WO2014050507A1 - Method for producing glass substrate for information recording medium - Google Patents
Method for producing glass substrate for information recording medium Download PDFInfo
- Publication number
- WO2014050507A1 WO2014050507A1 PCT/JP2013/074088 JP2013074088W WO2014050507A1 WO 2014050507 A1 WO2014050507 A1 WO 2014050507A1 JP 2013074088 W JP2013074088 W JP 2013074088W WO 2014050507 A1 WO2014050507 A1 WO 2014050507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- information recording
- grinding
- recording medium
- main surface
- Prior art date
Links
- 0 CCC(CCC(C1)C(C)C(*[C@@](C)*C)*1(CI)C(CCCC1)N)(*1[N+]([O-])=O)I Chemical compound CCC(CCC(C1)C(C)C(*[C@@](C)*C)*1(CI)C(CCCC1)N)(*1[N+]([O-])=O)I 0.000 description 4
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C19/00—Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
Definitions
- the present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
- an information recording device such as a hard disk drive (HDD).
- Information recording devices equipped with information recording media are expanding their usage and usage environment year by year.
- the demands on information recording devices for increasing capacity, impact resistance, heat resistance, and the like tend to increase year by year.
- various conditions are also required for a glass substrate for information recording medium (also simply referred to as a glass substrate) used for manufacturing an information recording medium.
- an information recording apparatus for example, a recording medium having a recording capacity of 500 GB (single side 250 GB) and a surface recording density of 600 Gbit / in 2 or more with one 2.5 inch recording medium
- information recording is performed.
- the bit area of the medium is reduced.
- Defects include convex protrusions, inclusions, and concave crack defects (or pit defects). Convex protrusions are relatively easy to find by inspection, but crack defects are difficult to find by inspection.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2009-99249.
- This grinding process using a diamond sheet is advantageous for removing crack defects.
- the glass substrate production methods are roughly classified into a sheet method for producing a glass substrate from a sheet material and a direct press method for producing a glass substrate by pressing molten glass into a disk shape with a molding machine or the like.
- a grinding process using a diamond sheet is performed after a roughening process.
- the direct press method requires time for manufacturing a glass substrate in a single wafer type, but has been attracting attention again in recent years because it can be manufactured with various glass compositions. Since the glass substrate manufactured by the direct press method is already rough, the grinding process using the diamond sheet is performed without performing the roughening process.
- a glass substrate with high hardness is used.
- a grinding process using a diamond sheet is performed on a glass substrate with high hardness without performing a roughening process, it is necessary to increase the pressure during grinding as compared to when the surface is roughened. New cracks are generated on the surface of the substrate. Therefore, even in the production of a glass substrate by the direct press method, a roughening step is required before performing the grinding step.
- Examples of the roughening process performed by the conventional float process include a frost process using a chemical solution and a rough grinding process using loose abrasive grains with a flat surface polishing machine.
- the surface of the glass substrate is roughened by etching, but as a result, the chemical enters the scratches or cracks that originally existed, and the scratches or cracks become deeper. This leads to increased grinding amount and longer time.
- the present invention has been made to solve the above problems, and even when a glass substrate having a high hardness is used, it is possible to realize a roughening process suitable for the pre-process of the grinding process. It aims at providing the manufacturing method of the glass substrate for information recording media.
- a method for producing a glass substrate for an information recording medium wherein the main surface of the glass substrate is ground by spraying a plurality of particles from a nozzle onto the main surface of the glass substrate obtained by a direct press method.
- the main surface of the glass substrate is ground with fixed abrasive grains mainly composed of diamond particles having an average particle diameter of 2 ⁇ m to 10 ⁇ m with respect to the glass substrate that has undergone the first grinding step and the first grinding step. 2 grinding processes.
- 2 includes the step of spraying the particles onto the main surface and grinding the main surface so that 2 falls within the range of 0.1 ⁇ m to 1.0 ⁇ m.
- the main surface has a Vickers hardness of 610 kg / mm 2 or more.
- the maximum particle size of the particles is from 50 ⁇ m to 150 ⁇ m.
- the spray pressure of the particles is 0.1 MPa to 1 MPa.
- a method for manufacturing a glass substrate for an information recording medium capable of realizing a roughening process suitable for a pre-process of a grinding process even when a glass substrate having high hardness is used. It is possible to do.
- FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
- FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a flowchart figure which shows each process of the manufacturing method of the glass substrate for information recording media in embodiment.
- FIG. 1 It is a schematic diagram which shows the structure of the blasting apparatus used for the blasting process with respect to the glass substrate in embodiment. It is a schematic diagram which shows the implementation condition of the blasting process with respect to the glass substrate in embodiment. It is sectional drawing which shows the double-side polish machine used for the rough polishing process of the manufacturing method of the glass substrate for information recording media in embodiment. It is a figure which shows the evaluation result in Examples 1-4 and Comparative Examples 1 and 2.
- cracks are minute scratches or dents that are present on the glass surface and are invisible to the eyes (or an optical microscope). Also called Griffiths flow.
- the glass breakage occurs because when the tensile stress is applied to the glass surface, the stress concentrates on the tip of the crack and the crack progresses.
- the size of the crack is several tens of nm to several tens of ⁇ m. Cracks occur naturally when glass is handled, and cracks already exist even in the state of glass blanks.
- FIG. 1 is a perspective view showing the information recording apparatus 30.
- the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
- the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
- a spindle motor (not shown) is installed on the upper surface of the housing 20.
- An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
- the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
- a compression stress layer 12 see FIG. 5
- a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
- the arm 23 is attached so as to be swingable around the vertical axis 24.
- a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
- a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
- a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
- the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
- a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
- a predetermined current is supplied to the voice coil 25.
- the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
- the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
- the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
- a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
- the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
- the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
- FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
- 3 is a cross-sectional view taken along the line III-III in FIG.
- the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
- the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
- a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
- a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
- the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
- the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
- the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
- the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
- FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
- FIG. 5 is a cross-sectional view taken along the line VV in FIG.
- the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
- the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
- the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
- the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
- the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
- the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
- the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
- the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
- a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
- the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
- a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
- the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
- the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
- the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
- a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
- Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
- Another protective layer may be formed on the protective layer or instead of the protective layer.
- tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
- the glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, a cleaning step S65, and a chemical strengthening step. S70, precision polishing process S80, and scrub cleaning process S90 are provided.
- the magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained.
- the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
- a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material.
- the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape.
- molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
- amorphous glass or crystallized glass can be used as the material of the glass substrate.
- chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
- Cut-out molding step S20 In the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
- blasting process S30 In the blasting step S30, the main surfaces 2 and 3 of the glass substrate 1 are ground by spraying 200 g of a plurality of particles (abrasive grains) onto the main surfaces 2 and 3 of the glass substrate 1 formed by the steps S10 and S20. Perform (first grinding step).
- FIG. 7 is a schematic diagram illustrating a configuration of a blasting apparatus 100 used in a blasting process for the glass substrate 1
- FIG. 8 is a schematic diagram illustrating an implementation status of the blasting process for the glass substrate 1.
- blasting is performed on the main surfaces 2 and 3 of the glass substrate 1 using a blasting apparatus 100.
- the blast apparatus 100 includes a support table 120 that supports the glass substrate 1 and a nozzle 110 that sprays 200 g of particles (abrasive grains) on the main surface of the glass substrate 1 supported by the support table 120.
- the blasting apparatus 100 performs a blasting process on the entire main surfaces 2 and 3 of the glass substrate 1 substantially evenly by moving the support 120 or the nozzle 110.
- the blasting apparatus 100 moves the glass substrate 1 to perform the blasting process for the main surface 3.
- An ejection hole is formed at the tip of the nozzle 110, and 200 g of particles (abrasive grains) are ejected from the ejection hole. 200 g of particles (abrasive grains) ejected from the nozzle 110 are sprayed onto the glass substrate 1 while spreading in the range of the spray opening angle A ° around the center line CL.
- the nozzle 110 is disposed so that the center line CL is substantially perpendicular to the main surfaces 2 and 3.
- FIG. 8 is a schematic plan view showing the glass substrate (glass substrate precursor) 1 before being subjected to blasting by the blasting apparatus 100.
- R30 in FIG. 8 indicates an area (blast area) to be blasted (polished) by 200 g of particles (abrasive grains) ejected from the nozzle 110.
- the nozzle 110 moves so as to scan the surface of the glass substrate 1 in, for example, a zigzag pattern (line P in the figure). Thereby, 200 g of particles (abrasive grains) ejected from the nozzle 110 perform a blasting process on the entire surface of the glass substrate 1.
- the nozzle 110 may be fixed and the glass substrate 1 side may be moved.
- the size of 200 g of particles (abrasive grains) affects the grinding speed and the grinding amount efficiency. If the diameter of 200 g of particles (abrasive grains) is too large, the glass substrate 1 is damaged, and if the diameter is too small, the glass substrate 1 cannot be ground.
- the particles (abrasive grains) 200 g those having sufficient hardness such as alumina particles, ceramic particles, SiC and the like are preferably used.
- the particles (abrasive grains) 200 g those having a maximum particle diameter of 50 ⁇ m to 150 ⁇ m are used.
- the glass substrate 1 When the spray pressure of 200 g of particles (abrasive grains) is low, the glass substrate 1 cannot be ground. If the spraying pressure is too high, the glass substrate 1 may be chipped.
- the machining allowance (grinding thickness) of the glass substrate 1 has a correlation with the diameter of 200 g of particles (abrasive grains). When the diameter of 200 g of particles (abrasive grains) is large, it is necessary to perform relatively large grinding. This is because cracks occur depending on the particle diameter at the initial stage of grinding.
- the spraying pressure of 200 g of particles (abrasive grains) is preferably 0.1 MPa to 1 MPa.
- the glass substrate 1 may be sprayed with 200 g of a plurality of particles (abrasive grains) dispersed in water. By dispersing 200 g of particles in water, it is possible to remove glass waste generated by grinding at the same time. By this blasting step S30, the glass substrate 1 having a predetermined main surface roughness is obtained.
- the average arithmetic roughness Ra 1 of the main surfaces 2 and 3 is maintained within the range of 1 ⁇ m to 5 ⁇ m, and the cut-off value is set to 2.5 ⁇ m to 80 ⁇ m.
- the main surfaces 2 and 3 are ground by spraying 200 g of particles onto the main surfaces 2 and 3 so that the average arithmetic roughness Ra 2 when set is within a range of 0.1 ⁇ m to 1.0 ⁇ m.
- the average arithmetic roughness Ra 1 is an arithmetic average roughness measured based on “JIS B0601: 2001” and “JIS B0633: 2001” of Japanese Industrial Standards.
- JIS B0601: 2001 conforms to ISO 4287: 1997
- JIS B0633: 2001 conforms to ISO 4288: 1996.
- the average arithmetic roughness Ra 2 is different from the average arithmetic roughness Ra 1 and means an arithmetic average roughness obtained from a roughness curve in which a cutoff value (wavelength) is set in an arbitrary range.
- a contact type roughness measuring machine SURFCOM 1400D manufactured by Mitutoyo Corporation is used for measuring the roughness of the main surfaces 2 and 3 of the glass substrate 1. The measurement is performed based on the above Japanese Industrial Standard.
- the low-frequency cut-off depends on the tip shape of the touching palpation.
- the high-frequency cut-off ( ⁇ C ) is set to an appropriate value according to the measurement shape in accordance with the Japanese Industrial Standard.
- Ra is 0.1 ⁇ m to 10 ⁇ m, it is set to 0.25 mm or 0.8 mm.
- Evaluation length was set to 5 times the length of the lambda C.
- the high frequency cut-off ( ⁇ C ) was a roughness curve at 80 ⁇ m. Measurement length, as well as the evaluation length was set to 5 times the length of the lambda C.
- “Arithmetic average roughness” indicates an amplitude average parameter in the height direction
- “Roughness curve” indicates a band-pass filter having a cutoff value ⁇ s ⁇ c
- “Filter” has an attenuation factor of 50%. The phase compensation type filter which makes the wavelength which becomes the cut-off value is shown.
- a measurement cross-section curve is first obtained with a measuring machine.
- a cross-sectional curve is obtained from the measured cross-sectional curve through a low-pass filter ( ⁇ S ).
- a “roughness curve” is obtained by passing a high-pass filter ( ⁇ C ) through this cross-sectional curve.
- the average of the absolute value of the height at each point from the average value of the “roughness curve” is the arithmetic average roughness.
- ⁇ C of Ra 1 was changed in accordance with JIS B0633: 01 to obtain a “roughness curve”.
- ⁇ C of Ra2 was set to 80 ⁇ m to obtain a “roughness curve”.
- the lapping step S40 In the lapping step S40, the main surfaces 2 and 3 of the glass substrate 1 are processed using a diamond-shaped sheet made of resin as abrasive grains (second grinding step).
- the particle diameter of diamond can be appropriately changed depending on the purpose, but the average particle diameter is preferably 2 ⁇ m to 10 ⁇ m.
- the average particle diameter is preferably 2 ⁇ m to 10 ⁇ m.
- the processing does not proceed and the cracks generated on the main surfaces 2 and 3 of the glass substrate 1 cannot be removed. If the particle diameter of diamond exceeds 10 ⁇ m, the main surface 2 and 3 of the glass substrate 1 are cracked by diamond.
- the diamond particle diameter is becoming smaller, but 2 ⁇ m to 4 ⁇ m is more preferable because of the balance of workability.
- the main surfaces 2 and 3 of the glass substrate 1 are ground to a thickness of about 50 ⁇ m to 250 ⁇ m.
- End face polishing step S50 In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the glass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
- the glass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times.
- the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps.
- the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
- the polishing slurry is applied to the main surfaces 2 and 3 of the glass substrate 1 so that the surface roughness of the glass substrate 1 finally required in the subsequent precision polishing step S80 can be efficiently obtained.
- This is a step of performing rough polishing by using. It does not specifically limit as a grinding
- a double-side polishing machine 40 shown in FIG. 9 was used.
- the double-side polishing machine 40 includes a lower surface plate 41 and an upper surface plate 42 that are provided opposite to each other in the vertical direction. Polishing pads 43 and 44 are fixed to opposing surfaces of the lower surface plate 41 and the upper surface plate 42, respectively.
- the glass substrate 1 is held in the holding hole of the carrier 45 and is sandwiched between the lower surface plate 41 and the upper surface plate 42.
- the lower surface plate 41 and the upper surface plate 42 are rotated by a drive source (not shown).
- the rotation drive of the lower surface plate 41 and the upper surface plate 42 is controlled by the control device 48.
- the main surfaces 2 and 3 of the glass substrate 1 are simultaneously polished by the upper and lower polishing pads 43 and 44.
- polishing slurry is supplied from the abrasive supply device 46.
- the abrasive supply device 46 is one place, but is not limited thereto, and the position and the number thereof can be arbitrarily configured.
- the polishing liquid (polishing slurry) used may contain cerium oxide, zirconium oxide, zirconium silicate or the like as abrasive grains.
- the concentration of cerium oxide in the polishing liquid is, for example, about 5% to 10%.
- the thickness of the machining allowance for the main surfaces 2 and 3 of the glass substrate 1 to be polished is, for example, 10 ⁇ m to 30 ⁇ m.
- the shape of the inner peripheral end face and the outer peripheral end face of the glass substrate 1 can be adjusted by rough polishing.
- the surface Ra of the glass substrate 1 after rough polishing is, for example, about 3 to 10 mm. As described above, the main surfaces 2 and 3 of the glass substrate 1 are roughly polished.
- the glass substrate 1 is acid cleaned using sulfuric acid or hydrofluoric acid.
- cleaning step S65 Referring again to FIG. 6, after the rough polishing step S60, the glass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid.
- the purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
- the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid and / or hydrofluoric acid. Wash.
- the polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate 1 is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
- the cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored.
- the frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
- the glass substrate 1 is chemically strengthened.
- the chemical strengthening liquid for example, a mixed liquid of potassium nitrate (60%) and sodium sulfate (40%) can be used.
- the chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C.
- the cleaned glass substrate 1 is preheated to 200 ° C. to 300 ° C., for example.
- the glass substrate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
- the plurality of glass substrates 1 can be held in their respective holders so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. preferable.
- alkali metal ions lithium ions and sodium ions
- salts sodium ions
- potassium ions potassium ions
- the surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance.
- the glass substrate 1 subjected to the chemical strengthening treatment is appropriately washed.
- the glass substrate 1 is further cleaned using pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid.
- precision polishing step S80 After the chemical strengthening step S70, a precision polishing process is performed on the glass substrate 1.
- the precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape.
- the precision polishing step S80 as in the above-described rough polishing step S60, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 9).
- the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different.
- the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
- the polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher.
- the polishing liquid used in the precision polishing step S80 for example, colloidal silica having a finer particle size than the cerium oxide abrasive used in the rough polishing step S60 is used.
- the particle size (primary) of the colloidal silica used in the precision polishing step S80 is preferably 15 nm to 80 nm.
- the smoothness of the main surfaces 2 and 3 of the glass substrate 1 is increased by precision polishing using colloidal silica.
- the glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
- a cleaning liquid such as a detergent or pure water is used.
- the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
- both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
- the glass substrate 1 By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned.
- the glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
- the glass substrate 1 may be further subjected to ultrasonic cleaning.
- ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
- the manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
- Magnetic thin film forming step S200 A magnetic recording layer is formed on the main surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed.
- the magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system.
- an adhesion layer made of a Cr alloy
- a soft magnetic layer made of a CoFeZr alloy
- an orientation control underlayer made of Ru
- a perpendicular magnetic recording layer made of a CoCrPt alloy
- a protective layer made of a C system
- F system an F system
- FIG. 10 is a diagram showing evaluation results in Examples 1 to 4 and Comparative Examples 1 and 2.
- the main surface of the glass substrate 1 was ground (roughened) using the above-described particles (abrasive grains) in the blasting step S30.
- Alumina particles were used as the particles (abrasive grains), the alumina particles were 110 ⁇ m, and the opening diameter of the nozzle 110 was 6.5 mm.
- the Vickers hardness of the glass substrate 1 is 610 kg / mm 2.
- the spraying pressure and the spraying time were changed to change to Ra1 and Ra2 shown in FIG. 10, respectively, and then the subsequent steps S30 to S90 were performed.
- Ra1 and Ra2 of the glass substrate were controlled by the abrasive grain size and machining allowance (grinding thickness).
- the post-processes S30 to S90 were performed without performing the blast process S30.
- the number of defects was examined.
- the number of defects was evaluated by OSA (Optical Surface Analyzer).
- OSA Optical Surface Analyzer
- Candala 6300 manufactured by KLA Tencor was used.
- a case where the number of defects was 20 or less was accepted, and a case where the number of defects was 21 or more was rejected.
- Example 1 The processing conditions of the blasting step S30 in Example 1 were an abrasive grain size of 67 ⁇ m and a machining allowance (grinding thickness) of 5 ⁇ m. As a result, Ra1 was 1 ⁇ m, Ra2 was 0.1 ⁇ m, the number of defects was 15, and the evaluation was “pass”.
- Example 2 The processing conditions of the blasting step S30 in Example 2 were an abrasive grain size of 67 ⁇ m and a machining allowance (grinding thickness) of 10 ⁇ m. As a result, Ra1 was 2 ⁇ m, Ra2 was 0.2 ⁇ m, the number of defects was 5, and the evaluation was “pass”.
- Example 3 The processing conditions of the blasting step S30 in Example 3 were an abrasive grain size of 90 ⁇ m and a machining allowance (grinding thickness) of 12 ⁇ m. As a result, Ra 1 was 2 ⁇ m, Ra 2 was 0.3 ⁇ m, the number of defects was 5, and the evaluation was “pass”.
- Example 4 The processing conditions of the blasting step S30 in Example 4 were an abrasive grain size of 110 ⁇ m and a machining allowance (grinding thickness) of 12 ⁇ m. As a result, Ra 1 was 5 ⁇ m, Ra 2 was 1 ⁇ m, the number of defects was 13, and the evaluation was “pass”.
- Comparative Example 1 In Comparative Example 1, the blasting step S30 was not performed. As a result, Ra 1 was 2 ⁇ m, Ra 2 was 0.01 ⁇ m, the number of defects was 23, and the evaluation was “fail”. Compared with Examples 1 to 3, since the value of Ra 2 is small, cracks are likely to occur in the subsequent process, and the number of defects is considered to have increased.
- Comparative Example 2 The processing conditions of the blasting step S30 in Comparative Example 2 were an abrasive grain size of 150 ⁇ m and a machining allowance (grinding thickness) of 30 ⁇ m. As a result, Ra 1 was 6 ⁇ m, Ra 2 was 1.5 ⁇ m, the number of defects was 32, and the evaluation was “fail”. Compared with Examples 1 to 3, it is considered that cracks occurred and the number of defects increased because an excessive blasting process was performed.
- the average arithmetic roughness Ra 1 of the main surfaces 2 and 3 is maintained within the range of 1 ⁇ m to 5 ⁇ m, and the cut-off value is set to 2.5 ⁇ m to 80 ⁇ m.
- the cut-off value is set to 2.5 ⁇ m to 80 ⁇ m.
- the average arithmetic roughness Ra 1 of the main surface is in the range of 1 ⁇ m to 5 ⁇ m as described above.
- particles are sprayed onto the main surface so that the average arithmetic roughness Ra 2 when the cutoff value is set to 2.5 ⁇ m to 80 ⁇ m is within the range of 0.1 ⁇ m to 1.0 ⁇ m.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
In this method for producing a glass substrate for an information recording medium, the first grinding step comprises a step for grinding the principal surfaces (2, 3) by blasting the principal surfaces (2, 3) with particles (200g) such that the arithmetic mean roughness Ra1 of the respective principal surfaces (2, 3) is kept within the range of from 1 µm to 5 µm, and the arithmetic mean roughness Ra2 in a case where the cutoff value is set between 2.5 µm and 80 µm falls within the range of from 0.1 µm to 1.0 µm.
Description
本発明は、情報記録媒体用ガラス基板の製造方法に関し、特に、ハードディスクドライブ(HDD:Hard Disk Drive)などの情報記録装置に情報記録媒体の一部として搭載される情報記録媒体用ガラス基板の製造方法に関する。
The present invention relates to a method for manufacturing a glass substrate for information recording media, and in particular, manufacturing a glass substrate for information recording media mounted as part of an information recording medium in an information recording device such as a hard disk drive (HDD). Regarding the method.
ハードディスクドライブ等の情報記録媒体を搭載した情報記録装置は、使用用途および使用環境が年々拡大している。情報記録装置に対する大容量化、耐衝撃性、および耐熱性などの要求は、年々高まる傾向にある。この傾向に伴い、情報記録媒体の製造に用いられる情報記録媒体用ガラス基板(単に、ガラス基板ともいう。)にも、様々な条件が要求されている。
Information recording devices equipped with information recording media, such as hard disk drives, are expanding their usage and usage environment year by year. The demands on information recording devices for increasing capacity, impact resistance, heat resistance, and the like tend to increase year by year. Along with this tendency, various conditions are also required for a glass substrate for information recording medium (also simply referred to as a glass substrate) used for manufacturing an information recording medium.
たとえば、情報記録装置に対する大容量化(たとえば、2.5インチの記録媒体1枚で、記録容量が500GB(片面250GB)、面記録密度が600Gbit/平方インチ以上の記録密度)にともない、情報記録媒体のbit面積は小さくなる。その結果、ガラス基板に生じるわずかな欠陥でも、情報記録媒体の読み取り不良の原因となる。欠陥として凸状突起,インクルージョン、凹状のクラック欠陥(もしくはピット欠陥)が挙げられる。凸状突起は比較的検査などで見つかり易いが、クラック欠陥は検査で見つけにくい。
For example, as the capacity of an information recording apparatus is increased (for example, a recording medium having a recording capacity of 500 GB (single side 250 GB) and a surface recording density of 600 Gbit / in 2 or more with one 2.5 inch recording medium), information recording is performed. The bit area of the medium is reduced. As a result, even a slight defect generated in the glass substrate causes a reading failure of the information recording medium. Defects include convex protrusions, inclusions, and concave crack defects (or pit defects). Convex protrusions are relatively easy to find by inspection, but crack defects are difficult to find by inspection.
近年、クラック欠陥に対する対策を目的として、研削工程にダイヤモンドシートを用いることが主流となってきている(特開2009-99249号公報(特許文献1)参照)。このダイヤモンドシートによる研削工程は、クラック欠陥を除去することには有利である。しかし、研削加工のための条件設定の難度が高いという課題もある。
In recent years, it has become the mainstream to use a diamond sheet in the grinding process for the purpose of countermeasures against crack defects (see Japanese Patent Application Laid-Open No. 2009-99249 (Patent Document 1)). This grinding process using a diamond sheet is advantageous for removing crack defects. However, there is also a problem that it is difficult to set conditions for grinding.
ガラス基板の製造方法は大別すると、シート材からガラス基板を製造するシート法と、溶融したガラスを円盤状に成形機などでプレスしてガラス基板を製造するダイレクトプレス法と、が挙げられる。
The glass substrate production methods are roughly classified into a sheet method for producing a glass substrate from a sheet material and a direct press method for producing a glass substrate by pressing molten glass into a disk shape with a molding machine or the like.
シート法では、シート材と呼ばれる板ガラスからガラス基板を製造する際には、粗面化工程を経たのちに、ダイヤモンドシートを用いた研削工程が行なわれる。
In the sheet method, when a glass substrate is manufactured from sheet glass called a sheet material, a grinding process using a diamond sheet is performed after a roughening process.
一方、ダイレクトプレス法は、枚葉式でガラス基板を製造するための時間を必要とするが、多様なガラス組成での製造が可能であるため近年再度注目されている。ダイレクトプレス法で製造したガラス基板は、既に表面が粗面であるため、粗面化工程を行なうことなく、ダイヤモンドシートを用いた研削工程が行なわれる。
On the other hand, the direct press method requires time for manufacturing a glass substrate in a single wafer type, but has been attracting attention again in recent years because it can be manufactured with various glass compositions. Since the glass substrate manufactured by the direct press method is already rough, the grinding process using the diamond sheet is performed without performing the roughening process.
ここ数年は情報記録媒体の記憶容量の高密度化の影響を受け、ダイレクトプレス法を採用した情報記録媒体用ガラス基板の製造方法においても、研削工程を行なう前に粗面化工程が必要となってきている。これは記憶容量の高密度化にともない、より硬度が高い基板が必要とされていることに起因する。
The recent years have been affected by the increase in the storage capacity of information recording media, and even in the method of manufacturing a glass substrate for information recording media using the direct press method, a roughening step is required before performing the grinding step. It has become to. This is due to the need for a substrate with higher hardness as the storage capacity increases.
具体的には、ガラス基板の硬度が低ければ、些細なことでガラス基板上に微小な傷が付き、それが欠陥となってしまう。そのため、硬度の高いガラス基板が用いられる。しかし、硬度の高いガラス基板に、粗面化工程を行なうことなく、ダイヤモンドシートを用いて研削工程を行なうと、表面を粗面化したときに比べ、研削時に圧力を高くする必要があり、ガラス基板の表面に新たなクラックを生じさせることになる。そのため、ダイレクトプレス法によるガラス基板の製造においても、研削工程を行なう前に粗面化工程が必要となる。
Specifically, if the hardness of the glass substrate is low, a minor scratch is made on the glass substrate due to a minor thing, which becomes a defect. Therefore, a glass substrate with high hardness is used. However, if a grinding process using a diamond sheet is performed on a glass substrate with high hardness without performing a roughening process, it is necessary to increase the pressure during grinding as compared to when the surface is roughened. New cracks are generated on the surface of the substrate. Therefore, even in the production of a glass substrate by the direct press method, a roughening step is required before performing the grinding step.
従来のフロート法で行なわれている粗面化工程としては、薬液によるフロスト工程、平面研磨機にて遊離砥粒を用いる粗研削工程などが上げられる。
Examples of the roughening process performed by the conventional float process include a frost process using a chemical solution and a rough grinding process using loose abrasive grains with a flat surface polishing machine.
上述したように、ダイレクトプレス法によるガラス基板の製造においても研削工程を行なう前に粗面化工程が必要となってきているが、上述の粗面化工程をそのままダイレクトプレス法に適用した場合には、以下の問題が生じる。
As described above, in the production of a glass substrate by the direct press method, a roughening step is required before performing the grinding step, but when the above roughening step is applied to the direct press method as it is. Causes the following problems.
薬液によるフロスト工程を適用した場合には、エッチングによってガラス基板の表面が粗面化されるが、もともと存在していた傷またはクラックに薬液が入り込み、傷またはクラックが深くなることにより、その結果として研削量の増加および長時間化につながってしまう。
When the frost process with chemicals is applied, the surface of the glass substrate is roughened by etching, but as a result, the chemical enters the scratches or cracks that originally existed, and the scratches or cracks become deeper. This leads to increased grinding amount and longer time.
平面研磨機による遊離砥粒を用いた粗研削工程を適用した場合には、研磨機からの加圧により、ガラス基板に新たなクラックが発生してしまう。
When a rough grinding process using loose abrasive grains by a flat polishing machine is applied, new cracks are generated in the glass substrate due to pressurization from the polishing machine.
本発明は、上記課題を解決するためになされたものであり、硬度の高いガラス基板を用いた場合であっても、研削工程の前工程に適切な粗面化工程を実現することが可能な情報記録媒体用ガラス基板の製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and even when a glass substrate having a high hardness is used, it is possible to realize a roughening process suitable for the pre-process of the grinding process. It aims at providing the manufacturing method of the glass substrate for information recording media.
本発明に基づく情報記録媒体用ガラス基板の製造方法は、ダイレクトプレス法によって得られたガラス基板の主表面に、ノズルから複数の粒子を吹き付けることによって、上記ガラス基板の上記主表面を研削する第1研削工程と、上記第1研削工程を経た上記ガラス基板に対して、平均粒径が2μm~10μmのダイヤモンド粒子を主成分とする固定砥粒によって、上記ガラス基板の上記主表面を研削する第2研削工程と、を備える。
According to the present invention, there is provided a method for producing a glass substrate for an information recording medium, wherein the main surface of the glass substrate is ground by spraying a plurality of particles from a nozzle onto the main surface of the glass substrate obtained by a direct press method. The main surface of the glass substrate is ground with fixed abrasive grains mainly composed of diamond particles having an average particle diameter of 2 μm to 10 μm with respect to the glass substrate that has undergone the first grinding step and the first grinding step. 2 grinding processes.
上記第1研削工程は、上記主表面の平均算術粗さRa1が、1μm~5μmの範囲内を維持し、さらに、カットオフ値を2.5μm~80μmに設定した場合の平均算術粗さRa2が、0.1μm~1.0μmの範囲内となるように、上記主表面に上記粒子を吹き付けて、上記主表面の研削を行なう工程を含む。
In the first grinding step, the average arithmetic roughness Ra 1 when the average arithmetic roughness Ra 1 of the main surface is maintained within the range of 1 μm to 5 μm and the cutoff value is set to 2.5 μm to 80 μm. 2 includes the step of spraying the particles onto the main surface and grinding the main surface so that 2 falls within the range of 0.1 μm to 1.0 μm.
他の形態においては、上記主表面のビッカース硬度が610kg/mm2以上である。
他の形態においては、上記粒子の最大粒子径は50μm~150μmである。 In another embodiment, the main surface has a Vickers hardness of 610 kg / mm 2 or more.
In another form, the maximum particle size of the particles is from 50 μm to 150 μm.
他の形態においては、上記粒子の最大粒子径は50μm~150μmである。 In another embodiment, the main surface has a Vickers hardness of 610 kg / mm 2 or more.
In another form, the maximum particle size of the particles is from 50 μm to 150 μm.
他の形態においては、上記粒子の吹き付け圧は、0.1MPa~1MPaである。
In another embodiment, the spray pressure of the particles is 0.1 MPa to 1 MPa.
本発明によれば、硬度の高いガラス基板を用いた場合であっても、研削工程の前工程に適切な粗面化工程を実現することが可能な情報記録媒体用ガラス基板の製造方法を提供することを可能とする。
According to the present invention, there is provided a method for manufacturing a glass substrate for an information recording medium capable of realizing a roughening process suitable for a pre-process of a grinding process even when a glass substrate having high hardness is used. It is possible to do.
本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of the embodiments and the examples, when the number, amount, and the like are referred to, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of the embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
明細書中において、クラックは、ガラス表面に存在する、目(あるいは光学顕微鏡)で見えない微小な傷、凹みである。グリフィスフローとも呼ばれる。
In the specification, cracks are minute scratches or dents that are present on the glass surface and are invisible to the eyes (or an optical microscope). Also called Griffiths flow.
ガラスの破壊はガラス表面に引っ張り応力がかかった際に、クラックの先端部に応力が集中し、クラックが進展するために起こる。クラックの大きさは数十nmから数十μmにもなる。クラックはガラスを扱っていれば自然と発生し、ガラスブランクスの状態でも既にクラックは存在している。
The glass breakage occurs because when the tensile stress is applied to the glass surface, the stress concentrates on the tip of the crack and the crack progresses. The size of the crack is several tens of nm to several tens of μm. Cracks occur naturally when glass is handled, and cracks already exist even in the state of glass blanks.
このクラックは、ガラスに一度深く入ってしまうと、後に研磨工程などによって表面を削った場合でも、研磨加工中の圧力などでクラックが進展(成長)してしまうため、完全に取り除くことは困難になってしまう。そのため、研削工程では既存のクラックを除去しながら、いかに新たなクラックの発生を抑えるかが重要となる。
Once this crack has entered the glass once, it will be difficult to remove completely because the crack will develop (grow) due to pressure during polishing even if the surface is later shaved by a polishing process. turn into. Therefore, in the grinding process, it is important how to suppress the generation of new cracks while removing existing cracks.
(情報記録装置30)
図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。 (Information recording device 30)
First, theinformation recording device 30 will be described with reference to FIG. FIG. 1 is a perspective view showing the information recording apparatus 30. The information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。 (Information recording device 30)
First, the
具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。
Specifically, the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28. A spindle motor (not shown) is installed on the upper surface of the housing 20.
磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。
An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28. The information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm. Although details will be described later with reference to FIGS. 4 and 5, in the information recording medium 10, a compression stress layer 12 (see FIG. 5) and a magnetic recording layer 14 (see FIGS. 4 and 5) are formed on the glass substrate 1. To be manufactured.
アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。
The arm 23 is attached so as to be swingable around the vertical axis 24. A suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23. A head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。
A voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21. The voice coil 25 is clamped by a magnet (not shown) provided on the housing 20. A voice coil motor 26 is constituted by the voice coil 25 and the magnet.
ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。
A predetermined current is supplied to the voice coil 25. The arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet. As the arm 23 swings, the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1. The head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10. A magnetic head (not shown) provided on the head slider 21 performs a seek operation.
当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。
While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10. The information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
(ガラス基板1)
図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。 (Glass substrate 1)
FIG. 2 is a plan view showingglass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG.
図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。 (Glass substrate 1)
FIG. 2 is a plan view showing
図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。
As shown in FIGS. 2 and 3, the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole. The hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3. A chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4. Between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。ガラス基板の高硬度化の観点から、ガラス基板1のビッカース硬度は、610kg/mm2以上であるとよい。
The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
(情報記録媒体10)
図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。 (Information recording medium 10)
FIG. 4 is a plan view showing aninformation recording medium 10 provided with a glass substrate 1 as an information recording medium. FIG. 5 is a cross-sectional view taken along the line VV in FIG.
図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。 (Information recording medium 10)
FIG. 4 is a plan view showing an
図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。
4 and 5, the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14. The compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1. The magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12. By forming the compressive stress layer 12 on the inner peripheral end face 4 of the glass substrate 1, a hole 15 is formed inside the inner peripheral end face 4. The information recording medium 10 is fixed to a spindle motor provided on the housing 20 (see FIG. 1) using the holes 15.
図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。
In the information recording medium 10 shown in FIG. 5, the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed. The magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。
The magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method). The magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。
The thickness of the magnetic recording layer 14 is about 0.3 μm to 1.2 μm for the spin coating method, about 0.04 μm to 0.08 μm for the sputtering method, and about 0.05 μm to about the electroless plating method. 0.1 μm. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。
As a magnetic material used for the magnetic recording layer 14, a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
In order to improve the sliding of the magnetic head, the surface of the magnetic recording layer 14 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。
The magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary. The underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。
The underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。
Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
(ガラス基板の製造方法)
次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、板状ガラス成形工程S10、切り出し成形工程S20、ブラスト工程S30、ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、化学強化工程S70、精密研磨工程S80、および、スクラブ洗浄工程S90を備える。 (Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, a cleaning step S65, and a chemical strengthening step. S70, precision polishing process S80, and scrub cleaning process S90 are provided.
次に、図6に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法S100について説明する。本実施の形態におけるガラス基板の製造方法S100は、板状ガラス成形工程S10、切り出し成形工程S20、ブラスト工程S30、ラッピング工程S40、端面研磨工程S50、粗研磨工程S60、洗浄工程S65、化学強化工程S70、精密研磨工程S80、および、スクラブ洗浄工程S90を備える。 (Glass substrate manufacturing method)
Next, the manufacturing method S100 of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG. The glass substrate manufacturing method S100 in the present embodiment includes a plate-like glass forming step S10, a cut-out forming step S20, a blasting step S30, a lapping step S40, an end surface polishing step S50, a rough polishing step S60, a cleaning step S65, and a chemical strengthening step. S70, precision polishing process S80, and scrub cleaning process S90 are provided.
スクラブ洗浄工程S90を経ることによって得られたガラス基板に対して、磁気薄膜形成工程S200が実施される。磁気薄膜形成工程S200を経ることによって、情報記録媒体10(図4および図5参照)が得られる。以下、ガラス基板の製造方法S100を構成する各工程S10~S90の詳細について順に説明する。
The magnetic thin film forming step S200 is performed on the glass substrate obtained through the scrub cleaning step S90. Through the magnetic thin film forming step S200, the information recording medium 10 (see FIGS. 4 and 5) is obtained. Hereinafter, the details of the steps S10 to S90 constituting the glass substrate manufacturing method S100 will be described in order.
(板状ガラス成形工程S10)
まず、板状ガラス成形工程S10において、溶融ガラスを材料として、ダイレクトプレス法、フロート法、ダウンドロー法、リドロー法、またはフュージョン法など、公知の成形方法を用いて、板状ガラスを製造する。これらのうち、ダイレクトプレス法は、溶解したガラスから目的とするガラス成形品に直接的に成形できるため、同一の形状を有する板状ガラスを多量に生産する場合に好適である。ダイレクトプレス法では、溶融ガラスをプレス成形型に供給し、このガラスが軟化状態にある間にプレス成形型でプレスして板状ガラスを成形する。 (Plate-shaped glass forming step S10)
First, in the glass sheet forming step S10, a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material. Among these, the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape. In the direct press method, molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
まず、板状ガラス成形工程S10において、溶融ガラスを材料として、ダイレクトプレス法、フロート法、ダウンドロー法、リドロー法、またはフュージョン法など、公知の成形方法を用いて、板状ガラスを製造する。これらのうち、ダイレクトプレス法は、溶解したガラスから目的とするガラス成形品に直接的に成形できるため、同一の形状を有する板状ガラスを多量に生産する場合に好適である。ダイレクトプレス法では、溶融ガラスをプレス成形型に供給し、このガラスが軟化状態にある間にプレス成形型でプレスして板状ガラスを成形する。 (Plate-shaped glass forming step S10)
First, in the glass sheet forming step S10, a glass sheet is manufactured using a known glass forming method such as a direct press method, a float method, a down draw method, a redraw method, or a fusion method using a molten glass as a material. Among these, the direct press method can be directly molded from a melted glass into a target glass molded product, and thus is suitable for producing a large amount of plate-like glass having the same shape. In the direct press method, molten glass is supplied to a press mold and pressed with a press mold while the glass is in a softened state to form a sheet glass.
ガラス基板の材質としては、たとえばアモルファスガラス、結晶化ガラスを利用できる。アモルファスガラスを用いる場合、化学強化を適切に施すことができるとともに、主表面の平坦性および基板強度において優れた情報記録媒体用ガラス基板を提供することが可能となる。
As the material of the glass substrate, for example, amorphous glass or crystallized glass can be used. When amorphous glass is used, chemical strengthening can be appropriately performed, and a glass substrate for an information recording medium excellent in flatness of the main surface and substrate strength can be provided.
(切り出し成形工程S20)
切り出し成形工程S20においては、円筒状のダイヤモンドドリルを用いて、このガラス基板の中心部に内孔を形成し、円環状のガラス基板を成形する(コアリング加工)。その後、内周端面および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施す(フォーミング、チャンファリング)。 (Cut-out molding step S20)
In the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
切り出し成形工程S20においては、円筒状のダイヤモンドドリルを用いて、このガラス基板の中心部に内孔を形成し、円環状のガラス基板を成形する(コアリング加工)。その後、内周端面および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を施す(フォーミング、チャンファリング)。 (Cut-out molding step S20)
In the cut-out forming step S20, an inner hole is formed in the center of the glass substrate using a cylindrical diamond drill, and an annular glass substrate is formed (coring process). Thereafter, the inner peripheral end face and the outer peripheral end face are ground with a diamond grindstone and subjected to predetermined chamfering (forming, chamfering).
(ブラスト工程S30)
ブラスト工程S30においては、上記工程S10,S20よって形成されたガラス基板1の主表面2,3に複数の粒子(砥粒)200gを吹き付けることによって、ガラス基板1の主表面2,3の研削を行なう(第1研削工程)。 (Blasting process S30)
In the blasting step S30, the main surfaces 2 and 3 of the glass substrate 1 are ground by spraying 200 g of a plurality of particles (abrasive grains) onto the main surfaces 2 and 3 of the glass substrate 1 formed by the steps S10 and S20. Perform (first grinding step).
ブラスト工程S30においては、上記工程S10,S20よって形成されたガラス基板1の主表面2,3に複数の粒子(砥粒)200gを吹き付けることによって、ガラス基板1の主表面2,3の研削を行なう(第1研削工程)。 (Blasting process S30)
In the blasting step S30, the
図7および図8を参照して、ブラスト工程S30について説明する。図7は、ガラス基板1に対するブラスト工程に用いられるブラスト装置100の構成を示す模式図、図8は、ガラス基板1に対するブラスト工程の実施状況を示す模式図である。
The blasting step S30 will be described with reference to FIGS. FIG. 7 is a schematic diagram illustrating a configuration of a blasting apparatus 100 used in a blasting process for the glass substrate 1, and FIG. 8 is a schematic diagram illustrating an implementation status of the blasting process for the glass substrate 1.
図7において、ブラスト装置100を用いて、ガラス基板1の主表面2,3にブラスト処理を施す。ブラスト装置100は、ガラス基板1を支持する支持台120と、支持台120によって支持されたガラス基板1の主表面に粒子(砥粒)200gを吹きつけるノズル110とを含む。ブラスト装置100は、支持台120を動かすこと、または、ノズル110を動かすことで、ガラス基板1の主表面2,3の全面に略均等にブラスト処理を施す。ブラスト装置100は、主表面2のブラスト処理を終了すると、ガラス基板1を移動させて、主表面3のブラスト処理を行なう。
In FIG. 7, blasting is performed on the main surfaces 2 and 3 of the glass substrate 1 using a blasting apparatus 100. The blast apparatus 100 includes a support table 120 that supports the glass substrate 1 and a nozzle 110 that sprays 200 g of particles (abrasive grains) on the main surface of the glass substrate 1 supported by the support table 120. The blasting apparatus 100 performs a blasting process on the entire main surfaces 2 and 3 of the glass substrate 1 substantially evenly by moving the support 120 or the nozzle 110. When the blasting process for the main surface 2 is completed, the blasting apparatus 100 moves the glass substrate 1 to perform the blasting process for the main surface 3.
ノズル110の先端部には、噴出孔が形成されており、この噴出孔から粒子(砥粒)200gが噴出される。ノズル110から噴出された粒子(砥粒)200gは、中心線CLを中心として、吹き付け開口角A°の範囲で広がりながらガラス基板1に吹き付けられる。ガラス基板1にブラスト処理を施す際には、ノズル110は、中心線CLが主表面2,3に対して略垂直となるように配置される。
An ejection hole is formed at the tip of the nozzle 110, and 200 g of particles (abrasive grains) are ejected from the ejection hole. 200 g of particles (abrasive grains) ejected from the nozzle 110 are sprayed onto the glass substrate 1 while spreading in the range of the spray opening angle A ° around the center line CL. When blasting the glass substrate 1, the nozzle 110 is disposed so that the center line CL is substantially perpendicular to the main surfaces 2 and 3.
図8は、ブラスト装置100によってブラスト処理が施される前のガラス基板(ガラス基板前駆体)1を示す模式的な平面図である。図8中のR30は、ノズル110から噴出された粒子(砥粒)200gによって、ブラスト処理(研磨)される領域(ブラスト領域)を示している。
FIG. 8 is a schematic plan view showing the glass substrate (glass substrate precursor) 1 before being subjected to blasting by the blasting apparatus 100. R30 in FIG. 8 indicates an area (blast area) to be blasted (polished) by 200 g of particles (abrasive grains) ejected from the nozzle 110.
図8に示すように、ノズル110は、ガラス基板1の表面を、たとえばジグザグ状に走査(図中ラインP)するように移動する。これにより、ノズル110から噴出された粒子(砥粒)200gは、ガラス基板1の表面の全面に対してブラスト処理を行なう。ノズル110を固定し、ガラス基板1側を移動させてもよい。
As shown in FIG. 8, the nozzle 110 moves so as to scan the surface of the glass substrate 1 in, for example, a zigzag pattern (line P in the figure). Thereby, 200 g of particles (abrasive grains) ejected from the nozzle 110 perform a blasting process on the entire surface of the glass substrate 1. The nozzle 110 may be fixed and the glass substrate 1 side may be moved.
粒子(砥粒)200gの大きさは研削速度と研削量効率に影響を与える。粒子(砥粒)200gの径が大きすぎるとガラス基板1にダメージを与え、径が小さすぎるとガラス基板1を研削することができない。粒子(砥粒)200gとしては、アルミナ粒子、セラミック粒子、SiC等、硬度が十分であるものを使用するのがよい。粒子(砥粒)200gには、最大粒子径が50μm~150μmのものを用いる。
The size of 200 g of particles (abrasive grains) affects the grinding speed and the grinding amount efficiency. If the diameter of 200 g of particles (abrasive grains) is too large, the glass substrate 1 is damaged, and if the diameter is too small, the glass substrate 1 cannot be ground. As the particles (abrasive grains) 200 g, those having sufficient hardness such as alumina particles, ceramic particles, SiC and the like are preferably used. As the particles (abrasive grains) 200 g, those having a maximum particle diameter of 50 μm to 150 μm are used.
粒子(砥粒)200gの吹き付け圧が低い場合、ガラス基板1を研削することができない。吹き付け圧が高すぎるとガラス基板1が欠ける場合がある。ガラス基板1の取り代(研削厚さ)は、粒子(砥粒)200gの径と相関がある。粒子(砥粒)200gの径が大きい場合、比較的に多めに研削を行なう必要がある。これは研削初期時に、粒子径によってクラックが発生するためである。粒子(砥粒)200gの吹き付け圧は、0.1MPa~1MPaが好ましい。
When the spray pressure of 200 g of particles (abrasive grains) is low, the glass substrate 1 cannot be ground. If the spraying pressure is too high, the glass substrate 1 may be chipped. The machining allowance (grinding thickness) of the glass substrate 1 has a correlation with the diameter of 200 g of particles (abrasive grains). When the diameter of 200 g of particles (abrasive grains) is large, it is necessary to perform relatively large grinding. This is because cracks occur depending on the particle diameter at the initial stage of grinding. The spraying pressure of 200 g of particles (abrasive grains) is preferably 0.1 MPa to 1 MPa.
ブラスト工程S30における研削においては、ガラス基板1に対して複数の粒子(砥粒)200gを水に分散させた状態にて吹き付けを行なってもよい。粒子200gを水に分散させて行なうことで、研削で発生したガラスくずを同時に除去できるなどの効果がある。このブラスト工程S30により、所定の主表面粗さを有するガラス基板1が得られる。
In the grinding in the blasting step S30, the glass substrate 1 may be sprayed with 200 g of a plurality of particles (abrasive grains) dispersed in water. By dispersing 200 g of particles in water, it is possible to remove glass waste generated by grinding at the same time. By this blasting step S30, the glass substrate 1 having a predetermined main surface roughness is obtained.
ここで、本実施の形態におけるブラスト工程S30においては、主表面2,3の平均算術粗さRa1が、1μm~5μmの範囲内を維持し、さらに、カットオフ値を2.5μm~80μmに設定した場合の平均算術粗さRa2が、0.1μm~1.0μmの範囲内となるように、主表面2,3に粒子200gを吹き付けて、主表面2,3の研削を行なう。
Here, in the blasting step S30 in the present embodiment, the average arithmetic roughness Ra 1 of the main surfaces 2 and 3 is maintained within the range of 1 μm to 5 μm, and the cut-off value is set to 2.5 μm to 80 μm. The main surfaces 2 and 3 are ground by spraying 200 g of particles onto the main surfaces 2 and 3 so that the average arithmetic roughness Ra 2 when set is within a range of 0.1 μm to 1.0 μm.
ここで、平均算術粗さRa1は、日本工業規格の「JIS B0601:2001」および「JIS B0633:2001」に基づいて測定を行なった算術平均粗さである。上記JIS B0601:2001」は、ISO4287:1997に準拠しており、「JIS B0633:2001」は、ISO4288:1996に準拠している。
Here, the average arithmetic roughness Ra 1 is an arithmetic average roughness measured based on “JIS B0601: 2001” and “JIS B0633: 2001” of Japanese Industrial Standards. The above-mentioned JIS B0601: 2001 "conforms to ISO 4287: 1997, and" JIS B0633: 2001 "conforms to ISO 4288: 1996.
平均算術粗さRa2は、上記平均算術粗さRa1とは異なり、カットオフ値(波長)を任意範囲に設定した粗さ曲線から求めた算術平均粗さを意味する。
The average arithmetic roughness Ra 2 is different from the average arithmetic roughness Ra 1 and means an arithmetic average roughness obtained from a roughness curve in which a cutoff value (wavelength) is set in an arbitrary range.
ガラス基板1の主表面2,3の粗さの測定には、株式会社ミツトヨ製の接触式粗さ測定機SURFCOM 1400Dを用いる。測定においては、上記日本工業規格に基づき行なう。
For measuring the roughness of the main surfaces 2 and 3 of the glass substrate 1, a contact type roughness measuring machine SURFCOM 1400D manufactured by Mitutoyo Corporation is used. The measurement is performed based on the above Japanese Industrial Standard.
粗さ測定において、低域カットオフは接触する触診の先端形状に依存する。今回使用した先端形状は、θ=60°、rtip=2μmを使用し、低域カットオフ(λS)は2.5μmとした。
In roughness measurement, the low-frequency cut-off depends on the tip shape of the touching palpation. The tip shape used this time was θ = 60 °, rtip = 2 μm, and the low-frequency cut-off (λ S ) was 2.5 μm.
平均算術粗さRa1の測定においては上記日本工業規格に従って、高域カットオフ(λC)は測定形状によって適切な値に設定する。Raが0.1μm~10μmの場合は、0.25mmもしくは0.8mmに設定される。評価長さは、λCの5倍の長さに設定した。
In the measurement of the average arithmetic roughness Ra 1 , the high-frequency cut-off (λ C ) is set to an appropriate value according to the measurement shape in accordance with the Japanese Industrial Standard. When Ra is 0.1 μm to 10 μm, it is set to 0.25 mm or 0.8 mm. Evaluation length was set to 5 times the length of the lambda C.
λCを強制的に設定する場合、上記JIS規格に沿った測定にはならない。本実施の形態は、一般的なカットオフ値よりも大幅に短い波長領域で粗さ成分が変化する(増大する)ことによって、固定砥粒による研削が円滑に行なえることを見出したものであるため、強制的にλcを設定する。
When λ C is forcibly set, the measurement does not conform to the JIS standard. In the present embodiment, it has been found that grinding with a fixed abrasive can be performed smoothly by changing (increasing) the roughness component in a wavelength region significantly shorter than a general cutoff value. Therefore, to set the forced lambda c.
高域カットオフ(λC)は、80μmで粗さ曲線を求めた。測定長さは、評価長さと同様に、λCの5倍の長さに設定した。
The high frequency cut-off (λ C ) was a roughness curve at 80 μm. Measurement length, as well as the evaluation length was set to 5 times the length of the lambda C.
粗さの定義については、JIS B00601:2001(ISO 4287:1996に準拠)に基づいた。
The definition of roughness was based on JIS B00601: 2001 (based on ISO 4287: 1996).
「算術平均粗さ」は、高さ方向の振幅平均パラメータを示し、「粗さ曲線」は、カットオフ値λs-λcの帯域フィルタを示し、「フィルタ」は、減衰率が50%になる波長をカットオフ値とする位相補償型フィルタを示す。
“Arithmetic average roughness” indicates an amplitude average parameter in the height direction, “Roughness curve” indicates a band-pass filter having a cutoff value λ s −λ c , and “Filter” has an attenuation factor of 50%. The phase compensation type filter which makes the wavelength which becomes the cut-off value is shown.
また、粗さの求め方については、まず測定機によって測定断面曲線が得られる。次に、この測定断面曲線から低域フィルタ(λS)を通して断面曲線を得る。さらに、この断面曲線に高域フィルタ(λC)を通して、「粗さ曲線」を得る。
Moreover, about the method of calculating | requiring roughness, a measurement cross-section curve is first obtained with a measuring machine. Next, a cross-sectional curve is obtained from the measured cross-sectional curve through a low-pass filter (λ S ). Further, a “roughness curve” is obtained by passing a high-pass filter (λ C ) through this cross-sectional curve.
この「粗さ曲線」の平均値からの各地点における高さの絶対値の平均が、算術平均粗さとなる。Ra1のλCは、JIS B0633:01に沿って値を変更し、「粗さ曲線」を得た。Ra2のλCは、80μmに設定して、「粗さ曲線」を得た。
The average of the absolute value of the height at each point from the average value of the “roughness curve” is the arithmetic average roughness. Λ C of Ra 1 was changed in accordance with JIS B0633: 01 to obtain a “roughness curve”. Λ C of Ra2 was set to 80 μm to obtain a “roughness curve”.
(ラッピング工程S40)
ラッピング工程S40においては、砥粒としてダイヤモンドを樹脂などでシート状にしたものを用いて、ガラス基板1の主表面2,3の加工を行なう(第2研削工程)。 (Lapping step S40)
In the lapping step S40, the main surfaces 2 and 3 of the glass substrate 1 are processed using a diamond-shaped sheet made of resin as abrasive grains (second grinding step).
ラッピング工程S40においては、砥粒としてダイヤモンドを樹脂などでシート状にしたものを用いて、ガラス基板1の主表面2,3の加工を行なう(第2研削工程)。 (Lapping step S40)
In the lapping step S40, the
ダイヤモンドの粒子径は目的よって適宜変更可能であるが、平均粒径は2μm~10μmが好ましい。ダイヤモンドの粒子径が、2μm未満になると加工が進まず、ガラス基板1の主表面2,3に生じたクラックの除去を行なえない。ダイヤモンドの粒子径が10μmを超えると、逆にダイヤモンドによってガラス基板1の主表面2,3にクラックが発生する。
The particle diameter of diamond can be appropriately changed depending on the purpose, but the average particle diameter is preferably 2 μm to 10 μm. When the diamond particle diameter is less than 2 μm, the processing does not proceed and the cracks generated on the main surfaces 2 and 3 of the glass substrate 1 cannot be removed. If the particle diameter of diamond exceeds 10 μm, the main surface 2 and 3 of the glass substrate 1 are cracked by diamond.
近年の高密度化に伴い、ダイヤモンド粒子径は小さくなりつつあるが、加工性のバランスが必要であることから、2μm~4μmがさらに好ましい。この研削工程では、ガラス基板1の主表面2,3で50μm~250μm程度の研削を行なう。
With the recent increase in density, the diamond particle diameter is becoming smaller, but 2 μm to 4 μm is more preferable because of the balance of workability. In this grinding process, the main surfaces 2 and 3 of the glass substrate 1 are ground to a thickness of about 50 μm to 250 μm.
(端面研磨工程S50)
端面研磨工程S50においては、ガラス基板1の内周端面および外周端面が、螺旋状のブラシ毛材を有する研磨ブラシを用いて研磨される。研磨ブラシとガラス基板1の各端面との間に研磨スラリーを供給しつつ、研磨ブラシを各端面に当接させた状態で回転させる。ガラス基板1を研磨液の中に浸漬した状態で、研磨ブラシを各端面に当接させた状態で回転させてもよい。 (End face polishing step S50)
In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of theglass substrate 1 are polished using a polishing brush having a spiral brush bristle material. While supplying the polishing slurry between the polishing brush and each end surface of the glass substrate 1, the polishing brush is rotated in contact with each end surface. With the glass substrate 1 immersed in the polishing liquid, the polishing brush may be rotated in contact with each end face.
端面研磨工程S50においては、ガラス基板1の内周端面および外周端面が、螺旋状のブラシ毛材を有する研磨ブラシを用いて研磨される。研磨ブラシとガラス基板1の各端面との間に研磨スラリーを供給しつつ、研磨ブラシを各端面に当接させた状態で回転させる。ガラス基板1を研磨液の中に浸漬した状態で、研磨ブラシを各端面に当接させた状態で回転させてもよい。 (End face polishing step S50)
In the end surface polishing step S50, the inner peripheral end surface and the outer peripheral end surface of the
(粗研磨工程S60)
内周端面および外周端面が研磨されたガラス基板1は、複数回に分けて主表面2,3が粗く研磨される。たとえば、第1および第2粗研磨工程の2回にわけて、主表面2,3が研磨される。徐々にガラス基板1の仕上がり精度を高めることにより、平滑性および平坦性の高い表面を有するガラス基板1を得ることができる。2回に分けて粗研磨を行なう場合、第1粗研磨工程は、前述のラッピング工程において主表面2,3に残留したキズおよび歪みを除去することを主たる目的とし、第2粗研磨工程は、主表面2,3を鏡面状に仕上げることを目的としている。 (Rough polishing step S60)
Theglass substrate 1 whose inner peripheral end face and outer peripheral end face are polished has its main surfaces 2 and 3 polished roughly in a plurality of times. For example, the main surfaces 2 and 3 are polished in two steps of the first and second rough polishing steps. By gradually increasing the finishing accuracy of the glass substrate 1, the glass substrate 1 having a highly smooth and flat surface can be obtained. When performing rough polishing in two steps, the first rough polishing step is mainly intended to remove scratches and distortions remaining on the main surfaces 2 and 3 in the lapping step, and the second rough polishing step The purpose is to finish the main surfaces 2 and 3 in a mirror shape.
内周端面および外周端面が研磨されたガラス基板1は、複数回に分けて主表面2,3が粗く研磨される。たとえば、第1および第2粗研磨工程の2回にわけて、主表面2,3が研磨される。徐々にガラス基板1の仕上がり精度を高めることにより、平滑性および平坦性の高い表面を有するガラス基板1を得ることができる。2回に分けて粗研磨を行なう場合、第1粗研磨工程は、前述のラッピング工程において主表面2,3に残留したキズおよび歪みを除去することを主たる目的とし、第2粗研磨工程は、主表面2,3を鏡面状に仕上げることを目的としている。 (Rough polishing step S60)
The
粗研磨工程S60は、後続する精密研磨工程S80において最終的に必要とされるガラス基板1の面粗さが効率よく得られるように、ガラス基板1の主表面2,3に対して研磨スラリーを用いて粗研磨を行なう工程である。この工程で採用される研磨方法としては特に限定されず、両面研磨機を用いて研磨することが可能である。
In the rough polishing step S60, the polishing slurry is applied to the main surfaces 2 and 3 of the glass substrate 1 so that the surface roughness of the glass substrate 1 finally required in the subsequent precision polishing step S80 can be efficiently obtained. This is a step of performing rough polishing by using. It does not specifically limit as a grinding | polishing method employ | adopted at this process, It is possible to grind | polish using a double-side polisher.
本実施の形態においては、図9に示す両面研磨機40を用いた。両面研磨機40は、上下に相対向して設けられた下定盤41と上定盤42とを備える。下定盤41および上定盤42の対向面には、それぞれ研磨パッド43,44が固定されている。
In the present embodiment, a double-side polishing machine 40 shown in FIG. 9 was used. The double-side polishing machine 40 includes a lower surface plate 41 and an upper surface plate 42 that are provided opposite to each other in the vertical direction. Polishing pads 43 and 44 are fixed to opposing surfaces of the lower surface plate 41 and the upper surface plate 42, respectively.
ガラス基板1は、キャリア45の保持孔に保持され、下定盤41と上定盤42との間に挟まれる。下定盤41および上定盤42は駆動源(図示省略)によって回転される。下定盤41および上定盤42の回転駆動は、制御装置48により制御される。ガラス基板1がキャリア45の保持孔によって保持された状態で、上下の研磨パッド43,44によりガラス基板1の主表面2,3が同時に研磨される。研磨時には、研磨剤供給装置46から研磨スラリーが供給される。図9において研磨剤供給装置46は一ヶ所であるがそれに限るものではなく、その位置と個数とは任意に構成することができる。
The glass substrate 1 is held in the holding hole of the carrier 45 and is sandwiched between the lower surface plate 41 and the upper surface plate 42. The lower surface plate 41 and the upper surface plate 42 are rotated by a drive source (not shown). The rotation drive of the lower surface plate 41 and the upper surface plate 42 is controlled by the control device 48. With the glass substrate 1 held by the holding holes of the carrier 45, the main surfaces 2 and 3 of the glass substrate 1 are simultaneously polished by the upper and lower polishing pads 43 and 44. At the time of polishing, polishing slurry is supplied from the abrasive supply device 46. In FIG. 9, the abrasive supply device 46 is one place, but is not limited thereto, and the position and the number thereof can be arbitrarily configured.
粗研磨工程S60の際、使用される研磨液(研磨スラリー)は、酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどを研磨砥粒として含むとよい。研磨液中の酸化セリウムの濃度は、たとえば5%~10%程度である。研磨するガラス基板1の主表面2,3に対する取り代の厚さは、たとえば10μm~30μmである。粗研磨によって、ガラス基板1の表面のうねりおよび粗さを低く抑えることができる。粗研磨によって、ガラス基板1の内周端面および外周端面の形状などを整えることもできる。粗研磨後のガラス基板1の表面Raは、たとえば3~10Å程度となる。以上のようにして、ガラス基板1の主表面2,3が粗研磨される。当該粗研磨の後、ガラス基板1は、硫酸もしくはフッ化水素酸などを用いて酸洗浄される。
In the rough polishing step S60, the polishing liquid (polishing slurry) used may contain cerium oxide, zirconium oxide, zirconium silicate or the like as abrasive grains. The concentration of cerium oxide in the polishing liquid is, for example, about 5% to 10%. The thickness of the machining allowance for the main surfaces 2 and 3 of the glass substrate 1 to be polished is, for example, 10 μm to 30 μm. By rough polishing, the undulation and roughness of the surface of the glass substrate 1 can be kept low. The shape of the inner peripheral end face and the outer peripheral end face of the glass substrate 1 can be adjusted by rough polishing. The surface Ra of the glass substrate 1 after rough polishing is, for example, about 3 to 10 mm. As described above, the main surfaces 2 and 3 of the glass substrate 1 are roughly polished. After the rough polishing, the glass substrate 1 is acid cleaned using sulfuric acid or hydrofluoric acid.
(洗浄工程S65)
図6を再び参照して、粗研磨工程S60の後、ガラス基板1に対して酸性の洗浄液を用いた洗浄処理が実施される。この洗浄処理は、前工程である粗研磨工程S60において研磨スラリーとして使用されていた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを、ガラス基板1の表面から除去することを目的としている。 (Washing step S65)
Referring again to FIG. 6, after the rough polishing step S60, theglass substrate 1 is subjected to a cleaning process using an acidic cleaning liquid. The purpose of this cleaning treatment is to remove from the surface of the glass substrate 1 any of cerium oxide, zirconium oxide, or zirconium silicate used as a polishing slurry in the rough polishing step S60, which is the previous step.
図6を再び参照して、粗研磨工程S60の後、ガラス基板1に対して酸性の洗浄液を用いた洗浄処理が実施される。この洗浄処理は、前工程である粗研磨工程S60において研磨スラリーとして使用されていた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを、ガラス基板1の表面から除去することを目的としている。 (Washing step S65)
Referring again to FIG. 6, after the rough polishing step S60, the
具体的には、粗研磨工程S60において使用した研磨パッドから粗研磨後のガラス基板1を取り外した後、硫酸およびまたはフッ化水素酸などを含む洗浄液を用いてガラス基板1の表面をエッチングしながら洗浄する。ガラス基板1の表面に付着していた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどの研磨スラリーは、硫酸およびまたはフッ化水素酸などの強酸性の洗浄液によって適切に除去される。その後、ガラス基板1は酸性の洗浄液を用いて洗浄される。
Specifically, after removing the glass substrate 1 after the rough polishing from the polishing pad used in the rough polishing step S60, the surface of the glass substrate 1 is etched using a cleaning liquid containing sulfuric acid and / or hydrofluoric acid. Wash. The polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate 1 is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
洗浄工程S65において用いられる洗浄液は、ガラス基板1の耐化学性によっても異なるが、硫酸であれば1%~30%程度の濃度が好ましく、フッ化水素酸であれば0.2%~5%程度の濃度が好ましい。これらの洗浄液を用いた洗浄は、水溶液が貯留された洗浄機の中で超音波を印加しながら行なわれるとよい。この際に用いられる超音波の周波数は、78kHz以上であることが好ましい。
The cleaning liquid used in the cleaning step S65 varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% to 30% is preferable for sulfuric acid, and 0.2% to 5% for hydrofluoric acid. A concentration of about is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored. The frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
(化学強化工程S70)
洗浄工程S65の後、ガラス基板1は化学強化される。化学強化液としては、たとえば硝酸カリウム(60%)と硫酸ナトリウム(40%)との混合液を用いることができる。化学強化液は、たとえば300℃~400℃に加熱される。洗浄したガラス基板1は、たとえば200℃~300℃に予熱される。ガラス基板1は、化学強化液中にたとえば3時間~4時間浸漬される。 (Chemical strengthening step S70)
After the cleaning step S65, theglass substrate 1 is chemically strengthened. As the chemical strengthening liquid, for example, a mixed liquid of potassium nitrate (60%) and sodium sulfate (40%) can be used. The chemical strengthening liquid is heated to, for example, 300 ° C. to 400 ° C. The cleaned glass substrate 1 is preheated to 200 ° C. to 300 ° C., for example. The glass substrate 1 is immersed in the chemical strengthening solution for 3 hours to 4 hours, for example.
洗浄工程S65の後、ガラス基板1は化学強化される。化学強化液としては、たとえば硝酸カリウム(60%)と硫酸ナトリウム(40%)との混合液を用いることができる。化学強化液は、たとえば300℃~400℃に加熱される。洗浄したガラス基板1は、たとえば200℃~300℃に予熱される。ガラス基板1は、化学強化液中にたとえば3時間~4時間浸漬される。 (Chemical strengthening step S70)
After the cleaning step S65, the
浸漬の際には、ガラス基板1の主表面2,3の全体が化学強化されるように、複数のガラス基板1が各々の端面で保持されるように、ホルダーに収納した状態で行なうことが好ましい。ガラス基板1を化学強化液中に浸漬することによって、ガラス基板1の表層のアルカリ金属イオン(リチウムイオンおよびナトリウムイオン)が、化学強化液中のイオン半径が相対的に大きい化学強化塩(ナトリウムイオンおよびカリウムイオン)に置換される。これにより、ガラス基板1の表層にはたとえば50μm~200μmの厚さを有する圧縮応力層が形成される。
When dipping, the plurality of glass substrates 1 can be held in their respective holders so that the entire main surfaces 2 and 3 of the glass substrate 1 are chemically strengthened. preferable. By immersing the glass substrate 1 in the chemical strengthening solution, alkali metal ions (lithium ions and sodium ions) on the surface layer of the glass substrate 1 are chemically strengthened salts (sodium ions) having a relatively large ion radius in the chemical strengthening solution. And potassium ions). As a result, a compressive stress layer having a thickness of, for example, 50 μm to 200 μm is formed on the surface layer of the glass substrate 1.
圧縮応力層の形成によってガラス基板1の表面が強化され、ガラス基板1は、良好な耐衝撃性を有することとなる。化学強化処理されたガラス基板1は、適宜洗浄される。たとえば、ガラス基板1は、硫酸で洗浄された後に、純水またはIPA(イソプロピルアルコール)等を用いてさらに洗浄される。
The surface of the glass substrate 1 is strengthened by the formation of the compressive stress layer, and the glass substrate 1 has good impact resistance. The glass substrate 1 subjected to the chemical strengthening treatment is appropriately washed. For example, the glass substrate 1 is further cleaned using pure water or IPA (isopropyl alcohol) after being cleaned with sulfuric acid.
(精密研磨工程S80)
化学強化工程S70の後、ガラス基板1に対して精密研磨処理が実施される。精密研磨工程S80は、ガラス基板1の主表面を鏡面状に仕上げることを目的としている。精密研磨工程S80では、上述の粗研磨工程S60と同様に、両面研磨機(図9参照)を用いてガラス基板1に対する精密研磨が行なわれる。 (Precision polishing step S80)
After the chemical strengthening step S70, a precision polishing process is performed on theglass substrate 1. The precision polishing step S80 is intended to finish the main surface of the glass substrate 1 in a mirror shape. In the precision polishing step S80, as in the above-described rough polishing step S60, the glass substrate 1 is precisely polished using a double-side polishing machine (see FIG. 9).
化学強化工程S70の後、ガラス基板1に対して精密研磨処理が実施される。精密研磨工程S80は、ガラス基板1の主表面を鏡面状に仕上げることを目的としている。精密研磨工程S80では、上述の粗研磨工程S60と同様に、両面研磨機(図9参照)を用いてガラス基板1に対する精密研磨が行なわれる。 (Precision polishing step S80)
After the chemical strengthening step S70, a precision polishing process is performed on the
精密研磨工程S80と上記の粗研磨工程S60とでは、使用される研磨液(スラリー)に含有される研磨砥粒、および、使用される研磨パッドの組成が異なる。精密研磨工程S80では、粗研磨工程S60よりも、圧縮応力層が形成されたガラス基板1の主表面2,3に供給される研磨液中の研磨砥粒の粒径を小さくし、研磨パッドの硬さを柔らかくする。
In the fine polishing step S80 and the rough polishing step S60, the composition of the polishing abrasive grains contained in the polishing liquid (slurry) used and the polishing pad used are different. In the precision polishing step S80, the grain size of the abrasive grains in the polishing liquid supplied to the main surfaces 2 and 3 of the glass substrate 1 on which the compressive stress layer is formed is made smaller than in the rough polishing step S60. Soften the hardness.
精密研磨工程S80に用いられる研磨パッドとしては、たとえば軟質発泡樹脂ポリッシャーである。精密研磨工程S80に用いられる研磨液としては、たとえば、粗研磨工程S60で用いる酸化セリウム砥粒よりも微細な粒径を有するコロイダルシリカが用いられる。精密研磨工程S80に用いられるコロイダルシリカの粒径(1次)は、15nm~80nmであることが好ましい。コロイダルシリカを用いた精密研磨によって、ガラス基板1の主表面2,3の平滑性が高くなる。
The polishing pad used in the precision polishing step S80 is, for example, a soft foam resin polisher. As the polishing liquid used in the precision polishing step S80, for example, colloidal silica having a finer particle size than the cerium oxide abrasive used in the rough polishing step S60 is used. The particle size (primary) of the colloidal silica used in the precision polishing step S80 is preferably 15 nm to 80 nm. The smoothness of the main surfaces 2 and 3 of the glass substrate 1 is increased by precision polishing using colloidal silica.
(スクラブ洗浄工程S90)
精密研磨工程S80の後、ガラス基板1に対してスクラブ洗浄処理が実施される。具体的には、精密研磨工程S80において使用した研磨パッドから精密研磨後のガラス基板1を取り外した後、ガラス基板1の表面に洗浄液を供給しつつ、圧縮応力層が形成されたガラス基板1の表面に対してスクラブ洗浄装置を用いてスクラブ洗浄を行なう。 (Scrub cleaning step S90)
After the precision polishing step S80, a scrub cleaning process is performed on theglass substrate 1. Specifically, the glass substrate 1 after the precision polishing is removed from the polishing pad used in the precision polishing step S80, and then the cleaning liquid is supplied to the surface of the glass substrate 1 while the compression stress layer is formed. Scrub cleaning is performed on the surface using a scrub cleaning device.
精密研磨工程S80の後、ガラス基板1に対してスクラブ洗浄処理が実施される。具体的には、精密研磨工程S80において使用した研磨パッドから精密研磨後のガラス基板1を取り外した後、ガラス基板1の表面に洗浄液を供給しつつ、圧縮応力層が形成されたガラス基板1の表面に対してスクラブ洗浄装置を用いてスクラブ洗浄を行なう。 (Scrub cleaning step S90)
After the precision polishing step S80, a scrub cleaning process is performed on the
ガラス基板1は、両面研磨機の研磨パッドから取り外された後、一時的に水中保管されてもよい。水中保管により、精密研磨後にガラス基板1の表面が乾燥することを防ぎつつ、精密研磨後のガラス基板1に付着している研磨滓または遊離砥粒等の異物の量を低減することができる。所定の時間だけガラス基板1を水中保管した後、ガラス基板1をスクラブ洗浄装置にセットし、ガラス基板1に対するスクラブ洗浄を行なう。
The glass substrate 1 may be temporarily stored in water after being removed from the polishing pad of the double-side polishing machine. By storing in water, it is possible to reduce the amount of foreign matter such as polishing wrinkles or loose abrasive grains adhering to the glass substrate 1 after precision polishing while preventing the surface of the glass substrate 1 from drying after precision polishing. After the glass substrate 1 is stored in water for a predetermined time, the glass substrate 1 is set in a scrub cleaning device and scrub cleaning is performed on the glass substrate 1.
スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行なってもよい。洗剤および純水を用いることによって、より適切にガラス基板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス基板1を純水でさらにリンス処理してもよい。
As the scrub cleaning, for example, a cleaning liquid such as a detergent or pure water is used. The pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ζ potential can be easily adjusted and scrub cleaning can be performed efficiently. As scrub cleaning, both scrub cleaning with a detergent and scrub cleaning with pure water may be performed. By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned. The glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
スクラブ洗浄を行なった後に、ガラス基板1に対して超音波洗浄をさらに行なってもよい。洗剤および純水によるスクラブ洗浄を行なった後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行なってもよい。
After the scrub cleaning, the glass substrate 1 may be further subjected to ultrasonic cleaning. After scrub cleaning with detergent and pure water, ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
本実施の形態におけるガラス基板1の製造方法S100としては、以上のように構成される。ガラス基板1の製造方法S100を使用することによって、図2および図3に示す本実施の形態のガラス基板1を得ることができる。
The manufacturing method S100 of the glass substrate 1 in the present embodiment is configured as described above. By using manufacturing method S100 of glass substrate 1, glass substrate 1 of this embodiment shown in Drawing 2 and Drawing 3 can be obtained.
(磁気薄膜形成工程S200)
スクラブ洗浄処理が完了したガラス基板1の主表面2,3(またはいずれか一方の主表面2,3)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。 (Magnetic thin film forming step S200)
A magnetic recording layer is formed on themain surfaces 2 and 3 (or one of the main surfaces 2 and 3) of the glass substrate 1 after the scrub cleaning process is completed. The magnetic recording layer includes, for example, an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and an F system. Are formed by sequentially forming the lubricating layer. By forming the magnetic recording layer, the information recording medium 10 shown in FIGS. 4 and 5 can be obtained.
スクラブ洗浄処理が完了したガラス基板1の主表面2,3(またはいずれか一方の主表面2,3)に対し、磁気記録層が形成される。磁気記録層は、たとえば、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気記録層の形成によって、図4および図5に示す情報記録媒体10を得ることができる。 (Magnetic thin film forming step S200)
A magnetic recording layer is formed on the
(実施例)
次に、図10を参照して、上記ガラス基板1の製造方法の各実施例について、比較例とともに以下説明する。図10は、実施例1~4および比較例1,2における評価結果を示す図である。 (Example)
Next, with reference to FIG. 10, each Example of the manufacturing method of the saidglass substrate 1 is demonstrated below with a comparative example. FIG. 10 is a diagram showing evaluation results in Examples 1 to 4 and Comparative Examples 1 and 2.
次に、図10を参照して、上記ガラス基板1の製造方法の各実施例について、比較例とともに以下説明する。図10は、実施例1~4および比較例1,2における評価結果を示す図である。 (Example)
Next, with reference to FIG. 10, each Example of the manufacturing method of the said
実施例1~4および比較例2においては、ブラスト工程S30において、上記した粒子(砥粒)を用いて、ガラス基板1の主表面の研削(粗面化)を行なった。粒子(砥粒)としてアルミナ粒子を用い、アルミナ粒子110μm、ノズル110の開口径6.5mmとした。ガラス基板1のビッカース硬度は、610kg/mm2である。
In Examples 1 to 4 and Comparative Example 2, the main surface of the glass substrate 1 was ground (roughened) using the above-described particles (abrasive grains) in the blasting step S30. Alumina particles were used as the particles (abrasive grains), the alumina particles were 110 μm, and the opening diameter of the nozzle 110 was 6.5 mm. The Vickers hardness of the glass substrate 1 is 610 kg / mm 2.
粗さを制御するために、吹き付け圧および吹きつけ時間(研削取り代)を変化させて、それぞれ図10に記載のRa1およびRa2に変化させた後に、後工程S30~S90を実施した。砥粒径と取り代(研削厚み)によって、ガラス基板のRa1およびRa2を制御した。比較例1は、ブラスト工程S30を行なわずに、後工程S30~S90を実施した。
In order to control the roughness, the spraying pressure and the spraying time (grinding allowance) were changed to change to Ra1 and Ra2 shown in FIG. 10, respectively, and then the subsequent steps S30 to S90 were performed. Ra1 and Ra2 of the glass substrate were controlled by the abrasive grain size and machining allowance (grinding thickness). In Comparative Example 1, the post-processes S30 to S90 were performed without performing the blast process S30.
各実施例および各比較例の評価は、欠陥数を調べた。欠陥数は、OSA(Optical Surface Analyzer:光学表面解析機)にて評価した。OSAは、KLA Tencor社製のCandela 6300を用いた。評価においては、欠陥数が20以下の場合を合格とし、欠陥数が21以上を不合格とした。
In the evaluation of each example and each comparative example, the number of defects was examined. The number of defects was evaluated by OSA (Optical Surface Analyzer). For OSA, Candala 6300 manufactured by KLA Tencor was used. In the evaluation, a case where the number of defects was 20 or less was accepted, and a case where the number of defects was 21 or more was rejected.
(実施例1)
実施例1におけるブラスト工程S30の加工条件は、砥粒径は67μm、取り代(研削厚み)は5μmとした。その結果、Ra1は1μm、Ra2は0.1μm、欠陥数は15、評価は「合格」であった。 (Example 1)
The processing conditions of the blasting step S30 in Example 1 were an abrasive grain size of 67 μm and a machining allowance (grinding thickness) of 5 μm. As a result, Ra1 was 1 μm, Ra2 was 0.1 μm, the number of defects was 15, and the evaluation was “pass”.
実施例1におけるブラスト工程S30の加工条件は、砥粒径は67μm、取り代(研削厚み)は5μmとした。その結果、Ra1は1μm、Ra2は0.1μm、欠陥数は15、評価は「合格」であった。 (Example 1)
The processing conditions of the blasting step S30 in Example 1 were an abrasive grain size of 67 μm and a machining allowance (grinding thickness) of 5 μm. As a result, Ra1 was 1 μm, Ra2 was 0.1 μm, the number of defects was 15, and the evaluation was “pass”.
(実施例2)
実施例2におけるブラスト工程S30の加工条件は、砥粒径は67μm、取り代(研削厚み)は、10μmとした。その結果、Ra1は2μm、Ra2は0.2μm、欠陥数は5、評価は「合格」であった。 (Example 2)
The processing conditions of the blasting step S30 in Example 2 were an abrasive grain size of 67 μm and a machining allowance (grinding thickness) of 10 μm. As a result, Ra1 was 2 μm, Ra2 was 0.2 μm, the number of defects was 5, and the evaluation was “pass”.
実施例2におけるブラスト工程S30の加工条件は、砥粒径は67μm、取り代(研削厚み)は、10μmとした。その結果、Ra1は2μm、Ra2は0.2μm、欠陥数は5、評価は「合格」であった。 (Example 2)
The processing conditions of the blasting step S30 in Example 2 were an abrasive grain size of 67 μm and a machining allowance (grinding thickness) of 10 μm. As a result, Ra1 was 2 μm, Ra2 was 0.2 μm, the number of defects was 5, and the evaluation was “pass”.
(実施例3)
実施例3におけるブラスト工程S30の加工条件は、砥粒径は90μm、取り代(研削厚み)は、12μmとした。その結果、Ra1は2μm、Ra2は0.3μm、欠陥数は5、評価は「合格」であった。 (Example 3)
The processing conditions of the blasting step S30 in Example 3 were an abrasive grain size of 90 μm and a machining allowance (grinding thickness) of 12 μm. As a result, Ra 1 was 2 μm, Ra 2 was 0.3 μm, the number of defects was 5, and the evaluation was “pass”.
実施例3におけるブラスト工程S30の加工条件は、砥粒径は90μm、取り代(研削厚み)は、12μmとした。その結果、Ra1は2μm、Ra2は0.3μm、欠陥数は5、評価は「合格」であった。 (Example 3)
The processing conditions of the blasting step S30 in Example 3 were an abrasive grain size of 90 μm and a machining allowance (grinding thickness) of 12 μm. As a result, Ra 1 was 2 μm, Ra 2 was 0.3 μm, the number of defects was 5, and the evaluation was “pass”.
(実施例4)
実施例4におけるブラスト工程S30の加工条件は、砥粒径は110μm、取り代(研削厚み)は、12μmとした。その結果、Ra1は5μm、Ra2は1μm、欠陥数は13、評価は「合格」であった。 Example 4
The processing conditions of the blasting step S30 in Example 4 were an abrasive grain size of 110 μm and a machining allowance (grinding thickness) of 12 μm. As a result, Ra 1 was 5 μm, Ra 2 was 1 μm, the number of defects was 13, and the evaluation was “pass”.
実施例4におけるブラスト工程S30の加工条件は、砥粒径は110μm、取り代(研削厚み)は、12μmとした。その結果、Ra1は5μm、Ra2は1μm、欠陥数は13、評価は「合格」であった。 Example 4
The processing conditions of the blasting step S30 in Example 4 were an abrasive grain size of 110 μm and a machining allowance (grinding thickness) of 12 μm. As a result, Ra 1 was 5 μm, Ra 2 was 1 μm, the number of defects was 13, and the evaluation was “pass”.
(比較例1)
比較例1においては、ブラスト工程S30を行なわなかった。その結果、Ra1は2μm、Ra2は0.01μm、欠陥数は23、評価は「不合格」であった。実施例1から3に比較して、Ra2の値が小さいため、後工程でクラックが発生し易く、欠陥数が上昇したと考えられる。 (Comparative Example 1)
In Comparative Example 1, the blasting step S30 was not performed. As a result, Ra 1 was 2 μm, Ra 2 was 0.01 μm, the number of defects was 23, and the evaluation was “fail”. Compared with Examples 1 to 3, since the value of Ra 2 is small, cracks are likely to occur in the subsequent process, and the number of defects is considered to have increased.
比較例1においては、ブラスト工程S30を行なわなかった。その結果、Ra1は2μm、Ra2は0.01μm、欠陥数は23、評価は「不合格」であった。実施例1から3に比較して、Ra2の値が小さいため、後工程でクラックが発生し易く、欠陥数が上昇したと考えられる。 (Comparative Example 1)
In Comparative Example 1, the blasting step S30 was not performed. As a result, Ra 1 was 2 μm, Ra 2 was 0.01 μm, the number of defects was 23, and the evaluation was “fail”. Compared with Examples 1 to 3, since the value of Ra 2 is small, cracks are likely to occur in the subsequent process, and the number of defects is considered to have increased.
(比較例2)
比較例2におけるブラスト工程S30の加工条件は、砥粒径は150μm、取り代(研削厚み)は、30μmとした。その結果、Ra1は6μm、Ra2は1.5μm、欠陥数は32、評価は「不合格」であった。実施例1から3に比較して、過剰なブラスト工程を行なったためクラックが発生し、欠陥数が上昇したと考えられる。 (Comparative Example 2)
The processing conditions of the blasting step S30 in Comparative Example 2 were an abrasive grain size of 150 μm and a machining allowance (grinding thickness) of 30 μm. As a result, Ra 1 was 6 μm, Ra 2 was 1.5 μm, the number of defects was 32, and the evaluation was “fail”. Compared with Examples 1 to 3, it is considered that cracks occurred and the number of defects increased because an excessive blasting process was performed.
比較例2におけるブラスト工程S30の加工条件は、砥粒径は150μm、取り代(研削厚み)は、30μmとした。その結果、Ra1は6μm、Ra2は1.5μm、欠陥数は32、評価は「不合格」であった。実施例1から3に比較して、過剰なブラスト工程を行なったためクラックが発生し、欠陥数が上昇したと考えられる。 (Comparative Example 2)
The processing conditions of the blasting step S30 in Comparative Example 2 were an abrasive grain size of 150 μm and a machining allowance (grinding thickness) of 30 μm. As a result, Ra 1 was 6 μm, Ra 2 was 1.5 μm, the number of defects was 32, and the evaluation was “fail”. Compared with Examples 1 to 3, it is considered that cracks occurred and the number of defects increased because an excessive blasting process was performed.
以上の実施例の結果から、ブラスト工程S30においては、主表面2,3の平均算術粗さRa1が、1μm~5μmの範囲内を維持し、さらに、カットオフ値を2.5μm~80μmに設定した場合の平均算術粗さRa2が、0.1μm~1.0μmの範囲内となるように、主表面2,3に粒子200gを吹き付けて、主表面2,3の研削を行なうことにより、効果的にクラックの発生を抑制することが確認できた。
From the results of the above examples, in the blasting step S30, the average arithmetic roughness Ra 1 of the main surfaces 2 and 3 is maintained within the range of 1 μm to 5 μm, and the cut-off value is set to 2.5 μm to 80 μm. By grinding the main surfaces 2 and 3 by spraying 200 g of particles onto the main surfaces 2 and 3 so that the average arithmetic roughness Ra 2 when set is within the range of 0.1 μm to 1.0 μm. It was confirmed that the generation of cracks was effectively suppressed.
以上、本実施の形態における情報記録媒体用ガラス基板の製造方法によれば、第1研削工程であるブラスト工程において、上記したように主表面の平均算術粗さRa1が、1μm~5μmの範囲内を維持し、さらに、カットオフ値を2.5μm~80μmに設定した場合の平均算術粗さRa2が、0.1μm~1.0μmの範囲内となるように、主表面に粒子を吹き付けて、主表面の研削を行なうことにより、硬度の高いガラス基板を用いた場合であっても、研削工程の前工程に適切な粗面化工程を実現することを可能とする。
As described above, according to the method for manufacturing the glass substrate for information recording medium in the present embodiment, in the blasting process which is the first grinding process, the average arithmetic roughness Ra 1 of the main surface is in the range of 1 μm to 5 μm as described above. In addition, particles are sprayed onto the main surface so that the average arithmetic roughness Ra 2 when the cutoff value is set to 2.5 μm to 80 μm is within the range of 0.1 μm to 1.0 μm. Thus, by grinding the main surface, it is possible to realize a roughening step suitable for the previous step of the grinding step even when a glass substrate having high hardness is used.
以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
As mentioned above, although embodiment and each Example based on this invention were described, embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 ガラス基板(情報記録媒体用ガラス基板)、2,3 主表面、4 内周端面、5,15 孔、6 外周端面、7,8 面取部、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置、40 両面研磨機、41 下定盤、42 上定盤、43,44 研磨パッド、45 キャリア、46 研磨剤供給装置、48 制御装置、100 ブラスト装置、110 ノズル、120 支持台、200g 粒子(砥粒)。
1 glass substrate (glass substrate for information recording medium), 2, 3 main surface, 4 inner peripheral end surface, 5,15 holes, 6 outer peripheral end surface, 7, 8 chamfer, 10 information recording medium, 12 compressive stress layer, 14 Magnetic recording layer, 20 housing, 21 head slider, 22 suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 30 information recording device, 40 double-side polishing machine, 41 Lower surface plate, 42 Upper surface plate, 43, 44 polishing pad, 45 carrier, 46 abrasive supply device, 48 control device, 100 blast device, 110 nozzle, 120 support base, 200 g particles (abrasive grains).
Claims (4)
- ダイレクトプレス法によって得られたガラス基板の主表面に、ノズルから複数の粒子を吹き付けることによって、前記ガラス基板の前記主表面を研削する第1研削工程と、
前記第1研削工程を経た前記ガラス基板に対して、平均粒径が2μm~10μmのダイヤモンド粒子を主成分とする固定砥粒によって、前記ガラス基板の前記主表面を研削する第2研削工程と、を備え、
前記第1研削工程は、
前記主表面の平均算術粗さRa1が、1μm~5μmの範囲内を維持し、さらに、カットオフ値を2.5μm~80μmに設定した場合の平均算術粗さRa2が、0.1μm~1.0μmの範囲内となるように、前記主表面に前記粒子を吹き付けて、前記主表面の研削を行なう工程を含む、情報記録媒体用ガラス基板の製造方法。 A first grinding step of grinding the main surface of the glass substrate by spraying a plurality of particles from a nozzle on the main surface of the glass substrate obtained by a direct press method;
A second grinding step of grinding the main surface of the glass substrate with fixed abrasive grains mainly composed of diamond particles having an average particle diameter of 2 μm to 10 μm with respect to the glass substrate having undergone the first grinding step; With
The first grinding step includes
The average arithmetic roughness Ra 1 of the main surface is maintained within the range of 1 μm to 5 μm, and the average arithmetic roughness Ra 2 when the cutoff value is set to 2.5 μm to 80 μm is 0.1 μm to The manufacturing method of the glass substrate for information recording media including the process of spraying the said particle | grain on the said main surface so that it may become in the range of 1.0 micrometer, and grinding the said main surface. - 前記主表面のビッカース硬度が610kg/mm2以上である、請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The manufacturing method of the glass substrate for information recording media of Claim 1 whose Vickers hardness of the said main surface is 610 kg / mm < 2 > or more.
- 前記粒子の最大粒子径は50μm~150μmである、請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。 3. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the maximum particle diameter of the particles is 50 μm to 150 μm.
- 前記粒子の吹き付け圧は、0.1MPa~1MPaである、請求項1から3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 3, wherein a spraying pressure of the particles is 0.1 MPa to 1 MPa.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380044617.7A CN104603876B (en) | 2012-09-27 | 2013-09-06 | The manufacturing method of glass substrate for information recording medium |
JP2014538343A JP6088534B2 (en) | 2012-09-27 | 2013-09-06 | Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and disk-shaped glass substrate |
SG11201501506QA SG11201501506QA (en) | 2012-09-27 | 2013-09-06 | Method for manufacturing glass substrate for information recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012214509 | 2012-09-27 | ||
JP2012-214509 | 2012-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050507A1 true WO2014050507A1 (en) | 2014-04-03 |
Family
ID=50387915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074088 WO2014050507A1 (en) | 2012-09-27 | 2013-09-06 | Method for producing glass substrate for information recording medium |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6088534B2 (en) |
CN (1) | CN104603876B (en) |
MY (2) | MY181660A (en) |
SG (2) | SG10201710603UA (en) |
WO (1) | WO2014050507A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004303280A (en) * | 2003-03-28 | 2004-10-28 | Hoya Corp | Method for manufacturing glass substrate for information recording medium |
JP2005063530A (en) * | 2003-08-08 | 2005-03-10 | Kao Corp | Substrate for magnetic disk |
WO2008062657A1 (en) * | 2006-11-22 | 2008-05-29 | Konica Minolta Opto, Inc. | Method for producing glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium |
JP2009064514A (en) * | 2007-09-06 | 2009-03-26 | Fuji Electric Device Technology Co Ltd | Glass substrate, method of manufacturing the same, and magnetic disk using glass substrate |
JP2009099249A (en) * | 2007-09-27 | 2009-05-07 | Hoya Corp | Method for manufacturing glass substrate for magnetic disc and method for manufacturing magnetic disc |
JP2009129486A (en) * | 2007-11-21 | 2009-06-11 | Sony Corp | Method of manufacturing information recording medium substrate |
JP2012216255A (en) * | 2011-03-31 | 2012-11-08 | Hoya Corp | Method for manufacturing glass substrate for magnetic disk |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5297321B2 (en) * | 2008-10-07 | 2013-09-25 | Hoya株式会社 | Manufacturing method of glass substrate for magnetic disk |
JP2011040145A (en) * | 2009-07-17 | 2011-02-24 | Ohara Inc | Method for manufacturing substrate for information storage medium |
US8603350B2 (en) * | 2009-07-17 | 2013-12-10 | Ohara Inc. | Method of manufacturing substrate for information storage media |
JP5690540B2 (en) * | 2010-09-30 | 2015-03-25 | Hoya株式会社 | Manufacturing method of glass substrate for information recording medium |
-
2013
- 2013-09-06 SG SG10201710603UA patent/SG10201710603UA/en unknown
- 2013-09-06 JP JP2014538343A patent/JP6088534B2/en active Active
- 2013-09-06 MY MYPI2015700625A patent/MY181660A/en unknown
- 2013-09-06 WO PCT/JP2013/074088 patent/WO2014050507A1/en active Application Filing
- 2013-09-06 CN CN201380044617.7A patent/CN104603876B/en active Active
- 2013-09-06 SG SG11201501506QA patent/SG11201501506QA/en unknown
- 2013-09-06 MY MYPI2021001706A patent/MY196751A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004303280A (en) * | 2003-03-28 | 2004-10-28 | Hoya Corp | Method for manufacturing glass substrate for information recording medium |
JP2005063530A (en) * | 2003-08-08 | 2005-03-10 | Kao Corp | Substrate for magnetic disk |
WO2008062657A1 (en) * | 2006-11-22 | 2008-05-29 | Konica Minolta Opto, Inc. | Method for producing glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium |
JP2009064514A (en) * | 2007-09-06 | 2009-03-26 | Fuji Electric Device Technology Co Ltd | Glass substrate, method of manufacturing the same, and magnetic disk using glass substrate |
JP2009099249A (en) * | 2007-09-27 | 2009-05-07 | Hoya Corp | Method for manufacturing glass substrate for magnetic disc and method for manufacturing magnetic disc |
JP2009129486A (en) * | 2007-11-21 | 2009-06-11 | Sony Corp | Method of manufacturing information recording medium substrate |
JP2012216255A (en) * | 2011-03-31 | 2012-11-08 | Hoya Corp | Method for manufacturing glass substrate for magnetic disk |
Also Published As
Publication number | Publication date |
---|---|
SG10201710603UA (en) | 2018-02-27 |
JPWO2014050507A1 (en) | 2016-08-22 |
MY181660A (en) | 2020-12-31 |
SG11201501506QA (en) | 2015-05-28 |
CN104603876B (en) | 2018-06-12 |
CN104603876A (en) | 2015-05-06 |
MY196751A (en) | 2023-05-03 |
JP6088534B2 (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5813628B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP5037975B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP2007118172A (en) | Polishing device, polishing method, manufacturing method for glass substrate for magnetic disk, and method for magnetic method | |
JP2012142044A (en) | Method for manufacturing glass substrate for information recording medium and information recording medium | |
JP2007118173A (en) | Polishing brush, brush adjusting fixture, and polishing brush adjusting method | |
JP2007102843A (en) | Glass substrate for magnetic recording medium and magnetic disk | |
JP3156265U (en) | Polishing brush, brush adjusting jig, glass substrate for magnetic disk, and magnetic disk | |
JP5227132B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP2010080023A (en) | Method of manufacturing glass substrate for magnetic disk, and magnetic disk | |
JP6088534B2 (en) | Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and disk-shaped glass substrate | |
JP4723341B2 (en) | Glass substrate for magnetic recording medium and method for manufacturing magnetic disk | |
JP2007098484A (en) | Glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP6059739B2 (en) | Manufacturing method of glass substrate for hard disk | |
JP5947221B2 (en) | Manufacturing method of glass substrate for information recording medium | |
JP6423935B2 (en) | Manufacturing method of glass substrate for information recording medium and polishing brush | |
JP2012079371A (en) | Method of manufacturing glass substrate for information recording medium, and information recording medium | |
WO2014050495A1 (en) | Method for producing glass substrate for information recording medium | |
WO2014050496A1 (en) | Method for producing glass substrate for information recording medium | |
WO2013099584A1 (en) | Method of manufacturing glass substrate for information recording medium | |
JP2014010868A (en) | Manufacturing method of glass substrate for information recording medium | |
JP2014071913A (en) | Method for manufacturing glass substrate for information recording medium | |
WO2012132073A1 (en) | Method for manufacturing glass substrate for information recording medium, and information recording medium | |
WO2013099585A1 (en) | Method for manufacturing glass substrate for information storage medium | |
WO2014045653A1 (en) | Method for manufacturing glass substrate for information recording medium | |
WO2013146132A1 (en) | Manufacturing method for glass substrate for information recording medium, and information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842830 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014538343 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13842830 Country of ref document: EP Kind code of ref document: A1 |