Al–Si structures
JPWO2010106883A1 (en) Method for producing foam metal precursor and method for producing foam metal
Bharadwaj et al. Experimental analysis of pool boiling heat transfer on surfaces fabricated by electric discharge coating
US11396687B2 (en) Feedstocks for additive manufacturing, and methods of using the same
Nakajima Through hole aluminum fabricated by the extraction of lubricated metallic wires
Nakajima Open-channel metals fabricated by the removal of template wires
JP2013226594A (en) Porous structure, and method for manufacturing the same and device for manufacturing porous structure
WO2021020529A1 (en) Heat sink
WO2022024930A1 (en) Method for producing perforated cast product
Tokunaga et al. Fabrication of carbon fiber oriented Al–based composites by hot extrusion and evaluation of their thermal conductivity
Ho et al. Enhanced nucleate pool boiling from microstructured surfaces fabricated by selective laser melting
KR20140137614A (en) A method for powder injection molding
Haga et al. Fabrication of lotus type porous ingots using the core-bar pulling method
JP2016043377A (en) Continuous casting method of Cu-Ga alloy
Ichikawa et al. Compressive properties of porous aluminum alloy fabricated by joining pipes and melt through continuous casting
KR101759653B1 (en) Manufacturing method of porous metal structure, porous metal structure made thereby

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7420353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150