WO2014050304A1 - Photoelectric conversion element and method for manufacturing same - Google Patents

Photoelectric conversion element and method for manufacturing same Download PDF

Info

Publication number
WO2014050304A1
WO2014050304A1 PCT/JP2013/070938 JP2013070938W WO2014050304A1 WO 2014050304 A1 WO2014050304 A1 WO 2014050304A1 JP 2013070938 W JP2013070938 W JP 2013070938W WO 2014050304 A1 WO2014050304 A1 WO 2014050304A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
amorphous semiconductor
concentration
photoelectric conversion
Prior art date
Application number
PCT/JP2013/070938
Other languages
French (fr)
Japanese (ja)
Inventor
訓裕 川本
洋平 川上
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014538252A priority Critical patent/JPWO2014050304A1/en
Publication of WO2014050304A1 publication Critical patent/WO2014050304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element and a manufacturing method thereof.
  • Patent Document 1 A photovoltaic device in which a thin intrinsic amorphous semiconductor film is interposed between pn junctions is known (Patent Document 1).
  • Patent Document 2 a method of forming an n-type amorphous semiconductor layer with a plurality of substrates mounted on a tray is known.
  • a photoelectric conversion element includes an intrinsic amorphous semiconductor layer formed on a crystalline semiconductor layer, a p-type amorphous semiconductor layer formed on the intrinsic amorphous semiconductor layer, and a p-type amorphous semiconductor.
  • the p-type amorphous semiconductor layer has a peak acceptor concentration closer to the intrinsic amorphous semiconductor layer than the position of the interface with the transparent conductive layer. Has a position.
  • a crystalline semiconductor is disposed in a tray, an intrinsic amorphous semiconductor layer is formed on the crystalline semiconductor, and a p-type amorphous is formed on the intrinsic amorphous semiconductor layer.
  • the crystalline semiconductor layer is formed, the stacked body in which the intrinsic amorphous semiconductor layer and the p-type amorphous semiconductor layer are formed on the crystalline semiconductor is taken out, and the next crystalline semiconductor is arranged using the same tray.
  • a method of manufacturing a photoelectric conversion element in which a process is repeated.
  • a p-type amorphous semiconductor layer is formed by forming an acceptor concentration at a predetermined peak concentration and then decreasing the acceptor concentration from the peak concentration. This completes the formation of the p-type amorphous semiconductor layer.
  • the photoelectric conversion element according to the present invention includes an intrinsic amorphous semiconductor layer formed on the light-receiving surface side of the crystalline semiconductor layer, and the same conductivity type as the crystalline semiconductor layer formed on the intrinsic amorphous semiconductor layer.
  • concentration of the impurity reaches a peak at a position on the crystalline semiconductor layer side with the semiconductor layer interposed therebetween, and the concentration of the impurity decreases at a position closer to the transparent conductive film layer than the position.
  • the acceptor concentration at the interface of the transparent conductive film layer of the p-type amorphous semiconductor layer is lower than the peak concentration. Therefore, when the next photoelectric conversion element is formed using the same manufacturing apparatus, the substrate is not intrinsically non-uniform. The influence of boron mixed at the interface of the crystalline semiconductor film can be suppressed.
  • the impurity concentration of the conductive amorphous semiconductor layer having the same conductivity type as that of the crystalline semiconductor layer formed on the i layer is set on the light-receiving surface side with the i layer interposed therebetween. Since the peak concentration is obtained at the position on the layer side, a large potential difference between the crystalline semiconductor layer and the conductive amorphous semiconductor layer can be obtained. Thereby, the light absorption loss as a photoelectric conversion element can be suppressed.
  • FIG. 1 It is a figure which shows the structure of the photoelectric conversion element of embodiment.
  • the photoelectric conversion element of embodiment it is a figure which shows the boron (B) density
  • the photoelectric conversion element of embodiment it is a figure which shows the relationship between the peak density
  • concentration BPEAK of boron (B) of a p-type amorphous semiconductor layer It is a figure which shows the procedure of the manufacturing method of the photoelectric conversion element in embodiment. It is a figure which shows the structure of the photoelectric conversion element of other embodiment.
  • FIG. 7 is a diagram showing a phosphorus (P) concentration distribution of a light-receiving surface side type amorphous semiconductor layer in the photoelectric conversion element of the embodiment of FIG. 6.
  • P phosphorus
  • an intrinsic amorphous semiconductor layer and a p-type amorphous semiconductor layer are stacked on the light receiving surface side with a substrate which is a crystalline semiconductor layer interposed, and an intrinsic amorphous material is formed on the back surface side.
  • a stacked layer of a semiconductor layer and an n-type amorphous semiconductor layer is described, this is an example for explanation, and is intrinsic formed on the crystalline semiconductor layer regardless of whether it is on the light receiving surface side or the back surface side. Any p-type amorphous semiconductor layer may be formed on the amorphous semiconductor layer.
  • each amorphous semiconductor layer is formed over the entire surface of the substrate. However, this is used as a schematic explanation, and each amorphous semiconductor layer is attached to the substrate using a selection mask or the like. Alternatively, it may be formed selectively. For example, an n-type amorphous semiconductor layer and a p-type amorphous semiconductor layer may be selectively formed on one side of the substrate to form a planar pn junction.
  • FIG. 1 is a diagram showing a configuration of a photoelectric conversion element.
  • the photoelectric conversion element 10 includes a substrate 40.
  • An intrinsic amorphous semiconductor layer 41, an n-type amorphous semiconductor layer 42, and a transparent conductive film layer 45 are provided on the light receiving surface side of the substrate 40 (upper side on the paper surface of FIG. 1).
  • an intrinsic amorphous semiconductor layer 43, a p-type amorphous semiconductor layer 44, and a transparent conductive film layer 46 are provided on the back side of the substrate 40 (lower side on the paper surface of FIG. 1).
  • the p-type amorphous semiconductor layer 44 includes a first p-type amorphous semiconductor layer 44-1, a second p-type amorphous semiconductor layer 44-2, and a third p-type amorphous semiconductor layer. 44-3.
  • the crystalline semiconductor layer is denoted as a substrate, the intrinsic amorphous semiconductor layer as i layer, the p-type amorphous semiconductor layer as p layer, and the transparent conductive film layer as TCO.
  • the acceptor element that is a p-type element boron (B) other than boron (B) can be used.
  • B concentration the acceptor concentration
  • the i layer, p layer, and TCO formed on the back side of the substrate will be described below.
  • the substrate 40 is a crystalline semiconductor material.
  • the substrate 40 can be an n-type or p-type conductive crystalline semiconductor substrate.
  • As the substrate 40 a single crystal silicon substrate, a polycrystalline silicon substrate, a gallium arsenide (GaAs) substrate, an indium phosphide (InP) substrate, or the like can be used.
  • the substrate 40 absorbs the incident light and generates a carrier pair of electrons and holes by photoelectric conversion.
  • n-type single crystal silicon is used as the substrate 40 will be described. In FIG. 1, this is shown by assuming that the substrate 40 is nc-Si.
  • the substrate 40 is cleaned with a hydrofluoric acid (HF) aqueous solution or an RCA cleaning solution. Moreover, you may form a texture structure (illustration omitted) in the surface and back surface of a board
  • HF hydrofluoric acid
  • RCA cleaning solution aqueous solution
  • alkaline etching liquids such as potassium hydroxide (KOH) aqueous solution.
  • the i layer 41 is formed on substrate 40 after cleaning.
  • the i layer 41 can be an amorphous semiconductor layer containing hydrogen, for example.
  • the i layer 41 can be formed by plasma CVD (PECVD), catalytic CVD (Cat-CVD), sputtering, or the like.
  • PECVD plasma CVD
  • Cat-CVD catalytic CVD
  • sputtering or the like.
  • As the plasma CVD method an RF plasma CVD method, a VHF plasma CVD method having a higher frequency, or a microplasma CVD method can be used.
  • an example using the RF plasma CVD method will be described.
  • the substrate temperature during film formation can be about 150 to 250 ° C.
  • the RF power density can be about 1 to 20 mW / cm 2 .
  • the i layer 41 is thinned so as to suppress light absorption as much as possible, and thick enough to sufficiently passivate the surface of the substrate.
  • An example of the thickness of the i layer is about 1 to 25 nm, preferably about 5 to 10 nm.
  • the i layer 41 is indicated as ia.
  • the n layer 42 is formed on the i layer 41.
  • the n layer 42 includes a donor that is an n-type conductivity element in an amorphous semiconductor layer containing hydrogen.
  • the n layer 42 can be formed by a plasma CVD method, a catalytic CVD method, a sputtering method, or the like.
  • a plasma CVD method an RF plasma CVD method can be used.
  • an example using the RF plasma CVD method will be described.
  • a gas containing an n-type element such as phosphine (PH 3 ) is added to a silicon-containing gas such as silane (SiH 4 ), diluted with hydrogen and supplied, and RF high-frequency power is applied to parallel plate electrodes and the like.
  • the p layer is formed by turning it into plasma and supplying it to the film formation surface of the heated substrate.
  • the substrate temperature during film formation can be about 150 to 250 ° C.
  • the RF power density can be about 1 to 20 mW / cm 2 .
  • An example of the thickness of the n layer is about 5 to 20 nm, preferably about 10 to 15 nm. In FIG. 1, this is shown by assuming that the n layer 42 is na.
  • the i layer 43 is formed on the surface of the substrate 40 opposite to the main surface on which the i layer 41 is formed.
  • the i layer 43 can be formed in the same manner as the i layer 41. In FIG. 1, the i layer 43 is shown as ia.
  • the p layer 44 is formed on the i layer 43.
  • the p layer 44 includes an acceptor which is a p-type conductivity element in an amorphous semiconductor layer containing hydrogen.
  • the p layer 44 can be formed by a plasma CVD method, a catalytic CVD method, a sputtering method, or the like.
  • a plasma CVD method an RF plasma CVD method can be used.
  • an example using the RF plasma CVD method will be described.
  • a gas containing a p-type element such as diborane (B 2 H 6 ) is added to a silicon-containing gas such as silane (SiH 4 ), diluted with hydrogen, and supplied with RF high frequency power to parallel plate electrodes, etc.
  • the p layer 44 is formed by turning it into plasma and supplying it to the film formation surface of the heated substrate.
  • the substrate temperature during film formation can be about 150 to 250 ° C.
  • the RF power density can be about 1 to 20 mW / cm 2 .
  • An example of the thickness of the p layer 44 is about 5 to 20 nm, preferably about 10 to 15 nm. In FIG. 1, the p layer 44 is shown as pa.
  • the p layer 44 includes a first p-type amorphous semiconductor layer (first p layer) 44-1, a second p-type amorphous semiconductor layer (second p layer) 44-2, 3 p-type amorphous semiconductor layers (second p-layer) 44-3.
  • the boron (B) concentration in the second p layer 44-2 is higher than the B concentration in the first p layer 44-1. Further, the B concentration of the first p layer 44-1 is lower than the B concentration of the third p layer 44-3. Details of the p layer 44 will be described later.
  • the TCO 45 is formed on the n layer 42.
  • the TCO 46 is formed on the p layer 44.
  • TCO 45 and 46 are transparent conductive film layers, for example, metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is comprised including at least one. Elements such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), cerium (Ce), and gallium (Ga) may be added to these metal oxides. .
  • TCO can be formed by a thin film forming method such as an evaporation method, a plasma CVD method, or a sputtering method.
  • the thickness of the TCO can be adjusted as appropriate depending on the refractive index, but as an example, it is about 70 to 100 nm.
  • TCOs 45 and 46 metal electrodes (not shown) formed using, for example, silver paste are formed. By connecting the wiring material to the metal electrode, the electric power generated in the photoelectric conversion element 10 is output to the outside of the solar cell module.
  • FIG. 2 is a diagram showing the configuration of the photoelectric conversion element 10 and the distribution of B concentration in the p-type amorphous semiconductor layer constituting the photoelectric conversion element 10.
  • FIG. 2A is a configuration diagram of the photoelectric conversion element 10.
  • a crystalline semiconductor layer is used as a substrate 40, an intrinsic amorphous semiconductor layer (i layer) 41 and an n-type amorphous semiconductor layer (n layer) 42 are stacked on the light receiving surface side, and on the back surface side.
  • a transparent conductive film layer (TCO) 45 is formed on the n layer 42, and on the back surface side, a transparent conductive film layer (TCO) 46 is formed on the p layer 44.
  • TCO transparent conductive film layer
  • FIG. 2B is a B concentration distribution diagram of the p layer.
  • the vertical axis is the B concentration
  • the horizontal axis is the position in the thickness direction of the p layer 44 from the interface of the i layer 43 to the interface of the TCO 46
  • X 0 is the interface of the i layer 43 and the p layer 44.
  • the position X 4 is the position of the interface between the p layer 44 and the TCO 46.
  • the B concentration distribution 11 has a constant concentration from X 0 to X 1 which is the position of the interface of the i layer 43 along the thickness direction of the p layer 44.
  • X 0 to X 1 are the first p layer 44-1.
  • the thickness from X 0 to X 1 can be about 3 of the total thickness of the p layer.
  • the constant concentration in this region can be about 10 19 / cm 3 .
  • B concentration is further increased with X 1 to obtain B PEAK, and B PEAK is maintained until X 2 .
  • X 1 to X 2 are the second p layer 44-2.
  • B PEAK is set to an optimum concentration as the p layer of the pn junction in the photoelectric conversion element 10.
  • B PEAK can be set to about 10 22 / cm 3 .
  • the thickness from X 1 to X 2 is about 1 ⁇ 2 of the total thickness of the p layer.
  • the B TCO to lower the B concentration in front of the X 3 of X 4, to maintain the B TCO to X 4.
  • X 2 to X 4 are the third p layer 44-3. Decreasing the B concentration from X 2 to X 3 is stepped or continuous. For example, in the p layer formation process, when the processing time corresponding to X 2 is reached, the gas flow rate of diborane (B 2 H 6 ) containing boron is reduced to the target value. As a result, the B concentration can be changed in steps from B PEAK to B TCO within a thickness of several nm. B TCO can be about 10 20 / cm 3 .
  • the B concentration may be decreased by other than the step shape.
  • it may be a gradually decreasing shape that gradually decreases, or may be a staircase shape that decreases in several steps.
  • the position X 3 that becomes B TCO only needs to be between X 4 and may be B TCO just at the position of X 4 .
  • B concentration in the p layer 44 the low concentration in the first p-layer 44-1 from the interface X 0 of the i layer 43 to X 1, in the second p-layer 44-2 from X 1 to X 2
  • the third p-layer 44-3 from the high concentration X 3 to the interface of the TCO 46 has a three concentration structure of medium concentration.
  • the position of B PEAK at which the B concentration reaches a peak is between X 1 and X 2 , and has a position at which the B concentration reaches a peak on the i layer side from X 4 which is the position of the interface with the TCO.
  • FIG. 2 shows a conventional B concentration distribution 12 for comparison.
  • the B concentration distribution 12 has a constant concentration from X 0 to X 1 in the thickness direction of the p layer, and the B concentration is increased to B TCO at X 1 , and the high concentration is maintained at X 4. Keep up. Therefore, the peak of the B concentration is between X 1 and X 4 and does not particularly lower the B concentration at X 4 at the TCO interface.
  • FIG. 3 is a schematic diagram showing the relationship between the B concentration and the characteristics of the photoelectric conversion element 10 when the B concentration in the p layer is constant up to the TCO interface as in the prior art.
  • the horizontal axis represents the B concentration
  • the vertical axis represents V OC , which is the circuit open voltage of the photoelectric conversion element 10, and the reciprocal (1 / ⁇ C ) of the contact resistance between the p layer and the TCO.
  • the characteristic line 13 shows the change of V OC with respect to the B concentration
  • the characteristic line 14 shows the change of (1 / ⁇ C ) with respect to the B concentration.
  • the electrical connection performance between the p layer and the TCO is improved.
  • the B concentration in the p layer 44 is constant up to the interface of the TCO 46, it is difficult to improve both the electrical connection performance related to the p layer 44 and the V OC .
  • Examples of the electrical performance related to the p layer 44 include the electrical conductivity of the p layer 44 and the electrical connection performance between the p layer 44 and the TCO 46.
  • the B concentration is set low, giving priority to securing V OC .
  • the peak value of B concentration is 10 20 / cm 3 , which is more than about 10 22 / cm 3 which is the optimum concentration as the p layer of the pn junction in the photoelectric conversion element 10 in the embodiment. Set fairly low.
  • the B concentration at the interface between the substrate 40 and the i layer 43 can be reduced to ensure V OC .
  • the fill factor (FF) is lowered due to a decrease in the electrical conductivity of the p layer 44 and the electrical connection performance between the p layer 44 and the TCO 46, and the photoelectric conversion element 10. Reliability decreases. In the prior art, it is not easy to manufacture the photoelectric conversion element 10 that satisfies these two requirements at the same time.
  • FIG. 4 is a diagram for explaining the operational effect when the B concentration distribution 11 of the embodiment is used.
  • the horizontal axis is B PEAK and the vertical axis is V OC .
  • the characteristic line 15 shows the relationship between B PEAK and V OC when the i layer is formed on the substrate in a clean ideal state by washing the tray or the like each time the photoelectric conversion element 10 is manufactured.
  • V OC increases the Yuku by increasing the B PEAK, a V OC of substantially constant saturated it exceeds a certain B PEAK .
  • the range where the value is almost constant is the optimum concentration range as the p layer of the pn junction in the photoelectric conversion element 10.
  • B PEAK 10 22 / cm 3 in the B concentration distribution 11 of FIG. 2 is set in this range.
  • B PEAK can be appropriately set in the range of, for example, 10 21 / cm 3 to 10 23 / cm 3 according to the specifications of the photoelectric conversion element 10.
  • the characteristic line 17 approaches the characteristic line 15 in the ideal state from the characteristic line 16. From this, if B TCO is set to an optimum B concentration from the viewpoint of electrical connection between the p layer and the TCO, and B PEAK is sufficiently higher than the set B TCO , the characteristic line can be obtained. 17 approaches the characteristic line 15 in an ideal state, and V OC can be improved. As shown in FIG. 4, the V OC is wide range of substantially constant value B PEAK, can be appropriately increased B PEAK in that range.
  • B TCO is set according to the contact resistance between the p layer 44 and the TCO 46, (B PEAK -B TCO ) or (B PEAK / B TCO ) is set according to V OC, and the B concentration distribution in the p layer 44 has a B concentration peak on the i layer 43 side of the interface with the TCO 46.
  • the B concentration distribution in the p layer 44 has a B concentration peak on the i layer 43 side of the interface with the TCO 46.
  • FIG. 5 is a diagram illustrating a procedure of a method for manufacturing the photoelectric conversion element 10.
  • a procedure for forming the i layer 43 and the p layer 44 on the back side of the substrate 40 will be described.
  • 5A shows a carry-in process procedure
  • FIG. 5B shows an i-layer formation process procedure
  • FIG. 5C shows a p-layer formation process procedure
  • FIG. 5D shows a carry-out process procedure.
  • an RF plasma CVD apparatus 20 having four chambers is shown.
  • the four chambers are a carry-in chamber 21, an i-layer formation chamber 22, a p-layer formation chamber 23, and a carry-out chamber 24 in order from the right side to the left side in each drawing of FIG.
  • These chambers are connected to each other or blocked by an opening / closing mechanism under the control of a control unit (not shown).
  • FIG. 5A is a diagram showing a state in which the tray 25 is disposed in the carry-in chamber 21 that is the rightmost chamber of the RF plasma CVD apparatus 20, and a plurality of substrates 40 are mounted on the tray 25.
  • one tray 25 and two substrates 40 are shown, but the number of trays 25 and the number of substrates 40 may be other than this.
  • the opening / closing mechanism between the carry-in chamber 21 and the i layer forming chamber 22 is opened, and the tray 25 on which the substrate 40 is placed moves to the i layer forming chamber 22.
  • the opening / closing mechanism between the carry-in chamber 21 and the i-layer forming chamber 22 is closed, and the i-layer forming chamber 22 becomes a sealed space.
  • FIG. 5B is a diagram showing a state in which the i layer 43 is formed on the substrate 40 in the i layer forming chamber 22.
  • the tray 25 is disposed between the parallel plate electrodes, silane (SiH 4 ) and hydrogen are supplied as a diluent gas under the conditions for forming a predetermined substrate temperature and RF power density, and the RF high frequency is supplied to the parallel plate electrodes.
  • the i layer 43 is formed on the substrate 40 by applying power to generate plasma and supplying it to the film formation surface of the heated substrate 40. At this time, the amorphous semiconductor thin film 28 also adheres to the tray 25.
  • the opening / closing mechanism between the i layer forming chamber 22 and the p layer forming chamber 23 is opened, and the tray 25 on which the substrate 40 on which the i layer 43 is formed is moved to the p layer forming chamber 23. To do.
  • the opening / closing mechanism between the i layer forming chamber 22 and the p layer forming chamber 23 is closed, and the p layer forming chamber 23 becomes a sealed space.
  • FIG. 5C is a diagram showing a state in which the p layer 44 is formed on the i layer 43 on the substrate 40 in the p layer forming chamber 23.
  • a tray 25 is disposed between parallel plate electrodes, and diborane (B 2 H 6 ) is added to silane (SiH 4 ) and diluted with hydrogen under conditions for forming a predetermined substrate temperature and RF power density.
  • the p-layer 44 is formed on the i-layer 43 on the substrate 40 by applying RF high-frequency power to the parallel plate electrodes to generate plasma and supplying the plasma to the heated film-forming surface of the substrate 40. Is called.
  • the amount of diborane (B 2 H 6 ) is controlled so that the B concentration distribution 11 described with reference to FIG. 2 is obtained. That is, the p layer 44 is formed while decreasing the B concentration from B PEAK to B TCO with the optimum concentration predetermined as the p layer 44 for photoelectric conversion as the peak concentration B PEAK . At this time, the amorphous semiconductor thin film 30 containing B also adheres to the tray 25.
  • the opening / closing mechanism between the p-layer forming chamber 23 and the unloading chamber 24 is opened, and the tray 25 on which the substrate 40 on which the i-layer 43 and the p-layer 44 are formed is moved to the unloading chamber 24. To do.
  • the opening / closing mechanism between the p-layer forming chamber 23 and the carry-out chamber 24 is closed.
  • FIG. 5D is a diagram illustrating a state in which the stacked body 31 in which the i layer 43 and the p layer 44 are formed on the substrate 40 is removed from the tray 25 and carried out to the next process in the carry-out chamber 24.
  • the next process is a process for forming or inspecting the i layer 41 and the n layer 42 on the light receiving surface side.
  • the tray 25 to which the amorphous semiconductor thin film 30 containing B is attached is carried again to the carry-in chamber 21, the next substrate 40 is mounted, and the above processing procedure is repeated.
  • B is attached to the tray 25, but when the photoelectric conversion element 10 is formed using the same tray 25 by forming the B concentration distribution 11 described in FIG.
  • the influence of boron mixed at the interface between the substrate 40 and the i layer 43 can be suppressed.
  • the i layer 43 and the p layer 44 are first formed on the substrate 40 as shown in FIG.
  • the i layer 43 and the p layer 44 may be formed after the i layer 41 and the n layer 42 are formed on the substrate 40.
  • the present invention is not limited to the method of forming the photoelectric conversion element 10 by mounting the plurality of substrates 40 on the tray 25 and transporting them through the four chambers.
  • the i layer 43 and the p layer 44 may be formed in one chamber without using a tray.
  • the p layer 44 having the B concentration distribution 11 described in FIG. 2 is formed.
  • B adhering to the inner wall of the chamber may be mixed when the next i layer 43 is formed.
  • the fill factor (FF) and VOC can be improved by suppressing the influence of B mixing at the interface between the substrate 40 and the i layer 43 of the conversion element 10.
  • the n-type substrate 40 is provided with the p layer 44 on the back surface side.
  • an i layer 41 is formed on an n-type substrate 40, an n layer 42 is formed thereon, and a TCO 45 is formed thereon.
  • the substrate 40 absorbs the incident light, thereby generating electron and hole carrier pairs by photoelectric conversion.
  • the generated electrons and holes are separated by the potential difference between the substrate 40 and the n layer 42 and the potential difference between the substrate 40 and the p layer 44, the electrons are collected by the TCO 45, and the holes are collected by the TCO 46.
  • the potential difference between the n-type substrate 40 and the p-layer 44 can be sufficiently large due to the difference between the p-type and n-type conductivity types.
  • the potential difference between the n-type substrate 40 and the n-layer 42 is not the same because it has the same conductivity type.
  • the phosphorus (P) concentration of the n-layer 42 may be sufficiently higher than the phosphorus concentration of the n-type substrate 40. At this time, the contact property between the n layer 42 and the TCO 45 is also improved.
  • FIGS. 6 and 7 are diagrams illustrating a configuration in which I SC can be increased by suppressing an increase in light absorption loss of the photoelectric conversion element 10 while maintaining contact between the n layer 42 and the TCO 45.
  • FIG. 6 corresponds to FIG. 1 and shows the configuration of the photoelectric conversion element.
  • the photoelectric conversion element 50 includes a substrate 40. On the light receiving surface side of the substrate 40, an i layer 41, an n layer 42, and a TCO 45 are provided. An i layer 43, a p layer 44, and a TCO 46 are provided on the back side of the substrate 40.
  • the n layer 42 includes a first n layer 42-1 and a second n layer 44-2.
  • FIG. 7 is a diagram corresponding to FIG. 2 and shows the configuration of the photoelectric conversion element 60 and the distribution of phosphorus (P) concentration in the n layer constituting the photoelectric conversion element 60.
  • FIG. 7A is a configuration diagram of the photoelectric conversion element 50. Since this is the same content as FIG. 2A, detailed description is omitted.
  • FIG. 7B is a phosphorus (P) concentration distribution diagram of the i layer 41 and the n layer 42.
  • the vertical axis indicates the P concentration
  • the horizontal axis indicates the position in the thickness direction of the i layer 41 and the n layer 42 from the interface between the substrate 40 and the i layer 41 to the interface of the TCO 45.
  • Y 0 is the position of the substrate interface that is the interface between the substrate 40 and the i layer 41
  • Y 3 is the position of the TCO interface.
  • Y 0 is the starting position of the formation of the i layer 41.
  • Y 1 is a position where the formation of the i layer 41 and the formation of the n layer 42 are started
  • Y 3 is a position where the formation of the n layer 41 is finished.
  • the n-type substrate 40 has a predetermined concentration that is not shown in FIG. 7B. As an example, it is 10 15 / cm 3 to 10 17 / cm 3 .
  • the i layer 41 is formed in the range from the position of the substrate interface to the position Y 1 of the i layer interface, which is the interface between the i layer 41 and the n layer 42, without adding a source gas of impurities such as phosphorus (P). To do.
  • the phosphorus (P) concentration of the n layer 42 becomes the highest peak concentration P PEAK at the position Y 1 of the i layer interface along the thickness direction, and the peak concentration P PEAK is maintained up to the position of Y 2 .
  • the concentration is lowered to a concentration lower than the peak concentration P PEAK , and the low concentration is maintained up to the position Y 3 of the TCO interface.
  • the n layer 41 has a two-level concentration distribution.
  • Y 1 to Y 2 are the first n layer 42-1.
  • the thickness of the first n layer 42-1 can be about 1 ⁇ 2 of the total thickness of the n layer.
  • the peak concentration P PEAK in this region should be as different as possible from the phosphorus (P) concentration of the substrate 40.
  • the phosphorus (P) concentration of the first n layer 42-1 is preferably 1 ⁇ 10 20 to 1 ⁇ 10 22 / cm 3 , for example, 5 ⁇ 10 21 / cm 3 .
  • the phosphorus (P) concentration is set to the peak concentration P PEAK in a position as close as possible to the substrate 40 side with the i layer 41 interposed therebetween.
  • a potential difference based on the phosphorus (P) concentration difference between the substrate 40 and the n layer 42 is provided on the substrate 40 side, thereby preventing the disappearance of electrons and increasing the I SC of the photoelectric conversion element 10.
  • the phosphorus (P) concentration at Y 2 is maintained as the concentration P TCO lower than the peak concentration P PEAK up to the position Y 3 at the TCO interface.
  • Y 2 to Y 3 are the second n layer 42-2.
  • the thickness of the second n layer 42-2 can be about 1 ⁇ 2 of the total thickness of the n layer.
  • the phosphorus (P) concentration P TCO in this region is set to a concentration necessary for contact with the TCO 45.
  • the phosphorus (P) concentration of the second n layer 42-2 should be lower than the phosphorus (P) concentration of the first n layer 42-1 in the range of 1 ⁇ 10 20 to 1 ⁇ 10 22 / cm 3. For example, about 1 ⁇ 10 21 / cm 3 .
  • the phosphorus (P) concentration in Y 2 is reduced to a single step shape or a stepped step shape of several steps.
  • the phosphorus (P) concentration may be decreased continuously.
  • the phosphorus (P) concentration may be increased again immediately before Y 3 to further improve the contact with the TCO 45.
  • FIG. 7B shows phosphorus (P) concentration distributions 52 and 53 of the i layer 41 and the n layer 42 in the prior art.
  • the phosphorus (P) concentration distribution 52 has a constant concentration over the entire thickness of the n layer 42.
  • the magnitude of the constant concentration is set in a range in which the balance between the contact property between the n layer 42 and the TCO 45 and the disappearance of electrons in the n layer 42 is maintained.
  • a phosphorus (P) concentration difference between the substrate 40 and the n layer 42 can be ensured, and contactability between the n layer 42 and the TCO 45 can be ensured, but neither characteristic is the best characteristic.
  • Another phosphorus (P) concentration distribution 53 is to increase the phosphorus (P) concentration distribution in two steps from the position Y 1 at the i-layer interface to the position Y 3 at the TCO interface in the n layer 42. . According to this structure, the contact property between the n layer 42 and the TCO 45 is improved, but the phosphorus (P) concentration at the position Y 1 of the i layer interface is low.
  • the phosphorus (P) concentration distribution 51 of the embodiment shown in FIG. 7 has a phosphorus (P) concentration at the peak concentration P PEAK at the position on the substrate 40 side with the i layer 41 in between, and the TCO 45 side from that position.
  • the phosphorus (P) concentration distribution 51 of the embodiment shown in FIG. 7 is compared with the phosphorus (P) concentration distribution 52 of the prior art, the phosphorus (P) concentration at the TCO interface is higher and the position on the substrate 40 side is higher.
  • the peak concentration P PEAK is higher.
  • the phosphorus (P) concentration difference between the n layer 42 and the substrate 40 while maintaining the contact property between the n layer 42 and the TCO 45. can be made larger.
  • the peak concentration P PEAK at the position on the substrate 40 side in the n layer 42 is higher than the phosphorus (P) concentration distribution 52 of the prior art.
  • the maximum value of the phosphorus (P) concentration in the phosphorus (P) concentration distribution 52 is higher than the phosphorus (P) concentration of the substrate 40, but the position where the maximum concentration is reached from the substrate 40 side in the n layer 42.
  • the potential difference due to the concentration difference is small, and there is a possibility that the improvement of the electron collection rate is suppressed.
  • the substrate 40 is an n-type, but in the case of a p-type substrate, the same structure can be used in relation to the p layer.
  • FIG. 8 is a diagram showing the structure of the photoelectric conversion element in that case.
  • a p-type substrate 60 shown as pc-Si, an i layer 43 formed on the substrate 60, and a p-type impurity of the same conductivity type as the substrate 60 formed on the i layer 43 is included.
  • p layer 61 and TCO 46 formed on p layer 61 are included.
  • the p layer 61 includes the first p layer 61-1 having a peak impurity concentration at the position on the substrate 60 side with the i layer interposed therebetween, and the impurity concentration at a position closer to the TCO 46 than the position from the peak concentration. And a second p layer 61-2 that also decreases.
  • FIG. 9 to 11 are diagrams showing modifications of the photoelectric conversion element to which the structure described above is applied.
  • FIG. 9 is a combination of the structures of FIG. 1 and FIG. FIG. 10 employs a p-type substrate 60 in the structure of FIG. 1, a p-layer 62 having a constant concentration is disposed on the light-receiving surface side, and an n-layer 63 having three levels of concentrations on the back surface side. .
  • the n-layer 63 having three levels of concentration is obtained by replacing the impurity from p-type boron (B) to n-type phosphorus (P) in the structure of the three-level p layer 44 described with reference to FIGS.
  • the first n-layer 63-1, the second n-layer 63-2, and the third n-layer 63-3 are used.
  • FIG. 11 is a combination of the structure of FIG. 10 and the structure of FIG.
  • amorphous semiconductor thin films 30 amorphous semiconductor thin films containing boron, 31 laminates, 40 substrates, 41, 43 intrinsic amorphous semiconductor layers (i layers), 42, 42-1, 42 -2, 63, 63-1, 63-2, 63-3 n-type amorphous semiconductor layer (n layer), 44, 44-1, 44-2, 44-3, 61, 61-1, 61- 2,62 p-type amorphous semiconductor layer (p layer), 45, 46 transparent conductive film layer (TCO), 51, 52, 53 phosphorus (P) concentration distribution.
  • TCO transparent conductive film layer
  • P phosphorus

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectric conversion element (10) comprising an i layer (43) that is an intrinsic amorphous semiconductor layer formed in the back surface side of a substrate (40), said substrate being a crystalline semiconductor layer, a p layer (44) that is a p-type amorphous semiconductor layer formed on the i layer (43), and a TCO (46) that is a transparent conductive film layer formed on the p layer (43), wherein the boron (B) concentration in the thickness direction of the p layer (43) has a peak position (X2) that is located closer to the i layer (43) than the interface position (X4) with the TCO (46). The B concentration may decrease from the peak position (X2) toward the interface position (X4) with the TCO (56) either step-by-step, gradually or stepwise. When the substrate (40) is in the n-type, it is preferred that, in the light receiving surface side thereof, the i layer that is an intrinsic amorphous semiconductor layer, an n layer that is an n-type amorphous semiconductor layer formed on the i layer, and the TCO that is a transparent conductive film layer formed on the n layer are arranged so that the peak position of the phosphorus (P) concentration of the n layer is located in the side of the n-type substrate (40) with the i layer interposed.

Description

光電変換素子とその製造方法Photoelectric conversion element and manufacturing method thereof
 本発明は、光電変換素子とその製造方法に関する。 The present invention relates to a photoelectric conversion element and a manufacturing method thereof.
 pn接合について薄膜の真性非晶質半導体膜を介在させた光起電力装置が知られている(特許文献1)。 A photovoltaic device in which a thin intrinsic amorphous semiconductor film is interposed between pn junctions is known (Patent Document 1).
 また、上記のような光起電力装置を製造するに当たり、複数の基板をトレイに搭載した状態で、n型非晶質半導体層を成膜する方法が知られている(特許文献2)。 Further, in manufacturing the photovoltaic device as described above, a method of forming an n-type amorphous semiconductor layer with a plurality of substrates mounted on a tray is known (Patent Document 2).
特開平4-199750号公報Japanese Patent Laid-Open No. 4-199750 特開2008-135556号公報JP 2008-135556 A
 同じ装置を用いて光電変換素子を形成するときに、基板と真性非晶質半導体層の界面に混入するボロンの影響を抑制することである。具体的には、基板を搭載するトレイを繰り返し用いて光起電力素子を形成するときに、トレイに付着したボロン(B)が基板と真性非晶質半導体層の界面に混入することを抑制することである。 It is to suppress the influence of boron mixed in the interface between the substrate and the intrinsic amorphous semiconductor layer when the photoelectric conversion element is formed using the same apparatus. Specifically, when a photovoltaic element is formed by repeatedly using a tray on which a substrate is mounted, boron (B) attached to the tray is prevented from entering the interface between the substrate and the intrinsic amorphous semiconductor layer. That is.
 本発明に係る光電変換素子は、結晶性半導体層上に形成される真性非晶質半導体層と、真性非晶質半導体層上に形成されるp型非晶質半導体層と、p型非晶質半導体層上に形成される透明導電膜層と、を含み、p型非晶質半導体層は、透明導電膜層との界面の位置よりも真性非晶質半導体層側にアクセプタ濃度がピークとなる位置を有する。 A photoelectric conversion element according to the present invention includes an intrinsic amorphous semiconductor layer formed on a crystalline semiconductor layer, a p-type amorphous semiconductor layer formed on the intrinsic amorphous semiconductor layer, and a p-type amorphous semiconductor. The p-type amorphous semiconductor layer has a peak acceptor concentration closer to the intrinsic amorphous semiconductor layer than the position of the interface with the transparent conductive layer. Has a position.
 また、本発明に係る光電変換素子の製造方法は、結晶性半導体をトレイに配置し、結晶性半導体上に真性非晶質半導体層を形成し、真性非晶質半導体層上にp型非晶質半導体層を形成し、結晶性半導体上に真性非晶質半導体層とp型非晶質半導体層を形成した積層体を搬出し、同じトレイを用いて次の結晶性半導体を配置して上記工程を繰り返す、光電変換素子の製造方法であって、p型非晶質半導体層の形成は、予め定めたピーク濃度のアクセプタ濃度で形成した後、そのピーク濃度からアクセプタ濃度を減少させて形成して、p型非晶質半導体層の形成が終了する。 In the method for manufacturing a photoelectric conversion element according to the present invention, a crystalline semiconductor is disposed in a tray, an intrinsic amorphous semiconductor layer is formed on the crystalline semiconductor, and a p-type amorphous is formed on the intrinsic amorphous semiconductor layer. The crystalline semiconductor layer is formed, the stacked body in which the intrinsic amorphous semiconductor layer and the p-type amorphous semiconductor layer are formed on the crystalline semiconductor is taken out, and the next crystalline semiconductor is arranged using the same tray. A method of manufacturing a photoelectric conversion element in which a process is repeated. A p-type amorphous semiconductor layer is formed by forming an acceptor concentration at a predetermined peak concentration and then decreasing the acceptor concentration from the peak concentration. This completes the formation of the p-type amorphous semiconductor layer.
 また、本発明に係る光電変換素子は、結晶性半導体層の受光面側に形成される真性非晶質半導体層と、前記真性非晶質半導体層上に形成され結晶性半導体層と同じ導電型の不純物を含む導電性非晶質半導体層と、前記導電性非晶質半導体層上に形成される透明導電膜層と、を含み、前記導電性非晶質半導体層は、前記真性非晶質半導体層を挟み前記結晶性半導体層側の位置で前記不純物の濃度がピークとなり、その位置よりも透明導電膜層側の位置で不純物の濃度がピーク濃度よりも低下する。 The photoelectric conversion element according to the present invention includes an intrinsic amorphous semiconductor layer formed on the light-receiving surface side of the crystalline semiconductor layer, and the same conductivity type as the crystalline semiconductor layer formed on the intrinsic amorphous semiconductor layer. A conductive amorphous semiconductor layer containing a plurality of impurities, and a transparent conductive film layer formed on the conductive amorphous semiconductor layer, wherein the conductive amorphous semiconductor layer is the intrinsic amorphous The concentration of the impurity reaches a peak at a position on the crystalline semiconductor layer side with the semiconductor layer interposed therebetween, and the concentration of the impurity decreases at a position closer to the transparent conductive film layer than the position.
 上記構成により、p型非晶質半導体層の透明導電膜層の界面におけるアクセプタ濃度をピーク濃度よりも下げるので、同じ製造装置を用いて次の光電変換素子を形成するときに、基板と真性非晶質半導体膜の界面において混入するボロンの影響を抑制できる。 With the above structure, the acceptor concentration at the interface of the transparent conductive film layer of the p-type amorphous semiconductor layer is lower than the peak concentration. Therefore, when the next photoelectric conversion element is formed using the same manufacturing apparatus, the substrate is not intrinsically non-uniform. The influence of boron mixed at the interface of the crystalline semiconductor film can be suppressed.
 また、上記構成の少なくとも1つにより、受光面側では、i層上に形成される結晶性半導体層と同じ導電型の導電型非晶質半導体層の不純物濃度をi層を挟んで結晶性半導体層側の位置でピーク濃度となるようにするので、結晶性半導体層と導電型非晶質半導体層との間の電位差を大きく取れる。これにより、光電変換素子としての光吸収損失を抑制することができる。 According to at least one of the above-described structures, the impurity concentration of the conductive amorphous semiconductor layer having the same conductivity type as that of the crystalline semiconductor layer formed on the i layer is set on the light-receiving surface side with the i layer interposed therebetween. Since the peak concentration is obtained at the position on the layer side, a large potential difference between the crystalline semiconductor layer and the conductive amorphous semiconductor layer can be obtained. Thereby, the light absorption loss as a photoelectric conversion element can be suppressed.
実施の形態の光電変換素子の構造を示す図である。It is a figure which shows the structure of the photoelectric conversion element of embodiment. 実施の形態の光電変換素子において、p型非晶質半導体層のボロン(B)濃度分布を示す図である。In the photoelectric conversion element of embodiment, it is a figure which shows the boron (B) density | concentration distribution of a p-type amorphous semiconductor layer. 従来技術において、B濃度と特性との関係を示す図である。It is a figure which shows the relationship between B density | concentration and a characteristic in a prior art. 実施の形態の光電変換素子において、p型非晶質半導体層のボロン(B)のピーク濃度BPEAKと特性との関係を示す図である。In the photoelectric conversion element of embodiment, it is a figure which shows the relationship between the peak density | concentration BPEAK of boron (B) of a p-type amorphous semiconductor layer, and a characteristic. 実施の形態における光電変換素子の製造方法の手順を示す図である。It is a figure which shows the procedure of the manufacturing method of the photoelectric conversion element in embodiment. 他の実施の形態の光電変換素子の構造を示す図である。It is a figure which shows the structure of the photoelectric conversion element of other embodiment. 図6の実施の形態の光電変換素子において、受光面側の型非晶質半導体層のリン(P)濃度分布を示す図である。FIG. 7 is a diagram showing a phosphorus (P) concentration distribution of a light-receiving surface side type amorphous semiconductor layer in the photoelectric conversion element of the embodiment of FIG. 6. 他の実施の形態の光電変換素子で、結晶性半導体層の導電型がp型の場合の構造を示す図である。In the photoelectric conversion element of other embodiment, it is a figure which shows the structure in case the conductivity type of a crystalline semiconductor layer is p-type. 図6の変形例の構造を示す図である。It is a figure which shows the structure of the modification of FIG. 図8の変形例の構造を示す図である。It is a figure which shows the structure of the modification of FIG. 図10の変形例の構造を示す図である。It is a figure which shows the structure of the modification of FIG.
 以下に図面を用いて、実施の形態を詳細に説明する。以下では、光電変換素子の構造として、結晶性半導体層である基板を挟んで、受光面側に真性非晶質半導体層とp型非晶質半導体層を積層し、裏面側に真性非晶質半導体層とn型非晶質半導体層を積層したものを述べるが、これは説明のための例示であって、受光面側か裏面側かを問わず、結晶性半導体層上に形成される真性非晶質半導体層の上にp型非晶質半導体層が形成されるものであればよい。以下では、各非晶質半導体層が基板の全面に形成されるものを述べるが、これは模式的な説明として用いたもので、選択マスク等を用いて各非晶質半導体層を基板に対して選択的に形成するものとしてもよい。例えば、基板の一方側にn型非晶質半導体層とp型非晶質半導体層を選択的に形成して平面的にpn接合を形成するものとしてもよい。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the following, as a structure of the photoelectric conversion element, an intrinsic amorphous semiconductor layer and a p-type amorphous semiconductor layer are stacked on the light receiving surface side with a substrate which is a crystalline semiconductor layer interposed, and an intrinsic amorphous material is formed on the back surface side. Although a stacked layer of a semiconductor layer and an n-type amorphous semiconductor layer is described, this is an example for explanation, and is intrinsic formed on the crystalline semiconductor layer regardless of whether it is on the light receiving surface side or the back surface side. Any p-type amorphous semiconductor layer may be formed on the amorphous semiconductor layer. In the following description, each amorphous semiconductor layer is formed over the entire surface of the substrate. However, this is used as a schematic explanation, and each amorphous semiconductor layer is attached to the substrate using a selection mask or the like. Alternatively, it may be formed selectively. For example, an n-type amorphous semiconductor layer and a p-type amorphous semiconductor layer may be selectively formed on one side of the substrate to form a planar pn junction.
 以下で述べる厚さ、濃度等は説明のための例示であって、光電変換素子の仕様に応じ、適宜変更が可能である。以下では、全ての図面において一または対応する要素には同一の符号を付し、重複する説明を省略する。 The thickness, concentration, etc. described below are illustrative examples, and can be appropriately changed according to the specifications of the photoelectric conversion element. Hereinafter, in all the drawings, one or the corresponding element is denoted by the same reference numeral, and redundant description is omitted.
 図1は、光電変換素子の構成を示す図である。光電変換素子10は、基板40を備える。基板40の受光面側(図1の紙面上で上側)には、真性非晶質半導体層41と、n型非晶質半導体層42と、透明導電膜層45とが設けられる。また、基板40の裏面側(図1の紙面上で下側)には、真性非晶質半導体層43と、p型非晶質半導体層44と、透明導電膜層46とが設けられる。p型非晶質半導体層44は、第1のp型非晶質半導体層44-1と、第2のp型非晶質半導体層44-2と、第3のp型非晶質半導体層44-3とを含む。 FIG. 1 is a diagram showing a configuration of a photoelectric conversion element. The photoelectric conversion element 10 includes a substrate 40. An intrinsic amorphous semiconductor layer 41, an n-type amorphous semiconductor layer 42, and a transparent conductive film layer 45 are provided on the light receiving surface side of the substrate 40 (upper side on the paper surface of FIG. 1). In addition, an intrinsic amorphous semiconductor layer 43, a p-type amorphous semiconductor layer 44, and a transparent conductive film layer 46 are provided on the back side of the substrate 40 (lower side on the paper surface of FIG. 1). The p-type amorphous semiconductor layer 44 includes a first p-type amorphous semiconductor layer 44-1, a second p-type amorphous semiconductor layer 44-2, and a third p-type amorphous semiconductor layer. 44-3.
 以下では、特に断らない限り、結晶性半導体層を基板、真性非晶質半導体層をi層、p型非晶質半導体層をp層、透明導電膜層をTCOと示す。また、p型元素であるアクセプタ元素は、ボロン(B)以外を用いることができるが、以下では、ボロンを用いるものとして、アクセプタ濃度をB濃度と示す。以下に、基板の裏面側に形成されるi層、p層、TCOについて説明する。 Hereinafter, unless otherwise specified, the crystalline semiconductor layer is denoted as a substrate, the intrinsic amorphous semiconductor layer as i layer, the p-type amorphous semiconductor layer as p layer, and the transparent conductive film layer as TCO. As the acceptor element that is a p-type element, boron (B) other than boron (B) can be used. In the following, the acceptor concentration is referred to as B concentration, assuming that boron is used. The i layer, p layer, and TCO formed on the back side of the substrate will be described below.
 基板40は、結晶系の半導体材料である。基板40は、n型またはp型の導電型の結晶性半導体基板とすることができる。基板40は、単結晶シリコン基板、多結晶シリコン基板、ガリウムヒ素(GaAs)基板、インジウムリン(InP)基板等を用いることができる。基板40は、入射された光を吸収することで、光電変換により電子および正孔のキャリア対を発生させる。以下では、基板40としてn型単結晶シリコンを用いる例を説明する。図1では、基板40を、n-c-Siとしてこのことを示した。 The substrate 40 is a crystalline semiconductor material. The substrate 40 can be an n-type or p-type conductive crystalline semiconductor substrate. As the substrate 40, a single crystal silicon substrate, a polycrystalline silicon substrate, a gallium arsenide (GaAs) substrate, an indium phosphide (InP) substrate, or the like can be used. The substrate 40 absorbs the incident light and generates a carrier pair of electrons and holes by photoelectric conversion. Hereinafter, an example in which n-type single crystal silicon is used as the substrate 40 will be described. In FIG. 1, this is shown by assuming that the substrate 40 is nc-Si.
 基板40は、フッ化水素酸(HF)水溶液やRCA洗浄液で洗浄される。また、水酸化カリウム(KOH)水溶液等のアルカリエッチング液を用いて基板の表面や裏面にテクスチャ構造(図示省略)を形成してもよい。 The substrate 40 is cleaned with a hydrofluoric acid (HF) aqueous solution or an RCA cleaning solution. Moreover, you may form a texture structure (illustration omitted) in the surface and back surface of a board | substrate using alkaline etching liquids, such as potassium hydroxide (KOH) aqueous solution.
 i層41は、洗浄後の基板40上に形成される。i層41は、例えば水素を含む非晶質の半導体層とできる。i層41は、プラズマCVD(PECVD)法、触媒型CVD(Cat-CVD)法、スパッタリング法等により形成することができる。プラズマCVD法は、RFプラズマCVD法、周波数のより高いVHFプラズマCVD法、マイクロプラズマCVD法を用いることができる。以下では、RFプラズマCVD法を用いる例を説明する。 I layer 41 is formed on substrate 40 after cleaning. The i layer 41 can be an amorphous semiconductor layer containing hydrogen, for example. The i layer 41 can be formed by plasma CVD (PECVD), catalytic CVD (Cat-CVD), sputtering, or the like. As the plasma CVD method, an RF plasma CVD method, a VHF plasma CVD method having a higher frequency, or a microplasma CVD method can be used. Hereinafter, an example using the RF plasma CVD method will be described.
 例えば、シラン(SiH4)等のケイ素含有ガスおよび希釈ガスとして水素を供給し、平行平板電極等にRF高周波電力を印加してプラズマ化し、加熱された基板の成膜面に供給することでi層41の形成が行われる。成膜時の基板の温度は約150~250℃、RF電力密度は約1~20mW/cm2とできる。 For example, by supplying hydrogen as a silicon-containing gas such as silane (SiH 4 ) and a dilution gas, applying RF high-frequency power to parallel plate electrodes or the like to generate plasma, and supplying it to the film formation surface of the heated substrate i Layer 41 is formed. The substrate temperature during film formation can be about 150 to 250 ° C., and the RF power density can be about 1 to 20 mW / cm 2 .
 i層41は、光の吸収をできるだけ抑えられるように薄くし、一方で基板の表面が十分にパッシベーションされる程度に厚くする。i層の厚さの一例を示すと、約1~25nmで、好ましくは約5~10nmとすることがよい。図1では、i層41を、i-aとしてこのことを示した。 The i layer 41 is thinned so as to suppress light absorption as much as possible, and thick enough to sufficiently passivate the surface of the substrate. An example of the thickness of the i layer is about 1 to 25 nm, preferably about 5 to 10 nm. In FIG. 1, the i layer 41 is indicated as ia.
 n層42は、i層41の上に形成される。n層42は、水素を含む非晶質半導体層にn型の導電型の元素であるドナーを含む。n層42は、プラズマCVD法、触媒型CVD法、スパッタリング法等により形成することができる。プラズマCVD法は、RFプラズマCVD法を用いることができる。以下では、RFプラズマCVD法を用いる例を説明する。 The n layer 42 is formed on the i layer 41. The n layer 42 includes a donor that is an n-type conductivity element in an amorphous semiconductor layer containing hydrogen. The n layer 42 can be formed by a plasma CVD method, a catalytic CVD method, a sputtering method, or the like. As the plasma CVD method, an RF plasma CVD method can be used. Hereinafter, an example using the RF plasma CVD method will be described.
 例えば、シラン(SiH4)等のケイ素含有ガスに、ホスフィン(PH3)等のn型元素を含むガスを加え、水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化し、加熱された基板の成膜面に供給することでp層の形成が行われる。成膜時の基板の温度は約150~250℃、RF電力密度は約1~20mW/cm2とできる。n層の厚さの一例を示すと、約5~20nmで、好ましくは約10~15nmとすることがよい。図1では、n層42を、n-aとしてこのことを示した。 For example, a gas containing an n-type element such as phosphine (PH 3 ) is added to a silicon-containing gas such as silane (SiH 4 ), diluted with hydrogen and supplied, and RF high-frequency power is applied to parallel plate electrodes and the like. The p layer is formed by turning it into plasma and supplying it to the film formation surface of the heated substrate. The substrate temperature during film formation can be about 150 to 250 ° C., and the RF power density can be about 1 to 20 mW / cm 2 . An example of the thickness of the n layer is about 5 to 20 nm, preferably about 10 to 15 nm. In FIG. 1, this is shown by assuming that the n layer 42 is na.
 i層43は、基板40上であって、i層41が形成される主面と反対側の面に形成される。i層43は、i層41と同様に形成することができる。図1では、i層43を、i-aとしてこのことを示した。 The i layer 43 is formed on the surface of the substrate 40 opposite to the main surface on which the i layer 41 is formed. The i layer 43 can be formed in the same manner as the i layer 41. In FIG. 1, the i layer 43 is shown as ia.
 p層44は、i層43の上に形成される。p層44は、水素を含む非晶質半導体層にp型の導電型の元素であるアクセプタを含む。p層44は、プラズマCVD法、触媒型CVD法、スパッタリング法等により形成することができる。プラズマCVD法は、RFプラズマCVD法を用いることができる。以下では、RFプラズマCVD法を用いる例を説明する。 The p layer 44 is formed on the i layer 43. The p layer 44 includes an acceptor which is a p-type conductivity element in an amorphous semiconductor layer containing hydrogen. The p layer 44 can be formed by a plasma CVD method, a catalytic CVD method, a sputtering method, or the like. As the plasma CVD method, an RF plasma CVD method can be used. Hereinafter, an example using the RF plasma CVD method will be described.
 例えば、シラン(SiH4)等のケイ素含有ガスに、ジボラン(B26)等のp型元素を含むガスを加え、水素で希釈して供給し、平行平板電極等にRF高周波電力を印加してプラズマ化し、加熱された基板の成膜面に供給することでp層44の形成が行われる。成膜時の基板の温度は約150~250℃、RF電力密度は約1~20mW/cm2とできる。p層44の厚さの一例を示すと、約5~20nmで、好ましくは約10~15nmとすることがよい。図1では、p層44を、p-aとしてこのことを示した。 For example, a gas containing a p-type element such as diborane (B 2 H 6 ) is added to a silicon-containing gas such as silane (SiH 4 ), diluted with hydrogen, and supplied with RF high frequency power to parallel plate electrodes, etc. Then, the p layer 44 is formed by turning it into plasma and supplying it to the film formation surface of the heated substrate. The substrate temperature during film formation can be about 150 to 250 ° C., and the RF power density can be about 1 to 20 mW / cm 2 . An example of the thickness of the p layer 44 is about 5 to 20 nm, preferably about 10 to 15 nm. In FIG. 1, the p layer 44 is shown as pa.
 p層44は、第1のp型非晶質半導体層(第1のp層)44-1と、第2のp型非晶質半導体層(第2のp層)44-2と、第3のp型非晶質半導体層(第2のp層)44-3を含む。第2のp層44-2のボロン(B)濃度は、第1のp層44-1のB濃度よりも高い。また、第1のp層44-1のB濃度は、第3のp層44-3のB濃度よりも低い。p層44の詳細については後述する。 The p layer 44 includes a first p-type amorphous semiconductor layer (first p layer) 44-1, a second p-type amorphous semiconductor layer (second p layer) 44-2, 3 p-type amorphous semiconductor layers (second p-layer) 44-3. The boron (B) concentration in the second p layer 44-2 is higher than the B concentration in the first p layer 44-1. Further, the B concentration of the first p layer 44-1 is lower than the B concentration of the third p layer 44-3. Details of the p layer 44 will be described later.
 TCO45は、n層42の上に形成される。また、TCO46は、p層44の上に形成される。TCO45,46は透明導電膜層で、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、酸化チタン(TiO2)等の金属酸化物を少なくとも1つ含んで構成される。これらの金属酸化物に錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、セリウム(Ce)、ガリウム(Ga)等の元素が添加されていてもよい。TCOは、蒸着法、プラズマCVD法、スパッタリング法等の薄膜形成方法により形成できる。TCOの厚さは、その屈折率により適宜調整できるが、一例を示すと、約70~100nmである。 The TCO 45 is formed on the n layer 42. The TCO 46 is formed on the p layer 44. TCO 45 and 46 are transparent conductive film layers, for example, metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is comprised including at least one. Elements such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), cerium (Ce), and gallium (Ga) may be added to these metal oxides. . TCO can be formed by a thin film forming method such as an evaporation method, a plasma CVD method, or a sputtering method. The thickness of the TCO can be adjusted as appropriate depending on the refractive index, but as an example, it is about 70 to 100 nm.
 TCO45,46の上には、例えば銀ペーストを用いて形成された金属電極(図示省略)が形成される。金属電極に配線材を接続することにより、光電変換素子10で生じた電力が太陽電池モジュールの外部に出力される。 On the TCOs 45 and 46, metal electrodes (not shown) formed using, for example, silver paste are formed. By connecting the wiring material to the metal electrode, the electric power generated in the photoelectric conversion element 10 is output to the outside of the solar cell module.
 図2は、光電変換素子10の構成と、光電変換素子10を構成するp型非晶質半導体層におけるB濃度の分布を示す図である。 FIG. 2 is a diagram showing the configuration of the photoelectric conversion element 10 and the distribution of B concentration in the p-type amorphous semiconductor layer constituting the photoelectric conversion element 10.
 図2(a)は、光電変換素子10の構成図である。光電変換素子10は、結晶性半導体層を基板40として、受光面側に真性非晶質半導体層(i層)41とn型非晶質半導体層(n層)42を積層し、裏面側に真性非晶質半導体層(i層)43とp型非晶質半導体層(p層)44を積層したものである。受光面側には、n層42の上に透明導電膜層(TCO)45が形成され、裏面側には、p層44の上に透明導電膜層(TCO)46が形成される。 FIG. 2A is a configuration diagram of the photoelectric conversion element 10. In the photoelectric conversion element 10, a crystalline semiconductor layer is used as a substrate 40, an intrinsic amorphous semiconductor layer (i layer) 41 and an n-type amorphous semiconductor layer (n layer) 42 are stacked on the light receiving surface side, and on the back surface side. An intrinsic amorphous semiconductor layer (i layer) 43 and a p-type amorphous semiconductor layer (p layer) 44 are stacked. On the light receiving surface side, a transparent conductive film layer (TCO) 45 is formed on the n layer 42, and on the back surface side, a transparent conductive film layer (TCO) 46 is formed on the p layer 44.
 図2(b)は、p層のB濃度分布図である。B濃度分布図は、縦軸がB濃度、横軸がi層43の界面からTCO46の界面までのp層44の厚さ方向の位置で、X0がi層43とp層44の界面の位置、X4がp層44とTCO46の界面の位置である。光電変換素子10を形成するときに、基板40の上にi層43を形成し、次にi層43の上にp層44を形成するとき、X0がp層44形成の開始位置で、X4がp層44形成の終了位置である。 FIG. 2B is a B concentration distribution diagram of the p layer. In the B concentration distribution chart, the vertical axis is the B concentration, the horizontal axis is the position in the thickness direction of the p layer 44 from the interface of the i layer 43 to the interface of the TCO 46, and X 0 is the interface of the i layer 43 and the p layer 44. The position X 4 is the position of the interface between the p layer 44 and the TCO 46. When forming the photoelectric conversion element 10, when the i layer 43 is formed on the substrate 40 and then the p layer 44 is formed on the i layer 43, X 0 is the starting position of the p layer 44 formation, X 4 is the end position of the p layer 44 formation.
 B濃度分布11は、p層44の厚さ方向に沿ってi層43の界面の位置であるX0からX1までが一定濃度である。p層44のうち、X0からX1までが第1のp層44-1である。X0からX1までの厚さは、p層全体の厚さの約1/3程度とできる。この領域における一定濃度は、1019/cm3程度とできる。 The B concentration distribution 11 has a constant concentration from X 0 to X 1 which is the position of the interface of the i layer 43 along the thickness direction of the p layer 44. Of the p layer 44, X 0 to X 1 are the first p layer 44-1. The thickness from X 0 to X 1 can be about 3 of the total thickness of the p layer. The constant concentration in this region can be about 10 19 / cm 3 .
 次に、X1でB濃度を一段と高くしてBPEAKとし、X2までBPEAKを維持する。p層44のうち、X1からX2までが第2のp層44-2である。BPEAKは、光電変換素子10におけるpn接合のp層としての最適濃度に設定される。例えば、BPEAKを1022/cm3程度とできる。X1からX2までの厚さは、p層全体の厚さの約1/2程度とする。 Next, the B concentration is further increased with X 1 to obtain B PEAK, and B PEAK is maintained until X 2 . Of the p layer 44, X 1 to X 2 are the second p layer 44-2. B PEAK is set to an optimum concentration as the p layer of the pn junction in the photoelectric conversion element 10. For example, B PEAK can be set to about 10 22 / cm 3 . The thickness from X 1 to X 2 is about ½ of the total thickness of the p layer.
 そして、X4の手前のX3でB濃度を下げてBTCOとし、X4までBTCOを維持する。p層44のうち、X2からX4までが第3のp層44-3である。X2からX3にかけてB濃度を減少させるのはステップ状とするか、または連続的とする。例えば、p層形成処理において、X2に対応する処理時間になったら、ボロンを含むジボラン(B26)のガス流量を目標値まで減少させる。これにより、数nmの厚さの間で、B濃度をBPEAKからBTCOにステップ状に変化させることができる。BTCOは、1020/cm3程度とできる。 Then, the B TCO to lower the B concentration in front of the X 3 of X 4, to maintain the B TCO to X 4. Of the p layer 44, X 2 to X 4 are the third p layer 44-3. Decreasing the B concentration from X 2 to X 3 is stepped or continuous. For example, in the p layer formation process, when the processing time corresponding to X 2 is reached, the gas flow rate of diborane (B 2 H 6 ) containing boron is reduced to the target value. As a result, the B concentration can be changed in steps from B PEAK to B TCO within a thickness of several nm. B TCO can be about 10 20 / cm 3 .
 B濃度を減少させるのは、ステップ状以外でもよい。例えば、次第に減少してゆく漸減状としてもよく、数段階で減少させる階段状としてもよい。これらの場合、BTCOになる位置X3は、X4までの間であればよく、ちょうどX4の位置にBTCOとなるようにしてもよい。 The B concentration may be decreased by other than the step shape. For example, it may be a gradually decreasing shape that gradually decreases, or may be a staircase shape that decreases in several steps. In these cases, the position X 3 that becomes B TCO only needs to be between X 4 and may be B TCO just at the position of X 4 .
 したがって、p層44におけるB濃度は、i層43の界面X0からX1までの第1のp層44-1において低濃度、X1からX2までの第2のp層44-2において高濃度、X3からTCO46の界面までの第3のp層44-3において中濃度、の3濃度構造となる。また、B濃度がピークとなるBPEAKの位置はX1からX2までの間で、TCOとの界面の位置であるX4よりもi層側にB濃度がピークとなる位置を有する。 Therefore, B concentration in the p layer 44, the low concentration in the first p-layer 44-1 from the interface X 0 of the i layer 43 to X 1, in the second p-layer 44-2 from X 1 to X 2 The third p-layer 44-3 from the high concentration X 3 to the interface of the TCO 46 has a three concentration structure of medium concentration. Further, the position of B PEAK at which the B concentration reaches a peak is between X 1 and X 2 , and has a position at which the B concentration reaches a peak on the i layer side from X 4 which is the position of the interface with the TCO.
 かかる構成の作用効果を従来技術と比較しながら、以下に詳細に説明する。図2には、比較のために従来行われているB濃度分布12が示されている。従来行われているB濃度分布12は、p層の厚さ方向で、X0からX1までが一定濃度で、X1でB濃度を高くしてBTCOとし、その高い濃度のままX4まで維持する。したがって、B濃度のピークは、X1からX4までの間で、TCO界面のX4で特にB濃度を下げることをしていない。 The operation and effect of such a configuration will be described in detail below in comparison with the prior art. FIG. 2 shows a conventional B concentration distribution 12 for comparison. Conventionally, the B concentration distribution 12 has a constant concentration from X 0 to X 1 in the thickness direction of the p layer, and the B concentration is increased to B TCO at X 1 , and the high concentration is maintained at X 4. Keep up. Therefore, the peak of the B concentration is between X 1 and X 4 and does not particularly lower the B concentration at X 4 at the TCO interface.
 図3は、従来技術のように、p層におけるB濃度をTCO界面まで一定濃度としたときのB濃度と光電変換素子10の特性の関係を示す模式図である。横軸はB濃度で、縦軸には、光電変換素子10の回路開放電圧であるVOCと、p層とTCOとの間の接触抵抗の逆数(1/ρC)がとられている。特性線13は、B濃度に対するVOCの変化を示し、特性線14は、B濃度に対する(1/ρC)の変化を示す。図3に示されるように、B濃度を高くすれば(1/ρC)は向上し、p層とTCOの電気的接続性能がよくなる。 FIG. 3 is a schematic diagram showing the relationship between the B concentration and the characteristics of the photoelectric conversion element 10 when the B concentration in the p layer is constant up to the TCO interface as in the prior art. The horizontal axis represents the B concentration, and the vertical axis represents V OC , which is the circuit open voltage of the photoelectric conversion element 10, and the reciprocal (1 / ρ C ) of the contact resistance between the p layer and the TCO. The characteristic line 13 shows the change of V OC with respect to the B concentration, and the characteristic line 14 shows the change of (1 / ρ C ) with respect to the B concentration. As shown in FIG. 3, if the B concentration is increased, (1 / ρ C ) is improved, and the electrical connection performance between the p layer and the TCO is improved.
 一方でB濃度を高くすれば、同じ製造装置を用いて製造された光電変換素子10において基板40とi層43の界面に混入するBの量が多くなり、結果としてVOCが低下する。これは、同じ製造装置を用いて、引き続き光電変換素子10を製造するとき、製造装置に付着しているBが基板40とi層43の界面に混入することが生じるためであると考えられる。特に、基板40を保持するトレイやマスクに付着したBがi層43形成の際に混入し、i層43の真性非晶質半導体層としての特性を低下させる。このような問題は、トレイやマスクを繰り返し使用して光電変換素子10を製造する場合に顕著に表れる。このように、p層44におけるB濃度をTCO46界面まで一定濃度としたときには、p層44に関係する電気的接続性能の向上と、VOCの向上との両立が難しい。p層44に関係する電気的性能には、例えば、p層44の電気伝導度や、p層44とTCO46との間の電気接続性能が挙げられる。 On the other hand, if the B concentration is increased, the amount of B mixed into the interface between the substrate 40 and the i layer 43 in the photoelectric conversion element 10 manufactured using the same manufacturing apparatus increases, and as a result, V OC decreases. This is considered to be because when the photoelectric conversion element 10 is subsequently manufactured using the same manufacturing apparatus, B adhering to the manufacturing apparatus is mixed into the interface between the substrate 40 and the i layer 43. In particular, B adhering to the tray or mask holding the substrate 40 is mixed when the i layer 43 is formed, and the characteristics of the i layer 43 as an intrinsic amorphous semiconductor layer are deteriorated. Such a problem appears remarkably when the photoelectric conversion element 10 is manufactured by repeatedly using a tray or a mask. Thus, when the B concentration in the p layer 44 is constant up to the interface of the TCO 46, it is difficult to improve both the electrical connection performance related to the p layer 44 and the V OC . Examples of the electrical performance related to the p layer 44 include the electrical conductivity of the p layer 44 and the electrical connection performance between the p layer 44 and the TCO 46.
 上記の課題を解決する方法として、製造装置に付着したボロンを除去すること、例えば、トレイやマスクを洗浄することが考えられる。洗浄の工程を行うことで、基板40とi層43の界面へのB混入を避けることができるが、生産性が低下する。 As a method for solving the above problems, it is conceivable to remove boron adhering to the manufacturing apparatus, for example, to clean a tray or a mask. By performing the cleaning step, B can be prevented from entering the interface between the substrate 40 and the i layer 43, but productivity is reduced.
 そこで、従来技術では、VOCの確保を優先して、B濃度を低く設定する。図2の従来技術では、B濃度のピークの値が1020/cm3で、実施の形態で光電変換素子10におけるpn接合のp層としての最適濃度とされる1022/cm3程度よりはかなり低めに設定される。これにより、基板40とi層43の界面のB濃度を低減させて、VOCを確保できる。一方、p層44のB濃度が低くなるため、p層44の電気伝導度や、p層44とTCO46の間の電気的接続性能の低下によりフィルファクタ(FF)が低下し、光電変換素子10の信頼性が低下する。従来技術においては、これら2つの要件を同時に満たす光電変換素子10を製造することは容易ではない。 Therefore, in the prior art, the B concentration is set low, giving priority to securing V OC . In the prior art of FIG. 2, the peak value of B concentration is 10 20 / cm 3 , which is more than about 10 22 / cm 3 which is the optimum concentration as the p layer of the pn junction in the photoelectric conversion element 10 in the embodiment. Set fairly low. As a result, the B concentration at the interface between the substrate 40 and the i layer 43 can be reduced to ensure V OC . On the other hand, since the B concentration of the p layer 44 is lowered, the fill factor (FF) is lowered due to a decrease in the electrical conductivity of the p layer 44 and the electrical connection performance between the p layer 44 and the TCO 46, and the photoelectric conversion element 10. Reliability decreases. In the prior art, it is not easy to manufacture the photoelectric conversion element 10 that satisfies these two requirements at the same time.
 図4は、実施の形態のB濃度分布11を用いたときの作用効果を説明する図である。図4の横軸は、BPEAKで、縦軸はVOCである。特性線15は、光電変換素子10を製造する都度、トレイ等を洗浄して常にきれいな理想状態で、基板にi層を形成したときのBPEAKとVOCの関係を示す。特性線16は、同じ製造装置でトレイ等を特に洗浄等をしない状態で、BPEAK=BTCOとして、繰り返し、基板にi層を形成したときのBPEAKとVOCの関係を示す。 FIG. 4 is a diagram for explaining the operational effect when the B concentration distribution 11 of the embodiment is used. In FIG. 4, the horizontal axis is B PEAK and the vertical axis is V OC . The characteristic line 15 shows the relationship between B PEAK and V OC when the i layer is formed on the substrate in a clean ideal state by washing the tray or the like each time the photoelectric conversion element 10 is manufactured. The characteristic line 16 shows the relationship between B PEAK and V OC when the i layer is repeatedly formed on the substrate with B PEAK = B TCO in a state where the tray or the like is not particularly cleaned by the same manufacturing apparatus.
 図4に示されるように、特性線15においても特性線16においても、BPEAKを増加させてゆくとVOCは増加し、あるBPEAKを超えると飽和してほぼ一定値のVOCとなる。このほぼ一定値になる範囲が光電変換素子10におけるpn接合のp層としての最適濃度の範囲である。図2のB濃度分布11におけるBPEAK=1022/cm3は、この範囲に設定されている。なお、BPEAKは、光電変換素子10の仕様に応じ、例えば1021/cm3~1023/cm3の範囲で適宜設定することができる。 As shown in FIG. 4, in the characteristic curve 16 is also the characteristic lines 15, V OC increases the Yuku by increasing the B PEAK, a V OC of substantially constant saturated it exceeds a certain B PEAK . The range where the value is almost constant is the optimum concentration range as the p layer of the pn junction in the photoelectric conversion element 10. B PEAK = 10 22 / cm 3 in the B concentration distribution 11 of FIG. 2 is set in this range. B PEAK can be appropriately set in the range of, for example, 10 21 / cm 3 to 10 23 / cm 3 according to the specifications of the photoelectric conversion element 10.
 BPEAKをp層44としての最適濃度の範囲に設定しても、同じ製造装置でトレイ等を特に洗浄しない特性線16は、理想的状態の特性線15に比べ、VOCが低い。そこで、BTCOをBPEAKよりも減少させる。そのときの特性線17は、特性線15には及ばないが、特性線16に比べてVOCがかなり向上する。その理由は次のように考えられる。基板40を保持するトレイやマスクを用いて光電変換素子10を製造するとき、トレイやマスクの最表面に付着するB濃度はBPEAKより濃度が低いBTCOとなる。よって、トレイやマスクに付着したBがi層43形成の際に混入しても混入するBの量が少なくなるため、このB混入によるVOC低下の影響が小さくなり、理想的状態の特性線17に近づく。 Even if B PEAK is set within the optimum concentration range as the p layer 44, the characteristic line 16 that does not particularly clean the tray or the like with the same manufacturing apparatus has a lower V OC than the characteristic line 15 in the ideal state. Therefore, B TCO is reduced more than B PEAK . The characteristic line 17 at that time does not reach the characteristic line 15, but V OC is considerably improved as compared with the characteristic line 16. The reason is considered as follows. When the photoelectric conversion element 10 is manufactured using a tray or mask that holds the substrate 40, the B concentration that adheres to the outermost surface of the tray or mask is B TCO that is lower than B PEAK . Therefore, even if B adhering to the tray or mask is mixed when forming the i layer 43, the amount of mixed B is reduced. Therefore, the influence of the V OC decrease due to the B mixing is reduced, and the characteristic curve in the ideal state is obtained. Approach 17
 つまり、(BPEAK-BTCO)が大きいほど、あるいは、(BPEAK/BTCO)が大きいほど特性線17は、特性線16から理想的状態の特性線15に近づく。このことから、BTCOをp層とTCOとの間の電気的接続の観点から最適なB濃度に設定して、その設定されたBTCOに比較して十分高いBPEAKとすれば、特性線17は理想状態の特性線15に近づき、VOCの向上を図ることができる。図4に示されるように、VOCがほぼ一定値となるBPEAKの範囲は広いので、その範囲でBPEAKを適切に大きくすることができる。 That is, as (B PEAK −B TCO ) increases or as (B PEAK / B TCO ) increases, the characteristic line 17 approaches the characteristic line 15 in the ideal state from the characteristic line 16. From this, if B TCO is set to an optimum B concentration from the viewpoint of electrical connection between the p layer and the TCO, and B PEAK is sufficiently higher than the set B TCO , the characteristic line can be obtained. 17 approaches the characteristic line 15 in an ideal state, and V OC can be improved. As shown in FIG. 4, the V OC is wide range of substantially constant value B PEAK, can be appropriately increased B PEAK in that range.
 このように、BTCOの最適設定の範囲と、BPEAKの最適設定の範囲が異なることを利用して、p層44とTCO46との間の接触抵抗に応じてBTCOを設定し、また、VOCに応じて(BPEAK-BTCO)または(BPEAK/BTCO)を設定し、p層44におけるB濃度分布について、TCO46との界面の位置よりもi層43側にB濃度がピークとなる位置を有するようにする。これにより、p層44としての機能を保持しつつ、光電変換素子10の基板40とi層43の界面におけるBの混入の影響を抑制して、フィルファクタ(FF)やVOCを向上させることができる。 Thus, by utilizing the fact that the optimum setting range of B TCO is different from the optimum setting range of B PEAK , B TCO is set according to the contact resistance between the p layer 44 and the TCO 46, (B PEAK -B TCO ) or (B PEAK / B TCO ) is set according to V OC, and the B concentration distribution in the p layer 44 has a B concentration peak on the i layer 43 side of the interface with the TCO 46. To have a position. Thereby, while maintaining the function as the p layer 44, the influence of B mixing at the interface between the substrate 40 and the i layer 43 of the photoelectric conversion element 10 is suppressed, and the fill factor (FF) and V OC are improved. Can do.
 図5は、光電変換素子10の製造方法の手順を示す図である。ここでは、特に基板40の裏面側にi層43とp層44を形成する手順を説明する。図5(a)は搬入処理手順、(b)はi層形成処理手順、(c)はp層形成処理手順、(d)は搬出処理手順を示す。 FIG. 5 is a diagram illustrating a procedure of a method for manufacturing the photoelectric conversion element 10. Here, a procedure for forming the i layer 43 and the p layer 44 on the back side of the substrate 40 will be described. 5A shows a carry-in process procedure, FIG. 5B shows an i-layer formation process procedure, FIG. 5C shows a p-layer formation process procedure, and FIG. 5D shows a carry-out process procedure.
 用いられる装置として、4つのチャンバを有するRFプラズマCVD装置20が示される。4つのチャンバは、図5の各図において、右側から左側に向かって順に、搬入室21、i層形成室22、p層形成室23、搬出室24である。これらのチャンバの間は、図示されていない制御部の制御の下で、開閉機構によって互いに接続され、あるいは遮断される。 As an apparatus to be used, an RF plasma CVD apparatus 20 having four chambers is shown. The four chambers are a carry-in chamber 21, an i-layer formation chamber 22, a p-layer formation chamber 23, and a carry-out chamber 24 in order from the right side to the left side in each drawing of FIG. These chambers are connected to each other or blocked by an opening / closing mechanism under the control of a control unit (not shown).
 図5(a)は、RFプラズマCVD装置20の最も右側のチャンバである搬入室21にトレイ25が配置され、そのトレイ25に複数の基板40が搭載される様子を示す図である。図5では、1つのトレイ25、2つの基板40が示されているが、トレイ25の数、基板40の数はこれ以外であってもよい。基板40がトレイ25に配置されると、搬入室21とi層形成室22の間の開閉機構が開かれ、基板40が配置されたトレイ25がi層形成室22に移動する。トレイ25の移動が完了すると、搬入室21とi層形成室22の間の開閉機構が閉じられ、i層形成室22が密閉された空間となる。 FIG. 5A is a diagram showing a state in which the tray 25 is disposed in the carry-in chamber 21 that is the rightmost chamber of the RF plasma CVD apparatus 20, and a plurality of substrates 40 are mounted on the tray 25. In FIG. 5, one tray 25 and two substrates 40 are shown, but the number of trays 25 and the number of substrates 40 may be other than this. When the substrate 40 is placed on the tray 25, the opening / closing mechanism between the carry-in chamber 21 and the i layer forming chamber 22 is opened, and the tray 25 on which the substrate 40 is placed moves to the i layer forming chamber 22. When the movement of the tray 25 is completed, the opening / closing mechanism between the carry-in chamber 21 and the i-layer forming chamber 22 is closed, and the i-layer forming chamber 22 becomes a sealed space.
 図5(b)は、i層形成室22において、基板40の上にi層43が形成される様子を示す図である。ここでは、平行平板電極の間にトレイ25を配置し、所定の基板温度、RF電力密度の形成条件の下で、シラン(SiH4)および希釈ガスとして水素を供給し、平行平板電極にRF高周波電力を印加してプラズマ化し、加熱された基板40の成膜面に供給することで、基板40の上にi層43の形成が行われる。このとき、トレイ25にも、非晶質半導体の薄膜28が付着する。 FIG. 5B is a diagram showing a state in which the i layer 43 is formed on the substrate 40 in the i layer forming chamber 22. Here, the tray 25 is disposed between the parallel plate electrodes, silane (SiH 4 ) and hydrogen are supplied as a diluent gas under the conditions for forming a predetermined substrate temperature and RF power density, and the RF high frequency is supplied to the parallel plate electrodes. The i layer 43 is formed on the substrate 40 by applying power to generate plasma and supplying it to the film formation surface of the heated substrate 40. At this time, the amorphous semiconductor thin film 28 also adheres to the tray 25.
 i層形成処理が終了すると、i層形成室22とp層形成室23の間の開閉機構が開かれ、i層43が形成された基板40を搭載するトレイ25がp層形成室23に移動する。トレイ25の移動が完了すると、i層形成室22とp層形成室23の間の開閉機構が閉じられ、p層形成室23が密閉された空間となる。 When the i layer forming process is completed, the opening / closing mechanism between the i layer forming chamber 22 and the p layer forming chamber 23 is opened, and the tray 25 on which the substrate 40 on which the i layer 43 is formed is moved to the p layer forming chamber 23. To do. When the movement of the tray 25 is completed, the opening / closing mechanism between the i layer forming chamber 22 and the p layer forming chamber 23 is closed, and the p layer forming chamber 23 becomes a sealed space.
 図5(c)は、p層形成室23において、基板40の上のi層43にp層44が形成される様子を示す図である。ここでは、平行平板電極の間にトレイ25を配置し、所定の基板温度、RF電力密度の形成条件の下で、シラン(SiH4)に、ジボラン(B26)を加え、水素で希釈して供給し、平行平板電極にRF高周波電力を印加してプラズマ化し、加熱された基板40の成膜面に供給することで、基板40の上のi層43にp層44の形成が行われる。 FIG. 5C is a diagram showing a state in which the p layer 44 is formed on the i layer 43 on the substrate 40 in the p layer forming chamber 23. Here, a tray 25 is disposed between parallel plate electrodes, and diborane (B 2 H 6 ) is added to silane (SiH 4 ) and diluted with hydrogen under conditions for forming a predetermined substrate temperature and RF power density. The p-layer 44 is formed on the i-layer 43 on the substrate 40 by applying RF high-frequency power to the parallel plate electrodes to generate plasma and supplying the plasma to the heated film-forming surface of the substrate 40. Is called.
 このp層形成のとき、図2で説明したB濃度分布11となるように、ジボラン(B26)の量が制御される。すなわち、光電変換のp層44として予め定めた最適濃度をピーク濃度BPEAKとして、そのBPEAKからBTCOへB濃度を減少させながらp層44の形成が行われる。このとき、トレイ25にも、Bを含む非晶質半導体の薄膜30が付着する。 When this p layer is formed, the amount of diborane (B 2 H 6 ) is controlled so that the B concentration distribution 11 described with reference to FIG. 2 is obtained. That is, the p layer 44 is formed while decreasing the B concentration from B PEAK to B TCO with the optimum concentration predetermined as the p layer 44 for photoelectric conversion as the peak concentration B PEAK . At this time, the amorphous semiconductor thin film 30 containing B also adheres to the tray 25.
 p層形成処理が終了すると、p層形成室23と搬出室24の間の開閉機構が開かれ、i層43とp層44が形成された基板40を搭載するトレイ25が搬出室24に移動する。トレイ25の移動が完了すると、p層形成室23と搬出室24の間の開閉機構が閉じられる。 When the p-layer forming process is completed, the opening / closing mechanism between the p-layer forming chamber 23 and the unloading chamber 24 is opened, and the tray 25 on which the substrate 40 on which the i-layer 43 and the p-layer 44 are formed is moved to the unloading chamber 24. To do. When the movement of the tray 25 is completed, the opening / closing mechanism between the p-layer forming chamber 23 and the carry-out chamber 24 is closed.
 図5(d)は、搬出室24において、基板40の上にi層43とp層44が形成された積層体31がトレイ25から取り外され、次工程に搬出される様子を示す図である。次工程は、受光面側のi層41とn層42の形成工程または検査工程である。Bを含む非晶質半導体の薄膜30が付着しているトレイ25は、再び搬入室21に運ばれ、次の基板40が搭載され、上記の処理手順が繰り返される。 FIG. 5D is a diagram illustrating a state in which the stacked body 31 in which the i layer 43 and the p layer 44 are formed on the substrate 40 is removed from the tray 25 and carried out to the next process in the carry-out chamber 24. . The next process is a process for forming or inspecting the i layer 41 and the n layer 42 on the light receiving surface side. The tray 25 to which the amorphous semiconductor thin film 30 containing B is attached is carried again to the carry-in chamber 21, the next substrate 40 is mounted, and the above processing procedure is repeated.
 このように、トレイ25にはBが付着しているが、p層44において図2で説明したB濃度分布11を形成することで、同じトレイ25を用いて光電変換素子10を形成するときに、基板40とi層43の界面において混入するボロンの影響を抑制することができる。 In this way, B is attached to the tray 25, but when the photoelectric conversion element 10 is formed using the same tray 25 by forming the B concentration distribution 11 described in FIG. The influence of boron mixed at the interface between the substrate 40 and the i layer 43 can be suppressed.
 なお、図5には基板40にi層41およびn層42を形成していない状態が示されているが、図5に示すとおり基板40に先にi層43およびp層44を形成してもよいし、基板40にi層41およびn層42を形成した後にi層43およびp層44を形成してもよい。 5 shows a state in which the i layer 41 and the n layer 42 are not formed on the substrate 40, but the i layer 43 and the p layer 44 are first formed on the substrate 40 as shown in FIG. Alternatively, the i layer 43 and the p layer 44 may be formed after the i layer 41 and the n layer 42 are formed on the substrate 40.
 また、本発明は、複数の基板40をトレイ25に装着し、4つのチャンバの中を搬送して光電変換素子10を形成する方法に限定されない。例えば、トレイを用いず、1つのチャンバでi層43とp層44を形成してもよい。この場合、1つのチャンバ内でi層43を形成した後に、図2で説明したB濃度分布11を有するp層44を形成する。同一のチャンバでi層43とp層44とを形成する場合、チャンバの内壁に付着したBが、次のi層43の形成時に混入する恐れがある。p層44を図2で説明したB濃度分布とすることで、チャンバに付着したBがi層43の形成時に混入することを防ぐことができ、p層44としての機能を保持しつつ、光電変換素子10の基板40とi層43の界面におけるBの混入の影響を抑制して、フィルファクタ(FF)やVOCを向上させることができる。 Further, the present invention is not limited to the method of forming the photoelectric conversion element 10 by mounting the plurality of substrates 40 on the tray 25 and transporting them through the four chambers. For example, the i layer 43 and the p layer 44 may be formed in one chamber without using a tray. In this case, after forming the i layer 43 in one chamber, the p layer 44 having the B concentration distribution 11 described in FIG. 2 is formed. When the i layer 43 and the p layer 44 are formed in the same chamber, B adhering to the inner wall of the chamber may be mixed when the next i layer 43 is formed. By making the p layer 44 have the B concentration distribution described with reference to FIG. The fill factor (FF) and VOC can be improved by suppressing the influence of B mixing at the interface between the substrate 40 and the i layer 43 of the conversion element 10.
 図1の例では、n型の基板40について、裏面側にp層44を設けるものとした。この場合、受光面側には、n型の基板40の上にi層41、その上にn層42、その上にTCO45が積層される。 In the example of FIG. 1, the n-type substrate 40 is provided with the p layer 44 on the back surface side. In this case, on the light receiving surface side, an i layer 41 is formed on an n-type substrate 40, an n layer 42 is formed thereon, and a TCO 45 is formed thereon.
 ここで、光電変換素子10に光が入射されると、基板40は、入射された光を吸収することで、光電変換により電子および正孔のキャリア対を発生させる。発生した電子および正孔は、基板40とn層42の間の電位差、基板40とp層44の間の電位差によって分離されて、電子はTCO45で集電され、正孔はTCO46で集電される。 Here, when light is incident on the photoelectric conversion element 10, the substrate 40 absorbs the incident light, thereby generating electron and hole carrier pairs by photoelectric conversion. The generated electrons and holes are separated by the potential difference between the substrate 40 and the n layer 42 and the potential difference between the substrate 40 and the p layer 44, the electrons are collected by the TCO 45, and the holes are collected by the TCO 46. The
 図1の例では、基板40はn型であるので、n型の基板40とp層44の間の電位差は、p型とn型の導電型の相違により十分大きく取れる。これに対し、n型の基板40とn層42の間の電位差は、同じ導電型であるので、あまり大きく取れない。n型の基板40とn層42の間の電位差を大きくするには、n層42のリン(P)濃度をn型の基板40のリン濃度よりも十分に高濃度とすればよい。このときには、n層42とTCO45との間のコンタクト性も改善されるが、n層42の全体に渡ってリン濃度を過度に高濃度にすると、電子がn層42で消失しやすくなる。したがって、n層42における光吸収損失が増大し、光電変換素子10の短絡回路電流ISCが低下する。 In the example of FIG. 1, since the substrate 40 is n-type, the potential difference between the n-type substrate 40 and the p-layer 44 can be sufficiently large due to the difference between the p-type and n-type conductivity types. On the other hand, the potential difference between the n-type substrate 40 and the n-layer 42 is not the same because it has the same conductivity type. In order to increase the potential difference between the n-type substrate 40 and the n-layer 42, the phosphorus (P) concentration of the n-layer 42 may be sufficiently higher than the phosphorus concentration of the n-type substrate 40. At this time, the contact property between the n layer 42 and the TCO 45 is also improved. However, if the phosphorus concentration is excessively increased over the entire n layer 42, electrons are easily lost in the n layer 42. Therefore, the light absorption loss in the n layer 42 increases, and the short circuit current I SC of the photoelectric conversion element 10 decreases.
 図6、図7は、n層42とTCO45との間のコンタクト性を維持しながら、光電変換素子10の光吸収損失の増大を抑制してISCを大きくできる構成を示す図である。 6 and 7 are diagrams illustrating a configuration in which I SC can be increased by suppressing an increase in light absorption loss of the photoelectric conversion element 10 while maintaining contact between the n layer 42 and the TCO 45.
 図6は、図1に対応し、光電変換素子の構成を示す図である。光電変換素子50は、基板40を備える。基板40の受光面側には、i層41と、n層42と、TCO45とが設けられる。また、基板40の裏面側には、i層43と、p層44と、TCO46とが設けられる。n層42は、第1のn層42-1と、第2のn層44-2を含む。 FIG. 6 corresponds to FIG. 1 and shows the configuration of the photoelectric conversion element. The photoelectric conversion element 50 includes a substrate 40. On the light receiving surface side of the substrate 40, an i layer 41, an n layer 42, and a TCO 45 are provided. An i layer 43, a p layer 44, and a TCO 46 are provided on the back side of the substrate 40. The n layer 42 includes a first n layer 42-1 and a second n layer 44-2.
 図7は図2に対応する図で、光電変換素子60の構成と、光電変換素子60を構成するn層におけるリン(P)濃度の分布を示す図である。 FIG. 7 is a diagram corresponding to FIG. 2 and shows the configuration of the photoelectric conversion element 60 and the distribution of phosphorus (P) concentration in the n layer constituting the photoelectric conversion element 60.
 図7(a)は、光電変換素子50の構成図である。これは、図2(a)と同じ内容であるので、詳細な説明を省略する。 FIG. 7A is a configuration diagram of the photoelectric conversion element 50. Since this is the same content as FIG. 2A, detailed description is omitted.
 図7(b)は、i層41とn層42のリン(P)濃度分布図である。P濃度分布図は、縦軸がP濃度、横軸が基板40とi層41の界面から、TCO45の界面までのi層41とn層42の厚さ方向の位置を示す。ここで、Y0が基板40とi層41の界面である基板界面の位置、Y3がTCO界面の位置である。光電変換素子50を形成するときに、基板40の上にi層41を形成し、次にi層41の上にn層42を形成するとき、Y0がi層41の形成の開始位置で、Y1がi層41の形成終了とn層42の形成の開始位置で、Y3がn層41の形成終了の位置である。 FIG. 7B is a phosphorus (P) concentration distribution diagram of the i layer 41 and the n layer 42. In the P concentration distribution diagram, the vertical axis indicates the P concentration, and the horizontal axis indicates the position in the thickness direction of the i layer 41 and the n layer 42 from the interface between the substrate 40 and the i layer 41 to the interface of the TCO 45. Here, Y 0 is the position of the substrate interface that is the interface between the substrate 40 and the i layer 41, and Y 3 is the position of the TCO interface. When forming the photoelectric conversion element 50, when the i layer 41 is formed on the substrate 40 and then the n layer 42 is formed on the i layer 41, Y 0 is the starting position of the formation of the i layer 41. , Y 1 is a position where the formation of the i layer 41 and the formation of the n layer 42 are started, and Y 3 is a position where the formation of the n layer 41 is finished.
 リン(P)濃度分布51のうち、n型の基板40は、図7(b)には図示されていないが、予め定められた所定の濃度を有する。一例を挙げると、1015/cm3~1017/cm3である。i層41は、基板界面の位置から、i層41とn層42の界面であるi層界面の位置Y1までの範囲で、リン(P)などの不純物の原料ガスを添加せずに形成する。n層42のリン(P)濃度は、厚さ方向に沿ってi層界面の位置Y1で最も高いピーク濃度PPEAKとなり、Y2の位置までそのピーク濃度PPEAKを維持する。Y2の位置でピーク濃度PPEAKよりも低い濃度に下がり、その低い濃度をTCO界面の位置Y3まで維持する。 Of the phosphorus (P) concentration distribution 51, the n-type substrate 40 has a predetermined concentration that is not shown in FIG. 7B. As an example, it is 10 15 / cm 3 to 10 17 / cm 3 . The i layer 41 is formed in the range from the position of the substrate interface to the position Y 1 of the i layer interface, which is the interface between the i layer 41 and the n layer 42, without adding a source gas of impurities such as phosphorus (P). To do. The phosphorus (P) concentration of the n layer 42 becomes the highest peak concentration P PEAK at the position Y 1 of the i layer interface along the thickness direction, and the peak concentration P PEAK is maintained up to the position of Y 2 . At the position of Y 2, the concentration is lowered to a concentration lower than the peak concentration P PEAK , and the low concentration is maintained up to the position Y 3 of the TCO interface.
 すなわち、n層41は、2段階の濃度分布を有する。n層42のうち、Y1からY2までが第1のn層42-1である。第1のn層42-1の厚さは、n層全体の厚さの約1/2程度とできる。この領域におけるピーク濃度PPEAKは、基板40のリン(P)濃度に対し、できるだけ濃度差をつけることがよい。第1のn層42-1のリン(P)濃度は、1×1020~1×1022/cm3とすることが好適であり、例えば、5×1021/cm3とする。 That is, the n layer 41 has a two-level concentration distribution. Of the n layer 42, Y 1 to Y 2 are the first n layer 42-1. The thickness of the first n layer 42-1 can be about ½ of the total thickness of the n layer. The peak concentration P PEAK in this region should be as different as possible from the phosphorus (P) concentration of the substrate 40. The phosphorus (P) concentration of the first n layer 42-1 is preferably 1 × 10 20 to 1 × 10 22 / cm 3 , for example, 5 × 10 21 / cm 3 .
 リン(P)濃度をピーク濃度PPEAKとするのは、i層41を挟み、基板40側にできるだけ近くの位置とすることがよい。これにより、基板40とn層42の間のリン(P)濃度差に基づく電位差が基板40の側に設けられることになり、電子の消失を防いで光電変換素子10のISCを大きくできる。 The phosphorus (P) concentration is set to the peak concentration P PEAK in a position as close as possible to the substrate 40 side with the i layer 41 interposed therebetween. As a result, a potential difference based on the phosphorus (P) concentration difference between the substrate 40 and the n layer 42 is provided on the substrate 40 side, thereby preventing the disappearance of electrons and increasing the I SC of the photoelectric conversion element 10.
 次に、Y2でリン(P)濃度をピーク濃度PPEAKよりも低い濃度PTCOとして、TCO界面の位置Y3まで維持する。n層42のうち、Y2からY3までが第2のn層42-2である。第2のn層42-2の厚さは、n層全体の厚さの約1/2程度とできる。この領域のリン(P)濃度PTCOは、TCO45とのコンタクト性に必要な濃度とする。第2のn層42-2のリン(P)濃度は、1×1020~1×1022/cm3の範囲で、第1のn層42-1のリン(P)濃度より低くすることが好適であり、例えば、1×1021/cm3程度とする。 Next, the phosphorus (P) concentration at Y 2 is maintained as the concentration P TCO lower than the peak concentration P PEAK up to the position Y 3 at the TCO interface. Of the n layer 42, Y 2 to Y 3 are the second n layer 42-2. The thickness of the second n layer 42-2 can be about ½ of the total thickness of the n layer. The phosphorus (P) concentration P TCO in this region is set to a concentration necessary for contact with the TCO 45. The phosphorus (P) concentration of the second n layer 42-2 should be lower than the phosphorus (P) concentration of the first n layer 42-1 in the range of 1 × 10 20 to 1 × 10 22 / cm 3. For example, about 1 × 10 21 / cm 3 .
 Y2においてリン(P)濃度を減少させるのは図7(b)のように、一段のステップ状とするか、または、数段のステップ状の階段状とする。あるいは、連続的にリン(P)濃度を減少させてもよい。場合によっては、TCO45とのコンタクト性をさらに改善するために、Y3の直前にリン(P)濃度を再び増加させてもよい。 As shown in FIG. 7B, the phosphorus (P) concentration in Y 2 is reduced to a single step shape or a stepped step shape of several steps. Alternatively, the phosphorus (P) concentration may be decreased continuously. In some cases, the phosphorus (P) concentration may be increased again immediately before Y 3 to further improve the contact with the TCO 45.
 図7(b)には、比較のために、従来技術におけるi層41とn層42のリン(P)濃度分布52,53を示した。リン(P)濃度分布52は、n層42の厚さ方向の全体に渡って一定濃度である。一定濃度の大きさは、n層42とTCO45との間のコンタクト性と、n層42において電子が消失することと、のバランスが保たれる範囲に設定される。この場合には、基板40とn層42の間のリン(P)濃度差が確保でき、n層42とTCO45との間のコンタクト性も確保できるが、どちらの特性も最良の特性ではない。もう1つのリン(P)濃度分布53は、n層42において、i層界面の位置Y1からTCO界面の位置Y3に向かって、リン(P)濃度分布を2段階で高くするものである。この構造によれば、n層42とTCO45との間のコンタクト性が改善されるが、i層界面の位置Y1におけるリン(P)濃度が低濃度となる。 For comparison, FIG. 7B shows phosphorus (P) concentration distributions 52 and 53 of the i layer 41 and the n layer 42 in the prior art. The phosphorus (P) concentration distribution 52 has a constant concentration over the entire thickness of the n layer 42. The magnitude of the constant concentration is set in a range in which the balance between the contact property between the n layer 42 and the TCO 45 and the disappearance of electrons in the n layer 42 is maintained. In this case, a phosphorus (P) concentration difference between the substrate 40 and the n layer 42 can be ensured, and contactability between the n layer 42 and the TCO 45 can be ensured, but neither characteristic is the best characteristic. Another phosphorus (P) concentration distribution 53 is to increase the phosphorus (P) concentration distribution in two steps from the position Y 1 at the i-layer interface to the position Y 3 at the TCO interface in the n layer 42. . According to this structure, the contact property between the n layer 42 and the TCO 45 is improved, but the phosphorus (P) concentration at the position Y 1 of the i layer interface is low.
 これに対し、図7に示す実施の形態のリン(P)濃度分布51は、i層41を挟み基板40側の位置でリン(P)濃度がピーク濃度PPEAKとなり、その位置よりもTCO45側の位置でリン(P)濃度がピーク濃度PPEAKよりも低下したPTCOとなる。 On the other hand, the phosphorus (P) concentration distribution 51 of the embodiment shown in FIG. 7 has a phosphorus (P) concentration at the peak concentration P PEAK at the position on the substrate 40 side with the i layer 41 in between, and the TCO 45 side from that position. P TCO in which the phosphorus (P) concentration is lower than the peak concentration P PEAK at the position of.
 図7に示す実施の形態のリン(P)濃度分布51を、従来技術のリン(P)濃度分布52と比べると、TCO界面におけるリン(P)濃度が高い上に、基板40側の位置のピーク濃度PPEAKがさらに高濃度である。これにより、従来技術のリン(P)濃度分布52との対比において、n層42とTCO45との間のコンタクト性を維持しながら、n層42と基板40との間のリン(P)濃度差をより大きくできる。 When the phosphorus (P) concentration distribution 51 of the embodiment shown in FIG. 7 is compared with the phosphorus (P) concentration distribution 52 of the prior art, the phosphorus (P) concentration at the TCO interface is higher and the position on the substrate 40 side is higher. The peak concentration P PEAK is higher. Thereby, in contrast to the phosphorous (P) concentration distribution 52 of the prior art, the phosphorus (P) concentration difference between the n layer 42 and the substrate 40 while maintaining the contact property between the n layer 42 and the TCO 45. Can be made larger.
 また、従来技術のリン(P)濃度分布52と比べると、n層42における基板40側の位置のピーク濃度PPEAKがより高濃度である。リン(P)濃度分布52のリン(P)濃度の最大値は、基板40のリン(P)濃度に比べ高濃度であるが、その最大濃度となる位置が、n層42における基板40側から離れており、その濃度差による電位差が小さくなり、電子の収集率の向上を抑制する可能性がある。 Further, the peak concentration P PEAK at the position on the substrate 40 side in the n layer 42 is higher than the phosphorus (P) concentration distribution 52 of the prior art. The maximum value of the phosphorus (P) concentration in the phosphorus (P) concentration distribution 52 is higher than the phosphorus (P) concentration of the substrate 40, but the position where the maximum concentration is reached from the substrate 40 side in the n layer 42. The potential difference due to the concentration difference is small, and there is a possibility that the improvement of the electron collection rate is suppressed.
 図7に示す実施形態では、基板40をn型としたが、p型基板の場合には、p層との関係で同様の構造とできる。図8は、その場合の光電変換素子の構造を示す図である。ここでは、p-c-Siとして示されるp型の基板60と、基板60上に形成されるi層43と、i層43のうえに形成され基板60と同じ導電型のp型不純物で含むp層61と、p層61上に形成されるTCO46とを含む。そして、p層61は、i層を挟み基板60側の位置で不純物の濃度がピークとなる第1のp層61-1と、その位置よりもTCO46側の位置で不純物の濃度がピーク濃度よりも低下する第2のp層61-2とを備える。このようにすることで、p型の基板60の場合でも、p層61とTCO46との間のコンタクト性を維持しながら、光電変換素子10の光吸収損失の増大を抑制してISCを大きくできる。 In the embodiment shown in FIG. 7, the substrate 40 is an n-type, but in the case of a p-type substrate, the same structure can be used in relation to the p layer. FIG. 8 is a diagram showing the structure of the photoelectric conversion element in that case. Here, a p-type substrate 60 shown as pc-Si, an i layer 43 formed on the substrate 60, and a p-type impurity of the same conductivity type as the substrate 60 formed on the i layer 43 is included. p layer 61 and TCO 46 formed on p layer 61 are included. The p layer 61 includes the first p layer 61-1 having a peak impurity concentration at the position on the substrate 60 side with the i layer interposed therebetween, and the impurity concentration at a position closer to the TCO 46 than the position from the peak concentration. And a second p layer 61-2 that also decreases. By doing so, even in the case of the p-type substrate 60, while maintaining the contact property between the p layer 61 and the TCO 46, the increase in the light absorption loss of the photoelectric conversion element 10 is suppressed and the I SC is increased. it can.
 図9から図11は、上記で説明した構造を応用した光電変換素子の変形例を示す図である。図9は、図1と図6の構造の組み合わせである。図10は、図1の構造において、p型の基板60を採用し、受光面側に一定濃度のp層62を配置し、裏面側に三段階の濃度を有するn層63としたものである。三段階の濃度を有するn層63は、図1、図2で説明した三段階のp層44の構造において、不純物をp型のボロン(B)からn型のリン(P)に置き替えた第1のn層63-1、第2のn層63-2、第3のn層63-3としたものである。図11は、図10の構造と図8の構造の組み合わせである。 9 to 11 are diagrams showing modifications of the photoelectric conversion element to which the structure described above is applied. FIG. 9 is a combination of the structures of FIG. 1 and FIG. FIG. 10 employs a p-type substrate 60 in the structure of FIG. 1, a p-layer 62 having a constant concentration is disposed on the light-receiving surface side, and an n-layer 63 having three levels of concentrations on the back surface side. . The n-layer 63 having three levels of concentration is obtained by replacing the impurity from p-type boron (B) to n-type phosphorus (P) in the structure of the three-level p layer 44 described with reference to FIGS. The first n-layer 63-1, the second n-layer 63-2, and the third n-layer 63-3 are used. FIG. 11 is a combination of the structure of FIG. 10 and the structure of FIG.
 10,50 光電変換素子、11,12 B濃度分布、14,15,16,17 特性線、20 RFプラズマCVD装置、21 搬入室、22 i層形成室、23 p層形成室、24 搬出室、25 トレイ、28 非晶質半導体の薄膜、30 ボロンを含む非晶質半導体の薄膜、31 積層体、40 基板、41,43 真性非晶質半導体層(i層)、42,42-1,42-2,63,63-1,63-2,63-3 n型非晶質半導体層(n層)、44,44-1,44-2,44-3,61,61-1,61-2,62 p型非晶質半導体層(p層)、45,46 透明導電膜層(TCO)、51,52,53 リン(P)濃度分布。 10, 50 photoelectric conversion element, 11, 12 B concentration distribution, 14, 15, 16, 17 characteristic line, 20 RF plasma CVD apparatus, 21 loading chamber, 22 i layer forming chamber, 23 p layer forming chamber, 24 unloading chamber, 25 trays, 28 amorphous semiconductor thin films, 30 amorphous semiconductor thin films containing boron, 31 laminates, 40 substrates, 41, 43 intrinsic amorphous semiconductor layers (i layers), 42, 42-1, 42 -2, 63, 63-1, 63-2, 63-3 n-type amorphous semiconductor layer (n layer), 44, 44-1, 44-2, 44-3, 61, 61-1, 61- 2,62 p-type amorphous semiconductor layer (p layer), 45, 46 transparent conductive film layer (TCO), 51, 52, 53 phosphorus (P) concentration distribution.

Claims (10)

  1.  結晶性半導体層の受光面側に形成される真性非晶質半導体層と、
     前記真性非晶質半導体層上に形成され結晶性半導体層と同じ導電型の不純物を含む導電性非晶質半導体層と、
     前記導電性非晶質半導体層上に形成される透明導電膜層と、
     を含み、
     前記導電性非晶質半導体層は、前記真性非晶質半導体層を挟み前記結晶性半導体層側の位置で前記不純物の濃度がピークとなり、その位置よりも透明導電膜層側の位置で不純物の濃度がピーク濃度よりも低下する、光電変換素子。
    An intrinsic amorphous semiconductor layer formed on the light-receiving surface side of the crystalline semiconductor layer;
    A conductive amorphous semiconductor layer formed on the intrinsic amorphous semiconductor layer and containing impurities of the same conductivity type as the crystalline semiconductor layer;
    A transparent conductive film layer formed on the conductive amorphous semiconductor layer;
    Including
    The conductive amorphous semiconductor layer has a peak concentration of the impurity at a position closer to the crystalline semiconductor layer with the intrinsic amorphous semiconductor layer interposed therebetween, and the impurity at a position closer to the transparent conductive film layer than that position. A photoelectric conversion element in which the concentration is lower than the peak concentration.
  2.  結晶性半導体層上に形成される真性非晶質半導体層と、
     前記真性非晶質半導体層上に形成されるp型非晶質半導体層と、
     前記p型非晶質半導体層上に形成される透明導電膜層と、
     を含み、
     前記p型非晶質半導体層は、前記透明導電膜層との界面の位置よりも前記真性非晶質半導体層側にアクセプタ濃度がピークとなる位置を有する、光電変換素子。
    An intrinsic amorphous semiconductor layer formed on the crystalline semiconductor layer;
    A p-type amorphous semiconductor layer formed on the intrinsic amorphous semiconductor layer;
    A transparent conductive film layer formed on the p-type amorphous semiconductor layer;
    Including
    The p-type amorphous semiconductor layer is a photoelectric conversion element having a position where the acceptor concentration peaks on the intrinsic amorphous semiconductor layer side than the position of the interface with the transparent conductive film layer.
  3.  請求項2に記載の光電変換素子において、
     前記アクセプタ濃度は、前記ピークとなる位置から前記透明導電膜層との界面の位置に向かって階段状に減少する、光電変換素子。
    The photoelectric conversion element according to claim 2,
    The photoelectric conversion element, wherein the acceptor concentration decreases stepwise from the peak position toward the interface with the transparent conductive film layer.
  4.  請求項2または3に記載の光電変換素子において、
     前記p型非晶質半導体層は、第2のp型非晶質半導体層と、前記第2のp型非晶質半導体層の前記真性非晶質半導体層が設けられる側と反対側に設けられる第3のp型非晶質半導体層と、を備え、
     前記第2のp型非晶質半導体層においてアクセプタ濃度がピークとなる、光電変換素子。
    In the photoelectric conversion element according to claim 2 or 3,
    The p-type amorphous semiconductor layer is provided on the opposite side of the second p-type amorphous semiconductor layer and the side on which the intrinsic amorphous semiconductor layer is provided of the second p-type amorphous semiconductor layer. A third p-type amorphous semiconductor layer,
    A photoelectric conversion element having a peak acceptor concentration in the second p-type amorphous semiconductor layer.
  5.  請求項4に記載の光電変換素子において、
     前記第2のp型非晶質半導体層の前記真性非晶質半導体層が設けられる側に設けられる第1のp型非晶質半導体層を、さらに備え、
     前記第1のp型非晶質半導体層のアクセプタ濃度は、前記第3のp型非晶質半導体層のアクセプタ濃度より低い、光電変換素子。
    The photoelectric conversion element according to claim 4,
    A first p-type amorphous semiconductor layer provided on a side of the second p-type amorphous semiconductor layer on which the intrinsic amorphous semiconductor layer is provided;
    The photoelectric conversion element, wherein an acceptor concentration of the first p-type amorphous semiconductor layer is lower than an acceptor concentration of the third p-type amorphous semiconductor layer.
  6.  結晶性半導体をトレイに配置し、
     前記結晶性半導体上に真性非晶質半導体層を形成し、
     前記真性非晶質半導体層上にp型非晶質半導体層を形成し、
     前記結晶性半導体上に前記真性非晶質半導体層と前記p型非晶質半導体層を形成した積層体を搬出し、
     同じ前記トレイを用いて次の前記結晶性半導体を配置して上記工程を繰り返す、光電変換素子の製造方法であって、
     前記p型非晶質半導体層の形成は、予め定めたピーク濃度のアクセプタ濃度で形成した後、そのピーク濃度からアクセプタ濃度を減少させて形成して、前記p型非晶質半導体層の形成が終了する、光電変換素子の製造方法。
    Place the crystalline semiconductor in the tray,
    Forming an intrinsic amorphous semiconductor layer on the crystalline semiconductor;
    Forming a p-type amorphous semiconductor layer on the intrinsic amorphous semiconductor layer;
    Unloading the intrinsic amorphous semiconductor layer and the p-type amorphous semiconductor layer formed on the crystalline semiconductor,
    A method for producing a photoelectric conversion element, wherein the next step is repeated by arranging the next crystalline semiconductor using the same tray,
    The p-type amorphous semiconductor layer is formed by forming the acceptor concentration at a predetermined peak concentration and then decreasing the acceptor concentration from the peak concentration, thereby forming the p-type amorphous semiconductor layer. The manufacturing method of the photoelectric conversion element which complete | finishes.
  7.  請求項2から5のいずれか1に記載の光電変換素子において、
     前記真性非晶質半導体層と前記p型半導体層と前記透明導電膜層は、裏面側に設けられる、光電変換素子。
    In the photoelectric conversion element according to any one of claims 2 to 5,
    The intrinsic amorphous semiconductor layer, the p-type semiconductor layer, and the transparent conductive film layer are photoelectric conversion elements provided on the back side.
  8.  請求項1に記載される光電変換素子において、
     前記結晶性半導体層は、前記導電型がn型であり、
     前記導電性非晶質半導体層は、前記導電型がn型である、光電変換素子。
    In the photoelectric conversion element according to claim 1,
    In the crystalline semiconductor layer, the conductivity type is n-type,
    The conductive amorphous semiconductor layer is a photoelectric conversion element in which the conductivity type is n-type.
  9.  請求項1または8に記載の光電変換素子において、
     前記不純物の濃度は、前記ピークとなる位置から前記透明導電膜層との界面の位置に向かって階段状に減少する、光電変換素子。
    In the photoelectric conversion element according to claim 1 or 8,
    The concentration of the impurity decreases in a stepped manner from the peak position toward the interface with the transparent conductive film layer.
  10.  請求項1または8に記載の光電変換素子において、
     前記導電性非晶質半導体層は、第1の導電性非晶質半導体層と、前記第1の導電性非晶質半導体層の前記真性非晶質半導体層が設けられる側と反対側に設けられる第2の導電性非晶質半導体層と、を備え、
     前記第1の導電性非晶質半導体層において前記不純物の濃度がピークとなる、光電変換素子。
    In the photoelectric conversion element according to claim 1 or 8,
    The conductive amorphous semiconductor layer is provided on the opposite side of the first conductive amorphous semiconductor layer and the side on which the intrinsic amorphous semiconductor layer is provided of the first conductive amorphous semiconductor layer. A second conductive amorphous semiconductor layer,
    A photoelectric conversion element having a peak concentration of the impurity in the first conductive amorphous semiconductor layer.
PCT/JP2013/070938 2012-09-27 2013-08-01 Photoelectric conversion element and method for manufacturing same WO2014050304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538252A JPWO2014050304A1 (en) 2012-09-27 2013-08-01 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214089 2012-09-27
JP2012214089 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050304A1 true WO2014050304A1 (en) 2014-04-03

Family

ID=50387718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070938 WO2014050304A1 (en) 2012-09-27 2013-08-01 Photoelectric conversion element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2014050304A1 (en)
WO (1) WO2014050304A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156233A1 (en) * 2014-04-11 2015-10-15 シャープ株式会社 Photoelectric conversion device
WO2018116782A1 (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Solar cell and method for producing solar cell
WO2019031029A1 (en) * 2017-08-09 2019-02-14 株式会社カネカ Photoelectric conversion element production method
JP2019033217A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
JP2019033219A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
JP2019033218A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
CN111739955A (en) * 2019-03-25 2020-10-02 松下电器产业株式会社 Solar cell and solar cell module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892218A (en) * 1981-11-28 1983-06-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0260172A (en) * 1988-08-25 1990-02-28 Sharp Corp Manufacture of solar cell
JPH02119126A (en) * 1989-08-25 1990-05-07 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2003324209A (en) * 2001-11-29 2003-11-14 Sanyo Electric Co Ltd Photovoltaic device and its manufacturing method
JP2008135556A (en) * 2006-11-28 2008-06-12 Sanyo Electric Co Ltd P-type amorphous silicon thin film, photovoltaic device, and manufacturing method for them
JP2011009754A (en) * 2010-07-12 2011-01-13 Hitachi Ltd Method of manufacturing solar cell
JP2012009685A (en) * 2010-06-25 2012-01-12 Kaneka Corp Method of manufacturing laminated photoelectric converter
JP2012151506A (en) * 2005-10-03 2012-08-09 Sharp Corp Method for manufacturing silicon-based thin film photoelectric conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702240B2 (en) * 2002-03-26 2005-10-05 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP4169671B2 (en) * 2003-09-24 2008-10-22 三洋電機株式会社 Photovoltaic element manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892218A (en) * 1981-11-28 1983-06-01 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0260172A (en) * 1988-08-25 1990-02-28 Sharp Corp Manufacture of solar cell
JPH02119126A (en) * 1989-08-25 1990-05-07 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2003324209A (en) * 2001-11-29 2003-11-14 Sanyo Electric Co Ltd Photovoltaic device and its manufacturing method
JP2012151506A (en) * 2005-10-03 2012-08-09 Sharp Corp Method for manufacturing silicon-based thin film photoelectric conversion device
JP2008135556A (en) * 2006-11-28 2008-06-12 Sanyo Electric Co Ltd P-type amorphous silicon thin film, photovoltaic device, and manufacturing method for them
JP2012009685A (en) * 2010-06-25 2012-01-12 Kaneka Corp Method of manufacturing laminated photoelectric converter
JP2011009754A (en) * 2010-07-12 2011-01-13 Hitachi Ltd Method of manufacturing solar cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156233A1 (en) * 2014-04-11 2015-10-15 シャープ株式会社 Photoelectric conversion device
CN106062973A (en) * 2014-04-11 2016-10-26 夏普株式会社 Photoelectric conversion device
JPWO2015156233A1 (en) * 2014-04-11 2017-04-13 シャープ株式会社 Photoelectric conversion device
US11227966B2 (en) 2014-04-11 2022-01-18 Sharp Kabushiki Kaisha Photoelectric conversion device
WO2018116782A1 (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Solar cell and method for producing solar cell
US20190319153A1 (en) * 2016-12-21 2019-10-17 Panasonic Intellectual Property Management Co., Ltd. Solar cell including conductive amorphous semiconductor layer and method of manufacturing solar cell
JP2019033219A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
JP2019033218A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
JP2019033217A (en) * 2017-08-09 2019-02-28 株式会社カネカ Photoelectric conversion element manufacturing method
CN110998869A (en) * 2017-08-09 2020-04-10 株式会社钟化 Method for manufacturing photoelectric conversion element
US11133430B2 (en) 2017-08-09 2021-09-28 Kaneka Corporation Photoelectric conversion element production method
JP6994867B2 (en) 2017-08-09 2022-01-14 株式会社カネカ Manufacturing method of photoelectric conversion element
JP6994866B2 (en) 2017-08-09 2022-01-14 株式会社カネカ Manufacturing method of photoelectric conversion element
WO2019031029A1 (en) * 2017-08-09 2019-02-14 株式会社カネカ Photoelectric conversion element production method
CN111739955A (en) * 2019-03-25 2020-10-02 松下电器产业株式会社 Solar cell and solar cell module

Also Published As

Publication number Publication date
JPWO2014050304A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
EP2219222B1 (en) Solar cell and method for manufacturing the same
US9508875B2 (en) Solar cell and method for manufacturing the same
WO2014050304A1 (en) Photoelectric conversion element and method for manufacturing same
CN103107228B (en) Photoelectric conversion device
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
US20150179837A1 (en) Solar cell and method for manufacturing the same
US9705022B2 (en) Photovoltaic device
EP2386124B1 (en) Solar cell
US9761749B2 (en) Photoelectric conversion device
US20120048372A1 (en) Solar cell
US20110253213A1 (en) Thin film solar cell
US8981203B2 (en) Thin film solar cell module
JP2001028452A (en) Photoelectric conversion device
EP3349257B1 (en) Method of manufacturing solar cell
US8642881B2 (en) Thin film solar cell and method of manufacturing the same
WO2014068965A1 (en) Solar cell
WO2018116782A1 (en) Solar cell and method for producing solar cell
US20110265848A1 (en) Thin film solar cell and method of manufacturing the same
US20110272015A1 (en) Thin film solar cell and method for manufacturing the same
US20180158968A1 (en) Solar cell and method of manufacturing the same
EP2642531B1 (en) Method for manufacturing thin film solar cell
WO2013080803A1 (en) Photovoltatic power device
JP2019179860A (en) Solar cell and method for manufacturing solar cell
KR20140007034A (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842897

Country of ref document: EP

Kind code of ref document: A1