JP2009099249A - Method for manufacturing glass substrate for magnetic disc and method for manufacturing magnetic disc - Google Patents

Method for manufacturing glass substrate for magnetic disc and method for manufacturing magnetic disc Download PDF

Info

Publication number
JP2009099249A
JP2009099249A JP2008246276A JP2008246276A JP2009099249A JP 2009099249 A JP2009099249 A JP 2009099249A JP 2008246276 A JP2008246276 A JP 2008246276A JP 2008246276 A JP2008246276 A JP 2008246276A JP 2009099249 A JP2009099249 A JP 2009099249A
Authority
JP
Japan
Prior art keywords
glass
glass substrate
mirror
manufacturing
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246276A
Other languages
Japanese (ja)
Other versions
JP5005645B2 (en
Inventor
Fumihiko Shigeta
文彦 重田
Hironori Yoshikawa
博則 吉川
Takemi Miyamoto
武美 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008246276A priority Critical patent/JP5005645B2/en
Publication of JP2009099249A publication Critical patent/JP2009099249A/en
Application granted granted Critical
Publication of JP5005645B2 publication Critical patent/JP5005645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high processing rate from the start of polishing and to reduce processing time when a main surface of a mirror glass plate is polished with fine fixed abrasive grains. <P>SOLUTION: A method for manufacturing a glass substrate processes the mirror glass plate 3 having a mirror on its main surface to obtain required flatness and surface roughness by using a diamond sheet 10, i.e., fixed abrasive grains. As preprocessing, the surface of the mirror glass plate 3 is roughened by a mechanical or chemical method to the extent that the diamond sheet 10 effects polishing. Then, the diamond sheet 10 is used to machine the surface of the mirror glass plate 3 to obtain desired board thickness and flatness. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハードディスクドライブ(以下、「HDD」という)等の磁気ディスク装置に用いられる磁気ディスク用のガラス基板の製造方法及びそのガラス基板を用いた磁気ディスクの製造方法に関する。   The present invention relates to a method of manufacturing a glass substrate for a magnetic disk used in a magnetic disk device such as a hard disk drive (hereinafter referred to as “HDD”) and a method of manufacturing a magnetic disk using the glass substrate.

近年、高記録密度化に適した磁気ディスク用基板の一つとして、ガラス基板が用いられている。ガラス基板は、金属の基板に比べて剛性が高いので、磁気ディスク装置の高速回転化に適している。また、ガラス基板は、平滑で平坦な表面が得られるので、磁気ヘッドの浮上量を低下させてS/N比の向上と高記録密度化に適している。   In recent years, a glass substrate has been used as one of magnetic disk substrates suitable for increasing the recording density. Since the glass substrate has higher rigidity than the metal substrate, it is suitable for high-speed rotation of the magnetic disk device. Moreover, since a smooth and flat surface is obtained, the glass substrate is suitable for improving the S / N ratio and increasing the recording density by reducing the flying height of the magnetic head.

一般に磁気ディスク用ガラス基板は、ガラス原料を加熱融解させて溶融ガラスを準備する工程と、この溶融ガラスを板状のガラスディスクに成形する工程と、板状に成形されたガラスディスクを加工し研磨してガラス基板を作製する工程が順次実行されることにより作製される。   In general, glass substrates for magnetic disks are prepared by heating and melting glass raw materials to prepare molten glass, forming the molten glass into a plate-shaped glass disk, and processing and polishing the glass disk formed into a plate shape. Then, the glass substrate is manufactured by sequentially executing the process of manufacturing the glass substrate.

溶融ガラスを板状のガラスディスクに成形するにあたっては、プレス法、フロート法等の成形方法が採用されている。プレス法では、円柱状のガラス母材から磁気ディスク用基板よりも少し厚い厚さのガラスディスクに切断し、ガラスディスクの形状を整えると共に所望の平坦度及び板厚に加工する。ガラスディスクを所望の平坦度及び板厚に加工する研削工程では、ラッピング装置を用い、ガラスディスクを目標の板厚に研削すると共に目標の平坦度に加工する。ガラスディスクをラッピング装置の上定盤と下定盤とで挟み、これを逆方向に回転させながら遊離砥粒(スラリー)を用いて加工する。遊離砥粒はガラスディスクの所定の寸法精度及び形状精度に応じた粒度の砥粒を用いており、最初の研削加工(ラップ1)では大きな粒径(例えば、平均粒径30μm程度)の遊離砥粒を用いて板厚が0.92mmになるまで研削し、2回目の研削加工(ラップ2:精ラッピング工程)では小さな粒径(例えば、平均粒径10μm程度)の遊離砥粒を用いて板厚が0.67mmになるまで研削している。   In forming molten glass into a plate-like glass disk, a forming method such as a press method or a float method is employed. In the pressing method, a cylindrical glass base material is cut into a glass disk having a thickness slightly thicker than the magnetic disk substrate, and the shape of the glass disk is adjusted and processed to a desired flatness and thickness. In a grinding process for processing a glass disk to a desired flatness and plate thickness, a lapping device is used to grind the glass disk to a target plate thickness and to process to a target flatness. A glass disk is sandwiched between an upper surface plate and a lower surface plate of a wrapping apparatus, and processed using loose abrasive grains (slurry) while rotating the glass disk in the opposite direction. As the loose abrasive grains, abrasive grains having a particle size according to the predetermined dimensional accuracy and shape accuracy of the glass disk are used. In the first grinding process (lap 1), loose abrasive grains having a large particle size (for example, an average particle size of about 30 μm) are used. The plate is ground using a grain until the plate thickness becomes 0.92 mm, and the second grinding process (lap 2: fine lapping process) uses a free abrasive grain having a small grain size (for example, an average grain size of about 10 μm). Grinding until the thickness is 0.67 mm.

フロート法では、フロート法で製造された板状ガラスからガラスディスクを切り出し、ガラスディスクの形状を整えると共に、主表面を研削加工する。フロート法で製造された板状ガラスは、最初から主表面が鏡面化されているので、平坦度及び板厚がプレスガラスに比べて優れている。そのため、大きな粒径の遊離砥粒を用いたラップ1を省略し、最初から小さな粒径の遊離砥粒を用いた研削加工(ラップ2)を行う。
特開2002−55061号公報
In the float process, a glass disk is cut out from a sheet glass produced by the float process, the shape of the glass disk is adjusted, and the main surface is ground. Since the main surface of the plate glass produced by the float process is mirror-finished from the beginning, the flatness and the plate thickness are superior to the press glass. Therefore, the lapping 1 using the loose abrasive grains having a large particle diameter is omitted, and grinding (lap 2) using the loose abrasive grains having a small particle diameter is performed from the beginning.
JP 2002-55061 A

ところで、上記ラップ2の研削加工において、遊離砥粒に比べて粒径の小さい固定砥粒を研削パッドとして使用すれば、ガラス基板に発生するクラックを浅くすることができ、ラップ2の研削加工終了時点での表面粗さを小さくすることができる。たとえば、シートにダイヤモンド粒子を貼り付けたダイヤモンドシートを研削パッドとして使用する。使用するダイヤモンド粒子は、遊離砥粒として使用されるアルミナ系粒子の粒径と比べて小さいので、クラックを浅くでき、表面粗さも小さくすることが可能である。   By the way, in the grinding process of the lap 2, if fixed abrasive grains having a particle size smaller than that of loose abrasive grains are used as a grinding pad, cracks generated in the glass substrate can be reduced, and the grinding process of the lap 2 is completed. The surface roughness at the time can be reduced. For example, a diamond sheet having diamond particles attached to the sheet is used as a grinding pad. Since the diamond particles to be used are smaller than the particle size of the alumina-based particles used as the free abrasive grains, the cracks can be shallowed and the surface roughness can be reduced.

ところが、フロート法で製造された板状ガラスのように表面粗さがRa=0.001μm以下となる鏡面ガラスを、表面粗さを出来る限り悪化させずに、所用の平坦度になるまで研磨するためには、微細な砥粒が必要になる。このような微細な砥粒の研削パッドを用いて鏡面ガラスを加工しようとすると、加工初めの加工レートを非常に低い速度(通常加工レートの1/5〜1/10以下)に抑えなければならず、加工時間が長くなるといった問題がある。また、加工初期にスクラッチと呼ばれる深い傷が生じ易い。取り代がスクラッチ深さより少ないと、このスクラッチを除去出来ず品質不良となる。   However, mirror-like glass whose surface roughness is Ra = 0.001 μm or less like a plate glass manufactured by the float process is polished until the desired flatness is obtained without deteriorating the surface roughness as much as possible. For this purpose, fine abrasive grains are required. If mirror glass is to be processed using such a fine abrasive pad, the processing rate at the beginning of processing must be kept at a very low speed (1/5 to 1/10 or less of the normal processing rate). However, there is a problem that the processing time becomes long. In addition, deep scratches called scratches are likely to occur at the beginning of processing. If the machining allowance is less than the scratch depth, this scratch cannot be removed, resulting in poor quality.

なお、上記の研磨開始時の加工レートが低いといった課題は、フロート法で製造された鏡面板ガラスに限るものでは無く、鏡面板ガラスを微細な砥粒の研削パッドを用いて加工する場合に共通に生じる問題である。   The problem that the processing rate at the start of the polishing is low is not limited to the mirror plate glass manufactured by the float process, and occurs in common when the mirror plate glass is processed using a grinding pad of fine abrasive grains. It is a problem.

本発明は、かかる点に鑑みてなされたものであり、鏡面板ガラスの主表面を微細な固定砥粒で加工する際に、加工開始時から高加工レートを実現でき、加工時間を短縮することができると共にスクラッチの発生を防止できるガラス基板の製造方法及び磁気ディスクの製造方法を提供することを目的とする。   The present invention has been made in view of such points, and when processing the main surface of the mirror-finished plate glass with fine fixed abrasive grains, it is possible to realize a high processing rate from the start of processing, and to shorten the processing time. Another object of the present invention is to provide a method for manufacturing a glass substrate and a method for manufacturing a magnetic disk, which can prevent generation of scratches.

本発明の磁気ディスク用ガラス基板の製造方法は、主表面が鏡面となっている鏡面板ガラスを、固定砥粒を用いて必要な平坦度及び表面粗さに加工する表面研削工程を備えており、前記固定砥粒を用いた表面研削工程前に、前記固定砥粒が研磨作用する程度まで前記鏡面板ガラス表面を機械的方法又は化学的方法で粗面化する粗面化工程を具備することを特徴とする。   The method for producing a glass substrate for a magnetic disk according to the present invention comprises a surface grinding step of processing a mirror plate glass whose main surface is a mirror surface into necessary flatness and surface roughness using fixed abrasive grains, Before the surface grinding step using the fixed abrasive, the method comprises a roughening step of roughening the mirror plate glass surface by a mechanical method or a chemical method to such an extent that the fixed abrasive grinds. And

この製造方法によれば、固定砥粒を用いて鏡面板ガラス表面を加工する前に、前記固定砥粒が研磨作用する程度まで前記鏡面板ガラス表面を機械的方法又は化学的方法で粗面化するので、鏡面板ガラス表面に固定砥粒の引っ掛かりとなる凸部が形成されて、鏡面板ガラス表面での固定砥粒の滑りが防止され、固定砥粒による加工開始から高い加工レートを実現することができる。   According to this manufacturing method, before processing the mirror-finished plate glass surface using fixed abrasive grains, the mirror-plate glass surface is roughened by a mechanical method or a chemical method to the extent that the fixed abrasive grains are polished. A convex portion that is caught by the fixed abrasive grains is formed on the mirror surface plate glass surface, and the fixed abrasive grains are prevented from sliding on the mirror surface plate glass surface, and a high processing rate can be realized from the start of processing by the fixed abrasive grains.

前記粗面化工程における機械的方法として、遊離砥粒を用いた研磨加工を用いることができる。化学的方法として、薬液によるエッチング作用を利用することができる。遊離砥粒を用いた機械的方法によれば、加工面品質の制御と管理が容易になり、薬液によるエッチング作用を利用する化学的方法によれば、クラックの発生を防止できる。特に、薬液によるエッチング作用を利用する化学的方法がフロスト加工であることが好ましい。このフロスト加工により、固定砥粒が研磨作用する程度まで鏡面板ガラス表面を効率良く粗面化することが可能となる。   As a mechanical method in the roughening step, polishing using free abrasive grains can be used. As a chemical method, an etching action by a chemical solution can be used. According to the mechanical method using the loose abrasive grains, it becomes easy to control and manage the quality of the processed surface, and according to the chemical method using the etching action by the chemical solution, the generation of cracks can be prevented. In particular, it is preferable that the chemical method using the etching action by the chemical solution is frost processing. By this frost processing, it is possible to efficiently roughen the surface of the specular plate glass to such an extent that the fixed abrasive grains polish.

本発明の磁気ディスク用ガラス基板の製造方法においては、前記粗面化工程は、鏡面の表面粗さがRa=0.001μm以下となる鏡面板ガラスを、表面粗さRa=0.01〜0.4μmに粗面化することが好ましい。   In the method for manufacturing a glass substrate for a magnetic disk of the present invention, in the roughening step, a mirror surface plate glass having a mirror surface roughness of Ra = 0.001 μm or less is applied to the surface roughness Ra = 0.01-0. The surface is preferably roughened to 4 μm.

本発明のガラス基板の製造方法は、前記粗面化工程による鏡面板ガラスの表面粗さをAとし、前記固定砥粒の平均粒径をBとして、B/A<50とすることを特徴とする。この製造方法によれば、B/A<50の条件を満足することにより、固定砥粒が研磨作用する程度まで鏡面板ガラス表面を粗面化することができる。   The method for producing a glass substrate of the present invention is characterized in that the surface roughness of the mirror-finished plate glass in the roughening step is A, the average grain size of the fixed abrasive grains is B, and B / A <50. . According to this manufacturing method, by satisfying the condition of B / A <50, the surface of the specular plate glass can be roughened to such an extent that the fixed abrasive grains polish.

本発明の磁気ディスク用ガラス基板の製造方法においては、前記固定砥粒を用いて鏡面板ガラス表面を加工する工程では、表面粗さRa=0.1μm以下で、かつ平坦度7μm以下に加工することが好ましい。   In the method for manufacturing a glass substrate for a magnetic disk according to the present invention, in the step of processing the mirror-plate glass surface using the fixed abrasive, the surface roughness Ra is 0.1 μm or less and the flatness is 7 μm or less. Is preferred.

本発明の磁気ディスクの製造方法は、上記ガラス基板の製造方法によって製造されたガラス基板の主表面上に、少なくとも磁性層を形成することを特徴とする。   The method for producing a magnetic disk of the present invention is characterized in that at least a magnetic layer is formed on the main surface of the glass substrate produced by the method for producing a glass substrate.

本発明によれば、鏡面板ガラスの主表面を微細な固定砥粒で研磨する際に、研磨開始時から高加工レートを実現でき、加工時間を短縮することができると共にスクラッチの発生を防止することができる。   According to the present invention, when the main surface of the mirror-finished plate glass is polished with fine fixed abrasive grains, a high processing rate can be realized from the start of polishing, the processing time can be shortened, and the occurrence of scratches can be prevented. Can do.

以下、本発明の一実施の形態として磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法について説明する。以下の説明では、磁気ディスク用ガラス基板の素材としてフロート法で製造された板状ガラス素材を用いる例について説明するが、本発明はフロート法で製造された板状ガラス素材に限らず、他の方法で製作された鏡面板ガラスにも適用可能である。また、磁気ディスク用ガラス基板以外の用途であっても鏡面板ガラス表面を微細な固定砥粒で加工して所望の平坦度及び表面粗さにする用途であれば、本発明を同様に適用可能である。なお、ここで、鏡面とは、表面粗さ(算術平均粗さ(Ra))が0.01μm以下の表面をいう。   Hereinafter, a method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk will be described as an embodiment of the present invention. In the following description, an example of using a sheet glass material manufactured by a float method as a material of a glass substrate for a magnetic disk will be described, but the present invention is not limited to a sheet glass material manufactured by a float method. The method can also be applied to a mirror plate glass manufactured by the method. In addition, the present invention can be similarly applied to applications other than the magnetic disk glass substrate as long as the surface of the specular glass plate is processed with fine fixed abrasive grains to obtain the desired flatness and surface roughness. is there. In addition, a mirror surface means here the surface whose surface roughness (arithmetic mean roughness (Ra)) is 0.01 micrometer or less.

本実施の形態に係る磁気ディスク用ガラス基板の製造方法は、主表面が鏡面となっている板ガラス素材を、当該板ガラス素材の表面(鏡面)に対して固定砥粒が有効に研磨作用するように機械的方法又は化学的方法によって板ガラス表面の鏡面を粗面化する。   In the method for manufacturing a glass substrate for a magnetic disk according to the present embodiment, the fixed abrasive grains effectively polish the plate glass material whose main surface is a mirror surface on the surface (mirror surface) of the plate glass material. The mirror surface of the plate glass surface is roughened by a mechanical method or a chemical method.

板ガラス素材鏡面を粗面化する機械的方法として、平面研磨機による遊離砥粒研磨を用いることができる。遊離砥粒研磨を用いて鏡面板ガラスの表面全体がほぼ均一の表面粗さRa=0.01〜0.4μm程度になるように研磨加工する。機械的方法を適用した粗面化によれば、加工面品質の制御と管理が容易となる利点がある。   As a mechanical method for roughening the mirror surface of the plate glass material, free abrasive polishing using a flat polishing machine can be used. Polishing is performed using loose abrasive polishing so that the entire surface of the mirror-finished plate glass has a substantially uniform surface roughness Ra = 0.01 to 0.4 μm. According to the roughening using the mechanical method, there is an advantage that the quality and control of the machined surface becomes easy.

板ガラス素材鏡面を粗面化する化学的方法として、薬液によるエッチング作用を利用することができる。化学的方法に用いる薬液として、酸性フッ化アンモニウム、フッ酸等が挙げられる。酸性フッ化アンモニウム又はフッ酸によるエッチング作用で板ガラス素材鏡面を粗面化することができる。化学的方法を適用した粗面化によれば、クラックが生じないといった利点がある。また設備導入のイニシャルコストが低く、自動化も容易になるといった利点がある。板ガラス素材鏡面を粗面化する化学的方法としては、フロスト加工が特に好ましい。ここで、フロスト加工とは、粗面化剤を加えたエッチング用の薬液を用いてガラス表面を処理する加工をいう。このフロスト加工においては、粗面化剤によりガラス表面が局所的にマスクされた状態でエッチングが進行するので、効果的にガラス表面を粗面化すること(例えば、フロスト加工後の表面粗さRaがフロスト加工前の表面粗さRaの5倍程度)が可能となる。この粗面化剤としては、液中においてHF を供給するものが好適であり、例えば、HF、NHF、NaF、KF、CaF等が挙げられる。また、薬液の濃度や温度を調整することにより、粗面化の状態を調整することができる。 As a chemical method for roughening the mirror surface of the plate glass material, an etching action by a chemical solution can be used. Examples of the chemical solution used in the chemical method include acidic ammonium fluoride and hydrofluoric acid. The mirror surface of the plate glass material can be roughened by an etching action with acidic ammonium fluoride or hydrofluoric acid. According to the roughening using a chemical method, there is an advantage that no cracks are generated. In addition, there is an advantage that the initial cost of introducing the equipment is low and automation becomes easy. As a chemical method for roughening the mirror surface of the plate glass material, frost processing is particularly preferable. Here, frost processing refers to processing in which the glass surface is treated with a chemical solution for etching added with a roughening agent. In this frost processing, etching proceeds in a state where the glass surface is locally masked by the surface roughening agent, so that the glass surface is effectively roughened (for example, surface roughness Ra after frost processing). However, the surface roughness Ra before frosting is about 5 times). As this roughening agent, those supplying HF 2 in the liquid are suitable, and examples thereof include HF, NH 4 F, NaF, KF, and CaF 2 . Moreover, the roughening state can be adjusted by adjusting the concentration and temperature of the chemical solution.

上記のように鏡面が粗面化された板ガラス素材に対して、目標の平坦度及び板厚になるように固定砥粒を用いて研削加工する。固定砥粒は遊離砥粒に比べて微細な砥粒を用いることが望ましい。板ガラス素材の表面粗さを「A」、固定砥粒の平均粒径を「B」とした場合、(B/A)<50を満たすことが望ましい。   The plate glass material having the mirror surface roughened as described above is ground using fixed abrasive grains so as to have a target flatness and plate thickness. The fixed abrasive is desirably finer than the loose abrasive. When the surface roughness of the plate glass material is “A” and the average grain size of the fixed abrasive grains is “B”, it is desirable that (B / A) <50 is satisfied.

好ましい一実施の形態としては、固定砥粒を用いた研削加工で残留した傷や歪みを除去するため、ポリシャとして硬質ポリシャを用い、ガラス基板表面を研磨する第1研磨工程と、該第1研磨工程で得られた平坦な表面を維持しつつ、更に平滑な鏡面に仕上げるため、硬質ポリシャに替えて軟質ポリシャでガラスディスク表面を研磨する第2研磨工程とを行う。   As a preferred embodiment, in order to remove scratches and distortions remaining in the grinding process using fixed abrasive grains, a hard polisher is used as a polisher and the glass substrate surface is polished, and the first polishing step A second polishing step of polishing the surface of the glass disk with a soft polisher instead of the hard polisher is performed to maintain a smooth surface while maintaining the flat surface obtained in the step.

また、研磨工程を終えたガラス基板は、化学強化を施してもよい。ガラスの種類が特にアルミノシリケートガラスの場合、化学強化することによって、抗折強度が増加し、圧縮応力層の深さも深くなる。化学強化の方法としては、従来より公知の化学強化法であれば特に限定されないが、実用上、低温型イオン交換法による化学強化が好ましい。   Moreover, the glass substrate which finished the grinding | polishing process may give chemical strengthening. When the type of glass is particularly aluminosilicate glass, the bending strength is increased and the depth of the compressive stress layer is also deepened by chemical strengthening. The chemical strengthening method is not particularly limited as long as it is a conventionally known chemical strengthening method, but chemical strengthening by a low-temperature ion exchange method is preferable in practice.

上記磁気ディスク用ガラス基板の製造方法においては、固定砥粒を用いて鏡面板ガラス表面を加工する前(主表面研削工程前)に、前記固定砥粒が研磨作用する程度まで前記鏡面板ガラス表面を機械的方法又は化学的方法で粗面化している。これにより、鏡面板ガラス表面に固定砥粒が引っ掛かりとなる凸部が形成されて、鏡面板ガラス表面での固定砥粒の滑りが防止される。これにより、表面研削工程において、固定砥粒による加工開始から高い加工レートを実現することができる。   In the method for manufacturing a glass substrate for a magnetic disk, before processing the mirror-plate glass surface using the fixed abrasive (before the main surface grinding step), the mirror-plate glass surface is mechanically moved to the extent that the fixed abrasive is polished. Roughened by mechanical or chemical methods. Thereby, the convex part from which the fixed abrasive is caught is formed on the mirror surface plate glass surface, and the slip of the fixed abrasive on the mirror surface plate glass surface is prevented. Thereby, in a surface grinding process, a high processing rate can be realized from the start of processing by fixed abrasive.

主表面研削工程においては、固定砥粒を用いて鏡面板ガラス表面を加工する。この場合において、表面粗さRa=0.1μm以下で、かつ平坦度7μm以下に加工することが好ましい。   In the main surface grinding step, the mirror plate glass surface is processed using fixed abrasive grains. In this case, it is preferable that the surface roughness Ra = 0.1 μm or less and the flatness is 7 μm or less.

本発明により得られる磁気ディスク用ガラス基板上に、少なくとも磁性層を形成することにより、高記録密度化に適した磁気ディスクが得られる。   By forming at least the magnetic layer on the magnetic disk glass substrate obtained by the present invention, a magnetic disk suitable for increasing the recording density can be obtained.

磁性層の材料としては、異方性磁界の大きな六方晶系であるCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることができる。またガラス基板と磁性層との間に、下地層を介挿することにより磁性層の磁性グレインの配向方向や磁性グレインの大きさを制御することができる。   As the magnetic layer material, a hexagonal CoPt ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method for forming the magnetic layer, a method of forming a magnetic layer on a glass substrate by sputtering, for example, DC magnetron sputtering can be used. Further, by interposing an underlayer between the glass substrate and the magnetic layer, the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled.

また、磁性層の上に保護層を設けることが好適である。保護層を設けることにより、磁気ディスク上を浮上飛行する磁気記録ヘッドから磁気ディスク表面を保護することができる。保護層の材料としては、例えば、炭素系保護層が好適である。また、上記保護層上に更に潤滑層を設けることが好ましい。潤滑層を設けることにより、磁気記録ヘッドと磁気ディスク間の磨耗を抑止でき、磁気ディスクの耐久性を向上させることができる。潤滑層の材料としては、たとえばPFPE(パーフロロポリエーテル)が好ましい。   In addition, it is preferable to provide a protective layer on the magnetic layer. By providing the protective layer, the surface of the magnetic disk can be protected from the magnetic recording head flying over the magnetic disk. As a material for the protective layer, for example, a carbon-based protective layer is suitable. Further, it is preferable to further provide a lubricating layer on the protective layer. By providing the lubricating layer, wear between the magnetic recording head and the magnetic disk can be suppressed, and the durability of the magnetic disk can be improved. As a material for the lubricating layer, for example, PFPE (perfluoropolyether) is preferable.

なお、本発明によれば、フロート法で得られた板状ガラスから、高記録密度化に有利なロードアンロード方式の磁気ディスク装置に搭載される磁気ディスクに用いるガラス基板を安定して製造することができる。また、本発明の製造方法によって得られた磁気ディスク用ガラス基板を用いて磁気ディスクを製造することにより、磁気ディスク用ガラス基板の製造歩留りが高いので、磁気ディスクの製造コストの低減を図ることが可能になる。   According to the present invention, a glass substrate used for a magnetic disk mounted on a load / unload type magnetic disk apparatus advantageous for increasing the recording density is stably manufactured from a plate-like glass obtained by a float process. be able to. In addition, by manufacturing a magnetic disk using the magnetic disk glass substrate obtained by the manufacturing method of the present invention, the manufacturing yield of the magnetic disk glass substrate is high, so that the manufacturing cost of the magnetic disk can be reduced. It becomes possible.

(実施例)
以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(Example)
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.

以下の(1)切り出し工程、(2)形状加工工程、(3)粗面化工程、(4)精ラッピング工程、(5)端面研磨工程、(6)主表面研磨工程、(7)化学強化工程、を経て本実施例の磁気ディスク用ガラス基板を製造した。図1に(1)〜(4)までの工程の概念図を示す。   (1) Cutting step, (2) Shape processing step, (3) Roughening step, (4) Fine lapping step, (5) End surface polishing step, (6) Main surface polishing step, (7) Chemical strengthening Through the process, the magnetic disk glass substrate of this example was manufactured. The conceptual diagram of the process from (1) to (4) is shown in FIG.

なお、磁気ディスク用ガラス基板を製造するための板状のガラス素材はフロート法により製造した。フロート法では、融液を溶融スズの上に流し、そのまま固化させる。板ガラスの両面はガラスの自由表面とガラス/スズの界面であるため研磨せずにRa0.001μm以下の鏡面をなす板状のガラス素材を得た。   In addition, the plate-shaped glass raw material for manufacturing the glass substrate for magnetic discs was manufactured by the float process. In the float process, the melt is poured over molten tin and solidified as it is. Since both surfaces of the plate glass were the glass free surface and the glass / tin interface, a plate-like glass material having a mirror surface of Ra 0.001 μm or less was obtained without polishing.

(1)切り出し工程
フロート法で製造した厚さ0.95mmのアルミノシリケートガラスからなる板状ガラス素材1を所定の大きさの四角形に切断したものを使用し、そのトップ面にガラスカッターで、磁気ディスク用ガラス基板となされる領域の外周側及び内周側の略周縁を描く円形の切り筋2を形成した。尚、このアルミノシリケートガラスとしては、SiO:58質量%〜75質量%、Al:5質量%〜23質量%、LiO:3質量%〜10質量%、NaO:4質量%〜13質量%を含有する化学強化用ガラスを使用した。次いで、上記切り筋2を形成した板状ガラス1のトップ面側を全体的にヒータで加熱し、上記切り筋2を板状ガラス1のボトム面側に進行させて所定の直径を有するガラスディスク(鏡面板ガラス)3を切り出した。
(1) Cutting process Using a glass plate material 1 made of aluminosilicate glass having a thickness of 0.95 mm manufactured by the float method and cut into a square of a predetermined size, the top surface is magnetically A circular scoring line 2 was formed to describe substantially the outer peripheral side and the inner peripheral side of the region to be the disk glass substrate. As the aluminosilicate glass, SiO 2: 58 wt% to 75 wt%, Al 2 O 3: 5 wt% to 23 wt%, Li 2 O: 3% to 10% by weight, Na 2 O: 4 A glass for chemical strengthening containing from 13% by mass to 13% by mass was used. Next, the top surface side of the sheet glass 1 on which the cut lines 2 are formed is heated by a heater as a whole, and the cut lines 2 are advanced to the bottom surface side of the sheet glass 1 to have a predetermined diameter. (Specular surface glass) 3 was cut out.

(2)形状加工工程
次に、外周端面及び内周端面の研削をして外径を65mmφ、内径(中心部の円孔の直径)を20mmφとした後、外周端面および内周端面に所定の面取り加工を施した。このときのガラスディスク端面の表面粗さは、Rmaxで2μm程度であった。なお、一般に、2.5(インチ)型HDD(ハードディスクドライブ)では、外径が65mmの磁気ディスクを用いる。
(2) Shape processing step Next, after grinding the outer peripheral end surface and the inner peripheral end surface to an outer diameter of 65 mmφ and an inner diameter (diameter of a circular hole in the central portion) of 20 mmφ, a predetermined amount is applied to the outer peripheral end surface and inner peripheral end surface. Chamfered. The surface roughness of the end surface of the glass disk at this time was about 2 μm in Rmax. In general, a 2.5 (inch) type HDD (hard disk drive) uses a magnetic disk having an outer diameter of 65 mm.

(3)粗面化工程
平面研磨機による遊離砥粒研磨を用いる機械的方法を適用した。遊離砥粒研磨を用いて鏡面ガラスディスク3の表面全体がほぼ均一の表面粗さRa=0.01μm〜0.4μm程度になるように研磨加工した。粗面化工程で目標とする表面粗さは、後の精ラッピング工程で使用する固定砥粒の粒度との関係で決めることが望ましい。上記した通り、粗面化されたガラスディスク3の表面粗さ(A)で固定砥粒の平均粒径Bを徐算して、(B/A)<50を満たすようにする。ここでは、ガラスディスク3の表面粗さはRa0.27μmであった。
(3) Roughening step A mechanical method using loose abrasive polishing with a flat polishing machine was applied. Polishing was performed using loose abrasive polishing so that the entire surface of the specular glass disk 3 had a substantially uniform surface roughness Ra = 0.01 μm to 0.4 μm. It is desirable that the target surface roughness in the roughening step is determined in relation to the particle size of the fixed abrasive used in the subsequent fine lapping step. As described above, the average particle diameter B of the fixed abrasive grains is gradually calculated by the surface roughness (A) of the roughened glass disk 3 so that (B / A) <50 is satisfied. Here, the surface roughness of the glass disk 3 was Ra 0.27 μm.

(4)精ラッピング工程(表面研削工程)
粗面化されたガラスディスク3の主表面を、固定砥粒研磨パッドを用いて研削した。固定砥粒研磨パッドとして、図2に示すダイヤモンドシート10を用いた。ダイヤモンドシート10は、ダイヤモンド粒子を研削砥粒として備えたものである。ダイヤモンドシート10は、基材としてPETからなるシート11を備えている。ダイヤモンド粒子12の平均粒径はB=4μmであった。したがって、B/A=15となり、上記(B/A)<50を満たしている。
(4) Precision lapping process (surface grinding process)
The main surface of the roughened glass disk 3 was ground using a fixed abrasive polishing pad. A diamond sheet 10 shown in FIG. 2 was used as a fixed abrasive polishing pad. The diamond sheet 10 is provided with diamond particles as abrasive grains. The diamond sheet 10 includes a sheet 11 made of PET as a base material. The average particle diameter of the diamond particles 12 was B = 4 μm. Therefore, B / A = 15, which satisfies the above (B / A) <50.

精ラッピング工程では、粗面化されたガラスディスク3をラッピング装置にセットして、図3に示すように、ダイヤモンドシート10を用いてディスク表面をラッピングすることにより、高加工レートで表面粗さRaを0.1μm以下で、平坦度を7μm以下とすることができた。   In the fine lapping process, the roughened glass disk 3 is set in a lapping apparatus, and the surface of the disk is lapped using a diamond sheet 10 as shown in FIG. Was 0.1 μm or less, and the flatness was 7 μm or less.

このように、事前にガラスディスク3の主表面が粗面化工程で粗面化されているので、微細な固定砥粒の引っ掛かりとなる凸部がガラスディスク3の主表面に形成され、固定砥粒が素材表面を滑ってしまう不具合を防止でき、精ラッピング工程における加工レートは、表面研磨開始から高加工レートを実現することができる。   As described above, since the main surface of the glass disk 3 is roughened in advance in the roughening step, a convex portion that is caught by fine fixed abrasive grains is formed on the main surface of the glass disk 3, and the fixed abrasive. It is possible to prevent the problem that the grains slip on the surface of the material, and the processing rate in the fine lapping process can realize a high processing rate from the start of surface polishing.

(5)端面研磨工程
次いで、ブラシ研磨により、ガラスディスク3を回転させながらガラスディスク3の端面(内周、外周)の表面の粗さを、Rmaxで0.4μm、Raで0.1μm程度に研磨した。そして、上記端面研磨を終えたガラスディスク3の表面を水洗浄した。
(5) End face polishing step Next, the surface roughness of the end face (inner circumference, outer circumference) of the glass disk 3 is about 0.4 μm at Rmax and about 0.1 μm at Ra while rotating the glass disk 3 by brush polishing. Polished. Then, the surface of the glass disk 3 after the end face polishing was washed with water.

(6)主表面研磨工程
次に、上述したラッピング工程で残留した傷や歪みの除去するための第1研磨工程を両面研磨装置を用いて行った。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラスディスク3を密着させ、このキャリアを太陽歯車と内歯歯車とに噛合させ、上記ガラスディスクを上下研磨定盤によって挟圧する。その後、研磨パッドとガラスディスクの研磨面との間に研磨液を供給して回転させることによって、ガラスディスクが研磨定盤上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャ(硬質発泡ウレタン)を用い、第1研磨工程を実施した。
(6) Main surface polishing step Next, a first polishing step for removing scratches and distortions remaining in the lapping step described above was performed using a double-side polishing apparatus. In the double-side polishing apparatus, a glass disk 3 held by a carrier is brought into close contact between upper and lower polishing surface plates to which a polishing pad is attached, the carrier is meshed with a sun gear and an internal gear, and the glass disk is moved up and down. Clamping with a polishing platen. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass disk, whereby the glass disk revolves while rotating on the polishing surface plate to simultaneously polish both surfaces. Specifically, a hard polisher (hard foamed urethane) was used as the polisher, and the first polishing step was performed.

次いで、上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャ(スウェード)の研磨パッドに替えて第2研磨工程を実施した。この第2研磨工程は、上述した第1研磨工程で得られた平坦な表面を維持しつつ、例えばガラスディスク主表面の表面粗さをRmaxで3nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。   Next, using the same double-side polishing apparatus as that used in the first polishing step, the second polishing step was performed by replacing the polisher with a polishing pad of soft polisher (suede). This second polishing step is, for example, mirror polishing for finishing the surface roughness of the main surface of the glass disk to a smooth mirror surface having an Rmax of about 3 nm or less while maintaining the flat surface obtained in the first polishing step. It is processing.

(7)化学強化工程
次に、上記洗浄を終えたガラスディスクに化学強化を施した。ガラス基板の表面に存在するイオン(例えば、アルミノシリケートガラス使用の場合、Li及びNa)よりもイオン半径の大きなイオン(Na及びK)にイオン交換する。ガラス基板の表面において(例えば、ガラス基板表面から約5μmまで)、イオン半径の大きい原子とイオン交換を行って、ガラス表面に圧縮応力を与えることでガラス基板の剛性を上げている。このようにして、本実施例の磁気ディスク用ガラス基板を得た。
(7) Chemical strengthening process Next, the glass disk which finished the said washing | cleaning was chemically strengthened. Ion exchange is performed to ions (Na + and K + ) having a larger ion radius than ions existing on the surface of the glass substrate (for example, Li + and Na + when using an aluminosilicate glass). On the surface of the glass substrate (for example, from the surface of the glass substrate to about 5 μm), ions are exchanged with atoms having a large ion radius, thereby applying a compressive stress to the glass surface to increase the rigidity of the glass substrate. In this way, a glass substrate for a magnetic disk of this example was obtained.

次に、本実施例で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、磁気ディスクを得た。スパッタリング装置を用いて、上記ガラス基板上に、付着層、軟磁性層、第1下地層、第2下地層及び磁性層を順次形成し、次いでプラズマCVD法により炭素系保護層を形成し、更にその上に潤滑層をディップ法により形成した。   Next, the following film formation process was performed on the magnetic disk glass substrate obtained in this example to obtain a magnetic disk. Using a sputtering apparatus, an adhesion layer, a soft magnetic layer, a first underlayer, a second underlayer, and a magnetic layer are sequentially formed on the glass substrate, and then a carbon-based protective layer is formed by a plasma CVD method. A lubricating layer was formed thereon by a dip method.

付着層にはTi系合金薄膜を用いて膜厚を10nmとし、軟磁性層にはCo系合金薄膜を用いて膜厚を60nmとし、第1下地層にはPt系合金薄膜を用いて膜厚を7nmとし、第2下地層にはRu系合金薄膜を用いて膜厚を40nmとし、磁性層にはCoPtCr合金薄膜を用いて膜厚を20nmとした。保護層はダイヤモンドライク炭素保護層とし、プラズマCVD法により形成した。潤滑層はパーフルオロポリエーテル(PFPE)の液体潤滑剤中に磁気ディスクを浸漬させ、温度110℃で60分間加熱焼成することにより形成した。このようにして垂直磁気記録方式用の磁気ディスクを形成した。   The adhesion layer is made of a Ti-based alloy thin film to a thickness of 10 nm, the soft magnetic layer is made of a Co-based alloy thin film to a thickness of 60 nm, and the first underlayer is made of a Pt-based alloy thin film. Was 7 nm, a Ru-based alloy thin film was used for the second underlayer, and the film thickness was 40 nm. A CoPtCr alloy thin film was used for the magnetic layer, and the film thickness was 20 nm. The protective layer was a diamond-like carbon protective layer and was formed by plasma CVD. The lubricating layer was formed by immersing the magnetic disk in a perfluoropolyether (PFPE) liquid lubricant and baking it at a temperature of 110 ° C. for 60 minutes. In this way, a magnetic disk for the perpendicular magnetic recording system was formed.

(比較例)
実施例と同様にしてフロート法で製造した厚さ0.95mmのアルミノシリケートガラスからなる板状ガラス素材1に対して切り出し工程および形状加工工程を行い、粗面化工程を経ることなく固定砥粒を用いた精ラッピング工程を行った。精ラッピング工程における加工レートを調べたところ、図3に示すように非常に低かった。
(Comparative example)
In the same manner as in the example, a cutting process and a shape processing process are performed on a sheet glass material 1 made of aluminosilicate glass having a thickness of 0.95 mm manufactured by a float process, and fixed abrasive grains are not passed through a roughening process. A precision wrapping process using was performed. When the processing rate in the fine lapping process was examined, it was very low as shown in FIG.

本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における材質、個数、サイズ、処理手順などは一例であり、本発明の効果を発揮する範囲内において種々変更して実施することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the material, the number, the size, the processing procedure, and the like in the above embodiment are merely examples, and various modifications can be made within the range where the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

図1は、本発明の実施の形態における磁気ディスク用ガラス基板の製造方法の一部の工程の模式図である。FIG. 1 is a schematic view of some steps of a method for manufacturing a glass substrate for a magnetic disk according to an embodiment of the present invention. 図2は、ダイヤモンドシートの模式図である。FIG. 2 is a schematic diagram of a diamond sheet. 図3は、粗面化工程有無による固定砥粒を用いた精ラッピングによる加工レートを示す図である。FIG. 3 is a diagram showing a processing rate by fine lapping using fixed abrasive grains with and without a roughening step.

符号の説明Explanation of symbols

1 板状ガラス素材
2 切り筋
3 ガラスディスク(鏡面板ガラス)
10 ダイヤモンドシート
11 シート
12 ダイヤモンド粒子
DESCRIPTION OF SYMBOLS 1 Sheet-like glass material 2 Cutting line 3 Glass disk (mirror surface plate glass)
10 Diamond sheet 11 Sheet 12 Diamond particles

Claims (8)

主表面が鏡面となっている鏡面板ガラスを、固定砥粒を用いて必要な平坦度及び表面粗さに加工する表面研削工程を備えた磁気ディスク用ガラス基板の製造方法であって、
前記固定砥粒を用いた表面研削工程前に、前記固定砥粒が研磨作用する程度まで前記鏡面板ガラス表面を機械的方法又は化学的方法で粗面化する粗面化工程を具備することを特徴とする磁気ディスク用ガラス基板の製造方法。
A method for producing a glass substrate for a magnetic disk comprising a surface grinding step of machining a mirror-finished plate glass having a main surface as a mirror surface into a required flatness and surface roughness using fixed abrasive grains,
Before the surface grinding step using the fixed abrasive, the method comprises a roughening step of roughening the mirror plate glass surface by a mechanical method or a chemical method to such an extent that the fixed abrasive grinds. A method for manufacturing a glass substrate for a magnetic disk.
前記粗面化工程は、前記機械的方法として遊離砥粒を用いた研磨加工を行うことを特徴とする請求項1記載の磁気ディスク用ガラス基板の製造方法。   2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein in the roughening step, a polishing process using loose abrasive grains is performed as the mechanical method. 前記粗面化工程は、前記化学的方法として薬液によるエッチング作用を利用することを特徴とする請求項1記載の磁気ディスク用ガラス基板の製造方法。   2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the roughening step uses an etching action by a chemical solution as the chemical method. 前記薬液によるエッチング作用を利用する化学的方法がフロスト加工であることを特徴とする請求項3記載の磁気ディスク用ガラス基板の製造方法。   4. The method for producing a glass substrate for a magnetic disk according to claim 3, wherein the chemical method using the etching action by the chemical solution is frost processing. 前記粗面化工程は、鏡面の表面粗さがRa=0.001μm以下となる鏡面板ガラスを、表面粗さRa=0.01〜0.4μmに粗面化することを特徴とする請求項1から請求項4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   2. The roughening step comprises roughening a mirror-finished plate glass having a mirror surface roughness Ra = 0.001 [mu] m or less to a surface roughness Ra = 0.01-0.4 [mu] m. The manufacturing method of the glass substrate for magnetic discs in any one of Claims 1-4. 前記粗面化工程による鏡面板ガラスの表面粗さをAとし、前記固定砥粒の平均粒径をBとして、B/A<50とすることを特徴とする請求項1から請求項5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   The surface roughness of the mirror-finished plate glass in the roughening step is A, the average grain size of the fixed abrasive grains is B, and B / A <50. The manufacturing method of the glass substrate for magnetic discs as described in any one of. 前記固定砥粒を用いて鏡面板ガラス表面を加工する工程では、表面粗さRa=0.1μm以下で、かつ平坦度7μm以下に加工することを特徴とする請求項1から請求項6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   7. The step of processing a mirror-finished plate glass surface using the fixed abrasive grains is processed to have a surface roughness Ra = 0.1 μm or less and a flatness of 7 μm or less. The manufacturing method of the glass substrate for magnetic discs as described in any one of. 請求項1から請求項7のいずれかに記載の磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板の主表面上に少なくとも磁性層を形成することを特徴とする磁気ディスクの製造方法。   A magnetic disk manufacturing method comprising: forming at least a magnetic layer on a main surface of a glass substrate for a magnetic disk manufactured by the method for manufacturing a glass substrate for a magnetic disk according to any one of claims 1 to 7. Method.
JP2008246276A 2007-09-27 2008-09-25 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk Active JP5005645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246276A JP5005645B2 (en) 2007-09-27 2008-09-25 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007252013 2007-09-27
JP2007252013 2007-09-27
JP2008246276A JP5005645B2 (en) 2007-09-27 2008-09-25 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012117397A Division JP5297549B2 (en) 2007-09-27 2012-05-23 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Publications (2)

Publication Number Publication Date
JP2009099249A true JP2009099249A (en) 2009-05-07
JP5005645B2 JP5005645B2 (en) 2012-08-22

Family

ID=40702108

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008246276A Active JP5005645B2 (en) 2007-09-27 2008-09-25 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2012117397A Active JP5297549B2 (en) 2007-09-27 2012-05-23 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012117397A Active JP5297549B2 (en) 2007-09-27 2012-05-23 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Country Status (1)

Country Link
JP (2) JP5005645B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163352A (en) * 2008-12-19 2010-07-29 Asahi Glass Co Ltd Method of glass surface fine processing
WO2011080912A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
JP2012146393A (en) * 2009-07-17 2012-08-02 Ohara Inc Method for manufacturing substrate for information recording medium
JP2012209010A (en) * 2011-03-15 2012-10-25 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic recording medium
JP2012211025A (en) * 2011-03-30 2012-11-01 Konica Minolta Advanced Layers Inc Method for manufacturing glass substrate for magnetic information recording medium
US8603350B2 (en) 2009-07-17 2013-12-10 Ohara Inc. Method of manufacturing substrate for information storage media
WO2014050496A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
WO2014050495A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
WO2014050507A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
US8733129B2 (en) 2009-12-29 2014-05-27 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
US8869559B2 (en) 2011-01-31 2014-10-28 Hoya Corporation Method of manufacturing a glass substrate for magnetic disk
US8973404B2 (en) 2010-03-31 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank
JP2018200743A (en) * 2012-10-31 2018-12-20 Hoya株式会社 Method for manufacturing glass substrate as base of glass substrate for a magnetic disk, method for manufacturing glass substrate for magnetic disk and fixed abrasive grindstone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180392A (en) * 1994-12-28 1996-07-12 Kao Corp Magnetic recording medium and its production
JP2005310324A (en) * 2004-04-26 2005-11-04 Nihon Micro Coating Co Ltd Glass substrate for vertical magnetic recording disk and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231560A (en) * 1996-02-28 1997-09-05 Nippon Sheet Glass Co Ltd Glass substrate for magnetic disk and its production
JP4785274B2 (en) * 2001-05-29 2011-10-05 日本板硝子株式会社 Glass article and glass substrate for magnetic recording medium using the same
JP2003346316A (en) * 2002-03-19 2003-12-05 Nippon Sheet Glass Co Ltd Information-recording medium, manufacturing method of glass substrate for the information recording medium and the glass substrate for information recording medium manufactured by the method
JP4199645B2 (en) * 2003-11-07 2008-12-17 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180392A (en) * 1994-12-28 1996-07-12 Kao Corp Magnetic recording medium and its production
JP2005310324A (en) * 2004-04-26 2005-11-04 Nihon Micro Coating Co Ltd Glass substrate for vertical magnetic recording disk and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163352A (en) * 2008-12-19 2010-07-29 Asahi Glass Co Ltd Method of glass surface fine processing
US8603350B2 (en) 2009-07-17 2013-12-10 Ohara Inc. Method of manufacturing substrate for information storage media
JP2012146392A (en) * 2009-07-17 2012-08-02 Ohara Inc Method for manufacturing substrate for information recording medium
JP2012146393A (en) * 2009-07-17 2012-08-02 Ohara Inc Method for manufacturing substrate for information recording medium
US9085479B2 (en) 2009-12-29 2015-07-21 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
US9003834B2 (en) 2009-12-29 2015-04-14 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
JP2011154772A (en) * 2009-12-29 2011-08-11 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and the glass substrate for magnetic disk
US8733129B2 (en) 2009-12-29 2014-05-27 Hoya Corporation Glass substrate for magnetic disk and manufacturing method thereof
WO2011080912A1 (en) * 2009-12-29 2011-07-07 Hoya株式会社 Method for manufacturing magnetic-disk glass substrate, and magnetic-disk glass substrate
JP2012133882A (en) * 2009-12-29 2012-07-12 Hoya Corp Method for manufacturing magnetic disk glass substrate and magnetic disk plate-shaped glass blank
US8973404B2 (en) 2010-03-31 2015-03-10 Hoya Corporation Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass blank, glass substrate for magnetic disk, and glass blank
US8869559B2 (en) 2011-01-31 2014-10-28 Hoya Corporation Method of manufacturing a glass substrate for magnetic disk
JP2012209010A (en) * 2011-03-15 2012-10-25 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic recording medium
JP2012211025A (en) * 2011-03-30 2012-11-01 Konica Minolta Advanced Layers Inc Method for manufacturing glass substrate for magnetic information recording medium
WO2014050507A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
WO2014050495A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
WO2014050496A1 (en) * 2012-09-27 2014-04-03 Hoya株式会社 Method for producing glass substrate for information recording medium
JP2018200743A (en) * 2012-10-31 2018-12-20 Hoya株式会社 Method for manufacturing glass substrate as base of glass substrate for a magnetic disk, method for manufacturing glass substrate for magnetic disk and fixed abrasive grindstone

Also Published As

Publication number Publication date
JP2012164417A (en) 2012-08-30
JP5297549B2 (en) 2013-09-25
JP5005645B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5005645B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5297321B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
JP5542989B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
US20100247977A1 (en) Subastrate for a magnetic disk and method of manufacturing the same
JP5334428B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2007118172A (en) Polishing device, polishing method, manufacturing method for glass substrate for magnetic disk, and method for magnetic method
JP5361185B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JPH07134823A (en) Manufacture of glass base for magnetic recording medium and magnetic recording medium
JP2007118173A (en) Polishing brush, brush adjusting fixture, and polishing brush adjusting method
JP5350853B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
CN108564970B (en) Method for manufacturing glass substrate, and method for manufacturing glass substrate for magnetic disk
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010080015A (en) Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP5306758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5265429B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP6199047B2 (en) Manufacturing method of glass substrate for magnetic disk
SG186602A1 (en)
US20100247976A1 (en) Glass substrate for a magnetic disk and method of manufacturing the same
CN109285565B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
JP2003157522A (en) Method of manufacturing glass substrate for magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250