WO2014050099A1 - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
WO2014050099A1
WO2014050099A1 PCT/JP2013/005688 JP2013005688W WO2014050099A1 WO 2014050099 A1 WO2014050099 A1 WO 2014050099A1 JP 2013005688 W JP2013005688 W JP 2013005688W WO 2014050099 A1 WO2014050099 A1 WO 2014050099A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
heat exchanger
controller
refrigerant
side heat
Prior art date
Application number
PCT/JP2013/005688
Other languages
French (fr)
Japanese (ja)
Inventor
竹上 雅章
東 近藤
覚 阪江
植野 武夫
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2014050099A1 publication Critical patent/WO2014050099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus provided with a plurality of types of use side heat exchangers.
  • Patent Document 1 discloses an indoor heat exchanger that is a usage-side heat exchanger for performing indoor cooling or heating, and a refrigeration heat that is a usage-side heat exchanger for cooling the interior of a showcase or the like.
  • a refrigeration apparatus including an exchanger is disclosed.
  • the refrigerant circuit of the refrigeration apparatus three compressors are provided.
  • the first compressor sucks and compresses the refrigerant evaporated in the refrigeration heat exchanger
  • the third compressor sucks and compresses the refrigerant evaporated in the indoor heat exchanger.
  • the second compressor switches between a state in which the refrigerant evaporated in the refrigeration heat exchanger is sucked and a state in which the refrigerant evaporated in the indoor heat exchanger is sucked.
  • the number of compressors that draw refrigerant from the refrigeration heat exchanger or the air conditioning heat exchanger is changed from one to two, or from two by switching the connection destination of the second compressor. Change to one. For this reason, the cooling capacity obtained in the refrigeration heat exchanger and the cooling capacity obtained in the air-conditioning heat exchanger may change abruptly, making it difficult to appropriately control the capacity of the refrigeration apparatus.
  • the present invention has been made in view of such a point, and an object thereof is to improve the usability of the refrigeration apparatus by appropriately controlling the capacity of the refrigeration apparatus.
  • the first invention includes a first compressor section (111) and a second compressor section (112) each constituted by one or a plurality of compressors (24, 25), a heat source side heat exchanger ( 26), a refrigeration apparatus having a refrigerant circuit (11) having a first usage side heat exchanger (74) and a second usage side heat exchanger (84) for performing a refrigeration cycle.
  • the refrigerant circuit (11) is connected to the first compressor part (111) and communicates the first compressor part (111) with the first use side heat exchanger (74).
  • the pipe (32), the second suction pipe (34) connected to the second compressor section (112), and the second suction pipe (34) communicate with the second use side heat exchanger (84).
  • the other end is provided with a connection pipe (47) connected to the second suction pipe (34), and a variable opening control valve (48) provided in the connection pipe (47).
  • the refrigerant circuit (11) is provided in the refrigeration apparatus (10).
  • the compressor (24) constituting the first compressor section (111) is connected to the first usage-side heat exchanger (74) via the first suction pipe (32).
  • the first usage-side heat exchanger (74) functions as an evaporator
  • the refrigerant evaporated in the first usage-side heat exchanger (74) passes through the first suction pipe (32) and becomes the first compressor section. It is sucked into the compressor (24) constituting (111).
  • the compressor (25) constituting the second compressor section (112) is connected to the second suction pipe (34), and the second suction pipe (34) is connected to the switching mechanism (110).
  • the switching mechanism (110) is in a state where the second suction pipe (34) communicates with the second usage-side heat exchanger (84), The refrigerant evaporated in the 2-use side heat exchanger (84) is sucked into the compressor (25) constituting the second compressor section (112) through the second suction pipe (34).
  • the switching mechanism (110) enters a state where the second suction pipe (34) communicates with the heat source side heat exchanger (26), and the heat source side heat exchanger The refrigerant evaporated in the exchanger (26) is sucked into the compressor (25) constituting the second compressor part (112) through the second suction pipe (34).
  • connection pipe (47) is provided in the refrigerant circuit (11).
  • the connection pipe (47) is provided with a control valve (48).
  • a part of the refrigerant flowing through the first suction pipe (32) is sucked into the second compressor section (112) or one of the refrigerant flowing through the second suction pipe (34). Part is sucked into the first compressor part (111).
  • a part of the refrigerant flowing into the first suction pipe (32) from the first use side heat exchanger (74) passes through the connection pipe (47) to the second compressor section (112). The air is sucked and the rest is sucked into the first compressor section (111).
  • the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47) increases.
  • a part of the refrigerant flowing into the second suction pipe (34) from the second use side heat exchanger (84) or the heat source side heat exchanger (26) passes through the connection pipe (47).
  • the air is sucked into the first compressor part (111) and the rest is sucked into the second compressor part (112).
  • the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) increases as the opening degree of the control valve (48) increases.
  • the heat source side heat exchanger (26) functions as a condenser
  • the first usage side heat exchanger (74) and the second usage side heat exchanger ( 84) can perform the first cooling operation in which both function as an evaporator, the operating capacity of the first compressor unit (111) and the second compressor unit (112), and the control valve (48).
  • the first compressor is configured such that the control valve (48) is kept in a fully closed state and the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure.
  • the operating capacity of the section (111) is adjusted so that the refrigerant pressure in the second suction pipe (34) becomes a second target low pressure higher than the first target low pressure. It is intended to adjust the operating capacity of the second compressor unit (112).
  • the refrigeration apparatus (10) of the second invention can execute the first cooling operation.
  • the refrigerant evaporated in the first usage-side heat exchanger (74) is drawn into the first compressor section (111) through the first suction pipe (32), and the second usage-side heat is supplied.
  • the refrigerant evaporated in the exchanger (84) is sucked into the second compressor section (112) through the second suction pipe (34).
  • the refrigerating apparatus (10) of the present invention is provided with a controller (120).
  • the controller (120) of the second invention keeps the control valve (48) in a fully closed state.
  • the refrigerant evaporated in the first usage-side heat exchanger (74) is sucked only into the compressor (24) constituting the first compressor section (111), and the second usage-side heat exchanger (84).
  • the refrigerant evaporated in is sucked only into the compressor (25) constituting the second compressor section (112).
  • the controller (120) of the second invention adjusts the operating capacity of the first compressor section (111) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure.
  • the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure.
  • the second target low pressure is higher than the first target low pressure.
  • the evaporation temperature of the refrigerant in the second usage-side heat exchanger (84) is higher than the evaporation temperature of the refrigerant in the first usage-side heat exchanger (74).
  • the controller (120) is configured such that the operating capacity of the first compressor unit (111) falls below the reference capacity during the first cooling operation, and the second controller
  • the opening of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. Adjusting and adjusting the operating capacity of the first compressor section (111) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure, or the second suction pipe (34)
  • the opening of the control valve (48) is adjusted so that the refrigerant pressure becomes the second target low pressure, and the first suction pressure (32) becomes the first target low pressure.
  • the operation of adjusting the operating capacity of the compressor section (111) is performed.
  • the controller (120) of the third invention during the first cooling operation, the operating capacity of the first compressor section (111) is less than the reference capacity, and the operating capacity of the second compressor section (112) is greater than the reference capacity. If it is, a predetermined operation is performed. In this case, the cooling load in the second usage-side heat exchanger (84) cannot be processed only by the second compressor section (112), or the cooling load in the second usage-side heat exchanger (84) is reduced. It is not appropriate to process only the second compressor section (112). Therefore, the controller (120) performs one of the following first operation and second operation.
  • the first operation performed by the controller (120) of the third invention is to adjust the opening of the control valve (48) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, This is an operation for adjusting the operating capacity of the first compressor section (111) so that the refrigerant pressure of the two suction pipes (34) becomes the second target low pressure.
  • the second operation performed by the controller (120) is to adjust the opening of the control valve (48) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure, and to perform the first suction. In this operation, the operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure in the pipe (32) becomes the first target low pressure.
  • the controller (120) of the third invention When the controller (120) of the third invention performs the first or second operation, a part of the refrigerant flowing through the second suction pipe (34) passes through the connection pipe (47) to form the first compressor section. Inhaled to (111). That is, the first compressor section (111) whose operating capacity is lower than the reference capacity removes all of the refrigerant flowing through the first suction pipe (32) and part of the refrigerant flowing through the second suction pipe (34). Inhale. Therefore, the cooling load in the first usage-side heat exchanger (74) is processed only by the first compressor unit (111), while the cooling load in the second usage-side heat exchanger (84) is the first Processed by both the compressor section (111) and the second compressor section (112).
  • the controller (120) includes the first compressor section (111) and the second compressor section (112) during the first cooling operation.
  • the opening of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure.
  • the heat source side heat exchanger (26) functions as a condenser
  • the second usage side heat exchanger (84) is an evaporator.
  • the controller (120) can perform the second compressor section ( 112) is less than the reference capacity
  • the control valve (48) is kept in a fully closed state
  • the first compressor part (111) is kept in a stopped state
  • the second suction pipe (34) The operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure becomes the second target low pressure.
  • the refrigeration apparatus (10) of the fifth invention can execute the second cooling operation.
  • the refrigerant evaporated in the second usage side heat exchanger (84) is sucked into the second compressor section (112) through the second suction pipe (34).
  • the controller (120) keeps the control valve (48) fully closed, and operates the second compressor section (112) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. Adjust the volume. In this case, the refrigerant evaporated in the second usage side heat exchanger (84) is sucked only into the compressor (25) constituting the second compressor section (112).
  • the controller (120) is configured such that the operating capacity of the second compressor section (112) is equal to or greater than the reference capacity during the second cooling operation.
  • the opening degree of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, and the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure.
  • the operating capacities of the first compressor section (111) and the second compressor section (112) are adjusted so that
  • the controller (120) is configured such that when the operation capacity of the second compressor section (112) is equal to or greater than a reference capacity during the second cooling operation, the opening degree of the control valve (48) and the first compression The operation capacity of the machine part (111) and the second compressor part (112) is adjusted.
  • a part of the refrigerant evaporated in the second use side heat exchanger (84) is sucked into the first compressor part (111) through the connection pipe (47), and the rest is the second compressor.
  • the controller (120) is configured such that the controller (120) has operating capacities of the first compressor section (111) and the second compressor section (112) during the second cooling operation. Is equal to or greater than the reference capacity, the opening of the control valve (48) is adjusted such that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure.
  • the controller (120) of the seventh invention performs this operation, when the refrigerant passes through the control valve (48), the pressure decreases from the second target low pressure to the first target low pressure. 48) Opening is adjusted. For this reason, the refrigerant pressure in the first suction pipe (32) is kept at the first target low pressure even when the operation capacity of the first compressor section (111) is equal to or higher than the reference capacity during the second cooling operation.
  • the heat source side heat exchanger (26) functions as a condenser
  • the first usage side heat exchanger (74) is an evaporator.
  • the third cooling operation in which the second usage-side heat exchanger (84) is stopped can be executed, and the controller (120) can perform the first compressor section (
  • the control valve (48) is fully closed and the first suction pipe (32) has the first target low pressure so that the refrigerant pressure becomes the first target low pressure.
  • the operating capacity of the compressor section (111) is adjusted to keep the second compressor section (112) in a stopped state.
  • the refrigeration apparatus (10) of the eighth invention can perform the third cooling operation.
  • the refrigerant evaporated in the first usage-side heat exchanger (74) is drawn into the first compressor section (111) through the first suction pipe (32). If the operating capacity of the first compressor section (111) is lower than the reference capacity during the third cooling operation, the cooling load in the first usage side heat exchanger (74) is processed only by the first compressor section (111). can do. Therefore, the controller (120) keeps the control valve (48) in a fully closed state, and operates the first compressor unit (111) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. Adjust the capacity. In this case, the refrigerant evaporated in the first usage-side heat exchanger (74) is sucked only into the compressor (24) constituting the first compressor section (111).
  • the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third cooling operation.
  • the control valve (48) is fully opened, and the first compressor part (111) and the second compressor part (112) are set so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. ) Is adjusted.
  • the controller (120) of the ninth invention keeps the control valve (48) fully open when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third cooling operation.
  • the operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted.
  • a part of the refrigerant evaporated in the first use side heat exchanger (74) is sucked into the second compressor section (112) through the connection pipe (47), and the rest is the first compressor.
  • Part (111) is inhaled. That is, the cooling load in the first usage side heat exchanger (74) is processed by both the first compressor unit (111) and the second compressor unit (112). Then, the refrigerant pressure in the first suction pipe (32) is maintained at the first target low pressure.
  • the heat source side heat exchanger (26) and the second usage side heat exchanger (84) function as a condenser, and the first usage side heat exchanger ( 74) can execute the first coexistence operation functioning as an evaporator, and the operation capacity of the first compressor unit (111) and the second compressor unit (112) and the opening of the control valve (48).
  • the refrigeration apparatus (10) of the tenth invention can execute the first coexistence operation.
  • a part of the refrigerant discharged from the first compressor section (111) is supplied to the heat source side heat exchanger (26), and the rest is supplied to the second usage side heat exchanger (84).
  • the refrigerant supplied and evaporated in the first use side heat exchanger (74) is sucked into the first compressor section (111) through the first suction pipe (32).
  • the first usage side heat exchanger (74) functioning as an evaporator an object such as air is cooled
  • the second usage side heat exchanger (84) functioning as a condenser an object such as air is heated. Is done.
  • the refrigeration apparatus (10) of the tenth invention is provided with a controller (120).
  • the controller (120) performs the first operation so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. Adjust the operating capacity of the compressor section (111). Therefore, the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure.
  • the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the first concurrent operation.
  • the first compressor part (111) and the second compressor part (112) are maintained so that the control valve (48) is fully opened and the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. This adjusts the operating capacity.
  • the controller (120) of the eleventh aspect of the invention maintains the control valve (48) in a fully open state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted.
  • the heat source side heat exchanger (26) is stopped, the second usage side heat exchanger (84) functions as a condenser, and the first usage side heat is
  • the exchanger (74) can execute the second coexistence operation in which the evaporator functions as an evaporator, and the operation capacities of the first compressor unit (111) and the second compressor unit (112) and the control valve (48 ), And the controller (120) has an operating capacity of the first compressor part (111) below a predetermined reference capacity during the second concurrent operation.
  • the operating capacity of the first compressor unit (111) is adjusted so that the control valve (48) is kept in a fully closed state and the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure.
  • the second compressor section (112) is kept in a stopped state.
  • the refrigeration apparatus (10) of the twelfth invention can execute the second concurrent operation.
  • the refrigerant discharged from the first compressor unit (111) is supplied to the second usage-side heat exchanger (84) and evaporated in the first usage-side heat exchanger (74). Is sucked into the first compressor section (111) through the first suction pipe (32).
  • the first usage side heat exchanger (74) functioning as an evaporator an object such as air is cooled
  • the second usage side heat exchanger (84) functioning as a condenser an object such as air is heated. Is done.
  • the refrigeration apparatus (10) of the twelfth invention is provided with a controller (120).
  • the controller (120) keeps the control valve (48) in the fully closed state, and the first suction pipe (
  • the operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure of 32) becomes a predetermined target low pressure. Therefore, the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure.
  • the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the second concurrent operation.
  • the control valve (48) is kept fully open, and the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
  • the controller (120) maintains the control valve (48) in a fully opened state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted.
  • the second use side heat exchanger (84) functions as a condenser, and the heat source side heat exchanger (26) and the first use side heat exchanger ( 74) can execute the third coexistence operation functioning as an evaporator, and the operation capacity of the first compressor unit (111) and the second compressor unit (112) and the opening of the control valve (48).
  • a controller (120) for adjusting the degree the controller (120), when the operating capacity of the first compressor unit (111) is below a predetermined reference capacity during the third concurrent operation,
  • the control valve (48) is kept fully closed, the operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure,
  • the operating capacity of the second compressor section (112) is adjusted so that the refrigerant condensing temperature in the second usage side heat exchanger (84) becomes a predetermined target temperature. It is intended to.
  • the refrigeration apparatus (10) of the fourteenth invention can execute the third coexistence operation.
  • the refrigerant discharged from the first compressor unit (111) and the second compressor unit (112) is supplied to the second usage side heat exchanger (84), and the first usage side heat is supplied.
  • the refrigerant evaporated in the exchanger (74) passes through the first suction pipe (32) and is sucked into the first compressor section (111), and the refrigerant evaporated in the heat source side heat exchanger (26) flows into the second suction pipe ( 34) and is sucked into the second compressor section (112).
  • the first usage side heat exchanger (74) functioning as an evaporator an object such as air is cooled
  • the second usage side heat exchanger (84) functioning as a condenser an object such as air is heated. Is done.
  • the refrigeration apparatus (10) of the fourteenth invention is provided with a controller (120).
  • the controller (120) keeps the control valve (48) in a fully closed state,
  • the operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure of 32) becomes a predetermined target low pressure, and the refrigerant condensing temperature in the second use side heat exchanger (84) becomes the target temperature.
  • the operating capacity of the second compressor section (112) is adjusted.
  • the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure, and the condensation temperature of the refrigerant in the second usage side heat exchanger (84) is maintained at the target temperature. It is.
  • the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third concurrent operation.
  • the control valve (48) is kept fully open, and the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
  • the controller (120) of the fifteenth aspect of the invention maintains the control valve (48) in a fully open state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted.
  • the second use side heat exchanger (84) functions as a condenser
  • the heat source side heat exchanger (26) functions as an evaporator
  • a heating operation in which the use-side heat exchanger (74) is stopped can be executed, and the operating capacities of the first compressor unit (111) and the second compressor unit (112) and the control valve (48)
  • a controller (120) for adjusting the opening degree, and the controller (120) is configured so that the operating capacity of the second compressor section (112) is lower than a predetermined reference capacity during the heating operation.
  • the control valve (48) in a fully closed state the operating capacity of the second compressor section (112) is set so that the refrigerant condensing temperature in the second use side heat exchanger (84) becomes a predetermined target temperature. To adjust.
  • the refrigeration apparatus (10) of the sixteenth invention can execute a heating operation.
  • the refrigerant discharged from the second compressor section (112) is supplied to the second use side heat exchanger (84), and the refrigerant evaporated in the heat source side heat exchanger is supplied to the second suction pipe ( 34) and is sucked into the second compressor section (112).
  • the second usage side heat exchanger (84) functioning as a condenser, an object such as air is heated.
  • the refrigeration apparatus (10) of the sixteenth invention is provided with a controller (120).
  • the controller (120) keeps the control valve (48) in the fully closed state, and the second use side heat exchanger
  • the operating capacity of the second compressor section (112) is adjusted so that the refrigerant condensing temperature in (84) becomes the target temperature. Therefore, the refrigerant condensing temperature in the second usage side heat exchanger (84) is maintained at the target temperature.
  • the controller (120) causes the control valve (120) when the operating capacity of the second compressor section (112) becomes equal to or greater than the reference capacity during the heating operation. 48) is fully opened, and the operating capacity of the first compressor unit (111) is adjusted such that the condensation temperature of the refrigerant in the second usage side heat exchanger (84) becomes the target temperature.
  • the controller (120) of the seventeenth aspect of the invention keeps the control valve (48) fully open so that the refrigerant condensing temperature in the second usage side heat exchanger (84) becomes the target temperature.
  • the operating capacities of the first compressor part (111) and the second compressor part (112) are adjusted.
  • connection pipe (47) for connecting the first suction pipe (32) and the second suction pipe (34) is provided in the refrigerant circuit (11), and the opening degree variable control valve. (48) is provided in the connecting pipe (47).
  • the refrigeration apparatus (10) of the present invention provides the first suction pipe when the flow rate of the refrigerant required in the first usage-side heat exchanger (74) cannot be secured by the first compressor section (111) alone.
  • the refrigerant flowing through (32) can be sucked into both the first compressor part (111) and the second compressor part (112).
  • the refrigeration apparatus (10) of the present invention is configured so that the second suction pipe (10) can be used when the refrigerant flow rate required in the second usage-side heat exchanger (84) cannot be secured by the second compressor section (112) alone. 34) can be sucked into both the first compressor part (111) and the second compressor part (112).
  • the opening degree of the control valve (48) should be changed.
  • the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47).
  • the opening of the control valve (48) by adjusting the opening of the control valve (48), the flow rate of the refrigerant flowing through the first usage side heat exchanger (74) is changed to the cooling load in the first usage side heat exchanger (74). In other words, it is possible to set an appropriate value according to the amount of heat that the refrigerant should absorb in the first usage-side heat exchanger (74) per unit time.
  • the opening degree of the control valve (48) is changed. By doing so, the flow rate of the refrigerant drawn into the first compressor part (111) through the connection pipe (47) can be adjusted.
  • the opening of the control valve (48) by adjusting the opening of the control valve (48), the flow rate of the refrigerant flowing through the second usage side heat exchanger (84) is changed to the cooling load in the second usage side heat exchanger (84). In other words, it is possible to set an appropriate value according to the amount of heat that the refrigerant should absorb in the second usage-side heat exchanger (84) per unit time.
  • the opening degree of the control valve (48) is increased.
  • the flow rate of the refrigerant flowing through the first usage-side heat exchanger (74) can be set to a value corresponding to the cooling load in the first usage-side heat exchanger (74).
  • the opening of the control valve (48) is adjusted when the flow rate of the refrigerant required in the second usage side heat exchanger (84) cannot be secured by the second compressor section (112) alone.
  • the flow rate of the refrigerant flowing through the second usage-side heat exchanger (84) can be set to a value corresponding to the cooling load in the second usage-side heat exchanger (84). Therefore, according to the present invention, the cooling capacity of the refrigeration apparatus (10) can be appropriately controlled, and the usability of the refrigeration apparatus (10) can be improved.
  • the refrigeration apparatus (10) can execute a first cooling operation in which the first usage-side heat exchanger (74) and the second usage-side heat exchanger (84) function as an evaporator.
  • the controller (120) While maintaining the closed state, the operating capacity of the first compressor section (111) is adjusted based on the refrigerant pressure in the first suction pipe (32), and the operating capacity of the second compressor section (112) is adjusted to the second suction pipe ( 34) Adjust based on the refrigerant pressure.
  • the cooling load in the first usage-side heat exchanger (74) can be processed only by the first compressor section (111), and the cooling load in the second usage-side heat exchanger (84) is subjected to the second compression.
  • the processing can be performed only by the machine unit (112)
  • the operation capacities of the first compressor unit (111) and the second compressor unit (112) can be appropriately controlled.
  • the controller (120) of the second invention is configured so that the refrigerant pressure in the second suction pipe (34) is higher than the refrigerant pressure in the first suction pipe (32). And the operating capacity of the second compressor section (112). Therefore, according to this invention, the evaporating temperature of the refrigerant in the second usage side heat exchanger (84) can be set higher than the evaporating temperature of the refrigerant in the first usage side heat exchanger (74).
  • the operating capacity of the first compressor unit (111) is lower than the reference capacity during the first cooling operation, and the operating capacity of the second compressor unit (112) is the reference capacity.
  • movement which adjusts the opening degree of a control valve (48) and the operating capacity of a 1st compressor part (111) is performed.
  • a part of cooling load in the 2nd utilization side heat exchanger (84) can be processed by the 1st compressor part (111) in which operation capacity is less than standard capacity. Therefore, according to the present invention, the cooling load in the first usage-side heat exchanger (74) and the cooling load in the second usage-side heat exchanger (84) are divided into the first compressor section (111) and the second It can process reliably using a compressor part (112).
  • the controller (120) of the fourth invention described above, The opening degree of the adjustment valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. For this reason, the flow volume of the refrigerant
  • the refrigeration apparatus (10) performs the second cooling operation in which the first usage-side heat exchanger (74) is stopped and the second usage-side heat exchanger (84) functions as an evaporator.
  • the controller (120) keeps the control valve (48) in a fully closed state, and the second suction pipe (
  • the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure of 34) becomes the second target low pressure. Therefore, according to this invention, the operating capacity of the second compressor section (112) can be appropriately adjusted according to the cooling load in the second usage side heat exchanger (84).
  • a signal indicating that the first use side heat exchanger (74) has resumed operation may not be input to the controller (120).
  • the controller (120) performs an operation for setting the refrigerant pressure in the first suction pipe (32) to a pressure different from the first target low pressure while the first user-side heat exchanger (74) is stopped. Then, even after the first usage side heat exchanger (74) resumes operation, the refrigerant pressure in the first suction pipe (32) is maintained at a pressure different from the first target low pressure. The object cannot be sufficiently cooled in the exchanger (74).
  • the first intake pipe ( The refrigerant pressure of 32) can be maintained at the first target low pressure. Therefore, according to this invention, even if it is a case where the signal which shows that the 1st utilization side heat exchanger (74) restarted operation
  • the controller (120) according to the seventh aspect of the invention is such that, during the second cooling operation, when the operation capacities of the first compressor unit (111) and the second compressor unit (112) are equal to or greater than a predetermined reference capacity, The opening degree of the adjustment valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. For this reason, also in this case, the refrigerant pressure in the first suction pipe (32) can be maintained at the first target low pressure, and the object is reliably cooled after the first use side heat exchanger (74) resumes operation. be able to.
  • the refrigeration apparatus (10) performs the third cooling operation in which the first usage side heat exchanger (74) functions as an evaporator and the second usage side heat exchanger (84) pauses. Is possible.
  • the controller (120) keeps the control valve (48) in a fully closed state, The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure of 32) becomes the first target low pressure. Therefore, according to this invention, the operating capacity of the first compressor section (111) can be appropriately adjusted according to the cooling load in the first usage-side heat exchanger (74).
  • the controller (120) of the ninth aspect of the invention maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third cooling operation,
  • the operating capacity of the first compressor part (111) and the second compressor part (112) is adjusted.
  • a part of the cooling load in the first use side heat exchanger (74) is not limited to the first compressor part (111) whose operating capacity is equal to or higher than the reference capacity, but also the second compressor part (112 ) Can also be processed. Therefore, according to this invention, the cooling load in the first usage-side heat exchanger (74) can be reliably processed using the first compressor part (111) and the second compressor part (112).
  • the refrigeration apparatus (10) includes a heat source side heat exchanger (26) and a second usage side heat exchanger (84) functioning as a condenser, and a first usage side heat exchanger (74). Is capable of performing the first coexistence operation that functions as an evaporator.
  • the controller (120) causes the refrigerant pressure in the first suction pipe (32) to be the target low pressure. The operating capacity of the first compressor section (111) is adjusted.
  • the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
  • the controller (120) of the eleventh aspect of the invention maintains the control valve (48) in a fully open state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the first concurrent operation.
  • the operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger The cooling capacity obtained in (74) can be sufficiently secured.
  • the refrigeration apparatus (10) is a second coexistence in which the second usage-side heat exchanger (84) functions as a condenser and the first usage-side heat exchanger (74) functions as an evaporator. Operation can be performed.
  • the controller (120) causes the refrigerant pressure in the first suction pipe (32) to become the target low pressure. The operating capacity of the first compressor section (111) is adjusted.
  • the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
  • the controller (120) of the thirteenth aspect of the present invention maintains the control valve (48) in a fully open state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the second concurrent operation.
  • the operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger The cooling capacity obtained in (74) can be sufficiently secured.
  • the refrigeration apparatus (10) has the second use side heat exchanger (84) functioning as a condenser, and the heat source side heat exchanger (26) and the first use side heat exchanger (74).
  • the third coexisting operation that functions as an evaporator can be executed.
  • the controller (120) causes the refrigerant pressure in the first suction pipe (32) to be the target low pressure.
  • the operating capacity of the first compressor section (111) is adjusted.
  • the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
  • the controller (120) of the fifteenth aspect of the invention maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third concurrent operation,
  • the operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger
  • the cooling capacity obtained in (74) can be sufficiently secured.
  • the refrigeration apparatus (10) can execute a heating operation in which the second use side heat exchanger (84) functions as a condenser and the heat source side heat exchanger (26) functions as an evaporator. It is.
  • the controller (120) indicates that the refrigerant condensing temperature in the second usage side heat exchanger (84) is equal to the target temperature.
  • the operating capacity of the second compressor section (112) is adjusted so that For this reason, the condensation temperature of the refrigerant in the second usage side heat exchanger (84) can be maintained at the target temperature, and the object can be reliably heated in the second usage side heat exchanger (84).
  • the controller (120) maintains the control valve (48) in a fully open state when the operating capacity of the second compressor section (112) is equal to or greater than the reference capacity during the heating operation,
  • the operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant condensing temperature in the use side heat exchanger (84) becomes the target temperature. For this reason, the heating load in the second usage side heat exchanger (84) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the second usage side heat exchanger
  • the heating ability obtained in (84) can be sufficiently secured.
  • FIG. 1 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the first embodiment.
  • FIG. 2 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the first cooling operation.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the second cooling operation.
  • FIG. 4 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the third cooling operation.
  • FIG. 5 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the first concurrent operation.
  • FIG. 6 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of refrigerant during the second concurrent operation.
  • FIG. 7 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the third concurrent operation.
  • FIG. 8 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of refrigerant during heating operation.
  • FIG. 9 is a flowchart illustrating an operation performed by the controller of the first embodiment during the cooling / cooling operation.
  • FIG. 10 is a flowchart illustrating a first control operation performed by the controller of the first embodiment during the first cooling operation.
  • FIG. 11 is a flowchart illustrating a second control operation performed by the controller of the first embodiment during the second cooling operation.
  • FIG. 12 is a flowchart showing an operation performed by the controller of the first embodiment during the cooling / heating operation.
  • FIG. 13 is a flowchart illustrating an operation performed by the controller of the first embodiment during the first concurrent operation.
  • FIG. 14 is a flowchart illustrating an operation performed by the controller of the first embodiment during the second concurrent operation.
  • FIG. 15 is a flowchart illustrating a first control operation performed by the controller of the modification of the first embodiment during the first cooling operation.
  • FIG. 16 is a flowchart illustrating an operation performed by the controller of the second embodiment during the cooling / cooling operation.
  • FIG. 17 is a flowchart illustrating a first control operation performed by the controller of the second embodiment during the first cooling operation.
  • FIG. 18 is a flowchart illustrating a first control operation performed by the controller of the second embodiment during the second cooling operation.
  • FIG. 19 is a flowchart illustrating an operation performed by the controller of the second embodiment during the cooling / heating operation.
  • FIG. 20 is a flowchart illustrating an operation performed by the controller of the second embodiment during the first concurrent operation.
  • FIG. 21 is a flowchart illustrating an operation performed by the controller of the second embodiment during the second concurrent operation.
  • FIG. 22 is a piping system diagram showing a configuration of a refrigeration apparatus according to another embodiment.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the refrigeration apparatus (10) of this embodiment is installed, for example, in a convenience store. And this freezing apparatus (10) is comprised so that the cooling in the store
  • the refrigeration apparatus (10) includes an outdoor unit (20), a refrigeration unit (70) that is a refrigeration showcase, an air conditioning unit (80), and a controller (120).
  • the outdoor unit (20) is provided with an outdoor circuit (21).
  • the refrigeration unit (70) is provided with a refrigeration circuit (71).
  • the air conditioning unit (80) is provided with an air conditioning circuit (81).
  • the outdoor circuit (21) is provided with a refrigeration side liquid closing valve (12), a refrigeration side gas closing valve (13), an air conditioning side liquid closing valve (14), and an air conditioning side gas closing valve (15).
  • the refrigeration side liquid closing valve (12) is connected to the liquid side end of the refrigeration circuit (71) via the first connection pipe (16).
  • the refrigeration side gas shut-off valve (13) is connected to the gas side end of the refrigeration circuit (71) via the second communication pipe (17).
  • the air conditioning side liquid closing valve (14) is connected to the liquid side end of the air conditioning circuit (81) via the third connection pipe (18).
  • the air conditioning side gas shut-off valve (15) is connected to the gas side end of the air conditioning circuit (81) via the fourth connecting pipe (19).
  • the refrigerant circuit (11) is configured by connecting the refrigeration circuit (71) and the air conditioning circuit (81) to the outdoor circuit (21) via the connecting pipes (16 to 19).
  • the refrigerant circuit (11) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the refrigeration apparatus (10) of the present embodiment may be provided with a plurality of refrigeration units (70).
  • the plurality of refrigeration circuits (71) are connected in parallel to each other. That is, as for a some refrigeration circuit (71), each liquid side edge part is connected to the 1st communication piping (16), and each gas side edge part is connected to the 2nd communication piping (17).
  • the refrigeration apparatus (10) of the present embodiment may be provided with a plurality of air conditioning units (80).
  • the plurality of air conditioning circuits (81) are connected in parallel to each other. That is, as for a some air conditioning circuit (81), each liquid side edge part is connected to the 3rd connection piping (18), and each gas side edge part is connected to the 4th connection piping (19).
  • the outdoor unit (20) includes an outdoor circuit (21) and an outdoor fan (23).
  • the outdoor circuit (21) includes a first compressor (24) constituting the first compressor section (111), a second compressor (25) constituting the second compressor section (112), and a heat source side.
  • An outdoor heat exchanger (26) which is a heat exchanger, a first four-way switching valve (27), a second four-way switching valve (28), a liquid receiver (29), and a supercooling unit (50) It is connected.
  • Each of the first compressor section (111) and the second compressor section (112) of the present embodiment is configured by a single compressor (24, 25).
  • the first compressor (24) and the second compressor (25) are both scroll-type hermetic compressors. Although not shown, in these compressors (24, 25), a compression mechanism that is a scroll type fluid machine and an electric motor that drives the compression mechanism are housed in a sealed container-like casing.
  • a first discharge pipe (31) and a first suction pipe (32) are connected to the first compressor (24).
  • the first discharge pipe (31) connects the discharge portion of the first compressor (24) to a first port of a first four-way switching valve (27) described later.
  • the first suction pipe (32) connects the suction part of the first compressor (24) to the refrigeration side gas shut-off valve (13).
  • a second discharge pipe (33) and a second suction pipe (34) are connected to the second compressor (25).
  • the second discharge pipe (33) connects the discharge portion of the second compressor (25) to the first port of the first four-way switching valve (27) described later.
  • the second suction pipe (34) connects the suction portion of the second compressor (25) to a second port of a second four-way switching valve (28) described later.
  • AC is supplied to the motor of each compressor (24, 25) via an inverter.
  • Changing the output frequency of the inverter that is, the operating frequency of the compressor
  • increasing the operating frequency of the compressor (24, 25) increases the operating capacity of the compressor (24, 25)
  • decreasing the operating frequency of the compressor (24, 25) reduces the compressor ( 24,25)
  • the operating capacity is reduced.
  • the operating capacity of the first compressor (24) changes, the operating capacity of the first compressor section (111) changes, and when the operating capacity of the second compressor (25) changes, the second compressor section (112 ) Operating capacity changes.
  • the outdoor heat exchanger (26) is a fin-and-tube heat exchanger.
  • An outdoor fan (23) for supplying outdoor air to the outdoor heat exchanger (26) is installed in the vicinity of the outdoor heat exchanger (26).
  • the outdoor heat exchanger (26) exchanges heat between the refrigerant in the refrigerant circuit (11) and outdoor air.
  • the first four-way switching valve (27) has a first port connected to the first discharge pipe (31) and the second discharge pipe (33) and a second port connected to the fourth port of the second four-way switch valve (28).
  • the second four-way switching valve (28) includes a first port connected to the first discharge pipe (31) and the second discharge pipe (33), a second port connected to the second suction pipe (34), and a seal And a fourth port connected to the second port of the first four-way switching valve (27).
  • Each four-way switching valve (27, 28) has a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, It is configured to be switchable to a second state (state indicated by a broken line in FIG. 1) in which the fourth port communicates and the second port communicates with the third port.
  • the second suction pipe (34) communicates with the air conditioning heat exchanger (84) and the second suction pipe (34) is in outdoor heat.
  • a switching mechanism (110) for switching between a state communicating with the exchanger (26) is configured.
  • the liquid receiver (29) is a sealed container in which excess refrigerant is stored.
  • a first liquid pipe (41), a second liquid pipe (42), and a gas vent pipe (36) are connected to the liquid receiver (29).
  • the first liquid pipe (41) has one end connected to the liquid side end of the outdoor heat exchanger (26) and the other end connected to the top of the liquid receiver (29).
  • the second liquid pipe (42) has one end connected to the bottom of the liquid receiver (29) and the other end connected to the supercooling heat exchanger (51).
  • the gas vent pipe (36) has one end connected to the top of the liquid receiver (29) and the other end connected to the relay pipe (57) of the injection circuit (55).
  • the supercooling unit (50) cools the refrigerant supplied to the refrigeration unit (70).
  • the supercooling unit (50) has a supercooling heat exchanger (51) and an injection circuit (55).
  • the supercooling heat exchanger (51) has a cooling side channel (52) and an evaporation side channel (53).
  • the cooling side flow path (52) has an inflow end connected to the second liquid pipe (42) and an outflow end connected to the refrigeration side liquid pipe (37).
  • the evaporation side channel (53) constitutes a part of the injection circuit (55).
  • the high-pressure liquid refrigerant flowing through the cooling side flow path (52) and the intermediate pressure refrigerant flowing through the evaporation side flow path (53) exchange heat.
  • the injection circuit (55) introduces a medium-pressure refrigerant into each compressor (24, 25).
  • the injection circuit (55) has an inflow portion connected to the refrigeration side liquid pipe (37), and an outflow portion branched into two and connected to an intermediate pressure portion of each compressor (24, 25).
  • the injection circuit (55) includes one inflow pipe (56) connected to the inflow portion of the evaporation side flow path (53) and one line connected to the outflow portion of the evaporation side flow path (53). It has a relay pipe (57) and two introduction pipes (58, 59) branched from the outflow part of the relay pipe (57).
  • the pressure reducing valve (60) for reducing the high pressure liquid refrigerant to an intermediate pressure is connected to the inflow pipe (56).
  • the pressure reducing valve (60) is an electronic expansion valve having a variable opening.
  • the two introduction pipes (58, 59) are connected to a compression chamber in the middle of compression of the first compressor (24) and a compression chamber in the middle of compression of the second compressor (25). And a second introduction pipe (59) connected to the.
  • the first introduction pipe (58) is provided with a first injection valve (61), and the second introduction pipe (59) is provided with a second injection valve (62).
  • Each injection valve (61, 62) is an electronic expansion valve with a variable opening, and adjusts the flow rate of the intermediate-pressure refrigerant introduced into each compressor (24, 25).
  • the outdoor circuit (21) is provided with a refrigeration side liquid pipe (37), an air conditioning side liquid pipe (38), a third liquid pipe (43), a fourth liquid pipe (44), and a fifth liquid pipe (45). It has been.
  • One end of the refrigeration side liquid pipe (37) is connected to the refrigeration side liquid closing valve (12), and the other end is connected to the cooling side flow path (52) of the supercooling heat exchanger (51).
  • the air conditioning side liquid pipe (38) has one end connected to the air conditioning side liquid closing valve (14) and the other end connected to the second liquid pipe (42).
  • the air conditioning side liquid pipe (38) is provided with a liquid side expansion valve (49).
  • the third liquid pipe (43) has one end connected to the air conditioning side liquid pipe (38) and the other end connected to the first liquid pipe (41).
  • the fourth liquid pipe (44) has one end connected to the refrigeration side liquid pipe (37) and the other end connected to the first liquid pipe (41).
  • the fourth liquid pipe (44) is provided with an outdoor expansion valve (39).
  • the liquid side expansion valve (49) and the outdoor expansion valve (39) are electronic expansion valves each having a variable opening.
  • the fifth liquid pipe (45) has one end connected to the first liquid pipe (41) and the other end connected to the fourth liquid pipe (44).
  • the outdoor circuit (21) is provided with six check valves (CV1 to CV5).
  • the first check valve (CV1) is connected to the first discharge pipe (31)
  • the second check valve (CV2) is connected to the second discharge pipe (33)
  • the third check valve (CV3) is connected to the first liquid pipe (CV1).
  • the fourth check valve (CV4) is in the third liquid pipe (43)
  • the fifth check valve (CV5) is in the fourth liquid pipe (44)
  • the sixth check valve (CV6) is in the It is provided in each of the five liquid pipes (45).
  • These check valves (CV1 to CV6) allow the flow of refrigerant in the direction of the arrow shown in FIG. 1, and prohibit the flow of refrigerant in the opposite direction.
  • the outdoor circuit (21) is provided with two solenoid valves (SV1, SV2).
  • the first solenoid valve (SV1) is provided on the upstream side of the third check valve (CV3) in the first liquid pipe (41).
  • the second solenoid valve (SV2) is provided in the gas vent pipe (36).
  • These solenoid valves (SV1, SV2) are open / close valves that switch between an open state and a closed state.
  • the outdoor circuit (21) is provided with a connecting pipe (47) and a flow control valve (48).
  • the connection pipe (47) has one end connected to the first suction pipe (32) and the other end connected to the second suction pipe (34).
  • the flow control valve (48) is provided in the connection pipe (47).
  • the flow rate control valve (48) is an electronic expansion valve with a variable opening. That is, the flow rate adjusting valve (48) includes a pulse motor for driving the valve body, and the opening degree thereof is changed by moving the valve body.
  • the first discharge pipe (31) includes a first discharge temperature sensor (90) that detects the temperature of refrigerant discharged from the first compressor (24), and a discharge that detects refrigerant pressure in the first discharge pipe (31). And a pressure sensor (91).
  • the second discharge pipe (33) is provided with a second discharge temperature sensor (92) for detecting the temperature of the refrigerant discharged from the second compressor (25).
  • a first suction temperature sensor (93) for detecting the temperature of the refrigerant sucked in the first compressor (24) and a refrigerant pressure LP1 in the first suction pipe (32) are detected.
  • a first suction pressure sensor (94) is provided.
  • the first suction temperature sensor (93) is disposed on the downstream side of the connection position of the connection pipe (47) to the first suction pipe (32), and the first suction pressure is disposed on the upstream side.
  • a sensor (94) is arranged.
  • a second suction temperature sensor (95) for detecting the temperature of the refrigerant flowing through the second suction pipe (34) and a refrigerant pressure LP2 in the second suction pipe (34) are detected.
  • a second suction pressure sensor (96) is provided. In the second suction pipe (34), the second suction temperature sensor (95) and the second suction pressure sensor (96) are arranged upstream of the connection position of the connection pipe (47) to the second suction pipe (34). ing.
  • An outdoor refrigerant temperature sensor (97) for detecting the refrigerant temperature is provided at the liquid side end of the outdoor heat exchanger (26).
  • the relay pipe (57) of the injection circuit (55) is provided with an intermediate refrigerant temperature sensor (98) for detecting the refrigerant temperature and an intermediate refrigerant pressure sensor (99) for detecting the refrigerant pressure.
  • the outdoor unit (20) is provided with an outside air temperature sensor (100).
  • the outdoor temperature sensor (100) is disposed in the vicinity of the outdoor heat exchanger (26), and detects the temperature of the outdoor air supplied to the outdoor heat exchanger (26).
  • the refrigeration unit (70) is a refrigerated showcase for displaying food and the like.
  • the refrigeration unit (70) includes a refrigeration circuit (71) and an internal fan (73).
  • the refrigeration circuit (71) includes, in order from the gas side end toward the liquid side end, a refrigeration heat exchanger (74) that is a first use side heat exchanger, an internal expansion valve (75), 3 solenoid valves (SV3) are provided.
  • the refrigeration heat exchanger (74) is a fin-and-tube heat exchanger.
  • the internal expansion valve (75) is a temperature-sensitive expansion valve. The opening degree of the internal expansion valve (75) is adjusted according to the degree of superheat of the refrigerant flowing out of the refrigeration heat exchanger (74).
  • the third solenoid valve (SV3) is switched between an open state and a closed state. Open / close valve.
  • the internal fan (73) is arranged near the refrigeration heat exchanger (74).
  • the internal fan (73) supplies the air in the refrigerator of the refrigeration unit (70) to the refrigeration heat exchanger (74).
  • the refrigeration heat exchanger (74) exchanges heat between the refrigerant in the refrigerant circuit (11) and the internal air supplied by the internal fan (73).
  • the refrigeration unit (70) is provided with an internal temperature sensor (101).
  • the internal temperature sensor (101) is disposed in the vicinity of the refrigeration heat exchanger (74) and detects the temperature of the internal air supplied to the refrigeration heat exchanger (74).
  • the refrigeration unit (70) starts and stops based on the detection value of the internal temperature sensor (101). Specifically, the refrigeration unit (70) determines that the detection value Ts of the internal temperature sensor (101) exceeds the internal set temperature Tss by a predetermined value (for example, 0.5 ° C.) (Tss + 0.5 ⁇ Ts). Then, the third solenoid valve (SV3) is opened to operate the internal fan (73) to cool the interior. On the other hand, when the detection value Ts of the internal temperature sensor (101) falls below the set temperature Tss in the internal storage by a predetermined value (for example, 0.5 ° C.), the refrigeration unit (70) (Ts ⁇ Tss ⁇ 0.5). Then, the third solenoid valve (SV3) is closed to stop the internal fan (73), and the operation for cooling the internal space is stopped.
  • a predetermined value for example, 0.5 ° C.
  • the operation state of the refrigeration unit (70) is switched between a thermo-ON state in which the operation for cooling the interior is performed and a thermo-off state in which the operation for cooling the interior is suspended.
  • the refrigeration unit (70) outputs a thermo signal indicating whether the operation state is the thermo ON state or the thermo OFF state to the controller (120), and outputs the thermo signal to the controller (120). On the other hand, there is a case where it does not output.
  • the air conditioning unit (80) includes an air conditioning circuit (81) and an indoor fan (83).
  • the air conditioning circuit (81) is provided with an air conditioning heat exchanger (84) as a second usage side heat exchanger and an indoor expansion valve (85) in order from the gas side end to the liquid side end. .
  • the air conditioning heat exchanger (84) is a fin-and-tube heat exchanger.
  • the indoor expansion valve (85) is an electronic expansion valve with a variable opening.
  • the indoor fan (83) is arranged near the air conditioning heat exchanger (84).
  • the indoor fan (83) supplies indoor air in the store to the air conditioning heat exchanger (84).
  • the air conditioning heat exchanger (84) exchanges heat between the refrigerant in the refrigerant circuit (11) and room air supplied by the indoor fan (83).
  • the air conditioning unit (80) is provided with an indoor temperature sensor (102).
  • the indoor temperature sensor (102) is disposed in the vicinity of the air conditioning heat exchanger (84) and detects the temperature of the indoor air supplied to the air conditioning heat exchanger (84).
  • the air conditioning unit (80) starts and stops based on the detected value of the indoor temperature sensor (102).
  • the air conditioning unit (80) detects that the detected value Tr of the indoor temperature sensor (102) exceeds the set temperature Trs in the cabinet by a predetermined value (for example, 0.5 ° C.) (Trs + 0.5 ⁇ Tr). Then, the indoor expansion valve (85) is opened, the indoor fan (83) is operated, and an operation for cooling the room is performed. On the other hand, when the detected value Tr of the indoor temperature sensor (102) falls below the set temperature Trs in the cabinet by a predetermined value (for example, 0.5 ° C.) (Tr ⁇ Trs ⁇ 0.5), The indoor expansion valve (85) is closed to stop the indoor fan (83), and the operation for cooling the room is stopped.
  • a predetermined value for example, 0.5 ° C.
  • the air conditioning unit (80) detects that the detected value Tr of the indoor temperature sensor (102) is lower than the set temperature Trs in the refrigerator by a predetermined value (for example, 0.5 ° C.) (Tr ⁇ Trs ⁇ 0.0. 5)
  • the indoor expansion valve (85) is opened and the indoor fan (83) is operated to perform an operation for heating the room.
  • the air conditioning unit (80) expands indoors.
  • the valve (85) is closed to stop the indoor fan (83), and the operation for heating the room is stopped.
  • the operating state of the air conditioning unit (80) is switched between a thermo-ON state in which an operation for cooling or heating the room is performed and a thermo-off state in which an operation for cooling or heating the room is suspended.
  • the air conditioning unit (80) outputs to the controller (120) a thermo signal indicating whether the operation state is the thermo-ON state or the thermo-OFF state.
  • the controller (120) controls various devices (compressor, various valves, various fans, etc.) according to the detection values of the various sensors described above.
  • the controller (120) includes an operation for changing the operating state of the refrigeration apparatus (10) by operating the four-way switching valve (27, 28), and the first compressor unit (111) and the second compressor unit.
  • the operation of adjusting the operating capacity of (112) and the operation of adjusting the opening of the flow rate control valve (48) are performed. The operation performed by the controller (120) will be described later.
  • the operation of the refrigeration apparatus (10) will be described.
  • the refrigeration apparatus (10) selectively performs refrigeration / cooling operation and refrigeration / heating operation.
  • the refrigeration / cooling operation is an operation for cooling the interior of the refrigeration unit (70), which is a refrigeration showcase, and cooling the room by the air conditioning unit (80).
  • the refrigeration apparatus (10) during the refrigeration / cooling operation selectively performs the first cooling operation, the second cooling operation, and the third cooling operation.
  • the first four-way switching valve (27) is set to the first state
  • the second four-way switching valve (28) is set to the first state
  • the first electromagnetic valve (SV1) is set to the open state.
  • the outdoor expansion valve (39) is set to a fully closed state
  • the liquid side expansion valve (49) is set to a fully open state
  • the valve (61), the second injection valve (62), and the internal expansion valve (75) are each adjusted to a predetermined opening degree.
  • the outdoor fan (23), the internal fan (73), and the indoor fan (83) are operated.
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state.
  • the third solenoid valve (SV3) is set to an open state, and the indoor expansion valve (85) is adjusted to a predetermined opening.
  • the outdoor heat exchanger (26) functions as a condenser
  • the refrigeration heat exchanger (74) functions as an evaporator
  • the air conditioning heat exchanger (84) Functions as an evaporator.
  • the refrigerant compressed by the first compressor (24) and the second compressor (25) passes through the first four-way switching valve (27) and flows through the outdoor heat exchanger (26).
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (26) passes through the first liquid pipe (41), the liquid receiver (29), and the second liquid pipe (42) in this order.
  • Part of the high-pressure liquid refrigerant in the second liquid pipe (42) flows through the cooling side flow path (52) of the supercooling heat exchanger (51), and the rest flows through the air conditioning side liquid pipe (38).
  • the supercooling heat exchanger (51) In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing through the cooling side flow path (52) and the intermediate pressure refrigerant flowing through the evaporation side flow path (53) exchange heat. As a result, the high-pressure liquid refrigerant in the cooling side flow path (52) is cooled, and the degree of supercooling is increased.
  • the high-pressure liquid refrigerant cooled by the supercooling heat exchanger (51) flows out to the refrigeration side liquid pipe (37). A part of the liquid refrigerant in the refrigeration side liquid pipe (37) is diverted to the inflow pipe (56) and reduced to the intermediate pressure by the pressure reducing valve (60), and then the evaporation side flow of the supercooling heat exchanger (51) It flows through the road (53).
  • the intermediate pressure refrigerant in the evaporation side channel (53) absorbs heat from the high-pressure liquid refrigerant in the cooling side channel (52) and evaporates.
  • the refrigerant evaporated in the evaporation side flow path (53) is diverted to each introduction pipe (58, 59) via the relay pipe (57), and is sucked into the intermediate pressure part of each compressor (24, 25).
  • the refrigerant flowing out from the refrigeration side liquid pipe (37) into the first communication pipe (16) is depressurized by the internal expansion valve (75) and then flows through the refrigeration heat exchanger (74).
  • the refrigerant absorbs heat from the air in the warehouse and evaporates.
  • the refrigerant evaporation temperature (eg, ⁇ 5 ° C.) of the refrigeration heat exchanger (74) is set lower than the refrigerant evaporation temperature (eg, 5 ° C.) of the air conditioning heat exchanger (84) described later.
  • the refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  • the refrigerant flowing out from the second liquid pipe (42) to the air conditioning side liquid pipe (38) passes through the third communication pipe (18) and is depressurized by the indoor expansion valve (85), and then the air conditioning heat exchanger (84). ).
  • the air conditioning heat exchanger (84) the refrigerant absorbs heat from the room air and evaporates. As a result, the room air is cooled.
  • the refrigerant evaporated in the air conditioning heat exchanger (84) sequentially passes through the fourth connection pipe (19) and the second suction pipe (34), and is sucked into the second compressor (25) and compressed.
  • the operation of the refrigeration apparatus (10) during the second cooling operation will be described differently from the operation during the first cooling operation.
  • the first compressor (24) is stopped and the second compressor (25) is operated.
  • the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
  • all of the refrigerant flowing out from the liquid receiver (29) flows into the air conditioning circuit (81) through the air conditioning side liquid pipe (38) and the third connection pipe (18) in this order. To do.
  • the difference between the operation of the refrigeration apparatus (10) during the third cooling operation and the operation during the first cooling operation will be described.
  • the first compressor (24) operates and the second compressor (25) stops.
  • the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
  • all of the refrigerant flowing out from the liquid receiver (29) flows into the cooling side flow path (52) of the supercooling heat exchanger (51), and the cooling side flow path (52) Part of the refrigerant cooled while passing through the refrigerant flows into the refrigeration circuit (71) through the first connection pipe (16).
  • the refrigeration / heating operation is an operation for cooling the interior of the refrigeration unit (70), which is a refrigeration showcase, and heating the room by the air conditioning unit (80).
  • the refrigeration apparatus (10) during the refrigeration / heating operation selectively performs the first concurrent operation, the second concurrent operation, the third concurrent operation, and the heating operation.
  • the first concurrent operation is performed when the cooling load in the refrigeration unit (70) is larger than the heating load in the air conditioning unit (80).
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state.
  • the first four-way switching valve (27) is in the second state
  • the second four-way switching valve (28) is in the second state
  • the first electromagnetic valve (SV1) is in the open state
  • the third electromagnetic valve (SV3) is set to the open state.
  • the outdoor expansion valve (39), the liquid side expansion valve (49), and the second injection valve (62) are each set to a fully closed state
  • the indoor expansion valve (85) is fully opened.
  • the pressure reducing valve (60), the first injection valve (61), and the internal expansion valve (75) are each adjusted to a predetermined opening degree.
  • the indoor fan (83), the outdoor fan (23), and the internal fan (73) are each in an operating state.
  • the first compressor (24) operates and the second compressor (25) stops.
  • the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
  • the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the first compressor (24) operates.
  • the outdoor heat exchanger (26) and the air conditioning heat exchanger (84) function as a condenser, and the refrigerated heat exchanger (74) functions as an evaporator.
  • Part of the refrigerant compressed by the first compressor (24) passes through the first four-way switching valve (27) and the fourth connection pipe (19), flows through the air conditioning heat exchanger (84), and the rest It passes through the two-way switching valve (28) and flows through the outdoor heat exchanger (26).
  • the air conditioning heat exchanger (84) the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated.
  • the refrigerant condensed in the air conditioning heat exchanger (84) sequentially passes through the third communication pipe (18) and the third liquid pipe (43) and flows through the first liquid pipe (41).
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant radiated by the outdoor heat exchanger (26) flows through the first liquid pipe (41).
  • the refrigerant merged in the first liquid pipe (41) sequentially passes through the liquid receiver (29) and the second liquid pipe (42), and flows through the cooling side flow path (52) of the supercooling heat exchanger (51). .
  • the supercooling heat exchanger (51) the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) is intermediate between the first compressor (24). Inhaled into the pressure section.
  • the refrigerant cooled in the supercooling heat exchanger (51) sequentially passes through the refrigeration side liquid pipe (37) and the first connecting pipe (16), and is depressurized by the internal expansion valve (75). Flow through exchanger (74).
  • the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  • the second concurrent operation is performed when the heating load in the air conditioning unit (80) and the cooling load in the refrigeration unit (70) are balanced.
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state.
  • the first four-way switching valve (27) is in the second state
  • the second four-way switching valve (28) is in the first state
  • the first electromagnetic valve (SV1) is in the closed state
  • the third electromagnetic valve (SV3) is set to the open state.
  • the outdoor expansion valve (39), the liquid side expansion valve (49), and the second injection valve (62) are each set to a fully closed state
  • the indoor expansion valve (85) is fully opened.
  • the pressure reducing valve (60), the first injection valve (61), and the internal expansion valve (75) are each adjusted to a predetermined opening degree.
  • the indoor fan (83) and the internal fan (73) are each in an operating state.
  • the first compressor (24) operates and the second compressor (25) stops.
  • the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
  • the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the first compressor (24) operates.
  • the outdoor heat exchanger (26) is deactivated, the air conditioning heat exchanger (84) functions as a condenser, and the refrigerated heat exchanger (74) functions as an evaporator.
  • the refrigerant compressed by the first compressor (24) sequentially passes through the first four-way switching valve (27) and the fourth connection pipe (19) and flows through the air conditioning heat exchanger (84).
  • the air conditioning heat exchanger (84) the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated.
  • the refrigerant condensed in the air conditioning heat exchanger (84) passes through the third communication pipe (18), the third liquid pipe (43), the liquid receiver (29), and the second liquid pipe (42) in this order, and is supercooled. It flows through the cooling side flow path (52) of the heat exchanger (51).
  • the supercooling heat exchanger (51) the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) is intermediate between the first compressor (24). Inhaled into the pressure section.
  • the refrigerant cooled in the supercooling heat exchanger (51) sequentially passes through the refrigeration side liquid pipe (37) and the first connecting pipe (16), and is depressurized by the internal expansion valve (75).
  • the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled.
  • the refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  • the third concurrent operation is performed when the cooling load in the refrigeration unit (70) is smaller than the heating load in the air conditioning unit (80).
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state.
  • the first four-way switching valve (27) is in the second state
  • the second four-way switching valve (28) is in the first state
  • the first electromagnetic valve (SV1) is in the closed state
  • the third electromagnetic valve (SV3) is set to the open state.
  • the liquid side expansion valve (49) is set to a fully closed state
  • the indoor expansion valve (85) is set to a fully open state
  • the pressure reducing valve (60), the first injection valve (61), the second injection valve (62), and the internal expansion valve (75) are each adjusted to a predetermined opening.
  • the first compressor (24), the second compressor (25), the indoor fan (83), the outdoor fan (23), and the internal fan (73) are in the operating state.
  • a refrigeration cycle is performed in which the air conditioning heat exchanger (84) serves as a condenser and the outdoor heat exchanger (26) and the refrigerated heat exchanger (74) serve as an evaporator. .
  • the refrigerant compressed by the first compressor (24) and the second compressor (25) passes through the fourth connection pipe (19) and flows through the air conditioning heat exchanger (84).
  • the air conditioning heat exchanger (84) the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated.
  • the refrigerant condensed in the air conditioning heat exchanger (84) passes through the third communication pipe (18), the third liquid pipe (43), the liquid receiver (29), and the second liquid pipe (42) in this order, and is supercooled. It flows through the cooling side flow path (52) of the heat exchanger (51).
  • the supercooling heat exchanger (51) the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) 2. Sucked into the intermediate pressure part of the compressor (25).
  • the refrigerant cooled by the supercooling heat exchanger (51) is divided into the refrigeration side liquid pipe (37) and the fourth liquid pipe (44).
  • the refrigerant that has flowed out to the refrigeration side liquid pipe (37) passes through the first communication pipe (16), is decompressed by the internal expansion valve (75), and then flows through the refrigeration heat exchanger (74).
  • the refrigerant absorbs heat from the air in the warehouse and evaporates.
  • the refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  • the refrigerant that has flowed out to the fourth liquid pipe (44) is depressurized by the outdoor expansion valve (39) and then flows through the outdoor heat exchanger (26).
  • the outdoor heat exchanger (26) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (26) sequentially passes through the first four-way switching valve (27), the second four-way switching valve (28), and the second suction pipe (34), and the second compressor (25 ) Is inhaled and compressed.
  • Heating operation As shown in FIG. 8, in the refrigeration apparatus (10) during the heating operation, the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state. This heating operation is performed when the refrigeration unit (70) is in the thermo OFF state during the first concurrent operation, the second concurrent operation, or the third concurrent operation.
  • the first compressor (24) stops and the second compressor (25) operates.
  • the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
  • the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the second compressor (25) operates.
  • the operation of the refrigeration apparatus (10) during the heating operation will be described in terms of differences from the operation during the third concurrent operation.
  • all of the refrigerant flowing out of the liquid receiver (29) flows into the outdoor heat exchanger (26) through the fourth liquid pipe (44).
  • the refrigerant evaporated in the outdoor heat exchanger (26) is sucked into the second compressor (25) as in the third concurrent operation.
  • the controller (120) controls the operation of the refrigeration apparatus (10).
  • the operation performed by the controller (120) during the refrigeration / cooling operation and the operation performed by the controller (120) during the refrigeration / heating operation will be described.
  • the reference capacity of the first compressor section (111) is set to the maximum capacity of the first compressor section (111), and the reference capacity of the second compressor section (112) is set.
  • the capacity is set to the maximum capacity of the second compressor section (112).
  • the operating capacity of the first compressor section (111) is the maximum capacity when the operating frequency of the first compressor (24) is the upper limit value
  • the operating capacity of the second compressor section (112) Is the maximum capacity when the operating frequency of the second compressor (25) is the upper limit value.
  • step ST01 the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state and the air conditioning unit (80) is in the thermo ON state” is satisfied. To do. When this condition is satisfied, the refrigeration apparatus (10) performs the first cooling operation. Therefore, the controller (120) performs the first control operation for the first cooling operation in step ST02. The first control operation performed by the controller (120) during the first cooling operation will be described later.
  • the controller (120) determines whether or not the air conditioning unit (80) is in the thermo ON state based on the thermo signal received from the air conditioning unit (80).
  • the refrigeration unit (70) may or may not output a thermo signal to the controller (120).
  • the controller (120) determines whether the refrigeration unit (70) is in the thermo ON state based on the thermo signal received from the refrigeration unit (70). To do.
  • the controller (120) determines whether or not the refrigeration unit (70) is in the thermo-ON state, the refrigerant pressure LP1 in the first discharge pipe (31).
  • the determination is made based on (that is, the detection value of the first suction pressure sensor (94)). Specifically, the controller (120) indicates that when the pressure LP1 gradually decreases and falls below a predetermined lower limit value (for example, 0.1 MPa), the refrigeration unit (70) switches from the thermo ON state to the thermo OFF state. to decide. Further, when the pressure LP1 gradually increases from less than the lower limit and exceeds a predetermined reference value (for example, 0.48 MPa), it is determined that the refrigeration unit (70) has switched from the thermo OFF state to the thermo ON state.
  • a predetermined lower limit value for example, 0.1 MPa
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80).
  • the controller (120) satisfies the condition of step ST01 when at least one refrigeration unit (70) is in the thermo-ON state and at least one air-conditioning unit (80) is in the thermo-ON state.
  • step ST01 determines whether or not the condition that “the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state” is satisfied in step ST03. Judging. When this condition is satisfied, the refrigeration apparatus (10) performs the second cooling operation. Therefore, when this condition is satisfied, the controller (120) performs the control operation for the second cooling operation.
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80).
  • the controller (120) determines that the condition of step ST03 is satisfied when all the refrigeration units (70) are in the thermo OFF state and at least one air conditioning unit (80) is in the thermo ON state. to decide.
  • the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) as the refrigerant in the second suction pipe (34).
  • the pressure LP2 that is, the detection value of the second suction pressure sensor (96)
  • the controller (120) increases the operation capacity of the second compressor section (112) when the pressure LP2 is higher than the second target low pressure (that is, the operation of the second compressor (25)).
  • the operating capacity of the second compressor section (112) is decreased (that is, the operating frequency of the second compressor (25) is decreased).
  • step ST05 the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met. When this condition is satisfied, the cooling load of the air conditioning unit (80) cannot be processed by the second compressor unit (112) alone. Therefore, the controller (120) performs the second control operation in step ST06. This second control operation will be described later. On the other hand, when this condition is not satisfied, the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). Therefore, in step ST07, the controller (120) fully closes the flow rate adjustment valve (48) and adjusts the operating capacity of the second compressor unit (112) based on the pressure LP2.
  • step ST03 determines whether or not the condition that “the refrigeration unit (70) is in the thermo-ON state and the air conditioning unit (80) is in the thermo-OFF state” in step ST08. Judging. When this condition is satisfied, the refrigeration apparatus (10) performs the third cooling operation. Therefore, when this condition is satisfied, the controller (120) performs the control operation for the third cooling operation.
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80).
  • the controller (120) determines that the condition of step ST08 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state and all the air-conditioning units (80) are in the thermo-OFF state. to decide.
  • the controller (120) determines the operating capacity of the first compressor unit (111) (that is, the operating frequency of the first compressor (24)) as the refrigerant in the first suction pipe (32).
  • the pressure LP1 is adjusted to be the first target low pressure (0.48 MPa in this embodiment).
  • the controller (120) increases the operating capacity of the first compressor unit (111) when the pressure LP1 is higher than the first target low pressure (that is, the operation of the first compressor (24)).
  • the operating capacity of the first compressor unit (111) is decreased (that is, the operating frequency of the first compressor (24) is decreased).
  • the controller (120) determines whether or not the condition that “the operating capacity of the first compressor section (111) is the maximum capacity” is met. When this condition is satisfied, the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone.
  • the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) in step ST11.
  • the refrigerant pressure LP1 in the one suction pipe (32) is adjusted to be the first target low pressure (0.48 MPa). That is, the controller (120) adjusts the operating capacities of the first compressor unit (111) and the second compressor unit (112) so that the pressure LP1 becomes the first target low pressure.
  • the operating capacity of the first compressor section (111) reaches the maximum capacity.
  • step ST11 the controller (120) keeps the operating capacity of the first compressor unit (111) at the maximum capacity, and the operating capacity of the second compressor unit (112) is set to the first target low pressure. Adjust so that In the next step ST12, the controller (120) fully opens the flow rate adjustment valve (48).
  • step ST11 and step ST12 When the controller (120) performs the operations of step ST11 and step ST12, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
  • step ST10 when the condition of step ST10 is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111). Therefore, in step ST13, the controller (120) fully closes the flow rate control valve (48), and the operating capacity of the first compressor section (111) is set to the refrigerant pressure LP1 in the first suction pipe (32). The first target low pressure (0.48 MPa) is adjusted.
  • step ST08 If the condition of step ST08 is not satisfied, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo OFF state. Therefore, in this case, the controller (120) fully closes the flow rate adjustment valve (48) in step ST14, and stops the first compressor unit (111) and the second compressor unit (112) in step ST15. . That is, in step ST15, the controller (120) stops both the first compressor (24) and the second compressor (25).
  • the first control operation is performed when both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state (see FIG. 9). That is, the first control operation is performed in a state where both the first compressor unit (111) and the second compressor unit (112) are operating.
  • step ST21 the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met. When this condition is not satisfied, the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). Therefore, when the condition of step ST21 is not satisfied, the controller (120) fully closes the flow rate control valve (48) in step ST26, and in step ST27, the first compressor section (111) and the second compressor section. Adjust the operating capacity of (112). When the flow control valve (48) is in a fully closed state, the first compressor (24) sucks only the refrigerant evaporated in the refrigeration heat exchanger (74), and the second compressor (25) is an air conditioning heat exchanger. Only the refrigerant that has evaporated in (84) is sucked.
  • step ST27 the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). Adjust. That is, the controller (120) increases the operating capacity of the first compressor unit (111) when the pressure LP1 is higher than the first target low pressure, and when the pressure LP1 is lower than the first target low pressure, The operating capacity of the first compressor section (111) is reduced.
  • Step ST27 the controller (120) sets the operating capacity of the second compressor section (112), and the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). Adjust as follows. That is, the controller (120) increases the operating capacity of the second compressor section (112) when the pressure LP2 is higher than the second target low pressure, and when the pressure LP2 is lower than the second target low pressure, The operating capacity of the second compressor section (112) is reduced.
  • step ST21 determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST22.
  • the operating capacity of the second compressor section (112) is the maximum capacity, but the operating capacity of the first compressor section (111) has not reached the maximum capacity. That is, when this condition is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111), but the cooling load of the air conditioning unit (80) is processed by the second compressor unit (112). It is a situation that can not be processed only by.
  • the controller (120) determines the opening degree of the flow control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST24. Adjust to (0.48 MPa). In the next step ST25, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP2 in the second suction pipe (34) is the second target low pressure (0.85 MPa). Adjust so that
  • the first compressor (24) sucks all of the refrigerant evaporated in the refrigeration heat exchanger (74) and part of the refrigerant evaporated in the air conditioning heat exchanger (84), while the second compression The machine (25) sucks in the refrigerant not evaporated into the connection pipe (47) from the refrigerant evaporated in the air conditioning heat exchanger (84). Therefore, in this case, the cooling load of the refrigeration unit (70) is processed by the first compressor unit (111), and the cooling load of the air conditioning unit (80) is changed to the first compressor unit (111) and the second compressor unit. (112) is processed by both.
  • step ST24 The operation of the controller (120) in step ST24 will be described in detail.
  • the controller (120) reduces the opening degree of the flow control valve (48).
  • the opening degree of the flow rate control valve (48) becomes small, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) decreases, and the pressure LP1 decreases.
  • the controller (120) increases the opening degree of the flow control valve (48).
  • the opening degree of the flow control valve (48) increases, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) increases, and the pressure LP1 increases.
  • the controller (120) in step ST25 will be described in detail.
  • the controller (120) increases the operating capacity of the first compressor unit (111) (that is, The operating frequency of the first compressor (24) is increased).
  • the controller (120) decreases the operating capacity of the first compressor unit (111) (that is, decreases the operating frequency of the first compressor (24)).
  • the controller (120) decreases the operating capacity of the first compressor unit (111) (that is, decreases the operating frequency of the first compressor (24)).
  • the controller (120) determines the opening degree of the flow rate adjustment valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST23. Adjust to (0.48 MPa).
  • the flow control valve (48) When the flow control valve (48) is open in a situation where the operating capacities of the first compressor part (111) and the second compressor part (112) are the maximum capacity, the refrigerant flowing through the second suction pipe (34) ( That is, a part of the refrigerant evaporated in the air conditioning heat exchanger (84) is sucked into the first compressor (24) through the connection pipe (47), and the rest is sent to the second compressor (25). Inhaled. That is, in this case, the first compressor (24) sucks all of the refrigerant evaporated in the refrigeration heat exchanger (74) and part of the refrigerant evaporated in the air conditioning heat exchanger (84).
  • the controller (120) reduces the opening degree of the flow control valve (48).
  • the opening degree of the flow rate control valve (48) becomes small, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) decreases, and thus the pressure LP1 decreases.
  • the controller (120) increases the opening degree of the flow rate control valve (48).
  • the opening degree of the flow rate control valve (48) increases, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) increases, and thus the pressure LP1 increases.
  • controller (120) performs the second control operation when the condition of step ST05 in FIG. 9 is satisfied during the second cooling operation.
  • the second control operation will be described with reference to FIG.
  • the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state, and the operation capacity of the second compressor unit (112) has already reached the maximum capacity. (See FIG. 9).
  • step ST31 the controller (120) determines whether the refrigeration unit (70) outputs a thermo signal or does not output a thermo signal.
  • the controller (120) determines whether the refrigeration unit (70) is in a thermo-ON state based on the thermo signal received from the refrigeration unit (70). It can be determined whether the state is OFF. Accordingly, when the refrigeration unit (70) outputs a thermo signal indicating that the thermo is OFF, the refrigerant pressure LP1 in the first suction pipe (32) exceeds the first target low pressure (0.48 MPa). It does not matter. Therefore, the controller (120) fully opens the flow control valve (48) in step ST32.
  • step ST33 the controller (120) sets the operating capacity of the first compressor section (111), and the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). Adjust as follows.
  • step ST33 the controller (120) maintains the maximum operating capacity of the second compressor section (112), while the pressure LP2 is the second operating capacity of the first compressor section (111).
  • the target low pressure (0.85 MPa) is adjusted. In this state, a part of the refrigerant evaporated in the air conditioning heat exchanger (84) is sucked into the first compressor (24) through the connection pipe (47), and the remaining is the second compressor (25). Inhaled.
  • the controller (120) indicates that the refrigeration unit (70) has been switched from the thermo OFF state to the thermo ON state in the first suction pipe ( 32) Judgment must be made based on the refrigerant pressure LP1.
  • the controller (120) needs to perform an operation for keeping the pressure LP1 at the first target low pressure regardless of whether the refrigeration unit (70) is in the thermo-ON state or the thermo-OFF state. Therefore, in this case, the controller (120) performs the operations of steps ST34 to ST37.
  • the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST34. to decide.
  • step ST34 When the condition of step ST34 is not satisfied, the operating capacity of the second compressor section (112) is the maximum capacity, but the operating capacity of the first compressor section (111) has not reached the maximum capacity. That is, when this condition is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111), but the cooling load of the air conditioning unit (80) is processed by the second compressor unit (112). It is a situation that can not be processed only by.
  • the controller (120) determines the opening degree of the flow rate control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST36. Adjust to (0.48 MPa).
  • the operation of the controller (120) in step ST36 is the same as the operation of the controller (120) in step ST24 of FIG.
  • the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP2 in the second suction pipe (34) is the second target low pressure (0.85 MPa). Adjust so that The operation of the controller (120) in step ST37 is the same as the operation of the controller (120) in step ST25 of FIG.
  • step ST36 and step ST37 the cooling load of the refrigeration unit (70) is processed by the first compressor unit (111), and the cooling load of the air conditioning unit (80) is the first. Processed by both the first compressor section (111) and the second compressor section (112).
  • the controller (120) determines the opening degree of the flow rate control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST35. Adjust to (0.48 MPa).
  • the operation of the controller (120) in step ST35 is the same as the operation of the controller (120) in step ST23 of FIG.
  • step ST41 the controller (120) reads that “the air conditioning unit (80) is in the thermo-ON state and the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) is less than 60 ° C. The success or failure of the condition “Yes” is determined.
  • the refrigeration apparatus (10) may be provided with a plurality of air conditioning units (80).
  • the controller (120) determines that the condition of step ST41 is satisfied when the at least one air conditioning unit (80) is in the thermo-ON state and the refrigerant condensation temperature Tc is less than 60 ° C. .
  • the controller (120) calculates the saturation temperature of the refrigerant corresponding to the detection value of the discharge pressure sensor (91), and sets the value as the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84).
  • step ST41 When the condition of step ST41 is not satisfied, the controller (120) performs the control operation for the first concurrent operation in step ST42. This control operation will be described later.
  • the controller (120) determines whether or not the condition that “the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) is less than 55 ° C.” is satisfied in step ST43.
  • the controller (120) performs the control operation for the second concurrent operation in step ST44. This control operation will be described later.
  • the controller (120) when the condition of step ST43 is satisfied, the controller (120) performs the operation of step ST45.
  • step ST45 the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied.
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST45 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
  • step ST45 the refrigeration apparatus (10) is performing the third coexistence operation (see FIG. 7). As described above, both the first compressor unit (111) and the second compressor unit (112) operate during the third concurrent operation.
  • the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST46.
  • step ST46 determines the cooling load of the refrigeration unit (70) in step ST49.
  • the refrigerant pressure LP1 in the one suction pipe (32) is adjusted to be a target low pressure (0.48 MPa in the present embodiment).
  • the controller (120) fully closes the flow rate adjustment valve (48).
  • the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) in the air conditioning heat exchanger (84). It adjusts so that the condensation temperature Tc of a refrigerant
  • coolant may become target temperature (this embodiment 55 degreeC).
  • step ST51 When the operation of step ST51 is completed, the flow rate control valve (48) is fully closed. Therefore, the first compressor (24) sucks only the refrigerant evaporated in the refrigeration heat exchanger (74), and the second compressor (25) receives only the refrigerant evaporated in the outdoor heat exchanger (26). Inhale (see Figure 7).
  • step ST49 The operation of the controller (120) in step ST49 will be described in detail.
  • the controller (120) controls the first compressor section (111) to reduce the pressure LP1. Increase operating capacity.
  • the controller (120) decreases the operating capacity of the first compressor unit (111) in order to increase the pressure LP1.
  • step ST51 The operation of the controller (120) in step ST51 will be described in detail.
  • the controller (120) decreases the operating capacity of the second compressor unit (112).
  • the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) decreases, and the refrigerant condensing temperature Tc decreases.
  • the controller (120) increases the operating capacity of the second compressor section (112).
  • the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) increases, and the refrigerant condensing temperature Tc increases.
  • step ST46 the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST48, the controller (120) fully opens the flow rate adjustment valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47). That is, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor (25), and the rest is sucked into the first compressor (24).
  • step ST47 The operation of the controller (120) in step ST47 will be described in detail.
  • the controller (120) increases the operating capacity of the second compressor unit (112).
  • the controller (120) decreases the operating capacity of the second compressor section (112).
  • the controller (120) decreases the operating capacity of the second compressor section (112).
  • step ST47 the refrigerant pressure LP1 in the first suction pipe (32) (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) is maintained at the target low pressure.
  • step ST48 the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a result.
  • step ST47 and step ST48 When the controller (120) performs the operations of step ST47 and step ST48, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
  • step ST45 the refrigeration apparatus (10) is performing the heating operation (see FIG. 8).
  • the first compressor unit (111) is stopped and the second compressor unit (112) is operated.
  • the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met.
  • step ST52 the heating load of the air conditioning unit (80) can be processed only by the second compressor section (112). Therefore, if the condition of step ST52 is not satisfied, the controller (120) sets the operating capacity of the second compressor section (112) and the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) as the target in step ST55. Adjust to a temperature (55 ° C). The operation performed by the controller (120) in step ST55 is the same as the operation performed by the controller (120) in step ST51. In the next step ST56, the controller (120) fully closes the flow rate adjustment valve (48).
  • step ST53 the controller (120) sets the operating capacity of the first compressor unit (111) to the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) as the target temperature (55 ° C.). Adjust so that In the next step ST54, the controller (120) fully opens the flow control valve (48). In this case, when the flow rate adjustment valve (48) is fully opened, a part of the refrigerant flowing through the second suction pipe (34) flows into the first suction pipe (32) through the connection pipe (47).
  • step ST53 the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) is maintained at the target temperature (55 ° C.).
  • step ST53 The operation of the controller (120) in step ST53 will be described in detail.
  • the controller (120) decreases the operating capacity of the first compressor unit (111).
  • the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) decreases, and the refrigerant condensing temperature Tc decreases.
  • the controller (120) increases the operating capacity of the first compressor section (111).
  • the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) increases, and the refrigerant condensation temperature Tc increases.
  • step ST53 and step ST54 When the controller (120) performs the operations of step ST53 and step ST54, a part of the refrigerant evaporated in the outdoor heat exchanger (26) is sucked into the first compressor section (111), and the rest is the second. It is sucked into the compressor section (112). Therefore, in this state, the heating load of the air conditioning unit (80) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the heating load of the air conditioning unit (80) cannot be processed by the second compressor unit (112) alone, the temperature of the room in which the air conditioning unit (80) is installed can be kept at the set temperature. .
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state, and the first compressor unit (111) and the second compressor Both parts (112) are activated (see FIG. 5).
  • step ST61 the controller (120) determines whether or not a condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied.
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST61 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
  • step ST61 determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST62.
  • step ST62 determines that the operating capacity of the first compressor section (111) is the target low pressure in step ST65 and the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure. Adjust to (0.48 MPa).
  • the operation performed by the controller (120) in step ST65 is the same as the operation performed by the controller (120) in step ST49 of FIG.
  • the controller (120) sets the flow rate adjustment valve (48) to either the fully closed state or the fully closed state.
  • the second four-way switching valve (28) is in the first state (see FIG. 5). Accordingly, in this case, the flow rate control valve (48) may be in a fully closed state or a fully closed state.
  • step ST63 the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST64, the controller (120) fully opens the flow control valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47).
  • step ST63 is the same as the operation in step ST47 in FIG.
  • step ST63 When the controller (120) performs the operation of step ST63, the refrigerant pressure LP1 (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) in the first suction pipe (32) is maintained at the target low pressure.
  • step ST64 the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a result.
  • step ST63 and step ST64 When the controller (120) performs the operations of step ST63 and step ST64, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112) and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
  • step ST61 If the condition of step ST61 is not satisfied, the refrigeration unit (70) is in the thermo OFF state. If the refrigeration unit (70) is in the thermo-off state during the first concurrent operation, there is no heat exchanger functioning as an evaporator, and thus the operation of the refrigeration apparatus (10) cannot be continued. Therefore, when the condition of step ST61 is not satisfied, the controller (120) causes the flow rate adjustment valve (48) to be fully closed in step ST67. Further, in the next step ST68, the controller (120) switches the operation of the refrigeration apparatus (10) from the first coexistence operation to the heating operation (see FIG. 8), and continues heating the room by the air conditioning unit (80). Let
  • both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. Further, during the second concurrent operation, as a rule, the first compressor section (111) operates and the second compressor section (112) stops (see FIG. 6).
  • step ST71 the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied.
  • the refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST71 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
  • step ST71 determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST72.
  • step ST72 the cooling load of the refrigeration unit (70) can be handled only by the first compressor unit (111). Therefore, if the condition of step ST72 is not satisfied, the controller (120) determines that the operating capacity of the first compressor unit (111) is the target low pressure in step ST75 and the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure. Adjust to (0.48 MPa).
  • the operation performed by the controller (120) in step ST75 is the same as the operation performed by the controller (120) in step ST49 of FIG. In the next step ST76, the controller (120) fully closes the flow control valve (48).
  • step ST73 the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST74, the controller (120) fully opens the flow rate adjustment valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47).
  • step ST73 is the same as the operation in step ST47 in FIG.
  • step ST73 When the controller (120) performs the operation of step ST73, the refrigerant pressure LP1 in the first suction pipe (32) (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) is maintained at the target low pressure.
  • step ST74 the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a consequence.
  • step ST73 and step ST74 When the controller (120) performs the operations of step ST73 and step ST74, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
  • step ST71 If the condition of step ST71 is not satisfied, the refrigeration unit (70) is in the thermo OFF state. If the refrigeration unit (70) is in the thermo-off state during the first concurrent operation, there is no heat exchanger functioning as an evaporator, and thus the operation of the refrigeration apparatus (10) cannot be continued. Therefore, when the condition of step ST71 is not satisfied, the controller (120) causes the flow rate adjustment valve (48) to be fully closed in step ST67. In step ST78, the controller (120) switches the operation of the refrigeration apparatus (10) from the first coexistence operation to the heating operation (see FIG. 8), and continues heating the room by the air conditioning unit (80). Let
  • a connection pipe (47) connecting the first suction pipe (32) and the second suction pipe (34) is provided in the refrigerant circuit (11), and the flow rate is variable.
  • a control valve (48) is provided in the connection pipe (47).
  • the refrigeration apparatus (10) of the present embodiment is a refrigerant necessary for processing the cooling load of the refrigeration unit (70) (specifically, keeping the internal temperature of the refrigeration unit (70) at a set temperature).
  • the flow rate of the refrigerant exceeds the flow rate of the refrigerant that can be sucked into the first compressor unit (111) from the refrigeration heat exchanger (74)
  • the refrigerant flowing through the first suction pipe (32) is transferred to the first compressor unit (111).
  • the second compressor section (112) is a refrigerant necessary for processing the cooling load of the refrigeration unit (70) (specifically, keeping the internal temperature of the refrigeration unit (70) at a set temperature).
  • the opening degree of the flow control valve (48) is changed.
  • the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47) can be adjusted.
  • the flow rate of the refrigerant flowing through the refrigeration heat exchanger (74) is adjusted to an appropriate value according to the cooling load of the refrigeration unit (70) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
  • the refrigeration apparatus (10) of the present embodiment processes the cooling load of the air conditioning unit (80) (specifically, the temperature of the indoor air in which the air conditioning unit (80) is installed is kept at a set temperature).
  • the refrigerant flowing through the second suction pipe (34) is compressed in the first compression when the flow rate of the refrigerant necessary to exceed the refrigerant flow rate that can be sucked from the air conditioning heat exchanger (84) into the second compressor unit (112). It can be sucked into both the machine part (111) and the second compressor part (112).
  • the opening degree of the flow control valve (48) is changed.
  • the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) can be adjusted.
  • the flow rate of the refrigerant flowing through the air conditioning heat exchanger (84) is adjusted to an appropriate value according to the cooling load of the air conditioning unit (80) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
  • the refrigeration apparatus (10) of the present embodiment processes the heating load of the air conditioning unit (80) (specifically, the temperature of the indoor air in which the air conditioning unit (80) is installed is kept at a set temperature).
  • the second suction pipe when the flow rate of the refrigerant necessary for the refrigerant exceeds the flow rate of the refrigerant that the second compressor section (112) can suck from the outdoor heat exchanger (26) and supply to the air conditioning heat exchanger (84)
  • the refrigerant flowing through (34) can be sucked into both the first compressor part (111) and the second compressor part (112).
  • the opening degree of the flow control valve (48) is changed.
  • the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) can be adjusted.
  • the flow rate of the refrigerant flowing through the air conditioning heat exchanger (84) is adjusted to an appropriate value according to the heating load of the air conditioning unit (80) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
  • the flow rate of the refrigerant flowing through the refrigeration heat exchanger (74) by adjusting the opening of the flow rate control valve (48). can be set to a value according to the cooling load of the refrigeration unit (70).
  • the air conditioning is performed by adjusting the opening degree of the flow control valve (48). It becomes possible to set the flow rate of the refrigerant flowing through the heat exchanger (84) to a value corresponding to the cooling load or the heating load of the air conditioning unit (80). Therefore, according to this embodiment, the cooling capacity of the refrigeration apparatus (10) can be appropriately controlled, and the usability of the refrigeration apparatus (10) can be improved.
  • the controller (120) of the present embodiment may perform the following operation as the first control operation.
  • the difference between the first control operation performed by the controller (120) of the present modification and the first control operation shown in FIG. 10 will be described.
  • the controller (120) of the present modification performs the operation of step ST24 ′ instead of the operation of step ST24 of FIG. 10, and replaces the operation of step ST25 of FIG. Perform the action.
  • step ST22 When the condition of step ST22 is not satisfied, the controller (120) of the present modified example sets the opening of the flow rate control valve (48) and the refrigerant pressure LP2 in the second suction pipe (34) in step ST24 ′. 2Adjust so that the target low pressure (0.85 MPa) is obtained. Further, in the next step ST25 ′, the controller (120) of the present modified example sets the operating capacity of the first compressor section (111) and the refrigerant pressure LP1 in the first suction pipe (32) to the first target low pressure. Adjust to (0.48 MPa).
  • step ST24 ′ The operation of the controller (120) in step ST24 ′ will be described in detail.
  • the controller (120) increases the opening degree of the flow control valve (48).
  • the opening degree of the flow control valve (48) increases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) increases, and the pressure LP2 decreases.
  • the controller (120) reduces the opening of the flow control valve (48).
  • the opening degree of the flow rate control valve (48) decreases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) decreases, and the pressure LP2 increases.
  • step ST25 ′ The operation of the controller (120) in step ST25 ′ will be described in detail.
  • the controller (120) increases the operating capacity of the first compressor unit (111).
  • the controller (120) decreases the operating capacity of the first compressor section (111).
  • the controller (120) decreases the flow rate of the refrigerant sucked from the first suction pipe (32) into the first compressor section (111) decreases, and the pressure LP1 increases.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the refrigeration apparatus (10) of the present embodiment is different from the refrigeration apparatus (10) of Embodiment 1 in the operation performed by the controller (120).
  • the difference between the operation performed by the controller (120) of the present embodiment and the operation performed by the controller (120) of the first embodiment will be described.
  • the reference capacity of the first compressor section (111) is set to the optimum capacity of the first compressor section (111), and the reference capacity of the second compressor section (112) is set.
  • the optimum capacity of the second compressor section (112) is set.
  • the compression mechanism constituting the compressor (24, 25) has the highest efficiency when the rotation speed is a specific value (optimum rotation speed).
  • the operating frequency of the compressor (24, 25) when the rotation speed of the compression mechanism is the optimum rotation speed is set as the optimum frequency.
  • the operating capacity of the first compressor section (111) becomes the optimal capacity when the operating frequency of the first compressor (24) is the optimal frequency
  • the operating capacity of the second compressor section (112) Is the optimum capacity when the operating frequency of the second compressor (25) is the optimum frequency.
  • step ST05 in FIG. 9 replaces step ST05 ′, replaces step ST10 with FIG. 9 and replaces step ST10 ′ with step ST11 in FIG. Instead, step ST11 ′ is performed.
  • step ST05 ′ the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) performs the second control operation in step ST06. This second control operation will be described later.
  • the controller (120) fully closes the flow rate adjustment valve (48) and adjusts the operating capacity of the second compressor unit (112) based on the pressure LP2.
  • step ST10 ′ the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor section (111), the operation of the first compressor (24) constituting the first compressor section (111) is performed. It is in a situation where efficiency decreases. Therefore, when the condition of step ST10 ′ is satisfied, the controller (120) performs the operation of step ST11 ′.
  • step ST11 ′ the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) controls the first compressor section (so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). 111) and the operation capacity of the second compressor section (112) are synchronously changed. Specifically, the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP1 exceeds the first target low pressure. When the pressure LP1 is lower than the first target low pressure, the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) are decreased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
  • step ST11 ′ when the condition of step ST11 ′ is not satisfied, the controller (120) maintains the operating capacity of the first compressor unit (111) at the optimum capacity and presses the operating capacity of the second compressor unit (112).
  • LP1 is adjusted to be the first target low pressure (0.48 MPa).
  • the controller (120) increases the operating frequency of the second compressor (25) when the pressure LP1 exceeds the first target low pressure, and increases the operating frequency of the second compressor (25) when the pressure LP1 falls below the first target low pressure. 2 Reduce the operating frequency of the compressor (25).
  • the controller (120) of the present embodiment performs step ST21 ′ in place of step ST21 in FIG. 10, and performs step ST22 ′ in place of step ST22 in FIG. Further, the controller (120) of the present embodiment performs the operations of step ST81, step ST82, and step ST83.
  • step ST21 ′ the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is equal to or larger than the optimum capacity” is satisfied in step ST22 ′.
  • the controller (120) determines whether or not the condition “the flow rate control valve (48) is open” is satisfied in step ST81.
  • the controller (120) adjusts the operating capacities of the first compressor unit (111) and the second compressor unit (112) in step ST83. Specifically, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). Adjust. Further, the controller (120) adjusts the operating capacity of the second compressor section (112) so that the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). .
  • step ST81 when the condition of step ST81 is satisfied, if the flow rate control valve (48) is already open and the cooling load of the refrigeration unit (70) is processed only by the first compressor section (111), the first compressor The operating efficiency of the first compressor (24) constituting the section (111) is reduced. Therefore, in this case, in step ST82, the controller (120) causes the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). ) And the operation capacity of the second compressor section (112) are synchronously changed.
  • the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP1 exceeds the first target low pressure.
  • the controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
  • step ST82 When the controller (120) performs the operation of step ST82, it next performs the operation of step ST23.
  • the operation in step ST23 is the same as the operation in step ST23 in FIG.
  • the controller (120) of the present embodiment performs the second control operation in step ST06 of FIG.
  • the second control operation performed by the controller (120) of the present embodiment is different from the second control operation performed by the controller (120) of the first embodiment.
  • the difference between the second control operation performed by the controller (120) of the present embodiment and the second control operation performed by the controller (120) of the first embodiment will be described.
  • the controller (120) of the present embodiment performs step ST33 ′ in place of step ST33 in FIG. 11, and performs step ST34 ′ in place of step ST34 in FIG. Further, the controller (120) of the present embodiment performs the operation of step ST84.
  • step ST33 ′ the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) controls the first compressor section (so that the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). 111) and the operation capacity of the second compressor section (112) are synchronously changed. Specifically, the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP2 exceeds the second target low pressure. When the pressure LP2 is lower than the second target low pressure, the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) are decreased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
  • step ST33 ′ the controller (120) maintains the operating capacity of the second compressor section (112) at the optimum capacity, and the operating capacity of the first compressor section (111) is set to the pressure.
  • LP2 is adjusted to be the second target low pressure (0.85 MPa). Specifically, the controller (120) increases the operating frequency of the second compressor (25) when the pressure LP2 exceeds the second target low pressure, and increases the operating frequency of the second compressor (25) when the pressure LP2 falls below the second target low pressure. 2 Reduce the operating frequency of the compressor (25).
  • step ST34 ′ the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) performs the operations of step ST36 and step ST37 as in the first embodiment.
  • the controller (120) causes the refrigerant pressure LP1 in the first suction pipe (32) to be the first target low pressure (0.48 MPa) in step ST84.
  • the operating capacity of the first compressor unit (111) and the operating capacity of the second compressor unit (112) are changed synchronously.
  • the operation performed by the controller (120) in step ST84 is the same as the operation performed by the controller (120) in step ST82 of FIG.
  • step ST84 When the controller (120) performs the operation in step ST84, the controller (120) next performs the operation in step ST35.
  • the operation in step ST35 is the same as the operation in step ST35 in FIG.
  • step ST46 in FIG. 12 replaces step ST46 ′, replaces step ST47 in FIG. 12 with step ST47 ′, and changes to step ST52 in FIG. Instead, step ST52 ′ is performed, and step ST53 ′ is performed instead of step ST53 in FIG.
  • step ST46 ′ the controller (120) determines whether or not a condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) performs the operations of step ST49, step ST50, and step ST51. These operations are the same as the operations in step ST49, step ST50, and step ST51 in FIG. 12, respectively.
  • step ST46 ′ when the condition of step ST46 ′ is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor unit (111), the first compressor constituting the first compressor unit (111) (24) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST47 ′.
  • step ST47 ′ The operation performed by the controller (120) in step ST47 ′ is the same as the operation performed by the controller (120) in step ST11 ′ of FIG. That is, in step ST47 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied. When this condition is satisfied, the controller (120) causes the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). ) And the operation capacity of the second compressor section (112) are synchronously changed.
  • the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
  • step ST52 ′ the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) performs the operations of step ST55 and step ST56. These operations are the same as those in step ST55 and step ST56 in FIG. 12, respectively.
  • step ST52 ′ when the condition of step ST52 ′ is satisfied, if the heating load of the air conditioning unit (80) is processed only by the second compressor section (112), the second compressor constituting the second compressor section (112) (25) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST53 ′.
  • step ST53 ′ the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) includes the first compressor section (111) so that the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) becomes the target temperature (55 ° C.). And the operation capacity of the second compressor section (112) are synchronously changed. Specifically, when the refrigerant condensing temperature Tc exceeds the target temperature (55 ° C.), the controller (120) operates the first compressor (24) and the second compressor (25). If the frequency is reduced by the same value and the refrigerant condensing temperature Tc is below the target temperature (55 ° C.), the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) Is increased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
  • step ST53 ′ the controller (120) maintains the operating capacity of the second compressor section (112) at the optimum capacity and the operating capacity of the first compressor section (111) as the refrigerant.
  • the condensation temperature Tc is adjusted to the target temperature (55 ° C.).
  • the controller (120) decreases the operating frequency of the first compressor (24) when the refrigerant condensing temperature Tc exceeds the target temperature, and when the refrigerant condensing temperature Tc falls below the target temperature.
  • the operating frequency of the first compressor (24) is increased.
  • Control action for the first concurrent operation Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs a control operation for the first concurrent operation. However, the control operation for the first concurrent operation performed by the controller (120) of the present embodiment is different from the control operation for the first concurrent operation performed by the controller (120) of the first embodiment. Here, the difference between the control operation for the first concurrent operation performed by the controller (120) of the present embodiment and the control operation for the first concurrent operation performed by the controller (120) of the first embodiment will be described.
  • the controller (120) of this embodiment performs step ST62 ′ in place of step ST62 in FIG. 13, and performs step ST63 ′ in place of step ST63 in FIG.
  • Step ST62 ′ the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or larger than the optimum capacity” is satisfied.
  • the controller (120) performs the operations of step ST65 and step ST66. These operations are the same as those in step ST65 and step ST66 in FIG.
  • the controller (120) performs the operation of step ST63 ′.
  • step ST63 ′ The operation of step ST63 ′ is the same as the operation of step ST47 ′ in FIG.
  • the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is not satisfied, the controller (120) causes the first compressor section (111) to have the refrigerant pressure LP1 in the first suction pipe (32) at the first target low pressure (0.48 MPa). The operating capacity and the operating capacity of the second compressor unit (112) are changed synchronously.
  • the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
  • Control action for second concurrent operation Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs a control operation for the second concurrent operation. However, the control operation for the second concurrent operation performed by the controller (120) of the present embodiment is different from the control operation for the second concurrent operation performed by the controller (120) of the first embodiment. Here, the difference between the control operation for the second concurrent operation performed by the controller (120) of the present embodiment and the control operation for the second concurrent operation performed by the controller (120) of the first embodiment will be described.
  • the controller (120) of this embodiment performs step ST72 ′ in place of step ST72 in FIG. 14, and performs step ST73 ′ in place of step ST73 in FIG.
  • step ST72 ′ the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
  • the controller (120) performs the operations of step ST75 and step ST76. These operations are the same as those in step ST75 and step ST76 in FIG. 14, respectively.
  • step ST72 ′ when the condition of step ST72 ′ is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor unit (111), the first compressor constituting the first compressor unit (111) (24) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST73 ′.
  • step ST73 ′ The operation of step ST73 ′ is the same as the operation of step ST63 ′ of FIG. Specifically, in step ST73 ′, the controller (120) determines whether or not a condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is not satisfied, the controller (120) causes the first compressor section (111) to have the refrigerant pressure LP1 in the first suction pipe (32) at the first target low pressure (0.48 MPa). The operating capacity and the operating capacity of the second compressor unit (112) are changed synchronously.
  • the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
  • each of the first compressor unit (111) and the second compressor unit (112) is configured by a single compressor (24, 25).
  • the first compressor unit (111) may be configured by a plurality of compressors
  • the second compressor unit (112) may be configured by a plurality of compressors.
  • the first compressor unit (111) is configured by two compressors
  • the second compressor unit (112) is configured by one compressor.
  • a case will be described as an example.
  • the refrigeration apparatus (10) of the present modification will be described with respect to differences from the refrigeration apparatus (10) of the first embodiment.
  • the first compressor section (111) is constituted by the first compressor (24) and the third compressor (113), and the second compression
  • the machine part (112) is constituted by the second compressor (25).
  • the third compressor (113) is a scroll type hermetic compressor.
  • a compression mechanism that is a scroll type fluid machine and an electric motor that drives the compression mechanism are housed in a hermetically sealed casing.
  • the AC of the commercial power supply is supplied as it is to the electric motor of the third compressor (113). Therefore, the third compressor (113) has a constant rotational speed of the compression mechanism and a constant operating capacity.
  • the first discharge pipe (31) is constituted by a main discharge pipe (31a) and an auxiliary discharge pipe (31b), and the first suction pipe (32) is formed by a main suction pipe (32a) and an auxiliary suction pipe ( 32b).
  • the main discharge pipe (31a) connects the discharge part of the first compressor (24) to the first port of the first four-way switching valve (27).
  • a first discharge temperature sensor (90) in order from the first compressor (24) to the first four-way switching valve (27), a first discharge temperature sensor (90), a first check valve (CV1), A discharge pressure sensor (91) is provided.
  • the auxiliary discharge pipe (31b) connects the discharge part of the third compressor (113) between the discharge pressure sensor (91) and the first four-way switching valve (27) in the main discharge pipe (31a).
  • the auxiliary discharge pipe (31b) is provided with a third discharge temperature sensor (115) and a seventh check valve (CV7) in order from the third compressor (113) to the main discharge pipe (31a). ing.
  • the third discharge temperature sensor (115) detects the temperature of refrigerant discharged from the third compressor (113).
  • the seventh check valve (CV7) allows the flow of the refrigerant in the direction of the arrow shown in FIG. 22 and prohibits the flow of the refrigerant in the opposite direction.
  • the second discharge pipe (33) is connected to the downstream side of the seventh check valve (CV7) in the auxiliary discharge pipe (31b).
  • the first suction pipe (32) is constituted by a main discharge pipe (31a) and an auxiliary discharge pipe (31b), and the first suction pipe (32) is formed by a main suction pipe (32a) and an auxiliary suction pipe ( 32b).
  • the main suction pipe (32a) connects the suction part of the first compressor (24) to the refrigeration side gas shut-off valve (13).
  • the main suction pipe (32a) is provided with a first suction pressure sensor (94) and a first suction temperature sensor (93) in order from the refrigeration side gas shut-off valve (13) to the first compressor (24). It has been.
  • the auxiliary suction pipe (32b) connects the suction part of the third compressor (113) to the downstream side of the first suction temperature sensor (93) in the main suction pipe (32a).
  • the third introduction pipe (114) is added to the injection circuit (55) of this modification.
  • One end of the third introduction pipe (114) is connected to the upstream side of the first injection valve (61) in the first introduction pipe (58), and the other end is connected to the third compressor (113).
  • the third introduction pipe (114) supplies intermediate pressure refrigerant to the compression chamber in the middle of compression of the third compressor (113).
  • the third introduction pipe (114) is provided with a third injection valve (63).
  • the third injection valve (63) is an electronic expansion valve having a variable opening, and adjusts the flow rate of the intermediate-pressure refrigerant introduced into the third compressor (113).
  • the operating capacity of the first compressor section (111) is such that the operating frequency of the first compressor (24) is the upper limit value and the third compressor (113) is operating. Maximum capacity.
  • the operating capacity of the first compressor unit (111) is the optimal capacity when the operating frequency of the first compressor (24) is the optimal frequency and the third compressor (113) is operating. Become.
  • the present invention is useful for a refrigeration apparatus provided with a plurality of types of usage-side heat exchangers.
  • Refrigeration equipment 11 Refrigerant circuit 24 First compressor (compressor) 25 Second compressor (compressor) 26 Outdoor heat exchanger (heat source side heat exchanger) 32 First suction pipe 34 Second suction pipe 47 Connection pipe 48 Flow control valve (control valve) 74 Refrigerated heat exchanger (first use side heat exchanger) 84 Air-conditioning heat exchanger (second-use-side heat exchanger) 110 Switching mechanism 111 First compressor section 112 Second compressor section

Abstract

A first compressor (111) and a second compressor (112) are provided in a refrigeration circuit (11) of a refrigerating device (10). The first compressor (111) links to a first use-side heat exchanger (74) via a first intake piping (32). The second compressor (112) links to a second use-side heat exchanger (84) or a heat source side heat exchanger (26) via a second intake pipe (34). The first intake pipe (32) and the second intake pipe (34) are joined via a joining pipe (47). A control valve (48) with a variable opening is provided in the joining pipe (47). The cooling capacity of the refrigerating device (10) is easily controlled by adjusting the opening of the control valve (48).

Description

冷凍装置Refrigeration equipment
 本発明は、複数種類の利用側熱交換器が設けられた冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus provided with a plurality of types of use side heat exchangers.
 従来より、複数種類の利用側熱交換器を備えた冷凍装置が知られている。例えば、特許文献1には、室内の冷房または暖房を行うための利用側熱交換器である室内熱交換器と、ショーケース等の庫内を冷却するための利用側熱交換器である冷蔵熱交換器とを備えた冷凍装置が開示されている。この冷凍装置の冷媒回路には、三台の圧縮機が設けられている。この冷媒回路において、第1圧縮機は冷蔵熱交換器において蒸発した冷媒を吸い込んで圧縮し、第3圧縮機は室内熱交換器において蒸発した冷媒を吸い込んで圧縮する。また、第2圧縮機は、冷蔵熱交換器において蒸発した冷媒を吸い込む状態と、室内熱交換器において蒸発した冷媒を吸い込む状態とに切り換わる。 Conventionally, a refrigeration apparatus having a plurality of types of use-side heat exchangers is known. For example, Patent Document 1 discloses an indoor heat exchanger that is a usage-side heat exchanger for performing indoor cooling or heating, and a refrigeration heat that is a usage-side heat exchanger for cooling the interior of a showcase or the like. A refrigeration apparatus including an exchanger is disclosed. In the refrigerant circuit of the refrigeration apparatus, three compressors are provided. In this refrigerant circuit, the first compressor sucks and compresses the refrigerant evaporated in the refrigeration heat exchanger, and the third compressor sucks and compresses the refrigerant evaporated in the indoor heat exchanger. Further, the second compressor switches between a state in which the refrigerant evaporated in the refrigeration heat exchanger is sucked and a state in which the refrigerant evaporated in the indoor heat exchanger is sucked.
 特許文献1の冷凍装置では、冷蔵熱交換器における冷却負荷を第1圧縮機だけで処理できない場合に、第2圧縮機が冷蔵熱交換器において蒸発した冷媒を吸い込む状態となる。この場合、冷蔵熱交換器において蒸発した冷媒の一部が第1圧縮機に吸い込まれ、残りが第2圧縮機に吸い込まれる。一方、この冷凍装置では、空調熱交換器における冷房負荷を第3圧縮機だけで処理できない場合に、第2圧縮機が室内熱交換器において蒸発した冷媒を吸い込む状態となる。この場合、空調熱交換器において蒸発した冷媒の一部が第3圧縮機に吸い込まれ、残りが第2圧縮機に吸い込まれる。 In the refrigeration apparatus of Patent Document 1, when the cooling load in the refrigeration heat exchanger cannot be processed only by the first compressor, the second compressor is in a state of sucking in the refrigerant evaporated in the refrigeration heat exchanger. In this case, a part of the refrigerant evaporated in the refrigeration heat exchanger is sucked into the first compressor, and the rest is sucked into the second compressor. On the other hand, in this refrigeration apparatus, when the cooling load in the air conditioning heat exchanger cannot be processed only by the third compressor, the second compressor sucks the refrigerant evaporated in the indoor heat exchanger. In this case, a part of the refrigerant evaporated in the air conditioning heat exchanger is sucked into the third compressor, and the rest is sucked into the second compressor.
特開2009-180451号公報JP 2009-180451 A
 特許文献1の冷凍装置では、第2圧縮機の接続先を切り換えることによって、冷蔵熱交換器または空調熱交換器から冷媒を吸い込む圧縮機の台数が、一台から二台へ、あるいは二台から一台へ変化する。このため、冷蔵熱交換器において得られる冷却能力や、空調熱交換器において得られる冷房能力が急激に変化し、冷凍装置の能力を適切に制御するのが困難となるおそれがあった。 In the refrigeration apparatus of Patent Document 1, the number of compressors that draw refrigerant from the refrigeration heat exchanger or the air conditioning heat exchanger is changed from one to two, or from two by switching the connection destination of the second compressor. Change to one. For this reason, the cooling capacity obtained in the refrigeration heat exchanger and the cooling capacity obtained in the air-conditioning heat exchanger may change abruptly, making it difficult to appropriately control the capacity of the refrigeration apparatus.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷凍装置の能力を適切に制御し易くすることによって、冷凍装置の使い勝手を向上させることにある。 The present invention has been made in view of such a point, and an object thereof is to improve the usability of the refrigeration apparatus by appropriately controlling the capacity of the refrigeration apparatus.
 第1の発明は、一台または複数台の圧縮機(24,25)によってそれぞれが構成される第1圧縮機部(111)及び第2圧縮機部(112)と、熱源側熱交換器(26)と、第1利用側熱交換器(74)と、第2利用側熱交換器(84)とを有して冷凍サイクルを行う冷媒回路(11)を備えた冷凍装置を対象とする。そして、上記冷媒回路(11)は、上記第1圧縮機部(111)に接続して該第1圧縮機部(111)を上記第1利用側熱交換器(74)に連通させる第1吸入配管(32)と、上記第2圧縮機部(112)に接続する第2吸入配管(34)と、上記第2吸入配管(34)が上記第2利用側熱交換器(84)に連通する状態と該第2吸入配管(34)が上記熱源側熱交換器(26)に連通する状態とを切り換えるための切換機構(110)と、一端が上記第1吸入配管(32)に接続して他端が上記第2吸入配管(34)に接続する接続用配管(47)と、上記接続用配管(47)に設けられた開度可変の調節弁(48)とを備えるものである。 The first invention includes a first compressor section (111) and a second compressor section (112) each constituted by one or a plurality of compressors (24, 25), a heat source side heat exchanger ( 26), a refrigeration apparatus having a refrigerant circuit (11) having a first usage side heat exchanger (74) and a second usage side heat exchanger (84) for performing a refrigeration cycle. The refrigerant circuit (11) is connected to the first compressor part (111) and communicates the first compressor part (111) with the first use side heat exchanger (74). The pipe (32), the second suction pipe (34) connected to the second compressor section (112), and the second suction pipe (34) communicate with the second use side heat exchanger (84). A switching mechanism (110) for switching between the state and the state where the second suction pipe (34) communicates with the heat source side heat exchanger (26), and one end connected to the first suction pipe (32). The other end is provided with a connection pipe (47) connected to the second suction pipe (34), and a variable opening control valve (48) provided in the connection pipe (47).
 第1の発明では、冷凍装置(10)に冷媒回路(11)が設けられる。冷媒回路(11)では、第1圧縮機部(111)を構成する圧縮機(24)が、第1吸入配管(32)を介して第1利用側熱交換器(74)に接続する。第1利用側熱交換器(74)が蒸発器として機能する場合は、第1利用側熱交換器(74)において蒸発した冷媒が、第1吸入配管(32)を通って第1圧縮機部(111)を構成する圧縮機(24)へ吸入される。また、冷媒回路(11)では、第2圧縮機部(112)を構成する圧縮機(25)が第2吸入配管(34)に接続し、第2吸入配管(34)が切換機構(110)を介して第2利用側熱交換器(84)と熱源側熱交換器(26)とに接続する。第2利用側熱交換器(84)が蒸発器として機能する場合は、切換機構(110)が第2吸入配管(34)を第2利用側熱交換器(84)に連通させる状態となり、第2利用側熱交換器(84)において蒸発した冷媒が、第2吸入配管(34)を通って第2圧縮機部(112)を構成する圧縮機(25)へ吸入される。一方、熱源側熱交換器(26)が蒸発器として機能する場合は、切換機構(110)が第2吸入配管(34)を熱源側熱交換器(26)に連通させる状態となり、熱源側熱交換器(26)において蒸発した冷媒が、第2吸入配管(34)を通って第2圧縮機部(112)を構成する圧縮機(25)へ吸入される。 In the first invention, the refrigerant circuit (11) is provided in the refrigeration apparatus (10). In the refrigerant circuit (11), the compressor (24) constituting the first compressor section (111) is connected to the first usage-side heat exchanger (74) via the first suction pipe (32). When the first usage-side heat exchanger (74) functions as an evaporator, the refrigerant evaporated in the first usage-side heat exchanger (74) passes through the first suction pipe (32) and becomes the first compressor section. It is sucked into the compressor (24) constituting (111). In the refrigerant circuit (11), the compressor (25) constituting the second compressor section (112) is connected to the second suction pipe (34), and the second suction pipe (34) is connected to the switching mechanism (110). To the second usage side heat exchanger (84) and the heat source side heat exchanger (26). When the second usage-side heat exchanger (84) functions as an evaporator, the switching mechanism (110) is in a state where the second suction pipe (34) communicates with the second usage-side heat exchanger (84), The refrigerant evaporated in the 2-use side heat exchanger (84) is sucked into the compressor (25) constituting the second compressor section (112) through the second suction pipe (34). On the other hand, when the heat source side heat exchanger (26) functions as an evaporator, the switching mechanism (110) enters a state where the second suction pipe (34) communicates with the heat source side heat exchanger (26), and the heat source side heat exchanger The refrigerant evaporated in the exchanger (26) is sucked into the compressor (25) constituting the second compressor part (112) through the second suction pipe (34).
 第1の発明では、冷媒回路(11)に接続用配管(47)が設けられる。また、接続用配管(47)には、調節弁(48)が設けられる。調節弁(48)が開いた状態では、第1吸入配管(32)を流れる冷媒の一部が第2圧縮機部(112)へ吸入され、あるいは第2吸入配管(34)を流れる冷媒の一部が第1圧縮機部(111)へ吸入される。前者の場合、第1利用側熱交換器(74)から第1吸入配管(32)へ流入した冷媒は、その一部が接続用配管(47)を通って第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。この場合には、調節弁(48)の開度が大きくなるほど、接続用配管(47)を通って第2圧縮機部(112)へ吸入される冷媒の流量が多くなる。一方、後者の場合、第2利用側熱交換器(84)又は熱源側熱交換器(26)から第2吸入配管(34)へ流入した冷媒は、その一部が接続用配管(47)を通って第1圧縮機部(111)へ吸入され、残りが第2圧縮機部(112)へ吸入される。この場合には、調節弁(48)の開度が大きくなるほど、接続用配管(47)を通って第1圧縮機部(111)へ吸入される冷媒の流量が多くなる。 In the first invention, the connection pipe (47) is provided in the refrigerant circuit (11). The connection pipe (47) is provided with a control valve (48). In a state where the control valve (48) is opened, a part of the refrigerant flowing through the first suction pipe (32) is sucked into the second compressor section (112) or one of the refrigerant flowing through the second suction pipe (34). Part is sucked into the first compressor part (111). In the former case, a part of the refrigerant flowing into the first suction pipe (32) from the first use side heat exchanger (74) passes through the connection pipe (47) to the second compressor section (112). The air is sucked and the rest is sucked into the first compressor section (111). In this case, as the opening of the control valve (48) increases, the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47) increases. On the other hand, in the latter case, a part of the refrigerant flowing into the second suction pipe (34) from the second use side heat exchanger (84) or the heat source side heat exchanger (26) passes through the connection pipe (47). The air is sucked into the first compressor part (111) and the rest is sucked into the second compressor part (112). In this case, the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) increases as the opening degree of the control valve (48) increases.
 第2の発明は、上記第1の発明において、上記熱源側熱交換器(26)が凝縮器として機能し、上記第1利用側熱交換器(74)と上記第2利用側熱交換器(84)の両方が蒸発器として機能する第1冷却運転を実行可能であり、上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、上記制御器(120)は、上記第1冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2吸入配管(34)の冷媒圧力が上記第1目標低圧よりも高い第2目標低圧となるように上記第2圧縮機部(112)の運転容量を調節するものである。 According to a second aspect of the present invention, in the first aspect, the heat source side heat exchanger (26) functions as a condenser, and the first usage side heat exchanger (74) and the second usage side heat exchanger ( 84) can perform the first cooling operation in which both function as an evaporator, the operating capacity of the first compressor unit (111) and the second compressor unit (112), and the control valve (48). A controller (120) for adjusting the opening of the first compressor unit (111) and the second compressor unit (112) during the first cooling operation. When the operating capacity is lower than a predetermined reference capacity, the first compressor is configured such that the control valve (48) is kept in a fully closed state and the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. The operating capacity of the section (111) is adjusted so that the refrigerant pressure in the second suction pipe (34) becomes a second target low pressure higher than the first target low pressure. It is intended to adjust the operating capacity of the second compressor unit (112).
 第2の発明の冷凍装置(10)は、第1冷却運転を実行できる。第1冷却運転中には、第1利用側熱交換器(74)において蒸発した冷媒が第1吸入配管(32)を通って第1圧縮機部(111)へ吸入され、第2利用側熱交換器(84)において蒸発した冷媒が第2吸入配管(34)を通って第2圧縮機部(112)へ吸入される。また、この発明の冷凍装置(10)には、制御器(120)が設けられる。 The refrigeration apparatus (10) of the second invention can execute the first cooling operation. During the first cooling operation, the refrigerant evaporated in the first usage-side heat exchanger (74) is drawn into the first compressor section (111) through the first suction pipe (32), and the second usage-side heat is supplied. The refrigerant evaporated in the exchanger (84) is sucked into the second compressor section (112) through the second suction pipe (34). The refrigerating apparatus (10) of the present invention is provided with a controller (120).
 第1冷却運転中に第1圧縮機部(111)及び第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合は、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができ、第2利用側熱交換器(84)における冷却負荷を第2圧縮機部(112)だけで処理することができる。そこで、第2の発明の制御器(120)は、上記調節弁(48)を全閉状態に保つ。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、第1圧縮機部(111)を構成する圧縮機(24)だけに吸入され、第2利用側熱交換器(84)において蒸発した冷媒は、第2圧縮機部(112)を構成する圧縮機(25)だけに吸入される。 When the operation capacities of the first compressor unit (111) and the second compressor unit (112) are below a predetermined reference capacity during the first cooling operation, the cooling load in the first use side heat exchanger (74) is reduced. Only the first compressor section (111) can process the cooling load in the second usage side heat exchanger (84), and only the second compressor section (112) can process the cooling load. Therefore, the controller (120) of the second invention keeps the control valve (48) in a fully closed state. In this case, the refrigerant evaporated in the first usage-side heat exchanger (74) is sucked only into the compressor (24) constituting the first compressor section (111), and the second usage-side heat exchanger (84). The refrigerant evaporated in is sucked only into the compressor (25) constituting the second compressor section (112).
 また、この場合、第2の発明の制御器(120)は、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように第1圧縮機部(111)の運転容量を調節し、第2吸入配管(34)の冷媒圧力が第2目標低圧となるように第2圧縮機部(112)の運転容量を調節する。第2目標低圧は、第1目標低圧よりも高い。このため、第2利用側熱交換器(84)における冷媒の蒸発温度は、第1利用側熱交換器(74)における冷媒の蒸発温度よりも高くなる。 In this case, the controller (120) of the second invention adjusts the operating capacity of the first compressor section (111) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. The operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. The second target low pressure is higher than the first target low pressure. For this reason, the evaporation temperature of the refrigerant in the second usage-side heat exchanger (84) is higher than the evaporation temperature of the refrigerant in the first usage-side heat exchanger (74).
 第3の発明は、上記第2の発明において、上記制御器(120)は、上記第1冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量を下回って上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節し、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第1圧縮機部(111)の運転容量を調節する動作、又は上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記調節弁(48)の開度を調節し、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節する動作を行うものである。 In a third aspect based on the second aspect, the controller (120) is configured such that the operating capacity of the first compressor unit (111) falls below the reference capacity during the first cooling operation, and the second controller When the operating capacity of the compressor section (112) is greater than or equal to the reference capacity, the opening of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. Adjusting and adjusting the operating capacity of the first compressor section (111) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure, or the second suction pipe (34) The opening of the control valve (48) is adjusted so that the refrigerant pressure becomes the second target low pressure, and the first suction pressure (32) becomes the first target low pressure. The operation of adjusting the operating capacity of the compressor section (111) is performed.
 第3の発明の制御器(120)は、第1冷却運転中に第1圧縮機部(111)の運転容量が基準容量を下回って第2圧縮機部(112)の運転容量が基準容量以上である場合に、所定の動作を行う。この場合は、第2利用側熱交換器(84)における冷却負荷を第2圧縮機部(112)だけで処理することができず、あるいは第2利用側熱交換器(84)における冷却負荷を第2圧縮機部(112)だけで処理するのが適当ではない。そこで、制御器(120)は、下記第1の動作と第2の動作のいずれか一方を行う。 In the controller (120) of the third invention, during the first cooling operation, the operating capacity of the first compressor section (111) is less than the reference capacity, and the operating capacity of the second compressor section (112) is greater than the reference capacity. If it is, a predetermined operation is performed. In this case, the cooling load in the second usage-side heat exchanger (84) cannot be processed only by the second compressor section (112), or the cooling load in the second usage-side heat exchanger (84) is reduced. It is not appropriate to process only the second compressor section (112). Therefore, the controller (120) performs one of the following first operation and second operation.
 第3の発明の制御器(120)が行う第1の動作は、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように調節弁(48)の開度を調節し、第2吸入配管(34)の冷媒圧力が第2目標低圧となるように第1圧縮機部(111)の運転容量を調節する動作である。また、この制御器(120)が行う第2の動作は、第2吸入配管(34)の冷媒圧力が第2目標低圧となるように調節弁(48)の開度を調節し、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように第1圧縮機部(111)の運転容量を調節する動作である。 The first operation performed by the controller (120) of the third invention is to adjust the opening of the control valve (48) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, This is an operation for adjusting the operating capacity of the first compressor section (111) so that the refrigerant pressure of the two suction pipes (34) becomes the second target low pressure. Further, the second operation performed by the controller (120) is to adjust the opening of the control valve (48) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure, and to perform the first suction. In this operation, the operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure in the pipe (32) becomes the first target low pressure.
 第3の発明の制御器(120)が第1又は第2の動作を行うと、第2吸入配管(34)を流れる冷媒の一部が接続用配管(47)を通って第1圧縮機部(111)へ吸入される。つまり、運転容量が基準容量を下回っている第1圧縮機部(111)が、第1吸入配管(32)を流れる冷媒の全部と、第2吸入配管(34)を流れる冷媒の一部とを吸入する。このため、第1利用側熱交換器(74)における冷却負荷は、第1圧縮機部(111)だけによって処理される一方、第2利用側熱交換器(84)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 When the controller (120) of the third invention performs the first or second operation, a part of the refrigerant flowing through the second suction pipe (34) passes through the connection pipe (47) to form the first compressor section. Inhaled to (111). That is, the first compressor section (111) whose operating capacity is lower than the reference capacity removes all of the refrigerant flowing through the first suction pipe (32) and part of the refrigerant flowing through the second suction pipe (34). Inhale. Therefore, the cooling load in the first usage-side heat exchanger (74) is processed only by the first compressor unit (111), while the cooling load in the second usage-side heat exchanger (84) is the first Processed by both the compressor section (111) and the second compressor section (112).
 第4の発明は、上記第2又は第3の発明において、上記制御器(120)は、上記第1冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が所定の基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節するものである。 In a fourth aspect based on the second aspect or the third aspect, the controller (120) includes the first compressor section (111) and the second compressor section (112) during the first cooling operation. When the operating capacity is equal to or greater than a predetermined reference capacity, the opening of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. .
 第4の発明の制御器(120)がこの動作を行うと、通常は、調節弁(48)の開度が次第に減少してゆき、その結果、第2吸入配管(34)から接続用配管(47)を通って第1圧縮機部(111)へ吸入される冷媒の流量が減少してゆく。このため、第1圧縮機部(111)が第1吸入配管(32)から吸入できる冷媒の流量が増加し、第1吸入配管(32)の冷媒圧力の上昇が抑えられる。 When the controller (120) of the fourth invention performs this operation, normally, the opening of the control valve (48) gradually decreases. As a result, the connection pipe (34) is connected from the second suction pipe (34). 47) The flow rate of the refrigerant drawn into the first compressor section (111) through 47) decreases. For this reason, the flow rate of the refrigerant that can be sucked from the first suction pipe (32) by the first compressor section (111) increases, and the rise in the refrigerant pressure of the first suction pipe (32) is suppressed.
 第5の発明は、上記第2~第4のいずれか一つの発明において、上記熱源側熱交換器(26)が凝縮器として機能し、上記第2利用側熱交換器(84)が蒸発器として機能し、上記第1利用側熱交換器(74)が休止する第2冷却運転を実行可能であり、上記制御器(120)は、上記第2冷却運転中に上記第2圧縮機部(112)の運転容量が上記基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1圧縮機部(111)を停止状態に保ち、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第2圧縮機部(112)の運転容量を調節するものである。 According to a fifth invention, in any one of the second to fourth inventions, the heat source side heat exchanger (26) functions as a condenser, and the second usage side heat exchanger (84) is an evaporator. And the second cooling operation in which the first usage-side heat exchanger (74) is suspended can be executed, and the controller (120) can perform the second compressor section ( 112) is less than the reference capacity, the control valve (48) is kept in a fully closed state, the first compressor part (111) is kept in a stopped state, and the second suction pipe (34) The operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure becomes the second target low pressure.
 第5の発明の冷凍装置(10)は、第2冷却運転を実行できる。第2冷却運転中には、第2利用側熱交換器(84)において蒸発した冷媒が第2吸入配管(34)を通って第2圧縮機部(112)へ吸入される。第2冷却運転中に上記第2圧縮機部(112)の運転容量が上記基準容量を下回る場合は、第2利用側熱交換器(84)における冷却負荷を第2圧縮機部(112)だけで処理することができる。そこで、制御器(120)は、調節弁(48)を全閉状態に保ち、第2吸入配管(34)の冷媒圧力が第2目標低圧となるように第2圧縮機部(112)の運転容量を調節する。この場合、第2利用側熱交換器(84)において蒸発した冷媒は、第2圧縮機部(112)を構成する圧縮機(25)だけに吸入される。 The refrigeration apparatus (10) of the fifth invention can execute the second cooling operation. During the second cooling operation, the refrigerant evaporated in the second usage side heat exchanger (84) is sucked into the second compressor section (112) through the second suction pipe (34). When the operation capacity of the second compressor section (112) is lower than the reference capacity during the second cooling operation, the cooling load in the second usage side heat exchanger (84) is limited to the second compressor section (112). Can be processed. Therefore, the controller (120) keeps the control valve (48) fully closed, and operates the second compressor section (112) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. Adjust the volume. In this case, the refrigerant evaporated in the second usage side heat exchanger (84) is sucked only into the compressor (25) constituting the second compressor section (112).
 第6の発明は、上記第5の発明において、上記制御器(120)は、上記第2冷却運転中に上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が第1目標低圧となるように上記調節弁(48)の開度を調節し、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節するものである。 In a sixth aspect based on the fifth aspect, the controller (120) is configured such that the operating capacity of the second compressor section (112) is equal to or greater than the reference capacity during the second cooling operation. The opening degree of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, and the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. The operating capacities of the first compressor section (111) and the second compressor section (112) are adjusted so that
 第6の発明の制御器(120)は、第2冷却運転中に第2圧縮機部(112)の運転容量が基準容量以上である場合に、調節弁(48)の開度と第1圧縮機部(111)及び第2圧縮機部(112)の運転容量とを調節する。この場合、第2利用側熱交換器(84)において蒸発した冷媒は、その一部が接続用配管(47)を通って第1圧縮機部(111)へ吸入され、残りが第2圧縮機部(112)へ吸入される。つまり、第2利用側熱交換器(84)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。そして、第1吸入配管(32)の冷媒圧力が第1目標低圧に保たれ、第2吸入配管(34)の冷媒圧力が第2目標低圧に保たれる。 The controller (120) according to the sixth aspect of the present invention is configured such that when the operation capacity of the second compressor section (112) is equal to or greater than a reference capacity during the second cooling operation, the opening degree of the control valve (48) and the first compression The operation capacity of the machine part (111) and the second compressor part (112) is adjusted. In this case, a part of the refrigerant evaporated in the second use side heat exchanger (84) is sucked into the first compressor part (111) through the connection pipe (47), and the rest is the second compressor. Inhaled into the part (112). That is, the cooling load in the second usage side heat exchanger (84) is processed by both the first compressor unit (111) and the second compressor unit (112). Then, the refrigerant pressure in the first suction pipe (32) is kept at the first target low pressure, and the refrigerant pressure in the second suction pipe (34) is kept at the second target low pressure.
 第7の発明は、上記第6の発明において、上記制御器(120)は、上記第2冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節するものである。 In a seventh aspect based on the sixth aspect, the controller (120) is configured such that the controller (120) has operating capacities of the first compressor section (111) and the second compressor section (112) during the second cooling operation. Is equal to or greater than the reference capacity, the opening of the control valve (48) is adjusted such that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure.
 第7の発明の制御器(120)がこの動作を行うと、冷媒が調節弁(48)を通過する際にその圧力が第2目標低圧から第1目標低圧へ低下するように、調節弁(48)の開度が調節される。このため、第2冷却運転中に第1圧縮機部(111)の運転容量が上記基準容量以上である場合も、第1吸入配管(32)の冷媒圧力が第1目標低圧に保たれる。 When the controller (120) of the seventh invention performs this operation, when the refrigerant passes through the control valve (48), the pressure decreases from the second target low pressure to the first target low pressure. 48) Opening is adjusted. For this reason, the refrigerant pressure in the first suction pipe (32) is kept at the first target low pressure even when the operation capacity of the first compressor section (111) is equal to or higher than the reference capacity during the second cooling operation.
 第8の発明は、上記第2~第7のいずれか一つの発明において、上記熱源側熱交換器(26)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能し、上記第2利用側熱交換器(84)が休止する第3冷却運転を実行可能であり、上記制御器(120)は、上記第3冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量を下回る場合に、上記調節弁(48)を全閉状態とし、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つものである。 According to an eighth invention, in any one of the second to seventh inventions, the heat source side heat exchanger (26) functions as a condenser, and the first usage side heat exchanger (74) is an evaporator. The third cooling operation in which the second usage-side heat exchanger (84) is stopped can be executed, and the controller (120) can perform the first compressor section ( When the operating capacity of 111) is lower than the reference capacity, the control valve (48) is fully closed and the first suction pipe (32) has the first target low pressure so that the refrigerant pressure becomes the first target low pressure. The operating capacity of the compressor section (111) is adjusted to keep the second compressor section (112) in a stopped state.
 第8の発明の冷凍装置(10)は、第3冷却運転を実行できる。第3冷却運転中には、第1利用側熱交換器(74)において蒸発した冷媒が第1吸入配管(32)を通って第1圧縮機部(111)へ吸入される。第3冷却運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合は、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができる。そこで、制御器(120)は、調節弁(48)を全閉状態に保ち、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように第1圧縮機部(111)の運転容量を調節する。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、第1圧縮機部(111)を構成する圧縮機(24)だけに吸入される。 The refrigeration apparatus (10) of the eighth invention can perform the third cooling operation. During the third cooling operation, the refrigerant evaporated in the first usage-side heat exchanger (74) is drawn into the first compressor section (111) through the first suction pipe (32). If the operating capacity of the first compressor section (111) is lower than the reference capacity during the third cooling operation, the cooling load in the first usage side heat exchanger (74) is processed only by the first compressor section (111). can do. Therefore, the controller (120) keeps the control valve (48) in a fully closed state, and operates the first compressor unit (111) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. Adjust the capacity. In this case, the refrigerant evaporated in the first usage-side heat exchanger (74) is sucked only into the compressor (24) constituting the first compressor section (111).
 第9の発明は、上記第8の発明において、上記制御器(120)は、上記第3冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態とし、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節するものである。 In a ninth aspect based on the eighth aspect, the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third cooling operation. The control valve (48) is fully opened, and the first compressor part (111) and the second compressor part (112) are set so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. ) Is adjusted.
 第9の発明の制御器(120)は、第3冷却運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、その一部が接続用配管(47)を通って第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。つまり、第1利用側熱交換器(74)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。そして、第1吸入配管(32)の冷媒圧力が第1目標低圧に保たれる。 The controller (120) of the ninth invention keeps the control valve (48) fully open when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third cooling operation. The operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted. In this case, a part of the refrigerant evaporated in the first use side heat exchanger (74) is sucked into the second compressor section (112) through the connection pipe (47), and the rest is the first compressor. Part (111) is inhaled. That is, the cooling load in the first usage side heat exchanger (74) is processed by both the first compressor unit (111) and the second compressor unit (112). Then, the refrigerant pressure in the first suction pipe (32) is maintained at the first target low pressure.
 第10の発明は、上記第1の発明において、上記熱源側熱交換器(26)及び上記第2利用側熱交換器(84)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能する第1併存運転を実行可能であり、上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、上記制御器(120)は、上記第1併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つものである。 In a tenth aspect based on the first aspect, the heat source side heat exchanger (26) and the second usage side heat exchanger (84) function as a condenser, and the first usage side heat exchanger ( 74) can execute the first coexistence operation functioning as an evaporator, and the operation capacity of the first compressor unit (111) and the second compressor unit (112) and the opening of the control valve (48). A controller (120) for adjusting the degree, and when the operating capacity of the first compressor unit (111) falls below a predetermined reference capacity during the first concurrent operation, The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure, and the second compressor section (112) is kept in a stopped state. Is.
 第10の発明の冷凍装置(10)は、第1併存運転を実行できる。第1併存運転中には、第1圧縮機部(111)から吐出された冷媒の一部が熱源側熱交換器(26)へ供給されて残りが第2利用側熱交換器(84)へ供給され、第1利用側熱交換器(74)において蒸発した冷媒が第1吸入配管(32)を通って第1圧縮機部(111)へ吸入される。蒸発器として機能する第1利用側熱交換器(74)では、空気等の対象物が冷却され、凝縮器として機能する第2利用側熱交換器(84)では、空気等の対象物が加熱される。 The refrigeration apparatus (10) of the tenth invention can execute the first coexistence operation. During the first concurrent operation, a part of the refrigerant discharged from the first compressor section (111) is supplied to the heat source side heat exchanger (26), and the rest is supplied to the second usage side heat exchanger (84). The refrigerant supplied and evaporated in the first use side heat exchanger (74) is sucked into the first compressor section (111) through the first suction pipe (32). In the first usage side heat exchanger (74) functioning as an evaporator, an object such as air is cooled, and in the second usage side heat exchanger (84) functioning as a condenser, an object such as air is heated. Is done.
 第10の発明の冷凍装置(10)には、制御器(120)が設けられる。第1併存運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合、制御器(120)は、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)の運転容量を調節する。従って、第1利用側熱交換器(74)における冷媒の蒸発温度が、目標低圧に対応する飽和温度に保たれる。 The refrigeration apparatus (10) of the tenth invention is provided with a controller (120). When the operating capacity of the first compressor section (111) is lower than the reference capacity during the first concurrent operation, the controller (120) performs the first operation so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. Adjust the operating capacity of the compressor section (111). Therefore, the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure.
 第11の発明は、上記第10の発明において、上記制御器(120)は、上記第1併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節するものである。 In an eleventh aspect based on the tenth aspect, the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the first concurrent operation. The first compressor part (111) and the second compressor part (112) are maintained so that the control valve (48) is fully opened and the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. This adjusts the operating capacity.
 第1併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合は、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができず、あるいは第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理するのが適当ではない。そこで、この場合、第11の発明の制御器(120)は、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、その一部が第1圧縮機部(111)へ吸入され、残りが接続用配管(47)を通って第2圧縮機部(112)へ吸入される。このため、第1利用側熱交換器(74)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 If the operating capacity of the first compressor section (111) is greater than or equal to the reference capacity during the first concurrent operation, the cooling load in the first use side heat exchanger (74) is limited only by the first compressor section (111). It cannot be processed, or it is not appropriate to process the cooling load in the first use side heat exchanger (74) only by the first compressor section (111). Therefore, in this case, the controller (120) of the eleventh aspect of the invention maintains the control valve (48) in a fully open state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted. In this case, a part of the refrigerant evaporated in the first use side heat exchanger (74) is sucked into the first compressor section (111), and the rest passes through the connection pipe (47) to the second compressor. Inhaled into the part (112). For this reason, the cooling load in the 1st utilization side heat exchanger (74) is processed by both the 1st compressor part (111) and the 2nd compressor part (112).
 第12の発明は、上記第1の発明において、上記熱源側熱交換器(26)が休止し、上記第2利用側熱交換器(84)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能する第2併存運転を実行可能であり、上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、上記制御器(120)は、上記第2併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つものである。 In a twelfth aspect based on the first aspect, the heat source side heat exchanger (26) is stopped, the second usage side heat exchanger (84) functions as a condenser, and the first usage side heat is The exchanger (74) can execute the second coexistence operation in which the evaporator functions as an evaporator, and the operation capacities of the first compressor unit (111) and the second compressor unit (112) and the control valve (48 ), And the controller (120) has an operating capacity of the first compressor part (111) below a predetermined reference capacity during the second concurrent operation. In this case, the operating capacity of the first compressor unit (111) is adjusted so that the control valve (48) is kept in a fully closed state and the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure. The second compressor section (112) is kept in a stopped state.
 第12の発明の冷凍装置(10)は、第2併存運転を実行できる。第2併存運転中には、第1圧縮機部(111)から吐出された冷媒が第2利用側熱交換器(84)へ供給され、第1利用側熱交換器(74)において蒸発した冷媒が第1吸入配管(32)を通って第1圧縮機部(111)へ吸入される。蒸発器として機能する第1利用側熱交換器(74)では、空気等の対象物が冷却され、凝縮器として機能する第2利用側熱交換器(84)では、空気等の対象物が加熱される。 The refrigeration apparatus (10) of the twelfth invention can execute the second concurrent operation. During the second concurrent operation, the refrigerant discharged from the first compressor unit (111) is supplied to the second usage-side heat exchanger (84) and evaporated in the first usage-side heat exchanger (74). Is sucked into the first compressor section (111) through the first suction pipe (32). In the first usage side heat exchanger (74) functioning as an evaporator, an object such as air is cooled, and in the second usage side heat exchanger (84) functioning as a condenser, an object such as air is heated. Is done.
 第12の発明の冷凍装置(10)には、制御器(120)が設けられる。第2併存運転中に第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合、制御器(120)は、調節弁(48)を全閉状態に保ち、第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように第1圧縮機部(111)の運転容量を調節する。従って、第1利用側熱交換器(74)における冷媒の蒸発温度が、目標低圧に対応する飽和温度に保たれる。 The refrigeration apparatus (10) of the twelfth invention is provided with a controller (120). When the operation capacity of the first compressor unit (111) is lower than the predetermined reference capacity during the second concurrent operation, the controller (120) keeps the control valve (48) in the fully closed state, and the first suction pipe ( The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure of 32) becomes a predetermined target low pressure. Therefore, the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure.
 第13の発明は、上記第12の発明において、上記制御器(120)は、上記第2併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第2圧縮機部(112)の運転容量を調節するものである。 In a thirteenth aspect based on the twelfth aspect, the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the second concurrent operation. The control valve (48) is kept fully open, and the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
 第2併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合は、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができず、あるいは第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理するのが適当ではない。そこで、この場合、第13の発明の制御器(120)は、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、その一部が第1圧縮機部(111)へ吸入され、残りが接続用配管(47)を通って第2圧縮機部(112)へ吸入される。このため、第1利用側熱交換器(74)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 If the operating capacity of the first compressor section (111) is greater than or equal to the reference capacity during the second concurrent operation, the cooling load in the first usage side heat exchanger (74) is limited only by the first compressor section (111). It cannot be processed, or it is not appropriate to process the cooling load in the first use side heat exchanger (74) only by the first compressor section (111). Therefore, in this case, the controller (120) according to the thirteenth aspect of the invention maintains the control valve (48) in a fully opened state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted. In this case, a part of the refrigerant evaporated in the first use side heat exchanger (74) is sucked into the first compressor section (111), and the rest passes through the connection pipe (47) to the second compressor. Inhaled into the part (112). For this reason, the cooling load in the 1st utilization side heat exchanger (74) is processed by both the 1st compressor part (111) and the 2nd compressor part (112).
 第14の発明は、上記第1の発明において、上記第2利用側熱交換器(84)が凝縮器として機能し、上記熱源側熱交換器(26)及び上記第1利用側熱交換器(74)が蒸発器として機能する第3併存運転を実行可能であり、上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、上記制御器(120)は、上記第3併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2利用側熱交換器(84)における冷媒の凝縮温度が所定の目標温度となるように上記第2圧縮機部(112)の運転容量を調節するものである。 In a fourteenth aspect based on the first aspect, the second use side heat exchanger (84) functions as a condenser, and the heat source side heat exchanger (26) and the first use side heat exchanger ( 74) can execute the third coexistence operation functioning as an evaporator, and the operation capacity of the first compressor unit (111) and the second compressor unit (112) and the opening of the control valve (48). A controller (120) for adjusting the degree, the controller (120), when the operating capacity of the first compressor unit (111) is below a predetermined reference capacity during the third concurrent operation, The control valve (48) is kept fully closed, the operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure, The operating capacity of the second compressor section (112) is adjusted so that the refrigerant condensing temperature in the second usage side heat exchanger (84) becomes a predetermined target temperature. It is intended to.
 第14の発明の冷凍装置(10)は、第3併存運転を実行できる。第3併存運転中には、第1圧縮機部(111)及び第2圧縮機部(112)から吐出された冷媒が第2利用側熱交換器(84)へ供給され、第1利用側熱交換器(74)において蒸発した冷媒が第1吸入配管(32)を通って第1圧縮機部(111)へ吸入され、熱源側熱交換器(26)において蒸発した冷媒が第2吸入配管(34)を通って第2圧縮機部(112)へ吸入される。蒸発器として機能する第1利用側熱交換器(74)では、空気等の対象物が冷却され、凝縮器として機能する第2利用側熱交換器(84)では、空気等の対象物が加熱される。 The refrigeration apparatus (10) of the fourteenth invention can execute the third coexistence operation. During the third concurrent operation, the refrigerant discharged from the first compressor unit (111) and the second compressor unit (112) is supplied to the second usage side heat exchanger (84), and the first usage side heat is supplied. The refrigerant evaporated in the exchanger (74) passes through the first suction pipe (32) and is sucked into the first compressor section (111), and the refrigerant evaporated in the heat source side heat exchanger (26) flows into the second suction pipe ( 34) and is sucked into the second compressor section (112). In the first usage side heat exchanger (74) functioning as an evaporator, an object such as air is cooled, and in the second usage side heat exchanger (84) functioning as a condenser, an object such as air is heated. Is done.
 第14の発明の冷凍装置(10)には、制御器(120)が設けられる。第3併存運転中に第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合、制御器(120)は、調節弁(48)を全閉状態に保ち、第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように第1圧縮機部(111)の運転容量を調節し、上記第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度となるように上記第2圧縮機部(112)の運転容量を調節する。従って、第1利用側熱交換器(74)における冷媒の蒸発温度が目標低圧に対応する飽和温度に保たれ、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度に保たれる。 The refrigeration apparatus (10) of the fourteenth invention is provided with a controller (120). When the operating capacity of the first compressor unit (111) is lower than the predetermined reference capacity during the third concurrent operation, the controller (120) keeps the control valve (48) in a fully closed state, The operating capacity of the first compressor unit (111) is adjusted so that the refrigerant pressure of 32) becomes a predetermined target low pressure, and the refrigerant condensing temperature in the second use side heat exchanger (84) becomes the target temperature. Thus, the operating capacity of the second compressor section (112) is adjusted. Therefore, the evaporation temperature of the refrigerant in the first usage side heat exchanger (74) is maintained at the saturation temperature corresponding to the target low pressure, and the condensation temperature of the refrigerant in the second usage side heat exchanger (84) is maintained at the target temperature. It is.
 第15の発明は、上記第14の発明において、上記制御器(120)は、上記第3併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第2圧縮機部(112)の運転容量を調節するものである。 In a fifteenth aspect based on the fourteenth aspect, the controller (120) is configured such that the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third concurrent operation. The control valve (48) is kept fully open, and the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
 第3併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合は、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができず、あるいは第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理するのが適当ではない。そこで、この場合、第15の発明の制御器(120)は、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。この場合、第1利用側熱交換器(74)において蒸発した冷媒は、その一部が第1圧縮機部(111)へ吸入され、残りが接続用配管(47)を通って第2圧縮機部(112)へ吸入される。このため、第1利用側熱交換器(74)における冷却負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 If the operating capacity of the first compressor section (111) is greater than or equal to the reference capacity during the third concurrent operation, the cooling load in the first use side heat exchanger (74) is reduced only by the first compressor section (111). It cannot be processed, or it is not appropriate to process the cooling load in the first use side heat exchanger (74) only by the first compressor section (111). Therefore, in this case, the controller (120) of the fifteenth aspect of the invention maintains the control valve (48) in a fully open state, and the first compressor section so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. (111) and the operating capacity of the second compressor section (112) are adjusted. In this case, a part of the refrigerant evaporated in the first use side heat exchanger (74) is sucked into the first compressor section (111), and the rest passes through the connection pipe (47) to the second compressor. Inhaled into the part (112). For this reason, the cooling load in the 1st utilization side heat exchanger (74) is processed by both the 1st compressor part (111) and the 2nd compressor part (112).
 第16の発明は、上記第1の発明において、上記第2利用側熱交換器(84)が凝縮器として機能し、上記熱源側熱交換器(26)が蒸発器として機能し、上記第1利用側熱交換器(74)が休止する加熱運転を実行可能であり、上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、上記制御器(120)は、上記加熱運転中に上記第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第2利用側熱交換器(84)における冷媒の凝縮温度が所定の目標温度となるように上記第2圧縮機部(112)の運転容量を調節するものである。 In a sixteenth aspect based on the first aspect, the second use side heat exchanger (84) functions as a condenser, the heat source side heat exchanger (26) functions as an evaporator, A heating operation in which the use-side heat exchanger (74) is stopped can be executed, and the operating capacities of the first compressor unit (111) and the second compressor unit (112) and the control valve (48) A controller (120) for adjusting the opening degree, and the controller (120) is configured so that the operating capacity of the second compressor section (112) is lower than a predetermined reference capacity during the heating operation. Keeping the control valve (48) in a fully closed state, the operating capacity of the second compressor section (112) is set so that the refrigerant condensing temperature in the second use side heat exchanger (84) becomes a predetermined target temperature. To adjust.
 第16の発明の冷凍装置(10)は、加熱運転を実行できる。加熱運転中には、第2圧縮機部(112)から吐出された冷媒が第2利用側熱交換器(84)へ供給され、熱源用側熱交換器において蒸発した冷媒が第2吸入配管(34)を通って第2圧縮機部(112)へ吸入される。凝縮器として機能する第2利用側熱交換器(84)では、空気等の対象物が加熱される。 The refrigeration apparatus (10) of the sixteenth invention can execute a heating operation. During the heating operation, the refrigerant discharged from the second compressor section (112) is supplied to the second use side heat exchanger (84), and the refrigerant evaporated in the heat source side heat exchanger is supplied to the second suction pipe ( 34) and is sucked into the second compressor section (112). In the second usage side heat exchanger (84) functioning as a condenser, an object such as air is heated.
 第16の発明の冷凍装置(10)には、制御器(120)が設けられる。加熱運転中に第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合、制御器(120)は、調節弁(48)を全閉状態に保ち、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度となるように第2圧縮機部(112)の運転容量を調節する。従って、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度に保たれる。 The refrigeration apparatus (10) of the sixteenth invention is provided with a controller (120). When the operation capacity of the second compressor section (112) is lower than the predetermined reference capacity during the heating operation, the controller (120) keeps the control valve (48) in the fully closed state, and the second use side heat exchanger The operating capacity of the second compressor section (112) is adjusted so that the refrigerant condensing temperature in (84) becomes the target temperature. Therefore, the refrigerant condensing temperature in the second usage side heat exchanger (84) is maintained at the target temperature.
 第17の発明は、上記第16の発明において、上記制御器(120)は、上記加熱運転中に上記第2圧縮機部(112)の運転容量が上記基準容量以上になると、上記調節弁(48)を全開状態とし、上記第2利用側熱交換器(84)における冷媒の凝縮温度が上記目標温度となるように上記第1圧縮機部(111)の運転容量を調節するものである。 In a seventeenth aspect based on the sixteenth aspect, the controller (120) causes the control valve (120) when the operating capacity of the second compressor section (112) becomes equal to or greater than the reference capacity during the heating operation. 48) is fully opened, and the operating capacity of the first compressor unit (111) is adjusted such that the condensation temperature of the refrigerant in the second usage side heat exchanger (84) becomes the target temperature.
 加熱運転中に第2圧縮機部(112)の運転容量が基準容量以上である場合は、第2利用側熱交換器(84)における加熱負荷を第2圧縮機部(112)だけで処理することができず、あるいは第2利用側熱交換器(84)における加熱負荷を第2圧縮機部(112)だけで処理するのが適当ではない。そこで、この場合、第17の発明の制御器(120)は、調節弁(48)を全開状態に保ち、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。この場合、熱源側熱交換器(26)において蒸発した冷媒の一部が第1圧縮機部(111)へ吸入されて残りが第2圧縮機部(112)へ吸入され、第1圧縮機部(111)及び第2圧縮機部(112)から吐出された冷媒が第2利用側熱交換器(84)へ供給される。このため、第2利用側熱交換器(84)における加熱負荷は、第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 If the operating capacity of the second compressor section (112) is greater than or equal to the reference capacity during the heating operation, the heating load in the second usage side heat exchanger (84) is processed only by the second compressor section (112). Or it is not appropriate to process the heating load in the second usage side heat exchanger (84) only by the second compressor section (112). Therefore, in this case, the controller (120) of the seventeenth aspect of the invention keeps the control valve (48) fully open so that the refrigerant condensing temperature in the second usage side heat exchanger (84) becomes the target temperature. The operating capacities of the first compressor part (111) and the second compressor part (112) are adjusted. In this case, a part of the refrigerant evaporated in the heat source side heat exchanger (26) is sucked into the first compressor part (111) and the rest is sucked into the second compressor part (112), and the first compressor part The refrigerant discharged from (111) and the second compressor section (112) is supplied to the second usage side heat exchanger (84). For this reason, the heating load in the 2nd utilization side heat exchanger (84) is processed by both the 1st compressor part (111) and the 2nd compressor part (112).
 本発明の冷凍装置(10)では、第1吸入配管(32)と第2吸入配管(34)を接続する接続用配管(47)が冷媒回路(11)に設けられ、開度可変の調節弁(48)が接続用配管(47)に設けられる。このため、本発明の冷凍装置(10)は、第1圧縮機部(111)だけでは第1利用側熱交換器(74)において必要となる冷媒の流量を確保できない場合に、第1吸入配管(32)を流れる冷媒を第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入させることができる。また、本発明の冷凍装置(10)は、第2圧縮機部(112)だけでは第2利用側熱交換器(84)において必要となる冷媒の流量を確保できない場合に、第2吸入配管(34)を流れる冷媒を第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入させることができる。 In the refrigeration apparatus (10) of the present invention, the connection pipe (47) for connecting the first suction pipe (32) and the second suction pipe (34) is provided in the refrigerant circuit (11), and the opening degree variable control valve. (48) is provided in the connecting pipe (47). For this reason, the refrigeration apparatus (10) of the present invention provides the first suction pipe when the flow rate of the refrigerant required in the first usage-side heat exchanger (74) cannot be secured by the first compressor section (111) alone. The refrigerant flowing through (32) can be sucked into both the first compressor part (111) and the second compressor part (112). Further, the refrigeration apparatus (10) of the present invention is configured so that the second suction pipe (10) can be used when the refrigerant flow rate required in the second usage-side heat exchanger (84) cannot be secured by the second compressor section (112) alone. 34) can be sucked into both the first compressor part (111) and the second compressor part (112).
 第1吸入配管(32)を流れる冷媒が第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入される場合には、調節弁(48)の開度を変更することによって、接続用配管(47)を通って第2圧縮機部(112)へ吸入される冷媒の流量を調節することができる。そして、この場合は、調節弁(48)の開度を調節することによって、第1利用側熱交換器(74)を流れる冷媒の流量を、第1利用側熱交換器(74)における冷却負荷(即ち、単位時間に第1利用側熱交換器(74)で冷媒が吸収すべき熱量)に応じた適切な値に設定することが可能となる。 When the refrigerant flowing through the first suction pipe (32) is sucked into both the first compressor part (111) and the second compressor part (112), the opening degree of the control valve (48) should be changed. Thus, it is possible to adjust the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47). In this case, by adjusting the opening of the control valve (48), the flow rate of the refrigerant flowing through the first usage side heat exchanger (74) is changed to the cooling load in the first usage side heat exchanger (74). In other words, it is possible to set an appropriate value according to the amount of heat that the refrigerant should absorb in the first usage-side heat exchanger (74) per unit time.
 また、第2吸入配管(34)を流れる冷媒が第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入される場合には、調節弁(48)の開度を変更することによって、接続用配管(47)を通って第1圧縮機部(111)へ吸入される冷媒の流量を調節することができる。そして、この場合は、調節弁(48)の開度を調節することによって、第2利用側熱交換器(84)を流れる冷媒の流量を、第2利用側熱交換器(84)における冷却負荷(即ち、単位時間に第2利用側熱交換器(84)で冷媒が吸収すべき熱量)に応じた適切な値に設定することが可能となる。 Further, when the refrigerant flowing through the second suction pipe (34) is sucked into both the first compressor part (111) and the second compressor part (112), the opening degree of the control valve (48) is changed. By doing so, the flow rate of the refrigerant drawn into the first compressor part (111) through the connection pipe (47) can be adjusted. In this case, by adjusting the opening of the control valve (48), the flow rate of the refrigerant flowing through the second usage side heat exchanger (84) is changed to the cooling load in the second usage side heat exchanger (84). In other words, it is possible to set an appropriate value according to the amount of heat that the refrigerant should absorb in the second usage-side heat exchanger (84) per unit time.
 このように、本発明では、第1圧縮機部(111)だけでは第1利用側熱交換器(74)において必要となる冷媒の流量を確保できない場合に、調節弁(48)の開度を調節することによって、第1利用側熱交換器(74)を流れる冷媒の流量を、第1利用側熱交換器(74)における冷却負荷に応じた値に設定することが可能となる。また、本発明では、第2圧縮機部(112)だけでは第2利用側熱交換器(84)において必要となる冷媒の流量を確保できない場合に、調節弁(48)の開度を調節することによって、第2利用側熱交換器(84)を流れる冷媒の流量を、第2利用側熱交換器(84)における冷却負荷に応じた値に設定することが可能となる。従って、本発明によれば、冷凍装置(10)の冷却能力を適切に制御することができ、冷凍装置(10)の使い勝手を向上させることができる。 As described above, in the present invention, when the flow rate of the refrigerant required in the first usage-side heat exchanger (74) cannot be ensured only by the first compressor section (111), the opening degree of the control valve (48) is increased. By adjusting, the flow rate of the refrigerant flowing through the first usage-side heat exchanger (74) can be set to a value corresponding to the cooling load in the first usage-side heat exchanger (74). In the present invention, the opening of the control valve (48) is adjusted when the flow rate of the refrigerant required in the second usage side heat exchanger (84) cannot be secured by the second compressor section (112) alone. Thus, the flow rate of the refrigerant flowing through the second usage-side heat exchanger (84) can be set to a value corresponding to the cooling load in the second usage-side heat exchanger (84). Therefore, according to the present invention, the cooling capacity of the refrigeration apparatus (10) can be appropriately controlled, and the usability of the refrigeration apparatus (10) can be improved.
 上記第2の発明において、冷凍装置(10)は、第1利用側熱交換器(74)及び第2利用側熱交換器(84)が蒸発器として機能する第1冷却運転を実行可能である。そして、第1冷却運転中に第1圧縮機部(111)及び第2圧縮機部(112)の運転容量が基準容量を下回る場合、制御器(120)は、上記調節弁(48)を全閉状態に保ち、第1圧縮機部(111)の運転容量を第1吸入配管(32)の冷媒圧力に基づいて調節し、第2圧縮機部(112)の運転容量を第2吸入配管(34)の冷媒圧力に基づいて調節する。このため、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)だけで処理することができ、第2利用側熱交換器(84)における冷却負荷を第2圧縮機部(112)だけで処理することができる場合に、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を適切に制御することができる。 In the second aspect, the refrigeration apparatus (10) can execute a first cooling operation in which the first usage-side heat exchanger (74) and the second usage-side heat exchanger (84) function as an evaporator. . When the operating capacities of the first compressor part (111) and the second compressor part (112) are below the reference capacity during the first cooling operation, the controller (120) While maintaining the closed state, the operating capacity of the first compressor section (111) is adjusted based on the refrigerant pressure in the first suction pipe (32), and the operating capacity of the second compressor section (112) is adjusted to the second suction pipe ( 34) Adjust based on the refrigerant pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed only by the first compressor section (111), and the cooling load in the second usage-side heat exchanger (84) is subjected to the second compression. When the processing can be performed only by the machine unit (112), the operation capacities of the first compressor unit (111) and the second compressor unit (112) can be appropriately controlled.
 また、第2の発明の制御器(120)は、第2吸入配管(34)の冷媒圧力が第1吸入配管(32)の冷媒圧力よりも高くなるように、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を制御する。従って、この発明によれば、第2利用側熱交換器(84)における冷媒の蒸発温度を第1利用側熱交換器(74)における冷媒の蒸発温度よりも高く設定できる。 Further, the controller (120) of the second invention is configured so that the refrigerant pressure in the second suction pipe (34) is higher than the refrigerant pressure in the first suction pipe (32). And the operating capacity of the second compressor section (112). Therefore, according to this invention, the evaporating temperature of the refrigerant in the second usage side heat exchanger (84) can be set higher than the evaporating temperature of the refrigerant in the first usage side heat exchanger (74).
 上記第3の発明の制御器(120)は、第1冷却運転中に第1圧縮機部(111)の運転容量が基準容量を下回って第2圧縮機部(112)の運転容量が基準容量以上である場合に、調節弁(48)の開度と第1圧縮機部(111)の運転容量とを調節する所定の動作を行う。このため、第2利用側熱交換器(84)における冷却負荷の一部を、運転容量が基準容量を下回っている第1圧縮機部(111)によって処理することができる。従って、この発明によれば、第1利用側熱交換器(74)における冷却負荷と、第2利用側熱交換器(84)における冷却負荷とを、第1圧縮機部(111)及び第2圧縮機部(112)を用いて確実に処理できる。 In the controller (120) of the third invention, the operating capacity of the first compressor unit (111) is lower than the reference capacity during the first cooling operation, and the operating capacity of the second compressor unit (112) is the reference capacity. When it is above, the predetermined | prescribed operation | movement which adjusts the opening degree of a control valve (48) and the operating capacity of a 1st compressor part (111) is performed. For this reason, a part of cooling load in the 2nd utilization side heat exchanger (84) can be processed by the 1st compressor part (111) in which operation capacity is less than standard capacity. Therefore, according to the present invention, the cooling load in the first usage-side heat exchanger (74) and the cooling load in the second usage-side heat exchanger (84) are divided into the first compressor section (111) and the second It can process reliably using a compressor part (112).
 上記第4の発明の制御器(120)は、第1冷却運転中に第1圧縮機部(111)及び第2圧縮機部(112)の運転容量が所定の基準容量以上である場合に、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように調節弁(48)の開度を調節する。このため、第1圧縮機部(111)が第1吸入配管(32)から吸入できる冷媒の流量を確保でき、第1吸入配管(32)の冷媒圧力の上昇を抑えることができる。従って、この発明によれば、第1利用側熱交換器(74)における冷媒の蒸発温度の上昇を抑えることができる。 When the operating capacity of the first compressor part (111) and the second compressor part (112) is greater than or equal to a predetermined reference capacity during the first cooling operation, the controller (120) of the fourth invention described above, The opening degree of the adjustment valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. For this reason, the flow volume of the refrigerant | coolant which can be suck | inhaled from the 1st suction pipe (32) by the 1st compressor part (111) can be ensured, and the raise of the refrigerant pressure of the 1st suction pipe (32) can be suppressed. Therefore, according to this invention, it is possible to suppress an increase in the evaporation temperature of the refrigerant in the first usage-side heat exchanger (74).
 上記第5の発明において、冷凍装置(10)は、第1利用側熱交換器(74)が休止して第2利用側熱交換器(84)が蒸発器として機能する第2冷却運転を実行可能である。そして、第2冷却運転中に第2圧縮機部(112)の運転容量が基準容量を下回る場合、制御器(120)は、調節弁(48)を全閉状態に保ち、第2吸入配管(34)の冷媒圧力が第2目標低圧となるように第2圧縮機部(112)の運転容量を調節する。従って、この発明によれば、第2圧縮機部(112)の運転容量を、第2利用側熱交換器(84)における冷却負荷に応じて適切に調節することができる。 In the fifth aspect, the refrigeration apparatus (10) performs the second cooling operation in which the first usage-side heat exchanger (74) is stopped and the second usage-side heat exchanger (84) functions as an evaporator. Is possible. When the operation capacity of the second compressor section (112) falls below the reference capacity during the second cooling operation, the controller (120) keeps the control valve (48) in a fully closed state, and the second suction pipe ( The operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure of 34) becomes the second target low pressure. Therefore, according to this invention, the operating capacity of the second compressor section (112) can be appropriately adjusted according to the cooling load in the second usage side heat exchanger (84).
 ここで、冷凍装置(10)では、第1利用側熱交換器(74)が動作を再開したことを示す信号が制御器(120)へ入力されない場合がある。もし、この場合において、第1利用側熱交換器(74)の休止中に第1吸入配管(32)の冷媒圧力を第1目標低圧と異なる圧力にするための動作を制御器(120)が行うと、第1利用側熱交換器(74)が動作を再開した後も、第1吸入配管(32)の冷媒圧力が第1目標低圧と異なる圧力に保たれてしまい、第1利用側熱交換器(74)において対象物を充分に冷却できなくなる。 Here, in the refrigeration apparatus (10), a signal indicating that the first use side heat exchanger (74) has resumed operation may not be input to the controller (120). In this case, the controller (120) performs an operation for setting the refrigerant pressure in the first suction pipe (32) to a pressure different from the first target low pressure while the first user-side heat exchanger (74) is stopped. Then, even after the first usage side heat exchanger (74) resumes operation, the refrigerant pressure in the first suction pipe (32) is maintained at a pressure different from the first target low pressure. The object cannot be sufficiently cooled in the exchanger (74).
 これに対し、上記第6の発明によれば、第1利用側熱交換器(74)が休止する第2冷却運転中に調節弁(48)が開いている状態においても、第1吸入配管(32)の冷媒圧力を第1目標低圧に保つことができる。従って、この発明によれば、第1利用側熱交換器(74)が動作を再開したことを示す信号が制御器(120)へ入力されない場合であっても、第1利用側熱交換器(74)が動作を再開した後に対象物を確実に冷却することができる。 On the other hand, according to the sixth aspect of the present invention, the first intake pipe ( The refrigerant pressure of 32) can be maintained at the first target low pressure. Therefore, according to this invention, even if it is a case where the signal which shows that the 1st utilization side heat exchanger (74) restarted operation | movement is not input into a controller (120), a 1st utilization side heat exchanger ( The object can be reliably cooled after 74) resumes operation.
 上記第7の発明の制御器(120)は、第2冷却運転中に第1圧縮機部(111)及び第2圧縮機部(112)の運転容量が所定の基準容量以上である場合に、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように調節弁(48)の開度を調節する。このため、この場合も第1吸入配管(32)の冷媒圧力を第1目標低圧に保つことができ、第1利用側熱交換器(74)が動作を再開した後に対象物を確実に冷却することができる。 The controller (120) according to the seventh aspect of the invention is such that, during the second cooling operation, when the operation capacities of the first compressor unit (111) and the second compressor unit (112) are equal to or greater than a predetermined reference capacity, The opening degree of the adjustment valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. For this reason, also in this case, the refrigerant pressure in the first suction pipe (32) can be maintained at the first target low pressure, and the object is reliably cooled after the first use side heat exchanger (74) resumes operation. be able to.
 上記第8の発明において、冷凍装置(10)は、第1利用側熱交換器(74)が蒸発器として機能して第2利用側熱交換器(84)が休止する第3冷却運転を実行可能である。そして、第3冷却運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合、制御器(120)は、調節弁(48)を全閉状態に保ち、第1吸入配管(32)の冷媒圧力が第1目標低圧となるように第1圧縮機部(111)の運転容量を調節する。従って、この発明によれば、第1圧縮機部(111)の運転容量を、第1利用側熱交換器(74)における冷却負荷に応じて適切に調節することができる。 In the eighth aspect of the invention, the refrigeration apparatus (10) performs the third cooling operation in which the first usage side heat exchanger (74) functions as an evaporator and the second usage side heat exchanger (84) pauses. Is possible. When the operating capacity of the first compressor unit (111) is lower than the reference capacity during the third cooling operation, the controller (120) keeps the control valve (48) in a fully closed state, The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure of 32) becomes the first target low pressure. Therefore, according to this invention, the operating capacity of the first compressor section (111) can be appropriately adjusted according to the cooling load in the first usage-side heat exchanger (74).
 上記第9の発明の制御器(120)は、第3冷却運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量とを調節する。このため、第1利用側熱交換器(74)における冷却負荷の一部を、運転容量が基準容量以上となっている第1圧縮機部(111)だけでなく、第2圧縮機部(112)によっても処理することができる。従って、この発明によれば、第1利用側熱交換器(74)における冷却負荷を、第1圧縮機部(111)及び第2圧縮機部(112)を用いて確実に処理できる。 The controller (120) of the ninth aspect of the invention maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third cooling operation, The operating capacity of the first compressor part (111) and the second compressor part (112) is adjusted. For this reason, a part of the cooling load in the first use side heat exchanger (74) is not limited to the first compressor part (111) whose operating capacity is equal to or higher than the reference capacity, but also the second compressor part (112 ) Can also be processed. Therefore, according to this invention, the cooling load in the first usage-side heat exchanger (74) can be reliably processed using the first compressor part (111) and the second compressor part (112).
 上記第10の発明において、冷凍装置(10)は、熱源側熱交換器(26)及び第2利用側熱交換器(84)が凝縮器として機能し、第1利用側熱交換器(74)が蒸発器として機能する第1併存運転を実行可能である。そして、第1併存運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合、制御器(120)は、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷媒の蒸発温度を、目標低圧に対応する飽和温度に保つことができ、第1利用側熱交換器(74)において対象物を確実に冷却できる。 In the tenth aspect of the invention, the refrigeration apparatus (10) includes a heat source side heat exchanger (26) and a second usage side heat exchanger (84) functioning as a condenser, and a first usage side heat exchanger (74). Is capable of performing the first coexistence operation that functions as an evaporator. When the operating capacity of the first compressor unit (111) is lower than the reference capacity during the first concurrent operation, the controller (120) causes the refrigerant pressure in the first suction pipe (32) to be the target low pressure. The operating capacity of the first compressor section (111) is adjusted. For this reason, the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
 上記第11の発明の制御器(120)は、第1併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理することができ、第1利用側熱交換器(74)において得られる冷却能力を充分に確保できる。 The controller (120) of the eleventh aspect of the invention maintains the control valve (48) in a fully open state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the first concurrent operation. The operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger The cooling capacity obtained in (74) can be sufficiently secured.
 上記第12の発明において、冷凍装置(10)は、第2利用側熱交換器(84)が凝縮器として機能し、第1利用側熱交換器(74)が蒸発器として機能する第2併存運転を実行可能である。そして、第2併存運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合、制御器(120)は、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷媒の蒸発温度を、目標低圧に対応する飽和温度に保つことができ、第1利用側熱交換器(74)において対象物を確実に冷却できる。 In the twelfth aspect of the invention, the refrigeration apparatus (10) is a second coexistence in which the second usage-side heat exchanger (84) functions as a condenser and the first usage-side heat exchanger (74) functions as an evaporator. Operation can be performed. When the operation capacity of the first compressor unit (111) is lower than the reference capacity during the second concurrent operation, the controller (120) causes the refrigerant pressure in the first suction pipe (32) to become the target low pressure. The operating capacity of the first compressor section (111) is adjusted. For this reason, the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
 上記第13の発明の制御器(120)は、第2併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理することができ、第1利用側熱交換器(74)において得られる冷却能力を充分に確保できる。 The controller (120) of the thirteenth aspect of the present invention maintains the control valve (48) in a fully open state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the second concurrent operation. The operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger The cooling capacity obtained in (74) can be sufficiently secured.
 上記第14の発明において、冷凍装置(10)は、第2利用側熱交換器(84)が凝縮器として機能し、熱源側熱交換器(26)及び第1利用側熱交換器(74)が蒸発器として機能する第3併存運転を実行可能である。そして、第3併存運転中に第1圧縮機部(111)の運転容量が基準容量を下回る場合、制御器(120)は、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷媒の蒸発温度を、目標低圧に対応する飽和温度に保つことができ、第1利用側熱交換器(74)において対象物を確実に冷却できる。 In the fourteenth aspect of the invention, the refrigeration apparatus (10) has the second use side heat exchanger (84) functioning as a condenser, and the heat source side heat exchanger (26) and the first use side heat exchanger (74). The third coexisting operation that functions as an evaporator can be executed. When the operation capacity of the first compressor unit (111) is lower than the reference capacity during the third concurrent operation, the controller (120) causes the refrigerant pressure in the first suction pipe (32) to be the target low pressure. The operating capacity of the first compressor section (111) is adjusted. For this reason, the evaporating temperature of the refrigerant in the first usage-side heat exchanger (74) can be maintained at a saturation temperature corresponding to the target low pressure, and the object is reliably cooled in the first usage-side heat exchanger (74). it can.
 上記第15の発明の制御器(120)は、第3併存運転中に第1圧縮機部(111)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第1吸入配管(32)の冷媒圧力が目標低圧となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。このため、第1利用側熱交換器(74)における冷却負荷を第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理することができ、第1利用側熱交換器(74)において得られる冷却能力を充分に確保できる。 The controller (120) of the fifteenth aspect of the invention maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor section (111) is equal to or greater than the reference capacity during the third concurrent operation, The operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. For this reason, the cooling load in the first usage-side heat exchanger (74) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the first usage-side heat exchanger The cooling capacity obtained in (74) can be sufficiently secured.
 上記第16の発明において、冷凍装置(10)は、第2利用側熱交換器(84)が凝縮器として機能し、熱源側熱交換器(26)が蒸発器として機能する加熱運転を実行可能である。そして、加熱運転中に第2圧縮機部(112)の運転容量が基準容量を下回る場合、制御器(120)は、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度となるように第2圧縮機部(112)の運転容量を調節する。このため、第2利用側熱交換器(84)における冷媒の凝縮温度を目標温度に保つことができ、第2利用側熱交換器(84)において対象物を確実に加熱できる。 In the sixteenth aspect of the invention, the refrigeration apparatus (10) can execute a heating operation in which the second use side heat exchanger (84) functions as a condenser and the heat source side heat exchanger (26) functions as an evaporator. It is. When the operation capacity of the second compressor section (112) is lower than the reference capacity during the heating operation, the controller (120) indicates that the refrigerant condensing temperature in the second usage side heat exchanger (84) is equal to the target temperature. The operating capacity of the second compressor section (112) is adjusted so that For this reason, the condensation temperature of the refrigerant in the second usage side heat exchanger (84) can be maintained at the target temperature, and the object can be reliably heated in the second usage side heat exchanger (84).
 上記第17の発明の制御器(120)は、加熱運転中に第2圧縮機部(112)の運転容量が基準容量以上である場合に、調節弁(48)を全開状態に保ち、第2利用側熱交換器(84)における冷媒の凝縮温度が目標温度となるように第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。このため、第2利用側熱交換器(84)における加熱負荷を第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理することができ、第2利用側熱交換器(84)において得られる加熱能力を充分に確保できる。 The controller (120) according to the seventeenth aspect of the present invention maintains the control valve (48) in a fully open state when the operating capacity of the second compressor section (112) is equal to or greater than the reference capacity during the heating operation, The operating capacities of the first compressor unit (111) and the second compressor unit (112) are adjusted so that the refrigerant condensing temperature in the use side heat exchanger (84) becomes the target temperature. For this reason, the heating load in the second usage side heat exchanger (84) can be processed by both the first compressor unit (111) and the second compressor unit (112), and the second usage side heat exchanger The heating ability obtained in (84) can be sufficiently secured.
図1は、実施形態1の冷凍装置の構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating the configuration of the refrigeration apparatus according to the first embodiment. 図2は、実施形態1の冷凍装置の構成を示す配管系統図であって、第1冷却運転中の冷媒の流れを示すものである。FIG. 2 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the first cooling operation. 図3は、実施形態1の冷凍装置の構成を示す配管系統図であって、第2冷却運転中の冷媒の流れを示すものである。FIG. 3 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the second cooling operation. 図4は、実施形態1の冷凍装置の構成を示す配管系統図であって、第3冷却運転中の冷媒の流れを示すものである。FIG. 4 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the third cooling operation. 図5は、実施形態1の冷凍装置の構成を示す配管系統図であって、第1併存運転中の冷媒の流れを示すものである。FIG. 5 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the first concurrent operation. 図6は、実施形態1の冷凍装置の構成を示す配管系統図であって、第2併存運転中の冷媒の流れを示すものである。FIG. 6 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of refrigerant during the second concurrent operation. 図7は、実施形態1の冷凍装置の構成を示す配管系統図であって、第3併存運転中の冷媒の流れを示すものである。FIG. 7 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of the refrigerant during the third concurrent operation. 図8は、実施形態1の冷凍装置の構成を示す配管系統図であって、暖房運転中の冷媒の流れを示すものである。FIG. 8 is a piping system diagram showing the configuration of the refrigeration apparatus of Embodiment 1, and shows the flow of refrigerant during heating operation. 図9は、実施形態1の制御器が冷却・冷房運転中に行う動作を示すフロー図である。FIG. 9 is a flowchart illustrating an operation performed by the controller of the first embodiment during the cooling / cooling operation. 図10は、実施形態1の制御器が第1冷却運転中に行う第1制御動作を示すフロー図である。FIG. 10 is a flowchart illustrating a first control operation performed by the controller of the first embodiment during the first cooling operation. 図11は、実施形態1の制御器が第2冷却運転中に行う第2制御動作を示すフロー図である。FIG. 11 is a flowchart illustrating a second control operation performed by the controller of the first embodiment during the second cooling operation. 図12は、実施形態1の制御器が冷却・暖房房運転中に行う動作を示すフロー図である。FIG. 12 is a flowchart showing an operation performed by the controller of the first embodiment during the cooling / heating operation. 図13は、実施形態1の制御器が第1併存運転中に行う動作を示すフロー図である。FIG. 13 is a flowchart illustrating an operation performed by the controller of the first embodiment during the first concurrent operation. 図14は、実施形態1の制御器が第2併存運転中に行う動作を示すフロー図である。FIG. 14 is a flowchart illustrating an operation performed by the controller of the first embodiment during the second concurrent operation. 図15は、実施形態1の変形例の制御器が第1冷却運転中に行う第1制御動作を示すフロー図である。FIG. 15 is a flowchart illustrating a first control operation performed by the controller of the modification of the first embodiment during the first cooling operation. 図16は、実施形態2の制御器が冷却・冷房運転中に行う動作を示すフロー図である。FIG. 16 is a flowchart illustrating an operation performed by the controller of the second embodiment during the cooling / cooling operation. 図17は、実施形態2の制御器が第1冷却運転中に行う第1制御動作を示すフロー図である。FIG. 17 is a flowchart illustrating a first control operation performed by the controller of the second embodiment during the first cooling operation. 図18は、実施形態2の制御器が第2冷却運転中に行う第1制御動作を示すフロー図である。FIG. 18 is a flowchart illustrating a first control operation performed by the controller of the second embodiment during the second cooling operation. 図19は、実施形態2の制御器が冷却・暖房房運転中に行う動作を示すフロー図である。FIG. 19 is a flowchart illustrating an operation performed by the controller of the second embodiment during the cooling / heating operation. 図20は、実施形態2の制御器が第1併存運転中に行う動作を示すフロー図である。FIG. 20 is a flowchart illustrating an operation performed by the controller of the second embodiment during the first concurrent operation. 図21は、実施形態2の制御器が第2併存運転中に行う動作を示すフロー図である。FIG. 21 is a flowchart illustrating an operation performed by the controller of the second embodiment during the second concurrent operation. 図22は、その他の実施形態の冷凍装置の構成を示す配管系統図である。FIG. 22 is a piping system diagram showing a configuration of a refrigeration apparatus according to another embodiment.
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Embodiments of the present invention will be described in detail with reference to the drawings. Note that the embodiments and modifications described below are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《発明の実施形態1》
 本発明の実施形態1について説明する。本実施形態の冷凍装置(10)は、例えばコンビニエンスストアに設置される。そして、この冷凍装置(10)は、食品等を陳列するための冷蔵ショーケースの庫内の冷却と、店内の空調とを同時に行うように構成される。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The refrigeration apparatus (10) of this embodiment is installed, for example, in a convenience store. And this freezing apparatus (10) is comprised so that the cooling in the store | warehouse | chamber of the refrigerated showcase for displaying food etc. and the air conditioning in a shop may be performed simultaneously.
  〈冷凍装置の全体構成〉
 図1に示すように、冷凍装置(10)は、室外ユニット(20)と、冷蔵ショーケースである冷蔵ユニット(70)と、空調ユニット(80)と、制御器(120)とを備えている。室外ユニット(20)には、室外回路(21)が設けられている。冷蔵ユニット(70)には、冷蔵回路(71)が設けられている。空調ユニット(80)には、空調回路(81)が設けられている。
<Overall configuration of refrigeration equipment>
As shown in FIG. 1, the refrigeration apparatus (10) includes an outdoor unit (20), a refrigeration unit (70) that is a refrigeration showcase, an air conditioning unit (80), and a controller (120). . The outdoor unit (20) is provided with an outdoor circuit (21). The refrigeration unit (70) is provided with a refrigeration circuit (71). The air conditioning unit (80) is provided with an air conditioning circuit (81).
 室外回路(21)には、冷蔵側液閉鎖弁(12)、冷蔵側ガス閉鎖弁(13)、空調側液閉鎖弁(14)、及び空調側ガス閉鎖弁(15)が設けられている。冷蔵側液閉鎖弁(12)は、第1連絡配管(16)を介して冷蔵回路(71)の液側端部と接続する。冷蔵側ガス閉鎖弁(13)は、第2連絡配管(17)を介して冷蔵回路(71)のガス側端部と接続する。空調側液閉鎖弁(14)は、第3連絡配管(18)を介して空調回路(81)の液側端部と接続する。空調側ガス閉鎖弁(15)は、第4連絡配管(19)を介して空調回路(81)のガス側端部と接続する。 The outdoor circuit (21) is provided with a refrigeration side liquid closing valve (12), a refrigeration side gas closing valve (13), an air conditioning side liquid closing valve (14), and an air conditioning side gas closing valve (15). The refrigeration side liquid closing valve (12) is connected to the liquid side end of the refrigeration circuit (71) via the first connection pipe (16). The refrigeration side gas shut-off valve (13) is connected to the gas side end of the refrigeration circuit (71) via the second communication pipe (17). The air conditioning side liquid closing valve (14) is connected to the liquid side end of the air conditioning circuit (81) via the third connection pipe (18). The air conditioning side gas shut-off valve (15) is connected to the gas side end of the air conditioning circuit (81) via the fourth connecting pipe (19).
 冷凍装置(10)では、冷蔵回路(71)及び空調回路(81)を室外回路(21)に連絡配管(16~19)を介して接続することによって、冷媒回路(11)が構成される。冷媒回路(11)は、充填された冷媒を循環させることによって、蒸気圧縮式の冷凍サイクルを行う。 In the refrigeration apparatus (10), the refrigerant circuit (11) is configured by connecting the refrigeration circuit (71) and the air conditioning circuit (81) to the outdoor circuit (21) via the connecting pipes (16 to 19). The refrigerant circuit (11) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
 なお、本実施形態の冷凍装置(10)には、複数の冷蔵ユニット(70)が設けられていてもよい。この場合、冷媒回路(11)では、複数の冷蔵回路(71)が互いに並列に接続される。つまり、複数の冷蔵回路(71)は、それぞれの液側端部が第1連絡配管(16)に接続され、それぞれのガス側端部が第2連絡配管(17)に接続される。 Note that the refrigeration apparatus (10) of the present embodiment may be provided with a plurality of refrigeration units (70). In this case, in the refrigerant circuit (11), the plurality of refrigeration circuits (71) are connected in parallel to each other. That is, as for a some refrigeration circuit (71), each liquid side edge part is connected to the 1st communication piping (16), and each gas side edge part is connected to the 2nd communication piping (17).
 また、本実施形態の冷凍装置(10)には、複数の空調ユニット(80)が設けられていてもよい。この場合、冷媒回路(11)では、複数の空調回路(81)が互いに並列に接続される。つまり、複数の空調回路(81)は、それぞれの液側端部が第3連絡配管(18)に接続され、それぞれのガス側端部が第4連絡配管(19)に接続される。 Also, the refrigeration apparatus (10) of the present embodiment may be provided with a plurality of air conditioning units (80). In this case, in the refrigerant circuit (11), the plurality of air conditioning circuits (81) are connected in parallel to each other. That is, as for a some air conditioning circuit (81), each liquid side edge part is connected to the 3rd connection piping (18), and each gas side edge part is connected to the 4th connection piping (19).
  〈室外ユニット〉
 室外ユニット(20)は、室外回路(21)と室外ファン(23)とを備えている。室外回路(21)には、第1圧縮機部(111)を構成する第1圧縮機(24)と、第2圧縮機部(112)を構成する第2圧縮機(25)と、熱源側熱交換器である室外熱交換器(26)と、第1四方切換弁(27)と、第2四方切換弁(28)と、受液器(29)と、過冷却ユニット(50)とが接続されている。本実施形態の第1圧縮機部(111)及び第2圧縮機部(112)は、それぞれが一台の圧縮機(24,25)によって構成されている。
<Outdoor unit>
The outdoor unit (20) includes an outdoor circuit (21) and an outdoor fan (23). The outdoor circuit (21) includes a first compressor (24) constituting the first compressor section (111), a second compressor (25) constituting the second compressor section (112), and a heat source side. An outdoor heat exchanger (26) which is a heat exchanger, a first four-way switching valve (27), a second four-way switching valve (28), a liquid receiver (29), and a supercooling unit (50) It is connected. Each of the first compressor section (111) and the second compressor section (112) of the present embodiment is configured by a single compressor (24, 25).
 第1圧縮機(24)及び第2圧縮機(25)は、いずれもスクロール型の全密閉型圧縮機である。図示しないが、これら圧縮機(24,25)では、スクロール型流体機械である圧縮機構と、圧縮機構を駆動する電動機とが、密閉容器状のケーシングに収容されている。 The first compressor (24) and the second compressor (25) are both scroll-type hermetic compressors. Although not shown, in these compressors (24, 25), a compression mechanism that is a scroll type fluid machine and an electric motor that drives the compression mechanism are housed in a sealed container-like casing.
 第1圧縮機(24)には、第1吐出配管(31)と第1吸入配管(32)とが接続されている。第1吐出配管(31)は、第1圧縮機(24)の吐出部を後述する第1四方切換弁(27)の第1ポートに接続する。第1吸入配管(32)は、第1圧縮機(24)の吸入部を冷蔵側ガス閉鎖弁(13)に接続する。 A first discharge pipe (31) and a first suction pipe (32) are connected to the first compressor (24). The first discharge pipe (31) connects the discharge portion of the first compressor (24) to a first port of a first four-way switching valve (27) described later. The first suction pipe (32) connects the suction part of the first compressor (24) to the refrigeration side gas shut-off valve (13).
 第2圧縮機(25)には、第2吐出配管(33)と第2吸入配管(34)とが接続される。第2吐出配管(33)は、第2圧縮機(25)の吐出部を後述する第1四方切換弁(27)の第1ポートに接続する。第2吸入配管(34)は、第2圧縮機(25)の吸入部を後述する第2四方切換弁(28)の第2ポートに接続する。 A second discharge pipe (33) and a second suction pipe (34) are connected to the second compressor (25). The second discharge pipe (33) connects the discharge portion of the second compressor (25) to the first port of the first four-way switching valve (27) described later. The second suction pipe (34) connects the suction portion of the second compressor (25) to a second port of a second four-way switching valve (28) described later.
 各圧縮機(24,25)の電動機には、インバータを介して交流が供給される。インバータの出力周波数(即ち、圧縮機の運転周波数)を変更すると、各圧縮機(24,25)の電動機の回転速度が変化し、その結果、圧縮機(24,25)の運転容量が変化する。具体的には、圧縮機(24,25)の運転周波数を上昇させると圧縮機(24,25)の運転容量が増加し、圧縮機(24,25)の運転周波数を低下させると圧縮機(24,25)の運転容量が減少する。そして、第1圧縮機(24)の運転容量が変化すると第1圧縮機部(111)の運転容量が変化し、第2圧縮機(25)の運転容量が変化すると第2圧縮機部(112)の運転容量が変化する。 AC is supplied to the motor of each compressor (24, 25) via an inverter. Changing the output frequency of the inverter (that is, the operating frequency of the compressor) changes the rotational speed of the motor of each compressor (24, 25), resulting in a change in the operating capacity of the compressor (24, 25). . Specifically, increasing the operating frequency of the compressor (24, 25) increases the operating capacity of the compressor (24, 25), and decreasing the operating frequency of the compressor (24, 25) reduces the compressor ( 24,25) The operating capacity is reduced. When the operating capacity of the first compressor (24) changes, the operating capacity of the first compressor section (111) changes, and when the operating capacity of the second compressor (25) changes, the second compressor section (112 ) Operating capacity changes.
 室外熱交換器(26)は、フィン・アンド・チューブ型の熱交換器である。室外熱交換器(26)の近傍には、室外熱交換器(26)へ室外空気を供給するための室外ファン(23)が設置される。室外熱交換器(26)は、冷媒回路(11)の冷媒を室外空気と熱交換させる。 The outdoor heat exchanger (26) is a fin-and-tube heat exchanger. An outdoor fan (23) for supplying outdoor air to the outdoor heat exchanger (26) is installed in the vicinity of the outdoor heat exchanger (26). The outdoor heat exchanger (26) exchanges heat between the refrigerant in the refrigerant circuit (11) and outdoor air.
 第1四方切換弁(27)は、第1吐出配管(31)及び第2吐出配管(33)に接続する第1ポートと、第2四方切換弁(28)の第4ポートに接続する第2ポートと、室外熱交換器(26)のガス側端部に接続する第3ポートと、空調熱交換器(84)のガス側端部に接続する第4ポートとを有している。第2四方切換弁(28)は、第1吐出配管(31)及び第2吐出配管(33)に接続する第1ポートと、第2吸入配管(34)に接続する第2ポートと、封止された第3ポートと、第1四方切換弁(27)の第2ポートに接続する第4ポートとを有している。 The first four-way switching valve (27) has a first port connected to the first discharge pipe (31) and the second discharge pipe (33) and a second port connected to the fourth port of the second four-way switch valve (28). A port, a third port connected to the gas side end of the outdoor heat exchanger (26), and a fourth port connected to the gas side end of the air conditioning heat exchanger (84). The second four-way switching valve (28) includes a first port connected to the first discharge pipe (31) and the second discharge pipe (33), a second port connected to the second suction pipe (34), and a seal And a fourth port connected to the second port of the first four-way switching valve (27).
 各四方切換弁(27,28)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する第1状態(図1の実線で示す状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する第2状態(図1の破線で示す状態)とにそれぞれ切り換え可能に構成される。第1四方切換弁(27)及び第2四方切換弁(28)は、第2吸入配管(34)が空調熱交換器(84)に連通する状態と該第2吸入配管(34)が室外熱交換器(26)に連通する状態とを切り換えるための切換機構(110)を構成している。 Each four-way switching valve (27, 28) has a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, It is configured to be switchable to a second state (state indicated by a broken line in FIG. 1) in which the fourth port communicates and the second port communicates with the third port. In the first four-way switching valve (27) and the second four-way switching valve (28), the second suction pipe (34) communicates with the air conditioning heat exchanger (84) and the second suction pipe (34) is in outdoor heat. A switching mechanism (110) for switching between a state communicating with the exchanger (26) is configured.
 受液器(29)は、その内部に余剰の冷媒が貯留される密閉容器である。受液器(29)には、第1液管(41)と、第2液管(42)と、ガス抜き管(36)とが接続される。 The liquid receiver (29) is a sealed container in which excess refrigerant is stored. A first liquid pipe (41), a second liquid pipe (42), and a gas vent pipe (36) are connected to the liquid receiver (29).
 第1液管(41)は、一端が室外熱交換器(26)の液側端部に接続し、他端が受液器(29)の頂部に接続する。第2液管(42)は、一端が受液器(29)の底部に接続し、他端が過冷却熱交換器(51)に接続する。ガス抜き管(36)は、一端が受液器(29)の頂部に接続し、他端がインジェクション回路(55)の中継管(57)に接続する。 The first liquid pipe (41) has one end connected to the liquid side end of the outdoor heat exchanger (26) and the other end connected to the top of the liquid receiver (29). The second liquid pipe (42) has one end connected to the bottom of the liquid receiver (29) and the other end connected to the supercooling heat exchanger (51). The gas vent pipe (36) has one end connected to the top of the liquid receiver (29) and the other end connected to the relay pipe (57) of the injection circuit (55).
 過冷却ユニット(50)は、冷蔵ユニット(70)へ供給される冷媒を冷却するものである。過冷却ユニット(50)は、過冷却熱交換器(51)とインジェクション回路(55)とを有している。過冷却熱交換器(51)は、冷却側流路(52)と蒸発側流路(53)とを有する。冷却側流路(52)は、流入端が第2液管(42)に接続し、流出端が冷蔵側液管(37)に接続する。蒸発側流路(53)は、インジェクション回路(55)の一部を構成する。過冷却熱交換器(51)では、冷却側流路(52)を流れる高圧の液冷媒と、蒸発側流路(53)を流れる中間圧の冷媒とが熱交換する。 The supercooling unit (50) cools the refrigerant supplied to the refrigeration unit (70). The supercooling unit (50) has a supercooling heat exchanger (51) and an injection circuit (55). The supercooling heat exchanger (51) has a cooling side channel (52) and an evaporation side channel (53). The cooling side flow path (52) has an inflow end connected to the second liquid pipe (42) and an outflow end connected to the refrigeration side liquid pipe (37). The evaporation side channel (53) constitutes a part of the injection circuit (55). In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing through the cooling side flow path (52) and the intermediate pressure refrigerant flowing through the evaporation side flow path (53) exchange heat.
 インジェクション回路(55)は、中間圧の冷媒を各圧縮機(24,25)へ導入するものである。インジェクション回路(55)は、流入部が冷蔵側液管(37)に接続し、流出部は2つに分岐して各圧縮機(24,25)の中間圧部に接続する。具体的に、インジェクション回路(55)は、蒸発側流路(53)の流入部に接続する1本の流入管(56)と、蒸発側流路(53)の流出部に接続する1本の中継管(57)と、該中継管(57)の流出部から分岐する2本の導入管(58,59)とを有している。 The injection circuit (55) introduces a medium-pressure refrigerant into each compressor (24, 25). The injection circuit (55) has an inflow portion connected to the refrigeration side liquid pipe (37), and an outflow portion branched into two and connected to an intermediate pressure portion of each compressor (24, 25). Specifically, the injection circuit (55) includes one inflow pipe (56) connected to the inflow portion of the evaporation side flow path (53) and one line connected to the outflow portion of the evaporation side flow path (53). It has a relay pipe (57) and two introduction pipes (58, 59) branched from the outflow part of the relay pipe (57).
 流入管(56)には、高圧の液冷媒を中間圧まで減圧する減圧弁(60)が接続される。減圧弁(60)は、開度可変の電子膨張弁である。2本の導入管(58,59)は、第1圧縮機(24)の圧縮途中の圧縮室に接続する第1導入管(58)と、第2圧縮機(25)の圧縮途中の圧縮室に接続する第2導入管(59)とで構成される。第1導入管(58)には、第1インジェクション弁(61)が設けられ、第2導入管(59)には、第2インジェクション弁(62)が設けられる。各インジェクション弁(61,62)は、開度可変の電子膨張弁であり、各圧縮機(24,25)へ導入する中間圧の冷媒の流量を調節する。 The pressure reducing valve (60) for reducing the high pressure liquid refrigerant to an intermediate pressure is connected to the inflow pipe (56). The pressure reducing valve (60) is an electronic expansion valve having a variable opening. The two introduction pipes (58, 59) are connected to a compression chamber in the middle of compression of the first compressor (24) and a compression chamber in the middle of compression of the second compressor (25). And a second introduction pipe (59) connected to the. The first introduction pipe (58) is provided with a first injection valve (61), and the second introduction pipe (59) is provided with a second injection valve (62). Each injection valve (61, 62) is an electronic expansion valve with a variable opening, and adjusts the flow rate of the intermediate-pressure refrigerant introduced into each compressor (24, 25).
 室外回路(21)には、冷蔵側液管(37)、空調側液管(38)、第3液管(43)、第4液管(44)、及び第5液管(45)が設けられている。冷蔵側液管(37)は、一端が冷蔵側液閉鎖弁(12)に接続し、他端が過冷却熱交換器(51)の冷却側流路(52)に接続する。空調側液管(38)は、一端が空調側液閉鎖弁(14)に接続し、他端が第2液管(42)に接続する。空調側液管(38)には、液側膨張弁(49)が設けられる。第3液管(43)は、一端が空調側液管(38)に接続し、他端が第1液管(41)に接続する。第4液管(44)は、一端が冷蔵側液管(37)に接続し、他端が第1液管(41)に接続する。第4液管(44)には、室外膨張弁(39)が設けられる。液側膨張弁(49)および室外膨張弁(39)は、それぞれが開度可変の電子膨張弁である。第5液管(45)は、一端が第1液管(41)に接続し、他端が第4液管(44)に接続する。 The outdoor circuit (21) is provided with a refrigeration side liquid pipe (37), an air conditioning side liquid pipe (38), a third liquid pipe (43), a fourth liquid pipe (44), and a fifth liquid pipe (45). It has been. One end of the refrigeration side liquid pipe (37) is connected to the refrigeration side liquid closing valve (12), and the other end is connected to the cooling side flow path (52) of the supercooling heat exchanger (51). The air conditioning side liquid pipe (38) has one end connected to the air conditioning side liquid closing valve (14) and the other end connected to the second liquid pipe (42). The air conditioning side liquid pipe (38) is provided with a liquid side expansion valve (49). The third liquid pipe (43) has one end connected to the air conditioning side liquid pipe (38) and the other end connected to the first liquid pipe (41). The fourth liquid pipe (44) has one end connected to the refrigeration side liquid pipe (37) and the other end connected to the first liquid pipe (41). The fourth liquid pipe (44) is provided with an outdoor expansion valve (39). The liquid side expansion valve (49) and the outdoor expansion valve (39) are electronic expansion valves each having a variable opening. The fifth liquid pipe (45) has one end connected to the first liquid pipe (41) and the other end connected to the fourth liquid pipe (44).
 室外回路(21)には、六つの逆止弁(CV1~CV5)が設けられる。第1逆止弁(CV1)は第1吐出配管(31)に、第2逆止弁(CV2)は第2吐出配管(33)に、第3逆止弁(CV3)は第1液管(41)に、第4逆止弁(CV4)は第3液管(43)に、第5逆止弁(CV5)は第4液管(44)に、第6逆止弁(CV6)は第5液管(45)に、それぞれ設けられる。これらの逆止弁(CV1~CV6)は、図1に示す矢印の方向への冷媒の流れを許容し、その逆の方向への冷媒の流れを禁止する。 The outdoor circuit (21) is provided with six check valves (CV1 to CV5). The first check valve (CV1) is connected to the first discharge pipe (31), the second check valve (CV2) is connected to the second discharge pipe (33), and the third check valve (CV3) is connected to the first liquid pipe (CV1). 41), the fourth check valve (CV4) is in the third liquid pipe (43), the fifth check valve (CV5) is in the fourth liquid pipe (44), and the sixth check valve (CV6) is in the It is provided in each of the five liquid pipes (45). These check valves (CV1 to CV6) allow the flow of refrigerant in the direction of the arrow shown in FIG. 1, and prohibit the flow of refrigerant in the opposite direction.
 室外回路(21)には、二つの電磁弁(SV1,SV2)が設けられる。第1電磁弁(SV1)は、第1液管(41)における第3逆止弁(CV3)の上流側に設けられる。第2電磁弁(SV2)は、ガス抜き管(36)に設けられる。これらの電磁弁(SV1,SV2)は、開状態と閉状態に切り換わる開閉弁である。 The outdoor circuit (21) is provided with two solenoid valves (SV1, SV2). The first solenoid valve (SV1) is provided on the upstream side of the third check valve (CV3) in the first liquid pipe (41). The second solenoid valve (SV2) is provided in the gas vent pipe (36). These solenoid valves (SV1, SV2) are open / close valves that switch between an open state and a closed state.
 室外回路(21)には、接続用配管(47)と流量調節弁(48)とが設けられる。接続用配管(47)は、一端が第1吸入配管(32)に接続し、他端が第2吸入配管(34)に接続する。流量調節弁(48)は、接続用配管(47)に設けられる。流量調節弁(48)は、開度可変の電子膨張弁である。つまり、流量調節弁(48)は、弁体を駆動するためのパルスモータを備えており、弁体を移動させることによってその開度が変化する。 The outdoor circuit (21) is provided with a connecting pipe (47) and a flow control valve (48). The connection pipe (47) has one end connected to the first suction pipe (32) and the other end connected to the second suction pipe (34). The flow control valve (48) is provided in the connection pipe (47). The flow rate control valve (48) is an electronic expansion valve with a variable opening. That is, the flow rate adjusting valve (48) includes a pulse motor for driving the valve body, and the opening degree thereof is changed by moving the valve body.
 室外回路(21)には、各種のセンサが設けられる。 Various sensors are provided in the outdoor circuit (21).
 第1吐出配管(31)には、第1圧縮機(24)の吐出冷媒の温度を検出する第1吐出温度センサ(90)と、第1吐出配管(31)内の冷媒圧力を検出する吐出圧力センサ(91)とが設けられる。 The first discharge pipe (31) includes a first discharge temperature sensor (90) that detects the temperature of refrigerant discharged from the first compressor (24), and a discharge that detects refrigerant pressure in the first discharge pipe (31). And a pressure sensor (91).
 第2吐出配管(33)には、第2圧縮機(25)の吐出冷媒の温度を検出する第2吐出温度センサ(92)が設けられる。 The second discharge pipe (33) is provided with a second discharge temperature sensor (92) for detecting the temperature of the refrigerant discharged from the second compressor (25).
 第1吸入配管(32)には、第1圧縮機(24)の吸入冷媒の温度を検出する第1吸入温度センサ(93)と、第1吸入配管(32)内の冷媒圧力LP1を検出する第1吸入圧力センサ(94)とが設けられる。第1吸入配管(32)では、第1吸入配管(32)に対する接続用配管(47)の接続位置の下流側に第1吸入温度センサ(93)が配置され、その上流側に第1吸入圧力センサ(94)が配置されている。 In the first suction pipe (32), a first suction temperature sensor (93) for detecting the temperature of the refrigerant sucked in the first compressor (24) and a refrigerant pressure LP1 in the first suction pipe (32) are detected. A first suction pressure sensor (94) is provided. In the first suction pipe (32), the first suction temperature sensor (93) is disposed on the downstream side of the connection position of the connection pipe (47) to the first suction pipe (32), and the first suction pressure is disposed on the upstream side. A sensor (94) is arranged.
 第2吸入配管(34)には、第2吸入配管(34)を流れる冷媒の温度を検出する第2吸入温度センサ(95)と、第2吸入配管(34)内の冷媒圧力LP2を検出する第2吸入圧力センサ(96)とが設けられる。第2吸入配管(34)では、第2吸入配管(34)に対する接続用配管(47)の接続位置の上流側に第2吸入温度センサ(95)及び第2吸入圧力センサ(96)が配置されている。 In the second suction pipe (34), a second suction temperature sensor (95) for detecting the temperature of the refrigerant flowing through the second suction pipe (34) and a refrigerant pressure LP2 in the second suction pipe (34) are detected. A second suction pressure sensor (96) is provided. In the second suction pipe (34), the second suction temperature sensor (95) and the second suction pressure sensor (96) are arranged upstream of the connection position of the connection pipe (47) to the second suction pipe (34). ing.
 室外熱交換器(26)の液側端部には、冷媒の温度を検出する室外側冷媒温度センサ(97)が設けられる。インジェクション回路(55)の中継管(57)には、冷媒の温度を検出する中間側冷媒温度センサ(98)と、冷媒の圧力を検出する中間側冷媒圧力センサ(99)とが設けられる。 An outdoor refrigerant temperature sensor (97) for detecting the refrigerant temperature is provided at the liquid side end of the outdoor heat exchanger (26). The relay pipe (57) of the injection circuit (55) is provided with an intermediate refrigerant temperature sensor (98) for detecting the refrigerant temperature and an intermediate refrigerant pressure sensor (99) for detecting the refrigerant pressure.
 また、室外ユニット(20)には、外気温度センサ(100)が設けられる。外気温度センサ(100)は、室外熱交換器(26)の近傍に配置され、室外熱交換器(26)へ供給される室外空気の温度を検出する。 Also, the outdoor unit (20) is provided with an outside air temperature sensor (100). The outdoor temperature sensor (100) is disposed in the vicinity of the outdoor heat exchanger (26), and detects the temperature of the outdoor air supplied to the outdoor heat exchanger (26).
  〈冷蔵ユニット〉
 冷蔵ユニット(70)は、食品等を陳列するための冷蔵ショーケースである。冷蔵ユニット(70)は、冷蔵回路(71)と庫内ファン(73)とを備えている。
<Refrigerated unit>
The refrigeration unit (70) is a refrigerated showcase for displaying food and the like. The refrigeration unit (70) includes a refrigeration circuit (71) and an internal fan (73).
 冷蔵回路(71)には、ガス側端部から液側端部に向かって順に、第1利用側熱交換器である冷蔵熱交換器(74)と、庫内膨張弁(75)と、第3電磁弁(SV3)とが設けられる。冷蔵熱交換器(74)は、フィン・アンド・チューブ型の熱交換器である。庫内膨張弁(75)は、感温式の膨張弁である。庫内膨張弁(75)の開度は、冷蔵熱交換器(74)から流出する冷媒の過熱度に応じて調節される、第3電磁弁(SV3)は、開状態と閉状態に切り換わる開閉弁である。 The refrigeration circuit (71) includes, in order from the gas side end toward the liquid side end, a refrigeration heat exchanger (74) that is a first use side heat exchanger, an internal expansion valve (75), 3 solenoid valves (SV3) are provided. The refrigeration heat exchanger (74) is a fin-and-tube heat exchanger. The internal expansion valve (75) is a temperature-sensitive expansion valve. The opening degree of the internal expansion valve (75) is adjusted according to the degree of superheat of the refrigerant flowing out of the refrigeration heat exchanger (74). The third solenoid valve (SV3) is switched between an open state and a closed state. Open / close valve.
 庫内ファン(73)は、冷蔵熱交換器(74)の近傍に配置される。庫内ファン(73)は、冷蔵ユニット(70)の庫内の空気を冷蔵熱交換器(74)へ供給する。冷蔵熱交換器(74)は、冷媒回路(11)の冷媒を、庫内ファン(73)によって供給された庫内空気と熱交換させる。 The internal fan (73) is arranged near the refrigeration heat exchanger (74). The internal fan (73) supplies the air in the refrigerator of the refrigeration unit (70) to the refrigeration heat exchanger (74). The refrigeration heat exchanger (74) exchanges heat between the refrigerant in the refrigerant circuit (11) and the internal air supplied by the internal fan (73).
 冷蔵ユニット(70)には、庫内温度センサ(101)が設けられる。庫内温度センサ(101)は、冷蔵熱交換器(74)の近傍に配置され、冷蔵熱交換器(74)へ供給される庫内空気の温度を検出する。 The refrigeration unit (70) is provided with an internal temperature sensor (101). The internal temperature sensor (101) is disposed in the vicinity of the refrigeration heat exchanger (74) and detects the temperature of the internal air supplied to the refrigeration heat exchanger (74).
 冷蔵ユニット(70)は、庫内温度センサ(101)の検出値に基づいて、起動と停止を行う。具体的に、冷蔵ユニット(70)は、庫内温度センサ(101)の検出値Tsが庫内の設定温度Tssを所定値(例えば、0.5℃)だけ上回ると(Tss+0.5<Ts)、第3電磁弁(SV3)を開いて庫内ファン(73)を作動させ、庫内を冷却するための動作を行う。一方、冷蔵ユニット(70)は、庫内温度センサ(101)の検出値Tsが庫内の設定温度Tssを所定値(例えば、0.5℃)だけ下回ると(Ts<Tss-0.5)、第3電磁弁(SV3)を閉じて庫内ファン(73)を停止させ、庫内を冷却するための動作を停止する。 The refrigeration unit (70) starts and stops based on the detection value of the internal temperature sensor (101). Specifically, the refrigeration unit (70) determines that the detection value Ts of the internal temperature sensor (101) exceeds the internal set temperature Tss by a predetermined value (for example, 0.5 ° C.) (Tss + 0.5 <Ts). Then, the third solenoid valve (SV3) is opened to operate the internal fan (73) to cool the interior. On the other hand, when the detection value Ts of the internal temperature sensor (101) falls below the set temperature Tss in the internal storage by a predetermined value (for example, 0.5 ° C.), the refrigeration unit (70) (Ts <Tss−0.5). Then, the third solenoid valve (SV3) is closed to stop the internal fan (73), and the operation for cooling the internal space is stopped.
 このように、冷蔵ユニット(70)の運転状態は、庫内を冷却するための動作を行うサーモON状態と、庫内を冷却するための動作を休止するサーモOFF状態とに切り換わる。冷蔵ユニット(70)は、その運転状態がサーモON状態とサーモOFF状態のどちらであるかを示すサーモ信号を制御器(120)に対して出力する場合と、サーモ信号を制御器(120)に対して出力しない場合とがある。 Thus, the operation state of the refrigeration unit (70) is switched between a thermo-ON state in which the operation for cooling the interior is performed and a thermo-off state in which the operation for cooling the interior is suspended. The refrigeration unit (70) outputs a thermo signal indicating whether the operation state is the thermo ON state or the thermo OFF state to the controller (120), and outputs the thermo signal to the controller (120). On the other hand, there is a case where it does not output.
  〈空調ユニット〉
 空調ユニット(80)は、空調回路(81)と室内ファン(83)とを備えている。
<Air conditioning unit>
The air conditioning unit (80) includes an air conditioning circuit (81) and an indoor fan (83).
 空調回路(81)には、ガス側端部から液側端部に向かって順に、第2利用側熱交換器である空調熱交換器(84)と、室内膨張弁(85)とが設けられる。空調熱交換器(84)は、フィン・アンド・チューブ型の熱交換器である。室内膨張弁(85)は、開度可変の電子膨張弁である。 The air conditioning circuit (81) is provided with an air conditioning heat exchanger (84) as a second usage side heat exchanger and an indoor expansion valve (85) in order from the gas side end to the liquid side end. . The air conditioning heat exchanger (84) is a fin-and-tube heat exchanger. The indoor expansion valve (85) is an electronic expansion valve with a variable opening.
 室内ファン(83)は、空調熱交換器(84)の近傍に配置される。室内ファン(83)は、店内の室内空気を空調熱交換器(84)へ供給する。空調熱交換器(84)は、冷媒回路(11)の冷媒を、室内ファン(83)によって供給された室内空気と熱交換させる。 The indoor fan (83) is arranged near the air conditioning heat exchanger (84). The indoor fan (83) supplies indoor air in the store to the air conditioning heat exchanger (84). The air conditioning heat exchanger (84) exchanges heat between the refrigerant in the refrigerant circuit (11) and room air supplied by the indoor fan (83).
 空調ユニット(80)には、室内温度センサ(102)が設けられる。室内温度センサ(102)は、空調熱交換器(84)の近傍に配置され、空調熱交換器(84)へ供給される室内空気の温度を検出する。 The air conditioning unit (80) is provided with an indoor temperature sensor (102). The indoor temperature sensor (102) is disposed in the vicinity of the air conditioning heat exchanger (84) and detects the temperature of the indoor air supplied to the air conditioning heat exchanger (84).
 空調ユニット(80)は、室内温度センサ(102)の検出値に基づいて、起動と停止を行う。 The air conditioning unit (80) starts and stops based on the detected value of the indoor temperature sensor (102).
 冷房運転中において、空調ユニット(80)は、室内温度センサ(102)の検出値Trが庫内の設定温度Trsを所定値(例えば、0.5℃)だけ上回ると(Trs+0.5<Tr)、室内膨張弁(85)を開いて室内ファン(83)を作動させ、室内を冷房するための動作を行う。一方、空調ユニット(80)は、室内温度センサ(102)の検出値Trが庫内の設定温度Trsを所定値(例えば、0.5℃)だけ下回ると(Tr<Trs-0.5)、室内膨張弁(85)を閉じて室内ファン(83)を停止させ、室内を冷房するための動作を停止する。 During the cooling operation, the air conditioning unit (80) detects that the detected value Tr of the indoor temperature sensor (102) exceeds the set temperature Trs in the cabinet by a predetermined value (for example, 0.5 ° C.) (Trs + 0.5 <Tr). Then, the indoor expansion valve (85) is opened, the indoor fan (83) is operated, and an operation for cooling the room is performed. On the other hand, when the detected value Tr of the indoor temperature sensor (102) falls below the set temperature Trs in the cabinet by a predetermined value (for example, 0.5 ° C.) (Tr <Trs−0.5), The indoor expansion valve (85) is closed to stop the indoor fan (83), and the operation for cooling the room is stopped.
 暖房運転中において、空調ユニット(80)は、室内温度センサ(102)の検出値Trが庫内の設定温度Trsを所定値(例えば、0.5℃)だけ下回ると(Tr<Trs-0.5)、室内膨張弁(85)を開いて室内ファン(83)を作動させ、室内を暖房するための動作を行う。一方、空調ユニット(80)は、室内温度センサ(102)の検出値Trが庫内の設定温度Trsを所定値(例えば、0.5℃)だけ上回ると(Trs+0.5<Tr)、室内膨張弁(85)を閉じて室内ファン(83)を停止させ、室内を暖房するための動作を停止する。 During the heating operation, the air conditioning unit (80) detects that the detected value Tr of the indoor temperature sensor (102) is lower than the set temperature Trs in the refrigerator by a predetermined value (for example, 0.5 ° C.) (Tr <Trs−0.0. 5) The indoor expansion valve (85) is opened and the indoor fan (83) is operated to perform an operation for heating the room. On the other hand, when the detected value Tr of the indoor temperature sensor (102) exceeds the set temperature Trs in the refrigerator by a predetermined value (for example, 0.5 ° C.) (Trs + 0.5 <Tr), the air conditioning unit (80) expands indoors. The valve (85) is closed to stop the indoor fan (83), and the operation for heating the room is stopped.
 このように、空調ユニット(80)の運転状態は、室内を冷房または暖房するための動作を行うサーモON状態と、室内を冷房または暖房するための動作を休止するサーモOFF状態とに切り換わる。空調ユニット(80)は、その運転状態がサーモON状態とサーモOFF状態のどちらであるかを示すサーモ信号を、制御器(120)に対して出力する。 Thus, the operating state of the air conditioning unit (80) is switched between a thermo-ON state in which an operation for cooling or heating the room is performed and a thermo-off state in which an operation for cooling or heating the room is suspended. The air conditioning unit (80) outputs to the controller (120) a thermo signal indicating whether the operation state is the thermo-ON state or the thermo-OFF state.
  〈制御器〉
 制御器(120)は、上述した各種のセンサの検出値に応じて、各種の機器(圧縮機、各種の弁、各種のファン等)を制御する。例えば、制御器(120)は、四方切換弁(27,28)を操作することによって冷凍装置(10)の運転状態を変更する動作と、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する動作と、流量調節弁(48)の開度を調節する動作とを行う。制御器(120)が行う動作については、後述する。
<Controller>
The controller (120) controls various devices (compressor, various valves, various fans, etc.) according to the detection values of the various sensors described above. For example, the controller (120) includes an operation for changing the operating state of the refrigeration apparatus (10) by operating the four-way switching valve (27, 28), and the first compressor unit (111) and the second compressor unit. The operation of adjusting the operating capacity of (112) and the operation of adjusting the opening of the flow rate control valve (48) are performed. The operation performed by the controller (120) will be described later.
  -運転動作-
 冷凍装置(10)の運転動作について説明する。冷凍装置(10)は、冷蔵・冷房運転と冷蔵・暖房運転とを選択的に行う。
-Driving operation-
The operation of the refrigeration apparatus (10) will be described. The refrigeration apparatus (10) selectively performs refrigeration / cooling operation and refrigeration / heating operation.
  〈冷蔵・冷房運転〉
 冷蔵・冷房運転は、冷蔵ショーケースである冷蔵ユニット(70)の庫内を冷却し、空調ユニット(80)によって室内を冷房するための運転である。冷蔵・冷房運転中の冷凍装置(10)は、第1冷却運転と第2冷却運転と第3冷却運転とを選択的に行う。
<Refrigeration / cooling operation>
The refrigeration / cooling operation is an operation for cooling the interior of the refrigeration unit (70), which is a refrigeration showcase, and cooling the room by the air conditioning unit (80). The refrigeration apparatus (10) during the refrigeration / cooling operation selectively performs the first cooling operation, the second cooling operation, and the third cooling operation.
 冷蔵・冷房運転では、第1四方切換弁(27)が第1状態に、第2四方切換弁(28)が第1状態に、第1電磁弁(SV1)が開放状態にそれぞれ設定される。また、冷蔵・冷房運転では、室外膨張弁(39)が全閉状態に、液側膨張弁(49)が全開状態に設定され、流量調節弁(48)、減圧弁(60)、第1インジェクション弁(61)、第2インジェクション弁(62)、及び庫内膨張弁(75)がそれぞれ所定開度に調節される。また、冷蔵・冷房運転では、室外ファン(23)、庫内ファン(73)、及び室内ファン(83)が作動する。 In the refrigeration / cooling operation, the first four-way switching valve (27) is set to the first state, the second four-way switching valve (28) is set to the first state, and the first electromagnetic valve (SV1) is set to the open state. In the refrigeration / cooling operation, the outdoor expansion valve (39) is set to a fully closed state, the liquid side expansion valve (49) is set to a fully open state, the flow control valve (48), the pressure reducing valve (60), and the first injection. The valve (61), the second injection valve (62), and the internal expansion valve (75) are each adjusted to a predetermined opening degree. In the refrigeration / cooling operation, the outdoor fan (23), the internal fan (73), and the indoor fan (83) are operated.
   〔第1冷却運転〕
 図2に示すように、第1冷却運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となる。第1冷却運転では、第3電磁弁(SV3)が開放状態に設定され、室内膨張弁(85)が所定開度に調節される。そして、第1冷却運転中の冷媒回路(11)では、室外熱交換器(26)が凝縮器として機能し、冷蔵熱交換器(74)が蒸発器として機能し、空調熱交換器(84)が蒸発器として機能する。
[First cooling operation]
As shown in FIG. 2, in the refrigeration apparatus (10) during the first cooling operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. In the first cooling operation, the third solenoid valve (SV3) is set to an open state, and the indoor expansion valve (85) is adjusted to a predetermined opening. In the refrigerant circuit (11) during the first cooling operation, the outdoor heat exchanger (26) functions as a condenser, the refrigeration heat exchanger (74) functions as an evaporator, and the air conditioning heat exchanger (84). Functions as an evaporator.
 第1圧縮機(24)及び第2圧縮機(25)で圧縮された冷媒は、第1四方切換弁(27)を通過し、室外熱交換器(26)を流れる。室外熱交換器(26)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(26)で凝縮した冷媒は、第1液管(41)、受液器(29)、第2液管(42)を順に通過する。第2液管(42)の高圧液冷媒は、一部が過冷却熱交換器(51)の冷却側流路(52)を流れ、残りは空調側液管(38)を流れる。 The refrigerant compressed by the first compressor (24) and the second compressor (25) passes through the first four-way switching valve (27) and flows through the outdoor heat exchanger (26). In the outdoor heat exchanger (26), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (26) passes through the first liquid pipe (41), the liquid receiver (29), and the second liquid pipe (42) in this order. Part of the high-pressure liquid refrigerant in the second liquid pipe (42) flows through the cooling side flow path (52) of the supercooling heat exchanger (51), and the rest flows through the air conditioning side liquid pipe (38).
 過冷却熱交換器(51)では、冷却側流路(52)を流れる高圧液冷媒と、蒸発側流路(53)を流れる中間圧冷媒とが熱交換する。この結果、冷却側流路(52)の高圧液冷媒が冷却され、過冷却度が大きくなる。過冷却熱交換器(51)で冷却された高圧液冷媒は、冷蔵側液管(37)に流出する。冷蔵側液管(37)の液冷媒は、一部が流入管(56)に分流し、減圧弁(60)で中間圧まで減圧された後、過冷却熱交換器(51)の蒸発側流路(53)を流れる。蒸発側流路(53)の中間圧冷媒は、冷却側流路(52)の高圧液冷媒から吸熱して蒸発する。蒸発側流路(53)で蒸発した冷媒は、中継管(57)を経由して、各導入管(58,59)に分流し、各圧縮機(24,25)の中間圧部に吸入される。 In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing through the cooling side flow path (52) and the intermediate pressure refrigerant flowing through the evaporation side flow path (53) exchange heat. As a result, the high-pressure liquid refrigerant in the cooling side flow path (52) is cooled, and the degree of supercooling is increased. The high-pressure liquid refrigerant cooled by the supercooling heat exchanger (51) flows out to the refrigeration side liquid pipe (37). A part of the liquid refrigerant in the refrigeration side liquid pipe (37) is diverted to the inflow pipe (56) and reduced to the intermediate pressure by the pressure reducing valve (60), and then the evaporation side flow of the supercooling heat exchanger (51) It flows through the road (53). The intermediate pressure refrigerant in the evaporation side channel (53) absorbs heat from the high-pressure liquid refrigerant in the cooling side channel (52) and evaporates. The refrigerant evaporated in the evaporation side flow path (53) is diverted to each introduction pipe (58, 59) via the relay pipe (57), and is sucked into the intermediate pressure part of each compressor (24, 25). The
 冷蔵側液管(37)から第1連絡配管(16)に流出した冷媒は、庫内膨張弁(75)で減圧された後、冷蔵熱交換器(74)を流れる。冷蔵熱交換器(74)では、冷媒が庫内の空気から吸熱して蒸発する。この結果、冷蔵ユニット(70)の庫内空気が冷却される。冷蔵熱交換器(74)の冷媒の蒸発温度(例えば-5℃)は、後述する空調熱交換器(84)の冷媒の蒸発温度(例えば5℃)よりも低く設定される。冷蔵熱交換器(74)で蒸発した冷媒は、第2連絡配管(17)、第1吸入配管(32)を順に通過し、第1圧縮機(24)に吸入されて圧縮される。 The refrigerant flowing out from the refrigeration side liquid pipe (37) into the first communication pipe (16) is depressurized by the internal expansion valve (75) and then flows through the refrigeration heat exchanger (74). In the refrigeration heat exchanger (74), the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled. The refrigerant evaporation temperature (eg, −5 ° C.) of the refrigeration heat exchanger (74) is set lower than the refrigerant evaporation temperature (eg, 5 ° C.) of the air conditioning heat exchanger (84) described later. The refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  第2液管(42)から空調側液管(38)に流出した冷媒は、第3連絡配管(18)を通過し、室内膨張弁(85)で減圧された後、空調熱交換器(84)を流れる。空調熱交換器(84)では、冷媒が室内空気から吸熱して蒸発する。この結果、室内空気が冷却される。空調熱交換器(84)で蒸発した冷媒は、第4連絡配管(19)、第2吸入配管(34)を順に通過し、第2圧縮機(25)に吸入されて圧縮される。 The refrigerant flowing out from the second liquid pipe (42) to the air conditioning side liquid pipe (38) passes through the third communication pipe (18) and is depressurized by the indoor expansion valve (85), and then the air conditioning heat exchanger (84). ). In the air conditioning heat exchanger (84), the refrigerant absorbs heat from the room air and evaporates. As a result, the room air is cooled. The refrigerant evaporated in the air conditioning heat exchanger (84) sequentially passes through the fourth connection pipe (19) and the second suction pipe (34), and is sucked into the second compressor (25) and compressed.
   〔第2冷却運転〕
 図3に示すように、第2冷却運転中の冷凍装置(10)では、冷蔵ユニット(70)がサーモOFF状態となり、空調ユニット(80)がサーモON状態となる。第2冷却運転では、第3電磁弁(SV3)が閉鎖状態に設定され、室内膨張弁(85)が所定開度に調節される。そして、第2冷却運転中の冷媒回路(11)では、室外熱交換器(26)が凝縮器として機能し、冷蔵熱交換器(74)が休止し、空調熱交換器(84)が蒸発器として機能する。
[Second cooling operation]
As shown in FIG. 3, in the refrigeration apparatus (10) during the second cooling operation, the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state. In the second cooling operation, the third solenoid valve (SV3) is set to a closed state, and the indoor expansion valve (85) is adjusted to a predetermined opening. In the refrigerant circuit (11) during the second cooling operation, the outdoor heat exchanger (26) functions as a condenser, the refrigeration heat exchanger (74) is deactivated, and the air conditioning heat exchanger (84) is an evaporator. Function as.
 ここでは、第2冷却運転中の冷凍装置(10)の動作について、第1冷却運転中の動作と異なる点を説明する。第2冷却運転中には、原則として、第1圧縮機(24)が停止し、第2圧縮機(25)が作動する。ただし、空調ユニット(80)における冷房負荷を第2圧縮機(25)だけで処理しきれない場合は、流量調節弁(48)が開かれ、第1圧縮機(24)と第2圧縮機(25)の両方が作動する。また、第2冷却運転中には、受液器(29)から流出した冷媒の全てが、空調側液管(38)と第3連絡配管(18)を順に通って空調回路(81)へ流入する。 Here, the operation of the refrigeration apparatus (10) during the second cooling operation will be described differently from the operation during the first cooling operation. During the second cooling operation, in principle, the first compressor (24) is stopped and the second compressor (25) is operated. However, if the cooling load in the air conditioning unit (80) cannot be handled by the second compressor (25) alone, the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work. Further, during the second cooling operation, all of the refrigerant flowing out from the liquid receiver (29) flows into the air conditioning circuit (81) through the air conditioning side liquid pipe (38) and the third connection pipe (18) in this order. To do.
   〔第3冷却運転〕
 図4に示すように、第3冷却運転中の冷凍装置(10)では、冷蔵ユニット(70)がサーモON状態となり、空調ユニット(80)がサーモOFF状態となる。第3冷却運転では、第3電磁弁(SV3)が開放状態に設定され、室内膨張弁(85)が全閉状態に設定される。そして、第3冷却運転中の冷媒回路(11)では、室外熱交換器(26)が凝縮器として機能し、冷蔵熱交換器(74)が蒸発器として機能し、空調熱交換器(84)が休止する。
[Third cooling operation]
As shown in FIG. 4, in the refrigeration apparatus (10) during the third cooling operation, the refrigeration unit (70) is in the thermo-ON state, and the air conditioning unit (80) is in the thermo-OFF state. In the third cooling operation, the third solenoid valve (SV3) is set to an open state, and the indoor expansion valve (85) is set to a fully closed state. In the refrigerant circuit (11) during the third cooling operation, the outdoor heat exchanger (26) functions as a condenser, the refrigeration heat exchanger (74) functions as an evaporator, and the air conditioning heat exchanger (84) Pauses.
 ここでは、第3冷却運転中の冷凍装置(10)の動作について、第1冷却運転中の動作と異なる点を説明する。第3冷却運転中には、原則として、第1圧縮機(24)が作動し、第2圧縮機(25)が停止する。ただし、冷蔵ユニット(70)における冷却負荷を第1圧縮機(24)だけで処理しきれない場合は、流量調節弁(48)が開かれ、第1圧縮機(24)と第2圧縮機(25)の両方が作動する。また、第3冷却運転中には、受液器(29)から流出した冷媒の全てが過冷却熱交換器(51)の冷却側流路(52)へ流入し、冷却側流路(52)を通過する間に冷却された冷媒の一部が第1連絡配管(16)を通って冷蔵回路(71)へ流入する。 Here, the difference between the operation of the refrigeration apparatus (10) during the third cooling operation and the operation during the first cooling operation will be described. During the third cooling operation, in principle, the first compressor (24) operates and the second compressor (25) stops. However, if the cooling load in the refrigeration unit (70) cannot be handled by the first compressor (24) alone, the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work. Further, during the third cooling operation, all of the refrigerant flowing out from the liquid receiver (29) flows into the cooling side flow path (52) of the supercooling heat exchanger (51), and the cooling side flow path (52) Part of the refrigerant cooled while passing through the refrigerant flows into the refrigeration circuit (71) through the first connection pipe (16).
  〈冷蔵・暖房運転〉
 冷蔵・暖房運転は、冷蔵ショーケースである冷蔵ユニット(70)の庫内を冷却し、空調ユニット(80)によって室内を暖房するための運転である。冷蔵・暖房運転中の冷凍装置(10)は、第1併存運転と第2併存運転と第3併存運転と暖房運転とを選択的に行う。
<Refrigeration / heating operation>
The refrigeration / heating operation is an operation for cooling the interior of the refrigeration unit (70), which is a refrigeration showcase, and heating the room by the air conditioning unit (80). The refrigeration apparatus (10) during the refrigeration / heating operation selectively performs the first concurrent operation, the second concurrent operation, the third concurrent operation, and the heating operation.
   〔第1併存運転(熱余剰)〕
 第1併存運転は、空調ユニット(80)における暖房負荷に対して冷蔵ユニット(70)における冷却負荷が大きい場合に行われる。
[First concurrent operation (heat surplus)]
The first concurrent operation is performed when the cooling load in the refrigeration unit (70) is larger than the heating load in the air conditioning unit (80).
 図5に示すように、第1併存運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となる。第1併存運転では、第1四方切換弁(27)が第2状態に、第2四方切換弁(28)が第2状態に、第1電磁弁(SV1)が開放状態に、第3電磁弁(SV3)が開放状態にそれぞれ設定される。また、第1併存運転では、室外膨張弁(39)、液側膨張弁(49)、及び第2インジェクション弁(62)がそれぞれ全閉状態に設定され、室内膨張弁(85)が全開状態に設定され、減圧弁(60)、第1インジェクション弁(61)、及び庫内膨張弁(75)がそれぞれ所定開度に調節される。また、第1併存運転では、室内ファン(83)、室外ファン(23)、及び庫内ファン(73)がそれぞれ運転状態となる。 As shown in FIG. 5, in the refrigeration apparatus (10) in the first concurrent operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. In the first concurrent operation, the first four-way switching valve (27) is in the second state, the second four-way switching valve (28) is in the second state, the first electromagnetic valve (SV1) is in the open state, and the third electromagnetic valve (SV3) is set to the open state. In the first concurrent operation, the outdoor expansion valve (39), the liquid side expansion valve (49), and the second injection valve (62) are each set to a fully closed state, and the indoor expansion valve (85) is fully opened. The pressure reducing valve (60), the first injection valve (61), and the internal expansion valve (75) are each adjusted to a predetermined opening degree. Further, in the first concurrent operation, the indoor fan (83), the outdoor fan (23), and the internal fan (73) are each in an operating state.
 第1併存運転中には、原則として、第1圧縮機(24)が作動し、第2圧縮機(25)が停止する。ただし、冷蔵ユニット(70)における冷却負荷を第1圧縮機(24)だけで処理しきれない場合は、流量調節弁(48)が開かれ、第1圧縮機(24)と第2圧縮機(25)の両方が作動する。ここでは、第1圧縮機(24)だけが作動する場合を例に、冷凍装置(10)の動作を説明する。 During the first concurrent operation, in principle, the first compressor (24) operates and the second compressor (25) stops. However, if the cooling load in the refrigeration unit (70) cannot be handled by the first compressor (24) alone, the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work. Here, the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the first compressor (24) operates.
 第1併存運転中の冷媒回路(11)では、室外熱交換器(26)及び空調熱交換器(84)が凝縮器として機能し、冷蔵熱交換器(74)が蒸発器として機能する。第1圧縮機(24)で圧縮された冷媒は、一部が第1四方切換弁(27)及び第4連絡配管(19)を通過し、空調熱交換器(84)を流れ、残りは第2四方切換弁(28)を通過し、室外熱交換器(26)を流れる。空調熱交換器(84)では、冷媒が室内空気へ放熱して凝縮する。この結果、室内空気が加熱される。空調熱交換器(84)で凝縮した冷媒は、第3連絡配管(18)、第3液管(43)を順に通過し、第1液管(41)を流れる。また、室外熱交換器(26)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(26)で放熱した冷媒は、第1液管(41)を流れる。 In the refrigerant circuit (11) during the first concurrent operation, the outdoor heat exchanger (26) and the air conditioning heat exchanger (84) function as a condenser, and the refrigerated heat exchanger (74) functions as an evaporator. Part of the refrigerant compressed by the first compressor (24) passes through the first four-way switching valve (27) and the fourth connection pipe (19), flows through the air conditioning heat exchanger (84), and the rest It passes through the two-way switching valve (28) and flows through the outdoor heat exchanger (26). In the air conditioning heat exchanger (84), the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated. The refrigerant condensed in the air conditioning heat exchanger (84) sequentially passes through the third communication pipe (18) and the third liquid pipe (43) and flows through the first liquid pipe (41). In the outdoor heat exchanger (26), the refrigerant dissipates heat to the outdoor air and condenses. The refrigerant radiated by the outdoor heat exchanger (26) flows through the first liquid pipe (41).
 第1液管(41)で合流した冷媒は、受液器(29)、第2液管(42)を順に通過し、過冷却熱交換器(51)の冷却側流路(52)を流れる。過冷却熱交換器(51)では、冷却側流路(52)を流れる高圧液冷媒が冷却される一方、蒸発側流路(53)で蒸発した冷媒は、第1圧縮機(24)の中間圧部に吸入される。過冷却熱交換器(51)で冷却された冷媒は、冷蔵側液管(37)及び第1連絡配管(16)を順に通過し、庫内膨張弁(75)で減圧された後、冷蔵熱交換器(74)を流れる。冷蔵熱交換器(74)では、冷媒が庫内の空気から吸熱して蒸発する。この結果、冷蔵ユニット(70)の庫内空気が冷却される。冷蔵熱交換器(74)で蒸発した冷媒は、第2連絡配管(17)、第1吸入配管(32)を順に通過し、第1圧縮機(24)に吸入されて圧縮される。 The refrigerant merged in the first liquid pipe (41) sequentially passes through the liquid receiver (29) and the second liquid pipe (42), and flows through the cooling side flow path (52) of the supercooling heat exchanger (51). . In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) is intermediate between the first compressor (24). Inhaled into the pressure section. The refrigerant cooled in the supercooling heat exchanger (51) sequentially passes through the refrigeration side liquid pipe (37) and the first connecting pipe (16), and is depressurized by the internal expansion valve (75). Flow through exchanger (74). In the refrigeration heat exchanger (74), the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled. The refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
   〔第2併存運転(100%熱回収)〕
 第2併存運転は、空調ユニット(80)における暖房負荷と冷蔵ユニット(70)における冷却負荷が均衡する場合に行われる。
[Second concurrent operation (100% heat recovery)]
The second concurrent operation is performed when the heating load in the air conditioning unit (80) and the cooling load in the refrigeration unit (70) are balanced.
 図6に示すように、第2併存運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となる。第2併存運転では、第1四方切換弁(27)が第2状態に、第2四方切換弁(28)が第1状態に、第1電磁弁(SV1)が閉鎖状態に、第3電磁弁(SV3)が開放状態にそれぞれ設定される。また、第2併存運転では、室外膨張弁(39)、液側膨張弁(49)、及び第2インジェクション弁(62)がそれぞれ全閉状態に設定され、室内膨張弁(85)が全開状態に設定され、減圧弁(60)、第1インジェクション弁(61)、及び庫内膨張弁(75)がそれぞれ所定開度に調節される。また、第1運転では、室内ファン(83)、及び庫内ファン(73)がそれぞれ運転状態となる。 As shown in FIG. 6, in the refrigeration apparatus (10) in the second concurrent operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. In the second concurrent operation, the first four-way switching valve (27) is in the second state, the second four-way switching valve (28) is in the first state, the first electromagnetic valve (SV1) is in the closed state, and the third electromagnetic valve (SV3) is set to the open state. In the second concurrent operation, the outdoor expansion valve (39), the liquid side expansion valve (49), and the second injection valve (62) are each set to a fully closed state, and the indoor expansion valve (85) is fully opened. The pressure reducing valve (60), the first injection valve (61), and the internal expansion valve (75) are each adjusted to a predetermined opening degree. In the first operation, the indoor fan (83) and the internal fan (73) are each in an operating state.
 第2併存運転中には、原則として、第1圧縮機(24)が作動し、第2圧縮機(25)が停止する。ただし、冷蔵ユニット(70)における冷却負荷を第1圧縮機(24)だけで処理しきれない場合は、流量調節弁(48)が開かれ、第1圧縮機(24)と第2圧縮機(25)の両方が作動する。ここでは、第1圧縮機(24)だけが作動する場合を例に、冷凍装置(10)の動作を説明する。 During the second concurrent operation, in principle, the first compressor (24) operates and the second compressor (25) stops. However, if the cooling load in the refrigeration unit (70) cannot be handled by the first compressor (24) alone, the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work. Here, the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the first compressor (24) operates.
 第2併存運転中の冷媒回路(11)では、室外熱交換器(26)が休止し、空調熱交換器(84)が凝縮器として機能し、冷蔵熱交換器(74)が蒸発器として機能する。第1圧縮機(24)で圧縮された冷媒は、第1四方切換弁(27)及び第4連絡配管(19)を順に通過し、空調熱交換器(84)を流れる。空調熱交換器(84)では、冷媒が室内空気へ放熱して凝縮する。この結果、室内空気が加熱される。空調熱交換器(84)で凝縮した冷媒は、第3連絡配管(18)、第3液管(43)、受液器(29)、第2液管(42)を順に通過し、過冷却熱交換器(51)の冷却側流路(52)を流れる。 In the refrigerant circuit (11) during the second concurrent operation, the outdoor heat exchanger (26) is deactivated, the air conditioning heat exchanger (84) functions as a condenser, and the refrigerated heat exchanger (74) functions as an evaporator. To do. The refrigerant compressed by the first compressor (24) sequentially passes through the first four-way switching valve (27) and the fourth connection pipe (19) and flows through the air conditioning heat exchanger (84). In the air conditioning heat exchanger (84), the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated. The refrigerant condensed in the air conditioning heat exchanger (84) passes through the third communication pipe (18), the third liquid pipe (43), the liquid receiver (29), and the second liquid pipe (42) in this order, and is supercooled. It flows through the cooling side flow path (52) of the heat exchanger (51).
 過冷却熱交換器(51)では、冷却側流路(52)を流れる高圧液冷媒が冷却される一方、蒸発側流路(53)で蒸発した冷媒は、第1圧縮機(24)の中間圧部に吸入される。過冷却熱交換器(51)で冷却された冷媒は、冷蔵側液管(37)及び第1連絡配管(16)を順に通過し、庫内膨張弁(75)で減圧された後、冷蔵熱交換器(74)を流れる。冷蔵熱交換器(74)では、冷媒が庫内の空気から吸熱して蒸発する。この結果、冷蔵ユニット(70)の庫内空気が冷却される。冷蔵熱交換器(74)で蒸発した冷媒は、第2連絡配管(17)、第1吸入配管(32)を順に通過し、第1圧縮機(24)に吸入されて圧縮される。 In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) is intermediate between the first compressor (24). Inhaled into the pressure section. The refrigerant cooled in the supercooling heat exchanger (51) sequentially passes through the refrigeration side liquid pipe (37) and the first connecting pipe (16), and is depressurized by the internal expansion valve (75). Flow through exchanger (74). In the refrigeration heat exchanger (74), the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled. The refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
   〔第3併存運転(熱不足)〕
 第3併存運転は、空調ユニット(80)における暖房負荷に対して冷蔵ユニット(70)における冷却負荷が小さい場合に行われる。
[Third concurrent operation (insufficient heat)]
The third concurrent operation is performed when the cooling load in the refrigeration unit (70) is smaller than the heating load in the air conditioning unit (80).
 図7に示すように、第3併存運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となる。第3併存運転では、第1四方切換弁(27)が第2状態に、第2四方切換弁(28)が第1状態に、第1電磁弁(SV1)が閉鎖状態に、第3電磁弁(SV3)が開放状態にそれぞれ設定される。また、第3併存運転では、液側膨張弁(49)が全閉状態に設定され、室内膨張弁(85)が全開状態に設定され、室外膨張弁(39)、流量調節弁(48)、減圧弁(60)、第1インジェクション弁(61)、第2インジェクション弁(62)、及び庫内膨張弁(75)がそれぞれ所定開度に調節される。また、第3併存運転では、第1圧縮機(24)、第2圧縮機(25)、室内ファン(83)、室外ファン(23)、及び庫内ファン(73)がそれぞれ運転状態となる。 As shown in FIG. 7, in the refrigeration apparatus (10) in the third concurrent operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. In the third concurrent operation, the first four-way switching valve (27) is in the second state, the second four-way switching valve (28) is in the first state, the first electromagnetic valve (SV1) is in the closed state, and the third electromagnetic valve (SV3) is set to the open state. In the third concurrent operation, the liquid side expansion valve (49) is set to a fully closed state, the indoor expansion valve (85) is set to a fully open state, the outdoor expansion valve (39), the flow rate adjustment valve (48), The pressure reducing valve (60), the first injection valve (61), the second injection valve (62), and the internal expansion valve (75) are each adjusted to a predetermined opening. Further, in the third concurrent operation, the first compressor (24), the second compressor (25), the indoor fan (83), the outdoor fan (23), and the internal fan (73) are in the operating state.
 第3併存運転中の冷媒回路(11)では、空調熱交換器(84)が凝縮器となり、室外熱交換器(26)及び冷蔵熱交換器(74)が蒸発器となる冷凍サイクルが行われる。第1圧縮機(24)及び第2圧縮機(25)で圧縮された冷媒は、第4連絡配管(19)を通過し、空調熱交換器(84)を流れる。空調熱交換器(84)では、冷媒が室内空気へ放熱して凝縮する。この結果、室内空気が加熱される。空調熱交換器(84)で凝縮した冷媒は、第3連絡配管(18)、第3液管(43)、受液器(29)、第2液管(42)を順に通過し、過冷却熱交換器(51)の冷却側流路(52)を流れる。 In the refrigerant circuit (11) in the third concurrent operation, a refrigeration cycle is performed in which the air conditioning heat exchanger (84) serves as a condenser and the outdoor heat exchanger (26) and the refrigerated heat exchanger (74) serve as an evaporator. . The refrigerant compressed by the first compressor (24) and the second compressor (25) passes through the fourth connection pipe (19) and flows through the air conditioning heat exchanger (84). In the air conditioning heat exchanger (84), the refrigerant dissipates heat to the room air and condenses. As a result, the room air is heated. The refrigerant condensed in the air conditioning heat exchanger (84) passes through the third communication pipe (18), the third liquid pipe (43), the liquid receiver (29), and the second liquid pipe (42) in this order, and is supercooled. It flows through the cooling side flow path (52) of the heat exchanger (51).
 過冷却熱交換器(51)では、冷却側流路(52)を流れる高圧液冷媒が冷却される一方、蒸発側流路(53)で蒸発した冷媒は、第1圧縮機(24)及び第2圧縮機(25)の中間圧部に吸入される。過冷却熱交換器(51)で冷却された冷媒は、冷蔵側液管(37)と第4液管(44)とに分流する。 In the supercooling heat exchanger (51), the high-pressure liquid refrigerant flowing in the cooling side flow path (52) is cooled, while the refrigerant evaporated in the evaporation side flow path (53) 2. Sucked into the intermediate pressure part of the compressor (25). The refrigerant cooled by the supercooling heat exchanger (51) is divided into the refrigeration side liquid pipe (37) and the fourth liquid pipe (44).
 冷蔵側液管(37)へ流出した冷媒は、第1連絡配管(16)を通過し、庫内膨張弁(75)で減圧された後、冷蔵熱交換器(74)を流れる。冷蔵熱交換器(74)では、冷媒が庫内の空気から吸熱して蒸発する。この結果、冷蔵ユニット(70)の庫内空気が冷却される。冷蔵熱交換器(74)で蒸発した冷媒は、第2連絡配管(17)、第1吸入配管(32)を順に通過し、第1圧縮機(24)に吸入されて圧縮される。 The refrigerant that has flowed out to the refrigeration side liquid pipe (37) passes through the first communication pipe (16), is decompressed by the internal expansion valve (75), and then flows through the refrigeration heat exchanger (74). In the refrigeration heat exchanger (74), the refrigerant absorbs heat from the air in the warehouse and evaporates. As a result, the internal air of the refrigeration unit (70) is cooled. The refrigerant evaporated in the refrigeration heat exchanger (74) sequentially passes through the second communication pipe (17) and the first suction pipe (32), and is sucked into the first compressor (24) and compressed.
  第4液管(44)へ流出した冷媒は、室外膨張弁(39)で減圧された後、室外熱交換器(26)を流れる。室外熱交換器(26)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(26)で蒸発した冷媒は、第1四方切換弁(27)、第2四方切換弁(28)、及び第2吸入配管(34)を順に通過し、第2圧縮機(25)に吸入されて圧縮される。 The refrigerant that has flowed out to the fourth liquid pipe (44) is depressurized by the outdoor expansion valve (39) and then flows through the outdoor heat exchanger (26). In the outdoor heat exchanger (26), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (26) sequentially passes through the first four-way switching valve (27), the second four-way switching valve (28), and the second suction pipe (34), and the second compressor (25 ) Is inhaled and compressed.
   〔暖房運転〕
 図8に示すように、暖房運転中の冷凍装置(10)では、冷蔵ユニット(70)がサーモOFF状態となり、空調ユニット(80)がサーモON状態となる。この暖房運転は、第1併存運転中、第2併存運転中、又は第3併存運転中に冷蔵ユニット(70)がサーモOFF状態となった場合に行われる。
[Heating operation]
As shown in FIG. 8, in the refrigeration apparatus (10) during the heating operation, the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state. This heating operation is performed when the refrigeration unit (70) is in the thermo OFF state during the first concurrent operation, the second concurrent operation, or the third concurrent operation.
 第1併存運転中には、原則として、第1圧縮機(24)が停止し、第2圧縮機(25)が作動する。ただし、空調ユニット(80)における暖房負荷を第2圧縮機(25)だけで処理しきれない場合は、流量調節弁(48)が開かれ、第1圧縮機(24)と第2圧縮機(25)の両方が作動する。 During the first concurrent operation, as a rule, the first compressor (24) stops and the second compressor (25) operates. However, if the heating load in the air conditioning unit (80) cannot be handled by the second compressor (25) alone, the flow control valve (48) is opened, and the first compressor (24) and the second compressor ( 25) both work.
 ここでは、第2圧縮機(25)だけが作動する場合を例に、冷凍装置(10)の動作を説明する。また、ここでは、暖房運転中の冷凍装置(10)の動作について、第3併存運転中の動作と異なる点を説明する。暖房運転中において、受液器(29)から流出した冷媒は、その全てが第4液管(44)を通って室外熱交換器(26)へ流入する。室外熱交換器(26)において蒸発した冷媒は、第3併存運転中と同様に、第2圧縮機(25)へ吸入される。 Here, the operation of the refrigeration apparatus (10) will be described by taking as an example the case where only the second compressor (25) operates. In addition, here, the operation of the refrigeration apparatus (10) during the heating operation will be described in terms of differences from the operation during the third concurrent operation. During the heating operation, all of the refrigerant flowing out of the liquid receiver (29) flows into the outdoor heat exchanger (26) through the fourth liquid pipe (44). The refrigerant evaporated in the outdoor heat exchanger (26) is sucked into the second compressor (25) as in the third concurrent operation.
  -制御器の動作-
 制御器(120)は、冷凍装置(10)の運転を制御する。ここでは、冷蔵・冷房運転中に制御器(120)が行う動作と、冷蔵・暖房運転中に制御器(120)が行う動作とを説明する。
-Controller operation-
The controller (120) controls the operation of the refrigeration apparatus (10). Here, the operation performed by the controller (120) during the refrigeration / cooling operation and the operation performed by the controller (120) during the refrigeration / heating operation will be described.
 なお、本実施形態の制御器(120)では、第1圧縮機部(111)の基準容量が第1圧縮機部(111)の最大容量に設定され、第2圧縮機部(112)の基準容量が第2圧縮機部(112)の最大容量に設定される。本実施形態において、第1圧縮機部(111)の運転容量は、第1圧縮機(24)の運転周波数が上限値であるときに最大容量となり、第2圧縮機部(112)の運転容量は、第2圧縮機(25)の運転周波数が上限値であるときに最大容量となる。 In the controller (120) of this embodiment, the reference capacity of the first compressor section (111) is set to the maximum capacity of the first compressor section (111), and the reference capacity of the second compressor section (112) is set. The capacity is set to the maximum capacity of the second compressor section (112). In the present embodiment, the operating capacity of the first compressor section (111) is the maximum capacity when the operating frequency of the first compressor (24) is the upper limit value, and the operating capacity of the second compressor section (112). Is the maximum capacity when the operating frequency of the second compressor (25) is the upper limit value.
  〈冷蔵・冷房運転中の動作〉
 冷蔵・冷房運転中に制御器(120)が行う動作について、図9~図11のフロー図を参照しながら説明する。
<Operation during refrigeration / cooling operation>
The operation performed by the controller (120) during the refrigeration / cooling operation will be described with reference to the flowcharts of FIGS.
 図9に示すように、制御器(120)は、ステップST01において、“冷蔵ユニット(70)がサーモON状態であり、且つ空調ユニット(80)がサーモON状態である”という条件の成否を判断する。この条件が成立する場合、冷凍装置(10)は、第1冷却運転を行っている。そこで、制御器(120)は、ステップST02において、第1冷却運転用の第1制御動作を行う。第1冷却運転中に制御器(120)が行う第1制御動作については、後述する。 As shown in FIG. 9, in step ST01, the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state and the air conditioning unit (80) is in the thermo ON state” is satisfied. To do. When this condition is satisfied, the refrigeration apparatus (10) performs the first cooling operation. Therefore, the controller (120) performs the first control operation for the first cooling operation in step ST02. The first control operation performed by the controller (120) during the first cooling operation will be described later.
 ここで、制御器(120)は、空調ユニット(80)がサーモON状態であるか否かを、空調ユニット(80)から受信したサーモ信号に基づいて判断する。一方、冷蔵ユニット(70)は、制御器(120)に対してサーモ信号を出力する場合と出力しない場合とがある。冷蔵ユニット(70)がサーモ信号を出力する場合、制御器(120)は、冷蔵ユニット(70)がサーモON状態であるか否かを、冷蔵ユニット(70)から受信したサーモ信号に基づいて判断する。一方、冷蔵ユニット(70)がサーモ信号を出力しない場合、制御器(120)は、冷蔵ユニット(70)がサーモON状態であるか否かを、第1吐出配管(31)内の冷媒圧力LP1(即ち、第1吸入圧力センサ(94)の検出値)に基づいて判断する。具体的に、制御器(120)は、圧力LP1が次第に低下して所定の下限値(例えば、0.1MPa)を下回ると、冷蔵ユニット(70)がサーモON状態からサーモOFF状態に切り換わったと判断する。また、圧力LP1が下限値未満から次第に上昇して所定の基準値(例えば、0.48MPa)を超えると、冷蔵ユニット(70)がサーモOFF状態からサーモON状態に切り換わったと判断する。 Here, the controller (120) determines whether or not the air conditioning unit (80) is in the thermo ON state based on the thermo signal received from the air conditioning unit (80). On the other hand, the refrigeration unit (70) may or may not output a thermo signal to the controller (120). When the refrigeration unit (70) outputs a thermo signal, the controller (120) determines whether the refrigeration unit (70) is in the thermo ON state based on the thermo signal received from the refrigeration unit (70). To do. On the other hand, when the refrigeration unit (70) does not output a thermo signal, the controller (120) determines whether or not the refrigeration unit (70) is in the thermo-ON state, the refrigerant pressure LP1 in the first discharge pipe (31). The determination is made based on (that is, the detection value of the first suction pressure sensor (94)). Specifically, the controller (120) indicates that when the pressure LP1 gradually decreases and falls below a predetermined lower limit value (for example, 0.1 MPa), the refrigeration unit (70) switches from the thermo ON state to the thermo OFF state. to decide. Further, when the pressure LP1 gradually increases from less than the lower limit and exceeds a predetermined reference value (for example, 0.48 MPa), it is determined that the refrigeration unit (70) has switched from the thermo OFF state to the thermo ON state.
 なお、冷凍装置(10)には、冷蔵ユニット(70)と空調ユニット(80)が複数ずつ設けられている場合がある。この場合、制御器(120)は、少なくとも一つの冷蔵ユニット(70)がサーモON状態であり、且つ少なくとも一つの空調ユニット(80)がサーモON状態である場合に、ステップST01の条件が成立したと判断する。 The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80). In this case, the controller (120) satisfies the condition of step ST01 when at least one refrigeration unit (70) is in the thermo-ON state and at least one air-conditioning unit (80) is in the thermo-ON state. Judge.
 ステップST01の条件が成立しない場合、制御器(120)は、ステップST03において、“冷蔵ユニット(70)がサーモOFF状態であり、且つ空調ユニット(80)がサーモON状態である”という条件の成否を判断する。この条件が成立する場合、冷凍装置(10)は、第2冷却運転を行っている。そこで、この条件が成立する場合、制御器(120)は、第2冷却運転用の制御動作を行う。 If the condition of step ST01 is not satisfied, the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state” is satisfied in step ST03. Judging. When this condition is satisfied, the refrigeration apparatus (10) performs the second cooling operation. Therefore, when this condition is satisfied, the controller (120) performs the control operation for the second cooling operation.
 なお、冷凍装置(10)には、冷蔵ユニット(70)と空調ユニット(80)が複数ずつ設けられている場合がある。この場合、制御器(120)は、全ての冷蔵ユニット(70)がサーモOFF状態であり、且つ少なくとも一つの空調ユニット(80)がサーモON状態である場合に、ステップST03の条件が成立したと判断する。 The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80). In this case, the controller (120) determines that the condition of step ST03 is satisfied when all the refrigeration units (70) are in the thermo OFF state and at least one air conditioning unit (80) is in the thermo ON state. to decide.
 第2冷却運転中に制御器(120)が行う制御動作について説明する。上述したように、第2冷却運転中には、原則として、第1圧縮機(24)によって構成された第1圧縮機部(111)が停止し、第2圧縮機(25)によって構成された第2圧縮機部(112)が作動する。そこで、制御器(120)は、ステップST04において、第2圧縮機部(112)の運転容量(即ち、第2圧縮機(25)の運転周波数)を、第2吸入配管(34)内の冷媒圧力LP2(即ち、第2吸入圧力センサ(96)の検出値)が第2目標低圧(本実施形態では、0.85MPa)となるように調節する。具体的に、制御器(120)は、圧力LP2が第2目標低圧よりも高い場合は、第2圧縮機部(112)の運転容量を増加させ(即ち、第2圧縮機(25)の運転周波数を上昇させ)、圧力LP2が第2目標低圧よりも低い場合は、第2圧縮機部(112)の運転容量を減少させる(即ち、第2圧縮機(25)の運転周波数を低下させる)。 The control operation performed by the controller (120) during the second cooling operation will be described. As described above, during the second cooling operation, in principle, the first compressor section (111) constituted by the first compressor (24) is stopped and constituted by the second compressor (25). The second compressor section (112) is activated. Therefore, in step ST04, the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) as the refrigerant in the second suction pipe (34). The pressure LP2 (that is, the detection value of the second suction pressure sensor (96)) is adjusted to be the second target low pressure (0.85 MPa in this embodiment). Specifically, the controller (120) increases the operation capacity of the second compressor section (112) when the pressure LP2 is higher than the second target low pressure (that is, the operation of the second compressor (25)). When the pressure LP2 is lower than the second target low pressure, the operating capacity of the second compressor section (112) is decreased (that is, the operating frequency of the second compressor (25) is decreased). .
 次のステップST05において、制御器(120)は、“第2圧縮機部(112)の運転容量が最大容量である”という条件の成否を判断する。この条件が成立する場合は、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理しきれない状況となっている。そこで、制御器(120)は、ステップST06において、第2制御動作を行う。この第2制御動作については、後述する。一方、この条件が成立しない場合は、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できる状況である。そこで、制御器(120)は、ステップST07において、流量調節弁(48)を全閉状態とし、圧力LP2に基づく第2圧縮機部(112)の運転容量の調節を行う。 In the next step ST05, the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met. When this condition is satisfied, the cooling load of the air conditioning unit (80) cannot be processed by the second compressor unit (112) alone. Therefore, the controller (120) performs the second control operation in step ST06. This second control operation will be described later. On the other hand, when this condition is not satisfied, the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). Therefore, in step ST07, the controller (120) fully closes the flow rate adjustment valve (48) and adjusts the operating capacity of the second compressor unit (112) based on the pressure LP2.
 ステップST03の条件が成立しない場合、制御器(120)は、ステップST08において、“冷蔵ユニット(70)がサーモON状態であり、且つ空調ユニット(80)がサーモOFF状態である”という条件の成否を判断する。この条件が成立する場合、冷凍装置(10)は、第3冷却運転を行っている。そこで、この条件が成立する場合、制御器(120)は、第3冷却運転用の制御動作を行う。 If the condition of step ST03 is not satisfied, the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo-ON state and the air conditioning unit (80) is in the thermo-OFF state” in step ST08. Judging. When this condition is satisfied, the refrigeration apparatus (10) performs the third cooling operation. Therefore, when this condition is satisfied, the controller (120) performs the control operation for the third cooling operation.
 なお、冷凍装置(10)には、冷蔵ユニット(70)と空調ユニット(80)が複数ずつ設けられている場合がある。この場合、制御器(120)は、少なくとも一つの冷蔵ユニット(70)がサーモON状態であり、且つ全ての空調ユニット(80)がサーモOFF状態である場合に、ステップST08の条件が成立したと判断する。 The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70) and air conditioning units (80). In this case, the controller (120) determines that the condition of step ST08 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state and all the air-conditioning units (80) are in the thermo-OFF state. to decide.
 第3冷却運転中に制御器(120)が行う制御動作について説明する。上述したように、第3冷却運転中には、原則として、第1圧縮機(24)が作動し、第2圧縮機(25)が停止する。そこで、制御器(120)は、ステップST09において、第1圧縮機部(111)の運転容量(即ち、第1圧縮機(24)の運転周波数)を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(本実施形態では、0.48MPa)となるように調節する。具体的に、制御器(120)は、圧力LP1が第1目標低圧よりも高い場合は、第1圧縮機部(111)の運転容量を増加させ(即ち、第1圧縮機(24)の運転周波数を上昇させ)、圧力LP1が第1目標低圧よりも低い場合は、第1圧縮機部(111)の運転容量を減少させる(即ち、第1圧縮機(24)の運転周波数を低下させる)。 The control operation performed by the controller (120) during the third cooling operation will be described. As described above, during the third cooling operation, in principle, the first compressor (24) operates and the second compressor (25) stops. Therefore, in step ST09, the controller (120) determines the operating capacity of the first compressor unit (111) (that is, the operating frequency of the first compressor (24)) as the refrigerant in the first suction pipe (32). The pressure LP1 is adjusted to be the first target low pressure (0.48 MPa in this embodiment). Specifically, the controller (120) increases the operating capacity of the first compressor unit (111) when the pressure LP1 is higher than the first target low pressure (that is, the operation of the first compressor (24)). When the pressure LP1 is lower than the first target low pressure, the operating capacity of the first compressor unit (111) is decreased (that is, the operating frequency of the first compressor (24) is decreased). .
 次のステップST10において、制御器(120)は、“第1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。この条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況となっている。 In the next step ST10, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor section (111) is the maximum capacity” is met. When this condition is satisfied, the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone.
 そこで、ステップST10の条件が成立する場合、制御器(120)は、ステップST11において、第2圧縮機部(112)の運転容量(即ち、第2圧縮機(25)の運転周波数)を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。つまり、制御器(120)は、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を、圧力LP1が第1目標低圧となるように調節する。ただし、ステップST11では、第1圧縮機部(111)の運転容量が最大容量に達している。このため、ステップST11において、制御器(120)は、第1圧縮機部(111)の運転容量を最大容量に保ち、第2圧縮機部(112)の運転容量を圧力LP1が第1目標低圧となるように調節する。また、次のステップST12において、制御器(120)は、流量調節弁(48)を全開状態とする。 Therefore, when the condition of step ST10 is satisfied, the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) in step ST11. The refrigerant pressure LP1 in the one suction pipe (32) is adjusted to be the first target low pressure (0.48 MPa). That is, the controller (120) adjusts the operating capacities of the first compressor unit (111) and the second compressor unit (112) so that the pressure LP1 becomes the first target low pressure. However, in step ST11, the operating capacity of the first compressor section (111) reaches the maximum capacity. Therefore, in step ST11, the controller (120) keeps the operating capacity of the first compressor unit (111) at the maximum capacity, and the operating capacity of the second compressor unit (112) is set to the first target low pressure. Adjust so that In the next step ST12, the controller (120) fully opens the flow rate adjustment valve (48).
 制御器(120)がステップST11とステップST12の動作を行うと、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。従って、この状態では、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。このため、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況においても、冷蔵ユニット(70)の庫内温度を設定温度に保つことができる。 When the controller (120) performs the operations of step ST11 and step ST12, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
 一方、ステップST10の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、制御器(120)は、ステップST13において、流量調節弁(48)を全閉状態とし、第1圧縮機部(111)の運転容量を第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。 On the other hand, when the condition of step ST10 is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111). Therefore, in step ST13, the controller (120) fully closes the flow rate control valve (48), and the operating capacity of the first compressor section (111) is set to the refrigerant pressure LP1 in the first suction pipe (32). The first target low pressure (0.48 MPa) is adjusted.
 ステップST08の条件が成立しない場合は、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモOFF状態となっている。そこで、この場合、制御器(120)は、ステップST14において流量調節弁(48)を全閉状態とし、ステップST15において第1圧縮機部(111)及び第2圧縮機部(112)を停止させる。つまり、ステップST15において、制御器(120)は、第1圧縮機(24)と第2圧縮機(25)の両方を停止させる。 If the condition of step ST08 is not satisfied, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo OFF state. Therefore, in this case, the controller (120) fully closes the flow rate adjustment valve (48) in step ST14, and stops the first compressor unit (111) and the second compressor unit (112) in step ST15. . That is, in step ST15, the controller (120) stops both the first compressor (24) and the second compressor (25).
   〔第1制御動作〕
 上述したように、制御器(120)は、第1冷却運転中に第1制御動作を行う。ここでは、第1制御動作について、図10を参照しながら説明する。
[First control operation]
As described above, the controller (120) performs the first control operation during the first cooling operation. Here, the first control operation will be described with reference to FIG.
 第1制御動作は、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態である場合に行われる(図9を参照)。つまり、第1制御動作は、第1圧縮機部(111)と第2圧縮機部(112)の両方が作動している状況で行われる。 The first control operation is performed when both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state (see FIG. 9). That is, the first control operation is performed in a state where both the first compressor unit (111) and the second compressor unit (112) are operating.
 ステップST21において、制御器(120)は、“第2圧縮機部(112)の運転容量が最大容量である”という条件の成否を判断する。この条件が成立しない場合は、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できる状況となっている。そこで、ステップST21の条件が成立しない場合、制御器(120)は、ステップST26において流量調節弁(48)を全閉状態とし、ステップST27において第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。流量調節弁(48)が全閉状態である場合、第1圧縮機(24)は冷蔵熱交換器(74)において蒸発した冷媒だけを吸入し、第2圧縮機(25)は空調熱交換器(84)において蒸発した冷媒だけを吸入する。 In step ST21, the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met. When this condition is not satisfied, the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). Therefore, when the condition of step ST21 is not satisfied, the controller (120) fully closes the flow rate control valve (48) in step ST26, and in step ST27, the first compressor section (111) and the second compressor section. Adjust the operating capacity of (112). When the flow control valve (48) is in a fully closed state, the first compressor (24) sucks only the refrigerant evaporated in the refrigeration heat exchanger (74), and the second compressor (25) is an air conditioning heat exchanger. Only the refrigerant that has evaporated in (84) is sucked.
 ステップST27において、制御器(120)は、第1圧縮機部(111)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。つまり、制御器(120)は、圧力LP1が第1目標低圧よりも高い場合は、第1圧縮機部(111)の運転容量を増加させ、圧力LP1が第1目標低圧よりも低い場合は、第1圧縮機部(111)の運転容量を減少させる。 In step ST27, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). Adjust. That is, the controller (120) increases the operating capacity of the first compressor unit (111) when the pressure LP1 is higher than the first target low pressure, and when the pressure LP1 is lower than the first target low pressure, The operating capacity of the first compressor section (111) is reduced.
 また、ステップST27において、制御器(120)は、第2圧縮機部(112)の運転容量を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。つまり、制御器(120)は、圧力LP2が第2目標低圧よりも高い場合は、第2圧縮機部(112)の運転容量を増加させ、圧力LP2が第2目標低圧よりも低い場合は、第2圧縮機部(112)の運転容量を減少させる。 In Step ST27, the controller (120) sets the operating capacity of the second compressor section (112), and the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). Adjust as follows. That is, the controller (120) increases the operating capacity of the second compressor section (112) when the pressure LP2 is higher than the second target low pressure, and when the pressure LP2 is lower than the second target low pressure, The operating capacity of the second compressor section (112) is reduced.
 ステップST21の条件が成立する場合、制御器(120)は、ステップST22において、“第
1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。
When the condition of step ST21 is satisfied, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST22.
 ステップST22の条件が成立しない場合は、第2圧縮機部(112)の運転容量は最大容量であるが、第1圧縮機部(111)の運転容量は最大容量に達していない。つまり、この条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できるが、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できない状況となっている。 When the condition of step ST22 is not satisfied, the operating capacity of the second compressor section (112) is the maximum capacity, but the operating capacity of the first compressor section (111) has not reached the maximum capacity. That is, when this condition is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111), but the cooling load of the air conditioning unit (80) is processed by the second compressor unit (112). It is a situation that can not be processed only by.
 そこで、ステップST22の条件が成立しない場合、制御器(120)は、ステップST24において、流量調節弁(48)の開度を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。また、制御器(120)は、次のステップST25において、第1圧縮機部(111)の運転容量を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。 Therefore, when the condition of step ST22 is not satisfied, the controller (120) determines the opening degree of the flow control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST24. Adjust to (0.48 MPa). In the next step ST25, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP2 in the second suction pipe (34) is the second target low pressure (0.85 MPa). Adjust so that
 第1圧縮機部(111)と第2圧縮機部(112)の両方が作動している状況において流量調節弁(48)が開いている場合、第2吸入配管(34)を流れる冷媒(即ち、空調熱交換器(84)において蒸発した冷媒)は、その一部が接続用配管(47)を通って第1圧縮機(24)へ吸入され、残りが第2圧縮機(25)へ吸入される。つまり、この場合、第1圧縮機(24)は、冷蔵熱交換器(74)において蒸発した冷媒の全部と空調熱交換器(84)において蒸発した冷媒の一部とを吸い込む一方、第2圧縮機(25)は、空調熱交換器(84)において蒸発した冷媒のうち接続用配管(47)へ流入しなかった分を吸い込む。従って、この場合は、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)によって処理され、空調ユニット(80)の冷房負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 When the flow control valve (48) is open in a situation where both the first compressor part (111) and the second compressor part (112) are operating, the refrigerant flowing through the second suction pipe (34) (that is, Part of the refrigerant evaporated in the air conditioning heat exchanger (84) is sucked into the first compressor (24) through the connecting pipe (47) and the rest is sucked into the second compressor (25). Is done. That is, in this case, the first compressor (24) sucks all of the refrigerant evaporated in the refrigeration heat exchanger (74) and part of the refrigerant evaporated in the air conditioning heat exchanger (84), while the second compression The machine (25) sucks in the refrigerant not evaporated into the connection pipe (47) from the refrigerant evaporated in the air conditioning heat exchanger (84). Therefore, in this case, the cooling load of the refrigeration unit (70) is processed by the first compressor unit (111), and the cooling load of the air conditioning unit (80) is changed to the first compressor unit (111) and the second compressor unit. (112) is processed by both.
 ステップST24における制御器(120)の動作を詳しく説明する。第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)を上回っている場合、制御器(120)は、流量調節弁(48)の開度を縮小する。流量調節弁(48)の開度が小さくなると、接続用配管(47)から第1吸入配管(32)へ流入する冷媒の流量が減少し、圧力LP1が低下する。一方、圧力LP1が第1目標低圧を下回っている場合、制御器(120)は、流量調節弁(48)の開度を拡大する。流量調節弁(48)の開度が大きくなると、接続用配管(47)から第1吸入配管(32)へ流入する冷媒の流量が増加し、圧力LP1が上昇する。 The operation of the controller (120) in step ST24 will be described in detail. When the refrigerant pressure LP1 in the first suction pipe (32) exceeds the first target low pressure (0.48 MPa), the controller (120) reduces the opening degree of the flow control valve (48). When the opening degree of the flow rate control valve (48) becomes small, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) decreases, and the pressure LP1 decreases. On the other hand, when the pressure LP1 is lower than the first target low pressure, the controller (120) increases the opening degree of the flow control valve (48). When the opening degree of the flow control valve (48) increases, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) increases, and the pressure LP1 increases.
 ステップST25における制御器(120)の動作を詳しく説明する。第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)を上回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を増加(即ち、第1圧縮機(24)の運転周波数を上昇)させる。第1圧縮機部(111)の運転容量が増加すると、第2吸入配管(34)から接続用配管(47)へ流入する冷媒の流量が増加し、圧力LP2が低下する。一方、圧力LP2が第2目標低圧を下回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を減少(即ち、第1圧縮機(24)の運転周波数を低下)させる。第1圧縮機部(111)の運転容量が減少すると、第2吸入配管(34)から接続用配管(47)へ流入する冷媒の流量が減少し、圧力LP2が上昇する。 The operation of the controller (120) in step ST25 will be described in detail. When the refrigerant pressure LP2 in the second suction pipe (34) exceeds the second target low pressure (0.85 MPa), the controller (120) increases the operating capacity of the first compressor unit (111) (that is, The operating frequency of the first compressor (24) is increased). When the operating capacity of the first compressor section (111) increases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) increases, and the pressure LP2 decreases. On the other hand, when the pressure LP2 is lower than the second target low pressure, the controller (120) decreases the operating capacity of the first compressor unit (111) (that is, decreases the operating frequency of the first compressor (24)). ) When the operating capacity of the first compressor section (111) decreases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) decreases, and the pressure LP2 increases.
 ステップST22の条件が成立する場合は、第1圧縮機部(111)の運転容量は最大容量であり、第2圧縮機部(112)の運転容量も最大容量である。つまり、この条件が成立する場合は、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を増やすことができない状況となっている。そこで、ステップST22の条件が成立する場合、制御器(120)は、ステップST23において、流量調節弁(48)の開度を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。 When the condition of step ST22 is satisfied, the operating capacity of the first compressor section (111) is the maximum capacity, and the operating capacity of the second compressor section (112) is also the maximum capacity. That is, when this condition is satisfied, the operating capacities of the first compressor unit (111) and the second compressor unit (112) cannot be increased. Therefore, when the condition of step ST22 is satisfied, the controller (120) determines the opening degree of the flow rate adjustment valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST23. Adjust to (0.48 MPa).
 第1圧縮機部(111)及び第2圧縮機部(112)の運転容量が最大容量である状況において流量調節弁(48)が開いている場合、第2吸入配管(34)を流れる冷媒(即ち、空調熱交換器(84)において蒸発した冷媒)は、その一部が接続用配管(47)を通って第1圧縮機(24)へ吸入され、残りが第2圧縮機(25)へ吸入される。つまり、この場合、第1圧縮機(24)は、冷蔵熱交換器(74)において蒸発した冷媒の全部と、空調熱交換器(84)において蒸発した冷媒の一部とを吸い込む。この場合に圧力LP1が第1目標低圧を上回ると、制御器(120)は、流量調節弁(48)の開度を縮小する。流量調節弁(48)の開度が小さくなると、接続用配管(47)から第1吸入配管(32)へ流入する冷媒の流量が減少するため、圧力LP1が低下する。一方、この場合に圧力LP1が第1目標低圧を下回ると、制御器(120)は、流量調節弁(48)の開度を拡大する。流量調節弁(48)の開度が大きくなると、接続用配管(47)から第1吸入配管(32)へ流入する冷媒の流量が増加するため、圧力LP1が上昇する。 When the flow control valve (48) is open in a situation where the operating capacities of the first compressor part (111) and the second compressor part (112) are the maximum capacity, the refrigerant flowing through the second suction pipe (34) ( That is, a part of the refrigerant evaporated in the air conditioning heat exchanger (84) is sucked into the first compressor (24) through the connection pipe (47), and the rest is sent to the second compressor (25). Inhaled. That is, in this case, the first compressor (24) sucks all of the refrigerant evaporated in the refrigeration heat exchanger (74) and part of the refrigerant evaporated in the air conditioning heat exchanger (84). In this case, when the pressure LP1 exceeds the first target low pressure, the controller (120) reduces the opening degree of the flow control valve (48). When the opening degree of the flow rate control valve (48) becomes small, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) decreases, and thus the pressure LP1 decreases. On the other hand, when the pressure LP1 falls below the first target low pressure in this case, the controller (120) increases the opening degree of the flow rate control valve (48). When the opening degree of the flow rate control valve (48) increases, the flow rate of the refrigerant flowing from the connection pipe (47) into the first suction pipe (32) increases, and thus the pressure LP1 increases.
   〔第2制御動作〕
 上述したように、制御器(120)は、第2冷却運転中に図9のステップST05の条件が成立すると、第2制御動作を行う。ここでは、第2制御動作について、図11を参照しながら説明する。
[Second control operation]
As described above, the controller (120) performs the second control operation when the condition of step ST05 in FIG. 9 is satisfied during the second cooling operation. Here, the second control operation will be described with reference to FIG.
 第2制御動作は、冷蔵ユニット(70)がサーモOFF状態で且つ空調ユニット(80)がサーモON状態であり、更には第2圧縮機部(112)の運転容量が既に最大容量に達している場合に行われる(図9を参照)。 In the second control operation, the refrigeration unit (70) is in the thermo OFF state and the air conditioning unit (80) is in the thermo ON state, and the operation capacity of the second compressor unit (112) has already reached the maximum capacity. (See FIG. 9).
 ステップST31において、制御器(120)は、冷蔵ユニット(70)がサーモ信号を出力するものなのか、サーモ信号を出力しないものなのかを判断する。冷蔵ユニット(70)がサーモ信号を出力するものである場合、制御器(120)は、冷蔵ユニット(70)から受信したサーモ信号に基づいて、冷蔵ユニット(70)がサーモON状態であるかサーモOFF状態であるかを判断できる。従って、サーモOFF状態であることを示すサーモ信号を冷蔵ユニット(70)が出力している場合は、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)を上回っていても構わない。そこで、制御器(120)は、ステップST32において流量調節弁(48)を全開状態とする。また、制御器(120)は、ステップST33において、第1圧縮機部(111)の運転容量を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。 In step ST31, the controller (120) determines whether the refrigeration unit (70) outputs a thermo signal or does not output a thermo signal. When the refrigeration unit (70) outputs a thermo signal, the controller (120) determines whether the refrigeration unit (70) is in a thermo-ON state based on the thermo signal received from the refrigeration unit (70). It can be determined whether the state is OFF. Accordingly, when the refrigeration unit (70) outputs a thermo signal indicating that the thermo is OFF, the refrigerant pressure LP1 in the first suction pipe (32) exceeds the first target low pressure (0.48 MPa). It does not matter. Therefore, the controller (120) fully opens the flow control valve (48) in step ST32. In step ST33, the controller (120) sets the operating capacity of the first compressor section (111), and the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). Adjust as follows.
 流量調節弁(48)が全開状態である場合、第1吸入配管(32)内の冷媒圧力LP1は、第2吸入配管(34)内の冷媒圧力LP2と実質的に等しくなる。そして、ステップST33において、制御器(120)は、第2圧縮機部(112)の運転容量を最大容量の保持する一方、、第1圧縮機部(111)の運転容量を圧力LP2が第2目標低圧(0.85MPa)となるように調節する。この状態において、空調熱交換器(84)において蒸発した冷媒は、その一部が接続用配管(47)を通って第1圧縮機(24)へ吸入され、残りが第2圧縮機(25)へ吸入される。 When the flow control valve (48) is fully open, the refrigerant pressure LP1 in the first suction pipe (32) becomes substantially equal to the refrigerant pressure LP2 in the second suction pipe (34). In step ST33, the controller (120) maintains the maximum operating capacity of the second compressor section (112), while the pressure LP2 is the second operating capacity of the first compressor section (111). The target low pressure (0.85 MPa) is adjusted. In this state, a part of the refrigerant evaporated in the air conditioning heat exchanger (84) is sucked into the first compressor (24) through the connection pipe (47), and the remaining is the second compressor (25). Inhaled.
 一方、冷蔵ユニット(70)がサーモ信号を出力しないものである場合、制御器(120)は、冷蔵ユニット(70)がサーモOFF状態からサーモON状態に切り換わったことを、第1吸入配管(32)内の冷媒圧力LP1に基づいて判断しなければならない。そのためには、冷蔵ユニット(70)がサーモON状態かサーモOFF状態かに拘わらず、制御器(120)は、圧力LP1を第1目標低圧に保つための動作を行う必要がある。そこで、この場合、制御器(120)は、ステップST34~ST37の動作を行う。 On the other hand, when the refrigeration unit (70) does not output a thermo signal, the controller (120) indicates that the refrigeration unit (70) has been switched from the thermo OFF state to the thermo ON state in the first suction pipe ( 32) Judgment must be made based on the refrigerant pressure LP1. For this purpose, the controller (120) needs to perform an operation for keeping the pressure LP1 at the first target low pressure regardless of whether the refrigeration unit (70) is in the thermo-ON state or the thermo-OFF state. Therefore, in this case, the controller (120) performs the operations of steps ST34 to ST37.
 冷蔵ユニット(70)がサーモ信号を出力しないものである場合、制御器(120)は、ステップST34において、“第1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。 When the refrigeration unit (70) does not output a thermo signal, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST34. to decide.
 ステップST34の条件が成立しない場合は、第2圧縮機部(112)の運転容量は最大容量であるが、第1圧縮機部(111)の運転容量は最大容量に達していない。つまり、この条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できるが、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できない状況となっている。 When the condition of step ST34 is not satisfied, the operating capacity of the second compressor section (112) is the maximum capacity, but the operating capacity of the first compressor section (111) has not reached the maximum capacity. That is, when this condition is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111), but the cooling load of the air conditioning unit (80) is processed by the second compressor unit (112). It is a situation that can not be processed only by.
 そこで、ステップST34の条件が成立しない場合、制御器(120)は、ステップST36において、流量調節弁(48)の開度を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。このステップST36における制御器(120)の動作は、図10のステップST24における制御器(120)の動作と同じである。また、制御器(120)は、次のステップST37において、第1圧縮機部(111)の運転容量を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。このステップST37における制御器(120)の動作は、図10のステップST25における制御器(120)の動作と同じである。そして、制御器(120)がステップST36及びステップST37の動作を行うと、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)によって処理され、空調ユニット(80)の冷房負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。 Therefore, when the condition of step ST34 is not satisfied, the controller (120) determines the opening degree of the flow rate control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST36. Adjust to (0.48 MPa). The operation of the controller (120) in step ST36 is the same as the operation of the controller (120) in step ST24 of FIG. In the next step ST37, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP2 in the second suction pipe (34) is the second target low pressure (0.85 MPa). Adjust so that The operation of the controller (120) in step ST37 is the same as the operation of the controller (120) in step ST25 of FIG. When the controller (120) performs the operations of step ST36 and step ST37, the cooling load of the refrigeration unit (70) is processed by the first compressor unit (111), and the cooling load of the air conditioning unit (80) is the first. Processed by both the first compressor section (111) and the second compressor section (112).
 ステップST34の条件が成立する場合は、第1圧縮機部(111)の運転容量は最大容量であり、第2圧縮機部(112)の運転容量も最大容量である。つまり、この条件が成立する場合は、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を増やすことができない状況となっている。そこで、ステップST34の条件が成立する場合、制御器(120)は、ステップST35において、流量調節弁(48)の開度を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。このステップST35における制御器(120)の動作は、図10のステップST23における制御器(120)の動作と同じである。 When the condition of step ST34 is satisfied, the operating capacity of the first compressor section (111) is the maximum capacity, and the operating capacity of the second compressor section (112) is also the maximum capacity. That is, when this condition is satisfied, the operating capacities of the first compressor unit (111) and the second compressor unit (112) cannot be increased. Therefore, when the condition of step ST34 is satisfied, the controller (120) determines the opening degree of the flow rate control valve (48) and the refrigerant pressure LP1 in the first suction pipe (32) as the first target low pressure in step ST35. Adjust to (0.48 MPa). The operation of the controller (120) in step ST35 is the same as the operation of the controller (120) in step ST23 of FIG.
  〈冷蔵・暖房運転中の動作〉
 冷蔵・暖房運転中に制御器(120)が行う動作について、図12~図14のフロー図を参照しながら説明する。
<Operation during refrigeration / heating operation>
The operation performed by the controller (120) during the refrigeration / heating operation will be described with reference to the flowcharts of FIGS.
 図12に示すように、制御器(120)は、ステップST41において、“空調ユニット(80)がサーモON状態であり、且つ空調熱交換器(84)における冷媒の凝縮温度Tcが60℃未満である”という条件の成否を判断する。 As shown in FIG. 12, in step ST41, the controller (120) reads that “the air conditioning unit (80) is in the thermo-ON state and the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) is less than 60 ° C. The success or failure of the condition “Yes” is determined.
 なお、冷凍装置(10)には、空調ユニット(80)が複数設けられている場合がある。この場合、制御器(120)は、少なくとも一つの空調ユニット(80)がサーモON状態であり、且つ冷媒の凝縮温度Tcが60℃未満である場合に、ステップST41の条件が成立したと判断する。また、制御器(120)は、吐出圧力センサ(91)の検出値に対応する冷媒の飽和温度を算出し、その値を空調熱交換器(84)における冷媒の凝縮温度Tcとする。 Note that the refrigeration apparatus (10) may be provided with a plurality of air conditioning units (80). In this case, the controller (120) determines that the condition of step ST41 is satisfied when the at least one air conditioning unit (80) is in the thermo-ON state and the refrigerant condensation temperature Tc is less than 60 ° C. . The controller (120) calculates the saturation temperature of the refrigerant corresponding to the detection value of the discharge pressure sensor (91), and sets the value as the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84).
 ステップST41の条件が成立しない場合、制御器(120)は、ステップST42において、第1併存運転用の制御動作を行う。この制御動作については、後述する。一方、ステップST41の条件が成立する場合、制御器(120)は、ステップST43において、“空調熱交換器(84)における冷媒の凝縮温度Tcが55℃未満である”という条件の成否を判断する。ステップST43の条件が成立しない場合、制御器(120)は、ステップST44において、第2併存運転用の制御動作を行う。この制御動作については、後述する。一方、ステップST43の条件が成立する場合、制御器(120)は、ステップST45の動作を行う。 When the condition of step ST41 is not satisfied, the controller (120) performs the control operation for the first concurrent operation in step ST42. This control operation will be described later. On the other hand, when the condition of step ST41 is satisfied, the controller (120) determines whether or not the condition that “the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) is less than 55 ° C.” is satisfied in step ST43. . When the condition of step ST43 is not satisfied, the controller (120) performs the control operation for the second concurrent operation in step ST44. This control operation will be described later. On the other hand, when the condition of step ST43 is satisfied, the controller (120) performs the operation of step ST45.
 ステップST45において、制御器(120)は、“冷蔵ユニット(70)がサーモON状態である”という条件の成否を判断する。なお、冷凍装置(10)には、冷蔵ユニット(70)が複数設けられている場合がある。この場合、制御器(120)は、少なくとも一つの冷蔵ユニット(70)がサーモON状態である場合に、ステップST45の条件が成立したと判断する。 In step ST45, the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied. The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST45 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
 ステップST45の条件が成立する場合は、冷凍装置(10)が第3併存運転(図7を参照)を行っている。上述したように、第3併存運転中には、第1圧縮機部(111)と第2圧縮機部(112)の両方が作動する。そして、ステップST45の条件が成立する場合、制御器(120)は、ステップST46において、“第1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。 When the condition of step ST45 is satisfied, the refrigeration apparatus (10) is performing the third coexistence operation (see FIG. 7). As described above, both the first compressor unit (111) and the second compressor unit (112) operate during the third concurrent operation. When the condition of step ST45 is satisfied, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST46.
 ステップST46の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、ステップST46の条件が成立しない場合、制御器(120)は、ステップST49において、第1圧縮機部(111)の運転容量(即ち、第1圧縮機(24)の運転周波数)を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(本実施形態では、0.48MPa)となるように調節する。また、次のステップST50において、制御器(120)は、流量調節弁(48)を全閉状態とする。また、次のステップST51において、制御器(120)は、第2圧縮機部(112)の運転容量(即ち、第2圧縮機(25)の運転周波数)を、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(本実施形態では、55℃)となるように調節する。 If the condition of step ST46 is not satisfied, the cooling load of the refrigeration unit (70) can be handled only by the first compressor unit (111). Therefore, if the condition of step ST46 is not satisfied, the controller (120) determines the operating capacity of the first compressor unit (111) (that is, the operating frequency of the first compressor (24)) in step ST49. The refrigerant pressure LP1 in the one suction pipe (32) is adjusted to be a target low pressure (0.48 MPa in the present embodiment). In the next step ST50, the controller (120) fully closes the flow rate adjustment valve (48). In the next step ST51, the controller (120) determines the operating capacity of the second compressor section (112) (that is, the operating frequency of the second compressor (25)) in the air conditioning heat exchanger (84). It adjusts so that the condensation temperature Tc of a refrigerant | coolant may become target temperature (this embodiment 55 degreeC).
 ステップST51の動作が終了した時点では、流量調節弁(48)を全閉状態となっている。このため、第1圧縮機(24)は、冷蔵熱交換器(74)において蒸発した冷媒だけを吸入し、第2圧縮機(25)は、室外熱交換器(26)において蒸発した冷媒だけを吸入する(図7を参照)。 When the operation of step ST51 is completed, the flow rate control valve (48) is fully closed. Therefore, the first compressor (24) sucks only the refrigerant evaporated in the refrigeration heat exchanger (74), and the second compressor (25) receives only the refrigerant evaporated in the outdoor heat exchanger (26). Inhale (see Figure 7).
 ステップST49における制御器(120)の動作を詳しく説明する。第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)を上回っている場合、制御器(120)は、圧力LP1を低下させるために、第1圧縮機部(111)の運転容量を増加させる。一方、圧力LP1が第1目標低圧(0.48MPa)を下回っている場合、制御器(120)は、圧力LP1を上昇させるために、第1圧縮機部(111)の運転容量を減少させる。 The operation of the controller (120) in step ST49 will be described in detail. When the refrigerant pressure LP1 in the first suction pipe (32) is higher than the target low pressure (0.48 MPa), the controller (120) controls the first compressor section (111) to reduce the pressure LP1. Increase operating capacity. On the other hand, when the pressure LP1 is lower than the first target low pressure (0.48 MPa), the controller (120) decreases the operating capacity of the first compressor unit (111) in order to increase the pressure LP1.
 ステップST51における制御器(120)の動作を詳しく説明する。空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)を上回っている場合、制御器(120)は、第2圧縮機部(112)の運転容量を減少させる。第2圧縮機部(112)の運転容量が減少すると、第1吐出配管(31)及び第2吐出配管(33)の冷媒圧力が低下し、冷媒の凝縮温度Tcが低下する。一方、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)を下回っている場合、制御器(120)は、第2圧縮機部(112)の運転容量を増加させる。第2圧縮機部(112)の運転容量が増加すると、第1吐出配管(31)及び第2吐出配管(33)の冷媒圧力が上昇し、冷媒の凝縮温度Tcが上昇する。 The operation of the controller (120) in step ST51 will be described in detail. When the condensation temperature Tc of the refrigerant in the air conditioning heat exchanger (84) exceeds the target temperature (55 ° C.), the controller (120) decreases the operating capacity of the second compressor unit (112). When the operating capacity of the second compressor section (112) decreases, the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) decreases, and the refrigerant condensing temperature Tc decreases. On the other hand, when the condensation temperature Tc of the refrigerant in the air conditioning heat exchanger (84) is lower than the target temperature (55 ° C.), the controller (120) increases the operating capacity of the second compressor section (112). When the operating capacity of the second compressor section (112) increases, the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) increases, and the refrigerant condensing temperature Tc increases.
 一方、ステップST46の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況となっている。そこで、この場合、制御器(120)は、ステップST47において、第2圧縮機部(112)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)となるように調節する。また、次のステップST48において、制御器(120)は、流量調節弁(48)を全開状態とする。この場合に流量調節弁(48)が全開状態になると、第1吸入配管(32)を流れる冷媒の一部が接続用配管(47)を通って第2吸入配管(34)へ流入する。つまり、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機(25)へ吸入され、残りが第1圧縮機(24)へ吸入される。 On the other hand, when the condition of step ST46 is established, the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone. Therefore, in this case, in step ST47, the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST48, the controller (120) fully opens the flow rate adjustment valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47). That is, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor (25), and the rest is sucked into the first compressor (24).
 ステップST47における制御器(120)の動作を詳しく説明する。第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)を上回っている場合、制御器(120)は、第2圧縮機部(112)の運転容量を増加させる。第2圧縮機部(112)の運転容量が増加すると、第1吸入配管(32)から接続用配管(47)を通って第2圧縮機(25)へ吸入される冷媒の流量が増加し、圧力LP1が低下する。一方、圧力LP1が目標低圧を下回っている場合、制御器(120)は、第2圧縮機部(112)の運転容量を減少させる。第2圧縮機部(112)の運転容量が減少すると、第1吸入配管(32)から接続用配管(47)を通って第2圧縮機(25)へ吸入される冷媒の流量が減少し、圧力LP1が上昇する。 The operation of the controller (120) in step ST47 will be described in detail. When the refrigerant pressure LP1 in the first suction pipe (32) exceeds the target low pressure (0.48 MPa), the controller (120) increases the operating capacity of the second compressor unit (112). When the operating capacity of the second compressor section (112) increases, the flow rate of the refrigerant sucked into the second compressor (25) from the first suction pipe (32) through the connection pipe (47) increases. The pressure LP1 decreases. On the other hand, when the pressure LP1 is lower than the target low pressure, the controller (120) decreases the operating capacity of the second compressor section (112). When the operating capacity of the second compressor section (112) decreases, the flow rate of the refrigerant sucked into the second compressor (25) from the first suction pipe (32) through the connection pipe (47) decreases, The pressure LP1 increases.
 制御器(120)がステップST47の動作を行うと、第1吸入配管(32)内の冷媒圧力LP1(即ち、冷蔵熱交換器(74)における冷媒の蒸発圧力)が目標低圧に保たれる。なお、制御器(120)がステップST48の動作を行った場合、空調熱交換器(84)における冷媒の凝縮温度Tcは、成り行きとなる。 When the controller (120) performs the operation of step ST47, the refrigerant pressure LP1 in the first suction pipe (32) (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) is maintained at the target low pressure. When the controller (120) performs the operation of step ST48, the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a result.
 制御器(120)がステップST47とステップST48の動作を行うと、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。従って、この状態では、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。このため、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況においても、冷蔵ユニット(70)の庫内温度を設定温度に保つことができる。 When the controller (120) performs the operations of step ST47 and step ST48, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
 ステップST45の条件が成立しない場合は、冷凍装置(10)が暖房運転(図8を参照)を行っている。上述したように、暖房運転中には、原則として、第1圧縮機部(111)が停止し、第2圧縮機部(112)が作動する。この場合、制御器(120)は、ステップST52において、“第2圧縮機部(112)の運転容量が最大容量である”という条件の成否を判断する。 If the condition of step ST45 is not satisfied, the refrigeration apparatus (10) is performing the heating operation (see FIG. 8). As described above, during the heating operation, in principle, the first compressor unit (111) is stopped and the second compressor unit (112) is operated. In this case, in step ST52, the controller (120) determines whether or not the condition that “the operating capacity of the second compressor section (112) is the maximum capacity” is met.
 ステップST52の条件が成立しない場合は、空調ユニット(80)の暖房負荷を第2圧縮機部(112)だけで処理できる状況である。そこで、ステップST52の条件が成立しない場合、制御器(120)は、ステップST55において、第2圧縮機部(112)の運転容量を、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)となるように調節する。このステップST55において制御器(120)が行う動作は、ステップST51において制御器(120)が行う動作と同じである。また、次のステップST56において、制御器(120)は、流量調節弁(48)を全閉状態とする。 If the condition of step ST52 is not satisfied, the heating load of the air conditioning unit (80) can be processed only by the second compressor section (112). Therefore, if the condition of step ST52 is not satisfied, the controller (120) sets the operating capacity of the second compressor section (112) and the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) as the target in step ST55. Adjust to a temperature (55 ° C). The operation performed by the controller (120) in step ST55 is the same as the operation performed by the controller (120) in step ST51. In the next step ST56, the controller (120) fully closes the flow rate adjustment valve (48).
 ステップST52の条件が成立する場合は、空調ユニット(80)の暖房負荷を第2圧縮機部(112)だけで処理しきれない状況となっている。そこで、この場合、制御器(120)は、ステップST53において、第1圧縮機部(111)の運転容量を、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)となるように調節する。また、次のステップST54において、制御器(120)は、流量調節弁(48)を全開状態とする。この場合に流量調節弁(48)が全開状態になると、第2吸入配管(34)を流れる冷媒の一部が接続用配管(47)を通って第1吸入配管(32)へ流入する。つまり、室外熱交換器(26)において蒸発した冷媒は、その一部が第1圧縮機(24)へ吸入され、残りが第2圧縮機(25)へ吸入される。そして、制御器(120)がステップST53の動作を行うことによって、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)に保たれる。 When the condition of step ST52 is satisfied, the heating load of the air conditioning unit (80) cannot be processed by the second compressor unit (112) alone. Therefore, in this case, in step ST53, the controller (120) sets the operating capacity of the first compressor unit (111) to the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) as the target temperature (55 ° C.). Adjust so that In the next step ST54, the controller (120) fully opens the flow control valve (48). In this case, when the flow rate adjustment valve (48) is fully opened, a part of the refrigerant flowing through the second suction pipe (34) flows into the first suction pipe (32) through the connection pipe (47). That is, a part of the refrigerant evaporated in the outdoor heat exchanger (26) is sucked into the first compressor (24) and the rest is sucked into the second compressor (25). The controller (120) performs the operation of step ST53, whereby the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) is maintained at the target temperature (55 ° C.).
 ステップST53における制御器(120)の動作を詳しく説明する。空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)を上回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を減少させる。第1圧縮機部(111)の運転容量が減少すると、第1吐出配管(31)及び第2吐出配管(33)の冷媒圧力が低下し、冷媒の凝縮温度Tcが低下する。一方、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)を下回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を増加させる。第1圧縮機部(111)の運転容量が増加すると、第1吐出配管(31)及び第2吐出配管(33)の冷媒圧力が上昇し、冷媒の凝縮温度Tcが上昇する。 The operation of the controller (120) in step ST53 will be described in detail. When the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) exceeds the target temperature (55 ° C.), the controller (120) decreases the operating capacity of the first compressor unit (111). When the operating capacity of the first compressor section (111) decreases, the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) decreases, and the refrigerant condensing temperature Tc decreases. On the other hand, when the refrigerant condensing temperature Tc in the air conditioning heat exchanger (84) is lower than the target temperature (55 ° C.), the controller (120) increases the operating capacity of the first compressor section (111). When the operating capacity of the first compressor section (111) increases, the refrigerant pressure in the first discharge pipe (31) and the second discharge pipe (33) increases, and the refrigerant condensation temperature Tc increases.
 制御器(120)がステップST53とステップST54の動作を行うと、室外熱交換器(26)において蒸発した冷媒は、その一部が第1圧縮機部(111)へ吸入され、残りが第2圧縮機部(112)へ吸入される。従って、この状態では、空調ユニット(80)の暖房負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。このため、空調ユニット(80)の暖房負荷を第2圧縮機部(112)だけで処理しきれない状況においても、空調ユニット(80)が設置された部屋の気温を設定温度に保つことができる。 When the controller (120) performs the operations of step ST53 and step ST54, a part of the refrigerant evaporated in the outdoor heat exchanger (26) is sucked into the first compressor section (111), and the rest is the second. It is sucked into the compressor section (112). Therefore, in this state, the heating load of the air conditioning unit (80) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the heating load of the air conditioning unit (80) cannot be processed by the second compressor unit (112) alone, the temperature of the room in which the air conditioning unit (80) is installed can be kept at the set temperature. .
   〔第1併存運転用の制御動作〕
 冷凍装置(10)が第1併存運転を行っている場合に制御器(120)が行う制御動作について、図13を参照しながら説明する。
[Control action for the first concurrent operation]
A control operation performed by the controller (120) when the refrigeration apparatus (10) performs the first concurrent operation will be described with reference to FIG.
 上述したように、第1併存運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となり、第1圧縮機部(111)と第2圧縮機部(112)の両方が作動する(図5を参照)。 As described above, in the refrigeration apparatus (10) in the first concurrent operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state, and the first compressor unit (111) and the second compressor Both parts (112) are activated (see FIG. 5).
 ステップST61において、制御器(120)は、“冷蔵ユニット(70)がサーモON状態である”という条件の成否を判断する。なお、冷凍装置(10)には、冷蔵ユニット(70)が複数設けられている場合がある。この場合、制御器(120)は、少なくとも一つの冷蔵ユニット(70)がサーモON状態である場合に、ステップST61の条件が成立したと判断する。 In step ST61, the controller (120) determines whether or not a condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied. The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST61 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
 ステップST61の条件が成立する場合、制御器(120)は、ステップST62において、“第
1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。
When the condition of step ST61 is satisfied, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST62.
 ステップST62の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、ステップST62の条件が成立しない場合、制御器(120)は、ステップST65において、第1圧縮機部(111)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)となるように調節する。このステップST65において制御器(120)が行う動作は、図12のステップST49において制御器(120)が行う動作と同じである。また、次のステップST66において、制御器(120)は、流量調節弁(48)を全閉状態と全閉状態のどちらかにする。制御器(120)がステップST66の動作を行う場合は、第2四方切換弁(28)が第1状態となっている(図5を参照)。従って、この場合、流量調節弁(48)は、全閉状態と全閉状態のどちらであっても構わない。 If the condition of step ST62 is not satisfied, the cooling load of the refrigeration unit (70) can be handled only by the first compressor unit (111). Therefore, if the condition of step ST62 is not satisfied, the controller (120) determines that the operating capacity of the first compressor section (111) is the target low pressure in step ST65 and the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure. Adjust to (0.48 MPa). The operation performed by the controller (120) in step ST65 is the same as the operation performed by the controller (120) in step ST49 of FIG. In the next step ST66, the controller (120) sets the flow rate adjustment valve (48) to either the fully closed state or the fully closed state. When the controller (120) performs the operation of step ST66, the second four-way switching valve (28) is in the first state (see FIG. 5). Accordingly, in this case, the flow rate control valve (48) may be in a fully closed state or a fully closed state.
 一方、ステップST62の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況となっている。そこで、この場合、制御器(120)は、ステップST63において、第2圧縮機部(112)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)となるように調節する。また、次のステップST64において、制御器(120)は、流量調節弁(48)を全開状態とする。この場合に流量調節弁(48)が全開状態になると、第1吸入配管(32)を流れる冷媒の一部が接続用配管(47)を通って第2吸入配管(34)へ流入する。つまり、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機(25)へ吸入され、残りが第1圧縮機(24)へ吸入される。なお、ステップST63の動作は、図12のステップST47の動作と同じである。 On the other hand, when the condition of step ST62 is satisfied, the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone. Therefore, in this case, in step ST63, the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST64, the controller (120) fully opens the flow control valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47). That is, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor (25), and the rest is sucked into the first compressor (24). The operation in step ST63 is the same as the operation in step ST47 in FIG.
 制御器(120)がステップST63の動作を行うと、第1吸入配管(32)内の冷媒圧力LP1(即ち、冷蔵熱交換器(74)における冷媒の蒸発圧力)が目標低圧に保たれる。なお、制御器(120)がステップST64の動作を行った場合、空調熱交換器(84)における冷媒の凝縮温度Tcは、成り行きとなる。 When the controller (120) performs the operation of step ST63, the refrigerant pressure LP1 (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) in the first suction pipe (32) is maintained at the target low pressure. When the controller (120) performs the operation of step ST64, the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a result.
 制御器(120)がステップST63とステップST64の動作を行うと、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。従って、この状態では、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。このため、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況においても、冷蔵ユニット(70)の庫内温度を設定温度に保つことができる。 When the controller (120) performs the operations of step ST63 and step ST64, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112) and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
 ステップST61の条件が成立しない場合は、冷蔵ユニット(70)がサーモOFF状態となっている。第1併存運転中に冷蔵ユニット(70)がサーモOFF状態になると、蒸発器として機能する熱交換器が存在しなくなるため、冷凍装置(10)の運転を継続できなくなる。そこで、ステップST61の条件が成立しない場合、制御器(120)は、ステップST67において流量調節弁(48)を全閉状態とする。また、制御器(120)は、次のステップST68において、冷凍装置(10)の運転を第1併存運転から暖房運転(図8を参照)に切り換え、空調ユニット(80)による室内の暖房を継続させる。 If the condition of step ST61 is not satisfied, the refrigeration unit (70) is in the thermo OFF state. If the refrigeration unit (70) is in the thermo-off state during the first concurrent operation, there is no heat exchanger functioning as an evaporator, and thus the operation of the refrigeration apparatus (10) cannot be continued. Therefore, when the condition of step ST61 is not satisfied, the controller (120) causes the flow rate adjustment valve (48) to be fully closed in step ST67. Further, in the next step ST68, the controller (120) switches the operation of the refrigeration apparatus (10) from the first coexistence operation to the heating operation (see FIG. 8), and continues heating the room by the air conditioning unit (80). Let
   〔第2併存運転用の制御動作〕
 冷凍装置(10)が第2併存運転を行っている場合に制御器(120)が行う制御動作について、図14を参照しながら説明する。
[Control action for second concurrent operation]
A control operation performed by the controller (120) when the refrigeration apparatus (10) is performing the second concurrent operation will be described with reference to FIG.
 上述したように、第2併存運転中の冷凍装置(10)では、冷蔵ユニット(70)と空調ユニット(80)の両方がサーモON状態となる。また、第2併存運転中には、原則として、第1圧縮機部(111)が作動して第2圧縮機部(112)が停止する(図6を参照)。 As described above, in the refrigeration apparatus (10) in the second concurrent operation, both the refrigeration unit (70) and the air conditioning unit (80) are in the thermo-ON state. Further, during the second concurrent operation, as a rule, the first compressor section (111) operates and the second compressor section (112) stops (see FIG. 6).
 ステップST71において、制御器(120)は、“冷蔵ユニット(70)がサーモON状態である”という条件の成否を判断する。なお、冷凍装置(10)には、冷蔵ユニット(70)が複数設けられている場合がある。この場合、制御器(120)は、少なくとも一つの冷蔵ユニット(70)がサーモON状態である場合に、ステップST71の条件が成立したと判断する。 In step ST71, the controller (120) determines whether or not the condition that “the refrigeration unit (70) is in the thermo ON state” is satisfied. The refrigeration apparatus (10) may be provided with a plurality of refrigeration units (70). In this case, the controller (120) determines that the condition of step ST71 is satisfied when at least one refrigeration unit (70) is in the thermo-ON state.
 ステップST71の条件が成立する場合、制御器(120)は、ステップST72において、“第1圧縮機部(111)の運転容量が最大容量である”という条件の成否を判断する。 When the condition of step ST71 is satisfied, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is the maximum capacity” is satisfied in step ST72.
 ステップST72の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、ステップST72の条件が成立しない場合、制御器(120)は、ステップST75において、第1圧縮機部(111)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)となるように調節する。このステップST75において制御器(120)が行う動作は、図12のステップST49において制御器(120)が行う動作と同じである。また、次のステップST76において、制御器(120)は、流量調節弁(48)を全閉状態にする。 If the condition of step ST72 is not satisfied, the cooling load of the refrigeration unit (70) can be handled only by the first compressor unit (111). Therefore, if the condition of step ST72 is not satisfied, the controller (120) determines that the operating capacity of the first compressor unit (111) is the target low pressure in step ST75 and the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure. Adjust to (0.48 MPa). The operation performed by the controller (120) in step ST75 is the same as the operation performed by the controller (120) in step ST49 of FIG. In the next step ST76, the controller (120) fully closes the flow control valve (48).
 一方、ステップST72の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況となっている。そこで、この場合、制御器(120)は、ステップST73において、第2圧縮機部(112)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が目標低圧(0.48MPa)となるように調節する。また、次のステップST74において、制御器(120)は、流量調節弁(48)を全開状態とする。この場合に流量調節弁(48)が全開状態になると、第1吸入配管(32)を流れる冷媒の一部が接続用配管(47)を通って第2吸入配管(34)へ流入する。つまり、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機(25)へ吸入され、残りが第1圧縮機(24)へ吸入される。なお、ステップST73の動作は、図12のステップST47の動作と同じである。 On the other hand, when the condition of step ST72 is satisfied, the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone. Therefore, in this case, in step ST73, the controller (120) sets the operating capacity of the second compressor section (112) so that the refrigerant pressure LP1 in the first suction pipe (32) is the target low pressure (0.48 MPa). Adjust so that In the next step ST74, the controller (120) fully opens the flow rate adjustment valve (48). In this case, when the flow control valve (48) is fully opened, a part of the refrigerant flowing through the first suction pipe (32) flows into the second suction pipe (34) through the connection pipe (47). That is, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor (25), and the rest is sucked into the first compressor (24). The operation in step ST73 is the same as the operation in step ST47 in FIG.
 制御器(120)がステップST73の動作を行うと、第1吸入配管(32)内の冷媒圧力LP1(即ち、冷蔵熱交換器(74)における冷媒の蒸発圧力)が目標低圧に保たれる。なお、制御器(120)がステップST74の動作を行った場合、空調熱交換器(84)における冷媒の凝縮温度Tcは、成り行きとなる。 When the controller (120) performs the operation of step ST73, the refrigerant pressure LP1 in the first suction pipe (32) (that is, the refrigerant evaporation pressure in the refrigeration heat exchanger (74)) is maintained at the target low pressure. When the controller (120) performs the operation of step ST74, the refrigerant condensing temperature Tc in the air-conditioning heat exchanger (84) becomes a consequence.
 制御器(120)がステップST73とステップST74の動作を行うと、冷蔵熱交換器(74)において蒸発した冷媒は、その一部が第2圧縮機部(112)へ吸入され、残りが第1圧縮機部(111)へ吸入される。従って、この状態では、冷蔵ユニット(70)の冷却負荷が第1圧縮機部(111)と第2圧縮機部(112)の両方によって処理される。このため、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理しきれない状況においても、冷蔵ユニット(70)の庫内温度を設定温度に保つことができる。 When the controller (120) performs the operations of step ST73 and step ST74, a part of the refrigerant evaporated in the refrigeration heat exchanger (74) is sucked into the second compressor section (112), and the rest is the first. It is sucked into the compressor section (111). Therefore, in this state, the cooling load of the refrigeration unit (70) is processed by both the first compressor unit (111) and the second compressor unit (112). For this reason, even in a situation where the cooling load of the refrigeration unit (70) cannot be processed by the first compressor unit (111) alone, the internal temperature of the refrigeration unit (70) can be kept at the set temperature.
 ステップST71の条件が成立しない場合は、冷蔵ユニット(70)がサーモOFF状態となっている。第1併存運転中に冷蔵ユニット(70)がサーモOFF状態になると、蒸発器として機能する熱交換器が存在しなくなるため、冷凍装置(10)の運転を継続できなくなる。そこで、ステップST71の条件が成立しない場合、制御器(120)は、ステップST67において流量調節弁(48)を全閉状態とする。また、制御器(120)は、次のステップST78において、冷凍装置(10)の運転を第1併存運転から暖房運転(図8を参照)に切り換え、空調ユニット(80)による室内の暖房を継続させる。 If the condition of step ST71 is not satisfied, the refrigeration unit (70) is in the thermo OFF state. If the refrigeration unit (70) is in the thermo-off state during the first concurrent operation, there is no heat exchanger functioning as an evaporator, and thus the operation of the refrigeration apparatus (10) cannot be continued. Therefore, when the condition of step ST71 is not satisfied, the controller (120) causes the flow rate adjustment valve (48) to be fully closed in step ST67. In step ST78, the controller (120) switches the operation of the refrigeration apparatus (10) from the first coexistence operation to the heating operation (see FIG. 8), and continues heating the room by the air conditioning unit (80). Let
  -実施形態1の効果-
 本実施形態の冷凍装置(10)では、第1吸入配管(32)と第2吸入配管(34)を接続する接続用配管(47)が冷媒回路(11)に設けられ、開度可変の流量調節弁(48)が接続用配管(47)に設けられる。
-Effect of Embodiment 1-
In the refrigeration apparatus (10) of the present embodiment, a connection pipe (47) connecting the first suction pipe (32) and the second suction pipe (34) is provided in the refrigerant circuit (11), and the flow rate is variable. A control valve (48) is provided in the connection pipe (47).
 先ず、本実施形態の冷凍装置(10)は、冷蔵ユニット(70)の冷却負荷を処理する(具体的には、冷蔵ユニット(70)の庫内温度を設定温度に保つ)ために必要な冷媒の流量が、冷蔵熱交換器(74)から第1圧縮機部(111)が吸入できる冷媒の流量を上回る場合に、第1吸入配管(32)を流れる冷媒を第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入させることができる。 First, the refrigeration apparatus (10) of the present embodiment is a refrigerant necessary for processing the cooling load of the refrigeration unit (70) (specifically, keeping the internal temperature of the refrigeration unit (70) at a set temperature). When the flow rate of the refrigerant exceeds the flow rate of the refrigerant that can be sucked into the first compressor unit (111) from the refrigeration heat exchanger (74), the refrigerant flowing through the first suction pipe (32) is transferred to the first compressor unit (111). And the second compressor section (112).
 第1吸入配管(32)を流れる冷媒が第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入される場合には、流量調節弁(48)の開度を変更することによって、接続用配管(47)を通って第2圧縮機部(112)へ吸入される冷媒の流量を調節することができる。そして、この場合は、流量調節弁(48)の開度を調節することによって、冷蔵熱交換器(74)を流れる冷媒の流量を、冷蔵ユニット(70)の冷却負荷に応じた適切な値に設定することが可能となる。 When the refrigerant flowing through the first suction pipe (32) is sucked into both the first compressor part (111) and the second compressor part (112), the opening degree of the flow control valve (48) is changed. Thus, the flow rate of the refrigerant sucked into the second compressor section (112) through the connection pipe (47) can be adjusted. In this case, the flow rate of the refrigerant flowing through the refrigeration heat exchanger (74) is adjusted to an appropriate value according to the cooling load of the refrigeration unit (70) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
 次に、本実施形態の冷凍装置(10)は、空調ユニット(80)の冷房負荷を処理する(具体的には、空調ユニット(80)が設置された室内空気の気温を設定温度に保つ)ために必要な冷媒の流量が、空調熱交換器(84)から第2圧縮機部(112)が吸入できる冷媒の流量を上回る場合に、第2吸入配管(34)を流れる冷媒を第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入させることができる。 Next, the refrigeration apparatus (10) of the present embodiment processes the cooling load of the air conditioning unit (80) (specifically, the temperature of the indoor air in which the air conditioning unit (80) is installed is kept at a set temperature). The refrigerant flowing through the second suction pipe (34) is compressed in the first compression when the flow rate of the refrigerant necessary to exceed the refrigerant flow rate that can be sucked from the air conditioning heat exchanger (84) into the second compressor unit (112). It can be sucked into both the machine part (111) and the second compressor part (112).
 第2吸入配管(34)を流れる冷媒が第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入される場合には、流量調節弁(48)の開度を変更することによって、接続用配管(47)を通って第1圧縮機部(111)へ吸入される冷媒の流量を調節することができる。そして、この場合は、流量調節弁(48)の開度を調節することによって、空調熱交換器(84)を流れる冷媒の流量を、空調ユニット(80)の冷房負荷に応じた適切な値に設定することが可能となる。 When the refrigerant flowing through the second suction pipe (34) is sucked into both the first compressor part (111) and the second compressor part (112), the opening degree of the flow control valve (48) is changed. Thus, the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) can be adjusted. In this case, the flow rate of the refrigerant flowing through the air conditioning heat exchanger (84) is adjusted to an appropriate value according to the cooling load of the air conditioning unit (80) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
 更に、本実施形態の冷凍装置(10)は、空調ユニット(80)の暖房負荷を処理する(具体的には、空調ユニット(80)が設置された室内空気の気温を設定温度に保つ)ために必要な冷媒の流量が、第2圧縮機部(112)が室外熱交換器(26)から吸入して空調熱交換器(84)へ供給できる冷媒の流量を上回る場合に、第2吸入配管(34)を流れる冷媒を第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入させることができる。 Further, the refrigeration apparatus (10) of the present embodiment processes the heating load of the air conditioning unit (80) (specifically, the temperature of the indoor air in which the air conditioning unit (80) is installed is kept at a set temperature). The second suction pipe when the flow rate of the refrigerant necessary for the refrigerant exceeds the flow rate of the refrigerant that the second compressor section (112) can suck from the outdoor heat exchanger (26) and supply to the air conditioning heat exchanger (84) The refrigerant flowing through (34) can be sucked into both the first compressor part (111) and the second compressor part (112).
 第2吸入配管(34)を流れる冷媒が第1圧縮機部(111)と第2圧縮機部(112)の両方へ吸入される場合には、流量調節弁(48)の開度を変更することによって、接続用配管(47)を通って第1圧縮機部(111)へ吸入される冷媒の流量を調節することができる。そして、この場合は、流量調節弁(48)の開度を調節することによって、空調熱交換器(84)を流れる冷媒の流量を、空調ユニット(80)の暖房負荷に応じた適切な値に設定することが可能となる。 When the refrigerant flowing through the second suction pipe (34) is sucked into both the first compressor part (111) and the second compressor part (112), the opening degree of the flow control valve (48) is changed. Thus, the flow rate of the refrigerant sucked into the first compressor part (111) through the connection pipe (47) can be adjusted. In this case, the flow rate of the refrigerant flowing through the air conditioning heat exchanger (84) is adjusted to an appropriate value according to the heating load of the air conditioning unit (80) by adjusting the opening of the flow rate control valve (48). It becomes possible to set.
 このように、本実施形態では、冷蔵ユニット(70)の冷却負荷を処理できない場合に、流量調節弁(48)の開度を調節することによって、冷蔵熱交換器(74)を流れる冷媒の流量を、冷蔵ユニット(70)の冷却負荷に応じた値に設定することが可能となる。また、本実施形態では、第2圧縮機部(112)だけでは空調ユニット(80)の冷房負荷または暖房負荷を処理できない場合に、流量調節弁(48)の開度を調節することによって、空調熱交換器(84)を流れる冷媒の流量を、空調ユニット(80)の冷房負荷または暖房負荷に応じた値に設定することが可能となる。従って、本実施形態によれば、冷凍装置(10)の冷却能力を適切に制御することができ、冷凍装置(10)の使い勝手を向上させることができる。 Thus, in this embodiment, when the cooling load of the refrigeration unit (70) cannot be processed, the flow rate of the refrigerant flowing through the refrigeration heat exchanger (74) by adjusting the opening of the flow rate control valve (48). Can be set to a value according to the cooling load of the refrigeration unit (70). In the present embodiment, when the cooling load or the heating load of the air conditioning unit (80) cannot be processed only by the second compressor section (112), the air conditioning is performed by adjusting the opening degree of the flow control valve (48). It becomes possible to set the flow rate of the refrigerant flowing through the heat exchanger (84) to a value corresponding to the cooling load or the heating load of the air conditioning unit (80). Therefore, according to this embodiment, the cooling capacity of the refrigeration apparatus (10) can be appropriately controlled, and the usability of the refrigeration apparatus (10) can be improved.
  -実施形態1の変形例-
 本実施形態の制御器(120)は、第1制御動作として次のような動作を行うものであってもよい。ここでは、本変形例の制御器(120)が行う第1制御動作について、図10に示す第1制御動作と異なる点を説明する。
-Modification of Embodiment 1-
The controller (120) of the present embodiment may perform the following operation as the first control operation. Here, the difference between the first control operation performed by the controller (120) of the present modification and the first control operation shown in FIG. 10 will be described.
 図15に示すように、本変形例の制御器(120)は、図10のステップST24の動作に代えてステップST24'の動作を行い、図10のステップST25の動作に代えてステップST25'の動作を行う。 As shown in FIG. 15, the controller (120) of the present modification performs the operation of step ST24 ′ instead of the operation of step ST24 of FIG. 10, and replaces the operation of step ST25 of FIG. Perform the action.
 ステップST22の条件が成立しない場合、本変形例の制御器(120)は、ステップST24'において、流量調節弁(48)の開度を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。また、本変形例の制御器(120)は、次のステップST25'において、第1圧縮機部(111)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。 When the condition of step ST22 is not satisfied, the controller (120) of the present modified example sets the opening of the flow rate control valve (48) and the refrigerant pressure LP2 in the second suction pipe (34) in step ST24 ′. 2Adjust so that the target low pressure (0.85 MPa) is obtained. Further, in the next step ST25 ′, the controller (120) of the present modified example sets the operating capacity of the first compressor section (111) and the refrigerant pressure LP1 in the first suction pipe (32) to the first target low pressure. Adjust to (0.48 MPa).
 ステップST24'における制御器(120)の動作を詳しく説明する。第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧を上回っている場合、制御器(120)は、流量調節弁(48)の開度を拡大する。流量調節弁(48)の開度が大きくなると、第2吸入配管(34)から接続用配管(47)へ流入する冷媒の流量が増加し、圧力LP2が低下する。一方、圧力LP2が第2目標低圧を下回っている場合、制御器(120)は、流量調節弁(48)の開度を縮小する。流量調節弁(48)の開度が小さくなると、第2吸入配管(34)から接続用配管(47)へ流入する冷媒の流量が減少し、圧力LP2が上昇する。 The operation of the controller (120) in step ST24 ′ will be described in detail. When the refrigerant pressure LP2 in the second suction pipe (34) exceeds the second target low pressure, the controller (120) increases the opening degree of the flow control valve (48). When the opening degree of the flow control valve (48) increases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) increases, and the pressure LP2 decreases. On the other hand, when the pressure LP2 is lower than the second target low pressure, the controller (120) reduces the opening of the flow control valve (48). When the opening degree of the flow rate control valve (48) decreases, the flow rate of the refrigerant flowing from the second suction pipe (34) into the connection pipe (47) decreases, and the pressure LP2 increases.
 ステップST25'における制御器(120)の動作を詳しく説明する。第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧を上回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を増加させる。第1圧縮機部(111)の運転容量が増加すると、第1吸入配管(32)から第1圧縮機部(111)へ吸入される冷媒の流量が増加し、圧力LP1が低下する。一方、圧力LP1が第1目標低圧を下回っている場合、制御器(120)は、第1圧縮機部(111)の運転容量を減少させる。第1圧縮機部(111)の運転容量が減少すると、第1吸入配管(32)から第1圧縮機部(111)へ吸入される冷媒の流量が減少し、圧力LP1が上昇する。 The operation of the controller (120) in step ST25 ′ will be described in detail. When the refrigerant pressure LP1 in the first suction pipe (32) exceeds the first target low pressure, the controller (120) increases the operating capacity of the first compressor unit (111). When the operating capacity of the first compressor section (111) increases, the flow rate of the refrigerant sucked from the first suction pipe (32) to the first compressor section (111) increases, and the pressure LP1 decreases. On the other hand, when the pressure LP1 is lower than the first target low pressure, the controller (120) decreases the operating capacity of the first compressor section (111). When the operating capacity of the first compressor section (111) decreases, the flow rate of the refrigerant sucked from the first suction pipe (32) into the first compressor section (111) decreases, and the pressure LP1 increases.
 《発明の実施形態2》
 本発明の実施形態2について説明する。本実施形態の冷凍装置(10)は、制御器(120)が行う動作の点で、実施形態1の冷凍装置(10)と相違する。ここでは、本実施形態の制御器(120)が行う動作について、実施形態1の制御器(120)が行う動作と異なる点を説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. The refrigeration apparatus (10) of the present embodiment is different from the refrigeration apparatus (10) of Embodiment 1 in the operation performed by the controller (120). Here, the difference between the operation performed by the controller (120) of the present embodiment and the operation performed by the controller (120) of the first embodiment will be described.
 本実施形態の制御器(120)では、第1圧縮機部(111)の基準容量が第1圧縮機部(111)の最適容量に設定され、第2圧縮機部(112)の基準容量が第2圧縮機部(112)の最適容量に設定される。ここで、圧縮機(24,25)を構成する圧縮機構は、その回転速度が特定の値(最適回転速度)のときに効率が最も高くなる。そして、圧縮機構の回転速度が最適回転速度であるときの圧縮機(24,25)の運転周波数を、最適周波数とする。本実施形態において、第1圧縮機部(111)の運転容量は、第1圧縮機(24)の運転周波数が最適周波数であるときに最適容量となり、第2圧縮機部(112)の運転容量は、第2圧縮機(25)の運転周波数が最適周波数であるときに最適容量となる。 In the controller (120) of this embodiment, the reference capacity of the first compressor section (111) is set to the optimum capacity of the first compressor section (111), and the reference capacity of the second compressor section (112) is set. The optimum capacity of the second compressor section (112) is set. Here, the compression mechanism constituting the compressor (24, 25) has the highest efficiency when the rotation speed is a specific value (optimum rotation speed). Then, the operating frequency of the compressor (24, 25) when the rotation speed of the compression mechanism is the optimum rotation speed is set as the optimum frequency. In the present embodiment, the operating capacity of the first compressor section (111) becomes the optimal capacity when the operating frequency of the first compressor (24) is the optimal frequency, and the operating capacity of the second compressor section (112). Is the optimum capacity when the operating frequency of the second compressor (25) is the optimum frequency.
  〈冷蔵・冷房運転中の動作〉
 冷蔵・冷房運転中において、制御器(120)は、図16~図18のフロー図に示す動作を行う。ここでは、本実施形態の制御器(120)が行う動作について、実施形態1の制御器(120)が行う動作と異なる点を説明する。
<Operation during refrigeration / cooling operation>
During the refrigeration / cooling operation, the controller (120) performs the operations shown in the flowcharts of FIGS. Here, the difference between the operation performed by the controller (120) of the present embodiment and the operation performed by the controller (120) of the first embodiment will be described.
 図16に示すように、本実施形態の制御器(120)は、図9のステップST05に代えてステップST05'を、図9のステップST10に代えてステップST10'を、図9のステップST11に代えてステップST11'を、それぞれ行う。 As shown in FIG. 16, the controller (120) of the present embodiment replaces step ST05 in FIG. 9 with step ST05 ′, replaces step ST10 with FIG. 9 and replaces step ST10 ′ with step ST11 in FIG. Instead, step ST11 ′ is performed.
 ステップST05'において、制御器(120)は、“第2圧縮機部(112)の運転容量が最適容量以上である”という条件の成否を判断する。この条件が成立する場合は、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理すると、第2圧縮機部(112)を構成する第2圧縮機(25)の運転効率が低下する状況となっている。そこで、制御器(120)は、ステップST06において、第2制御動作を行う。この第2制御動作については、後述する。一方、この条件が成立しない場合は、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できる状況である。そこで、制御器(120)は、ステップST07において、流量調節弁(48)を全閉状態とし、圧力LP2に基づく第2圧縮機部(112)の運転容量の調節を行う。 In step ST05 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied. When this condition is satisfied, if the cooling load of the air conditioning unit (80) is processed only by the second compressor section (112), the operation of the second compressor (25) constituting the second compressor section (112) is performed. It is in a situation where efficiency decreases. Therefore, the controller (120) performs the second control operation in step ST06. This second control operation will be described later. On the other hand, when this condition is not satisfied, the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). Therefore, in step ST07, the controller (120) fully closes the flow rate adjustment valve (48) and adjusts the operating capacity of the second compressor unit (112) based on the pressure LP2.
 ステップST10'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。この条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理すると、第1圧縮機部(111)を構成する第1圧縮機(24)の運転効率が低下する状況となっている。そこで、ステップST10'の条件が成立する場合、制御器(120)は、ステップST11'の動作を行う。 In step ST10 ′, the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor section (111), the operation of the first compressor (24) constituting the first compressor section (111) is performed. It is in a situation where efficiency decreases. Therefore, when the condition of step ST10 ′ is satisfied, the controller (120) performs the operation of step ST11 ′.
 ステップST11'において、制御器(120)は、“第2圧縮機部(112)の運転容量が最適
容量以上である”という条件の成否を判断する。
In step ST11 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied.
 ステップST11'の条件が成立する場合、制御器(120)は、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。具体的に、制御器(120)は、圧力LP1が第1目標低圧を上回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ上昇させ、圧力LP1が第1目標低圧を下回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ低下させる。また、制御器(120)は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値に設定する。 When the condition of step ST11 ′ is satisfied, the controller (120) controls the first compressor section (so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). 111) and the operation capacity of the second compressor section (112) are synchronously changed. Specifically, the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP1 exceeds the first target low pressure. When the pressure LP1 is lower than the first target low pressure, the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) are decreased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
 一方、ステップST11'の条件が成立しない場合、制御器(120)は、第1圧縮機部(111)の運転容量を最適容量に保持し、第2圧縮機部(112)の運転容量を圧力LP1が第1目標低圧(0.48MPa)となるように調節する。具体的に、制御器(120)は、圧力LP1が第1目標低圧を上回る場合は、第2圧縮機(25)の運転周波数を上昇させ、圧力LP1が第1目標低圧を下回る場合は、第2圧縮機(25)の運転周波数を低下させる。 On the other hand, when the condition of step ST11 ′ is not satisfied, the controller (120) maintains the operating capacity of the first compressor unit (111) at the optimum capacity and presses the operating capacity of the second compressor unit (112). LP1 is adjusted to be the first target low pressure (0.48 MPa). Specifically, the controller (120) increases the operating frequency of the second compressor (25) when the pressure LP1 exceeds the first target low pressure, and increases the operating frequency of the second compressor (25) when the pressure LP1 falls below the first target low pressure. 2 Reduce the operating frequency of the compressor (25).
   〔第1制御動作〕
 実施形態1の制御器(120)と同様に、本実施形態の制御器(120)は、図16のステップST02において第1制御動作を行う。ただし、本実施形態の制御器(120)が行う第1制御動作は、実施形態1の制御器(120)が行う第1制御動作と相違する。ここでは、本実施形態の制御器(120)が行う第1制御動作について、実施形態1の制御器(120)が行う第1制御動作と異なる点を説明する。
[First control operation]
Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs the first control operation in step ST02 of FIG. However, the first control operation performed by the controller (120) of the present embodiment is different from the first control operation performed by the controller (120) of the first embodiment. Here, the difference between the first control operation performed by the controller (120) of the present embodiment and the first control operation performed by the controller (120) of the first embodiment will be described.
 図17に示すように、本実施形態の制御器(120)は、図10のステップST21に代えてステップST21'を、図10のステップST22に代えてステップST22'を、それぞれ行う。また、本実施形態の制御器(120)は、ステップST81、ステップST82、及びステップST83の動作を行う。 As shown in FIG. 17, the controller (120) of the present embodiment performs step ST21 ′ in place of step ST21 in FIG. 10, and performs step ST22 ′ in place of step ST22 in FIG. Further, the controller (120) of the present embodiment performs the operations of step ST81, step ST82, and step ST83.
 ステップST21'において、制御器(120)は、“第2圧縮機部(112)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST21'の条件が成立する場合、制御器(120)は、ステップST22'において、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。また、ステップST22'が成立する場合、制御器(120)は、ステップST81において、“流量調節弁(48)が開いている”という条件の成否を判断する。 In step ST21 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied. When the condition of step ST21 ′ is satisfied, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is equal to or larger than the optimum capacity” is satisfied in step ST22 ′. When step ST22 ′ is satisfied, the controller (120) determines whether or not the condition “the flow rate control valve (48) is open” is satisfied in step ST81.
 ステップST81の条件が成立しない場合、流量調節弁(48)は実質的に全閉状態となっている。この場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理でき、空調ユニット(80)の冷房負荷を第2圧縮機部(112)だけで処理できる状況である。そこで、この場合、制御器(120)は、ステップST83において、第1圧縮機部(111)及び第2圧縮機部(112)の運転容量を調節する。具体的に、制御器(120)は、第1圧縮機部(111)の運転容量を、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように調節する。また、制御器(120)は、第2圧縮機部(112)の運転容量を、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように調節する。 If the condition of step ST81 is not satisfied, the flow rate control valve (48) is substantially fully closed. In this case, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111), and the cooling load of the air conditioning unit (80) can be processed only by the second compressor unit (112). . Therefore, in this case, the controller (120) adjusts the operating capacities of the first compressor unit (111) and the second compressor unit (112) in step ST83. Specifically, the controller (120) sets the operating capacity of the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). Adjust. Further, the controller (120) adjusts the operating capacity of the second compressor section (112) so that the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). .
 一方、ステップST81の条件が成立する場合は、流量調節弁(48)が既に開いており、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理すると、第1圧縮機部(111)を構成する第1圧縮機(24)の運転効率が低下する状況となっている。そこで、この場合、制御器(120)は、ステップST82において、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。具体的に、制御器(120)は、圧力LP1が第1目標低圧を上回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ上昇させ、圧力LP1が第1目標低圧を下回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ低下させる。また、制御器(120)は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値に設定する。 On the other hand, when the condition of step ST81 is satisfied, if the flow rate control valve (48) is already open and the cooling load of the refrigeration unit (70) is processed only by the first compressor section (111), the first compressor The operating efficiency of the first compressor (24) constituting the section (111) is reduced. Therefore, in this case, in step ST82, the controller (120) causes the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). ) And the operation capacity of the second compressor section (112) are synchronously changed. Specifically, the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP1 exceeds the first target low pressure. When the pressure LP1 is lower than the first target low pressure, the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) are decreased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
 制御器(120)は、ステップST82の動作を行うと、次にステップST23の動作を行う。このステップST23の動作は、図10のステップST23の動作と同じである。 When the controller (120) performs the operation of step ST82, it next performs the operation of step ST23. The operation in step ST23 is the same as the operation in step ST23 in FIG.
   〔第2制御動作〕
 実施形態1の制御器(120)と同様に、本実施形態の制御器(120)は、図16のステップST06において第2制御動作を行う。ただし、本実施形態の制御器(120)が行う第2制御動作は、実施形態1の制御器(120)が行う第2制御動作と相違する。ここでは、本実施形態の制御器(120)が行う第2制御動作について、実施形態1の制御器(120)が行う第2制御動作と異なる点を説明する。
[Second control operation]
Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs the second control operation in step ST06 of FIG. However, the second control operation performed by the controller (120) of the present embodiment is different from the second control operation performed by the controller (120) of the first embodiment. Here, the difference between the second control operation performed by the controller (120) of the present embodiment and the second control operation performed by the controller (120) of the first embodiment will be described.
 図18に示すように、本実施形態の制御器(120)は、図11のステップST33に代えてステップST33'を、図11のステップST34に代えてステップST34'を、それぞれ行う。また、本実施形態の制御器(120)は、ステップST84の動作を行う。 As shown in FIG. 18, the controller (120) of the present embodiment performs step ST33 ′ in place of step ST33 in FIG. 11, and performs step ST34 ′ in place of step ST34 in FIG. Further, the controller (120) of the present embodiment performs the operation of step ST84.
 ステップST33'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。 In step ST33 ′, the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
 ステップST33'の条件が成立する場合、制御器(120)は、第2吸入配管(34)内の冷媒圧力LP2が第2目標低圧(0.85MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。具体的に、制御器(120)は、圧力LP2が第2目標低圧を上回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ上昇させ、圧力LP2が第2目標低圧を下回る場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ低下させる。また、制御器(120)は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値に設定する。 When the condition of step ST33 ′ is satisfied, the controller (120) controls the first compressor section (so that the refrigerant pressure LP2 in the second suction pipe (34) becomes the second target low pressure (0.85 MPa). 111) and the operation capacity of the second compressor section (112) are synchronously changed. Specifically, the controller (120) increases the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) by the same value when the pressure LP2 exceeds the second target low pressure. When the pressure LP2 is lower than the second target low pressure, the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) are decreased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
 一方、ステップST33'の条件が成立しない婆、制御器(120)は、第2圧縮機部(112)の運転容量を最適容量に保持し、第1圧縮機部(111)の運転容量を圧力LP2が第2目標低圧(0.85MPa)となるように調節する。具体的に、制御器(120)は、圧力LP2が第2目標低圧を上回る場合は、第2圧縮機(25)の運転周波数を上昇させ、圧力LP2が第2目標低圧を下回る場合は、第2圧縮機(25)の運転周波数を低下させる。 On the other hand, if the condition of step ST33 ′ is not satisfied, the controller (120) maintains the operating capacity of the second compressor section (112) at the optimum capacity, and the operating capacity of the first compressor section (111) is set to the pressure. LP2 is adjusted to be the second target low pressure (0.85 MPa). Specifically, the controller (120) increases the operating frequency of the second compressor (25) when the pressure LP2 exceeds the second target low pressure, and increases the operating frequency of the second compressor (25) when the pressure LP2 falls below the second target low pressure. 2 Reduce the operating frequency of the compressor (25).
 ステップST34'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST34'の条件が成立しない場合は、第1圧縮機部(111)の運転容量を増やす余地がある。そこで、この場合、制御器(120)は、実施形態1と同様に、ステップST36とステップST37の動作を行う。一方、ステップST34'の条件が成立する場合、制御器(120)は、ステップST84において、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。ステップST84において制御器(120)が行う動作は、図17のステップST82において制御器(120)が行う動作と同じである。 In step ST34 ′, the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When the condition of step ST34 ′ is not satisfied, there is room for increasing the operating capacity of the first compressor section (111). Therefore, in this case, the controller (120) performs the operations of step ST36 and step ST37 as in the first embodiment. On the other hand, when the condition of step ST34 ′ is satisfied, the controller (120) causes the refrigerant pressure LP1 in the first suction pipe (32) to be the first target low pressure (0.48 MPa) in step ST84. The operating capacity of the first compressor unit (111) and the operating capacity of the second compressor unit (112) are changed synchronously. The operation performed by the controller (120) in step ST84 is the same as the operation performed by the controller (120) in step ST82 of FIG.
 制御器(120)は、ステップST84の動作を行うと、次にステップST35の動作を行う。このステップST35の動作は、図11のステップST35の動作と同じである。 When the controller (120) performs the operation in step ST84, the controller (120) next performs the operation in step ST35. The operation in step ST35 is the same as the operation in step ST35 in FIG.
  〈冷蔵・暖房運転中の動作〉
 冷蔵・暖房運転中において、制御器(120)は、図19~図21のフロー図に示す動作を行う。ここでは、本実施形態の制御器(120)が行う動作について、実施形態1の制御器(120)が行う動作と異なる点を説明する。
<Operation during refrigeration / heating operation>
During the refrigeration / heating operation, the controller (120) performs the operations shown in the flowcharts of FIGS. Here, the difference between the operation performed by the controller (120) of the present embodiment and the operation performed by the controller (120) of the first embodiment will be described.
 図19に示すように、本実施形態の制御器(120)は、図12のステップST46に代えてステップST46'を、図12のステップST47に代えてステップST47'を、図12のステップST52に代えてステップST52'を、図12のステップST53に代えてステップST53'を、それぞれ行う。 As shown in FIG. 19, the controller (120) of this embodiment replaces step ST46 in FIG. 12 with step ST46 ′, replaces step ST47 in FIG. 12 with step ST47 ′, and changes to step ST52 in FIG. Instead, step ST52 ′ is performed, and step ST53 ′ is performed instead of step ST53 in FIG.
 ステップST46'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST46'の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、この場合、制御器(120)は、ステップST49、ステップST50、及びステップST51の動作を行う。これらの動作は、それぞれ図12のステップST49、ステップST50、及びステップST51の動作と同じである。一方、ステップST46'の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理すると、第1圧縮機部(111)を構成する第1圧縮機(24)の運転効率が低下する状況となっている。そこで、この場合、制御器(120)は、ステップST47'の動作を行う。 In step ST46 ′, the controller (120) determines whether or not a condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When the condition of step ST46 ′ is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111). Therefore, in this case, the controller (120) performs the operations of step ST49, step ST50, and step ST51. These operations are the same as the operations in step ST49, step ST50, and step ST51 in FIG. 12, respectively. On the other hand, when the condition of step ST46 ′ is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor unit (111), the first compressor constituting the first compressor unit (111) (24) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST47 ′.
 ステップST47'において制御器(120)が行う動作は、図16のステップST11'において制御器(120)が行う動作と同じである。つまり、ステップST47'において、制御器(120)は、“第2圧縮機部(112)の運転容量が最適容量以上である”という条件の成否を判断する。そして、この条件が成立する場合、制御器(120)は、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。一方、この条件が成立しない場合、制御器(120)は、第1圧縮機部(111)の運転容量を最適容量に保持し、第2圧縮機部(112)の運転容量を圧力LP1が第1目標低圧となるように調節する。 The operation performed by the controller (120) in step ST47 ′ is the same as the operation performed by the controller (120) in step ST11 ′ of FIG. That is, in step ST47 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied. When this condition is satisfied, the controller (120) causes the first compressor section (111) so that the refrigerant pressure LP1 in the first suction pipe (32) becomes the first target low pressure (0.48 MPa). ) And the operation capacity of the second compressor section (112) are synchronously changed. On the other hand, if this condition is not satisfied, the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
 ステップST52'において、制御器(120)は、“第2圧縮機部(112)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST52'の条件が成立しない場合は、空調ユニット(80)の暖房負荷を第2圧縮機部(112)だけで処理できる状況である。そこで、この場合、制御器(120)は、ステップST55およびステップST56の動作を行う。これらの動作は、それぞれ図12のステップST55およびステップST56の動作と同じである。一方、ステップST52'の条件が成立する場合は、空調ユニット(80)の暖房負荷を第2圧縮機部(112)だけで処理すると、第2圧縮機部(112)を構成する第2圧縮機(25)の運転効率が低下する状況となっている。そこで、この場合、制御器(120)は、ステップST53'の動作を行う。 In step ST52 ′, the controller (120) determines whether or not the condition “the operation capacity of the second compressor section (112) is equal to or greater than the optimum capacity” is satisfied. When the condition of step ST52 ′ is not satisfied, the heating load of the air conditioning unit (80) can be processed only by the second compressor section (112). Therefore, in this case, the controller (120) performs the operations of step ST55 and step ST56. These operations are the same as those in step ST55 and step ST56 in FIG. 12, respectively. On the other hand, when the condition of step ST52 ′ is satisfied, if the heating load of the air conditioning unit (80) is processed only by the second compressor section (112), the second compressor constituting the second compressor section (112) (25) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST53 ′.
 ステップST53'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。 In step ST53 ′, the controller (120) determines whether or not the condition “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied.
 ステップST53'の条件が成立する場合、制御器(120)は、空調熱交換器(84)における冷媒の凝縮温度Tcが目標温度(55℃)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。具体的に、制御器(120)は、冷媒の凝縮温度Tcが目標温度(55℃)を上回っている場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ低下させ、冷媒の凝縮温度Tcが目標温度(55℃)を下回っている場合は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値だけ上昇させる。また、制御器(120)は、第1圧縮機(24)の運転周波数と第2圧縮機(25)の運転周波数とを同じ値に設定する。 When the condition of step ST53 ′ is satisfied, the controller (120) includes the first compressor section (111) so that the refrigerant condensation temperature Tc in the air conditioning heat exchanger (84) becomes the target temperature (55 ° C.). And the operation capacity of the second compressor section (112) are synchronously changed. Specifically, when the refrigerant condensing temperature Tc exceeds the target temperature (55 ° C.), the controller (120) operates the first compressor (24) and the second compressor (25). If the frequency is reduced by the same value and the refrigerant condensing temperature Tc is below the target temperature (55 ° C.), the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) Is increased by the same value. The controller (120) sets the operating frequency of the first compressor (24) and the operating frequency of the second compressor (25) to the same value.
 一方、ステップST53'の条件が成立しない婆、制御器(120)は、第2圧縮機部(112)の運転容量を最適容量に保持し、第1圧縮機部(111)の運転容量を冷媒の凝縮温度Tcが目標温度(55℃)となるように調節する。具体的に、制御器(120)は、冷媒の凝縮温度Tcが目標温度を上回る場合は、第1圧縮機(24)の運転周波数を低下させ、冷媒の凝縮温度Tcが目標温度を下回る場合は、第1圧縮機(24)の運転周波数を上昇させる。 On the other hand, if the condition of step ST53 ′ is not satisfied, the controller (120) maintains the operating capacity of the second compressor section (112) at the optimum capacity and the operating capacity of the first compressor section (111) as the refrigerant. The condensation temperature Tc is adjusted to the target temperature (55 ° C.). Specifically, the controller (120) decreases the operating frequency of the first compressor (24) when the refrigerant condensing temperature Tc exceeds the target temperature, and when the refrigerant condensing temperature Tc falls below the target temperature. The operating frequency of the first compressor (24) is increased.
   〔第1併存運転用の制御動作〕
 実施形態1の制御器(120)と同様に、本実施形態の制御器(120)は、第1併存運転用の制御動作を行う。ただし、本実施形態の制御器(120)が行う第1併存運転用の制御動作は、実施形態1の制御器(120)が行う第1併存運転用の制御動作と相違する。ここでは、本実施形態の制御器(120)が行う第1併存運転用の制御動作について、実施形態1の制御器(120)が行う第1併存運転用の制御動作と異なる点を説明する。
[Control action for the first concurrent operation]
Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs a control operation for the first concurrent operation. However, the control operation for the first concurrent operation performed by the controller (120) of the present embodiment is different from the control operation for the first concurrent operation performed by the controller (120) of the first embodiment. Here, the difference between the control operation for the first concurrent operation performed by the controller (120) of the present embodiment and the control operation for the first concurrent operation performed by the controller (120) of the first embodiment will be described.
 図20に示すように、本実施形態の制御器(120)は、図13のステップST62に代えてステップST62'を、図13のステップST63に代えてステップST63'を、それぞれ行う。 As shown in FIG. 20, the controller (120) of this embodiment performs step ST62 ′ in place of step ST62 in FIG. 13, and performs step ST63 ′ in place of step ST63 in FIG.
 ステップST62'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST62'の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、この場合、制御器(120)は、ステップST65およびステップST66の動作を行う。これらの動作は、それぞれ図13のステップST65およびステップST66の動作と同じである。一方、ステップST62'の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理すると、第1圧縮機部(111)を構成する第1圧縮機(24)の運転効率が低下する状況となっている。そこで、この場合、制御器(120)は、ステップST63'の動作を行う。 In Step ST62 ′, the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or larger than the optimum capacity” is satisfied. When the condition of step ST62 ′ is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111). Therefore, in this case, the controller (120) performs the operations of step ST65 and step ST66. These operations are the same as those in step ST65 and step ST66 in FIG. On the other hand, when the condition of step ST62 ′ is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor unit (111), the first compressor constituting the first compressor unit (111) (24) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST63 ′.
 ステップST63'の動作は、図19のステップST47'の動作と同じである。制御器(120)は、ステップST63'において、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。この条件が成立しない場合、制御器(120)は、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。一方、この条件が成立しない場合、制御器(120)は、第1圧縮機部(111)の運転容量を最適容量に保持し、第2圧縮機部(112)の運転容量を圧力LP1が第1目標低圧となるように調節する。 The operation of step ST63 ′ is the same as the operation of step ST47 ′ in FIG. In step ST63 ′, the controller (120) determines whether or not the condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is not satisfied, the controller (120) causes the first compressor section (111) to have the refrigerant pressure LP1 in the first suction pipe (32) at the first target low pressure (0.48 MPa). The operating capacity and the operating capacity of the second compressor unit (112) are changed synchronously. On the other hand, if this condition is not satisfied, the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
   〔第2併存運転用の制御動作〕
 実施形態1の制御器(120)と同様に、本実施形態の制御器(120)は、第2併存運転用の制御動作を行う。ただし、本実施形態の制御器(120)が行う第2併存運転用の制御動作は、実施形態1の制御器(120)が行う第2併存運転用の制御動作と相違する。ここでは、本実施形態の制御器(120)が行う第2併存運転用の制御動作について、実施形態1の制御器(120)が行う第2併存運転用の制御動作と異なる点を説明する。
[Control action for second concurrent operation]
Similar to the controller (120) of the first embodiment, the controller (120) of the present embodiment performs a control operation for the second concurrent operation. However, the control operation for the second concurrent operation performed by the controller (120) of the present embodiment is different from the control operation for the second concurrent operation performed by the controller (120) of the first embodiment. Here, the difference between the control operation for the second concurrent operation performed by the controller (120) of the present embodiment and the control operation for the second concurrent operation performed by the controller (120) of the first embodiment will be described.
 図21に示すように、本実施形態の制御器(120)は、図14のステップST72に代えてステップST72'を、図14のステップST73に代えてステップST73'を、それぞれ行う。 As shown in FIG. 21, the controller (120) of this embodiment performs step ST72 ′ in place of step ST72 in FIG. 14, and performs step ST73 ′ in place of step ST73 in FIG.
 ステップST72'において、制御器(120)は、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。ステップST72'の条件が成立しない場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理できる状況である。そこで、この場合、制御器(120)は、ステップST75およびステップST76の動作を行う。これらの動作は、それぞれ図14のステップST75およびステップST76の動作と同じである。一方、ステップST72'の条件が成立する場合は、冷蔵ユニット(70)の冷却負荷を第1圧縮機部(111)だけで処理すると、第1圧縮機部(111)を構成する第1圧縮機(24)の運転効率が低下する状況となっている。そこで、この場合、制御器(120)は、ステップST73'の動作を行う。 In step ST72 ′, the controller (120) determines whether or not a condition that “the operation capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When the condition of step ST72 ′ is not satisfied, the cooling load of the refrigeration unit (70) can be processed only by the first compressor unit (111). Therefore, in this case, the controller (120) performs the operations of step ST75 and step ST76. These operations are the same as those in step ST75 and step ST76 in FIG. 14, respectively. On the other hand, when the condition of step ST72 ′ is satisfied, if the cooling load of the refrigeration unit (70) is processed only by the first compressor unit (111), the first compressor constituting the first compressor unit (111) (24) The operating efficiency is in a situation that decreases. Therefore, in this case, the controller (120) performs the operation of step ST73 ′.
 ステップST73'の動作は、図20のステップST63'の動作と同じである。具体的に、制御器(120)は、ステップST73'において、“第1圧縮機部(111)の運転容量が最適容量以上である”という条件の成否を判断する。この条件が成立しない場合、制御器(120)は、第1吸入配管(32)内の冷媒圧力LP1が第1目標低圧(0.48MPa)となるように、第1圧縮機部(111)の運転容量と第2圧縮機部(112)の運転容量とを同期変化させる。一方、この条件が成立しない場合、制御器(120)は、第1圧縮機部(111)の運転容量を最適容量に保持し、第2圧縮機部(112)の運転容量を圧力LP1が第1目標低圧となるように調節する。 The operation of step ST73 ′ is the same as the operation of step ST63 ′ of FIG. Specifically, in step ST73 ′, the controller (120) determines whether or not a condition that “the operating capacity of the first compressor unit (111) is equal to or greater than the optimum capacity” is satisfied. When this condition is not satisfied, the controller (120) causes the first compressor section (111) to have the refrigerant pressure LP1 in the first suction pipe (32) at the first target low pressure (0.48 MPa). The operating capacity and the operating capacity of the second compressor unit (112) are changed synchronously. On the other hand, if this condition is not satisfied, the controller (120) maintains the operating capacity of the first compressor section (111) at the optimum capacity, and the operating capacity of the second compressor section (112) is set to the pressure LP1. 1 Adjust the pressure to become the target low pressure.
 《その他の実施形態》
 実施形態1及び2の冷凍装置(10)では、第1圧縮機部(111)と第2圧縮機部(112)のそれぞれが一台の圧縮機(24,25)によって構成されているが、第1圧縮機部(111)を複数台の圧縮機によって構成してもよいし、第2圧縮機部(112)を複数台の圧縮機によって構成してもよい。
<< Other Embodiments >>
In the refrigeration apparatus (10) of Embodiments 1 and 2, each of the first compressor unit (111) and the second compressor unit (112) is configured by a single compressor (24, 25). The first compressor unit (111) may be configured by a plurality of compressors, and the second compressor unit (112) may be configured by a plurality of compressors.
 ここでは、本変形例の冷凍装置(10)について、第1圧縮機部(111)が二台の圧縮機によって構成され、第2圧縮機部(112)が一台の圧縮機によって構成される場合を例に説明する。また、ここでは、本変形例の冷凍装置(10)について、実施形態1の冷凍装置(10)と異なる点を説明する。 Here, in the refrigeration apparatus (10) of the present modification, the first compressor unit (111) is configured by two compressors, and the second compressor unit (112) is configured by one compressor. A case will be described as an example. Here, the refrigeration apparatus (10) of the present modification will be described with respect to differences from the refrigeration apparatus (10) of the first embodiment.
 図22に示すように、本変形例の冷凍装置(10)では、第1圧縮機部(111)が第1圧縮機(24)と第3圧縮機(113)とによって構成され、第2圧縮機部(112)が第2圧縮機(25)によって構成される。第3圧縮機(113)は、スクロール型の全密閉型圧縮機である。図示しないが、第3圧縮機(113)では、スクロール型流体機械である圧縮機構と、圧縮機構を駆動する電動機とが、密閉容器状のケーシングに収容されている。第3圧縮機(113)の電動機には、商用電源からの交流がそのまま供給される。従って、第3圧縮機(113)は、圧縮機構の回転速度が一定となり、その運転容量が一定となる。 As shown in FIG. 22, in the refrigeration apparatus (10) of the present modification, the first compressor section (111) is constituted by the first compressor (24) and the third compressor (113), and the second compression The machine part (112) is constituted by the second compressor (25). The third compressor (113) is a scroll type hermetic compressor. Although not shown, in the third compressor (113), a compression mechanism that is a scroll type fluid machine and an electric motor that drives the compression mechanism are housed in a hermetically sealed casing. The AC of the commercial power supply is supplied as it is to the electric motor of the third compressor (113). Therefore, the third compressor (113) has a constant rotational speed of the compression mechanism and a constant operating capacity.
 本変形例では、第1吐出配管(31)が主吐出管(31a)と補助吐出管(31b)とによって構成され、第1吸入配管(32)が主吸入管(32a)と補助吸入管(32b)とによって構成される。 In this modification, the first discharge pipe (31) is constituted by a main discharge pipe (31a) and an auxiliary discharge pipe (31b), and the first suction pipe (32) is formed by a main suction pipe (32a) and an auxiliary suction pipe ( 32b).
 主吐出管(31a)は、第1圧縮機(24)の吐出部を第1四方切換弁(27)の第1ポートに接続する。主吐出管(31a)には、第1圧縮機(24)から第1四方切換弁(27)へ向かって順に、第1吐出温度センサ(90)と、第1逆止弁(CV1)と、吐出圧力センサ(91)とが設けられている。 The main discharge pipe (31a) connects the discharge part of the first compressor (24) to the first port of the first four-way switching valve (27). In the main discharge pipe (31a), in order from the first compressor (24) to the first four-way switching valve (27), a first discharge temperature sensor (90), a first check valve (CV1), A discharge pressure sensor (91) is provided.
 補助吐出管(31b)は、第3圧縮機(113)の吐出部を、主吐出管(31a)における吐出圧力センサ(91)と第1四方切換弁(27)の間に接続する。補助吐出管(31b)には、第3圧縮機(113)から主吐出管(31a)へ向かって順に、第3吐出温度センサ(115)と、第7逆止弁(CV7)とが設けられている。第3吐出温度センサ(115)は、第3圧縮機(113)の吐出冷媒の温度を検出する。第7逆止弁(CV7)は、図22に示す矢印の方向への冷媒の流れを許容し、その逆の方向への冷媒の流れを禁止する。また、本変形例では、第2吐出配管(33)は、補助吐出管(31b)における第7逆止弁(CV7)の下流側に接続される。 The auxiliary discharge pipe (31b) connects the discharge part of the third compressor (113) between the discharge pressure sensor (91) and the first four-way switching valve (27) in the main discharge pipe (31a). The auxiliary discharge pipe (31b) is provided with a third discharge temperature sensor (115) and a seventh check valve (CV7) in order from the third compressor (113) to the main discharge pipe (31a). ing. The third discharge temperature sensor (115) detects the temperature of refrigerant discharged from the third compressor (113). The seventh check valve (CV7) allows the flow of the refrigerant in the direction of the arrow shown in FIG. 22 and prohibits the flow of the refrigerant in the opposite direction. In the present modification, the second discharge pipe (33) is connected to the downstream side of the seventh check valve (CV7) in the auxiliary discharge pipe (31b).
 本変形例では、第1吸入配管(32)が主吐出管(31a)と補助吐出管(31b)とによって構成され、第1吸入配管(32)が主吸入管(32a)と補助吸入管(32b)とによって構成される。主吸入管(32a)は、第1圧縮機(24)の吸入部を冷蔵側ガス閉鎖弁(13)に接続する。主吸入管(32a)には、冷蔵側ガス閉鎖弁(13)から第1圧縮機(24)へ向かって順に、第1吸入圧力センサ(94)と第1吸入温度センサ(93)とが設けられている。補助吸入管(32b)は、第3圧縮機(113)の吸入部を、主吸入管(32a)における第1吸入温度センサ(93)の下流側に接続する。 In this modification, the first suction pipe (32) is constituted by a main discharge pipe (31a) and an auxiliary discharge pipe (31b), and the first suction pipe (32) is formed by a main suction pipe (32a) and an auxiliary suction pipe ( 32b). The main suction pipe (32a) connects the suction part of the first compressor (24) to the refrigeration side gas shut-off valve (13). The main suction pipe (32a) is provided with a first suction pressure sensor (94) and a first suction temperature sensor (93) in order from the refrigeration side gas shut-off valve (13) to the first compressor (24). It has been. The auxiliary suction pipe (32b) connects the suction part of the third compressor (113) to the downstream side of the first suction temperature sensor (93) in the main suction pipe (32a).
 本変形例のインジェクション回路(55)には、第3導入管(114)が追加されている。第3導入管(114)は、一端が第1導入管(58)における第1インジェクション弁(61)の上流側に接続され、他端が第3圧縮機(113)に接続される。第3導入管(114)は、第3圧縮機(113)の圧縮途中の圧縮室に中間圧の冷媒を供給する。また、第3導入管(114)には、第3インジェクション弁(63)が設けられる。第3インジェクション弁(63)は、開度可変の電子膨張弁であり、第3圧縮機(113)へ導入する中間圧の冷媒の流量を調節する。 The third introduction pipe (114) is added to the injection circuit (55) of this modification. One end of the third introduction pipe (114) is connected to the upstream side of the first injection valve (61) in the first introduction pipe (58), and the other end is connected to the third compressor (113). The third introduction pipe (114) supplies intermediate pressure refrigerant to the compression chamber in the middle of compression of the third compressor (113). The third introduction pipe (114) is provided with a third injection valve (63). The third injection valve (63) is an electronic expansion valve having a variable opening, and adjusts the flow rate of the intermediate-pressure refrigerant introduced into the third compressor (113).
 本変形例において、第1圧縮機部(111)の運転容量は、第1圧縮機(24)の運転周波数が上限値であり、且つ第3圧縮機(113)が作動している場合に、最大容量となる。また、第1圧縮機部(111)の運転容量は、第1圧縮機(24)の運転周波数が最適周波数であり、且つ第3圧縮機(113)が作動している場合に、最適容量となる。 In this modification, the operating capacity of the first compressor section (111) is such that the operating frequency of the first compressor (24) is the upper limit value and the third compressor (113) is operating. Maximum capacity. The operating capacity of the first compressor unit (111) is the optimal capacity when the operating frequency of the first compressor (24) is the optimal frequency and the third compressor (113) is operating. Become.
 以上説明したように、本発明は、複数種類の利用側熱交換器が設けられた冷凍装置について有用である。 As described above, the present invention is useful for a refrigeration apparatus provided with a plurality of types of usage-side heat exchangers.
  10  冷凍装置
  11  冷媒回路
  24  第1圧縮機(圧縮機)
  25  第2圧縮機(圧縮機)
  26  室外熱交換器(熱源側熱交換器)
  32  第1吸入配管
  34  第2吸入配管
  47  接続用配管
  48  流量調節弁(調節弁)
  74  冷蔵熱交換器(第1利用側熱交換器)
  84  空調熱交換器(第2利用側熱交換器)
  110  切換機構
  111  第1圧縮機部
  112  第2圧縮機部
10 Refrigeration equipment 11 Refrigerant circuit 24 First compressor (compressor)
25 Second compressor (compressor)
26 Outdoor heat exchanger (heat source side heat exchanger)
32 First suction pipe 34 Second suction pipe 47 Connection pipe 48 Flow control valve (control valve)
74 Refrigerated heat exchanger (first use side heat exchanger)
84 Air-conditioning heat exchanger (second-use-side heat exchanger)
110 Switching mechanism 111 First compressor section 112 Second compressor section

Claims (17)

  1.  一台または複数台の圧縮機(24,25)によってそれぞれが構成される第1圧縮機部(111)及び第2圧縮機部(112)と、熱源側熱交換器(26)と、第1利用側熱交換器(74)と、第2利用側熱交換器(84)とを有して冷凍サイクルを行う冷媒回路(11)を備えた冷凍装置であって、
     上記冷媒回路(11)は、
      上記第1圧縮機部(111)に接続して該第1圧縮機部(111)を上記第1利用側熱交換器(74)に連通させる第1吸入配管(32)と、
      上記第2圧縮機部(112)に接続する第2吸入配管(34)と、
      上記第2吸入配管(34)が上記第2利用側熱交換器(84)に連通する状態と該第2吸入配管(34)が上記熱源側熱交換器(26)に連通する状態とを切り換えるための切換機構(110)と、
      一端が上記第1吸入配管(32)に接続して他端が上記第2吸入配管(34)に接続する接続用配管(47)と、
      上記接続用配管(47)に設けられた開度可変の調節弁(48)とを備えている
    ことを特徴とする冷凍装置。
    A first compressor section (111) and a second compressor section (112) each constituted by one or a plurality of compressors (24, 25), a heat source side heat exchanger (26), and a first A refrigeration apparatus comprising a refrigerant circuit (11) having a utilization side heat exchanger (74) and a second utilization side heat exchanger (84) to perform a refrigeration cycle,
    The refrigerant circuit (11)
    A first suction pipe (32) connected to the first compressor part (111) and communicating the first compressor part (111) with the first use side heat exchanger (74);
    A second suction pipe (34) connected to the second compressor section (112);
    Switching between a state in which the second suction pipe (34) communicates with the second use side heat exchanger (84) and a state in which the second suction pipe (34) communicates with the heat source side heat exchanger (26). A switching mechanism (110) for
    A connection pipe (47) having one end connected to the first suction pipe (32) and the other end connected to the second suction pipe (34);
    A refrigerating apparatus comprising: a variable opening control valve (48) provided in the connection pipe (47).
  2.  請求項1において、
     上記熱源側熱交換器(26)が凝縮器として機能し、上記第1利用側熱交換器(74)と上記第2利用側熱交換器(84)の両方が蒸発器として機能する第1冷却運転を実行可能であり、
     上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、
     上記制御器(120)は、上記第1冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2吸入配管(34)の冷媒圧力が上記第1目標低圧よりも高い第2目標低圧となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 1,
    First cooling in which the heat source side heat exchanger (26) functions as a condenser, and both the first usage side heat exchanger (74) and the second usage side heat exchanger (84) function as an evaporator. Operation can be performed,
    A controller (120) for adjusting the operating capacity of the first compressor part (111) and the second compressor part (112) and the opening of the control valve (48);
    The controller (120) is configured to control the control valve when operating capacities of the first compressor unit (111) and the second compressor unit (112) are lower than a predetermined reference capacity during the first cooling operation. (48) is kept fully closed, the operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, and the second suction pipe is adjusted. The refrigerating apparatus, wherein the operating capacity of the second compressor section (112) is adjusted so that the refrigerant pressure in the pipe (34) becomes a second target low pressure higher than the first target low pressure.
  3.  請求項2において、
     上記制御器(120)は、
      上記第1冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量を下回って上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、
      上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節し、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第1圧縮機部(111)の運転容量を調節する動作、又は
      上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記調節弁(48)の開度を調節し、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節する動作を行う
    ことを特徴とする冷凍装置。
    In claim 2,
    The controller (120)
    When the operating capacity of the first compressor unit (111) is lower than the reference capacity and the operating capacity of the second compressor unit (112) is equal to or higher than the reference capacity during the first cooling operation,
    The opening of the control valve (48) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure, and the refrigerant pressure in the second suction pipe (34) becomes the second target pressure. The operation of adjusting the operating capacity of the first compressor section (111) so as to be low, or the adjusting valve (48) so that the refrigerant pressure of the second suction pipe (34) becomes the second target low pressure And adjusting the operating capacity of the first compressor section (111) so that the refrigerant pressure in the first suction pipe (32) becomes the first target low pressure. Refrigeration equipment.
  4.  請求項2又は3において、
     上記制御器(120)は、上記第1冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が所定の基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節する
    ことを特徴とする冷凍装置。
    In claim 2 or 3,
    The controller (120) includes the first compressor unit (111) and the second compressor unit (112) when the operating capacities of the first compressor unit (111) and the second compressor unit (112) are equal to or greater than a predetermined reference capacity during the first cooling operation. The refrigerating apparatus characterized by adjusting the opening degree of the said control valve (48) so that the refrigerant | coolant pressure of 1 suction piping (32) may become the said 1st target low pressure.
  5.  請求項2乃至4のいずれか一つにおいて、
     上記熱源側熱交換器(26)が凝縮器として機能し、上記第2利用側熱交換器(84)が蒸発器として機能し、上記第1利用側熱交換器(74)が休止する第2冷却運転を実行可能であり、
     上記制御器(120)は、上記第2冷却運転中に上記第2圧縮機部(112)の運転容量が上記基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1圧縮機部(111)を停止状態に保ち、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In any one of Claims 2 thru | or 4,
    The second heat source side heat exchanger (26) functions as a condenser, the second use side heat exchanger (84) functions as an evaporator, and the first use side heat exchanger (74) is suspended. Cooling operation can be performed,
    The controller (120) maintains the control valve (48) in a fully closed state when the operating capacity of the second compressor section (112) is lower than the reference capacity during the second cooling operation, The operating capacity of the second compressor section (112) is adjusted so that the first compressor section (111) is stopped and the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. A refrigeration apparatus characterized by that.
  6.  請求項5において、
     上記制御器(120)は、上記第2冷却運転中に上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が第1目標低圧となるように上記調節弁(48)の開度を調節し、上記第2吸入配管(34)の冷媒圧力が上記第2目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 5,
    When the operating capacity of the second compressor section (112) is greater than or equal to the reference capacity during the second cooling operation, the controller (120) has a refrigerant pressure in the first suction pipe (32) of The opening degree of the control valve (48) is adjusted so as to become one target low pressure, and the first compressor section (111) so that the refrigerant pressure in the second suction pipe (34) becomes the second target low pressure. And the operating capacity of the said 2nd compressor part (112) is adjusted, The freezing apparatus characterized by the above-mentioned.
  7.  請求項6において、
     上記制御器(120)は、上記第2冷却運転中に上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量が上記基準容量以上である場合に、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記調節弁(48)の開度を調節する
    ことを特徴とする冷凍装置。
    In claim 6,
    When the operating capacity of the first compressor unit (111) and the second compressor unit (112) is greater than or equal to the reference capacity during the second cooling operation, the controller (120) The refrigerating apparatus characterized by adjusting the opening degree of the control valve (48) so that the refrigerant pressure in the suction pipe (32) becomes the first target low pressure.
  8.  請求項2乃至7いずれか一つにおいて、
     上記熱源側熱交換器(26)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能し、上記第2利用側熱交換器(84)が休止する第3冷却運転を実行可能であり、
     上記制御器(120)は、上記第3冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量を下回る場合に、上記調節弁(48)を全閉状態とし、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つ
    ことを特徴とする冷凍装置。
    In any one of Claims 2 thru | or 7,
    The heat source side heat exchanger (26) functions as a condenser, the first usage side heat exchanger (74) functions as an evaporator, and the second usage side heat exchanger (84) is deactivated. Cooling operation can be performed,
    The controller (120) fully closes the control valve (48) when the operating capacity of the first compressor unit (111) is lower than the reference capacity during the third cooling operation, Adjusting the operating capacity of the first compressor part (111) so that the refrigerant pressure in one suction pipe (32) becomes the first target low pressure, and keeping the second compressor part (112) in a stopped state. A refrigeration apparatus characterized by.
  9.  請求項8において、
     上記制御器(120)は、上記第3冷却運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態とし、上記第1吸入配管(32)の冷媒圧力が上記第1目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 8,
    When the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third cooling operation, the controller (120) fully opens the control valve (48), and The refrigeration is characterized in that the operating capacities of the first compressor section (111) and the second compressor section (112) are adjusted so that the refrigerant pressure in one suction pipe (32) becomes the first target low pressure. apparatus.
  10.  請求項1において、
     上記熱源側熱交換器(26)及び上記第2利用側熱交換器(84)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能する第1併存運転を実行可能であり、
     上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、
     上記制御器(120)は、上記第1併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つ
    ことを特徴とする冷凍装置。
    In claim 1,
    The heat source side heat exchanger (26) and the second usage side heat exchanger (84) function as a condenser, and the first usage side heat exchanger (74) functions as an evaporator. Is feasible,
    A controller (120) for adjusting the operating capacity of the first compressor part (111) and the second compressor part (112) and the opening of the control valve (48);
    When the operating capacity of the first compressor section (111) falls below a predetermined reference capacity during the first concurrent operation, the controller (120) has a predetermined refrigerant pressure in the first suction pipe (32). The refrigeration apparatus is characterized in that the operating capacity of the first compressor section (111) is adjusted so that the target low pressure is maintained, and the second compressor section (112) is kept stopped.
  11.  請求項10において、
     上記制御器(120)は、上記第1併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 10,
    The controller (120) maintains the control valve (48) in a fully open state when the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the first concurrent operation. The refrigeration system characterized in that the operating capacities of the first compressor part (111) and the second compressor part (112) are adjusted so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure. .
  12.  請求項1において、
     上記熱源側熱交換器(26)が休止し、上記第2利用側熱交換器(84)が凝縮器として機能し、上記第1利用側熱交換器(74)が蒸発器として機能する第2併存運転を実行可能であり、
     上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、
     上記制御器(120)は、上記第2併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2圧縮機部(112)を停止状態に保つ
    ことを特徴とする冷凍装置。
    In claim 1,
    The second heat source side heat exchanger (26) is deactivated, the second usage side heat exchanger (84) functions as a condenser, and the first usage side heat exchanger (74) functions as an evaporator. Co-operation can be performed,
    A controller (120) for adjusting the operating capacity of the first compressor part (111) and the second compressor part (112) and the opening of the control valve (48);
    The controller (120) maintains the control valve (48) in a fully closed state when the operating capacity of the first compressor unit (111) is lower than a predetermined reference capacity during the second concurrent operation, The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure, and the second compressor section (112) is kept in a stopped state. A refrigeration apparatus characterized by that.
  13.  請求項12において、
     上記制御器(120)は、上記第2併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 12,
    The controller (120) maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the second concurrent operation. The refrigeration apparatus characterized by adjusting the operating capacity of the second compressor section (112) so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
  14.  請求項1において、
     上記第2利用側熱交換器(84)が凝縮器として機能し、上記熱源側熱交換器(26)及び上記第1利用側熱交換器(74)が蒸発器として機能する第3併存運転を実行可能であり、
     上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、
     上記制御器(120)は、上記第3併存運転中に上記第1圧縮機部(111)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第1吸入配管(32)の冷媒圧力が所定の目標低圧となるように上記第1圧縮機部(111)の運転容量を調節し、上記第2利用側熱交換器(84)における冷媒の凝縮温度が所定の目標温度となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 1,
    The third usage side heat exchanger (84) functions as a condenser and the heat source side heat exchanger (26) and the first usage side heat exchanger (74) function as an evaporator. Is feasible,
    A controller (120) for adjusting the operating capacity of the first compressor part (111) and the second compressor part (112) and the opening of the control valve (48);
    The controller (120) keeps the control valve (48) in a fully closed state when the operating capacity of the first compressor section (111) falls below a predetermined reference capacity during the third concurrent operation, The operating capacity of the first compressor section (111) is adjusted so that the refrigerant pressure in the first suction pipe (32) becomes a predetermined target low pressure, and the refrigerant in the second usage side heat exchanger (84) is adjusted. The refrigeration apparatus characterized by adjusting the operating capacity of the second compressor section (112) so that the condensation temperature becomes a predetermined target temperature.
  15.  請求項14において、
     上記制御器(120)は、上記第3併存運転中に上記第1圧縮機部(111)の運転容量が上記基準容量以上である場合に、上記調節弁(48)を全開状態に保ち、上記第1吸入配管(32)の冷媒圧力が上記目標低圧となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 14,
    The controller (120) maintains the control valve (48) in a fully opened state when the operating capacity of the first compressor unit (111) is equal to or greater than the reference capacity during the third concurrent operation, The refrigeration apparatus characterized by adjusting the operating capacity of the second compressor section (112) so that the refrigerant pressure in the first suction pipe (32) becomes the target low pressure.
  16.  請求項1において、
     上記第2利用側熱交換器(84)が凝縮器として機能し、上記熱源側熱交換器(26)が蒸発器として機能し、上記第1利用側熱交換器(74)が休止する加熱運転を実行可能であり、
     上記第1圧縮機部(111)及び上記第2圧縮機部(112)の運転容量と、上記調節弁(48)の開度とを調節する制御器(120)を備え、
     上記制御器(120)は、上記加熱運転中に上記第2圧縮機部(112)の運転容量が所定の基準容量を下回る場合に、上記調節弁(48)を全閉状態に保ち、上記第2利用側熱交換器(84)における冷媒の凝縮温度が所定の目標温度となるように上記第2圧縮機部(112)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 1,
    The heating operation in which the second use side heat exchanger (84) functions as a condenser, the heat source side heat exchanger (26) functions as an evaporator, and the first use side heat exchanger (74) is stopped. Is possible and
    A controller (120) for adjusting the operating capacity of the first compressor part (111) and the second compressor part (112) and the opening of the control valve (48);
    The controller (120) keeps the control valve (48) in a fully closed state when the operating capacity of the second compressor section (112) falls below a predetermined reference capacity during the heating operation, The refrigeration apparatus, wherein the operating capacity of the second compressor section (112) is adjusted so that the condensation temperature of the refrigerant in the two usage side heat exchanger (84) becomes a predetermined target temperature.
  17.  請求項16において、
     上記制御器(120)は、上記加熱運転中に上記第2圧縮機部(112)の運転容量が上記基準容量以上になると、上記調節弁(48)を全開状態とし、上記第2利用側熱交換器(84)における冷媒の凝縮温度が上記目標温度となるように上記第1圧縮機部(111)の運転容量を調節する
    ことを特徴とする冷凍装置。
    In claim 16,
    When the operating capacity of the second compressor section (112) becomes equal to or greater than the reference capacity during the heating operation, the controller (120) opens the control valve (48) to fully open the second usage side heat. A refrigerating apparatus, wherein an operating capacity of the first compressor section (111) is adjusted so that a refrigerant condensing temperature in the exchanger (84) becomes the target temperature.
PCT/JP2013/005688 2012-09-28 2013-09-25 Refrigerating device WO2014050099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217790 2012-09-28
JP2012217790A JP5682606B2 (en) 2012-09-28 2012-09-28 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2014050099A1 true WO2014050099A1 (en) 2014-04-03

Family

ID=50387536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005688 WO2014050099A1 (en) 2012-09-28 2013-09-25 Refrigerating device

Country Status (2)

Country Link
JP (1) JP5682606B2 (en)
WO (1) WO2014050099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047777A1 (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Refrigeration device
EP4219201A1 (en) * 2022-01-26 2023-08-02 Carrier Corporation Multi-temperature air conditioning system, control method thereof and transport refrigeration vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801873B2 (en) * 2017-05-18 2020-12-16 伸和コントロールズ株式会社 Refrigeration equipment, temperature control equipment and semiconductor manufacturing system
JP6835176B1 (en) * 2019-09-27 2021-02-24 ダイキン工業株式会社 Refrigeration equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129721A (en) * 1992-10-20 1994-05-13 Mitsubishi Electric Corp Air-conditioning device
JPH11311456A (en) * 1998-04-30 1999-11-09 Toshiba Corp Refrigeration cycle system
JP2004085047A (en) * 2002-08-26 2004-03-18 Daikin Ind Ltd Air conditioner
JP2010032205A (en) * 2008-07-02 2010-02-12 Daikin Ind Ltd Refrigeration device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056931A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129721A (en) * 1992-10-20 1994-05-13 Mitsubishi Electric Corp Air-conditioning device
JPH11311456A (en) * 1998-04-30 1999-11-09 Toshiba Corp Refrigeration cycle system
JP2004085047A (en) * 2002-08-26 2004-03-18 Daikin Ind Ltd Air conditioner
JP2010032205A (en) * 2008-07-02 2010-02-12 Daikin Ind Ltd Refrigeration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047777A1 (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Refrigeration device
JP2018040548A (en) * 2016-09-08 2018-03-15 ダイキン工業株式会社 Freezer
EP3511647A4 (en) * 2016-09-08 2020-02-26 Daikin Industries, Ltd. Refrigeration device
EP4219201A1 (en) * 2022-01-26 2023-08-02 Carrier Corporation Multi-temperature air conditioning system, control method thereof and transport refrigeration vehicle

Also Published As

Publication number Publication date
JP5682606B2 (en) 2015-03-11
JP2014070822A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP4462387B1 (en) Refrigeration equipment
JP3894221B1 (en) Air conditioner
JP4804396B2 (en) Refrigeration air conditioner
GB2518559A (en) Cascade refrigeration equipment
WO2014024837A1 (en) Cascade refrigeration equipment
WO2007139010A1 (en) Freezing device
JP2001227823A (en) Refrigerating device
WO2013046647A1 (en) Heat pump
JP6052456B2 (en) Refrigeration equipment
JP5682606B2 (en) Refrigeration equipment
JP2006349258A (en) Air conditioner
EP2354728B1 (en) Refrigerant system
WO2020262624A1 (en) Refrigeration device
JP4720641B2 (en) Refrigeration equipment
WO2021010130A1 (en) Refrigeration device
JP5077089B2 (en) Refrigeration equipment
JP5062079B2 (en) Refrigeration equipment
JP2009115336A (en) Refrigeration system
JP5176897B2 (en) Refrigeration equipment
JP2010014308A (en) Refrigerating device
JP2014070829A (en) Refrigerator
JP2013092369A (en) Heat pump
JP6835176B1 (en) Refrigeration equipment
JP2013002678A (en) Condensing unit set and refrigeration device
JP2009156491A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842089

Country of ref document: EP

Kind code of ref document: A1