WO2014050343A1 - 撮像素子および電子機器 - Google Patents

撮像素子および電子機器 Download PDF

Info

Publication number
WO2014050343A1
WO2014050343A1 PCT/JP2013/071957 JP2013071957W WO2014050343A1 WO 2014050343 A1 WO2014050343 A1 WO 2014050343A1 JP 2013071957 W JP2013071957 W JP 2013071957W WO 2014050343 A1 WO2014050343 A1 WO 2014050343A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
timing
row
row address
signal
Prior art date
Application number
PCT/JP2013/071957
Other languages
English (en)
French (fr)
Inventor
西原 利幸
角 博文
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/429,375 priority Critical patent/US9513382B2/en
Publication of WO2014050343A1 publication Critical patent/WO2014050343A1/ja
Priority to US15/363,474 priority patent/US10027886B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • This technology relates to an image sensor. Specifically, the present invention relates to an image sensor that detects weak light, and an electronic apparatus including the image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • This CMOS image sensor can also be used to detect scintillation light generated by the incidence of radiation on the scintillator.
  • a number of photons corresponding to the energy of radiation (for example, one photon of gamma rays) incident on the scintillator are generated simultaneously, and the number of photons corresponding to this energy is detected by the CMOS image sensor. That is, in a CMOS image sensor that performs photon counting to detect the presence or absence of photons, it is necessary to increase the time resolution of light detection so that scintillation light generated by a plurality of gamma ray photons does not enter the same exposure time.
  • the time resolution of light detection is defined by the frame rate, it is important to drive the pixels suitable for photon counting by increasing the frame rate.
  • This technology was created in view of such a situation, and aims to improve time resolution.
  • the present technology has been made to solve the above-described problems, and a first aspect thereof includes a plurality of pixels classified into two or more groups, and pixels belonging to the same group have the same timing.
  • the number of groups in the pixel readout section and the number of groups in the charge readout period are the same at any timing during the imaging operation, and the number of groups in the charge accumulation period is in the imaging operation.
  • the image pickup device includes a control unit that controls driving of the pixel array unit so that the same number is obtained at any timing.
  • the number of groups in the charge readout period is the same at any timing during the imaging operation, and the number of groups in the charge exposure accumulation period is the same at any timing during the imaging operation.
  • the pixel array portion of the image sensor is driven so as to be a number.
  • the group may be configured such that the number of pixels belonging to the group is substantially the same as the number of pixels belonging to another group. This brings about the effect
  • the plurality of pixels are arranged in a matrix in the pixel array unit and driven in units of rows, and the control unit performs the control with the row as a unit of the group. It may be. This brings about the effect
  • control unit updates a drive row address for designating a drive target row for each predetermined time length, and based on the update timing of the updated drive row address. Control may be performed.
  • the drive row address for designating the drive target row is updated every predetermined time length, and the control is performed based on the update timing of the updated drive row address.
  • the controller controls the drive row address based on start row address information indicating the drive start row address and end row address information indicating the drive end row address.
  • start row address information indicating the drive start row address
  • end row address information indicating the drive end row address.
  • control unit determines an exposure end timing in the drive target row in the current read operation and a next exposure start timing in the drive target row in the previous read operation.
  • the above control may be performed at substantially the same timing.
  • the exposure end timing in the drive target row in the current read operation and the start timing of the next exposure in the drive target row in the previous read operation are brought to substantially the same timing.
  • the pixel signal output from the pixel is converted into a digital value, the converted digital value is compared with a threshold value, and the incidence of photons on the pixel that generated the pixel signal
  • the pixel array unit receives light uniformized by a light uniformizing unit that substantially uniforms the distribution of incident light to be detected in the number of photons in a direction orthogonal to the optical axis. You may make it do. Thereby, the effect
  • the second aspect of the present technology includes a plurality of pixels classified into two or more groups, and pixels belonging to the same group are driven at the same timing, and a charge reading period The pixels so that the number of the groups is the same at any timing during the imaging operation, and the number of the groups during the charge accumulation period is the same at any timing during the imaging operation.
  • an electronic device including a control unit that controls driving of the array unit.
  • the scintillator that supplies scintillation light generated by the incidence of radiation to the pixel array unit, the pixel signal output from the pixel is converted into a digital value, and the converted digital value is converted into a digital value.
  • a determination unit that binaryly determines whether or not a photon is incident on a pixel that has generated the pixel signal in comparison with a threshold value, and a binary value that is a result of the binary determination for each of the scintillation lights detected at substantially the same timing
  • a calculation unit for calculating the amount of energy of the radiation from the total value This brings about the effect that the amount of radiation energy is calculated based on the binary determination result of the presence / absence of photon incidence on the pixel.
  • FIG. 3 is a schematic diagram illustrating an example of a circuit configuration of a pixel 310 according to the first embodiment of the present technology.
  • FIG. 3 is a conceptual diagram illustrating an example of a functional configuration of a determination circuit 400 and an example of an operation example of the determination circuit 400 according to the first embodiment of the present technology.
  • FIG. It is a figure showing an example of functional composition of circulation type address generation part 210 of a 1st embodiment of this art. It is a figure showing typically an example of a timing chart in the case of circulating driving image pick-up element 100 of a 1st embodiment of this art by 6 lines.
  • FIG. 7 schematically illustrates an example of signals in signal lines (pixel reset line 331 and charge transfer line 332) for driving pixels when the image sensor 100 according to the first embodiment of the present technology is driven at the operation timing illustrated in FIG.
  • FIG. 7 It is a figure for demonstrating the photon counting of the scintillation light using the image pick-up element 100 in 1st Embodiment of this technique.
  • FIG. 1 It is a figure showing typically an example of exposure operation and read-out operation of image sensor 100 of a 1st embodiment of this art, and an example of exposure operation and read-out operation of other image sensors. It is a figure which shows typically an example of the detection apparatus (detection apparatus 600) provided with the image pick-up element 100 of 1st Embodiment of this technique, and an example of the conventional detection apparatus provided with the photomultiplier tube.
  • 3 is a flowchart illustrating an example of a processing procedure when the imaging device 100 according to the first embodiment of the present technology performs imaging. It is a figure which shows typically an example of the detection apparatus (detection apparatus 700) of 2nd Embodiment of this technique. 12 is a flowchart illustrating an example of a processing procedure when the detection apparatus 700 according to the second embodiment of the present technology performs automatic exposure.
  • First Embodiment (Imaging control: an example of an imaging element driven based on a cyclically generated row address) 2. Second Embodiment (Imaging Control: Example of Automatic Exposure Adjustment of Imaging Device Driven Based on Circularly Generated Row Address)
  • FIG. 1 is a conceptual diagram illustrating an example of a basic configuration example of the image sensor 100 according to the first embodiment of the present technology.
  • the image sensor 100 is a light detector provided in a system for detecting faint light (for example, an imaging plate fluorescent scanner, a radiation scintillation counter, etc.).
  • the image sensor 100 is realized by, for example, a CMOS (Complementary Metal Metal Oxide Semiconductor) sensor.
  • the image sensor 100 is used in place of a conventional photomultiplier tube, avalanche photodiode, or photodiode.
  • the description will be made assuming that the image sensor 100 is used for detection of photon counting of radiation. That is, in the following description, it is assumed that the image sensor 100 detects fluorescence (scintillation light) generated by radiation (for example, gamma rays) incident on the scintillator.
  • fluorescence sintillation light
  • radiation for example, gamma rays
  • FIG. 1 illustrates an image sensor in which the number of rows is reduced by providing rectangular photodiodes that are long in the column direction in order to speed up readout.
  • the image sensor 100 includes a pixel array unit 300, a vertical drive circuit 110, a readout circuit 130, a horizontal drive circuit 140, an output circuit 150, a clock generation unit 160, and a cyclic address generation unit 210.
  • the pixel array unit 300 includes a plurality of pixels (pixels 310) arranged in a two-dimensional matrix (n ⁇ m).
  • pixels 310 pixels arranged in a two-dimensional matrix (n ⁇ m).
  • n ⁇ m two-dimensional matrix
  • Control lines are wired from the vertical drive circuit 110 to the pixels 310 arranged in the pixel array unit 300 in units of rows.
  • the pixel 310 is provided with a vertical signal line (vertical signal line 341) in units of columns.
  • the pixel 310 is a rectangle having an aspect ratio (column direction: row direction) of approximately 4: 1. Since the pixels 310 having such a shape are arranged in 32 rows ⁇ 128 columns, the pixel array unit 300 has a substantially square shape. Note that the circuit configuration of the pixel 310 will be described with reference to FIG.
  • the clock generation unit 160 generates a clock serving as a reference for switching the target row (drive target row) that is driven by the vertical drive circuit 110 and from which a signal is read.
  • the frequency of the clock generated by the clock generation unit 160 is set based on the length of time (reading period) necessary for reading a signal from the pixels 310 arranged in the pixel array unit 300. That is, the clock generation unit 160 generates a clock with a constant frequency regardless of the operating conditions of the image sensor 100 (the number of drive target rows).
  • the clock generated by the clock generation unit 160 is also used as a reference for operation timing when processing signals read from pixels in a row to be driven (signal read target).
  • the clock generation unit 160 supplies the generated clock to the cyclic address generation unit 210, the read circuit 130, and the horizontal drive circuit 140 via the signal line 161.
  • the vertical drive circuit 110 supplies a signal to the pixel 310 via the control line 330, and sequentially scans the pixel 310 in units of rows in the vertical direction (column direction). By performing selective scanning in units of rows by the vertical drive circuit 110, signals are output from the pixels 310 in units of rows.
  • the control line 330 includes a pixel reset line 331 and a charge transfer line 332. Since the pixel reset line 331 and the charge transfer line 332 will be described with reference to FIG. 2, description thereof is omitted here.
  • the readout circuit 130 performs various signal processing on the pixel signal output from the pixel array unit 300 for each pixel column. That is, the readout circuit 130 performs various types of signal processing (for example, noise removal and binary determination) on the pixel signal output from each pixel in the row selected by the vertical drive circuit 110 via the vertical signal line 341. .
  • the operation timing of the read circuit 130 is determined based on the clock supplied from the clock generation unit 160 via the signal line 161. For example, each operation timing is determined such that the binary determination process is started after how many seconds (after counting with another clock) from the rising edge of the clock pulse of the signal line 161.
  • the readout circuit 130 includes a determination circuit 400 and a register 131 for each column of pixels (for each vertical signal line 341).
  • the determination circuit 400 determines whether or not a photon is incident on the pixel 310 based on the output signal supplied from the pixel 310 (binary determination).
  • the determination circuit 400 is provided for each vertical signal line 341. That is, the image sensor 100 includes 128 determination circuits 400 connected to 128 vertical signal lines 341 wired to pixels (32 rows ⁇ 128 columns) driven by the vertical drive circuit 110.
  • the determination circuit 400 supplies the determination result to the register 131 connected to each determination circuit 400.
  • the register 131 is provided for each determination circuit 400, and temporarily holds the determination result supplied from the determination circuit 400.
  • the register 131 sequentially outputs the determination results to be held to the output circuit 150 during the period in which the signal of the next row of pixels is read (reading period).
  • the horizontal drive circuit 140 selectively scans the circuit portions for each pixel column in the readout circuit 130 in order.
  • the horizontal drive circuit 140 is configured by, for example, a shift register or an address decoder.
  • the horizontal driving circuit 140 sequentially scans the circuit portions of the readout circuit 130 in order, and causes the output circuit 150 to sequentially output electrical signals for each pixel subjected to signal processing for each pixel column in the readout circuit 130.
  • the output circuit 150 outputs a signal generated by the image sensor 100 to an external circuit.
  • the circular address generation unit 210 generates an address (drive row address) for designating a row of pixels (drive target row) to be driven by the vertical drive circuit 110.
  • the cyclic address generation unit 210 includes a start row address and an end row address supplied via a signal line 290 from an operation control circuit (for example, the data processing unit 620 in FIG. 11) in the apparatus provided with the image sensor 100. To get. Then, the cyclic address generation unit 210 generates a drive row address so that the address circulates in the row addresses from the start row address to the end row address.
  • the image sensor 100 controls the operation of the vertical drive circuit 110 so that only the same number of pixels are exposed at any timing.
  • the pixels are driven so that there is one row of pixels being read at any timing, and the number of rows of pixels being exposed is the same at any timing. Since this exposure operation will be described in detail with reference to FIGS. 5 and 6, the description thereof is omitted here.
  • the circular address generator 210 supplies the generated drive row address to the vertical drive circuit 110 via the signal line 280.
  • the cyclic address generation unit 210, the vertical drive circuit 110, the read circuit 130, and the horizontal drive circuit 140 are examples of the control unit described in the claims.
  • the operation of the image sensor 100 will be described on the assumption that the time (readout period) required to read out signals from one row of pixels is 5 ⁇ sec. Since the image sensor 100 operates so that the number of rows of pixels being exposed is the same at any timing, the readout period is a time (unit period) allocated to another operation (exposure, signal transfer, etc.). Is specified. For example, in the case of driving all 32 rows, the time for the operation to acquire the signals of the pixels of all 32 rows (the time for which the process is completed) is 160 ⁇ sec (5 ⁇ sec ⁇ 32 rows). The exposure time when all 32 rows are driven is 155 ⁇ sec (160 ⁇ sec-5 ⁇ sec).
  • the time required for the processing to complete is a time corresponding to the number of rows. For example, in the case of driving only two rows, the time required for one round of processing is 10 ⁇ sec (5 ⁇ sec ⁇ 2 rows), and the exposure time is 5 ⁇ sec (10 ⁇ sec-5 ⁇ sec). Further, when only 6 rows are driven, the time required for one round of processing is 30 ⁇ sec (5 ⁇ sec ⁇ 6 rows), and the exposure time is 25 ⁇ sec (30 ⁇ sec-5 ⁇ sec).
  • FIG. 2 is a schematic diagram illustrating an example of a circuit configuration of the pixel 310 according to the first embodiment of the present technology.
  • the pixel 310 converts an optical signal that is incident light into an electrical signal by performing photoelectric conversion.
  • the pixel 310 amplifies the converted electric signal and outputs it as a pixel signal.
  • the pixel 310 amplifies an electric signal by an FD amplifier having a floating diffusion layer (floating diffusion: FD).
  • the pixel 310 includes a photodiode 311, a transfer transistor 312, a reset transistor 313, and an amplifier transistor 314.
  • the photodiode 311 has its anode terminal grounded and its cathode terminal connected to the source terminal of the transfer transistor 312.
  • the transfer transistor 312 has a gate terminal connected to the charge transfer line 332 and a drain terminal connected to the source terminal of the reset transistor 313 and the gate terminal of the amplifier transistor 314 via the floating diffusion (FD 322).
  • the reset transistor 313 has its gate terminal connected to the pixel reset line 331 and its drain terminal connected to the power supply line 323 and the drain terminal of the amplifier transistor 314.
  • the source terminal of the amplifier transistor 314 is connected to the vertical signal line 341.
  • the photodiode 311 is a photoelectric conversion element that generates an electric charge according to the intensity of light.
  • a pair of electrons and holes is generated by photons incident on the photodiode 311, and the generated electrons are stored here.
  • the transfer transistor 312 transfers electrons generated in the photodiode 311 to the FD 322 according to a signal (transfer pulse) from the vertical drive circuit 110. For example, when a signal (pulse) is supplied from the charge transfer line 332 supplied to the gate terminal of the transfer transistor 312, the transfer transistor 312 becomes conductive and transfers electrons generated in the photodiode 311 to the FD 322.
  • the reset transistor 313 is for resetting the potential of the FD 322 in accordance with a signal (reset pulse) supplied from the vertical drive circuit 110.
  • the reset transistor 313 becomes conductive when a reset pulse is supplied to the gate terminal via the pixel reset line 331, and a current flows from the FD 322 to the power supply line 323.
  • this potential is referred to as a reset potential. Note that when the photodiode 311 is reset, the transfer transistor 312 and the reset transistor 313 are simultaneously turned on.
  • a potential (power supply) flowing through the power supply line 323 is a power supply used for resetting and a source follower, and for example, 3 V is supplied.
  • the amplifier transistor 314 is for amplifying the potential of the floating diffusion (FD 322) and outputting a signal (output signal) corresponding to the amplified potential to the vertical signal line 341.
  • the amplifier transistor 314 When the potential of the floating diffusion (FD 322) is reset (in the case of the reset potential), the amplifier transistor 314 outputs an output signal (hereinafter referred to as a reset signal) corresponding to the reset potential vertically. Output to the signal line 341.
  • the amplifier transistor 314 outputs an output signal (hereinafter referred to as an accumulated signal) corresponding to the amount of transferred electrons to the vertical signal. Output to line 341.
  • a selection transistor may be inserted for each pixel between the amplifier transistor 314 and the vertical signal line 341.
  • the basic circuit and operation mechanism of the pixel as shown in FIG. 2 are the same as those of a normal pixel, and various other variations are possible.
  • the pixel assumed in the present technology is designed so that the conversion efficiency is significantly higher than that of the conventional pixel.
  • the pixel is designed so that the parasitic capacitance (parasitic capacitance of the FD 322) of the gate terminal of the amplifier (amplifier transistor 314) constituting the source follower is effectively reduced to the limit.
  • This design can be performed by, for example, a method of devising the layout or a method of feeding back the output of the source follower to a circuit in the pixel (see, for example, JP-A-5-63468 and JP-A-2011-119441).
  • the parasitic capacitance is reduced so that a sufficiently large output signal is output to the vertical signal line 341 even if the number of electrons accumulated in the FD 322 is small.
  • the magnitude of this output signal only needs to be sufficiently larger than the random noise of the amplifier transistor 314. If the output signal when one photon is accumulated in the FD 322 becomes sufficiently larger than the random noise of the amplifier transistor 314, the signal from the pixel is quantized and the number of accumulated photons in the pixel can be detected as a digital signal. .
  • the output signal is sufficiently larger than the random noise, so in principle one photon Can be detected.
  • the noise after the output of the output signal by the amplifier transistor 314 can be made substantially zero.
  • binary determination is performed for a pixel array of 32 rows ⁇ 128 columns, it is possible to photon count up to 4096 (32 ⁇ 128) photons.
  • FIG. 2 illustrates an example of a pixel in which one pixel can be detected by designing the pixel so that the parasitic capacitance is effectively reduced to the minimum
  • the present invention is not limited to this.
  • the present invention can be similarly implemented by a pixel that amplifies electrons obtained by photoelectric conversion within the pixel.
  • a pixel in which a plurality of stages of CCD multiplication transfer elements are embedded between the photodiode in the pixel and the gate terminal of the amplifier transistor is conceivable (see, for example, JP 2008-35015 A).
  • the photoelectrically converted electrons are multiplied by about 10 times in the pixel.
  • one-photon detection can be performed also by multiplying an image of electrons in a pixel, and an image sensor in which such a pixel is arranged can be used as the image sensor 100.
  • FIG. 3 is a conceptual diagram illustrating an example of a functional configuration of the determination circuit 400 and an example of an operation example of the determination circuit 400 according to the first embodiment of the present technology.
  • an ACDS (Analog Correlated Double Sampling) unit 410 a DCDS (Digital CDS; digital correlation double sampling) unit 420, and a binary determination unit 430 are provided. It is shown.
  • FIG. 3 a the vertical signal line 341 connected to the determination circuit 400, a part of the pixel 310 connected to the vertical signal line 341, and the pixel array unit 300 together with the functional configuration of the determination circuit 400. It is shown.
  • the ACDS unit 410 performs offset removal by analog CDS, and includes a switch 412, a capacitor 413, and a comparator 411.
  • the switch 412 is a switch for connecting the vertical signal line 341 to either an input terminal for inputting a reference voltage to the comparator 411 or an input terminal for inputting a signal to be compared to the comparator 411.
  • the switch 412 connects the vertical signal line 341 to an input terminal (a left terminal to which the capacitor 413 is connected) for inputting a reference voltage.
  • the comparator 411 outputs the result of analog CDS
  • the switch 412 connects the vertical signal line 341 to an input terminal (right terminal without a capacitor) for inputting a signal to be compared.
  • the capacitor 413 is a storage capacitor for sample-holding the reset signal of the pixel 310.
  • the comparator 411 outputs the difference between the sampled and held signal and the signal to be compared. That is, the comparator 411 outputs the difference between the reset signal sampled and held and the signal (accumulated signal or reset signal) supplied from the vertical signal line 341. That is, the comparator 411 outputs a signal from which noise generated in the pixel 310 such as kTC noise is removed.
  • the comparator 411 is realized by an operational amplifier with a gain of 1, for example.
  • the comparator 411 supplies the difference signal to the DCDS unit 420.
  • the difference signal between the reset signal and the reset signal is referred to as no signal
  • the difference signal between the reset signal and the accumulation signal is referred to as a net accumulation signal.
  • the DCDS unit 420 performs noise removal by digital CDS, and includes an AD (Analog Digital) conversion unit 421, a register 422, a switch 423, and a subtractor 424.
  • AD Analog Digital
  • the AD conversion unit 421 performs AD conversion on the signal supplied from the comparator 411.
  • the switch 423 is a switch for switching the supply destination of the signal after AD conversion generated by the AD conversion unit 421.
  • the switch 423 supplies the signal to the register 422 and causes the register 422 to latch (hold) it.
  • the offset values of the comparator 411 and the AD conversion unit 421 are held in the register 422.
  • the switch 423 supplies this signal to the subtractor 424 when the AD conversion unit 421 outputs the result of AD conversion of the net accumulated signal (digital net accumulated signal).
  • the register 422 holds the result of no signal AD conversion.
  • the register 422 supplies the non-signal A / D conversion result (digital non-signal) held to the subtractor 424.
  • the subtractor 424 subtracts the digital no-signal value from the digital net accumulated signal value.
  • the subtractor 424 supplies the subtraction result (net digital value) to the binary determination unit 430.
  • the binary determination unit 430 performs binary determination (digital determination).
  • the binary determination unit 430 compares the output (net digital value) of the subtractor 424 with the reference signal (REF) to make a binary determination as to whether or not a photon is incident on the pixel 310, and the determination result (FIG. 3 indicates “BINOUT”).
  • FIG. 3 b shows a flowchart showing an example of the operation of the determination circuit 400.
  • the frame of each procedure in the flowchart shown in FIG. 3B corresponds to the frame surrounding each component shown in FIG. 3A. That is, the procedure indicated by the double frame indicates the procedure of the pixel 310, the procedure indicated by the long dashed line frame indicates the procedure of the ACDS unit 410, and the procedure indicated by the short dashed line frame indicates the procedure of the DCDS unit 420.
  • the procedure indicated by the thick solid frame indicates the procedure of the binary determination unit 430.
  • the ACDS processing by the ACDS unit 410 is not illustrated, and will be described together in a procedure when the DCDS unit 420 performs AD conversion.
  • the potential of the gate terminal of the amplifier transistor 314 (the potential of the FD 322) is reset, and a reset signal is output to the vertical signal line 341 (step 441).
  • the reset signal output from the pixel 310 is sampled and held by the capacitor 413 of the ACDS unit 410 (step 442). Thereafter, a difference signal (no signal) between the reset signal sampled and held and the reset signal output from the pixel 310 is AD-converted by the AD conversion unit 421 of the DCDS unit 420 (step 443).
  • the AD-converted no signal includes noise generated by the comparator 411 and the AD converter 421, and a value for canceling (offset) these noises is digitally detected. .
  • the result of this AD conversion without signal is held in the register 422 as an offset value (step 444).
  • the electrons accumulated in the photodiode 311 are transferred to the FD 322, and an accumulation signal is output from the pixel 310 (step 445).
  • a difference signal (net accumulated signal) between the sampled and held reset signal and the accumulated signal output from the pixel 310 is AD converted by the AD converting unit 421 of the DCDS unit 420 (step 446). Note that the AD conversion result includes noise generated by the comparator 411 and the AD conversion unit 421.
  • the subtracter 424 outputs a value obtained by subtracting the result of the non-signal AD conversion (first time) held in the register 422 from the value of the AD conversion result (second time) of the net accumulated signal. (Step 447). As a result, noise (offset component) caused by the comparator 411 and the AD conversion unit 421 is canceled, and the digital value (net digital value) of only the accumulated signal output from the pixel 310 is output.
  • the reference signal (REF) is near an intermediate value between the digital value of the signal (no signal) output from the pixel 310 when no photon is incident and the digital value of the signal (no signal) output from the pixel 310 when the photon is incident. (For example, “50” between “0” and “100” is a reference signal).
  • the value of the digital value output from the subtractor 424 exceeds the value of the reference signal (REF)
  • the value “1” is set as “photon incident”.
  • Signal (BINOUT) is output.
  • a signal (BINOUT) having a value of “0” is output as “no photon incidence”. That is, the image sensor 100 outputs the presence or absence of photon incidence as a digital value (0 or 1) as a binary determination result.
  • the description has been made on the assumption that binary determination (binary determination) of “with photon incidence” and “without photon incidence” has been made, but by preparing a plurality of reference signals (REF). Determination of two or more values is possible. For example, two systems of reference signals (REF) are prepared, and one system is set to an intermediate value between a digital value when the number of photons is “0” and a digital value when the number of photons is “1”. The other system is set to an intermediate value between the digital value when the number of photons is “1” and the digital value when the number of photons is “2”.
  • REF reference signals
  • the signal output from the pixel 310 is determined as a digital value by the determination circuit 113, so that it is compared with a conventional image sensor that handles analog output (1024 gradations for 10-bit data). Thus, it is almost completely unaffected by noise during transmission.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of the cyclic address generation unit 210 according to the first embodiment of this technology.
  • the cyclic address generator 210 generates an address (drive row address) for designating a row of pixels to be driven by the vertical drive circuit 110, and includes a start row address register 220, an end row address register 230, A comparator 240 and a counter 250 are provided.
  • the start row address register 220 temporarily holds the start row address supplied via the signal line 292 of the signal lines 290.
  • the start row address register 220 supplies the held start row address to the counter 250.
  • the end row address register 230 temporarily holds the end row address supplied via the signal line 291 among the signal lines 290.
  • the end row address register 230 supplies the held end row address to the comparator 240.
  • the comparator 240 compares the end row address supplied from the end row address register 230 with the drive row address supplied from the counter 250. When the end row address matches the drive row address, the comparator 240 initializes the count value (drive row address) of the counter 250 to the value of the start row address supplied from the start row address register 220 ( (SET signal) is supplied to the counter 250.
  • the counter 250 counts a clock (CLK signal) supplied via the signal line 161 as a timing for switching the drive target row, and outputs a value (count value) based on this count as a drive row address.
  • CLK signal clock supplied via the signal line 161 as a timing for switching the drive target row
  • the counter 250 initializes the count value to the value of the start row address.
  • the counter 250 sequentially scans the drive rows by incrementing (counting up) the count value (drive row address) by 1 every time the clock of the signal line 161 is counted. Then, when the drive row address becomes the end row address, a SET signal is supplied from the comparator 240 that has detected that, and the count value is initialized to the value of the start row address, and the drive row address circulates.
  • the counter 250 supplies information indicating the generated drive row address to the comparator 240 and the vertical drive circuit 110 via the signal line 280.
  • the cyclic address generation unit 210 generates the drive row address cyclically.
  • CMOS image sensors counting from a start row address (first row in the embodiment of the present technology) starts with a vertical synchronization signal (frame start signal) generated externally or internally as a trigger. For this reason, it is difficult to drive the pixels so that there is one row of pixels being read at any timing.
  • the driving row address is cyclically generated by the cyclic address generation unit 210, it is possible to drive the pixel so that there is one row of the pixel being read at any timing. .
  • FIG. 5 is a diagram schematically illustrating an example of a timing chart when the imaging device 100 according to the first embodiment of the present technology is circulated and driven in six rows.
  • FIG. 5a schematically shows the drive timing of the pixels in the 14th row (L14) to the 19th row (L19), with the horizontal direction being the direction indicating the time axis. Also, in FIG. 5b, the horizontal direction is the same direction as the time axis as in FIG. 5a, and the vertical axis is the axis indicating the total number of pixels of the count of the digital value “1” (pixel output sum of each row). A value obtained by summing up the pixels that output the value "" for each row is schematically shown.
  • an exposure period which is a period in which charges are accumulated by exposing pixels, is represented by a white rectangle (exposure period 511).
  • a readout period which is a period from when a signal corresponding to the electric charge accumulated in the pixel is read out from the pixel and stored in the register 131, is represented by a dark gray rectangle (readout period 512). Yes.
  • an output period which is a period in which the signal stored in the register 131 is output from the output circuit 150, is represented by a rectangle (output period 513) hatched from upper right to lower left.
  • the start and end timings of exposure are set so that pixels of 5 rows out of 6 rows are exposed at any time.
  • the exposure period of the 14th line (L14) starts simultaneously with the end of the exposure period of the 15th line (L15).
  • the reading period of the signal reading target row (driving target row) ends, and the reading period of the next reading target row starts.
  • the end time (time 521) of the readout period of the pixels of the 19th row (L19) and the 14th row is substantially the same timing.
  • timing T1 the relationship between the incident timing (timing T1) of the fluorescence (scintillation light) generated by the radiation incident on the scintillator to the image sensor 100 and the output of the image sensor 100 will be described with reference to FIGS. 5a and 5b. To do.
  • the light incident at timing T1 is exposed and accumulated in pixels in rows (14th, 15th, 17th, 18th and 19th rows) other than the 16th row (L16) during the readout period, and the accumulated charges are accumulated.
  • the corresponding pixel signals are sequentially output.
  • the total value of the outputs immediately after the timing T1 of the 16th row (L16) which is the readout period (L16 sum value of FIG. 5b shown corresponding to the time 531 of FIG. 5a) Since it is not accumulated in the pixel, the total value is “0”.
  • the total values of the 17th, 18th, 19th, 14th, and 15th rows indicate the number of pixels on which light is incident. It becomes the sum total value according to.
  • the side receiving the output of the image sensor 100 can regard the output of the image sensor 100 generated by the incidence of radiation to the scintillator as a single digital pulse having a certain width.
  • the number of occurrences of a pulse (digital value of “1” value for one pixel) in a single digital pulse having a certain width is the incidence of radiation. This reflects the number of photons generated by (number of scintillation lights).
  • the integral value (total number of scintillation lights) of a pulse (digital value of “1” value for one pixel) in a single digital pulse having a certain width reflects the energy of radiation.
  • FIG. 6 is a diagram schematically illustrating an example of a timing chart when the imaging device 100 according to the first embodiment of the present technology is circulated and driven in three rows.
  • FIG. 6 shows an example of driving pixels in three rows from the 15th row (L15) to the 17th row (L17). Note that the example shown in FIG. 6 is a modification of the example shown in FIG. 5 and differs only in that the number of rows to be read is small. For this reason, it demonstrates paying attention to the difference with FIG.
  • the start and end timings of exposure are set so that pixels of two rows of the three rows are exposed at any time. That is, the readout period of the next drive target row is started at the end of the readout period of the drive target row, and further, the next exposure period of the previous drive target row is started at the end of the exposure period of the drive target row. .
  • the exposure time for each pixel is shortened as compared with the case of circulating driving in 6 rows in FIG. For this reason, the exposure frequency is increased, the time resolution of radiation detection is improved, and higher frequency radiation incidence can be counted. However, since only 2 rows are exposed (5 rows in the case of FIG. 5), the sensitivity decreases.
  • the length of the exposure time for each time and the exposure frequency are determined by the number of rows to be driven in a circulating manner. Note that the reading period and the output period are constant regardless of the increase or decrease in the number of rows to be driven in a circulating manner. That is, in the image sensor 100, the time resolution and sensitivity can be adjusted by changing the exposure time, the exposure frequency, and the exposure sensitivity for each time only by increasing or decreasing the number of rows to be circulated.
  • FIG. 6 have been described on the assumption that circulation driving is performed in continuous rows, but the present invention is not limited to this.
  • all rows, every second row, every third row, etc. It can also be implemented in various drive patterns. That is, at any timing, one row can be cyclically driven so as to be in the readout period, and can be implemented in the same manner as in FIGS.
  • FIG. 7 is a diagram schematically illustrating an example of detailed operation timing in the readout period in the image sensor 100 according to the first embodiment of the present technology.
  • the readout period in the 14th row (L14) to the 16th row (L16) is shown with the horizontal direction as the direction indicating the time axis.
  • the exposure period is represented by a white rectangle (exposure period 551)
  • the reset signal processing period which is a period during which reset signal reading and no-signal AD conversion are performed, is a dark gray rectangle.
  • the accumulation signal processing period which is a period in which the accumulation signal is read, the AD conversion of the difference between the accumulation signal and the reset signal, and the binary determination is performed, is a rectangle with a light gray (accumulation signal processing period 553).
  • an output period which is a period in which the signal stored in the register 131 is output from the output circuit 150, is represented by a rectangle (output period 554) hatched from upper right to lower left.
  • the reset signal processing period 552 can be executed before the exposure period 551 ends.
  • the accumulation signal processing period 553 needs to be executed after the exposure period 551 ends. For this reason, the reset signal processing period 552 is performed during the execution of the exposure period 551, the exposure period 551 ends, and the accumulation signal processing period 553 starts. Then, when the accumulation signal processing period 553 ends, an output period 554 starts.
  • the result of the binary determination is stored in the register 131, so that the determination circuit 400 can be used for the next row. Therefore, at the timing when the output period 554 is started, the reset signal processing period 552 of the next row is started. Then, at the timing when the exposure period 551 ends in the next row, the next exposure period 551 in the read row is started.
  • FIG. 8 shows signal signals in signal lines (pixel reset line 331 and charge transfer line 332) for driving pixels when the image sensor 100 according to the first embodiment of the present technology is driven at the operation timing shown in FIG. It is a figure which shows an example typically.
  • FIG. 8a With the horizontal direction as a common time axis, the row (row selection) to be driven by the cyclic address generator 210 and each signal line (pixel reset line 331 and pixel line) for driving the pixels in the 14th row are shown.
  • the potential transition in the charge transfer line 332) is shown.
  • FIG. 8a shows a potential transition in each signal line that drives the pixels in the 15th row and a potential transition in each signal line that drives the pixels in the 16th row.
  • a pulse is supplied from the charge transfer line 332, and the charge accumulated in the photodiode (photodiode 311 in FIG. 2) floats. Transfer to diffusion. Then, in this transferred state, reading of the accumulated signal, AD conversion of the difference between the accumulated signal and the reset signal, and binary determination are performed.
  • the row selection becomes the 15th row, and the control for reading the accumulated signal from the pixels in the 15th row is started.
  • a reset pulse is supplied to the pixels in the 15th row, and the potential of the floating diffusion is reset (time T13 in FIG. 8a).
  • a pulse is supplied from the charge transfer line 332 to the pixel in the 15th row, and the charge accumulated in the photodiode is floating diffusion. Forwarded to
  • pulses are supplied from the pixel reset line 331 and the charge transfer line 332 of the pixels in the 14th row to the pixels so that the exposure starts in the pixels in the 14th row. That is, immediately before time T14, a pulse is supplied from the pixel reset line 331 and the charge transfer line 332 of the pixels in the 14th row. Thereby, charges in the photodiodes and floating diffusions of the pixels in the 14th row are discharged, and the pixels are reset. Then, at time T14, the supply of pulses to the pixel reset line 331 and the charge transfer line 332 of the pixels in the 14th row is completed, and the next exposure of the pixels in the 14th row is started.
  • the transfer of the charge accumulated in the photodiodes in the drive target row and the start of the next exposure in the row driven immediately before the drive target row are performed simultaneously. Also at the timing, the image sensor is driven so that one row is the readout period. Note that the cyclic address generation unit 210 generates an address based on a predetermined clock (clock from the clock generation unit 160). That is, the time of the row selected as the drive target row (each period of the 14th row, the 15th row, and the 16th row in the row selection in FIG. 8a) is all the same.
  • the pulse supply timing is fixed as shown in FIG. 8a so that one row is a readout period at any timing. That is, each pulse in the pixel reset line 331 and the charge transfer line 332 measures an elapsed time from the timing when the row selection (drive row address) is switched (for example, counts a clock faster than the clock of the counter 250). Thus, the supply timing can be determined.
  • FIG. 8b shows the potential transition in the signal lines (pixel reset line 331 and charge transfer line 332) of the pixels in the 14th row shown in FIG. 8a during each period of the pixels in the 14th row shown in FIG. Corresponding figures are shown.
  • the pixel can be driven at the timing shown in FIG.
  • timing charts shown in FIGS. 7 and 8 are examples of various variations, and the present invention is not limited thereto.
  • the basic concept is that at any timing, one row is a readout period (non-exposure period) and the rest of the rows are exposure periods, and the same number of pixels are exposed at any timing. You can do it.
  • FIG. 9 is a diagram for describing photon counting of scintillation light using the image sensor 100 according to the first embodiment of the present technology.
  • FIG. 9 shows a graph showing sensitivity estimation when light detection is performed with exposure of one row of pixels (128 pixels).
  • Technetium-99m is a radioactive substance that emits about 140 keV gamma rays.
  • one photon (gamma ray) of about 140 keV collides with the NaI scintillator without being scattered, and 1500 photons generated by the collision are incident on the image sensor 100 with a uniform surface distribution.
  • an average of 47 (1500/32 rows) photons enter one of the pixels in one row to accumulate charges, and the photon count result of this accumulation is output as a binary decision value for each pixel.
  • the number of occurrences (maximum 128 times because one row is 128 pixels) in which the pixel output of each row is determined to be “1” (with the incidence of photons) in binary determination reflects the amount of energy of gamma rays. To do.
  • the frequency distribution of gamma rays (scattered gamma rays) affected by scattering is represented by black bars.
  • the frequency distribution of unscattered gamma rays (primary gamma rays) is represented by white bars.
  • the frequency distribution of scattered gamma rays and the frequency distribution of primary gamma rays show completely different frequency distributions. For this reason, it is possible to statistically distinguish which gamma ray is detected using the detection result of the image sensor 100.
  • the graph shown in FIG. 9 is a graph when it is assumed that the image sensor 100 is driven (driven by being circulated by pixels in two rows) so that pixels in only one row are exposed at any timing. It is. For this reason, the graph shown in FIG. 9 is a detection result when the sensitivity is reduced to 1/32. That is, when technetium-99m gamma rays are detected by the image sensor 100, the scattered gamma rays and the primary gamma rays can be energy-separated even if detection is performed by exposing only one row of pixels. It is shown in FIG.
  • the incidence frequency (incident event frequency) of a gamma ray to a 5-square centimeter scintillator in which scintillation light is guided to one gamma camera is About 1000 times per second. That is, the incidence frequency (incident event frequency) of scintillation light to one gamma camera is about 1000 times per second.
  • the image pickup device 100 In the case where the image pickup device 100 is cyclically driven with five rows of pixels (four rows of pixels are exposed simultaneously), it can detect a light incident event in a cycle of 25 ⁇ s, and 40,000 times per second ( 1/25 ⁇ 10 ⁇ 6 ) incident event can be detected. Further, in the case where the image pickup device 100 is cyclically driven (pixels in 31 rows are exposed simultaneously) with pixels in all rows (32 rows), the incident event of light can be detected with a cycle of 160 ⁇ s, and 1 second. 6250 times (1/160 ⁇ 10 ⁇ 6 ) incident events can be detected.
  • the image sensor 100 can measure the number of events almost accurately in detecting gamma rays from a radiopharmaceutical administered to a human body.
  • FIG. 10 is a diagram schematically illustrating an example of an exposure operation and a read operation of the image sensor 100 according to the first embodiment of the present technology, and an example of an exposure operation and a read operation of another image sensor.
  • FIG. 10a a schematic diagram (timing chart 581) showing signal readout timings in other imaging elements, with the horizontal direction as a direction indicating a common time axis, and the count number for each read row are schematically shown.
  • the graph shown (graph 582) is shown.
  • a horizontal line is a direction indicating a time axis
  • a vertical direction is a direction indicating a row from which a signal is read (reading row address). ) Is schematically shown.
  • the timing chart 581 also includes a double-headed arrow (unit exposure period 584) indicating a period from the start to the end of exposure, and an arrow (arrow) indicating movement from the end of the row address to be read to the first row address of the next reading. 585).
  • the timing chart 581 shows the irradiation timing (time T21, time T22) of the scintillation light.
  • this waiting time occurs, a period in which all pixels are under exposure occurs, and the number of pixels in the exposure period changes depending on the incident timing of light to be detected. For example, at time T21, there is a high possibility that one row of pixels is in the readout period. On the other hand, at time T22, all the pixels are in the exposure period, and there is no row in the readout period. As described above, if the number of pixels in the exposure period changes depending on the incident timing of the light to be detected, it is difficult to calculate the scattered gamma rays and the primary gamma rays when discriminating them by energy separation as shown in FIG. Become.
  • the waiting time cannot be reduced no matter how much the number of rows to be driven is reduced. For this reason, the exposure time becomes longer by the waiting time (that is, the frame rate becomes lower by the waiting time), and there is a high possibility that the incident event of the light to be detected occurs several times during one exposure period. Become. If an incident event of light to be detected occurs a plurality of times during one exposure period, neither energy separation of gamma rays nor photon counting becomes possible.
  • FIG. 10B schematically shows a signal reading timing in the image sensor 100 (timing chart 591) with the horizontal direction as a direction indicating a common time axis, and a count number for each read row.
  • a graph (graph 592) is shown.
  • the timing chart 591 and the graph 592 are the same as those shown in the timing chart 581 and the graph 582 of FIG. That is, the readout timing 593, unit exposure period 594, arrow 595, time T31, and time T32 in FIG. 10b correspond to the readout timing 583, unit exposure period 584, arrow 585, time T21, and time T22 in FIG. 10a, respectively.
  • the image sensor 100 is driven so that the number of pixels being exposed is the same at any timing. That is, in the image sensor 100, the pixels are driven so that one row is in the readout period at any timing, and all but one row in the readout period is in the exposure period. That is, the end timing of reading of the last row and the start timing of reading of the first row of the next reading are simultaneously performed without causing the waiting time that occurs in the other image sensor illustrated in FIG. 10a (arrow 595). There is no horizontal difference (time difference) between the two ends of. For this reason, the image sensor 100 has a shorter exposure time and a shorter time for exposure and reading to complete as compared with other image sensors (that is, the frame rate is increased by the waiting time). Thereby, the exposure frequency is increased and the time resolution is improved.
  • the exposure time is determined based on the readout time and the number of rows to be driven. That is, if the number of rows to be driven becomes 1 / K, the operation time for one time (exposure + readout time) also becomes 1 / K, and the sensitivity becomes approximately 1 / K, but the time resolution is improved approximately K times. To do.
  • sensitivity and time resolution are in a trade-off relationship.
  • the number of rows to be driven can be freely set by specifying the start and end row addresses, so that the sensitivity and time resolution are optimally adjusted according to the incidence frequency of the detection target gamma rays to the scintillator. Is possible.
  • the number of rows under exposure is the same at any timing in the image sensor 100, assuming that one row is a group (section), a single light receiving surface is divided into a plurality of groups. Can be caught.
  • the number of rows under exposure is the same at any timing, and the number of pixels in each row (group) is the same. Can be considered to reflect the amount of light incident on the entire light receiving surface (image sensor 100).
  • FIG. 11 schematically illustrates an example of a detection device (detection device 600) including the image sensor 100 according to the first embodiment of the present technology and an example of a conventional detection device including a photomultiplier tube.
  • FIG. 11 schematically illustrates an example of a detection device (detection device 600) including the image sensor 100 according to the first embodiment of the present technology and an example of a conventional detection device including a photomultiplier tube.
  • a small amount of gamma ray source such as technetium is introduced into the body, and detection of gamma rays in a SPECT (Single Photon Emission Computed Tomography) device used to determine the distribution of gamma ray sources in the body from the position information of the emitted gamma rays.
  • SPECT Single Photon Emission Computed Tomography
  • a description will be given assuming a container.
  • the basic configuration and signal processing contents of the SPECT apparatus are already known (for example, Japanese Patent Application Laid-Open No. 2006-242958, Special Table 2006-508344), and the present technology relates to a gamma ray detection unit. The detailed description of is omitted.
  • FIG. 11a shows an example of a conventional detection apparatus provided with a photomultiplier tube.
  • a device combining a scintillator and a photomultiplier tube is conventionally used for detecting gamma rays.
  • FIG. 11 a shows a collimator 691, a scintillator 692, a photomultiplier tube 693, and a conversion unit 694 as the configuration of a conventional detection device that detects a gamma ray source (gamma ray source 681) taken into the human body (human body 680). And a data processing unit 695 are shown.
  • the collimator 691 passes only the gamma rays incident perpendicularly to the gamma ray incident surface of the scintillator 692 and blocks the gamma rays incident obliquely.
  • the collimator 691 is formed of, for example, a lead plate having many small holes.
  • the scintillator 692 emits fluorescence by absorbing energy such as electron beams and electromagnetic waves.
  • energy such as electron beams and electromagnetic waves.
  • thallium activated sodium iodide NaI (TI)
  • TI thallium activated sodium iodide
  • the photomultiplier tube 693 amplifies electrons generated by photoelectric conversion by avalanche and outputs the amplified result as an analog pulse.
  • This photomultiplier tube 693 requires a high voltage for accelerating the electrons in order to amplify the electrons.
  • the photomultiplier tube 693 supplies the generated analog pulse (analog signal) to the conversion unit 694.
  • several tens of photomultiplier tubes 693 are arranged side by side. In FIG. 11a, three photomultiplier tubes 693 are schematically shown.
  • the conversion unit 694 converts the analog pulse supplied from the photomultiplier tube 693 into a digital value and outputs it as a digital value for each sample section.
  • the conversion unit 694 is provided for each photomultiplier tube 693.
  • the conversion unit 694 supplies the digital value to the data processing unit 695.
  • the data processing unit 695 analyzes the detection target based on the digital value supplied from the conversion unit 694. For example, the data processing unit 695 specifies gamma ray energy from the sum of the outputs of incident events of scintillation light that are generated simultaneously, based on the digital value output by the conversion unit 694. In addition, the data processing unit 695 specifies the incident position of the gamma ray from the centroid of the output of the incident event of the scintillation light generated simultaneously.
  • a detector is configured by arranging a large number of them, a large amount of cost is required only for the detector.
  • an external device for analyzing the output pulse height at high speed is required.
  • the number of conversion units 694 is the same as the number of photomultiplier tubes 693. Strict circuit noise countermeasures are also required. For this reason, when a detector is configured by arranging a number of conventionally used detection elements such as a photomultiplier tube and cadmium telluride, the scale of the external device becomes large, and the radiation imaging apparatus becomes expensive and large.
  • FIG. 11 b shows an example of a detection device (detection device 600) provided with the image sensor 100.
  • FIG. 11 b shows a collimator 691, a scintillator 692, a light guide unit 610, an image sensor 100, and a data processing unit 620 as the configuration of the detection device 600.
  • the collimator 691 and the scintillator 692 are the same as those shown in FIG.
  • three photomultiplier tubes 693 out of several tens arranged are schematically shown in FIG.
  • the light guide unit 610 has a function of collecting scintillation light generated in the scintillator 692 and guiding the collected scintillation light to the image sensor 100 (light guide function).
  • the light guide unit 610 has a light uniformizing function for making the distribution of scintillation light incident on the light guide unit 610 substantially uniform, and irradiates the pixel array of the image sensor 100 with the substantially uniform scintillation light.
  • the light guide unit 610 makes the same number of scintillation lights incident on the incident surface (bonding surface of the light guide unit 610 with the scintillator 692) in a non-uniform distribution on each pixel of the pixel array of the image sensor 100. Play a role to distribute.
  • the light guide unit 610 includes, for example, a kaleidoscope using reflection, an integrated lens such as a fly lens in which small lenses are laid, a diffractive optical element (DOE) using diffraction, fine particles or dots that scatter light on glass or resin, and the like. It is realized by a light scattering material to which is added. It can also be realized by an optical fiber having a light uniforming function or a light guide in which a plurality of optical fibers having a light uniforming function are bundled.
  • DOE diffractive optical element
  • the data processor 620 analyzes the detection target based on the digital value supplied from the image sensor 100. Since the data processing unit 620 is the same as the data processing unit 695 except that the digital value supply source is different, detailed description thereof is omitted here.
  • FIG. 11 b shows an arrow (arrow 682) indicating the locus of the radiated gamma rays that are not scattered (primary gamma rays) to the scintillator 692, and the gamma rays affected by the scattering (scattered gamma rays).
  • An arrow (arrow 683) indicating a locus to the scintillator 692 is shown.
  • the primary gamma ray detected by the detection device is emitted from the gamma ray source 681 as indicated by an arrow 682 and is incident on the scintillator 692 without being obstructed by straight travel. Therefore, the scintillation light generated by the primary gamma ray becomes a light quantity reflecting the energy of the primary gamma ray.
  • the scattered gamma ray detected by the detection device is a gamma ray that is emitted from the gamma ray source 681 and then scatters by colliding with electrons (Compton scattering), and is incident on the scintillator 692 perpendicularly as indicated by an arrow 683. It is.
  • the scattered gamma rays are noise information that has lost the original position information, and have lower energy than the primary gamma rays.
  • the detection device detects not only primary gamma rays and scattered gamma rays, but also noise that detects abnormally high energy such as cosmic rays.
  • the SPECT device filters the noise signal and the primary gamma ray signal among the detected signals by energy discrimination. That is, the data processing unit 620 performs noise determination and energy source position determination for each detected gamma ray based on the output (digital signal) from each image sensor 100.
  • the scintillation light enters the plurality of light guide portions 610 and is simultaneously detected by the plurality of imaging elements 100.
  • the data processing unit 620 identifies the gamma ray energy amount from the sum of the binary determination values of the value “1” detected at the same time, and identifies the primary gamma ray detection result from the identified energy amount. Then, the data processing unit 620 identifies the incident position of the gamma ray from the barycentric position of the binary determination value of “1” in the primary gamma ray detection result. In this way, the primary gamma ray detection results are accumulated, and the gamma ray source distribution in the body is identified.
  • the imaging element 100 is smaller, lighter, and less expensive than a photomultiplier tube (PMT: PhotoMultiplier Tube), and thus can be mounted in large numbers at high density. For this reason, the resolution of position detection becomes higher as many are mounted at higher density. Also, when a large number of high-density packages are mounted, the output intensity distribution appears when a plurality of gamma rays are incident on different locations almost simultaneously. For this reason, it is possible to discriminate it using pattern matching or the like and detect it with high accuracy.
  • PMT PhotoMultiplier Tube
  • FIG. 12 is a flowchart illustrating an example of a processing procedure when the imaging device 100 according to the first embodiment of the present technology performs imaging.
  • the control unit of the apparatus determines the exposure frequency, determines the number of rows of pixels to be driven according to the exposure frequency, and determines the start row address and the number of rows according to the number of rows.
  • a description will be made assuming that the end line address is determined. That is, it is assumed that information regarding the determined end row address and start row address is supplied to the signal line 291 and the signal line 292.
  • the start row address is acquired by the start row address register 220 (step S901). Further, the end row address is acquired by the end row address register 230 (step S902).
  • an address of the drive target row (drive row address) is generated by the circulation type address generation unit 210, and imaging processing is performed based on the generated drive row address. This is performed (step S903).
  • the number of pixels under exposure can be made the same at any timing, the frame rate can be increased, and the time resolution can be improved. That is, according to the first embodiment of the present technology, it is possible to drive a pixel suitable for photon counting.
  • Second Embodiment> In the first embodiment of the present technology, description has been given focusing on the circulation driving of the image sensor 100.
  • the image sensor 100 adjusts the time resolution and sensitivity of light detection by dynamically changing the number of rows (groups) to be circulated by adjusting the difference between the start row address and the end row address. Can do.
  • an apparatus for example, a radiation detector
  • AE automatic exposure
  • FIG. 13 is a diagram schematically illustrating an example of a detection device (detection device 700) according to the second embodiment of the present technology.
  • the detection apparatus 700 includes a collimator 730, a scintillator 720, a light guide unit 710, an image sensor 100, a data processing unit 740, and an exposure setting unit 750. Note that the components other than the exposure setting unit 750 correspond to those shown in FIG.
  • the detection apparatus 700 scintillation light from one scintillator is guided to one image sensor.
  • this detection apparatus 700 is provided in X-ray detection apparatuses, such as a SPECT apparatus, a PET apparatus, a mammography, CT apparatus, for example, many are arranged in the shape of an array.
  • the spatial resolution can be increased by arranging a large number of detection devices 700 including scintillators (individual scintillators are surrounded by collimators) partitioned so as to correspond to the individual imaging elements in an array.
  • the exposure setting unit 750 sets an appropriate exposure (exposure) time based on the digital value supplied from the image sensor 100.
  • the exposure setting unit 750 changes the number of rows to be driven by changing the start row address and the end row address supplied to the image sensor 100, thereby controlling the exposure time on the image sensor 100.
  • the exposure setting unit 750 ends the automatic exposure when it detects a start row address and an end row address that are appropriate exposure. Since automatic exposure will be described with reference to FIGS. 14 and 15, detailed description thereof will be omitted here.
  • the exposure setting unit 750 supplies the start row address and the end row address to the circulation type address generation unit 210 of the image sensor 100 via the signal line 290.
  • FIG. 14 is a flowchart illustrating an example of a processing procedure when the detection apparatus 700 according to the second embodiment of the present technology performs automatic exposure. Each processing procedure shown here is performed by the exposure setting unit 750.
  • a start row address and an end row address, which are references for determining exposure, are supplied to the image sensor 100 (step S921). Subsequently, the count of the sum (digital value) of the digital values (“0” or “1”) from the image sensor 100 is initialized to a value of “0” (step S922).
  • step S923 the digital value output from the image sensor 100 that has detected the sample by one exposure (drive) based on the supplied start row address and end row address (each pixel in the row from the start row address to the end row address) Output) is acquired (step S923). Subsequently, all of the acquired digital values (all the outputs of each pixel in the row from the start row address to the end row address) are added to the total value (step S924). Thereafter, it is determined whether or not addition of the acquired digital value to the total value has been performed a predetermined number of times (step S925). If it is determined that the predetermined number of times has not been performed (step S925), the process returns to step S923.
  • the maximum total value (maximum value) in the predetermined number of exposures is calculated (step S926). For example, in the case where 128 pixels generate a digital value in one exposure (circulation driving in two rows), when adding 100 times, the maximum value is 12800 (128 ⁇ 100).
  • the occurrence probability of the incident event of the scintillation light is calculated based on the total value and the maximum value (step S927). Thereafter, it is determined whether or not the calculated occurrence probability is above the upper limit threshold (step S928).
  • step S928 If it is determined that the occurrence probability is higher than the upper limit threshold (step S928), the number of lines that are cyclically driven is smaller than the number of lines from the currently set start line address to the end line address. Thus, the start row address and the end row address are changed (step S929). Further, the changed start row address and end row address are supplied to the image sensor 100 (step S929), and the process returns to step S922.
  • step S930 it is determined whether or not the occurrence probability is lower than the lower limit threshold (step S930). If it is determined that the occurrence probability is lower than the lower limit threshold (step S930), the number of lines that are cyclically driven is greater than the number of lines from the currently set start line address to the end line address. Thus, the start line address and the end line address are changed (step S931). The changed start row address and end row address are supplied to the image sensor 100 (step S931), and the process returns to step S922.
  • step S930 If it is determined that the occurrence probability is higher than the lower limit threshold (step S930), it is determined to detect the gamma ray of the sample with the current setting (start row address to end row address).
  • the set start row address and end row address are supplied to the image sensor 100 (step S932). Then, after step S932, the processing procedure for automatic exposure ends.
  • step S928 to step S931 will be described.
  • step S928 when the occurrence probability is higher than the upper limit threshold, the number of scintillation lights (gamma rays detected by a predetermined number of exposures with an exposure time (time resolution) based on the number of rows that are cyclically driven with the current setting. This is the case when the number is too large.
  • step S929 the number of rows to be circulated is reduced so that the exposure time is reduced and the time resolution is improved.
  • the time required for detection a predetermined number of times is shortened, the number of scintillation light (the number of gamma rays) incident within this time is reduced, and the occurrence probability is also reduced.
  • step S930 the number of scintillation lights detected by a predetermined number of exposures with an exposure time (time resolution) based on the number of rows that are cyclically driven with the current setting ( This is the case when the number of gamma rays is too small. For this reason, in step S931, the number of rows that are cyclically driven is increased so that the exposure time becomes longer. As a result, the time required for the predetermined number of times of detection becomes longer, the number of scintillation light (the number of gamma rays) incident within this time increases, and the occurrence probability also increases. In addition, since the number of rows that are driven in circulation is increased, although the time resolution is reduced, the detection accuracy is increased, and the energy resolution (detection accuracy) is improved.
  • the number of rows to be driven is adjusted so that the occurrence probability is within a predetermined range (between the upper limit threshold and the lower limit threshold). . That is, in the second embodiment of the present technology, the start row address and the end row address supplied from the exposure setting unit 750 to the image sensor 100 can be automatically set according to the sample.
  • this automatic exposure adjustment can be executed dynamically and independently for each image sensor 100. That is, in an apparatus in which a plurality of imaging elements 100 are provided in the detection unit, the quality of imaging can be greatly improved by performing automatic exposure adjustment individually. Even when the image sensor 100 is used alone, it is possible to achieve both high-precision detection at a low dose and a good dynamic range at which measurement cannot be shaken even at a high dose.
  • the operation of the image sensor for photon counting that receives scintillation light can be determined by automatic exposure.
  • the time resolution can be improved.
  • a very high frame rate can be set, a very high time resolution can be obtained.
  • it is a CMOS image sensor and can be mass-produced at a low price, it is necessary to provide a large number of light detection units in an electronic device that has only a small number of light detection units due to the high price of the photomultiplier tube. And detection speed can be improved.
  • the image pickup element shown in the embodiment of the present technology can be widely applied as a light detection unit in a conventional electronic device provided with a photomultiplier tube, an avalanche photodiode, or a photodiode.
  • CMOS image sensor can be similarly implemented if it can be driven in this way.
  • photon counting when ultra-high sensitivity is not required, an operation similar to that of the embodiment of the present technology may be performed in a CMOS sensor having normal sensitivity.
  • the embodiment of the present technology can realize a small and light and ultra-sensitive pocket dosimeter using an inexpensive semiconductor imaging element in addition to the devices described so far. Also in this case, since radiation energy detection and photon counting can be performed simultaneously, for example, a counting rate corresponding to the radiation energy, that is, a radiation energy spectrum can be measured. That is, dose correction (for example, refer to Japanese Patent Application Laid-Open No. 2004-108796) by the G (E) function method, the DBM method, or the like can be appropriately performed. Since the output of the image sensor 100 is a digital value, a multi-channel analyzer that is necessary in a conventional detector (for example, a photomultiplier tube) is unnecessary. For this reason, when the image sensor 100 is used, all subsequent processes including correction can be performed by an inexpensive one-chip microcomputer. That is, by using the image sensor 100, it is possible to realize a small, lightweight, highly accurate and inexpensive dosimeter.
  • dose correction for example, refer to Japanese Patent Application Laid-Open No. 2004-1087
  • the present embodiment is not limited to this, and the embodiment of the present technology can be applied to a device that detects weak fluorescence. It is.
  • the photodetection device using the present invention can be used as a photodetector of a fluorescent scanner for DNA chip or a photoluminescence detection scanner for an imaging plate.
  • the drive row address may be supplied by increasing the count by two (thinning out one row) or the drive row address may be supplied by increasing the count by three.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a pixel array unit including a plurality of pixels classified into two or more groups, and pixels belonging to the same group are driven at the same timing;
  • the number of the groups during the charge readout period is the same at any timing during the imaging operation, and the number of the groups during the exposure exposure accumulation period is the same at any timing during the imaging operation.
  • An image sensor comprising: a control unit that controls driving of the pixel array unit.
  • the plurality of pixels are arranged in a matrix in the pixel array unit and driven in units of rows,
  • the control unit updates a drive row address for designating a drive target row for each predetermined time length, and performs the control based on the update timing of the updated drive row address (3 ).
  • the control unit determines that the drive row address is the end row address based on start row address information indicating the drive start row address and end row address information indicating the drive end row address.
  • the control unit sets the exposure end timing in the row to be driven in the current readout operation and the start timing of the next exposure in the row to be driven in the previous readout operation at substantially the same timing.
  • the imaging device according to (5) wherein control is performed.
  • the pixel signal output from the pixel is converted into a digital value, the converted digital value is compared with a threshold value, and a determination is made to binaryly determine whether a photon is incident on the pixel that generated the pixel signal.
  • the imaging device according to (6) further including a unit.
  • the pixel array unit receives the light uniformized by the light uniformizing unit that substantially uniforms the distribution of the incident light to be detected in the number of photons in the direction orthogonal to the optical axis.
  • the imaging device described. A pixel array unit including a plurality of pixels classified into two or more groups, and pixels belonging to the same group are driven at the same timing; The number of the groups during the charge readout period is the same at any timing during the imaging operation, and the number of the groups during the exposure exposure accumulation period is the same at any timing during the imaging operation.
  • An electronic device comprising: a control unit that controls driving of the pixel array unit.
  • (10) a scintillator for supplying scintillation light generated by the incidence of radiation to the pixel array unit;
  • a determination unit that converts the pixel signal output from the pixel into a digital value, compares the converted digital value with a threshold value, and binaryly determines whether or not a photon is incident on the pixel that generated the pixel signal;
  • the calculation unit further includes a calculation unit that sums up the binary values that are the results of the binary determination for each of the scintillation lights detected at substantially the same timing, and calculates the amount of radiation energy from the summed values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 時間分解能を向上させる。 撮像素子は、画素アレイ部および制御部を備えるものである。画素アレイ部は、2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される。制御部は、電荷の読み出し期間中のグループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中のグループの数を撮像動作中における何れのタイミングにおいても同一の数とするように画素アレイ部の駆動を制御する。

Description

撮像素子および電子機器
 本技術は、撮像素子に関する。詳しくは、微弱光を検出する撮像素子、これを備える電子機器に関する。
 近年、微弱光を検出する装置が、医療現場や研究現場を中心に幅広く導入されている。このような装置では、微弱光の検出部として、比較的に値段が高い光電子増倍管が用いられることが多い。
 また、光電子増倍管の代わりに、安値で製造できるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いて微弱光を検出する装置も提案されている(例えば、特許文献1参照。)。
特開2011-97581号公報
 上述の従来技術では、CMOSイメージセンサの各画素に入射した光子数をカウント(フォトンカウンティング)することにより、微弱光を検出する。
 なお、このCMOSイメージセンサは、放射線のシンチレータへの入射により発生したシンチレーション光の検出にも用いることができる。この場合には、シンチレータへ入射した放射線(例えば、ガンマ線1光子)のエネルギーに応じた個数の光子が同時に発生し、このエネルギーに応じた個数の光子がCMOSイメージセンサにより検出される。すなわち、光子の入射の有無を検出するフォトンカウンティングを行うCMOSイメージセンサでは、複数のガンマ線の光子により発生したシンチレーション光が同じ露光時間に入射しないように光検出の時間分解能を上げる必要がある。
 なお、CMOSイメージセンサでは光検出の時間分解能がフレームレートによって規定されるため、フレームレートを高くして、フォトンカウンティングに適した画素の駆動を行うことが重要になる。
 本技術はこのような状況に鑑みて生み出されたものであり、時間分解能を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、電荷の読み出し期間中の上記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の上記グループの数を上記撮像動作中における何れのタイミングにおいても同一の数とするように上記画素アレイ部の駆動を制御する制御部とを具備する撮像素子である。これにより、電荷の読み出し期間中のグループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中のグループの数を上記撮像動作中における何れのタイミングにおいても同一の数とするように撮像素子の画素アレイ部を駆動させるという作用をもたらす。
 また、この第1の側面において、上記グループは、当該グループに属する上記画素の数が、他のグループに属する上記画素の数と略同一であるようにしてもよい。これにより、グループ同士で画素の数が略同一であるという作用をもたらす。
 また、この第1の側面において、上記複数の画素は、上記画素アレイ部に行列状に配置されて行単位で駆動され、上記制御部は、上記行を上記グループの単位として上記制御を行うようにしてもよい。これにより、行ごとに駆動されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、駆動対象の行を指定するための駆動行アドレスを所定の時間長ごとに更新し、当該更新された駆動行アドレスの更新タイミングに基づいて上記制御を行うようにしてもよい。これにより、駆動対象の行を指定するための駆動行アドレスを所定の時間長ごとに更新し、当該更新された駆動行アドレスの更新タイミングに基づいて制御が行なわれるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記駆動の開始の行アドレスを示す開始行アドレス情報と上記駆動の終了の行アドレスを示す終了行アドレス情報とに基づいて、上記駆動行アドレスが上記終了の行アドレスを示す状態で上記更新を行う場合には、上記駆動行アドレスを上記開始の行アドレスへ更新するようにしてもよい。これにより、開始行アドレス情報と終了行アドレス情報とに基づいて、駆動行アドレスが終了の行アドレスを示す状態で更新を行う場合には、駆動行アドレスが開始の行アドレスへ更新されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、現在の読み出し動作における駆動対象の行における露光の終了タイミングと、1つ前の読み出し動作における駆動対象の行における次の露光の開始タイミングとを略同じタイミングにして上記制御を行うようにしてもよい。これにより、現在の読み出し動作における駆動対象の行における露光の終了タイミングと、1つ前の読み出し動作における駆動対象の行における次の露光の開始タイミングとが略同じタイミングにされるという作用をもたらす。
 また、この第1の側面において、上記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部をさらに具備するようにしてもよい。これにより、画素信号を生成した画素への光子の入射の有無がバイナリ判定されるという作用をもたらす。
 また、この第1の側面において、上記画素アレイ部は、光子数の検出対象となる入射光の光軸に対する直交方向への分布を略均一化させる光均一化部により均一化された光を受光するようにしてもよい。これにより、光均一化部により均一化された光を受光させるという作用をもたらす。
 また、本技術の第2の側面は、2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、電荷の読み出し期間中の上記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の上記グループの数を上記撮像動作中における何れのタイミングにおいても同一の数とするように上記画素アレイ部の駆動を制御する制御部とを具備する電子機器である。これにより、電荷の読み出し期間中のグループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中のグループの数を上記撮像動作中における何れのタイミングにおいても同一の数とするように撮像素子の画素アレイ部を駆動させるという作用をもたらす。
 また、この第1の側面において、放射線の入射により発生したシンチレーション光を上記画素アレイ部に供給するシンチレータと、上記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部と、上記バイナリ判定の結果であるバイナリ値を、略同じタイミングで検出された上記シンチレーション光ごとに総和して、当該総和した値から上記放射線のエネルギー量を算出する算出部とをさらに具備するようにしてもよい。これにより、画素への光子の入射の有無のバイナリ判定結果に基づいて、放射線のエネルギー量が算出されるという作用をもたらす。
 本技術によれば、時間分解能を向上させることができるという優れた効果を奏し得る。
本技術の第1の実施の形態の撮像素子100の基本構成例の一例を示す概念図である。 本技術の第1の実施の形態の画素310の回路構成の一例を示す模式図である。 本技術の第1の実施の形態の判定回路400の機能構成の一例および判定回路400の動作例の一例を示す概念図である。 本技術の第1の実施の形態の循環型アドレス生成部210の機能構成の一例を示す図である。 本技術の第1の実施の形態の撮像素子100を6行で循環駆動する場合におけるタイミングチャートの一例を模式的に示す図である。 本技術の第1の実施の形態の撮像素子100を3行で循環駆動する場合におけるタイミングチャートの一例を模式的に示す図である。 本技術の第1の実施の形態における撮像素子100での読み出し期間の詳細な動作タイミングの一例を模式的に示す図である。 本技術の第1の実施の形態における撮像素子100を図7で示した動作タイミングで駆動する際の画素を駆動する信号線(画素リセット線331および電荷転送線332)における信号の一例を模式的に示す図である。 本技術の第1の実施の形態における撮像素子100を用いたシンチレーション光のフォトンカウンティングを説明するための図である。 本技術の第1の実施の形態の撮像素子100の露光動作および読み出し動作の一例と、他の撮像素子の露光動作および読み出し動作の一例とを模式的に示す図である。 本技術の第1の実施の形態の撮像素子100を備えた検出装置(検出装置600)の一例と、光電子増倍管を備えた従来の検出装置の一例とを模式的に示す図である。 本技術の第1の実施の形態の撮像素子100が撮像を行う際の処理手順の一例を示すフローチャートである。 本技術の第2の実施の形態の検出装置(検出装置700)の一例を模式的に示す図である。 本技術の第2の実施の形態における検出装置700が自動露出を行う際の処理手順の一例を示すフローチャートである。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(撮像制御:循環的に生成された行アドレスに基づいて駆動される撮像素子の例)
 2.第2の実施の形態(撮像制御:循環的に生成された行アドレスに基づいて駆動される撮像素子の自動露出調整の例)
 <1.第1の実施の形態>
 [撮像素子の構成例]
 図1は、本技術の第1の実施の形態の撮像素子100の基本構成例の一例を示す概念図である。
 撮像素子100は、微弱光を検出するためのシステム(例えば、イメージングプレートの蛍光スキャナ、放射線のシンチレーションカウンタ等)に設けられる光の検出器である。この撮像素子100は、例えば、CMOS(Complementary Metal Oxide Semiconductor)センサにより実現される。撮像素子100は、従来の光電子増倍管、アバランシェフォトダイオード、或いはフォトダイオードなどの代わりに用いられる。
 なお、ここでは、放射線のフォトンカウンティングの検出に撮像素子100が用いられることを想定して説明する。すなわち、ここ以降では、撮像素子100は、シンチレータに入射した放射線(例えば、ガンマ線)により発生した蛍光(シンチレーション光)を検出することを想定して説明する。
 なお、図1では、読み出しを高速化するために、列方向に長い長方形のフォトダイオードを備えることにより行数を少なくした撮像素子について説明する。
 撮像素子100は、画素アレイ部300と、垂直駆動回路110と、読み出し回路130と、水平駆動回路140と、出力回路150と、クロック生成部160と、循環型アドレス生成部210とを備える。
 画素アレイ部300は、2次元マトリックス状(n×m)に配置された複数の画素(画素310)を備える。なお、本技術の第1の実施の形態では、32行×128列の画素310が画素アレイ部300に配置されていることを想定する。図1に示す画素アレイ部300には、32行×128列の画素310の一部が示されている。画素アレイ部300に配置されている画素310には、垂直駆動回路110から制御線(制御線330)が行単位に配線される。また、画素310には、列単位で垂直信号線(垂直信号線341)が配線される。また、画素310は、縦横の比(列方向:行方向)が略4:1の長方形である。このような形状の画素310が32行×128列配置されることにより、画素アレイ部300は、略正方形となる。なお、画素310の回路構成については、図2を参照して説明するためここでの説明を省略する。
 クロック生成部160は、垂直駆動回路110により駆動されて信号が読み出される対象の行(駆動対象行)を切り替えるタイミングの基準となるクロックを生成するものである。このクロック生成部160が生成するクロックの周波数は、画素アレイ部300に配置される画素310から信号を読み出す際に必要な時間(読み出し期間)の長さに基づいて設定されるものである。すなわち、クロック生成部160は、撮像素子100の動作条件(駆動対象行の数の大小)にかかわらずに、一定の周波数のクロックを生成する。
 また、クロック生成部160が生成するクロックは、駆動対象(信号の読み出し対象)の行の画素から読み出された信号を処理する際の動作タイミングの基準としても用いられる。クロック生成部160は、生成したクロックを、信号線161を介して循環型アドレス生成部210と、読み出し回路130と、水平駆動回路140とに供給する。
 垂直駆動回路110は、制御線330を介して画素310に信号を供給し、順次垂直方向(列方向)に行単位で画素310を選択走査するものである。垂直駆動回路110により行単位で選択走査が行われることにより、行単位により画素310から信号が出力される。なお、制御線330には、画素リセット線331および電荷転送線332が含まれる。画素リセット線331および電荷転送線332については、図2を参照して説明するため、ここでの説明を省略する。
 読み出し回路130は、画素アレイ部300から出力される画素信号に対して各種の信号処理を画素列ごとに行うものである。すなわち、読み出し回路130は、垂直駆動回路110により選択された行における各画素から垂直信号線341を介して出力される画素信号に対して各種の信号処理(例えば、ノイズ除去、バイナリ判定)を行う。なお、読み出し回路130は、クロック生成部160から信号線161を介して供給されたクロックを基準にして、各動作タイミングが決定される。例えば、信号線161のクロックのパルスの立ち上がりから何μ秒後(別のクロックで何カウント後)にバイナリ判定処理を開始するなどようにして各動作タイミングが決定される。読み出し回路130は、判定回路400およびレジスタ131を、画素の列ごと(垂直信号線341ごと)に備える。
 判定回路400は、画素310から供給された出力信号に基づいて、画素310への光子の入射の有無を判定(バイナリ判定)するものである。この判定回路400は、垂直信号線341ごとに備えられる。すなわち、撮像素子100には、垂直駆動回路110が駆動する画素(32行×128列)に配線される128本の垂直信号線341にそれぞれ接続される128個の判定回路400が備えられる。判定回路400は、判定結果を、判定回路400ごとに接続されているレジスタ131に供給する。
 レジスタ131は、判定回路400ごとに備えられ、判定回路400から供給された判定結果を一時的に保持するものである。このレジスタ131は、画素の次の行の信号が読み出されている期間(読み出し期間)に、保持する判定結果を出力回路150に順番に出力する。
 水平駆動回路140は、読み出し回路130における画素列ごとの回路部分を順番に選択走査するものである。水平駆動回路140は、例えば、シフトレジスタやアドレスデコーダなどによって構成される。水平駆動回路140は、読み出し回路130の回路部分を順番に選択走査することにより、読み出し回路130において画素列ごとに信号処理された画素ごとの電気信号を、順番に出力回路150へ出力させる。
 出力回路150は、撮像素子100が生成した信号を外部の回路に出力するものである。
 循環型アドレス生成部210は、垂直駆動回路110が駆動させる画素の行(駆動対象行)を指定するためのアドレス(駆動行アドレス)を生成するものである。この循環型アドレス生成部210は、撮像素子100が設けられた装置における動作の制御回路(例えば、図11のデータ処理部620)から信号線290を介して供給された開始行アドレスおよび終了行アドレスを取得する。そして、循環型アドレス生成部210は、開始行アドレスから終了行アドレスまでの行アドレスにおいてアドレスが循環するように、駆動行アドレスを生成する。この循環型アドレス生成部210が循環的に駆動行アドレスを生成することにより、撮像素子100では、どのタイミングにおいても同一数の画素しか露光されないように垂直駆動回路110の動作が制御される。すなわち、撮像素子100では、どのタイミングにおいても読み出し動作中の画素の行が1行あるように画素を駆動して、露光中の画素の行の数をどのタイミングにおいても同一とする。なお、この露光動作については、図5および図6で詳細に説明するため、ここでの説明を省略する。
 循環型アドレス生成部210は、生成した駆動行アドレスを、信号線280を介して垂直駆動回路110に供給する。なお、循環型アドレス生成部210、垂直駆動回路110、読み出し回路130および水平駆動回路140は、特許請求の範囲に記載の制御部の一例である。
 ここで、1行の画素から信号を読み出すのに必要な時間(読み出し期間)が5μ秒であることを想定して撮像素子100の動作について説明する。撮像素子100は、露光中の画素の行の数がどのタイミングにおいても同一となるように動作するため、読み出し期間が、他の動作(露光や信号の転送など)に割り当てられる時間(単位期間)を規定する。例えば、32行全てを駆動させる場合には、32行全ての画素の信号を取得する動作の時間(処理が一巡する時間)は、160μ秒(5μ秒×32行)となる。そして、この32行全てを駆動させる場合における露光時間は、155μ秒(160μ秒-5μ秒)である。
 なお、32行のうちの1部の行のみを駆動させる場合には、処理が一巡する時間は、行数に応じた時間となる。例えば、2行のみを駆動させる場合は、処理が一巡する時間が10μ秒(5μ秒×2行)であり、露光時間が5μ秒(10μ秒-5μ秒)である。また、6行のみを駆動させる場合は、処理が一巡する時間が30μ秒(5μ秒×6行)であり、露光時間が25μ秒(30μ秒-5μ秒)である。
 次に、画素310の回路構成の一例について、図2を参照して説明する。
 [画素の回路構成例]
 図2は、本技術の第1の実施の形態の画素310の回路構成の一例を示す模式図である。
 画素310は、光電変換を行うことによって、入射光である光信号を電気信号に変換するものである。画素310は、その変換された電気信号を増幅して、画素信号として出力する。この画素310は、例えば、浮遊拡散層(フローティングディフュージョン:FD:Floating-Diffusion)を有するFDアンプにより電気信号を増幅する。
 画素310は、フォトダイオード311と、転送トランジスタ312と、リセットトランジスタ313と、アンプトランジスタ314とを備える。
 画素310において、フォトダイオード311は、そのアノード端子が接地され、カソード端子が転送トランジスタ312のソース端子に接続される。また、転送トランジスタ312は、そのゲート端子が電荷転送線332に接続され、そのドレイン端子がフローティングディフュージョン(FD322)を介してリセットトランジスタ313のソース端子とアンプトランジスタ314のゲート端子とに接続される。
 また、リセットトランジスタ313は、そのゲート端子が画素リセット線331に接続され、そのドレイン端子が電源線323とアンプトランジスタ314のドレイン端子とに接続される。また、アンプトランジスタ314のソース端子が垂直信号線341に接続される。
 フォトダイオード311は、光の強度に応じて電荷を発生させる光電変換素子である。このフォトダイオード311では、フォトダイオード311に入射した光子により電子とホールとのペアが発生し、ここではこの発生された電子が蓄積される。
 転送トランジスタ312は、垂直駆動回路110からの信号(転送パルス)に従って、フォトダイオード311において発生した電子をFD322に転送するものである。この転送トランジスタ312は、例えば、そのゲート端子に供給される電荷転送線332から信号(パルス)が供給されると導通状態となり、フォトダイオード311において発生した電子をFD322に転送する。
 リセットトランジスタ313は、垂直駆動回路110から供給される信号(リセットパルス)に従って、FD322の電位をリセットするためのものである。リセットトランジスタ313は、画素リセット線331を介してリセットパルスがゲート端子に供給されると導通状態となり、FD322から電源線323に電流が流れる。これにより、フローティングディフュージョン(FD322)に蓄積された電子が電源へ引き抜かれ、フローティングディフュージョンがリセットされる(以降では、この時の電位をリセット電位と称する)。なお、フォトダイオード311をリセットする場合には、転送トランジスタ312とリセットトランジスタ313とが同時に導通状態とされる。これによりフォトダイオード311に蓄積された電子が電源へ引き抜かれ、光子が未入射の状態(暗状態)にリセットされる。なお、電源線323に流れる電位(電源)は、リセットやソースフォロアに使用される電源であり、例えば、3Vが供給されている。
 アンプトランジスタ314は、フローティングディフュージョン(FD322)の電位を増幅して、その増幅された電位に応じた信号(出力信号)を垂直信号線341に出力するためのものである。このアンプトランジスタ314は、フローティングディフュージョン(FD322)の電位がリセットされている状態の場合(リセット電位の場合)には、このリセット電位に応じた出力信号(以降では、リセット信号と称する)を、垂直信号線341に出力する。また、アンプトランジスタ314は、フォトダイオード311が蓄積した電子がFD322に転送されている場合には、この転送された電子の量に応じた出力信号(以降では、蓄積信号と称する)を、垂直信号線341に出力する。なお、図1のように垂直信号線341を複数の画素で共有する場合には、アンプトランジスタ314と垂直信号線341との間に、画素ごとに選択トランジスタを挿入するようにしても良い。
 なお、図2において示したような画素の基本回路や動作機構は通常の画素と同様であり、他にもさまざまなバリエーションが考えられる。しかしながら、本技術で想定する画素は、従来の画素に比べ、変換効率が著しく高くなるように設計される。その為には、ソースフォロアを構成するアンプ(アンプトランジスタ314)のゲート端子の寄生容量(FD322の寄生容量)が、実効的に極限まで小さくなるように画素を設計する。この設計は、例えば、レイアウトを工夫する手法や、ソースフォロアの出力を画素内の回路にフィードバックする手法(例えば、特開平5-63468、特開2011-119441を参照)により行うことができる。
 このように寄生容量を小さくして、FD322に蓄積された電子が少数であっても、十分大きな出力信号が垂直信号線341へ出力されるように工夫する。この出力信号の大きさは、アンプトランジスタ314のランダムノイズより十分大きければよい。1光子がFD322に蓄積された時の出力信号がアンプトランジスタ314のランダムノイズより十分大きな状態になれば、画素からの信号は量子化され、画素の蓄積光子数をデジタル信号として検出できるようになる。
 例えば、アンプトランジスタ314のランダムノイズが50μV~100μVぐらいであり、出力信号の変換効率が600μV/eぐらいに引き上げられた場合には、出力信号はランダムノイズより十分大きいため、原理的に1光子の検出が可能である。
 なお、単位露光期間中の光子入射の有無をバイナリ判定し、その結果をデジタル出力するとすれば、アンプトランジスタ314による出力信号の出力以降のノイズを実質上ゼロにすることができる。例えば、32行×128列の画素アレイについてバイナリ判定を実施する場合には、最大4096個(32×128)の光子までをフォトンカウンティングすることが可能である。
 なお、図2では、寄生容量が実効的に極限まで小さくなるように画素を設計して1光子が検出可能な画素の例について説明したが、これに限定されるものではない。他に、光電変換で得られた電子を画素内で増幅する画素によっても同様に実施することができる。例えば、画素内のフォトダイオードとアンプトランジスタのゲート端子との間に複数段のCCD増倍転送素子が埋め込まれた画素が考えられる(例えば、特開2008-35015を参照)。この画素では、光電変換された電子が画素内で10倍程度に増倍される。このように、画素内で電子を像倍することによっても1光子検出は可能であり、このような画素を配置した撮像素子を撮像素子100として用いることもできる。
 次に、画素310から供給された出力信号に基づいて光子の画素310への入射の有無を判定する判定回路400について図3を参照して説明する。
 [判定回路の機能構成例]
 図3は、本技術の第1の実施の形態の判定回路400の機能構成の一例および判定回路400の動作例の一例を示す概念図である。
 図3aでは、判定回路400の機能構成として、ACDS(Analog Correlated Double Sampling;アナログ相関2重サンプリング)部410と、DCDS(Digital CDS;デジタル相関2重サンプリング)部420と、バイナリ判定部430とが示されている。
 また、図3aでは、判定回路400に接続される垂直信号線341と、この垂直信号線341に接続される画素310の一部と、画素アレイ部300とが判定回路400の機能構成と一緒に示されている。
 ACDS部410は、アナログCDSによりオフセット除去を行うものであり、スイッチ412と、キャパシタ413と、比較器411とを備える。
 スイッチ412は、比較器411に基準電圧を入力する入力端子と、比較器411に比較対象の信号を入力する入力端子とのいずれかに垂直信号線341を接続するためのスイッチである。このスイッチ412は、画素310のリセット信号をサンプルホールドさせる場合には、基準電圧を入力する入力端子(キャパシタ413が接続されている左側の端子)に垂直信号線341を接続する。また、スイッチ412は、アナログCDSの結果を比較器411が出力する場合には、比較対象の信号を入力する入力端子(キャパシタが無い右側の端子)に垂直信号線341を接続する。
 キャパシタ413は、画素310のリセット信号をサンプルホールドするための保持容量である。
 比較器411は、サンプルホールドした信号と、比較対象の信号との差分を出力するものである。すなわち、比較器411は、サンプルホールドされたリセット信号と、垂直信号線341から供給された信号(蓄積信号またはリセット信号)との差分を出力する。すなわち、比較器411は、kTCノイズなどの画素310において生じたノイズが除去された信号を出力する。比較器411は、例えば、ゲイン1のオペアンプにより実現される。比較器411は、差分の信号を、DCDS部420に供給する。なお、ここでは、リセット信号とリセット信号との差分の信号を無信号と称し、リセット信号と蓄積信号との差分の信号を正味の蓄積信号と称する。
 DCDS部420は、デジタルCDSによりノイズ除去を行うものであり、AD(Analog Digital)変換部421と、レジスタ422と、スイッチ423と、減算器424とを備える。
 AD変換部421は、比較器411から供給された信号をAD変換するものである。
 スイッチ423は、AD変換部421が生成したAD変換後の信号の供給先を切り替えるスイッチである。スイッチ423は、AD変換部421が無信号のAD変換の結果(デジタルの無信号)を出力した場合には、この信号をレジスタ422に供給し、レジスタ422にラッチ(保持)させる。これにより、比較器411やAD変換部421のオフセットの値がレジスタ422に保持される。また、スイッチ423は、AD変換部421が正味の蓄積信号のAD変換の結果(デジタルの正味の蓄積信号)を出力した場合には、この信号を減算器424に供給する。
 レジスタ422は、無信号のAD変換の結果を保持するものである。レジスタ422は、保持する無信号のAD変換の結果(デジタルの無信号)を減算器424に供給する。
 減算器424は、デジタルの正味の蓄積信号の値からデジタルの無信号の値を減算するものである。減算器424は、減算した結果(正味のデジタル値)を、バイナリ判定部430に供給する。
 バイナリ判定部430は、バイナリ判定(デジタル判定)を行うものである。このバイナリ判定部430は、減算器424の出力(正味のデジタル値)と、参照信号(REF)とを比較して、画素310への光子の入射の有無をバイナリ判定し、その判定結果(図3では「BINOUT」と示す)を出力する。
 ここで、1個の画素310における光子の入射の有無をバイナリ判定する場合の判定回路400の動作について図3bを参照して説明する。
 図3bでは、判定回路400の動作例の一例を示すフローチャートが示されている。なお、図3bで示すフローチャートの各手順の枠は、図3aにおいて示した各構成を囲む枠と対応する。すなわち、2重の枠で示す手順は画素310の手順を示し、長い線の破線の枠で示す手順はACDS部410の手順を示し、短い線の破線の枠で示す手順はDCDS部420の手順を示し、太い実線の枠で示す手順はバイナリ判定部430の手順を示す。なお、説明の便宜上、ACDS部410によるACDS処理については、図示を省略し、DCDS部420がAD変換を行う際の手順で一緒に説明する。
 まず、選択された行の画素(画素310)において、アンプトランジスタ314のゲート端子の電位(FD322の電位)がリセットされ、垂直信号線341にリセット信号が出力される(ステップ441)。
 続いて、画素310から出力されたリセット信号が、ACDS部410のキャパシタ413によってサンプルホールドされる(ステップ442)。その後、サンプルホールドされたリセット信号と、画素310から出力されたリセット信号との差分の信号(無信号)が、DCDS部420のAD変換部421によりAD変換される(ステップ443)。なお、このAD変換された無信号には、比較器411やAD変換部421によって発生するノイズが含まれており、これらのノイズを相殺(オフセット)するための値がデジタル検出されたものである。そして、この無信号のAD変換の結果が、オフセット値としてレジスタ422に保持される(ステップ444)。
 続いて、画素310において、フォトダイオード311が蓄積した電子がFD322に転送され、画素310から蓄積信号が出力される(ステップ445)。その後、サンプルホールドされたリセット信号と、画素310から出力された蓄積信号との差分の信号(正味の蓄積信号)が、DCDS部420のAD変換部421によりAD変換される(ステップ446)。なお、このAD変換の結果には、比較器411やAD変換部421によって発生するノイズが含まれている。
 そして、減算器424によって、正味の蓄積信号のAD変換の結果(2回目)の値から、レジスタ422に保持された無信号のAD変換の結果(1回目)の値が差し引かれた値が出力される(ステップ447)。これにより、比較器411やAD変換部421に起因するノイズ(オフセット成分)がキャンセルされ、画素310が出力した蓄積信号のみのデジタル値(正味のデジタル値)が出力される。
 その後、減算器424から出力された正味のデジタル値と、参照信号(REF)とが、バイナリ判定部430によって比較される(ステップ448)。参照信号(REF)は、光子入射なしの時に画素310が出力する信号(無信号)のデジタル値と、光子入射ありの時に画素310が出力する信号(無信号)のデジタル値との中間値付近の値が設定される(例えば、「0」と「100」の中間の「50」が参照信号)。減算器424が出力したデジタル値(画素310が出力した蓄積信号のみのデジタル値)の値が参照信号(REF)の値を超えている場合には、「光子入射あり」として「1」の値の信号(BINOUT)が出力される。一方、減算器424が出力したデジタル値の値が参照信号(REF)の値を超えていない場合には、「光子入射なし」として「0」の値の信号(BINOUT)が出力される。すなわち、撮像素子100からは、光子入射の有無がバイナリ判定結果のデジタル値(0か1)として出力される。
 なお、図3では、「光子入射あり」と「光子入射なし」との2値判定(バイナリ判定)をすることを前提にして説明したが、複数系統の参照信号(REF)を用意することにより、2値以上の判定が可能となる。例えば、参照信号(REF)を2系統用意し、1系統を、光子数が「0」の時のデジタル値と、光子数が「1」の時のデジタル値との中間値にする。また、もう1系統を、光子数が「1」の時のデジタル値と、光子数が「2」の時のデジタル値との中間値にする。これにより、光子数が「0」、「1」、「2」の3つの判定が可能となり、撮像のダイナミックレンジが向上する。なお、このような多値判定は、画素ごとの変換効率のばらつき等による影響が大きくなるため、2値判定の製造より高い精度で製造を行う必要がある。しかしながら、画素が生成した信号をデジタル出力として扱う点においては、画素が生成した信号から光子入射の有無のみ(0か1)を判定するバイナリ判定と同様である。
 このように、撮像素子100では、画素310が出力した信号が判定回路113においてデジタル値として判定されるため、アナログ出力として扱う従来の撮像素子(10bitのデータにする場合は1024階調)と比較して、伝送中のノイズの影響をほぼ完全に受けない。
 次に、循環型アドレス生成部210について、図4を参照して説明する。
 [循環型アドレス生成部の機能構成例]
 図4は、本技術の第1の実施の形態の循環型アドレス生成部210の機能構成の一例を示す図である。
 なお、図4では、駆動される行は連続した行を想定し、間引いて駆動しないこととする。
 循環型アドレス生成部210は、垂直駆動回路110が駆動させる画素の行を指定するためのアドレス(駆動行アドレス)を生成するものであり、開始行アドレスレジスタ220と、終了行アドレスレジスタ230と、比較器240と、カウンタ250とを備える。
 開始行アドレスレジスタ220は、信号線290のうちの信号線292を介して供給された開始行アドレスを一時的に保持するものである。開始行アドレスレジスタ220は、保持する開始行アドレスを、カウンタ250に供給する。
 終了行アドレスレジスタ230は、信号線290のうちの信号線291を介して供給された終了行アドレスを一時的に保持するものである。終了行アドレスレジスタ230は、保持する終了行アドレスを比較器240に供給する。
 比較器240は、終了行アドレスレジスタ230から供給された終了行アドレスと、カウンタ250から供給された駆動行アドレスとを比較するものである。比較器240は、終了行アドレスと駆動行アドレスとが一致すると、開始行アドレスレジスタ220から供給された開始行アドレスの値にカウンタ250のカウント値(駆動行アドレス)を初期化するための信号(SET信号)をカウンタ250に供給する。
 カウンタ250は、駆動対象行を切り替えるタイミングとして信号線161を介して供給されるクロック(CLK信号)をカウントし、このカウントによる値(カウント値)を駆動行アドレスとして出力するものである。なお、カウンタ250は、比較器240からSET信号を受信した場合には、カウント値を、開始行アドレスの値に初期化する。初期化後は、カウンタ250は、信号線161のクロックを1クロックカウントするごとに、カウント値(駆動行アドレス)を1ずつ上げていく(カウントアップする)ことにより、駆動行を順次走査する。そして、駆動行アドレスが終了行アドレスになると、そのことを検出した比較器240からSET信号が供給されて、カウント値が開始行アドレスの値に初期化されて、駆動行アドレスが循環する。カウンタ250は、生成した駆動行アドレスを示す情報を、信号線280を介して、比較器240および垂直駆動回路110に供給する。
 このように、循環型アドレス生成部210は、駆動行アドレスを循環的に生成する。
 なお、他のCMOS撮像素子では、外部または内部で発生した垂直同期信号(フレーム開始信号)をトリガーとして、開始行アドレス(本技術の実施の形態では、1行目)からのカウントがスタートする。このため、どのタイミングにおいても読み出し動作中の画素の行が1行あるように画素を駆動することが難しい。撮像素子100では、循環型アドレス生成部210により駆動行アドレスが循環的に生成されるため、どのタイミングにおいても読み出し動作中の画素の行が1行あるように画素を駆動することが可能となる。
 次に、撮像素子100の露光動作および読み出し動作について、図5乃至図8を参照して説明する。
 [6行の画素で循環的に駆動する場合におけるタイミングチャート例]
 図5は、本技術の第1の実施の形態の撮像素子100を6行で循環駆動する場合におけるタイミングチャートの一例を模式的に示す図である。
 図5では、撮像素子100の画素アレイ部300の32行×128列の画素のうちの14行目から19行目までの6行の画素を駆動することを想定して説明する。なお、6行よりも駆動対象行の数が少ない場合(例えば、3行)については、図6において説明する。また、本技術の第1の実施の形態では、駆動対象行以外の画素については、例えば、常時リセット状態に保って、余分な電荷を吸い上げるようにしておくこととする。
 図5aには、横方向を時間軸を示す方向として、14行目(L14)から19行目(L19)の画素の駆動タイミングが模式的に示されている。また、図5bには、横方向を図5aと同じ時間軸を示す方向とし、縦軸をデジタル値「1」のカウントの行ごとの総数(各行の画素出力和)を示す軸として、「1」の値を出力した画素を行ごとに総和した値が模式的に示されている。
 図5aでは、画素を露光させて電荷を蓄積させる期間である露光期間が、白抜きの矩形(露光期間511)により表されている。また、図5aでは、画素において蓄積された電荷に応じた信号を画素から読み出してレジスタ131に格納するまでの期間である読み出し期間が、濃い灰色を付した矩形(読み出し期間512)により表されている。また、図5aでは、レジスタ131に格納された信号を出力回路150から出力する期間である出力期間が、右上から左下への斜線が付された矩形(出力期間513)により表されている。
 図5aのタイミングチャートに示すように、撮像素子100では、いずれの時刻においても6行のうちの5行の画素が露光されるように、露光の開始および終了のタイミングが設定される。このため、例えば、15行目(L15)の露光期間が終了すると同時に、14行目(L14)の次の露光期間が開始する。また、信号の読み出し対象の行(駆動対象行)の読み出し期間が終了するとともに、次の読み出し対象の行の読み出し期間が開始する。さらに、いずれの時刻においても6行のうちの5行の画素が露光されるようにするために、19行目(L19)の画素の読み出し期間の終了時刻(時刻521)と、14行目(L14)の画素の読み出し期間の開始時刻(時刻522)とは、略同じタイミングになる。
 次に、シンチレータに入射した放射線により発生した蛍光(シンチレーション光)の撮像素子100への入射タイミング(タイミングT1)と、撮像素子100の出力との関係について、図5aおよび図5bを参照して説明する。
 なお、ここでは、シンチレータに入射した放射線により発生した蛍光の撮像素子100への入射タイミング(タイミングT1)で示すように、16行目(L16)の読み出し期間中に蛍光が入射したことを想定して説明する。
 タイミングT1で入射した光は、読み出し期間中の16行目(L16)以外の行(14、15、17、18、19行目)の画素において露光されて電荷が蓄積され、蓄積された電荷に応じた画素信号が順次出力される。タイミングT1では読み出し期間である16行目(L16)のタイミングT1直後の出力の総和値(図5aの時刻531に対応して示した図5bのL16総和値)は、電荷が16行目の各画素に蓄積されないので「0」の総和値となる。続いて出力される17、18、19、14、15行目の総和値(図5aの時刻532乃至536に対応して示した図5bの各総和値)では、光が入射した画素の数に応じた総和値となる。
 なお、放射線のシンチレータへの入射の頻度が1回の露光時間で1度の頻度の場合には、読み出し期間中の行が何れのタイミングにおいても必ず1行あることから、「0」の値の出力値が1行分の画素の数ほど続く期間がある。このため、撮像素子100の出力を受信する側は、放射線のシンチレータへの入射により生じた撮像素子100の出力を、一定の幅をもった単一のデジタルパルスとみなすことができる。これにより、撮像素子100を用いたシンチレーションによる放射線検出では、一定の幅をもった単一のデジタルパルスにおけるパルス(1画素分の「1」の値のデジタル値)の発生回数が、放射線の入射により発生したフォトン数(シンチレーション光の数)を反映する。また、一定の幅をもった単一のデジタルパルスにおけるパルス(1画素分の「1」の値のデジタル値)の積分値(シンチレーション光の総数)が放射線のエネルギーを反映する。
 [3行の画素を駆動する場合におけるタイミングチャート例]
 図6は、本技術の第1の実施の形態の撮像素子100を3行で循環駆動する場合におけるタイミングチャートの一例を模式的に示す図である。
 図6では、15行目(L15)から17行目(L17)までの3行の画素を駆動する場合における例を示す。なお、図6で示す例は、図5で示した例の変形例であり、読み出し対象の行数が少ない点のみが異なる。このため、図5との違いに着目して説明する。
 図6aで示すタイミングチャートでは、図5aと同様に、3つの期間(露光期間、読み出し期間、出力期間)と、光の入射タイミングとが示されている。なお、図6aで示す露光期間(露光期間515)は、図5aで示した露光期間511よりも短く、この期間の長さは、読み出し期間の2回分に相当する。
 図6aのタイミングチャートにおいても、撮像素子100では、いずれの時刻においても3行のうちの2行の画素が露光されるように、露光の開始および終了タイミングが設定される。すなわち、駆動対象行の読み出し期間の終了とともに次の駆動対象行の読み出し期間が開始され、さらに、駆動対象行の露光期間の終了とともに1つ前の駆動対象行の次の露光期間が開始される。
 図6に示す3行で循環駆動する場合は、図5の6行で循環駆動する場合と比較して、個々の画素の1回の露光時間は短縮される。このため、露光頻度が上昇して放射線の検出の時間分解能が向上し、より高頻度の放射線入射をカウントすることが可能となる。しかしながら、2行しか露光されないため(図5の場合は5行)、感度は低下する。
 このように、循環駆動させる行の数により、1回ごとの露光時間の長さと、露光頻度とが決定される。なお、読み出し期間および出力期間については、循環駆動させる行の数の増減にかかわらずに一定である。すなわち、撮像素子100では、循環駆動させる行の数の増減のみで、1回ごとの露光時間と、露光頻度と、露光感度とを変化させて、時間分解能と感度の調整を行うことができる。
 なお、図5および図6では、連続した行において循環駆動することを想定して説明したが、これに限定されるものではなく、例えば、全行、二行おき、三行おき・・・などといった様々な駆動パターンにおいても実施することができる。すなわち、何れのタイミングにおいても1行は読み出し期間中となるように循環駆動することにより、図5および図6と同様に実施することができる。
 次に、読み出し期間について、図5および図6に示したよりも詳細な動作タイミングの一例について、図7および図8を参照して説明する。
 [読み出し期間の詳細なタイミングチャート例]
 図7は、本技術の第1の実施の形態における撮像素子100での読み出し期間の詳細な動作タイミングの一例を模式的に示す図である。
 図7では、一例として、横方向を時間軸を示す方向として、14行目(L14)乃至16行目(L16)での読み出し期間が示されている。
 図7では、露光期間が白抜きの矩形(露光期間551)により表され、リセット信号の読み出しと、無信号のAD変換とが行われる期間であるリセット信号処理期間が、濃い灰色を付した矩形(リセット信号処理期間552)により示されている。また、図7では、蓄積信号の読み出し、蓄積信号とリセット信号との差分のAD変換、バイナリ判定が行われる期間である蓄積信号処理期間が、薄い灰色を付した矩形(蓄積信号処理期間553)により示されている。また、図7では、レジスタ131に格納された信号を出力回路150から出力する期間である出力期間が、右上から左下への斜線が付された矩形(出力期間554)により表されている。
 図7に示すように、撮像素子100では、露光期間551が終了するよりも前にリセット信号処理期間552を実行することができる。しかしながら、蓄積信号処理期間553は、露光期間551が終了してから実行する必要がある。このため、リセット信号処理期間552は、露光期間551の実行中に行われ、露光期間551が終了するとともに、蓄積信号処理期間553が開始される。そして、蓄積信号処理期間553が終了すると、出力期間554が開始される。
 なお、出力期間554の開始時には、バイナリ判定の結果がレジスタ131に格納されているため、判定回路400は、次の行のために使用可能になる。このため、出力期間554が開始されるタイミングにおいて、次の行のリセット信号処理期間552が開始される。そして、次の行において露光期間551が終了するタイミングにおいて、読み出した行における次の露光期間551を開始させる。
 次に、図7で示した駆動タイミングと、画素を駆動する信号線(画素リセット線331および電荷転送線332)における信号のパルスとの関係について、図8を参照して説明する。
 図8は、本技術の第1の実施の形態における撮像素子100を図7で示した動作タイミングで駆動する際の画素を駆動する信号線(画素リセット線331および電荷転送線332)における信号の一例を模式的に示す図である。
 図8aには、横方向を共通の時間軸として、循環型アドレス発生部210により駆動対象とされた行(行選択)と、14行目の画素を駆動する各信号線(画素リセット線331および電荷転送線332)における電位の遷移とが示されている。さらに、図8aには、15行目の画素を駆動する各信号線における電位の遷移と、16行目の画素を駆動する各信号線における電位の遷移とが示されている。
 ここで、14行目の画素の制御に着目して説明する。行選択が14行目になると、14行目の画素から蓄積信号を読み出すための制御が開始される。そして、画素リセット線331を介してリセットパルスが画素へ供給され、フローティングディフュージョン(図2のFD322)の電位がリセットされる(図8aの時刻T11)。そして、このリセットされた状態において、リセット信号の読み出しと、無信号のAD変換とが行われる。
 その後、14行目の画素の露光期間の終了タイミングになると(図8aの時刻T12)、電荷転送線332からパルスが供給され、フォトダイオード(図2のフォトダイオード311)において蓄積された電荷がフローティングディフュージョンに転送される。そして、この転送された状態において、蓄積信号の読み出し、蓄積信号とリセット信号との差分のAD変換、バイナリ判定が行われる。
 そして、行選択が15行目になり、15行目の画素から蓄積信号を読み出すための制御が開始される。まず、時刻T11と同様に、15行目の画素に対してリセットパルスが供給され、フローティングディフュージョンの電位がリセットされる(図8aの時刻T13)。続いて、15行目の画素の露光期間の終了タイミングになると(図8aの時刻T14)、電荷転送線332からパルスが15行目の画素に供給され、フォトダイオードにおいて蓄積された電荷がフローティングディフュージョンに転送される。
 なお、この時刻T14において、14行目の画素で露光が開始されるように、14行目の画素の画素リセット線331および電荷転送線332からパルスが画素へ供給される。すなわち、時刻T14になる直前で、14行目の画素の画素リセット線331および電荷転送線332でパルスが供給される。これにより、14行目の画素のフォトダイオードおよびフローティングディフュージョンにおける電荷が排出されて、画素のリセットが行われる。そして、時刻T14になるタイミングで14行目の画素の画素リセット線331および電荷転送線332におけるパルスの供給が終了し、14行目の画素の次の露光が開始される。
 時刻T14に示すように、駆動対象の行におけるフォトダイオードで蓄積された電荷の転送と、駆動対象の行の1つ前に駆動した行における次の露光の開始とが同時に行われることにより、どのタイミングにおいても1行が読み出し期間であるように撮像素子が駆動される。なお、循環型アドレス発生部210では、所定のクロック(クロック生成部160からのクロック)に基づいてアドレスが生成される。すなわち、駆動対象行として選択されている行の時間(図8aの行選択で14行目、15行目、16行目の各期間)は、全て同じになる。
 また、どのタイミングにおいても1行が読み出し期間であるようにするため、図8aに示すようにパルスの供給タイミングは固定される。すなわち、画素リセット線331および電荷転送線332における各パルスは、行選択(駆動行アドレス)が切り替わったタイミングからの経過時間を計測する(例えば、カウンタ250のクロックより高速のクロックをカウントする)ことにより、供給タイミングを判断することができる。
 図8bには、図8aに示した14行目の画素の各信号線(画素リセット線331および電荷転送線332)における電位の遷移を、図7に示した14行目の画素の各期間に対応させて示した図が示されている。図8bに示すように、図8aに示すタイミングで各信号線のパルスを供給することにより、図7に示したタイミングでの画素の駆動が可能となる。
 なお、図7および図8において示したタイミングチャートは、種々のバリエーションの一例であり、これに限定されるものではない。基本概念としては、何れのタイミングにおいても、1行が読み出し期間(露光できない期間)であり、その行以外は露光期間であるようにして、何れのタイミングにおいても同一数の画素が露光される状態にすればよい。
 次に、撮像素子100を用いたシンチレーション光のフォトンカウンティングについて、図9を参照して説明する。
 [感度見積もりの例]
 図9は、本技術の第1の実施の形態における撮像素子100を用いたシンチレーション光のフォトンカウンティングを説明するための図である。
 図9では、1行の画素(128画素)の露光で光検出を行った際の感度見積もりを示すグラフが示されている。
 なお、ここでは、放射性医薬品としてよく用いられるテクネチウム-99m(99mTc)のガンマ線を検出することを想定する。
 テクネチウム-99mは、約140keVのガンマ線を放出する放射性物質である。ここで、約140keVの1光子(ガンマ線)が散乱を受けることなくNaIシンチレータに衝突し、この衝突により発生した光子のうちの1500個の光子が均一な面分布で撮像素子100に入射したことを想定する。このとき、平均47個(1500個/32行)の光子がいずれかの1行の画素に入射して電荷が蓄積され、この蓄積によるフォトンカウント結果が各画素のバイナリ判定値として出力される。
 これに対し、散乱の影響を受けた場合には、NaIシンチレータに衝突する前にエネルギーが減衰する。このエネルギーの減衰の結果、衝突により発生する光子の数は減少する。ここで、減衰した1光子(ガンマ線)がNaIシンチレータに衝突し、この衝突により発生した光子のうちの700個の光子が均一な面分布で撮像素子100に入射したことを想定する。このとき、平均22個(700個/32行)の光子がいずれかの1行の画素に入射して電荷が蓄積され、この蓄積によるフォトンカウント結果が各画素のバイナリ判定値として出力される。
 このように、各行の画素の出力がバイナリ判定において「1」(光子の入射あり)と判定される発生回数(1行は128画素であるため最大128回)は、ガンマ線のエネルギーの量を反映する。
 なお、このテクネチウム-99mのガンマ線を用いて説明した想定に関して、ポワソン分布および二項分布を用いて発生頻度分布を見積もったグラフが、図9のグラフである。
 図9のグラフでは、散乱の影響を受けたガンマ線(散乱ガンマ線)の頻度分布が、黒色を付したバーにより表されている。また、図9のグラフでは、散乱を受けていないガンマ線(プライマリのガンマ線)の頻度分布が、白抜きのバーにより表されている。
 図9に示すように、散乱ガンマ線の頻度分布と、プライマリのガンマ線の頻度分布とは全く異なる頻度分布を示す。このため、撮像素子100の検出結果を用いて、検出したガンマ線がどちらであるのか統計的に分別することができる。
 例えば、1行の画素(128画素)の出力における「1」の値のバイナリ判定結果の発生回数が29~49回の範囲にある場合をプライマリなガンマ線を検出したとして弁別すると、実際にプライマリなガンマ線を検出した場合の96%が収集される。また、この分別では、散乱ガンマ線の殆どはフィルタリング(除外)される。
 なお、図9で示したグラフは、1行のみの画素が何れのタイミングにおいても露光されるように撮像素子100を駆動(2行の画素で循環させて駆動)したことを想定した場合のグラフである。このため、図9で示したグラフの場合は、1/32に感度を低下させた際の検出結果である。すなわち、撮像素子100でテクネチウム-99mのガンマ線を検出する場合には、1行のみの画素の露光による検出であっても、散乱ガンマ線とプライマリのガンマ線とをエネルギー分別することが可能であることが図9に示されている。
 なお、一般的に、人体に投与された放射線医薬からのガンマ線を検出する際において、1個のガンマカメラにシンチレーション光が誘導される5平方センチメートルのシンチレータへのガンマ線の入射頻度(入射イベント頻度)は、1秒あたり1000回程度である。すなわち、1個のガンマカメラへのシンチレーション光の入射頻度(入射イベント頻度)は、1秒あたり1000回程度である。
 なお、撮像素子100は、5行の画素で循環駆動(4行の画素が同時に露光)させる場合には、25μ秒のサイクルで光の入射イベントを検出可能であり、1秒間に4万回(1/25×10-6)の入射イベントを検出可能である。また、撮像素子100は、全ての行(32行)の画素で循環駆動(31行の画素が同時に露光)させる場合には、160μ秒のサイクルで光の入射イベントを検出可能であり、1秒間に6250回(1/160×10-6)の入射イベントを検出可能である。
 このように、撮像素子100は、人体に投与された放射線医薬からのガンマ線の検出などにおいて、ほぼ正確にイベント数を計測することが可能である。
 次に、撮像素子100の効果について図10を参照して説明する。
 [効果例]
 図10は、本技術の第1の実施の形態の撮像素子100の露光動作および読み出し動作の一例と、他の撮像素子の露光動作および読み出し動作の一例とを模式的に示す図である。
 なお、図10では、撮像素子に配置される画素のうちの一部の行の画素を駆動することを想定して説明する。
 図10aには、横方向を共通の時間軸を示す方向として、他の撮像素子における信号の読み出しタイミングを示す模式図(タイミングチャート581)と、読み出された行ごとのカウント数を模式的に示すグラフ(グラフ582)とが示されている。
 タイミングチャート581には、横方向を時間軸を示す方向とし、縦方向を信号が読み出される行(読み出し行アドレス)を示す方向として、他の撮像素子における信号の読み出しタイミングを示す太線(読み出しタイミング583)が模式的に示されている。また、タイミングチャート581には、露光の開始から終了までの期間を示す両矢印(単位露光期間584)と、読み出す行アドレスの最後から次の読み出しの最初の行アドレスへの移動を示す矢印(矢印585)とが示されている。また、タイミングチャート581には、シンチレーション光の照射タイミング(時刻T21、時刻T22)が示されている。
 ここで、他の撮像素子における読み出し動作について説明する。他の撮像素子では、撮像素子から信号を読み出すために、水平同期信号および垂直同期信号が必要である。水平同期信号は、各行の読み出しを開始する際に必要であり、垂直同期信号は、読み出しの最後の行の読み出しが終わった後に、次の読み出しの最初の行の読み出しを開始する際に必要である。垂直同期信号が必要であるため、最後の行の読み出しの終了タイミングから次の読み出しの最初の行の読み出しの開始タイミングまでに待ち時間が発生する(例えば、矢印585の両端の横方向の差が示す時間差)。
 この待ち時間が発生するため、全ての画素が露光中となる期間が発生し、検出対象の光の入射タイミングによっては、露光期間中の画素の数が変わってしまう。例えば、時刻T21では1行の画素が読み出し期間中である可能性が高い。一方、時刻T22では、全ての画素が露光期間中であり、読み出し期間中の行はない。このように、検出対象の光の入射タイミングによって露光期間中の画素の数が変わってしまうと、散乱ガンマ線とプライマリのガンマ線とを図9で示したようなエネルギー分別で識別する際の計算が難しくなる。
 また、待ち時間は、駆動対象の行の数をどれだけ減らしても、待ち時間の分を少なくすることができない。このため、待ち時間の分だけ露光時間が長くなり(すなわち、待ち時間の分だけフレームレートが低くなり)、1回の露光期間中に検出対象の光の入射イベントが複数回起こる可能性が高くなる。なお、1回の露光期間中に検出対象の光の入射イベントが複数回起こると、ガンマ線のエネルギー分別も、フォトンカウンティングも不可能となる。
 図10bには、横方向を共通の時間軸を示す方向として、撮像素子100における信号の読み出しタイミングを示す模式図(タイミングチャート591)と、読み出された行ごとのカウント数を模式的に示すグラフ(グラフ592)とが示されている。なお、タイミングチャート591およびグラフ592に示すものは、図10aのタイミングチャート581およびグラフ582に示したものと同様のものである。すなわち、図10bの読み出しタイミング593、単位露光期間594、矢印595、時刻T31、時刻T32は、図10aの読み出しタイミング583、単位露光期間584、矢印585、時刻T21、時刻T22にそれぞれ対応する。
 図1乃至図9において示したように、撮像素子100では、何れのタイミングにおいても露光中の画素の数が同じになるように駆動される。すなわち、撮像素子100では、何れのタイミングにおいても1行が読み出し期間中となり、その読み出し期間中の1行以外は全て露光期間中になるように画素が駆動される。すなわち、図10aにおいて示した他の撮像素子において発生する待ち時間が発生せずに、最後の行の読み出しの終了タイミングと次の読み出しの最初の行の読み出しの開始タイミングとが同時になる(矢印595の両端の横方向の差(時間差)が無い)。このため、撮像素子100は、他の撮像素子と比較して、露光時間が短縮されて露光および読み出しが一巡する時間が短縮する(すなわち、待ち時間の分だけフレームレートが高くなる)。これにより、露光頻度が上がり、時間分解能が向上する。
 なお、撮像素子100では、待ち時間が発生しないため、読み出し時間と、駆動対象の行の数とに基づいて露光時間が決定される。すなわち、駆動対象の行の数が1/Kになれば、1回の動作時間(露光+読み出し時間)も1/Kとなり、感度が略1/Kとなるものの、時間分解能が略K倍向上する。このように、撮像素子100では、感度と時間分解能とがトレードオフの関係にある。しかしながら、撮像素子100では、開始および終了の行アドレスの指定により駆動対象の行の数を自由に設定できるため、検出対象のガンマ線のシンチレータへの入射頻度に応じて感度および時間分解能を最適に調整することが可能である。
 なお、撮像素子100は、何れのタイミングにおいても露光中の行の数が同じであるため、1つの行をグループ(区画)と見立てると、単一の受光面が複数グループに分割されていると捉えることができる。また、光が受光面に均一に入射する場合には、何れのタイミングにおいても露光中の行の数が同じであり、それぞれの行(グループ)における画素の数が同じであるため、それぞれの行の出力が受光面(撮像素子100)全体への光入射の量を反映していると考えることができる。
 すなわち、撮像素子100を用いることにより、シンチレーション光を適切に検出することができる。
 次に、撮像素子100を備える装置について図11を参照して説明する。
 [撮像素子100を備える装置の例]
 図11は、本技術の第1の実施の形態の撮像素子100を備えた検出装置(検出装置600)の一例と、光電子増倍管を備えた従来の検出装置の一例とを模式的に示す図である。
 ここでは、一例として、体内にテクネチウム等微量のガンマ線源を導入し、放出されるガンマ線の位置情報からガンマ線源の体内分布を求める際に用いられるSPECT(Single Photon Emission Computed Tomography)装置におけるガンマ線の検出器を想定して説明する。なお、SPECT装置の基本的な構成や信号処理内容については、既知であり(例えば、特開2006-242958、特表2006-508344)、本技術がガンマ線の検出部に関するものであるため、ここでの詳細な説明を省略する。
 図11aには、光電子増倍管を備えた従来の検出装置の一例が示されている。ガンマ線の検出には、図11aに示すようにシンチレータと光電子増倍管とを組み合わせた装置が従来から使用される。
 図11aには、人体(人体680)に取り込まれたガンマ線源(ガンマ線源681)を検出する従来の検出装置の構成として、コリメータ691と、シンチレータ692と、光電子増倍管693と、変換部694と、データ処理部695とが示されている。
 コリメータ691は、シンチレータ692のガンマ線の入射面に垂直に入射するガンマ線のみを通過させ、斜めに入射するガンマ線を遮るものである。コリメータ691は、例えば、小さい穴が多数開いた鉛の板により構成される。
 シンチレータ692は、電子線、電磁波などのエネルギーを吸収して蛍光を発するものである。例えば、ガンマ線を検出するためのシンチレータ692として、タリウム活性化ヨウ化ナトリウム(NaI(TI))が用いられる。
 光電子増倍管693は、光電変換によって発生した電子を電子なだれにより増幅し、増幅した結果をアナログパルスとして出力するものである。この光電子増倍管693は、電子を増幅するために、電子を加速するための高電圧を必要とする。光電子増倍管693は、生成したアナログパルス(アナログ信号)を、変換部694に供給する。なお、SPECT装置において、光電子増倍管693は、数十個が並べて配置される。図11aでは、3つの光電子増倍管693が模式的に示されている。
 変換部694は、光電子増倍管693から供給されたアナログパルスをデジタル変換し、サンプル区間ごとのデジタル値として出力するものである。この変換部694は、光電子増倍管693ごとに設けられる。変換部694は、デジタル値をデータ処理部695に供給する。
 データ処理部695は、変換部694から供給されたデジタル値に基づいて、検出対象を解析するものである。例えば、データ処理部695は、変換部694が出力したデジタル値に基づいて、同時に発生したシンチレーション光の入射イベントの出力の総和からガンマ線のエネルギーを特定する。また、データ処理部695は、同時に発生したシンチレーション光の入射イベントの出力の重心からガンマ線の入射位置を特定する。
 このように、従来の検出装置では、光電子増倍管を備えたものが主流である。また、テルル化カドミウム(CdTe)等の特殊な半導体を用いても行われることがある。しかしながら、いずれも検出素子は非常に高価であるため、それらを多数並べて検出器を構成すると、検出器だけで多額の費用を要していた。さらに、これらの検出器の出力はアナログパルスであるため、出力のパルス高を高速に解析(測定、分別、パルス数のカウントなど)するための外部装置が必要である。例えば、図11aの場合には、変換部694が光電子増倍管693の個数分必要である。また、厳重な回路ノイズ対策も必要である。このため、光電子増倍管やテルル化カドミウムなどの従来から用いられている検出素子を多数並べて検出器を構成すると、外部装置の規模が巨大化し、放射線撮像装置は高価かつ大型なものになる。
 図11bには、撮像素子100を備えた検出装置(検出装置600)の一例が示されている。
 図11bには、検出装置600の構成として、コリメータ691と、シンチレータ692と、光ガイド部610と、撮像素子100と、データ処理部620とが示されている。なお、コリメータ691およびシンチレータ692は、図11aに示したものと同様のものであるため、ここでの説明を省略する。また、撮像素子100は、配置される数十個のうちの、3つの光電子増倍管693が図11bにおいて模式的に示されている。
 光ガイド部610は、シンチレータ692において発生したシンチレーション光を集め、この集めたシンチレーション光を撮像素子100へ導く機能(光ガイド機能)を備えるものである。なお、光ガイド部610は、光ガイド部610に入射したシンチレーション光の分布を略均一させる光均一化機能を備え、略均一化させたシンチレーション光を撮像素子100の画素アレイに照射する。すなわち、光ガイド部610は、入射面(光ガイド部610のシンチレータ692との接合面)に不均一な分布で入射したシンチレーション光を、撮像素子100の画素アレイの各画素に同じ数ずつ入射するように分配する役割を果たす。
 光ガイド部610は、例えば、反射を用いたカライドスコープ、小型レンズを敷き詰めたフライレンズ等のインテグレートレンズ、回折を用いた回折光学素子(DOE)、ガラスや樹脂に光を散乱させる微粒子やドットを添加した光散乱材等により実現される。また、光均一化機能を備えた光ファイバーや、複数の光均一化機能を備えた光ファイバーを束ねたライトガイドなどによっても実現することもできる。
 データ処理部620は、撮像素子100から供給されたデジタル値に基づいて、検出対象を解析するものである。なお、このデータ処理部620は、デジタル値の供給元が異なる以外はデータ処理部695と同様のものであるため、ここでの詳細な説明を省略する。
 ここで、ガンマ線源681から放射されたガンマ線の検出について説明する。図11bには、放射されたガンマ線のうちの散乱を受けていないガンマ線(プライマリのガンマ線)のシンチレータ692への軌跡を示す矢印(矢印682)と、散乱の影響を受けたガンマ線(散乱ガンマ線)のシンチレータ692への軌跡を示す矢印(矢印683)とが示されている。
 検出装置により検出されるプライマリのガンマ線は、矢印682に示すように、ガンマ線源681から放射されて、直進が阻害されずにシンチレータ692へ入射したものである。そのため、プライマリのガンマ線により発生するシンチレーション光は、プライマリのガンマ線のエネルギーを反映した光量となる。
 一方、検出装置により検出される散乱ガンマ線は、ガンマ線源681から放射された後に電子と衝突して散乱(コンプトン散乱)したガンマ線であって、矢印683に示すようにシンチレータ692へ垂直に入射したガンマ線である。この散乱ガンマ線は、本来の位置情報を失ったノイズとなる情報であり、プライマリのガンマ線よりエネルギーが低い。
 また、検出装置は、プライマリのガンマ線および散乱ガンマ線のみでなく、宇宙線などの異常に高いエネルギーが検出されるノイズも検出する。
 このように、目的のガンマ線もノイズとなるガンマ線も両方を検出するため、SPECT装置は、検出された信号のうちのノイズの信号と、プライマリのガンマ線の信号とをエネルギー弁別によってフィルタリングする。すなわち、データ処理部620は、各撮像素子100からの出力(デジタル信号)に基づいて、検出した個々のガンマ線について、エネルギー分別によるノイズ判定と、線源の位置判定とを行う。
 シンチレータ692が区画分けされていない一枚板の場合には、シンチレーション光は、複数の光ガイド部610に入射して複数の撮像素子100によって同時に検出される。データ処理部620は、同時に検出した「1」の値のバイナリ判定値の総和からガンマ線のエネルギー量を特定し、特定したエネルギー量からプライマリのガンマ線の検出結果を特定する。そして、データ処理部620は、プライマリのガンマ線の検出結果における「1」の値のバイナリ判定値の重心位置からガンマ線の入射位置を特定する。このようにして、プライマリのガンマ線の検出結果が蓄積されて、ガンマ線源の体内分布が同定される。
 なお、撮像素子100は、光電子増倍管(PMT:PhotoMultiplier Tube)と比較して、小型軽量かつ安価であるため、高密度に多数実装することが可能である。このため、位置検出の解像度は、高密度に多数実装した分ほど高くなる。また、高密度に多数実装すると、複数のガンマ線がほぼ同時に異なる場所に入射した場合に出力の強度分布に顕れる。このため、パタンマッチング等を利用してそれを判別し、高精度に検出することが可能となる。
 [撮像素子の動作例]
 次に、本技術の第1の実施の形態においてシンチレーション光を検出する際における撮像素子100が行う動作について図面を参照して説明する。
 図12は、本技術の第1の実施の形態の撮像素子100が撮像を行う際の処理手順の一例を示すフローチャートである。
 なお、図12では、撮像素子100が設けられる装置の制御部において、露光頻度が決定され、この露光頻度に合う駆動対象の画素の行数が決定され、この行数に応じた開始行アドレスおよび終了行アドレスが決定されていることを想定して説明する。すなわち、信号線291および信号線292に、決定された終了行アドレスおよび開始行アドレスに関する情報が供給されていることとする。
 まず、開始行アドレスが、開始行アドレスレジスタ220により取得される(ステップS901)。また、終了行アドレスが、終了行アドレスレジスタ230により取得される(ステップS902)。
 そして、取得した開始行アドレスおよび終了行アドレスに基づいて、駆動対象の行のアドレス(駆動行アドレス)が循環型アドレス生成部210により生成され、この生成された駆動行アドレスに基づいて撮像処理が行われる(ステップS903)。
 このように、本技術の第1の実施の形態によれば、何れのタイミングにおいても露光中の画素数を同じにするとともにフレームレートが高まり、時間分解能を向上させることができる。すなわち、本技術の第1の実施の形態によれば、フォトンカウンティングに適した画素の駆動を行うことができる。
 <2.第2の実施の形態>
 本技術の第1の実施の形態では、撮像素子100の循環駆動に着目して説明した。撮像素子100は、開始行アドレスと終了行アドレスとの間の差を調整することで、循環駆動させる行(グループ)の数をダイナミックに変更させて、光検出の時間分解能と感度を調整することができる。
 なお、時間分解能と感度とはトレードオフの関係にあるため、撮像素子100を備えた装置(例えば、放射線検出器)に自動露出(AE:Automatic Exposure)機構があると便利である。
 そこで、本技術の第2の実施の形態では、撮像素子100に対する自動露出機構について、図13乃至図14を参照して説明する。
 また、本技術の第2の実施の形態では、撮像素子100を用いて光を検出する検出装置(検出装置700)の一例として、1個の撮像素子100に1個のシンチレータを設けた例を示す。すなわち、ここでは、図11bにおいて示した単板のシンチレータを複数の撮像素子100で共有する例とは別の検出装置の例を示す。
 [検出装置の機能構成例]
 図13は、本技術の第2の実施の形態の検出装置(検出装置700)の一例を模式的に示す図である。
 検出装置700は、コリメータ730と、シンチレータ720と、光ガイド部710と、撮像素子100と、データ処理部740と、露出設定部750とを備える。なお、露出設定部750以外の各構成は、図11bにおいて示したものとそれぞれ対応する。
 すなわち、検出装置700では、1個の撮像素子に対して1個のシンチレータからのシンチレーション光が誘導される。なお、この検出装置700は、例えば、SPECT装置、PET装置、マンモグラフィー、CT装置などのX線の検出装置に設けられる場合には、アレイ状に多数並べられる。
 このように、個々の撮像素子に対応するように区切られたシンチレータ(コリメータにより個々のシンチレータが囲まれる)を備える検出装置700をアレイ状に多数並べることにより、空間分解能を高くすることができる。
 露出設定部750は、撮像素子100から供給されたデジタル値に基づいて、適切な露光(露出)時間を設定するものである。この露出設定部750は、撮像素子100に供給する開始行アドレスおよび終了行アドレスを変更することで、駆動対象の行の数を変更し、これにより撮像素子100での露出の時間を制御する。露出設定部750は、適切な露光となる開始行アドレスおよび終了行アドレスを検出すると自動露出を終了させる。なお、自動露出については、図14および図15を参照して説明するため、ここでの詳細な説明を省略する。露出設定部750は、開始行アドレスおよび終了行アドレスを、信号線290を介して撮像素子100の循環型アドレス生成部210に供給する。
 [検出装置の動作例]
 次に、本技術の第2の実施の形態における検出装置700による自動露出の動作について図面を参照して説明する。
 図14は、本技術の第2の実施の形態における検出装置700が自動露出を行う際の処理手順の一例を示すフローチャートである。なお、ここで示す各処理手順は露出設定部750により行われる。
 まず、露出決定の基準となる開始行アドレスおよび終了行アドレスが撮像素子100へ供給される(ステップS921)。続いて、撮像素子100からのデジタル値(「0」か「1」)を総和した値(総和値)のカウントが、「0」の値に初期化される(ステップS922)。
 その後、供給された開始行アドレスおよび終了行アドレスに基づいた1回の露光(駆動)によりサンプルを検出した撮像素子100から出力されたデジタル値(開始行アドレスから終了行アドレスまでの行の各画素の出力)が取得される(ステップS923)。続いて、取得されたデジタル値の全て(開始行アドレスから終了行アドレスまでの行の各画素の出力の全て)が、総和値に加算される(ステップS924)。その後、取得されたデジタル値の総和値への加算が所定回数行われたか否かが判断される(ステップS925)。そして、所定回数行われていないと判断された場合には(ステップS925)、ステップS923に戻る。
 一方、所定回数行われたと判断された場合には(ステップS925)、所定回数の露光における最大の総和値(最大値)が算出される(ステップS926)。例えば、1回の露光で128画素がデジタル値を生成(2行で循環駆動)する場合において、100回の加算を行う場合には、最大値は、12800(128×100)となる。
 そして、総和値と、最大値とに基づいて、シンチレーション光の入射イベントの発生確率が算出される(ステップS927)。その後、算出された発生確率が上限の閾値より上であるか否かが判断される(ステップS928)。
 そして、発生確率が上限の閾値より上であると判断された場合には(ステップS928)、現在設定されている開始行アドレスから終了行アドレスまでの行数よりも循環駆動される行数が減少するように、開始行アドレスおよび終了行アドレスが変更される(ステップS929)。また、この変更された開始行アドレスおよび終了行アドレスが撮像素子100へ供給され(ステップS929)、ステップS922に戻る。
 一方、発生確率が上限の閾値より下であると判断された場合には(ステップS928)、発生確率が下限の閾値より下であるか否かが判断される(ステップS930)。そして、発生確率が下限の閾値より下であると判断された場合には(ステップS930)、現在設定されている開始行アドレスから終了行アドレスまでの行数よりも循環駆動される行数が増加するように、開始行アドレスおよび終了行アドレスが変更される(ステップS931)。また、この変更された開始行アドレスおよび終了行アドレスが撮像素子100へ供給され(ステップS931)、ステップS922に戻る。
 また、発生確率が下限の閾値より上であると判断された場合には(ステップS930)、現在の設定(開始行アドレスから終了行アドレス)でサンプルのガンマ線を検出することが決定され、この現在設定されている開始行アドレスおよび終了行アドレスが撮像素子100へ供給される(ステップS932)。そして、ステップS932の後に、自動露出の処理手順は終了する。
 ここで、ステップS928乃至ステップS931について説明する。ステップS928において発生確率が上限の閾値より上の場合とは、現在の設定で循環駆動される行数による露光時間(時間分解能)での所定回数の露光で検出されたシンチレーション光の数(ガンマ線の数)が多すぎる場合である。このため、ステップS929では、露光時間が少なくなり時間分解能が向上するように循環駆動される行数を減少させる。これにより、所定回数の検出にかかる時間が短くなり、この時間内に入射するシンチレーション光の数(ガンマ線の数)が減少し、発生確率も減少する。
 また、ステップS930において発生確率が下限の閾値より下の場合とは、現在の設定で循環駆動される行数による露光時間(時間分解能)での所定回数の露光で検出されたシンチレーション光の数(ガンマ線の数)が少なすぎる場合である。このため、ステップS931では、露光時間が長くなるように循環駆動される行数を増加させる。これにより、所定回数の検出にかかる時間が長くなり、この時間内に入射するシンチレーション光の数(ガンマ線の数)が増加し、発生確率も増加する。また、循環駆動される行数を増加させることから、時間分解能が低下するものの検出精度が上昇し、エネルギー分解能(検出精度)が向上する。
 このように、本技術の第2の実施の形態では、発生確率が所定の範囲内(上限の閾値と下限の閾値との間)となるように駆動対象の行数(露出)が調整される。すなわち、本技術の第2の実施の形態では、露出設定部750から撮像素子100に供給される開始行アドレスおよび終了行アドレスを、試料(サンプル)に応じて自動的に設定することができる。
 なお、この自動露出調整は、撮像素子100ごとにダイナミックかつ独立に実行することができる。すなわち、撮像素子100を検出部に複数設ける装置においては、個々に自動露出調整を行うことで、撮像の品質を大きく向上させることができる。また、撮像素子100を単体で用いる場合においても、低線量時の高精度な検出と、高線量時でも測定が振り切れない良好なダイナミックレンジとを両立させることが可能である。
 このように、本技術の第2の実施の形態によれば、シンチレーション光を受光するフォトンカウント用の撮像素子の動作を自動露出で決定することができる。
 このように、本技術の実施の形態によれば、時間分解能を向上させることができる。特に、非常に高いフレームレートを設定することができるため、非常に高い時間分解能を得ることができる。また、CMOSイメージセンサであるために安値で大量生産することができるため、光電子増倍管の値段が高いために少数の光検出部しか設けられなかった電子機器において多数の光検出部を設けることが可能になり、検出速度を向上させることができる。
 なお、本技術の実施の形態において示した撮像素子は、光電子増倍管やアバランシェフォトダイオード、或いはフォトダイオードなどが設けられていた従来の電子機器における光検出部として幅広く適用することができる。
 なお、本技術の実施の形態では、循環型アドレス生成部210により露光画素の数が何れのタイミングにおいても一定となる例について説明したが、これに限定されるものではない。一般な通常のCMOSイメージセンサにおいても、このように駆動できるのであれば、同様に実施することができる。また、フォトンカウンティングを想定して説明したが、超高感度を要しない場合には、通常の感度のCMOSセンサーにおいて本技術の実施の形態と同様の動作を行わせてもよい。
 なお、本技術の実施の形態は、ここまでに説明した装置の他に、安価な半導体撮像素子を用いた小型軽量で超高感度のポケット線量計なども実現することができる。この場合についても、放射線のエネルギー検出とフォトンカウントが同時に行えるため、例えば、放射線のエネルギーに応じた計数率、即ち放射線のエネルギースペクトルを計測することができる。すなわち、G(E)関数法やDBM法などによる線量補正(例えば、特開2004-108796参照)を適切に実施することができる。なお、撮像素子100の出力はデジタル値であるため、従来の検出器(例えば、光電子増倍管)において必要であったマルチチャンネルアナライザは不要である。このため、撮像素子100を用いると、安価なワンチップマイコンで補正を含めた全ての後段処理を行うことができる。すなわち、撮像素子100を用いることにより、小型軽量かつ高精度で安価な線量計を実現することが可能になる。
 なお、本技術の実施の形態ではシンチレーション光の検出によるガンマ線の測定を想定したが、これに限定されるものではなく、微弱な蛍光を検出する装置などにおいても本技術の実施の形態は適用可能である。蛍光観察においては、励起光をパルス状に照射すると蛍光体からはパルス状の蛍光が発生する。本発明を用いて検出の時間分解能を向上させれば、その分多くの検査箇所を高速にスキャンしながら蛍光検出を実施でき、観察のスループットを大幅に向上させることが可能になる。従って本発明を用いた光検出装置は、DNAチップ用の蛍光スキャナーや、イメージングプレートの輝尽発光検出用スキャナーの光検出器としても使用することが可能である。
 なお、本技術の実施の形態では、間引いて駆動しないことを想定して説明したが、間引いて駆動する場合には、図4のカウンタ250において、クロック生成部160から供給されたクロックに対して、2ずつカウントを上げて駆動行アドレスを供給したり(1行間引き)、3ずつカウントを上げて駆動行アドレスを供給したりするようにすればよい。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本技術は以下のような構成もとることができる。
(1) 2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、
 電荷の読み出し期間中の前記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の前記グループの数を前記撮像動作中における何れのタイミングにおいても同一の数とするように前記画素アレイ部の駆動を制御する制御部と
を具備する撮像素子。
(2) 前記グループは、当該グループに属する前記画素の数が、他のグループに属する前記画素の数と略同一である前記(1)に記載の撮像素子。
(3) 前記複数の画素は、前記画素アレイ部に行列状に配置されて行単位で駆動され、
 前記制御部は、前記行を前記グループの単位として前記制御を行う前記(1)または(2)に記載の撮像素子。
(4) 前記制御部は、駆動対象の行を指定するための駆動行アドレスを所定の時間長ごとに更新し、当該更新された駆動行アドレスの更新タイミングに基づいて前記制御を行う前記(3)に記載の撮像素子。
(5) 前記制御部は、前記駆動の開始の行アドレスを示す開始行アドレス情報と前記駆動の終了の行アドレスを示す終了行アドレス情報とに基づいて、前記駆動行アドレスが前記終了の行アドレスを示す状態で前記更新を行う場合には、前記駆動行アドレスを前記開始の行アドレスへ更新する前記(4)に記載の撮像素子。
(6) 前記制御部は、現在の読み出し動作における駆動対象の行における露光の終了タイミングと、1つ前の読み出し動作における駆動対象の行における次の露光の開始タイミングとを略同じタイミングにして前記制御を行う前記(5)に記載の撮像素子。
(7) 前記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部をさらに具備する前記(6)に記載の撮像素子。
(8) 前記画素アレイ部は、光子数の検出対象となる入射光の光軸に対する直交方向への分布を略均一化させる光均一化部により均一化された光を受光する前記(1)に記載の撮像素子。
(9) 2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、
 電荷の読み出し期間中の前記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の前記グループの数を前記撮像動作中における何れのタイミングにおいても同一の数とするように前記画素アレイ部の駆動を制御する制御部と
を具備する電子機器。
(10) 放射線の入射により発生したシンチレーション光を前記画素アレイ部に供給するシンチレータと、
 前記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部と、
 前記バイナリ判定の結果であるバイナリ値を、略同じタイミングで検出された前記シンチレーション光ごとに総和して、当該総和した値から前記放射線のエネルギー量を算出する算出部と
をさらに具備する前記(9)に記載の電子機器。
 100 撮像素子
 110 垂直駆動回路
 130 読み出し回路
 131 レジスタ
 140 水平駆動回路
 150 出力回路
 160 クロック生成部
 210 循環型アドレス生成部
 220 開始行アドレスレジスタ
 230 終了行アドレスレジスタ
 240 比較器
 250 カウンタ
 300 画素アレイ部
 310 画素
 400 判定回路

Claims (10)

  1.  2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、
     電荷の読み出し期間中の前記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の前記グループの数を前記撮像動作中における何れのタイミングにおいても同一の数とするように前記画素アレイ部の駆動を制御する制御部と
    を具備する撮像素子。
  2.  前記グループは、当該グループに属する前記画素の数が、他のグループに属する前記画素の数と略同一である請求項1記載の撮像素子。
  3.  前記複数の画素は、前記画素アレイ部に行列状に配置されて行単位で駆動され、
     前記制御部は、前記行を前記グループの単位として前記制御を行う請求項2記載の撮像素子。
  4.  前記制御部は、駆動対象の行を指定するための駆動行アドレスを所定の時間長ごとに更新し、当該更新された駆動行アドレスの更新タイミングに基づいて前記制御を行う請求項3記載の撮像素子。
  5.  前記制御部は、前記駆動の開始の行アドレスを示す開始行アドレス情報と前記駆動の終了の行アドレスを示す終了行アドレス情報とに基づいて、前記駆動行アドレスが前記終了の行アドレスを示す状態で前記更新を行う場合には、前記駆動行アドレスを前記開始の行アドレスへ更新する請求項4記載の撮像素子。
  6.  前記制御部は、現在の読み出し動作における駆動対象の行における露光の終了タイミングと、1つ前の読み出し動作における駆動対象の行における次の露光の開始タイミングとを略同じタイミングにして前記制御を行う請求項5記載の撮像素子。
  7.  前記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部をさらに具備する請求項6記載の撮像素子。
  8.  前記画素アレイ部は、光子数の検出対象となる入射光の光軸に対する直交方向への分布を略均一化させる光均一化部により均一化された光を受光する請求項1記載の撮像素子。
  9.  2以上のグループに分類される複数の画素を備え、同一のグループに属する画素は同一のタイミングで駆動される画素アレイ部と、
     電荷の読み出し期間中の前記グループの数を撮像動作中における何れのタイミングにおいても同一の数とし、電荷の露光蓄積期間中の前記グループの数を前記撮像動作中における何れのタイミングにおいても同一の数とするように前記画素アレイ部の駆動を制御する制御部と
    を具備する電子機器。
  10.  放射線の入射により発生したシンチレーション光を前記画素アレイ部に供給するシンチレータと、
     前記画素から出力された画素信号をデジタル値に変換し、当該変換されたデジタル値を閾値と比較して、当該画素信号を生成した画素への光子の入射の有無をバイナリ判定する判定部と、
     前記バイナリ判定の結果であるバイナリ値を、略同じタイミングで検出された前記シンチレーション光ごとに総和して、当該総和した値から前記放射線のエネルギー量を算出する算出部と
    をさらに具備する請求項9記載の電子機器。
PCT/JP2013/071957 2012-09-26 2013-08-15 撮像素子および電子機器 WO2014050343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/429,375 US9513382B2 (en) 2012-09-26 2013-08-15 Image-capturing device and electronic device
US15/363,474 US10027886B2 (en) 2012-09-26 2016-11-29 Image-capturing device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211920 2012-09-26
JP2012-211920 2012-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/429,375 A-371-Of-International US9513382B2 (en) 2012-09-26 2013-08-15 Image-capturing device and electronic device
US15/363,474 Continuation US10027886B2 (en) 2012-09-26 2016-11-29 Image-capturing device and electronic device

Publications (1)

Publication Number Publication Date
WO2014050343A1 true WO2014050343A1 (ja) 2014-04-03

Family

ID=50387755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071957 WO2014050343A1 (ja) 2012-09-26 2013-08-15 撮像素子および電子機器

Country Status (2)

Country Link
US (2) US9513382B2 (ja)
WO (1) WO2014050343A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010066A (ja) * 2014-06-25 2016-01-18 キヤノン株式会社 放射線撮像装置および放射線撮像システム
WO2016088426A1 (ja) * 2014-12-01 2016-06-09 ソニー株式会社 放射線計数装置、および、放射線計数装置の制御方法
JP2019088011A (ja) * 2019-01-08 2019-06-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム
US10509133B2 (en) 2014-12-01 2019-12-17 Sony Semiconductor Solutions Corporation Radiation counting device and method of controlling radiation counting device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013084839A1 (ja) * 2011-12-09 2015-04-27 ソニー株式会社 撮像装置、電子機器、輝尽発光検出スキャナーおよび撮像方法
WO2013128998A1 (ja) * 2012-02-27 2013-09-06 ソニー株式会社 撮像素子および電子機器
US9036065B1 (en) * 2012-08-16 2015-05-19 Rambus Inc. Shared-counter image sensor
WO2014050343A1 (ja) * 2012-09-26 2014-04-03 ソニー株式会社 撮像素子および電子機器
JP2016180625A (ja) * 2015-03-23 2016-10-13 株式会社東芝 放射線検出装置、入出力較正方法、及び入出力較正プログラム
JP6626301B2 (ja) * 2015-09-28 2019-12-25 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
US10416323B2 (en) * 2016-03-29 2019-09-17 Canon Kabushiki Kaisha Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
CN107147840A (zh) * 2017-03-31 2017-09-08 上海品臻影像科技有限公司 一种x射线影像系统图像获取方法及装置
JP6961465B2 (ja) * 2017-11-07 2021-11-05 キヤノン株式会社 電子線検出素子、電子顕微鏡、および、透過型電子顕微鏡

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097581A (ja) * 2009-10-01 2011-05-12 Sony Corp 撮像素子およびカメラシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050343A1 (ja) * 2012-09-26 2014-04-03 ソニー株式会社 撮像素子および電子機器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097581A (ja) * 2009-10-01 2011-05-12 Sony Corp 撮像素子およびカメラシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010066A (ja) * 2014-06-25 2016-01-18 キヤノン株式会社 放射線撮像装置および放射線撮像システム
WO2016088426A1 (ja) * 2014-12-01 2016-06-09 ソニー株式会社 放射線計数装置、および、放射線計数装置の制御方法
US10509133B2 (en) 2014-12-01 2019-12-17 Sony Semiconductor Solutions Corporation Radiation counting device and method of controlling radiation counting device
JP2019088011A (ja) * 2019-01-08 2019-06-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Also Published As

Publication number Publication date
US9513382B2 (en) 2016-12-06
US20150226865A1 (en) 2015-08-13
US20170150044A1 (en) 2017-05-25
US10027886B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2014050343A1 (ja) 撮像素子および電子機器
US10063784B2 (en) Imaging apparatus, an electronic device, and imaging method to uniformize distribution of incident light, and a photostimulated luminescence detection scanner
US9568618B2 (en) Semiconductor photodetector and radial ray detector
JP6087780B2 (ja) 撮像素子、放射線検出装置および撮像素子の制御方法
US10197684B2 (en) Radiation imaging apparatus, control method thereof, and non-transitory computer-readable storage medium
JP6821596B2 (ja) 光パルス検出装置、光パルス検出方法、放射線計数装置、および生体検査装置
TWI638180B (zh) 成像器件及電子裝置
JP6984417B2 (ja) 撮像素子および駆動方法、並びに電子機器
JP6634017B2 (ja) 画素回路、半導体光検出装置および放射線計数装置
WO2017130552A1 (ja) 放射線撮像装置、その制御方法及びプログラム
US9897707B2 (en) X-ray detector operable in a mixed photon-counting/analog output mode
US7851764B2 (en) Method of high-energy particle imaging by computing a difference between sampled pixel voltages
JP2017090214A (ja) 放射線撮像装置、その制御方法及びプログラム
KR20140075423A (ko) 전자-정공쌍이 발생하는 횟수에 따라 x 선을 검출하는 x 선 검출기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP