WO2016088426A1 - 放射線計数装置、および、放射線計数装置の制御方法 - Google Patents
放射線計数装置、および、放射線計数装置の制御方法 Download PDFInfo
- Publication number
- WO2016088426A1 WO2016088426A1 PCT/JP2015/076137 JP2015076137W WO2016088426A1 WO 2016088426 A1 WO2016088426 A1 WO 2016088426A1 JP 2015076137 W JP2015076137 W JP 2015076137W WO 2016088426 A1 WO2016088426 A1 WO 2016088426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- radiation
- signal
- analog
- analog voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
Definitions
- the present technology relates to a radiation counting device and a method for controlling the radiation counting device.
- the present invention relates to a radiation counting device that performs analog-digital conversion and a method for controlling the radiation counting device.
- Radiation counting which counts the dose of radiation incident on a detector while performing individual energy separation in units of incident photons, is currently applied to various fields such as dosimeters and gamma cameras.
- a typical example is a dosimeter in a broad sense typified by a survey meter.
- a scintillator and a photomultiplier tube are usually used, and the energy and number of radiation incident on the detector are counted.
- the scintillator When one or more radiation photons are incident on the scintillator, the scintillator emits light, and emits a pulse of visible light whose amount is proportional to the energy of the radiation.
- Such a light emission pulse is emitted each time a radiation photon enters and is detected by a photomultiplier tube.
- the scintillator is covered with a partition wall in which only the surface directed to the photomultiplier tube is opened.
- the barrier blocks the intrusion of visible light from the outside and preferably reflects the light generated from the inside so that all of the light enters the photomultiplier tube.
- the photomultiplier tube converts the light emission pulse into electrons and amplifies it to generate an analog electric pulse.
- the pulse height of the analog electric pulse is proportional to the amount of light emitted from the scintillator, that is, the energy of radiation. Since an independent pulse is output each time one radiation photon is incident, the dosimeter can determine the number of incident radiation photons by counting the number of pulses.
- the detection circuit includes, for example, an amplifier, an integrator, and an AD (Analognato Digital) converter.
- the amplifier further amplifies the output analog signal, and the integrator integrates the pulse and the AD converter A / D conversion is performed.
- the digital processing circuit in the dosimeter accumulates the output results of the detection circuit in a predetermined period and derives the energy spectrum of the radiation photons. This indicates the abundance ratio of radiation photons captured by the dosimeter for each energy. This allows the dosimeter to identify the radiation source.
- the radiation captured by the scintillator has a transmission probability or a capture probability that differs for each energy. Therefore, if the digital processing circuit divides the number of captured photons for each energy by the capture probability, the number of incident photons can be obtained. In this way, dose correction is performed by the G function, DBM (Dyson Boson Mapping) method, or the like (see, for example, Patent Document 1).
- the photon counting of radiation as described above is mainly performed using a scintillator and a photomultiplier tube.
- the photomultiplier tube is expensive and is not suitable for reduction in size and weight.
- an APD Align® PhotoDiode
- SiPM Sicon® PhotoMultipliers
- the output signal is very weak and the output fluctuation due to temperature is severe, and it is easily affected by the external environment.
- the latter has a problem that a dark current is large because a high electric field is required, and a floor noise is large due to an after pulse, crosstalk or the like.
- Patent Document 2 proposes a new image sensor based on photon counting, which follows the circuit configuration of a CMOS (Complementary MOS) imager and increases the dynamic range by combining time division and surface division by a plurality of pixels. ing.
- CMOS Complementary MOS
- Such a device can also be used as a photon counting device in which the entire pixel array in the chip is one light receiving surface.
- the left image sensor includes an on-chip AD conversion circuit, receives a pixel signal, and determines whether or not a photon is incident on each pixel by providing a threshold value and performing binary determination.
- the AD conversion circuit performs AD conversion using the output voltage from the pixel when one photon is incident as a quantization unit.
- noise that is more than half of the quantization unit may occur, so that a digital signal error increases. This makes it difficult to accurately perform radiation counting.
- This technology was created in view of such a situation, and aims to accurately perform radiation counting.
- the present technology has been made in order to solve the above-described problems.
- the first aspect of the present technology is a scintillator that generates a photon when radiation is incident, and converts the photon into an electric charge for a predetermined period.
- the analog voltage is converted into a digital signal by a pixel circuit that generates an analog voltage corresponding to the amount of the accumulated charge and a predetermined quantization unit smaller than the analog voltage generated from one photon.
- a radiation counting device including an analog-digital conversion circuit for conversion, and a control method thereof. As a result, the analog voltage is converted into a digital signal by a predetermined quantization unit smaller than the analog voltage generated from one photon.
- the analog-digital conversion circuit may convert the analog voltage into a digital signal by the quantization unit not exceeding half of the analog voltage generated from one photon. As a result, the analog voltage is converted into a digital signal by a quantization unit not exceeding half of the analog voltage generated from one photon.
- the analog-to-digital conversion circuit may convert the input voltage into a digital signal by the quantization unit not exceeding 1/4 of the analog voltage generated from one photon. Good. This brings about the effect that the analog voltage is converted into a digital signal by a quantization unit not exceeding 1/4 of the analog voltage generated from one photon.
- the pixel circuit includes a photoelectric conversion unit that converts the photons into charges, and a charge accumulation unit that accumulates the charges and generates a voltage corresponding to the amount of the charges as the analog voltage. And an amplifier element that amplifies the analog voltage and outputs the amplified analog voltage to the analog-to-digital conversion circuit. As a result, the analog voltage is amplified and output.
- a plurality of the scintillators may be provided, and a predetermined number of the pixel circuits may be provided for each scintillator.
- the pixel circuit may be provided on a first substrate, and the detection circuit may be provided on a second substrate stacked on the first substrate. This brings about an effect that the analog voltage is converted into a digital signal by the detection circuit on the substrate laminated on the substrate on which the pixel circuit is provided.
- the pixel circuit includes a photoelectric conversion unit that converts the photons into electric charge, an intermediate node that holds the electric charge, and a first node that transfers the electric charge from the photoelectric conversion unit to the intermediate node.
- a first transfer unit a charge storage unit that stores the charge and generates a voltage corresponding to the amount of the charge as the analog voltage, and a first transfer unit that transfers the held charge from the intermediate node to the charge storage unit. 2 transfer units.
- the charge is transferred from the photoelectric conversion unit to the intermediate node, and the charge is transferred from the intermediate node to the charge storage unit.
- the digital signal processing unit may further include a data processing unit that counts the number of incident radiations. This brings about the effect that the number of incident radiation is counted.
- a predetermined number of the pixel circuits are arranged in a two-dimensional lattice pattern on the substrate, and the data processing unit calculates a sum of a certain number of the digital signal values as a light emission amount of the scintillator. It may be calculated as a value. This brings about the effect that the sum of the values of the digital signals from the pixel circuits arranged in a two-dimensional grid is calculated.
- FIG. 1 is an overall view showing a configuration example of a radiation counting apparatus according to a first embodiment. It is a block diagram which shows the example of 1 structure of the photodetector in 1st Embodiment. It is a figure which shows an example of the radiation count result in 1st Embodiment.
- 2 is a circuit diagram illustrating a configuration example of a pixel circuit according to the first embodiment.
- FIG. 3 is a timing chart illustrating an example of the operation of the pixel circuit in the first embodiment. It is a figure showing typically an example of the layout of the pixel circuit of a 1st embodiment of this art. It is a figure which shows the function structural example of the detection circuit in 1st Embodiment, and the operation example of a detection circuit.
- First embodiment (example of AD conversion with a quantization unit smaller than one photon signal) 2.
- Second Embodiment Example of AD conversion with a multi-head and a quantization unit smaller than one photon signal) 3.
- Third Embodiment (Example in which AD conversion is performed with a quantization unit smaller than one photon signal in a stacked photodetector) 4).
- Fourth Embodiment (Example in which all rows are exposed simultaneously and AD conversion is performed with a quantization unit smaller than one photon signal) 5.
- FIG. 1 is an overall view showing a configuration example of the radiation counting apparatus 100 according to the first embodiment.
- a in the figure is a cross-sectional view of the radiation counting apparatus 100.
- B in the figure is a perspective view of the radiation counting apparatus 100.
- the radiation counting apparatus 100 includes a light receiving unit 110 and a data processing unit 140.
- the light receiving unit 110 includes a scintillator 120, a partition wall 130, and a photodetector 200.
- the scintillator 120 generates photons when radiation is incident.
- the scintillator 120 includes, for example, sodium iodide (NaI) and is columnar processed into 4 millimeter (mm) squares.
- the partition wall 130 covers the scintillator 120 and blocks visible light. However, only the surface of the partition wall 130 facing the photodetector 200 is opened.
- the partition wall 130 is preferably made of a reflective material (for example, aluminum) that reflects light. As a result, most of the photons generated by the scintillator 120 are incident on the photodetector 200.
- the light detector 200 detects light and generates a digital signal.
- the photodetector 200 has a light receiving surface facing the scintillator 120, and a plurality of (for example, 520 ⁇ 520) pixel circuits 220 are provided on the light receiving surface in a two-dimensional lattice shape. Details of the pixel circuit 220 will be described later.
- the photodetector 200 supplies the generated digital signal to the data processing unit 140 via the signal line 119.
- the data processing unit 140 processes the digital signal and performs radiation counting.
- the data processing unit 140 determines the energy of one photon generated from radiation.
- the scintillator 120 and the photodetector 200 are desirably bonded by an optical adhesive having an appropriate refractive index, or a light guide made of fiber glass or the like may be inserted between them.
- FIG. 2 is a block diagram illustrating a configuration example of the photodetector 200 according to the first embodiment.
- the photodetector 200 includes a pixel array unit 210, detection circuits 240 and 260, switches 250 and 270, a reference voltage generation circuit 275, a row drive circuit 280, a timing control circuit 285, and an output circuit 290. Prepare. These circuits are provided in one chip.
- the pixel array unit 210 is provided with a plurality of pixel circuits 220 in a two-dimensional lattice shape.
- the plurality of pixel circuits 220 arranged in a predetermined direction are referred to as “rows”, and the plurality of pixel circuits 220 arranged in a direction orthogonal to the rows are referred to as “columns”.
- the detection circuit 240, the switch 250, the detection circuit 260, and the switch 270 are provided for each column.
- the odd-numbered pixel circuits 220 are connected to the detection circuit 240 via the vertical signal line 219, and the even-numbered pixel circuits 220 are connected to the detection circuit 260 via the vertical signal line 217.
- each of the pixel circuits 220 is connected to the row driving circuit 280 via the control line 218.
- the row drive circuit 280 controls each of the pixel circuits 220 according to the control of the timing control circuit 285.
- the row driving circuit 280 selects and exposes a pair of rows adjacent in the column direction, and causes the pixel circuits 220 in those rows to generate analog electric signals. This electric signal is read by the detection circuits 240 and 260 and converted into a digital signal. When the reading is completed, the row driving circuit 280 selects the next pair of rows and performs the same control. When reading of all rows is completed, image data for one frame is output.
- a pixel circuit 220 of 520 ⁇ 520 is provided and each of a pair of rows requires 16 microseconds ( ⁇ s)
- ⁇ s microseconds
- Ms milliseconds
- the detection circuit 240 converts an electric signal from the pixel circuit 220 in the odd-numbered row into a digital signal under the control of the timing control circuit 285.
- the detection circuit 240 supplies the converted digital signal to the switch 250.
- the detection circuit 260 detects light by converting an electrical signal from the pixel circuits 220 in even rows into a digital signal under the control of the timing control circuit 285.
- the detection circuit 260 supplies the converted digital signal to the switch 270.
- the switch 250 opens and closes the path between the corresponding detection circuit 240 and the output circuit 290.
- the switches 250 in each column sequentially supply digital signals to the output circuit 290 in accordance with control of a column driving circuit (not shown) that sequentially selects the columns.
- the switch 270 opens and closes a path between the corresponding detection circuit 260 and the output circuit 290.
- the switches 270 in each column sequentially supply digital signals to the output circuit 290 according to the control of the column driving circuit.
- the output circuit 290 outputs a digital signal to an image processing apparatus or the like.
- the timing control circuit 285 controls the operation timing of the row drive circuit 280, the reference voltage generation circuit 275, the detection circuit 240, and the detection circuit 260. For example, the timing control circuit 285 generates a timing control signal indicating the scanning timing of the row and supplies the timing control signal to the row driving circuit 280. In addition, the timing control circuit 285 generates a DAC (Digital-to-Analog) control signal for controlling the reference voltage supply operation and supplies the DAC to the reference voltage generation circuit 275. Further, the timing control circuit 285 supplies a detection control signal for controlling the operation of the detection circuits 240 and 260 to the detection circuits 240 and 260. Details of the DAC control signal and the detection control signal will be described later.
- the reference voltage generation circuit 275 generates the reference voltage V ref according to the DAC control signal and supplies the reference voltage V ref to each of the detection circuits 240 and 260.
- FIG. 3 is a diagram showing an example of the radiation count result in the first embodiment.
- the vertical axis represents the total output value from each pixel circuit 220 in a pair of rows
- the horizontal axis represents time. This total output value is calculated by the data processing unit 140.
- the photodetector 200 readout in units of two rows is repeated cyclically at the same interval. Since the scintillation light is received almost uniformly by each pixel circuit 220 at the moment of light emission, a signal starts to be output from unit reading immediately after light emission. The signal output is continued until one frame is read after one turn from there, and thereafter, the output is dark until the scintillator emits light again.
- the plot illustrated in the figure has an output shape similar to a pulse having a time width of one frame, and the total output value for each pulse corresponds to the light emission amount of the scintillator.
- FIG. 4 is a circuit diagram illustrating a configuration example of the pixel circuit 220 according to the first embodiment.
- the pixel circuit 220 includes a photodiode 221, a storage node 222, a transfer transistor 223, a detection node 224, a reset transistor 225, an amplification transistor 226, and a selection transistor 227.
- As the transfer transistor 223, the reset transistor 225, the amplification transistor 226, and the selection transistor 227 for example, an n-type MOS (Metal-Oxide Semiconductor) transistor is used.
- MOS Metal-Oxide Semiconductor
- the photodiode 221 converts photons into electric charges.
- the photodiode 221 is connected to the transfer transistor 223 via the storage node 222.
- the photodiode 221 generates a pair of electrons and holes from photons incident on the silicon substrate of the pixel circuit 220 and stores the electrons in the storage node 222.
- the photodiode 221 is an example of a photoelectric conversion unit described in the claims.
- the photodiode 221 is preferably a buried type that is completely depleted when charge is discharged by reset.
- the transfer transistor 223 transfers electric charge from the storage node 222 to the detection node 224 under the control of the row drive circuit 280.
- the detection node 224 accumulates charges from the transfer transistor 223 and generates an analog voltage corresponding to the amount of accumulated charges. This voltage is applied to the gate of the amplification transistor 226.
- the reset transistor 225 is for initializing the charge accumulated in the accumulation node 222 and the detection node 224 by extracting it to the power source.
- the reset transistor 225 has a gate connected to the row driving circuit 280, a drain connected to the power supply, and a source connected to the detection node 224.
- the row driving circuit 280 controls the reset transistor 225 to be on at the same time as the transfer transistor 223 to pull out the electrons accumulated in the accumulation node 222 to the power source, and the pixel is in a dark state before accumulation, that is, no light is incident. Initialize to the state. Further, the row driver circuit 280 controls only the transfer transistor 223 to be in an on state, thereby drawing out the charge accumulated in the detection node 224 to the power source and initializing the charge amount.
- the amplification transistor 226 amplifies the gate voltage.
- the amplification transistor 226 has a gate connected to the detection node 224, a drain connected to the power supply, and a source connected to the selection transistor 227.
- the amplification transistor 226 and the constant current circuit 230 form a source follower, and the voltage of the detection node 224 is output to the vertical signal line 219 with a gain of 1 slightly. The electrical signal of that voltage is acquired by the detection circuit 240.
- the selection transistor 227 outputs an electrical signal according to the control of the row drive circuit 280.
- the selection transistor 227 has a gate connected to the row driving circuit 280, a drain connected to the amplification transistor 226, and a source connected to the vertical signal line 219.
- the row driving circuit 280 selectively selects a pair of rows and turns on all the selection transistors 227 in the selected rows, thereby causing the pixel circuits 220 in those rows to output electric signals.
- the constant current circuit 230 includes, for example, a MOS transistor 231.
- a predetermined voltage for example, 3 volts
- the constant current circuit 230 is connected to each pixel circuit 220 in the column via a vertical signal line 219.
- FIG. 5 is a timing chart showing an example of the operation of the pixel circuit 220 in the first embodiment.
- the row driving circuit 280 controls both the transfer transistor 223 and the reset transistor 225 to be in the on state at the timing T1 immediately before the exposure period. By this control, all charges accumulated in the accumulation node 222 between the photodiode 221 and the transfer transistor 223 are discharged to the power source. This control is hereinafter referred to as “PD (Photo Diode) reset”. After that, the row driving circuit 280 controls the transfer transistor 223 to be in an off state. By this control, the storage node 222 is in a floating state, and new charge accumulation is started. Further, the row driving circuit 280 controls the reset transistor 225 to be turned off after the PD reset. Note that the reset transistor 225 may remain on during charge accumulation. On the other hand, the selection transistor 227 is controlled to be in an off state in order to allow access to another pixel circuit 220 connected to the vertical signal line 219.
- PD Photo Diode
- the row driving circuit 280 controls the reset transistor 225 and the selection transistor 227 to be in an ON state.
- the selected pixel circuit 220 is connected to the vertical signal line 219. Further, the detection node 224 that is the input of the amplification transistor 226 and the power source are short-circuited by the control of the reset transistor 225. Thereby, a reference potential is generated in the selected pixel circuit 220.
- the row driving circuit 280 controls the reset transistor 225 to be in an off state.
- the potential of the detection node 224 is somewhat lowered from the reference potential in response to coupling with the gate of the reset transistor 225, and enters a floating state. Further, significant kTC noise is generated at the detection node 224 at this time. Since the floating diffusion layer (Floating Diffusion) is generally used as the detection node 224, this control is hereinafter referred to as “FD reset”.
- the detection circuit 240 performs sampling a plurality of times (for example, four times). In these samplings, the signal of the potential of the vertical signal line 219 is converted into a digital signal Ds1 by the detection circuit 240 as a reset signal. Multiple sampling of the reset signal is handled as the first reading in correlated double sampling.
- the row driving circuit 280 controls the transfer transistor 223 to be in an ON state. With this control, the charge accumulated in the accumulation node 222 is transferred to the detection node 224. At this time, if the potential of the detection node 224 is sufficiently deep, all the electrons stored in the storage node 222 are transferred to the detection node 224, and the storage node 222 is completely depleted.
- the row driving circuit 280 controls the transfer transistor 223 to be turned off. By this control, the potential of the detection node 224 decreases by the amount of accumulated charge (that is, the potential becomes shallower) than before the transfer transistor 223 is driven. The voltage corresponding to the decrease is amplified by the amplification transistor 226 and output to the vertical signal line 219.
- the detection circuit 240 performs sampling a plurality of times (for example, four times). In these samplings, the signal of the potential of the vertical signal line 219 is converted into a digital signal Ds2 by the detection circuit 240 as an accumulated signal. Multiple sampling of the accumulated signal is handled as the second reading in correlated double sampling.
- the detection circuit 240 compares the sampled accumulated signal (that is, the digital signal Ds2) and the reset signal (that is, the digital signal Ds1), and determines the amount of incident photons based on the comparison result.
- the plurality of digital signals Ds1 are all added, and an average value thereof is calculated as necessary.
- all the digital signals Ds2 are added and averaged as necessary.
- the detection circuit 240 obtains the difference between the added value (or average value) of the digital signal Ds1 and the added value (or average value) of the digital signal Ds2 as a net accumulated signal.
- the kTC noise generated at the time of FD reset is canceled by using the difference between the digital signals Ds1 and Ds2 as a net accumulated signal.
- the exposure period of each pixel circuit 220 is a period between the above-described reset operation and readout operation, and more precisely, is a period from when the transfer transistor 223 is turned off after reset to when it is turned on by readout.
- photons enter the photodiode 221 during this exposure period and charge is generated it becomes a difference between the reset signal and the accumulated signal, and is derived by the detection circuit 240 according to the procedure described above.
- the detection circuit 240 since the time from the end of exposure until the start of the next exposure is a dead period, it is desirable to perform a PD reset immediately on the read line, or omit the PD reset. Also good. If the PD reset is omitted, the next charge accumulation to the photodiode is started immediately after the charge transfer at the completion of exposure. That is, the dead period of the radiation count is zero.
- the accumulation time is determined by the frame rate.
- FIG. 6 is a diagram schematically illustrating an example of the layout of the pixel circuit according to the first embodiment of the present technology.
- the basic circuit and operation mechanism of the pixel circuit 220 described above are the same as those of a pixel in a normal CMOS (Complementary MOS) imager, and various variations can exist.
- the pixel assumed in the present invention is designed so that the conversion efficiency is relatively high.
- the layout is devised so that the parasitic capacitance of the storage node 222 on the input side of the amplifier constituting the source follower is minimized.
- the area occupied by the diffusion layers and wirings constituting the storage node 222 is miniaturized as much as possible.
- the area of the photodiode 221 is increased as much as possible.
- the impurities are carefully designed so that the potential gradually increases from the periphery of the photodiode 221 toward the transfer transistor.
- a minute signal of one electron unit generated in the photodiode 221 is quickly transferred to the detection node 224. That is, the signal charge is completely transferred to the detection node 224 by applying an appropriate potential design to the fully depleted embedded pixel.
- the random noise of the amplification transistor 226 and the random noise of the peripheral circuit are suppressed to a total of 100 ⁇ Vrms using multiple sampling or the like.
- the noise of each pixel circuit 220 is suppressed to 0.5e ⁇ or less.
- FIG. 7 is a diagram illustrating a functional configuration example of the detection circuit 240 and an operation example of the detection circuit according to the first embodiment.
- the detection circuit 240 includes an AD conversion circuit 241 and a division circuit 246.
- the AD conversion circuit 241 converts (that is, samples) each of the reset signal and the accumulation signal into a digital signal in order under the control of the timing control circuit 285.
- the AD conversion circuit 241 includes capacitors 242 and 243, a comparator 244, and a counter 245.
- the AD conversion circuit 241 is an example of an analog-digital conversion circuit described in the claims.
- the capacitor 242 is connected to the vertical signal line 219 and one of the two input terminals of the comparator 244, and the capacitor 243 is connected to the other of the two input terminals of the comparator 244 and the reference signal line 279.
- the capacitors 242 and 243 have substantially the same capacity, and these capacitors are also called coupling capacitors.
- the comparator 244 compares the output voltage Vp of the vertical signal line 219 and the reference voltage V ref of the reference signal line 279. In multiple sampling of the reset signal, the reset potential of the reset signal is output as the output voltage Vp, and in multiple sampling of the stored signal, the signal potential of the stored signal is output as the output voltage Vp.
- the comparator 244 supplies the comparison result COMP to the counter 245. For example, when the output voltage Vp is higher than the reference voltage Vref , a high level comparison result COMP is output, and when not, a low level comparison result COMP is output.
- the comparator 244 has an auto-zero function in which the two input terminals are short-circuited with the internal node to make an equilibrium state.
- the counter 245 counts the count value based on the comparison result COMP of the comparator 244. For example, the counter 245 can switch and execute either an up-count that increases the count value or a down-count that decreases the count value.
- the detection control signal from the timing control circuit 285 includes an initialization instruction signal RST for resetting the count value of the counter 245 to an initial value, and a switching instruction signal SW for instructing switching from one of up-counting and down-counting to the other. Including.
- the detection control signal includes a clock signal CLK having a predetermined frequency.
- the counter 245 sets the count value to an initial value.
- the counter 245 performs either up-counting or down-counting according to the switching instruction signal SW.
- the counter 245 performs up-counting or down-counting in synchronization with the clock signal CLK when the output voltage Vp is higher than the reference voltage Vref (that is, the comparison result COMP is at a high level).
- the counter 245 supplies the count value CNT to the division circuit 246.
- the analog reset signal and accumulated signal are converted into a digital signal by a quantization unit smaller than the voltage of the one-photon signal.
- the pixel circuit 220 that does not perform Geiger amplification such as SiPM and lowers the noise by adjusting the conversion efficiency or the like, in particular, due to the 1 / f noise of the amplification transistor 226, 0.5e for each pixel. Significant noise around -rms rides on its output.
- the AD conversion circuit 241 performs quantization using a one-photon signal as a quantization unit, an error between the actual number of photons and the number of photons indicated by the digital signal increases.
- the AD conversion circuit 241 quantizes the reset signal and the accumulated signal by a quantization unit smaller than one photon signal.
- the quantization unit is preferably less than half of the one-photon signal, and more preferably less than 1 ⁇ 4 of the one-photon signal.
- [Operation example of detection circuit] B in FIG. 7 is a diagram illustrating an operation example of the detection circuit 240 in the first embodiment.
- the selected pixel circuit 220 outputs a reset signal to the vertical signal line 219 according to the control of the row drive circuit 280 (step S901).
- step S902 the two inputs to the comparator 244 are short-circuited with the internal node to be in an equilibrium state, and the charge amounts of the capacitors 242 and 243 are adjusted accordingly.
- the vertical signal line 219 and the reference signal line 279 are in an effective equilibrium state (step S902).
- the reference voltage generation circuit 275 supplies a sweep signal for changing (for example, decreasing) the reference voltage V ref to the reference signal line 279 at a constant speed over a plurality of times.
- the comparator 244 compares the voltage (V ref ) of the sweep signal with the reset potential of the reset signal.
- the timing control circuit 285 controls the counter 245 to initialize the count value.
- the counter 245 performs counting based on the inversion timing of the comparison result COMP. As a result, AD conversion for converting the reset signal into the digital signal Ds1 is performed (step S903).
- step S902 By the auto-zero operation in step S902, the voltage Vp of the vertical signal line 219 and the voltage Vref of the reference signal line 219 are controlled to an effective equilibrium state. For this reason, the voltage subjected to AD conversion in step S903 is effectively an offset generated inside the comparator 244. Such AD conversion is performed a plurality of times. In AD conversion, for example, a count value is added by down-counting.
- the pixel circuit 220 outputs the accumulation signal to the vertical signal line 219 according to the control of the row driving circuit 280 (step S904).
- the reference voltage generation circuit 275 supplies the sweep signal again a plurality of times, and the comparator 244 compares the voltage (V ref ) of the sweep signal with the signal potential of the accumulated signal.
- the timing control circuit 285 controls the counter 245 to switch from the down count to the up count.
- the counter 245 performs counting based on the inversion timing of the comparison result COMP. Thereby, AD conversion for converting the accumulated signal into the digital signal Ds2 is performed (step S905).
- step S905 the counter 245 switches from down-counting to up-counting.
- step S905 the difference between the up-count value and the down-count value is output.
- the offset voltage of the comparator and the kTC noise at the time of reset are removed by taking the difference between the digital signals Ds1 and Ds2.
- the division circuit 246 calculates the average value of the differences (CNT) as a net pixel signal (step S906). After step S906, the detection circuits 240 and 260 end the detection operation.
- FIG. 8 is a graph showing an example of the total error for each quantization unit in the first embodiment. This total error corresponds to the floor noise generated by the pixel array unit 210 in the dark state.
- a predetermined number for example, 10,000
- P NORMINV (RAND (), Av, s)
- RAND () is a function that generates a random number.
- NORMINV () is a function that, when a cumulative distribution function is set in the first term, returns a value of an inverse function of the normal distribution cumulative distribution function with respect to the average value Av and the standard deviation s.
- RAND () As the cumulative distribution function, random numbers according to the normal distribution of the average value Av and the standard deviation s are generated.
- a value corresponding to the amount of noise is set as the standard deviation s. For example, when noise having a level half that of a one-photon signal occurs, s is set to 0.5.
- DOUT ROUND (P / LSB, 0) ⁇ LSB
- ROUND () is a function that rounds off the first term in () with the number of digits of the second term. When rounding off to the first decimal place, for example, “1” is set in the second term.
- LSB represents a quantization unit. When the quantization unit is half of the one-photon signal, for example, “0.5” is set in the LSB.
- the total error of the digital value DOUT obtained for each real number P is expressed, for example, by the root mean square of DOUT.
- the vertical axis in FIG. 8 represents this root mean square.
- the horizontal axis in the figure represents the quantization unit.
- the present invention is based on the recognition that ultra-fine light can be detected with high accuracy by suppressing noise within a certain theoretical value range without using the filtering effect by such photon counting.
- the theoretical value of the error is the square root of the square sum of the amount of noise when the quantization unit is infinitely small (that is, when the quantization error is 0), for example, 100e for 10000 samples of 1.0e - rms. - is the rms.
- the error can be sufficiently close to the theoretical value if the quantization unit is less than half of the one-photon signal.
- the quantization unit is 1 ⁇ 4 or less of a one-photon signal, the total error is 10% or less of the theoretical value, and deterioration of variation due to quantization is substantially suppressed.
- the quantization unit is preferably less than half of the one-photon signal, and more preferably less than 1 ⁇ 4 of the one-photon signal.
- 9a is a timing chart showing an example of the operation of the photodetector 200 in the first embodiment.
- the row driving circuit 280 performs FD reset.
- the pixel circuit 220 outputs a reset signal via the vertical signal line 219.
- the timing control circuit 285 supplies the initialization instruction signal RST to the counter 245 to initialize the count value.
- the voltages of the vertical signal line 219 and the reference signal line 279 are in a state of being effectively balanced at the timing T2 ′.
- the one-dot chain line a indicates the fluctuation of the voltage relative to the reference signal line 279 of the vertical signal line 219 in the balanced state.
- the reference voltage generation circuit 275 supplies a sweep signal over a certain period from each of a plurality of sampling timings with respect to the reset signal.
- the supply of the sweep signal is started at each of the reset signal sampling timings T31, T33, T35, and T37.
- the reference voltage generation circuit 275 stops supplying the sweep signal.
- timing control circuit 285 supplies the clock signal CLK to the counter 245 over a period (T31 to T32, etc.) during which the sweep signal is supplied, and counts the count value. Stop supplying.
- the counter 245 performs down-counting over a period in which the reference voltage V ref is higher than the voltage Vp of the vertical signal line 219 during a period in which the sweep signal is supplied (T31 to T32, etc.). This is implemented by means such as cutting off the clock supply to the counter as the comparator output is inverted. For example, when the reference voltage V ref is equal to or lower than the voltage of the vertical signal line 219 at the timing T31 ′ between the timings T31 and T32, down-counting is performed from the timing T31 to T31 ′. Between the timings T31 ′ and T32, the reference voltage V ref is equal to or lower than the voltage of the vertical signal line 219. Therefore, the down-count is not performed and the count value is held. Further, since the clock signal CLK is not supplied from the timing T32 to the next sampling timing T33, similarly, the count value is held without being down-counted.
- timings T33 to T34 timings T35 to T36, and timings T37 to T38, down-counting is performed over a period in which the reference voltage V ref is higher than the voltage of the vertical signal line 219.
- the pixel circuit 220 outputs an accumulation signal at the timing T4 when the charge is transferred to the detection node 224. Further, at this timing T4, the timing control circuit 285 switches the count operation of the counter 245 from the down count to the up count by the switching instruction signal SW.
- the reference voltage generation circuit 275 supplies a sweep signal over a certain period from each of a plurality of sampling timings for the accumulated signal.
- the supply of the sweep signal is started at the accumulation signal sampling timings T51, T53, T55, and T57. Then, at timings T52, T54, T56, and T58 when a certain period has elapsed from those sampling timings, the reference voltage generation circuit 275 stops supplying the sweep signal.
- the sweep amount when sampling the accumulated signal is set to a larger value than when the reset signal is sampled.
- the counter 245 performs up-counting over a period in which the reference voltage V ref is higher than the voltage Vp of the vertical signal line 219 in a period (T51 to T52, etc.) during which a sweep signal corresponding to the accumulated signal is supplied.
- the count value CNT becomes an integrated value of all the count values of the plurality of down counts.
- the absolute values of the count values in the first, second, third, and fourth samplings for the reset signal are D s1-1 , D s1-2 , D s1-3, and D s1-4 , respectively.
- the count value CNT at the timing T38 is the initial value -D s1-1 -D s1-2 -D s1-3 -D s1-4 .
- the count value CNT becomes the difference between the down-count integrated value and the up-count integrated value at the timing T58 when the last sampling for the accumulated signal is completed.
- the absolute values in the first, second, third, and fourth samplings for the accumulated signal are D s2-1 , D s2-2 , D s2-3, and Ds2-4, respectively.
- the count value CNT at the timing T58 is the initial value -D s1-1 -D s1-2 -D s1-3 -D s1-4 + D s2-1 + D s2-2 + D s2-3 + D s2-4 become.
- B in the figure is a diagram showing the relationship between the reset potential of the reset signal, the signal potential of the accumulated signal, and the quantization unit.
- the potential difference between the reset potential and the signal potential at the time of one-photon incidence that is, the voltage of the one-photon signal is, for example, equal to the potential fluctuation of the detection node 224 corresponding to the injection of one electron charge in the pixel circuit of FIG.
- the value multiplied by the gain For the sake of simplicity, assuming that the gain is 1, the voltage of one photon signal is the potential fluctuation of the detection node 224 corresponding to the injection of one electron charge. If a further gain is applied in the path from the pixel output (219) to the AD conversion circuit 241, the gain is further multiplied.
- the quantization unit is set to be equal to or less than half of the one-photon signal.
- FIG. 10 is a diagram for explaining a quantization unit in the first embodiment.
- the counter 245 counts the counter value in synchronization with the clock signal CLK, and the reference voltage generation circuit 275 supplies the sweep signal during the counting.
- the amount of change in the sweep signal within the period of the clock signal CLK corresponds to a quantization unit.
- the energy resolution R in radiation scintillation detection is expressed by the following equation.
- the energy resolution is expressed by, for example, FWHM (Full Width at Half Maximum).
- R 2 (E) Rs 2 (E) + Rp 2 (E)
- Rp 2 (E) 5.56 ⁇ ⁇ 1 / (N ⁇ r) + s 2 / (N ⁇ r) 2 ⁇
- N is the average value of the number of photons incident on the light receiving surface
- r is the quantization efficiency
- s is the standard deviation according to random noise.
- the coefficient 5.56 is a conversion coefficient from the rms value to the half width.
- the AD conversion circuit 241 performs AD conversion on the voltage from the pixel by a quantization unit smaller than the voltage generated from one photon. Even if this occurs, AD conversion can be performed accurately. Thereby, the radiation counting apparatus 100 can accurately perform radiation counting.
- one light receiving unit 110 including the scintillator and the photodetector 200 is provided.
- the light receiving unit 110 is also called a head.
- the radiation counting apparatus 100 is used alone as a survey meter, there is a problem that the sensitivity is slightly low although the measurement accuracy of the light emission amount is high. That is, the scintillator 120 formed of a 4 mm square bottom surface corresponding to the light receiving surface of the photodetector 200 has a slightly small volume, and accordingly, the probability that radiation is incident is low, and the detection sensitivity is slightly low.
- the bottom surface of the scintillator 120 is expanded to improve sensitivity, the light receiving surface of the photodetector 200 needs to be expanded to increase the number of drive pixels, and the total noise and the frame rate of the photodetector 200 deteriorate.
- the sensitivity is improved by increasing the height of the scintillator 120, the shape of the detector (survey meter) is significantly restricted, and the frame rate of the detector is slightly insufficient compared to the case where the dose is high. .
- a plurality of heads that is, the light receiving unit 110
- the radiation counting apparatus 100 of the second embodiment differs from the first embodiment in that a plurality of heads are provided.
- FIG. 11 is an overall view showing a configuration example of the radiation counting apparatus 100 according to the second embodiment.
- the radiation counting apparatus 100 of the second embodiment is the first in that scintillators 121, 122, 123, and 124 and photodetectors 201, 202, 203, and 204 are provided instead of the scintillator 120 and the photodetector 200. This is different from the embodiment.
- the scintillator 121 is connected to the photodetector 201, and the scintillator 122 is connected to the photodetector 202.
- the scintillator 123 is connected to the photodetector 203, and the scintillator 124 is connected to the photodetector 204.
- the photodetectors 201 to 204 are commonly connected to the data processing unit 140. Since the output of each head is digitized, such a multi-head can be easily realized.
- the radiation counting apparatus 100 may have a structure in which a head can be added according to the required sensitivity. These four photodetectors (201 to 204) are provided on separate chips. These photodetectors may be integrated on one chip. In that case, all four pixel array units arranged on the chip may be simultaneously operated in parallel.
- the radiation counting apparatus 100 of the first embodiment when the sensitivity is quadrupled by simply setting the bottom surface of the scintillator to be 8 millimeters (mm) square, and the light receiving surface is expanded accordingly, the number of drive pixels is quadrupled, scintillation light
- the pixel noise for is doubled and the frame rate is reduced to half. That is, the count rate is also halved, making it difficult to deal with cases where the dose is high.
- the multi-head configuration of the first embodiment neither the pixel noise nor the frame rate is changed, and each head independently counts radiation, so the radiation count rate is substantially quadrupled.
- the light detection sensitivity can be improved.
- the radiation counting apparatus 100 is used as a survey meter, but it may be used in a medical device.
- the medical device include SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomogoraphy). Further, it can be applied to a transmission X-ray imaging apparatus. These medical devices separate and filter radiation that has been scattered within the subject and has lost position information from its energy. Therefore, energy resolution is as important as survey meters.
- the size of the bottom surface of the scintillator 120 is substantially matched to the size of the photodetector 200, and a plurality of light receiving parts are spread in an array at a pitch of about 2.5 mm.
- What should be noted in such a spread structure is the ratio (aperture ratio) of the light receiving surface to the photodetector 200.
- Photons generated in each scintillator 120 enter the light receiving surface only at a rate corresponding to the aperture ratio. For example, if the photodetector 200 has a light receiving surface of 2 millimeters (mm) with respect to a 2.5 millimeter (mm) angle, the aperture ratio is 64 percent (%). The larger the aperture ratio, the larger the average value N of the number of incident photons, and the energy resolution is improved.
- the AD conversion circuit 241 having the largest area in the peripheral circuit is stacked under the light receiving surface using different silicon layers.
- the radiation counting apparatus 100 of the third embodiment is different from that of the second embodiment in that the pixel circuit 220 and the AD conversion circuit 241 are provided on different substrates and stacked.
- FIG. 12 is an overall view showing a configuration example of the radiation counting apparatus 100 according to the third embodiment.
- the radiation counting apparatus 100 in the third embodiment includes scintillators 121, 122, 123, and 124 and photodetectors 201, 202, 203, and 204, as in the second embodiment.
- the radiation counting apparatus 100 according to the third embodiment is different from the second embodiment in that the size of the bottom surface of each scintillator is substantially matched to the size of the photodetector.
- These light receiving parts are laid out in an array at a pitch of about 2.5 millimeters (mm).
- a collimator such as lead is disposed on the radiation incident surface of the light receiving unit so that only vertically incident radiation reaches the scintillator.
- a low-refractive index or reflective partition wall is provided between the light receiving portions so that scintillation light does not leak to the adjacent light receiving portions.
- the data processing unit 140 can specify the incident position of the radiation on the light receiving surface of the light receiving unit arranged in an array by processing the digital signal from each light receiving unit.
- the spatial resolution unique to the radiation counting apparatus 100 is 2.5 millimeters (mm) corresponding to the pitch of the detection module. This is a good spatial resolution compared to the conventional SPECT using a photomultiplier tube.
- a plurality of these photodetectors 200 may be integrated on one chip, and in that case, for example, all four pixel array units 210 arranged on the chip may be operated simultaneously in parallel.
- FIG. 13 is a block diagram illustrating a configuration example of the photodetector 201 according to the third embodiment.
- the photodetector 201 includes an upper substrate 205 and a lower substrate 206.
- the upper substrate 205 is provided with a pixel array unit 210 and a row driving circuit 280.
- the lower substrate 206 is provided with a detection circuit 240, a reference voltage generation circuit 275, a timing control circuit 285, an output circuit 290, and the like. These substrates are laminated using a silicon lamination technique such as bonding of silicon wafers.
- the configuration of the photodetectors 202 to 204 is the same as that of the photodetector 201.
- the upper substrate 205 is an example of a first substrate described in the claims
- the lower substrate 206 is an example of a second substrate described in the claims.
- the energy resolution of the SPECT apparatus to which the radiation counting apparatus 100 of the third embodiment is applied will be estimated.
- the estimation procedure is the same as in the first embodiment, but the radiation source is assumed to be technetium (Tc), and the energy of gamma rays is 140 eV.
- Tc technetium
- the generated scintillation light is about 5180 photons in proportion to the radiation energy.
- the numerical value of N is reduced to 64% of the light emission amount of the scintillator, that is, 3315 photons.
- the size of the pixel circuit 220 is doubled to 16 micrometers ( ⁇ m). This pixel size is obtained by further enlargement of the photodiode 221, but careful potential design is required so that electrons drift smoothly in the diode. As a result, the aperture ratio which is the ratio of the photodiode 221 in the pixel circuit 220 is also improved.
- the pixel array unit 210 is provided with a 125 ⁇ 125 pixel circuit 220. If the rms, error in total due to noise 62.5e - - random noise of pixels 0.5e is rms. The details of this estimate are summarized below.
- the energy resolution of SPECT is comparable to that of a photomultiplier tube.
- a semiconductor photodetector can be mass-produced with the same manufacturing process on the same manufacturing line as a commercially available CMOS imager.
- the radiation counting apparatus 100 manufactured in this way is small and lightweight, is resistant to environmental fluctuations, has stable characteristics, and is easy to maintain. Further, since the output is a digital signal, the subsequent circuit only needs to process the digital signal, is not easily influenced by noise from the surroundings, and can easily process data output from a large number of light receiving units. .
- the ratio (aperture ratio) of the pixel array unit 210 in the photodetector 200 is provided and stacked on different substrates. To increase the energy resolution.
- the photodetector 200 selects and exposes a pair of rows in order, but may select and expose all rows simultaneously. Such control is called a global shutter system.
- the photodetector 200 of the fourth embodiment differs from the first embodiment in that all rows are exposed simultaneously.
- FIG. 14 is a circuit diagram showing a configuration example of the pixel circuit 220 in the fourth embodiment.
- the pixel circuit 220 according to the fourth embodiment differs from the first embodiment in that a transfer transistor 235, an intermediate node 236, and a transfer transistor 237 are provided instead of the transfer transistor 223.
- the transfer transistor 235, the intermediate node 236, and the transfer transistor 237 are three-stage transistors having an integrated series FET (Field effect transistor) structure in which a conductive diffusion layer is not sandwiched between the respective channels.
- the source of the transfer transistor 235 is connected to the photodiode 221, and the gate is connected to the gate of the intermediate node 236 and the row driving circuit 280.
- the transfer transistor 237 has a gate connected to the row drive circuit 280 and a drain connected to the detection node 224.
- the transfer transistor 235 transfers charges from the photodiode 221 to the intermediate node 236 under the control of the row drive circuit 280.
- the transfer transistor 235 is an example of a first transfer unit described in the claims.
- the intermediate node 236 is a MOS transistor that temporarily accumulates and holds charges in the channel.
- the intermediate node 236 is used as an analog memory.
- the gates of transfer transistor 235 and intermediate node 236 are driven together.
- the threshold potential is controlled so that the channel potential of the transfer transistor 235 is shallower than that of the intermediate node 236 so that the charge is transferred from the photodiode 221 to the intermediate node 236 without backflowing during driving.
- the transfer transistor 237 transfers charges from the intermediate node 236 to the detection node 224 under the control of the row drive circuit 280.
- the transfer transistor 237 is an example of a second transfer unit described in the claims.
- FIG. 15 is a potential diagram for explaining charge transfer to the intermediate node 236 in the first embodiment.
- a is an example of a potential diagram before transfer to the intermediate node 236 (analog memory). Electric charges are accumulated in the accumulation node 222 of the photodiode 221. Further, both the intermediate node 236 and the detection node 224 are reset and are in a floating state.
- FIG. 15 is an example of a potential diagram after transfer to the intermediate node 236.
- the row driving circuit 280 controls both the transfer transistor 235 and the intermediate node 236 to be on. With this control, the signal charge is transferred to the channel of the intermediate node 236.
- FIG. 16 is a diagram for explaining charge transfer to the detection node 224 in the fourth embodiment.
- a is an example of a potential diagram before transfer to the detection node 224.
- the row driving circuit 280 controls both the transfer transistor 235 and the intermediate node 236 to be in an off state. In this state, the backflow of the signal charge to the storage node 222 is prevented by the potential difference provided between the transfer transistor 235 and the intermediate node 236. Then, the reset signal is read out.
- FIG. 16 is an example of a potential diagram after transfer to the detection node 224.
- the row driving circuit 280 controls the transfer transistor 237 to be in an on state. With this control, the charge at the intermediate node 236 is transferred to the detection node 224.
- FIG. 17 is a timing chart showing an example of the operation of the pixel circuit in the fourth embodiment.
- the row driving circuit 280 applies a pulse to the gates of the transfer transistor 235 and the intermediate node 236 at the timing T1 at the start of exposure. This operation is performed simultaneously for all the pixel circuits 220 in the pixel array unit 210. At this timing T1, the signal charge of each pixel circuit 220 stored in the photodiode 221 is completely transferred to the intermediate node 236. Is done. Further, the next exposure accumulation is started in the photodiode 221 thereafter. That is, this control is a global shutter system. The dead time of the pixel circuit 220 is zero, and the accumulation time is determined by the frame rate.
- the charge of each pixel collectively transferred to the intermediate node 236 is sequentially read in the following procedure for each pixel circuit 220 in the selected row.
- the row driver circuit 280 selects a pair of rows at timing T2, turns on the selection transistor 227 while keeping the reset transistor 225 in those rows turned on, and connects the selected pixel circuit 220 to the vertical signal line 219. To do.
- the detection node 224 connected to the gate of the amplification transistor 226 and the power source connected to the source are short-circuited. As a result, a reference reset potential is generated in the selected pixel circuit 220.
- the row driving circuit 280 performs the FD reset by controlling the reset transistor 225 to be turned off.
- the potential of the detection node 224 receives a coupling with the gate of the reset transistor 225 and is slightly lowered from the reference potential to be in a floating state.
- significant kTC noise is generated at the detection node 224.
- the first reading is performed by the detection circuit 240. Reading is performed by sampling four times, for example. That is, the potential appearing on the vertical signal line 219 is acquired by the detection circuit 240 four times as a reset signal of the detection node 224.
- the row drive circuit 280 turns on the transfer transistor 237 at the timing T4. With this control, electrons accumulated in the intermediate node 236 flow into the detection node 224. At this time, if the potential of the detection node 224 is sufficiently deep, all the electrons accumulated in the intermediate node 236 flow out to the detection node 224. After the pulse period has elapsed, the row driving circuit 280 turns off the transfer transistor 237. As a result, the potential of the detection node 224 falls by the amount of accumulated charges compared to before transfer (that is, the potential becomes shallow). This reduced amount is multiplied by the amplification transistor 226 and output to the vertical signal line 219.
- the second reading that is, the accumulation signal reading is performed again by sampling a plurality of times (for example, four times).
- the detection circuit 240 that has acquired the accumulated signal compares the previous reset signal with the current accumulated signal to determine the amount of incident photons.
- the four sampling results are added or averaged for each of the reset signal and the accumulated signal. This averaging operation reduces the random noise caused by thermal noise to about 1/2.
- the kTC noise generated at the time of FD reset is canceled by using the difference between the accumulated signal and the reset signal as a net accumulated signal.
- FIG. 18 is a diagram illustrating an example of a radiation count result in the fourth embodiment.
- the vertical axis represents the total output value from each pixel circuit 220 in a pair of rows
- the horizontal axis represents time.
- the assumed circuit configuration of the photodetector 200 is the same as that of the first embodiment, but the number of control lines 218 between the pixel circuit 220 and the row driving circuit 280 is changed from three to four. Become.
- the output total value plot for two lines has an output shape similar to a pulse having a time width for one frame, and the total output value for each pulse corresponds to the light emission amount of the scintillator.
- the biggest difference from the first embodiment is that the pulse output is synchronized with the frame output regardless of the light emission timing of the scintillator 120.
- the light signal received by the circular global shutter is accumulated in the photodiode 221 during the corresponding frame period.
- the data is simultaneously transferred to the intermediate node 236 and sequentially output from the head address in the next frame period.
- some kind of algorithm is necessary for discriminating an output shape that cannot be predicted at which timing as a significant pulse.
- such an algorithm is not necessary.
- T81 and T82 light is emitted at close timings.
- the radiation counting apparatus 100 can distinguish and count correctly as different light emissions. is there. That is, by adopting the global shutter system, data processing of the output of the photodetector 200 in radiation counting becomes easy and accurate, and an effective count rate is expected to be improved.
- the charge is transferred to the intermediate node 236 at the end of exposure, and the charge is transferred from the intermediate node 236 to the detection node 224 at the time of reading.
- Each pixel can be exposed by the global shutter method.
- a plurality of small pixel array units may be arranged in a matrix to enable simultaneous operation.
- the photodetector 202 according to the fifth embodiment is different from the first embodiment in that a plurality of pixel array portions are arranged in a matrix and the simultaneous operation thereof is possible.
- FIG. 19 is a block diagram illustrating a configuration example of the photodetector 202 according to the fifth embodiment.
- Pixel array sections 210 are arranged in a matrix of 4 ⁇ 4 at 2.5 mm pitch on a substantially 1 cm square silicon chip (upper substrate 205).
- 16 ⁇ m square pixels are arranged in an array of 130 ⁇ 150, and the size of the opening is 2.08 mm ⁇ 2.25 mm. That is, the aperture ratio of the entire chip is about 75%.
- a detection circuit group 261 is arranged in each lower layer of each pixel array unit 210. This detection circuit group 261 includes, for example, one detection circuit 240 for every 10 pixels, and sequentially selects pixels to perform reading.
- Each pixel array unit 210 corresponds to an independent photodetector, but since the 4 ⁇ 4 pixel array unit 210 operates in parallel, various control circuits including the timing control circuit 285 can be shared by a plurality of photodetectors.
- the row drive circuit 280 is shared by the two photodetectors 207, and is output from the reference voltage generation circuit 275.
- the circuit 290 is shared by the four photodetectors 207.
- all the photodetectors 207 share one timing control circuit 285.
- the bonding pads 211 such as the power supply and timing signal can be shared by the plurality of photodetectors 207, so that the aperture ratio can be increased and the chip can be easily mounted.
- Such a chip can be used alone, or a plurality of chips can be spread and used for a large detector such as SPECT.
- Each photodetector on the chip is very low noise using large area pixels to support SPECT. Therefore, for example, a scintillator of about 1 cm square can be combined with a single chip and used as a survey meter.
- the 4 ⁇ 4 photodetector 207 on the chip is used as a single integrated photodetector 202, and the total amount of incident light is derived by the data processing unit 140.
- the pixel array unit 210 serving as a light receiving unit can be further reduced in size to be compatible with CT and FPD.
- the photodetector 202 of the fifth embodiment is different from the fifth embodiment in that the plurality of pixel array units 210 are further downsized.
- FIG. 20 is a block diagram illustrating a configuration example of the photodetector 202 according to the sixth embodiment.
- the pixel array units 210 are uniformly arranged in a matrix with a pitch of 400 ⁇ m.
- the photodetectors 207 are arranged in an array of 24 ⁇ 24 on the entire chip.
- 16 ⁇ m square pixel circuits 220 are arranged in an array of 20 ⁇ 24, and the size of the opening is 320 ⁇ m ⁇ 384 ⁇ m. In this case, the aperture ratio of the chip is about 77%.
- a detection circuit group 261 is stacked on each lower layer of each pixel array unit 210.
- This detection circuit group 261 includes, for example, one detection circuit 240 for every 10 pixels, and sequentially selects pixels to perform reading.
- These pixel array units 210 correspond to independent photodetectors 207, but operate in parallel at the same time, so that various circuits including the timing control circuit 285 can be shared by a plurality of photodetectors.
- the circuit components 281 may be dispersedly arranged for each photodetector 207.
- a circuit composed of six circuit components 281 arranged in a row operates as one row drive circuit 280.
- the row driving circuit 280 for four rows of unit pixels is assigned to one photodetector 207, the pixel array of all 24 rows can be driven by the six photodetectors 207.
- the number of photodetectors 207 sharing the row driving circuit 280 is not limited to six, and may be twelve or all photodetectors 207 arranged side by side on a chip.
- the timing control circuit 285, the reference voltage generation circuit 275, the output circuit 290, and the like can be distributed in a reserved space while being shared by a plurality of photodetectors.
- the circuit block 295 is arranged for every two lines composed of six pixel array units 210 arranged along a predetermined direction, and the circuit block 295 is shared by these lines.
- the circuit block 295 includes a timing control circuit 285, a reference voltage generation circuit 275, and an output circuit 290.
- the photodetectors 207 are spread over the entire surface of the chip at a narrow pitch. Therefore, when bonding pads are formed on the light receiving surface of the upper chip, the light receivers (pixels) in that portion must be deleted.
- the data processing unit 140 may complement the defective pixels from the surrounding pixels at the time of image processing.
- a through via is provided in the lower chip (206) and the pad is connected to the chip. It is more desirable to form on the back side, that is, the surface opposite to the light receiving surface.
- FIG. 21 shows an example in which the chip of FIG. 20 is used for a survey meter, SPECT, CT, and FPD.
- the chip is provided with a matrix of 24 ⁇ 24 photodetectors 207 at a pitch of 400 ⁇ m, and the chip size is approximately 9.6 mm square.
- 22a is a diagram showing an example of a survey meter according to the sixth embodiment.
- this survey meter for example, a single chip and a 9.5 mm square scintillator 120 are combined to perform radiation counting.
- the entire photodetector 207 on the chip is used as an integrated photodetector, and the total detected light amount is calculated by the data processing unit 140.
- FIG. 22 is a diagram illustrating an example of SPECT or a gamma camera according to the sixth embodiment.
- SPECT and gamma cameras a 6 ⁇ 6 photodetector 207 is used as an independent photodetector group 208, and scintillators 121 and the like provided with partition walls are arranged at a pitch of 2.4 mm in correspondence thereto.
- the total amount of light is calculated by the data processing unit 140 for each group.
- the light receiving module including the chip and the scintillator is laid in a flat shape as necessary.
- FIG. 22c is a diagram illustrating an example of an FPD in the sixth embodiment
- d in FIG. 22 is a diagram illustrating an example of a CT in the sixth embodiment.
- independent light quantity detection is performed for each photodetector 207 arranged at a pitch of 400 ⁇ m.
- the radiation detector module 209 including the photodetector 207 and the scintillator 125 on the chip is formed in an arc shape as illustrated in d in the figure in the CT, and in a planar shape as illustrated in c in the figure in the FPD as necessary.
- integral radiation detection is currently the mainstream rather than radiation counting, but the present invention can be used for either method.
- the radiation detection module of the present invention has low noise and high sensitivity, and has a detection dynamic range far wider than that of a photon counting type detector such as SiPM. Therefore, it can be diverted to integral type radiation detection as it is.
- this technique can also take the following structures.
- a scintillator that generates photons when radiation is incident;
- a pixel circuit that converts the photons into electric charges, accumulates them for a predetermined period, and generates an analog voltage according to the amount of the accumulated electric charges;
- a radiation counting apparatus comprising: an analog-to-digital conversion circuit that converts the analog voltage into a digital signal by a predetermined quantization unit smaller than the analog voltage generated from one photon.
- the radiation counter according to (1) wherein the analog-to-digital conversion circuit converts the input voltage into a digital signal by the quantization unit not exceeding 1 ⁇ 4 of the analog voltage generated from one photon. apparatus.
- the pixel circuit includes: A photoelectric conversion unit for converting the photons into electric charges; A charge storage unit that stores the charge and generates a voltage corresponding to the amount of the charge as the analog voltage;
- the radiation counting apparatus according to any one of (1) to (3), further including an amplifier element that amplifies the analog voltage and outputs the amplified analog voltage to the analog-digital conversion circuit.
- the radiation counting apparatus according to any one of (1) to (4), wherein a predetermined number of the pixel circuits are provided for each scintillator.
- the pixel circuit is provided on a first substrate, The radiation detection apparatus according to any one of (1) to (5), wherein the detection circuit is provided on a second substrate stacked on the first substrate.
- the pixel circuit includes: A photoelectric conversion unit for converting the photons into electric charges; An intermediate node holding the charge; A first transfer unit that transfers the charge from the photoelectric conversion unit to the intermediate node; A charge storage unit that stores the charge and generates a voltage corresponding to the amount of the charge as the analog voltage; The radiation counting apparatus according to any one of (1) to (6), further including a second transfer unit that transfers the held charge from the intermediate node to the charge storage unit. (8) The radiation counting apparatus according to any one of (1) to (7), further including a data processing unit that processes the digital signal and counts the number of incident radiations.
- a predetermined number of the pixel circuits are arranged in a two-dimensional lattice pattern on the substrate,
- (10) a photon generation procedure in which the scintillator generates a photon when radiation is incident;
- An analog voltage generation procedure in which the pixel circuit converts the photons into electric charges, accumulates them for a predetermined period, and generates an analog voltage according to the amount of the accumulated electric charges;
- An analog-digital conversion circuit comprising: an analog-to-digital conversion procedure in which the analog voltage is converted into a digital signal by a predetermined quantization unit smaller than the analog voltage generated from one photon.
- Radiation counting device 110 Light-receiving part 120, 121, 122, 123, 124, 125 Scintillator 130 Bulkhead 140 Data processing part 200, 201, 202, 203, 204, 207 Photodetector 205 Upper substrate 206 Lower substrate 208 Photodetector Group 209 Radiation detection module 210 Pixel array unit 211 Bonding pad 220 Pixel circuit 221 Photo diode 222 Storage node 223, 235, 237 Transfer transistor 224 Detection node 225 Reset transistor 226 Amplification transistor 227 Selection transistor 230 Constant current circuit 231 MOS transistor 236 Intermediate node 240, 260 Detection circuit 241 AD conversion circuit 242, 243 Capacitor 244 Comparator 245 Counter 246 Division Road 250, 270 switch 261 detecting circuit unit 275 reference voltage generation circuit 280, line driver circuit 281 circuit component 285 a timing control circuit 290 outputs the circuit 295 circuit blocks
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Measurement Of Radiation (AREA)
Abstract
放射線計数を正確に行う。放射線計数装置は、シンチレータ、画素回路、および、アナログデジタル変換回路を具備する。放射線計数装置においてシンチレータは、放射線が入射されると光子を生成する。放射線計数装置において画素回路は、光子を電荷に変換して所定の期間に亘って蓄積して蓄積した電荷の量に応じたアナログ電圧を生成する。放射線計数装置においてアナログデジタル変換回路が、1つの光子から生成されたアナログ電圧より小さい所定の量子化単位によりアナログ電圧をデジタル信号に変換する。
Description
本技術は、放射線計数装置、および、放射線計数装置の制御方法に関する。詳しくは、アナログデジタル変換を行う放射線計数装置、および、放射線計数装置の制御方法に関する。
検出器に入射された放射線の線量を、入射光子単位で個々のエネルギー分別を行いつつカウントする放射線計数(フォトンカウント)は、線量計やガンマカメラ等、現在さまざまな分野に応用されている。その代表的な一例は、サーベイメータに代表される広義の線量計である。検出器としては通常、シンチレータおよび光電子増倍管が使用され、その検出器に入射した放射線のエネルギーと個数が計数される。シンチレータに放射線の光子が1個以上入射すると、シンチレータは発光し、放射線のエネルギーに比例した光量の可視光のパルスを放つ。このような発光パルスは、放射線光子が入射するごとに発せられ、光電子増倍管によって検知される。ここで、シンチレータは、光電子増倍管に向けられた面のみを開口状態にした隔壁に覆われている。この隔壁は外部からの可視光の侵入を遮断するとともに、望ましくは内部から生じた光を反射して、その全てを光電子増倍管に入射させる。
この線量計において、光電子増倍管は発光パルスを電子に変換し、それを増幅することでアナログ電気パルスを発生させる。このアナログ電気パルスのパルス高はシンチレータの発光光量、即ち放射線のエネルギーに比例する。そして、放射線光子が1個入射するごとに独立したパルスが出力されるため、線量計は、パルス数を数えることによって、入射した放射線光子の個数を求めることができる。
上述の線量計において検出回路は、例えばアンプ、積分器およびAD(Analog to Digital)変換機よりなり、アンプは出力されたアナログ信号をさらに増幅し、積分器はパルスを積分してAD変換器がAD変換を実施する。これによって、線量計は、入射した放射線光子ごとのエネルギーをデジタル値で導出することができる。線量計内のデジタル処理回路は所定期間における検出回路の出力結果を集積し、放射線光子のエネルギースペクトルを導出する。これは線量計が捉えた放射線光子の、エネルギーごとの存在比率を示す。これによって、線量計は、放射線源を特定することができる。さらにシンチレータが捕捉する放射線は、エネルギーごとに透過確率或いは捕捉確率が異なる。従って、デジタル処理回路がエネルギーごとの捕捉光子数を捕捉確率で割り戻せば、入射光子数が得られる。このようにして、G関数やDBM(Dyson Boson Mapping)法等による線量補正が行われる(例えば、特許文献1参照。)。
上述のような放射線のフォトンカウンティングは、シンチレータおよび光電子増倍管を用いたものが主流である。しかし、光電子増倍管は高価である上、小型軽量化に適さない。また、磁場の影響を受けやすい問題もある。光電子増倍管の代わりに、APD(Avalanche PhotoDiode)やSiPM(Silicon PhotoMultipliers)のアレイを用いたものも提案されている。しかし、前者は出力信号が極めて微弱な上に温度による出力変動が激しく、外部環境の影響を受けやすい。また、後者は、高電界を要するために暗電流が大きく、アフタパルスやクロストーク等によりフロアノイズが大きいという問題がある。さらに、APDおよびSiPMのいずれも高電圧を使うため、別途電源回路が必要であり、出力もアナログ信号である。このため、別途アンプや積分回路、AD変換回路を外付けする必要があり、信号伝達の過程で外部ノイズの影響を受けやすいという問題がある。
一方、特許文献2には、CMOS(Complementary MOS)イメージャーの回路構成を踏襲しつつ、時分割及び複数画素による面分割を併用してダイナミックレンジを上げた、フォトンカウンティングによる新しい撮像素子が提案されている。このようなデバイスはチップ内の画素アレイ全体を1受光面としたフォトンカウンティング用デバイスとして使用することも可能である。左記撮像素子にはAD変換回路がオンチップで搭載され、画素信号を受けて、各画素への光子入射の有無を、閾値を設けてバイナリ判定する。
上述の構成において、AD変換回路は、1光子入射時の画素からの出力電圧を量子化単位としてAD変換を行っていた。しかし画素内のトランジスタなどにおいて、その量子化単位の半分以上のノイズが生じることがあるため、デジタル信号の誤差が大きくなる。これにより、放射線計数を正確に行うことが困難になる。
本技術はこのような状況に鑑みて生み出されたものであり、放射線計数を正確に行うことを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、放射線が入射されると光子を生成するシンチレータと、上記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成する画素回路と、1つの上記光子から生成された上記アナログ電圧より小さい所定の量子化単位により上記アナログ電圧をデジタル信号に変換するアナログデジタル変換回路とを具備する放射線計数装置、および、その制御方法である。これにより、1つの光子から生成されたアナログ電圧より小さい所定の量子化単位によりアナログ電圧がデジタル信号に変換されるという作用をもたらす。
また、この第1の側面において、上記アナログデジタル変換回路は、1つの上記光子から生成された上記アナログ電圧の半分を超えない上記量子化単位により上記アナログ電圧をデジタル信号に変換してもよい。これにより、1つの光子から生成されたアナログ電圧の半分を超えない量子化単位によりアナログ電圧がデジタル信号に変換されるという作用をもたらす。
また、この第1の側面において、上記アナログデジタル変換回路は、1つの上記光子から生成された上記アナログ電圧の1/4を超えない上記量子化単位により上記入力電圧をデジタル信号に変換してもよい。これにより、1つの光子から生成されたアナログ電圧の1/4を超えない量子化単位によりアナログ電圧がデジタル信号に変換されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、上記光子を電荷に変換する光電変換部と、上記電荷を蓄積して当該電荷の量に応じた電圧を上記アナログ電圧として生成する電荷蓄積部と、上記アナログ電圧を増幅して上記アナログデジタル変換回路へ出力するアンプ素子とを備えてもよい。これにより、アナログ電圧が増幅して出力されるという作用をもたらす。
また、この第1の側面において、上記シンチレータを複数具備し、上記画素回路は、上記シンチレータごとに所定数設けられていてもよい。これにより、複数のシンチレータにより光子が生成されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、第1の基板に設けられ、上記検出回路は、上記第1の基板に積層された第2の基板に設けられてもよい。これにより、画素回路が設けられた基板に積層された基板上の検出回路によりアナログ電圧がデジタル信号に変換されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、上記光子を電荷に変換する光電変換部と、上記電荷を保持する中間ノードと、上記電荷を上記光電変換部から上記中間ノードへ転送する第1の転送部と、上記電荷を蓄積して当該電荷の量に応じた電圧を上記アナログ電圧として生成する電荷蓄積部と、上記保持された電荷を上記中間ノードから上記電荷蓄積部へ転送する第2の転送部とを備えてもよい。これにより、光電変換部から中間ノードへ電荷が転送され、中間ノードから電荷蓄積部へ電荷が転送されるという作用をもたらす。
また、この第1の側面において、上記デジタル信号を処理して上記放射線の入射数を計数するデータ処理部をさらに具備してもよい。これにより、放射線の入射数が計数されるという作用をもたらす。
また、この第1の側面において、所定数の上記画素回路が、基板に二次元格子状に配置され、上記データ処理部は、一定数の上記デジタル信号の値の合計を上記シンチレータの発光量の値として算出してもよい。これにより、二次元格子状に配置された画素回路からのデジタル信号の値の合計が算出されるという作用をもたらす。
本技術によれば、放射線計数を正確に行うことができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(1光子信号より小さい量子化単位でAD変換する例)
2.第2の実施の形態(マルチヘッド化して1光子信号より小さい量子化単位でAD変換する例)
3.第3の実施の形態(積層化した光検出器において1光子信号より小さい量子化単位でAD変換する例)
4.第4の実施の形態(全行を同時に露光して1光子信号より小さい量子化単位でAD変換する例)
5.第5の実施の形態(1チップに複数の画素アレイ部をマトリクス配置し、同時動作させる第1の例)
6.第6の実施の形態(1チップに複数の画素アレイ部をマトリクス配置し、同時動作させる第2の例)
1.第1の実施の形態(1光子信号より小さい量子化単位でAD変換する例)
2.第2の実施の形態(マルチヘッド化して1光子信号より小さい量子化単位でAD変換する例)
3.第3の実施の形態(積層化した光検出器において1光子信号より小さい量子化単位でAD変換する例)
4.第4の実施の形態(全行を同時に露光して1光子信号より小さい量子化単位でAD変換する例)
5.第5の実施の形態(1チップに複数の画素アレイ部をマトリクス配置し、同時動作させる第1の例)
6.第6の実施の形態(1チップに複数の画素アレイ部をマトリクス配置し、同時動作させる第2の例)
<1.第1の実施の形態>
[放射線計数装置の構成例]
図1は、第1の実施の形態における放射線計数装置100の一構成例を示す全体図である。同図におけるaは、放射線計数装置100の断面図である。同図におけるbは、放射線計数装置100の斜視図である。この放射線計数装置100は、受光部110およびデータ処理部140を備える。この受光部110は、シンチレータ120、隔壁130および光検出器200を備える。
[放射線計数装置の構成例]
図1は、第1の実施の形態における放射線計数装置100の一構成例を示す全体図である。同図におけるaは、放射線計数装置100の断面図である。同図におけるbは、放射線計数装置100の斜視図である。この放射線計数装置100は、受光部110およびデータ処理部140を備える。この受光部110は、シンチレータ120、隔壁130および光検出器200を備える。
シンチレータ120は、放射線が入射されると光子を生成するものである。このシンチレータ120は、例えば、ヨウ化ナトリウム(NaI)を含み、4ミリメートル(mm)角に柱状加工されている。
隔壁130は、シンチレータ120を覆い、可視光を遮断するものである。ただし、この隔壁130は、光検出器200に対向する面のみが開口されている。また、隔壁130は、光を反射する反射性物質(例えば、アルミニウム)により構成されることが望ましい。これにより、シンチレータ120で発生した光子の殆どが光検出器200に入射される。
光検出器200は、光を検出してデジタル信号を生成するものである。この光検出器200は、シンチレータ120と対向する受光面を有し、その受光面には、二次元格子状に複数(例えば、520×520)の画素回路220が設けられる。画素回路220の詳細については後述する。光検出器200は、生成したデジタル信号を信号線119を介してデータ処理部140に供給する。
データ処理部140は、デジタル信号を処理して放射線計数を行うものである。また、データ処理部140は、放射線から生成された1光子のエネルギー判定を行う。
なお、シンチレータ120と光検出器200とは、適切な屈折率をもつ光学接着剤により接着されるのが望ましく、あるいは、それらの中間にファイバーガラス等によるライトガイドを挿入しても良い。
[光検出器の構成例]
図2は、第1の実施の形態における光検出器200の一構成例を示すブロック図である。この光検出器200は、画素アレイ部210と、検出回路240および260と、スイッチ250および270と、参照電圧生成回路275と、行駆動回路280と、タイミング制御回路285と、出力回路290とを備える。これらの回路は、1つのチップに設けられる。
図2は、第1の実施の形態における光検出器200の一構成例を示すブロック図である。この光検出器200は、画素アレイ部210と、検出回路240および260と、スイッチ250および270と、参照電圧生成回路275と、行駆動回路280と、タイミング制御回路285と、出力回路290とを備える。これらの回路は、1つのチップに設けられる。
画素アレイ部210には、二次元格子状に複数の画素回路220が設けられる。以下、所定方向に配列された複数の画素回路220を「行」と称し、その行と直交する方向に配列された複数の画素回路220を「列」と称する。
検出回路240、スイッチ250、検出回路260およびスイッチ270は、列ごとに設けられる。また、奇数行の画素回路220は、検出回路240に垂直信号線219を介して接続され、偶数行の画素回路220は、検出回路260に垂直信号線217を介して接続される。また、画素回路220のそれぞれは、制御線218を介して行駆動回路280に接続される。
行駆動回路280は、タイミング制御回路285の制御に従って画素回路220のそれぞれを制御するものである。この行駆動回路280は、列方向において隣り合う一対の行を選択して露光させ、それらの行内の画素回路220にアナログの電気信号を生成させる。この電気信号は、検出回路240および260により読み出されてデジタル信号に変換される。読出しが完了すると、行駆動回路280は、次の一対の行を選択し、同様の制御を行う。全ての行の読出しが完了すると、1フレーム分の画像データが出力される。520×520の画素回路220が設けられ、一対の行の処理のそれぞれに16マイクロ秒(μs)を要する場合、1フレームの出力には、260回の処理を要し、約4.2ミリ秒(ms)を要する。
検出回路240は、タイミング制御回路285の制御に従って奇数行の画素回路220からの電気信号をデジタル信号に変換するものである。この検出回路240は、変換したデジタル信号をスイッチ250に供給する。一方、検出回路260は、タイミング制御回路285の制御に従って偶数行の画素回路220からの電気信号をデジタル信号に変換して光を検出するものである。この検出回路260は、変換したデジタル信号をスイッチ270に供給する。
スイッチ250は、対応する検出回路240と出力回路290との間の経路を開閉するものである。各列のスイッチ250は、列を順に選択する列駆動回路(不図示)の制御に従って、順にデジタル信号を出力回路290に供給する。スイッチ270は、対応する検出回路260と出力回路290との間の経路を開閉するものである。各列のスイッチ270も、スイッチ250と同様に、列駆動回路の制御に従って、順にデジタル信号を出力回路290に供給する。出力回路290は、画像処理装置などにデジタル信号を出力するものである。
タイミング制御回路285は、行駆動回路280、参照電圧生成回路275、検出回路240および検出回路260の動作タイミングを制御するものである。このタイミング制御回路285は、例えば、行の走査タイミングを示すタイミング制御信号を生成して行駆動回路280に供給する。また、タイミング制御回路285は、参照電圧の供給動作を制御するDAC(Digital to Analog)制御信号を生成して参照電圧生成回路275に供給する。また、タイミング制御回路285は、検出回路240および260の動作を制御する検出制御信号を検出回路240および260へ供給する。DAC制御信号や検出制御信号の詳細については後述する。
参照電圧生成回路275は、DAC制御信号に従って参照電圧Vrefを生成して検出回路240および260のそれぞれに供給するものである。
図3は、第1の実施の形態における放射線計数結果の一例を示す図である。同図の縦軸は、一対の行内の各画素回路220からの出力合計値であり、横軸は時間である。この出力合計値は、データ処理部140により算出される。前述したように、光検出器200では、2行単位の読み出しが同一の間隔で循環的に繰り返される。発光の瞬間、シンチレーション光は、ほぼ均一的に各画素回路220に受光されるため、発光直後の単位読み出しから信号が出力し始める。そこから1周して1フレーム分が読み出されるまで信号出力は継続され、その後は再度シンチレータが発光するまでダーク出力となる。同図に例示したようなプロットは1フレーム分の時間幅を持ったパルスに似た出力形状となり、パルスごとの出力値合計がシンチレータの発光量に相当する。
[画素回路の構成例]
図4は、第1の実施の形態における画素回路220の一構成例を示す回路図である。この画素回路220は、フォトダイオード221、蓄積ノード222、転送トランジスタ223、検出ノード224、リセットトランジスタ225、増幅トランジスタ226および選択トランジスタ227を備える。転送トランジスタ223、リセットトランジスタ225、増幅トランジスタ226および選択トランジスタ227として、例えば、n型のMOS(Metal-Oxide Semiconductor)トランジスタが用いられる。
図4は、第1の実施の形態における画素回路220の一構成例を示す回路図である。この画素回路220は、フォトダイオード221、蓄積ノード222、転送トランジスタ223、検出ノード224、リセットトランジスタ225、増幅トランジスタ226および選択トランジスタ227を備える。転送トランジスタ223、リセットトランジスタ225、増幅トランジスタ226および選択トランジスタ227として、例えば、n型のMOS(Metal-Oxide Semiconductor)トランジスタが用いられる。
フォトダイオード221は、光子を電荷に変換するものである。このフォトダイオード221は、蓄積ノード222を介して転送トランジスタ223に接続される。フォトダイオード221は、画素回路220のシリコン基板に入射した光子から、電子とホールのペアを発生させ、そのうちの電子を蓄積ノード222に蓄積する。なお、フォトダイオード221は、特許請求の範囲に記載の光電変換部の一例である。該フォトダイオード221は、リセットによる電荷排出時には完全空乏化される、埋め込み型であるのが望ましい。
転送トランジスタ223は、行駆動回路280の制御に従って、蓄積ノード222から検出ノード224へ電荷を転送するものである。
検出ノード224は、転送トランジスタ223からの電荷を蓄積して、その蓄積した電荷の量に応じたアナログの電圧を生成するものである。この電圧は、増幅トランジスタ226のゲートに印加される。
リセットトランジスタ225は、蓄積ノード222や検出ノード224に蓄積された電荷を電源に引き抜いて初期化するものである。このリセットトランジスタ225のゲートは行駆動回路280に接続され、ドレインは電源に接続され、ソースは検出ノード224に接続される。
行駆動回路280は、例えば、リセットトランジスタ225を転送トランジスタ223と同時にオン状態に制御することで蓄積ノード222に蓄積された電子を電源に引き抜き、画素を蓄積前の暗状態、即ち光が未入射の状態に初期化する。また、行駆動回路280は、転送トランジスタ223のみをオン状態に制御することにより、検出ノード224に蓄積された電荷を電源に引き抜き、その電荷量を初期化する。
増幅トランジスタ226は、ゲートの電圧を増幅するものである。この増幅トランジスタ226のゲートは検出ノード224に接続され、ドレインは電源に接続され、ソースは選択トランジスタ227に接続される。この増幅トランジスタ226と定電流回路230とは、ソースフォロワを形成しており、検出ノード224の電圧は、1弱のゲインで垂直信号線219に出力される。その電圧の電気信号は検出回路240により取得される。
選択トランジスタ227は、行駆動回路280の制御に従って、電気信号を出力するものである。この選択トランジスタ227のゲートは行駆動回路280に接続され、ドレインは増幅トランジスタ226に接続され、ソースは垂直信号線219に接続される。行駆動回路280は、一対の行を択一的に選択して選択した行内の全選択トランジスタ227をオンにすることにより、それらの行内の画素回路220に電気信号を出力させる。
また、定電流回路230は、例えば、MOSトランジスタ231を備える。このMOSトランジスタ231のゲートには所定の電圧(例えば、3ボルト)が印加され、ドレインは垂直信号線219に接続され、ソースは接地される。この定電流回路230は、列内の各画素回路220に垂直信号線219を介して接続される。
図5は、第1の実施の形態における画素回路220の動作の一例を示すタイミングチャートである。
行駆動回路280は、露光期間直前のタイミングT1において、転送トランジスタ223およびリセットトランジスタ225をともにオン状態に制御する。この制御により、フォトダイオード221および転送トランジスタ223の間の蓄積ノード222に蓄積された電荷が全て電源へ排出される。この制御を以下、「PD(Photo Diode)リセット」と称する。その後、行駆動回路280は、転送トランジスタ223をオフ状態に制御する。この制御により、蓄積ノード222は浮遊状態となって、新たな電荷蓄積が開始される。また、行駆動回路280は、PDリセット後において、リセットトランジスタ225をオフ状態に制御する。なお、電荷蓄積中、リセットトランジスタ225はオン状態のままであってもよい。一方、選択トランジスタ227は、垂直信号線219に接続された他の画素回路220へのアクセスを可能にするために、オフ状態に制御される。
そして、露光期間終了前のタイミングT2において、行駆動回路280は、リセットトランジスタ225および選択トランジスタ227をオン状態に制御する。選択トランジスタ227の制御により、選択された画素回路220が垂直信号線219に接続される。また、リセットトランジスタ225の制御により、増幅トランジスタ226の入力である検出ノード224と電源とが短絡される。これにより、選択された画素回路220に基準電位が生成される。
タイミングT2からパルス期間が経過したときに、行駆動回路280は、リセットトランジスタ225をオフ状態に制御する。この制御により、検出ノード224の電位は、リセットトランジスタ225のゲートとのカップリングを受けて基準電位から幾分低下し、浮遊状態となる。さらに、この際に検出ノード224には、有意なkTCノイズが発生する。検出ノード224として、一般に、浮遊拡散層(Floating Diffusion)が用いられるため、この制御を以下、「FDリセット」と称する。
FDリセットから露光期間の終了までの間に、検出回路240は、複数回(例えば、4回)のサンプリングを行う。これらのサンプリングにおいて、垂直信号線219の電位の信号が、リセット信号として検出回路240によりデジタル信号Ds1に変換される。リセット信号の多重サンプリングは、相関二重サンプリングにおいて1回目の読出しとして扱われる。
そして、露光期間が終了する直前のタイミングT4において行駆動回路280は、転送トランジスタ223をオン状態に制御する。この制御により、蓄積ノード222に蓄積された電荷が検出ノード224へ転送される。この際に、検出ノード224のポテンシャルが十分に深ければ、蓄積ノード222に蓄積されていた電子は、検出ノード224に全て転送され、蓄積ノード222は完全空乏状態になる。タイミングT4からパルス期間が経過したときに行駆動回路280は、転送トランジスタ223をオフ状態に制御する。この制御により、検出ノード224の電位は、転送トランジスタ223の駆動前に比較して、蓄積電荷量の分だけ下降する(すなわち、ポテンシャルが浅くなる)。この下降分の電圧が増幅トランジスタ226により増幅されて垂直信号線219へ出力される。
転送トランジスタ223がオフ状態に制御されたときからタイミングT6までの間に、検出回路240は、複数回(例えば、4回)のサンプリングを行う。これらのサンプリングにおいて、垂直信号線219の電位の信号が、蓄積信号として検出回路240によりデジタル信号Ds2に変換される。この蓄積信号の多重サンプリングは、相関二重サンプリングにおいて2回目の読出しとして扱われる。
検出回路240は、サンプリングした蓄積信号(すなわち、デジタル信号Ds2)およびリセット信号(すなわち、デジタル信号Ds1)を比較して、その比較結果に基づいて入射光子量を判定する。複数のデジタル信号Ds1は、全て加算され、必要に応じて、それらの平均値が算出される。同様に、デジタル信号Ds2も全て加算され、必要に応じて平均化される。検出回路240は、デジタル信号Ds1の加算値(または平均値)と、デジタル信号Ds2の加算値(または平均値)との差分を正味の蓄積信号として求める。FDリセットの際に生じるkTCノイズは、デジタル信号Ds1およびDs2の差分を正味の蓄積信号とすることにより相殺される。
各画素回路220の露光期間は、上述のリセット動作と読み出し動作との間の期間であり、正確には転送トランジスタ223がリセット後にオフしてから、読み出しでオンするまでの期間である。この露光期間にフォトダイオード221に光子が入射し電荷が発生すると、それはリセット信号および蓄積信号の間の差分となり、上述の手順に従って検出回路240により導出される。放射線計数に使用する場合、露光が終了して次の露光が開始されるまでの時間は不感期間となるため、読み出した行は即座にPDリセットを行うのが望ましく、或いはPDリセットを省略しても良い。PDリセットを省略すると、露光完了となる電荷転送直後にフォトダイオードへの次の電荷蓄積が開始される。即ち放射線計数の不感期間はゼロとなる。また、蓄積時間はフレームレートによって決定される。
図6は、本技術の第1の実施の形態の画素回路のレイアウトの一例を模式的に示す図である。上述した画素回路220の基本回路や動作機構は通常のCMOS(Complementary MOS)イメージャーにおける画素と同様であり、さまざまなバリエーションが存在し得る。但し本発明で想定されている画素は、比較的、変換効率が著しく高くなるように設計される。具体的には、変換効率を上げるために、ソースフォロアを構成するアンプの入力側の蓄積ノード222の寄生容量が極限まで小さくなるように、レイアウトを工夫する。例えば、蓄積ノード222を構成する拡散層や配線の占有面積を出来る限り微細化する。
その一方でフォトダイオード221は出来る限り面積を拡大させている。それらはポテンシャルがフォトダイオード221の周辺から転送トランジスタに向けてなだらかに深まるように注意深く不純物設計がなされている。これによってフォトダイオード221で生じた1電子単位の微小信号が、速やかに検出ノード224に向けて転送される。即ち完全空乏型の埋め込み型画素に適切なポテンシャル設計を施すことで、信号電荷は検出ノード224へ完全転送される。
例えば、変換効率を200マイクロボルト(μV)/e-まで引き上げる一方で、増幅トランジスタ226のランダムノイズや周辺回路のランダムノイズを、多重サンプリング等を用いて総計100μVrmsに抑制する。この結果、各画素回路220のノイズは0.5e-以下にまで抑制される。
[検出回路の構成例]
図7は、第1の実施の形態における検出回路240の機能構成例と検出回路の動作例とを示す図である。この検出回路240は、AD変換回路241、および、除算回路246を備える。
図7は、第1の実施の形態における検出回路240の機能構成例と検出回路の動作例とを示す図である。この検出回路240は、AD変換回路241、および、除算回路246を備える。
AD変換回路241は、タイミング制御回路285の制御に従って、リセット信号および蓄積信号のそれぞれを順にデジタル信号に変換(すなわち、サンプリング)するものである。このAD変換回路241は、キャパシタ242および243と、コンパレータ244と、カウンタ245とを備える。なお、AD変換回路241は、特許請求の範囲に記載のアナログデジタル変換回路の一例である。
キャパシタ242は、垂直信号線219とコンパレータ244の2つの入力端子の一方とに接続され、キャパシタ243は、コンパレータ244の2つの入力端子の他方と参照信号線279とに接続される。また、これらのキャパシタ242および243の容量は、略同一であり、これらのキャパシタはカップリングキャパシタとも呼ばれる。
コンパレータ244は、垂直信号線219の出力電圧Vpと参照信号線279の参照電圧Vrefとを比較するものである。リセット信号の多重サンプリングではリセット信号のリセット電位が出力電圧Vpとして出力され、蓄積信号の多重サンプリングでは蓄積信号の信号電位が出力電圧Vpとして出力される。コンパレータ244は、比較結果COMPをカウンタ245に供給する。例えば、出力電圧Vpが参照電圧Vrefより高い場合に、ハイレベルの比較結果COMPが出力され、そうでない場合にローレベルの比較結果COMPが出力される。また、コンパレータ244は、二つの入力端子を内部ノードとショートさせて均衡状態とするオートゼロ機能を有する。
カウンタ245は、コンパレータ244の比較結果COMPに基づいて計数値を計数するものである。このカウンタ245は、例えば、計数値を増加するアップカウントと、計数値を減少させるダウンカウントとのいずれかを切り替えて実行することができる。
タイミング制御回路285からの検出制御信号は、カウンタ245の計数値を初期値にリセットする初期化指示信号RSTと、アップカウントおよびダウンカウントの一方から他方への切り替えを指示する切替指示信号SWとを含む。また、検出制御信号は、所定の周波数のクロック信号CLKを含む。
カウンタ245は、初期化指示信号RSTが供給されると、計数値を初期値にする。また、カウンタ245は、切替指示信号SWに従ってアップカウントおよびダウンカウントのいずれかを行う。また、カウンタ245は、出力電圧Vpが参照電圧Vrefより高い(すなわち、比較結果COMPがハイレベルである)場合に、クロック信号CLKに同期してアップカウントまたはダウンカウントを行う。カウンタ245は、計数値CNTを除算回路246に供給する。
ここで、1つの光子から生成された正味の蓄積信号を「1光子信号」と定義すると、アナログのリセット信号および蓄積信号は、1光子信号の電圧より小さい量子化単位によりデジタル信号に変換される。
SiPMのようなガイガー増幅を行わず、変換効率等の調整によって低ノイズ化を施した画素回路220の場合には、特に増幅トランジスタ226の1/fノイズに起因して、画素ごとに0.5e-rms前後の有意なノイズが、その出力に乗ってくる。この構成において、仮に、1光子信号を量子化単位として、AD変換回路241が量子化を行うと、実際の光子数と、デジタル信号の示す光子数との間の誤差が大きくなってしまう。
そこで、AD変換回路241は、1光子信号より小さい量子化単位によりリセット信号および蓄積信号の量子化を行っている。量子化単位は、1光子信号の半分以下にするのが望ましく、1光子信号の1/4以下にするのが、さらに望ましい。
[検出回路の動作例]
図7におけるbは、第1の実施の形態における検出回路240の動作例を示す図である。選択された画素回路220は、行駆動回路280の制御に従ってリセット信号を垂直信号線219に出力する(ステップS901)。
図7におけるbは、第1の実施の形態における検出回路240の動作例を示す図である。選択された画素回路220は、行駆動回路280の制御に従ってリセット信号を垂直信号線219に出力する(ステップS901)。
また、コンパレータ244のオートゼロ機能により、コンパレータ244への二つの入力が内部ノードとショートして均衡状態となり、キャパシタ242および243の電荷量がそれに従って調整される。これによって垂直信号線219および参照信号線279は実効的な均衡状態となる(ステップS902)。
参照電圧生成回路275は、一定の速度で、参照電圧Vrefを変化(例えば、減少)させるスイープ信号を参照信号線279に複数回に亘って供給する。コンパレータ244は、そのスイープ信号の電圧(Vref)とリセット信号のリセット電位とを比較する。タイミング制御回路285は、カウンタ245を制御して計数値を初期化させる。カウンタ245は、比較結果COMPの反転タイミングに基づいて計数を行う。これにより、リセット信号をデジタル信号Ds1に変換するAD変換が行われる(ステップS903)。
ステップS902のオートゼロ動作により、垂直信号線219の電圧Vpと、参照信号線219の電圧Vrefとは実効的な均衡状態に制御されている。このため、ステップS903において、AD変換される電圧は、事実上、コンパレータ244の内部で生ずるオフセットである。このようなAD変換は、複数回行われ、AD変換においては、例えば、ダウンカウントにより計数値が加算される。
そして、画素回路220は、行駆動回路280の制御に従って蓄積信号を垂直信号線219に出力する(ステップS904)。
参照電圧生成回路275は、再度スイープ信号を複数回に亘って供給し、コンパレータ244は、そのスイープ信号の電圧(Vref)と蓄積信号の信号電位とを比較する。タイミング制御回路285は、カウンタ245を制御して、ダウンカウントからアップカウントへ切り替えさせる。カウンタ245は、比較結果COMPの反転タイミングに基づいて計数を行う。これにより、蓄積信号をデジタル信号Ds2に変換するAD変換が行われる(ステップS905)。
ステップS905で、カウンタ245は、ダウンカウントからアップカウントに切り替えたため、ステップS905では、アップカウントの計数値と、ダウンカウントの計数値との差分が出力される。コンパレータのオフセット電圧や、リセット時のkTCノイズは、デジタル信号Ds1およびDs2の差分を取ることにより除去される。
除算回路246は、その差分(CNT)の平均値を正味の画素信号として算出する(ステップS906)。ステップS906の後、検出回路240および260は、検出動作を終了する。
図8は、第1の実施の形態における量子化単位ごとの誤差の総計の一例を示すグラフである。この誤差の総計は暗状態において画素アレイ部210が発生するフロアノイズに相当する。例えば、次式により画素回路220からの出力電圧Vpの値を表す実数Pを所定数(例えば、10000個)生成する。
P=NORMINV(RAND(),Av,s)
上式において、RAND()は、乱数を生成する関数である。また、NORMINV()は、第1項に累積分布関数を設定すると、平均値Avおよび標準偏差sに対する正規分布の累積分布関数の逆関数の値を返す関数である。累積分布関数としてRAND()を設定することにより、平均値Avおよび標準偏差sの正規分布に従う乱数が生成される。標準偏差sには、ノイズ量に応じた値が設定される。例えば、1光子信号の半分のレベルのノイズが生じる際には、sに0.5が設定される。
P=NORMINV(RAND(),Av,s)
上式において、RAND()は、乱数を生成する関数である。また、NORMINV()は、第1項に累積分布関数を設定すると、平均値Avおよび標準偏差sに対する正規分布の累積分布関数の逆関数の値を返す関数である。累積分布関数としてRAND()を設定することにより、平均値Avおよび標準偏差sの正規分布に従う乱数が生成される。標準偏差sには、ノイズ量に応じた値が設定される。例えば、1光子信号の半分のレベルのノイズが生じる際には、sに0.5が設定される。
そして、生成した実数Pごとに、対応するアナログの出力電圧Vpを量子化したデジタル信号DOUTの値を次式により求める。
DOUT=ROUND(P/LSB,0)×LSB
上式において、ROUND()は、()内の第1項を第2項の桁数で四捨五入する関数である。小数点第一位で四捨五入する際には、例えば、第2項に「1」が設定される。また、LSBは、量子化単位を表す。量子化単位を1光子信号の半分とする場合、例えば、LSBに「0.5」が設定される。
DOUT=ROUND(P/LSB,0)×LSB
上式において、ROUND()は、()内の第1項を第2項の桁数で四捨五入する関数である。小数点第一位で四捨五入する際には、例えば、第2項に「1」が設定される。また、LSBは、量子化単位を表す。量子化単位を1光子信号の半分とする場合、例えば、LSBに「0.5」が設定される。
実数Pごとに求められたデジタル値DOUTの誤差の総計は、例えば、DOUTの二乗平均平方根により表される。図8における縦軸は、この二乗平均平方根を表す。また、同図における横軸は、量子化単位を表す。
図8に示すように、画素回路220ごとのノイズのレベルが高いほど、誤差は大きくなる。さらにノイズが量子化単位の0.3倍を超えた場合、このノイズに量子化に伴う量子化誤差が追加されるため、量子化単位が大きいほど誤差が大きくなる。
一方、1光子信号の1倍の量子化単位での検出は、SiPMや特許文献2で用いられている、所謂フォトンカウンティングに相当する。ノイズ平均が十分小さい場合、残存ノイズはフォトンカウンティングによってフィルタリングされ、まるめられてほぼゼロになる。しかし、その効果が顕れるのはノイズが1光子信号の0.2倍以下の時である。一方、アバランシェ増幅しない光電変換素子を用いた光検出器において、ノイズをそのレベルに抑えるのは容易ではなく、通常は1光子信号の0.3倍を超えるノイズが発生してしまう。この場合フォトンカウンティングでは、ノイズを光子入力と誤判定するケースが多発して、むしろ誤差が悪化してしまう。即ち量子化誤差が顕れて、それがフィルタリング効果を上回る。
本発明は、このようなフォトンカウンティングによるフィルタリング効果を使うことなく、ノイズを一定の理論値範囲に抑えることで、超微小光の高精度な検出が可能であるという認識に基づいている。誤差の理論値は、量子化単位を無限小に取った場合(即ち量子化誤差が0の場合)、ノイズ量の二乗総計の平方根であり、例えば1.0e-rmsの10000回のサンプルでは100e-rmsである。本発明ではこの理論値を基準に検出精度を保証するので、量子化単位は一定以下に設定するのが望ましい。
ここに見られるように、量子化単位を1光子信号の半分以下とすれば、誤差を十分に理論値に近づけることができる。特に、量子化単位を1光子信号の1/4以下とすると、誤差の総計は理論値の10%以下となり、量子化によるばらつきの悪化はほぼ抑制されている。
したがって、量子化単位は、1光子信号の半分以下にするのが望ましく、1光子信号の1/4以下にするのが、さらに望ましい。
図9におけるaは、第1の実施の形態における光検出器200の動作の一例を示すタイミングチャートである。
タイミングT2において、行駆動回路280は、FDリセットを行う。タイミングT2からパルス期間が経過したタイミングT2'において、画素回路220は、垂直信号線219を介してリセット信号を出力する。また、タイミングT2において、タイミング制御回路285は、初期化指示信号RSTをカウンタ245に供給して、計数値を初期化させる
。
。
ここで、コンパレータ244のオートゼロ機能により、垂直信号線219および参照信号線279のそれぞれの電圧は、タイミングT2'において、ほぼ実効的に均衡した状態になっている。同図におけるaの一点鎖線は、均衡状態となった垂直信号線219の、参照信号線279に対する相対的な電圧の変動を示す。
タイミングT2において一定のオフセット電圧が参照信号線279に生じる。参照電圧生成回路275は、リセット信号に対する複数のサンプリングタイミングのそれぞれから一定期間に亘って、スイープ信号を供給する。リセット信号のサンプリングを4回行う際には、リセット信号のサンプリングタイミングT31、T33、T35およびT37のそれぞれにおいてスイープ信号の供給が開始される。そして、それらのサンプリングタイミングから一定期間が経過したタイミングT32、T34、T36およびT38において、参照電圧生成回路275は、スイープ信号の供給を停止する。
また、タイミング制御回路285は、スイープ信号が供給される期間(T31乃至T32など)に亘って、カウンタ245にクロック信号CLKを供給して計数値を計数させ、それ以外の期間ではクロック信号CLKの供給を停止する。
カウンタ245は、スイープ信号が供給される期間(T31乃至T32など)のうち参照電圧Vrefが垂直信号線219の電圧Vpよりも高い期間に亘ってダウンカウントを行う。これはコンパレータ出力の反転に伴ってカウンタへのクロック供給を遮断する等の手段によって実施される。例えば、タイミングT31とT32との間のタイミングT31'において、参照電圧Vrefが垂直信号線219の電圧以下になる場合には、タイミングT31からT31'までの間、ダウンカウントが実行される。タイミングT31'からT32までの間は、参照電圧Vrefが垂直信号線219の電圧以下であるため、ダウンカウントが行われず、計数値が保持される。また、タイミングT32から、次のサンプリングタイミングT33までの間はクロック信号CLKが供給されないため、同様に、ダウンカウントが行われずに計数値が保持される。
タイミングT33乃至T34と、タイミングT35乃至T36と、タイミングT37乃至T38とのそれぞれにおいても、同様に、参照電圧Vrefが垂直信号線219の電圧よりも高い期間に亘ってダウンカウントが行われる。
また、画素回路220は、電荷が検出ノード224へ転送されたタイミングT4において、蓄積信号を出力する。また、このタイミングT4において、タイミング制御回路285は、切替指示信号SWにより、カウンタ245のカウント動作をダウンカウントからアップカウントへ切り替えさせる。
参照電圧生成回路275は、蓄積信号に対する複数のサンプリングタイミングのそれぞれから一定期間に亘って、スイープ信号を供給する。蓄積信号のサンプリングを4回行う際には、蓄積信号のサンプリングタイミングT51、T53、T55およびT57においてスイープ信号の供給が開始される。そして、それらのサンプリングタイミングから一定期間が経過したタイミングT52、T54、T56およびT58において、参照電圧生成回路275は、スイープ信号の供給を停止する。
ここで、スイープ信号の変化量をスイープ量とすると、蓄積信号のサンプリングのときのスイープ量は、リセット信号のサンプリングのときよりも大きな値に設定される。
カウンタ245は、蓄積信号に対応するスイープ信号が供給される期間(T51乃至T52など)のうち参照電圧Vrefが垂直信号線219の電圧Vpよりも高い期間に亘ってアップカウントを行う。
リセット信号に対する最後のサンプリングが終了したタイミングT38において、計数値CNTは、複数のダウンカウントの計数値全ての積算値となる。例えば、リセット信号に対する1、2、3および4回目のサンプリングにおける計数値の絶対値をそれぞれDs1-1、Ds1-2、Ds1-3およびDs1-4とする。この場合、タイミングT38における計数値CNTは、初期値-Ds1-1-Ds1-2-Ds1-3-Ds1-4となる。
また、タイミングT4以降は、アップカウントに切り替わるため、蓄積信号に対する最後のサンプリングが終了したタイミングT58において、計数値CNTは、ダウンカウントの積算値とアップカウントの積算値との差分となる。例えば、蓄積信号に対する1、2、3および4回目のサンプリングにおける絶対値をそれぞれDs2-1、Ds2-2、Ds2-3およびDs2-4とする。この場合、タイミングT58における計数値CNTは、初期値-Ds1-1-Ds1-2-Ds1-3-Ds1-4+Ds2-1+Ds2-2+Ds2-3+Ds2-4となる。
同図におけるbは、リセット信号のリセット電位と、蓄積信号の信号電位と、量子化単位との関係を示す図である。リセット電位と1光子入射時の信号電位との間の電位差、すなわち、1光子信号の電圧は、例えば図4の画素回路において1電子電荷の注入に対応する検出ノード224の電位変動分にアンプのゲインを乗じた値となる。説明を簡易にするために、そのゲインを1とすると、1光子信号の電圧は1電子電荷の注入に対応する検出ノード224の電位変動分である。尚画素出力(219)からAD変換回路241に到達する経路でさらにゲインがかけられた場合は、さらにそのゲイン倍となる。AD変換回路241において量子化単位は、上記1光子信号の半分以下に設定される。
図10は、第1の実施の形態における量子化単位を説明するための図である。上述したように、カウンタ245は、クロック信号CLKに同期してカウンタ値を計数し、参照電圧生成回路275は、計数中にスイープ信号を供給する。クロック信号CLKの周期内のスイープ信号の変化量が、量子化単位に相当する。
続いて、上述の放射線計数装置100を用いてサーベイメータを構築した際の性能を見積もってみる。一般に放射線のシンチレーション検出におけるエネルギー分解能Rは、次式により表される。ここで、エネルギー分解能は、例えば、FWHM(Full Width at Half Maximum)により表される。
R2(E)=Rs2(E)+Rp2(E)
R2(E)=Rs2(E)+Rp2(E)
上式において、Rsは、シンチレータ120による分散要因であり、Rpは、光検出器200による分散要因である。この分散要因Rpは、次式により表される。
Rp2(E)=5.56×{1/(N×r)+s2/(N×r)2}
上式において、Nは、受光面に入射される光子数の平均値であり、rは、量子化効率であり、sは、ランダムノイズに応じた標準偏差である。また、係数5.56はrms値から半値幅への変換係数である。
Rp2(E)=5.56×{1/(N×r)+s2/(N×r)2}
上式において、Nは、受光面に入射される光子数の平均値であり、rは、量子化効率であり、sは、ランダムノイズに応じた標準偏差である。また、係数5.56はrms値から半値幅への変換係数である。
画素ごとのノイズを0.5e-rmsとした場合、520×520のアレイにおけるノイズ総計の理論値は、次式より、260e-rmsである。
(0.52×520×520)1/2=260
(0.52×520×520)1/2=260
この理論値は、AD変換の量子化単位を1光子信号の半分(0.5e-/lsb)以下、望ましくは1/4以下にすることにより保証される。セシウム(Cs)137から放射される主なる662eVのガンマ線を、例えば、ヨウ化ナトリウム(NaI):ヨウ化チタン(TI)よりなるシンチレータ120で受けると約24,500個の光子が発生する。その光量ばらつきには、シンチレータ120固有の要因分として6.5%FWHM程度が含まれる。
これに対してセンサ側のノイズは十分小さいものとなっており、光センサとして光電子増倍管を使用した場合に対し、遜色の無い測定精度が得られることが見込まれる。この見積もりの詳細を以下にまとめる。
単画素ノイズ:0.5e-rms
受光面のサイズ:4(mm)×4(mm)
画素サイズ:8(μm)×8(μm)
センサノイズ:260e-rms
光子当たりのエネルギー:37keV
ガンマ線のエネルギー:662leV
入射光子数平均値N:24494
量子効率r:0.8
標準偏差s:260
光検出器の分散要因Rp:3.55%
シンチレータの分散要因Rs:6.5%
エネルギー分解能R:7.41%
単画素ノイズ:0.5e-rms
受光面のサイズ:4(mm)×4(mm)
画素サイズ:8(μm)×8(μm)
センサノイズ:260e-rms
光子当たりのエネルギー:37keV
ガンマ線のエネルギー:662leV
入射光子数平均値N:24494
量子効率r:0.8
標準偏差s:260
光検出器の分散要因Rp:3.55%
シンチレータの分散要因Rs:6.5%
エネルギー分解能R:7.41%
このように、本技術の第1の実施の形態によれば、AD変換回路241は、1光子から生成された電圧より小さい量子化単位により、画素からの電圧をAD変換するため、画素においてノイズが生じる場合であっても正確にAD変換することができる。これにより、放射線計数装置100は、放射線計数を正確に行うことができる。
<2.第2の実施の形態>
上述の第1の実施の形態では、シンチレータおよび光検出器200からなる受光部110を1つ設けていた。この受光部110はヘッドとも呼ばれる。放射線計数装置100を単体でサーベイメータに使用した場合、発光量の測定精度は高いものの、感度がやや低いという課題がある。即ち光検出器200の受光面に対応する4mm角の底面からなるシンチレータ120は、体積がやや小さく、その分放射線が入射する確率が低くなって検出感度がやや低い。
上述の第1の実施の形態では、シンチレータおよび光検出器200からなる受光部110を1つ設けていた。この受光部110はヘッドとも呼ばれる。放射線計数装置100を単体でサーベイメータに使用した場合、発光量の測定精度は高いものの、感度がやや低いという課題がある。即ち光検出器200の受光面に対応する4mm角の底面からなるシンチレータ120は、体積がやや小さく、その分放射線が入射する確率が低くなって検出感度がやや低い。
しかし、シンチレータ120の底面を拡げて感度を向上させようとすると、光検出器200の受光面を拡げて駆動画素数を増加させる必要があり、光検出器200の総計ノイズとフレームレートが悪化する。一方、シンチレータ120の高さを高くして感度を向上させる場合、検出器(サーベイメータ)の形状に著しい制約が加わる上、今度は線量が高い場合に対して検出器のフレームレートがやや不足となる。このような状況を鑑みると、サーベイメータの検出感度を上げたい場合は、シンチレータ120の底面や光検出器200の受光面拡大ではなく、複数のヘッド(すなわち、受光部110)を放射線計数装置100に設けてマルチヘッドの構成とするのが望ましい。この第2の実施の形態の放射線計数装置100は、複数のヘッドを設けた点において第1の実施の形態と異なる。
図11は、第2の実施の形態における放射線計数装置100の一構成例を示す全体図である。第2の実施の形態の放射線計数装置100は、シンチレータ120および光検出器200の代わりに、シンチレータ121、122、123および124と光検出器201、202、203および204とを備える点において第1の実施の形態と異なる。
シンチレータ121は光検出器201と接続され、シンチレータ122は光検出器202と接続される。また、シンチレータ123は光検出器203と接続され、シンチレータ124は光検出器204と接続される。光検出器201乃至204は、データ処理部140に共通に接続される。個々のヘッドの出力はデジタル化されているため、このようなマルチヘッド化は容易に実現することができる。放射線計数装置100は、必要とされる感度に応じてヘッドを追加できる構造にしても良い。これらの4個の光検出器(201乃至204)は、別々のチップに設けられるものとする。なお、これらの光検出器は、一つのチップに集積してもよく、その場合チップ上に配置された4個の画素アレイ部は全て並列に同時動作させても良い。
第1の実施の形態の放射線計数装置100において単純にシンチレータの底面を8ミリメートル(mm)角として感度を4倍化し、それに応じて受光面を拡げて駆動画素数を4倍にすると、シンチレーション光に対する画素ノイズは2倍となり、フレームレートは半分に低下する。即ちカウントレートも半分となって、線量が高いケースへの対応が困難になる。一方、第1の実施の形態のマルチヘッド構成では、画素ノイズもフレームレートも変わらない上、各々のヘッドが独立に放射線を計数するため、放射線のカウントレートは実質4倍になる。
このように、本技術の第2の実施の形態によれば、複数のシンチレータおよび光検出器を設けたため、光の検出感度を向上させることができる。
<3.第3の実施の形態>
上述の第2の実施の形態では、放射線計数装置100をサーベイメータとして用いることを想定していたが、医療機器に用いてもよい。医療機器として、例えば、SPECT(Single Photon Emission Computed Tomography)やPET(Positron Emission Tomogoraphy)などが挙げられる。また、透過X線撮像装置に応用することもできる。これらの医療機器は、被写体内で散乱して位置情報を失った放射線を、そのエネルギーから分別し、フィルタリングする。従って、サーベイメータと同様にエネルギー分解能も重要となる。
上述の第2の実施の形態では、放射線計数装置100をサーベイメータとして用いることを想定していたが、医療機器に用いてもよい。医療機器として、例えば、SPECT(Single Photon Emission Computed Tomography)やPET(Positron Emission Tomogoraphy)などが挙げられる。また、透過X線撮像装置に応用することもできる。これらの医療機器は、被写体内で散乱して位置情報を失った放射線を、そのエネルギーから分別し、フィルタリングする。従って、サーベイメータと同様にエネルギー分解能も重要となる。
これらの医療機器では、第2の実施の形態と同様に受光部110が複数設けられる。そして、シンチレータ120の底面のサイズは、ほぼ光検出器200のサイズに合わせられ、複数の受光部が約2.5mmのピッチでアレイ状に敷き詰められる。このような敷き詰め構造において注意すべき点は、受光面の光検出器200に対する比率(開口率)である。各シンチレータ120で発生した光子は、この開口率に相当する割合でしか受光面に入射してこない。例えば、光検出器200が2.5ミリメートル(mm)角に対して受光面は2ミリメートル(mm)とすると、開口率は64パーセント(%)となる。この開口率が大きいほど、入射光子数の平均値Nが大きくなり、エネルギー分解能が向上する。
このような理由から、光検出器200においては、周辺回路でもっとも面積の大きいAD変換回路241を、異なるシリコン層を用いて受光面の下層に積層させるのが望ましい。この第3の実施の形態の放射線計数装置100は、画素回路220とAD変換回路241とを別々の基板に設けて積層した点において第2の実施の形態と異なる。
図12は、第3の実施の形態における放射線計数装置100の一構成例を示す全体図である。第3の実施の形態における放射線計数装置100は、第2の実施の形態と同様にシンチレータ121、122、123および124と光検出器201、202、203および204とを備える。ただし、第3の実施の形態における放射線計数装置100は、各シンチレータの底面のサイズが、ほぼ光検出器のサイズに合わせられている点において第2の実施の形態と異なる。これらの受光部が約2.5ミリメートル(mm)のピッチでアレイ状に敷き詰められる。
なお、受光部の放射線入射面には、例えば垂直に入射した放射線しかシンチレータに届かないように、鉛等のコリメータ(不図示)が配置される。また、各受光部間には、互いにシンチレーション光が隣の受光部に漏れないように、低折率または反射性の隔壁が設けられているのが望ましい。
放射線がシンチレータ121乃至124のいずれかに入射すると、そのシンチレータが発光し、対応する光検出器に有意な出力が発生する。データ処理部140は、各受光部からのデジタル信号を処理することにより、アレイ状に敷き詰められた受光部の受光面上における放射線の入射位置を特定することができる。この場合、放射線計数装置100固有の空間分解能は検出モジュールのピッチに相当する2.5ミリメートル(mm)である。これは光電子増倍管を用いた従来のSPECTと比較しても、良好な空間分解能といえる。なお、これらの光検出器200は、複数を一つのチップに集積してもよく、その場合チップ上に配置された例えば4個の画素アレイ部210は全て並列に同時動作させても良い。
図13は、第3の実施の形態における光検出器201の一構成例を示すブロック図である。この光検出器201は、上側基板205および下側基板206を備える。上側基板205には、画素アレイ部210および行駆動回路280が設けられる。また、下側基板206には、検出回路240、参照電圧生成回路275、タイミング制御回路285および出力回路290などが設けられる。これらの基板は、シリコンウエファーの張り合わせ等のシリコン積層技術を用いて積層される。光検出器202乃至204の構成は、光検出器201と同様である。なお、上側基板205は、特許請求の範囲に記載の第1の基板の一例であり、下側基板206は、特許請求の範囲に記載の第2の基板の一例である。
続いて、第3の実施の形態の放射線計数装置100を適用したSPECT装置のエネルギー分解能を見積もってみる。見積手順は第1の実施の形態と同じだが、放射線源はテクネチウム(Tc)を想定し、ガンマ線のエネルギーは140eVとする。シンチレータにNaI:TIを用いた場合、発生するシンチレーション光は放射線のエネルギーに比例して、5180光子程度となる。本実施例ではさらに上述のごとく、シンチレータの底面に対し光検出器の受光面が小さくなるため、Nの数値がシンチレータの発光量の64%、即ち3315光子に低下している。
これらの要因によるノイズ悪化を補うため、画素回路220のサイズを倍の16マイクロメートル(μm)とする。この画素サイズはフォトダイオード221のさらなる拡大によって得られるが、ダイオード内をスムースに電子がドリフトするように注意深いポテンシャル設計が必要である。これによって画素回路220内のフォトダイオード221の割合である開口率も向上する。画素アレイ部210には、125×125の画素回路220が設けられる。各画素のランダムノイズを0.5e-rmsとした場合、ノイズによる誤差の総計は62.5e-rmsである。この見積もりの詳細を以下にまとめる。
単画素ノイズ:0.5e-rms
受光面のサイズ:2(mm)×2(mm)
画素サイズ:16(μm)×16(μm)
センサノイズ:62.5e-rms
光子当たりのエネルギー:37keV
ガンマ線のエネルギー:140leV
入射光子数平均値N:3315
量子効率r:0.9
標準偏差s:62.5
光検出器の分散要因Rp:6.56%
シンチレータの分散要因Rs:6.00%
エネルギー分解能R:8.89%
単画素ノイズ:0.5e-rms
受光面のサイズ:2(mm)×2(mm)
画素サイズ:16(μm)×16(μm)
センサノイズ:62.5e-rms
光子当たりのエネルギー:37keV
ガンマ線のエネルギー:140leV
入射光子数平均値N:3315
量子効率r:0.9
標準偏差s:62.5
光検出器の分散要因Rp:6.56%
シンチレータの分散要因Rs:6.00%
エネルギー分解能R:8.89%
このように画素サイズを拡大し、回路を積層して受光面の開口率を向上させることにより、SPECTのエネルギー分解能は光電子増倍管に匹敵するものとなる。このような半導体光検出器は市販のCMOSイメージャーと同じ製造ラインで、同様の製造プロセスをもって量産することができる。このようにして製造した放射線計数装置100は小型軽量となり、環境変動にも強く、特性も安定しており、メンテナンスも容易である。また、その出力はデジタル信号であるため、後段の回路もデジタル信号の処理のみで良く、周囲からの雑音の影響も受けにくく、多数の受光部から出力されたデータを容易に処理することができる。
このように、本技術の第3の実施の形態によれば、画素回路220と検出回路240とを別々の基板に設けて積層したため、光検出器200における画素アレイ部210の割合(開口率)を高くして、エネルギー分解能を向上させることができる。
<4.第4の実施の形態>
上述の第1の実施の形態では、光検出器200は、一対の行を順に選択して露光させていたが、全行を同時に選択して露光させてもよい。このような制御は、グローバルシャッター方式と呼ばれる。この第4の実施の形態の光検出器200は、全行を同時に露光させる点において第1の実施の形態と異なる。
上述の第1の実施の形態では、光検出器200は、一対の行を順に選択して露光させていたが、全行を同時に選択して露光させてもよい。このような制御は、グローバルシャッター方式と呼ばれる。この第4の実施の形態の光検出器200は、全行を同時に露光させる点において第1の実施の形態と異なる。
図14は、第4の実施の形態における画素回路220の一構成例を示す回路図である。この第4の実施の形態の画素回路220は、転送トランジスタ223の代わりに、転送トランジスタ235、中間ノード236および転送トランジスタ237を備える点において第1の実施の形態と異なる。
転送トランジスタ235、中間ノード236および転送トランジスタ237は、それぞれのチャンネル間に導電型の拡散層を挟まない一体化された直列FET(Field effect transistor)構造の3段のトランジスタである。転送トランジスタ235のソースはフォトダイオード221に接続され、ゲートは、中間ノード236のゲートと行駆動回路280とに接続される。転送トランジスタ237のゲートは行駆動回路280に接続され、ドレインは検出ノード224に接続される。
これらのトランジスタのうち、転送トランジスタ235は、行駆動回路280の制御に従って、フォトダイオード221から中間ノード236へ電荷を転送する。なお、転送トランジスタ235は、特許請求の範囲に記載の第1の転送部の一例である。
中間ノード236は、チャネルに電荷を一時的に蓄積して保持するMOSトランジスタである。グローバルシャッター方式においては、この中間ノード236はアナログメモリとして用いられる。転送トランジスタ235および中間ノード236のそれぞれのゲートは一括で駆動される。ただし、駆動時に電荷が逆流することなく、フォトダイオード221から中間ノード236へ電荷が転送されるように、転送トランジスタ235のチャネルポテンシャルは、中間ノード236より浅くなるように閾値制御されている。
転送トランジスタ237は、行駆動回路280の制御に従って中間ノード236から検出ノード224へ電荷を転送するものである。なお、転送トランジスタ237は、特許請求の範囲に記載の第2の転送部の一例である。
図15は、第1の実施の形態における中間ノード236への電荷転送を説明するためのポテンシャル図である。同図におけるaは、中間ノード236(アナログメモリ)への転送前のポテンシャル図の一例である。フォトダイオード221の蓄積ノード222には電荷が蓄積されている。また、中間ノード236および検出ノード224はいずれもリセットされており、浮遊状態となっている。
図15におけるbは、中間ノード236への転送後のポテンシャル図の一例である。露光期間の終了時に、行駆動回路280は、転送トランジスタ235および中間ノード236をいずれもオン状態に制御する。この制御により、信号電荷が中間ノード236のチャネルに転送される。
図16は、第4の実施の形態における検出ノード224への電荷転送を説明するための図である。同図におけるaは、検出ノード224への転送前のポテンシャル図の一例である。中間ノード236への転送が終わると、行駆動回路280は、転送トランジスタ235および中間ノード236をいずれもオフ状態に制御する。この状態では、転送トランジスタ235および中間ノード236の間に設けられたポテンシャル差により、信号電荷の蓄積ノード222への逆流が防止される。そして、リセット信号が読み出される。
図16におけるbは、検出ノード224への転送後のポテンシャル図の一例である。リセット信号が読み出されると、行駆動回路280は、転送トランジスタ237をオン状態に制御する。この制御により、中間ノード236の電荷が検出ノード224へ転送される。
図17は、第4の実施の形態における画素回路の動作の一例を示すタイミングチャートである。行駆動回路280は、露光開始時のタイミングT1において、転送トランジスタ235および中間ノード236のゲートにパルスを印加する。この動作は、画素アレイ部210内の全画素回路220について同時に一括して行われ、このタイミングT1で、フォトダイオード221に蓄積されていた各画素回路220の信号電荷は、中間ノード236に完全転送される。さらに、この後、フォトダイオード221では、次の露光蓄積が開始される。すなわち、この制御はグローバルシャッター方式である。画素回路220の不感時間は、ゼロであり、蓄積時間は、フレームレートにより決定される。
ここで、中間ノード236に一括転送された各画素の電荷は、以降選択された行内の画素回路220ごとに、順次以下の手順で読みだされる。
行駆動回路280は、タイミングT2で一対の行を選択し、それらの行内のリセットトランジスタ225をオンにしたままで、選択トランジスタ227をオンにして、選択した画素回路220を垂直信号線219に接続する。リセットトランジスタ225のオン制御により、増幅トランジスタ226のゲートに接続された検出ノード224と、ソースに接続された電源とがショートされている。これによって、選択した画素回路220に基準のリセット電位が生成される。
続いて、タイミングT3において、行駆動回路280は、リセットトランジスタ225をオフに制御してFDリセットを行う。このとき、検出ノード224の電位は、リセットトランジスタ225のゲートとのカップリングを受けて、基準電位から幾分低下して浮遊状態となる。さらに、この際、検出ノード224には、有意なkTCノイズが発生する。
ここで、1回目の読み出しが検出回路240により実施される。読み出しは、例えば4回のサンプリングによって実施される。すなわち、垂直信号線219に現れた電位が検出ノード224のリセット信号として、検出回路240によって4回取得される。
次に行駆動回路280は、タイミングT4において転送トランジスタ237をオンにする。この制御により、中間ノード236に蓄積された電子が検出ノード224に流れ込む。この際、検出ノード224のポテンシャルが十分深ければ、中間ノード236に蓄積されていた電子は全て検出ノード224に流出する。パルス期間経過後に、行駆動回路280は、転送トランジスタ237をオフする。この結果、検出ノード224の電位は転送前に比べて蓄積電荷分だけ下降する(すなわち、ポテンシャルは浅くなる)。この低下分が、増幅トランジスタ226により増倍されて垂直信号線219に出力される。
ここで、2回目の読み出し、すなわち蓄積信号読み出しが、再度、複数回(例えば、4回)のサンプリングによって実施される。蓄積信号を取得した検出回路240は、先ほどのリセット信号と今回の蓄積信号を比較して、入射光子量を判定する。4回のサンプリング結果は、リセット信号と蓄積信号の各々で加算或いは平均化される。この平均化作業は熱雑音起因のランダムノイズを約1/2に低減する。さらにFDリセットの際に生じたkTCノイズは、蓄積信号とリセット信号の差分を正味の蓄積信号とすることで相殺される。
図18は、第4の実施の形態における放射線計数結果の一例を示す図である。同図における縦軸は一対の行内の各画素回路220からの出力合計値であり、横軸は時間である。ここで、想定される光検出器200の回路構成は、第1の実施の形態と同様であるが、画素回路220と行駆動回路280との間の制御線218は、3本から4本になる。
第4の実施の形態では、2行分の出力合計値のプロットは1フレーム分の時間幅を持ったパルスに似た出力形状となり、パルスごとの出力値合計がシンチレータの発光量に相当する。第1の実施の形態との最大の違いは、シンチレータ120の発光タイミングに関わらず、パルス出力がフレーム出力と同期していることである。
循環的なグローバルシャッターで受光された光の信号は、該当するフレーム期間中、フォトダイオード221に蓄積される。その期間の終わりには中間ノード236に一斉転送されて、次のフレーム期間に先頭アドレスから順次出力される。
第1の実施の形態ではどのタイミングで開始されるか予想できない出力の形状を有意なパルスとして判別する何らかのアルゴリズムが必要であった。しかし、第4の実施の形態では、そのようなアルゴリズムは必要ない。また、タイミングT81およびT82では、近接したタイミングで発光しているが、それらが互いに異なるフレーム期間に発光していれば、放射線計数装置100は、異なる発光として判別して正しく計数することが可能である。即ち、グローバルシャッター方式の採用によって、放射線計数における光検出器200の出力のデータ処理は容易かつ正確となり、実効的なカウントレートも向上が見込まれる。
このように第4の実施の形態によれば、露光終了の際に電荷を中間ノード236に転送し、読出しの際に中間ノード236から検出ノード224へ電荷を転送するため、行駆動回路280は、グローバルシャッター方式で各画素を露光させることができる。
<5.第5の実施の形態>
ところで、複数の小型の画素アレイ部をマトリクス状に配置して同時動作を可能にしてもよい。このようなチップでは、パッドや制御回路の共有化によってチップの開口率をさらに上げることができ、かつ実装も容易となる上、そのチップを複数の用途に使用することも可能である。この第5の実施の形態の光検出器202は、複数の画素アレイ部をマトリクス状に配置して、それらの同時動作を可能にした点において第1の実施の形態と異なる。
ところで、複数の小型の画素アレイ部をマトリクス状に配置して同時動作を可能にしてもよい。このようなチップでは、パッドや制御回路の共有化によってチップの開口率をさらに上げることができ、かつ実装も容易となる上、そのチップを複数の用途に使用することも可能である。この第5の実施の形態の光検出器202は、複数の画素アレイ部をマトリクス状に配置して、それらの同時動作を可能にした点において第1の実施の形態と異なる。
図19は、第5の実施の形態における光検出器202の一構成例を示すブロック図である。略1cm角のシリコンチップ(上側基板205)上に2.5mmピッチで4x4で均等に画素アレイ部210がマトリクス配置される。各画素アレイ部210には16μm角の画素が130x150でアレイ状に配置され、その開口部分のサイズは各々2.08mmx2.25mmである。即ちチップ全体の開口率は約75%となっている。各画素アレイ部210のそれぞれの下層には検出回路群261が配置される。この検出回路群261は、例えば10画素ごとに1つの検出回路240を備え、順次画素を選択して読み出しを実施する。
各画素アレイ部210は各々独立した光検出器に対応するが、4x4の画素アレイ部210は同時並列に動作するので、タイミング制御回路285を始め各種制御回路を複数の光検出器で共有できる。画素アレイ部210と検出回路群261とからなる回路を1つの光検出器207とすると、本実施の形態では行駆動回路280を2つの光検出器207で共有し、参照電圧発生回路275と出力回路290を4つの光検出器207で共有している。また、全ての光検出器207で1つのタイミング制御回路285を共有している。また電源やタイミング信号などボンディングパッド211も複数の光検出器207で共有でき、その分開口率を上げ、かつチップの実装を容易にすることができる。
このようなチップは単独で使うこともできるし、複数チップを敷き詰めてSPECT等の大型検出器に使うこともできる。チップ上の各光検出器は、SPECTに対応するため大面積画素を用いて非常に低ノイズになっている。従って、例えば単独チップに略1cm角のシンチレータを組み合わせて、サーベイメータとしても使用できる。この場合チップ上の4x4の光検出器207は一体化した単独の光検出器202として使用され、入射光量の合計値がデータ処理部140により導出される。
<6.第6の実施の形態>
同様の考えで受光単位となる画素アレイ部210をさらに小型化し、CTやFPDにも対応させることもできる。この第5の実施の形態の光検出器202は、複数の画素アレイ部210をさらに小型化した点において第5の実施の形態と異なる。
同様の考えで受光単位となる画素アレイ部210をさらに小型化し、CTやFPDにも対応させることもできる。この第5の実施の形態の光検出器202は、複数の画素アレイ部210をさらに小型化した点において第5の実施の形態と異なる。
図20は、第6の実施の形態における光検出器202の一構成例を示すブロック図である。本実施の形態においては、各画素アレイ部210は400μmのピッチで均等にマトリクス配置されている。画素アレイ部210と検出回路群261とからなる回路を1つの光検出器207とすると、チップ全体に24x24で光検出器207がアレイ状に配置されている。画素アレイ部210には16μm角の画素回路220が20x24でアレイ状に配列され、開口部分のサイズは320μmx384μmである。この場合チップの開口率は77%程度となる。
各画素アレイ部210のそれぞれの下層には検出回路群261が積層配置されている。この検出回路群261は、例えば10画素ごとに1つの検出回路240を備え、順次画素を選択して読み出しを実施する。
これらの画素アレイ部210は各々独立した光検出器207に対応するが、同時並列に動作するので、タイミング制御回路285を始め、各種回路を複数の光検出器で共有できる。例えば行駆動回路280を横に並ぶ6個の光検出器207で共有するとした場合、光検出器207ごとにその回路部品281を分散配置しても良い。同図において、一列に並んだ6個の回路部品281からなる回路は、1つの行駆動回路280として動作する。例えば単位画素4行分の行駆動回路280を一つの光検出器207に割り当てると、6個の光検出器207で全24行の画素アレイを駆動できる。行駆動回路280を共有する光検出器207の個数は6個に限定されず、12個あるいはチップ上の横に並ぶ全光検出器207であってもよい。
同様にタイミング制御回路285、参照電圧発生回路275、出力回路290等も、確保されたスペースに複数の光検出器で共有しながら分散配置することができる。例えば、所定方向に沿って配列された6個の画素アレイ部210からなるライン2つごとに、回路ブロック295が配置され、これらのラインにより回路ブロック295が共有される。この回路ブロック295は、タイミング制御回路285、参照電圧発生回路275および出力回路290を含む。
尚、本実施の形態では光検出器207を狭いピッチでチップ全面に敷き詰めるので、上側チップの受光面にボンディングパッドを形成する場合、その部分の受光器(画素)を削除せざるを得ない。CTやFPDにおける放射線透過撮像の場合、画像処理時にデータ処理部140が周囲の画素から欠損部の画素を補完しても良いが、下側チップ(206)に貫通ビアを設け、パッドをチップの裏側、即ち受光面とは反対面に形成するのがより望ましい。
図20のチップをサーベイメータ、SPECT、CT及びFPDに使用した例を図21に示す。チップには400μmのピッチで24x24の光検出器207がマトリクス配置され、チップサイズは略9.6mm角である。
図22におけるaは、第6の実施の形態におけるサーベイメータの一例を示す図である。このサーベイメータでは、例えばチップ単体と9.5mm角のシンチレータ120を組み合わせて放射線計数を行う。チップ上の光検出器207全体が一体化された一つの光検出器として使用され、検出した光量の合計がデータ処理部140により算出される。
図22におけるbは、第6の実施の形態におけるSPECTまたはガンマカメラの一例を示す図である。これらのSPECTやガンマカメラでは6x6の光検出器207を独立した光検出器グループ208として使用し、それに対応させて隔壁を設けたシンチレータ121等を2.4mmピッチで配置する。光量は上記グループ単位で光量の合計がデータ処理部140により算出される。チップとシンチレータを含む受光モジュールは必要に応じて平面状に敷き詰められる。
図22におけるcは、第6の実施の形態におけるFPDの一例を示す図であり、同図におけるdは、第6の実施の形態におけるCTの一例を示す図である。これらのCTやFPDでは、400μmピッチで並ぶ光検出器207ごとに、独立した光量検出を行う。チップ上の光検出器207とシンチレータ125を含む放射線検出モジュール209は必要に応じてCTでは同図におけるdに例示するように円弧状に、FPDでは同図におけるcに例示するように平面状に敷き詰められる。CTとFPDに関しては現在放射線計数ではなく、積分型の放射線検出が主流であるが、本発明はいずれの方式にも使用できる。本発明における放射線検出モジュールは低ノイズかつ高感度であり、かつSiPM等のフォトンカウンティング型検出器に比べて検出のダイナミックレンジが遥かに広い。従ってそのまま積分型の放射線検出にも転用できる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
なお、本技術は以下のような構成もとることができる。
(1)放射線が入射されると光子を生成するシンチレータと、
前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成する画素回路と、
1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換回路と
を具備する放射線計数装置。
(2)前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の半分を超えない前記量子化単位により前記アナログ電圧をデジタル信号に変換する
前記(1)記載の放射線計数装置。
(3)前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の1/4を超えない前記量子化単位により前記入力電圧をデジタル信号に変換する
前記(1)記載の放射線計数装置。
(4)前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記アナログ電圧を増幅して前記アナログデジタル変換回路へ出力するアンプ素子と
を備える前記(1)から(3)のいずれかに記載の放射線計数装置。
(5)前記シンチレータを複数具備し、
前記画素回路は、前記シンチレータごとに所定数設けられる
前記(1)から(4)のいずれかに記載の放射線計数装置。
(6)前記画素回路は、第1の基板に設けられ、
前記検出回路は、前記第1の基板に積層された第2の基板に設けられる
前記(1)から(5)のいずれかに記載の放射線計数装置。
(7)前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を保持する中間ノードと、
前記電荷を前記光電変換部から前記中間ノードへ転送する第1の転送部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記保持された電荷を前記中間ノードから前記電荷蓄積部へ転送する第2の転送部と
を備える前記(1)から(6)のいずれかに記載の放射線計数装置。
(8)前記デジタル信号を処理して前記放射線の入射数を計数するデータ処理部をさらに具備する
前記(1)から(7)のいずれかに記載の放射線計数装置。
(9)所定数の前記画素回路が、基板に二次元格子状に配置され、
前記データ処理部は、一定数の前記デジタル信号の値の合計を前記シンチレータの発光量の値として算出する
前記(8)記載の放射線計数装置。
(10)シンチレータが、放射線が入射されると光子を生成する光子生成手順と、
画素回路が、前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成するアナログ電圧生成手順と、
アナログデジタル変換回路が、1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換手順と
を具備する放射線計数装置の制御方法。
(1)放射線が入射されると光子を生成するシンチレータと、
前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成する画素回路と、
1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換回路と
を具備する放射線計数装置。
(2)前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の半分を超えない前記量子化単位により前記アナログ電圧をデジタル信号に変換する
前記(1)記載の放射線計数装置。
(3)前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の1/4を超えない前記量子化単位により前記入力電圧をデジタル信号に変換する
前記(1)記載の放射線計数装置。
(4)前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記アナログ電圧を増幅して前記アナログデジタル変換回路へ出力するアンプ素子と
を備える前記(1)から(3)のいずれかに記載の放射線計数装置。
(5)前記シンチレータを複数具備し、
前記画素回路は、前記シンチレータごとに所定数設けられる
前記(1)から(4)のいずれかに記載の放射線計数装置。
(6)前記画素回路は、第1の基板に設けられ、
前記検出回路は、前記第1の基板に積層された第2の基板に設けられる
前記(1)から(5)のいずれかに記載の放射線計数装置。
(7)前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を保持する中間ノードと、
前記電荷を前記光電変換部から前記中間ノードへ転送する第1の転送部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記保持された電荷を前記中間ノードから前記電荷蓄積部へ転送する第2の転送部と
を備える前記(1)から(6)のいずれかに記載の放射線計数装置。
(8)前記デジタル信号を処理して前記放射線の入射数を計数するデータ処理部をさらに具備する
前記(1)から(7)のいずれかに記載の放射線計数装置。
(9)所定数の前記画素回路が、基板に二次元格子状に配置され、
前記データ処理部は、一定数の前記デジタル信号の値の合計を前記シンチレータの発光量の値として算出する
前記(8)記載の放射線計数装置。
(10)シンチレータが、放射線が入射されると光子を生成する光子生成手順と、
画素回路が、前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成するアナログ電圧生成手順と、
アナログデジタル変換回路が、1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換手順と
を具備する放射線計数装置の制御方法。
100 放射線計数装置
110 受光部
120、121、122、123、124、125 シンチレータ
130 隔壁
140 データ処理部
200、201、202、203、204、207 光検出器
205 上側基板
206 下側基板
208 光検出器グループ
209 放射線検出モジュール
210 画素アレイ部
211 ボンディングパッド
220 画素回路
221 フォトダイオード
222 蓄積ノード
223、235、237 転送トランジスタ
224 検出ノード
225 リセットトランジスタ
226 増幅トランジスタ
227 選択トランジスタ
230 定電流回路
231 MOSトランジスタ
236 中間ノード
240、260 検出回路
241 AD変換回路
242、243 キャパシタ
244 コンパレータ
245 カウンタ
246 除算回路
250、270 スイッチ
261 検出回路群
275 参照電圧生成回路
280 行駆動回路
281 回路部品
285 タイミング制御回路
290 出力回路
295 回路ブロック
110 受光部
120、121、122、123、124、125 シンチレータ
130 隔壁
140 データ処理部
200、201、202、203、204、207 光検出器
205 上側基板
206 下側基板
208 光検出器グループ
209 放射線検出モジュール
210 画素アレイ部
211 ボンディングパッド
220 画素回路
221 フォトダイオード
222 蓄積ノード
223、235、237 転送トランジスタ
224 検出ノード
225 リセットトランジスタ
226 増幅トランジスタ
227 選択トランジスタ
230 定電流回路
231 MOSトランジスタ
236 中間ノード
240、260 検出回路
241 AD変換回路
242、243 キャパシタ
244 コンパレータ
245 カウンタ
246 除算回路
250、270 スイッチ
261 検出回路群
275 参照電圧生成回路
280 行駆動回路
281 回路部品
285 タイミング制御回路
290 出力回路
295 回路ブロック
Claims (10)
- 放射線が入射されると光子を生成するシンチレータと、
前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成する画素回路と、
1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換回路と
を具備する放射線計数装置。 - 前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の半分を超えない前記量子化単位により前記アナログ電圧をデジタル信号に変換する
請求項1記載の放射線計数装置。 - 前記アナログデジタル変換回路は、1つの前記光子から生成された前記アナログ電圧の1/4を超えない前記量子化単位により前記入力電圧をデジタル信号に変換する
請求項1記載の放射線計数装置。 - 前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記アナログ電圧を増幅して前記アナログデジタル変換回路へ出力するアンプ素子と
を備える請求項1記載の放射線計数装置。 - 前記シンチレータを複数具備し、
前記画素回路は、前記シンチレータごとに所定数設けられる
請求項1記載の放射線計数装置。 - 前記画素回路は、第1の基板に設けられ、
前記検出回路は、前記第1の基板に積層された第2の基板に設けられる
請求項1記載の放射線計数装置。 - 前記画素回路は、
前記光子を電荷に変換する光電変換部と、
前記電荷を保持する中間ノードと、
前記電荷を前記光電変換部から前記中間ノードへ転送する第1の転送部と、
前記電荷を蓄積して当該電荷の量に応じた電圧を前記アナログ電圧として生成する電荷蓄積部と、
前記保持された電荷を前記中間ノードから前記電荷蓄積部へ転送する第2の転送部と
を備える請求項1記載の放射線計数装置。 - 前記デジタル信号を処理して前記放射線の入射数を計数するデータ処理部をさらに具備する
請求項1記載の放射線計数装置。 - 所定数の前記画素回路が、基板に二次元格子状に配置され、
前記データ処理部は、一定数の前記デジタル信号の値の合計を前記シンチレータの発光量の値として算出する
請求項8記載の放射線計数装置。 - シンチレータが、放射線が入射されると光子を生成する光子生成手順と、
画素回路が、前記光子を電荷に変換して所定の期間に亘って蓄積して当該蓄積した電荷の量に応じたアナログ電圧を生成するアナログ電圧生成手順と、
アナログデジタル変換回路が、1つの前記光子から生成された前記アナログ電圧より小さい所定の量子化単位により前記アナログ電圧をデジタル信号に変換するアナログデジタル変換手順と
を具備する放射線計数装置の制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/528,678 US10509133B2 (en) | 2014-12-01 | 2015-09-15 | Radiation counting device and method of controlling radiation counting device |
US16/713,516 US11415711B2 (en) | 2014-12-01 | 2019-12-13 | Radiation counting device and method of controlling radiation counting device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-242784 | 2014-12-01 | ||
JP2014242784 | 2014-12-01 | ||
JP2015111383A JP2016111670A (ja) | 2014-12-01 | 2015-06-01 | 放射線計数装置、および、放射線計数装置の制御方法 |
JP2015-111383 | 2015-06-01 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/528,678 A-371-Of-International US10509133B2 (en) | 2014-12-01 | 2015-09-15 | Radiation counting device and method of controlling radiation counting device |
US16/713,516 Continuation US11415711B2 (en) | 2014-12-01 | 2019-12-13 | Radiation counting device and method of controlling radiation counting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088426A1 true WO2016088426A1 (ja) | 2016-06-09 |
Family
ID=56091384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076137 WO2016088426A1 (ja) | 2014-12-01 | 2015-09-15 | 放射線計数装置、および、放射線計数装置の制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016088426A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI831514B (zh) * | 2021-12-31 | 2024-02-01 | 大陸商深圳幀觀德芯科技有限公司 | 使用雙向計數器的成像方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011097581A (ja) * | 2009-10-01 | 2011-05-12 | Sony Corp | 撮像素子およびカメラシステム |
WO2014050343A1 (ja) * | 2012-09-26 | 2014-04-03 | ソニー株式会社 | 撮像素子および電子機器 |
-
2015
- 2015-09-15 WO PCT/JP2015/076137 patent/WO2016088426A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011097581A (ja) * | 2009-10-01 | 2011-05-12 | Sony Corp | 撮像素子およびカメラシステム |
WO2014050343A1 (ja) * | 2012-09-26 | 2014-04-03 | ソニー株式会社 | 撮像素子および電子機器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI831514B (zh) * | 2021-12-31 | 2024-02-01 | 大陸商深圳幀觀德芯科技有限公司 | 使用雙向計數器的成像方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11415711B2 (en) | Radiation counting device and method of controlling radiation counting device | |
JP6984417B2 (ja) | 撮像素子および駆動方法、並びに電子機器 | |
US9369650B2 (en) | Imaging device and camera system with photosensitive conversion element | |
US10182198B2 (en) | Imaging device and camera system with photosensitive conversion element | |
US9568618B2 (en) | Semiconductor photodetector and radial ray detector | |
US9100601B2 (en) | Image pickup device and camera system | |
JP6821596B2 (ja) | 光パルス検出装置、光パルス検出方法、放射線計数装置、および生体検査装置 | |
TWI638180B (zh) | 成像器件及電子裝置 | |
CN106576147B (zh) | 像素电路、半导体光检测装置和辐射计数装置 | |
JP6087780B2 (ja) | 撮像素子、放射線検出装置および撮像素子の制御方法 | |
US11785175B2 (en) | Solid-state imaging apparatus, radiation detector, and radiation measurement system | |
WO2016027572A1 (ja) | 半導体光検出装置、放射線計数装置、および、半導体光検出装置の制御方法 | |
CN106664384B (zh) | 摄像器件、电子装置、辐射检测装置及摄像器件驱动方法 | |
WO2018232370A1 (en) | Counting and integrating pixels, detectors, and methods | |
WO2016088426A1 (ja) | 放射線計数装置、および、放射線計数装置の制御方法 | |
US20220260736A1 (en) | Silicon photomultipliers for positron emission tomography imaging systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15865629 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528678 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15865629 Country of ref document: EP Kind code of ref document: A1 |