WO2014049897A1 - Phosphorus-collecting agent - Google Patents

Phosphorus-collecting agent Download PDF

Info

Publication number
WO2014049897A1
WO2014049897A1 PCT/JP2013/001681 JP2013001681W WO2014049897A1 WO 2014049897 A1 WO2014049897 A1 WO 2014049897A1 JP 2013001681 W JP2013001681 W JP 2013001681W WO 2014049897 A1 WO2014049897 A1 WO 2014049897A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus recovery
recovery agent
phosphorus
agent
evaluated
Prior art date
Application number
PCT/JP2013/001681
Other languages
French (fr)
Japanese (ja)
Inventor
敏弘 今田
祥子 宮崎
秀之 辻
五十川 昌邦
真理 岩下
忍 茂庭
聡美 海老原
原口 智
徳介 早見
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2014049897A1 publication Critical patent/WO2014049897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • Embodiments of the present invention relate to a phosphorus recovery agent.
  • Patent Document As a method for supplying polyvalent metal ions into waste water, there is a coagulant addition method in which an aqueous coagulant such as ferric chloride, polyferric sulfate, or polyaluminum chloride is supplied by an injection pump (Patent Document). 1).
  • an aqueous coagulant such as ferric chloride, polyferric sulfate, or polyaluminum chloride is supplied by an injection pump (Patent Document).
  • an adsorption method using an ion exchange resin, a hydrotalcite-like clay mineral, zirconium oxide or the like is known. This is a method of removing phosphorus by passing phosphorus-containing treated water through a packed bed filled with a phosphorus adsorbent (Patent Document 2).
  • Patent Document 2 a method in which granular calcium phosphate-based phosphate ore is used as a seed crystal and filled in a reaction tank, and in the presence of calcium salt, phosphate in waste water is precipitated as calcium phosphate on the surface of the phosphate ore.
  • the above flocculant addition method has low reaction efficiency between phosphoric acid and the flocculant, generates a large amount of sludge, and sludge treatment becomes a problem.
  • high drug costs are a problem.
  • the adsorption method requires a separate process for recovering the phosphorus adsorbed on the phosphorus adsorbent, and there is a problem that the operation becomes complicated.
  • the crystallization method has a problem that the fine particles in the desorbed liquid remain without being recovered, and the fine particles become larger during circulation of the process, causing the piping to be blocked. Moreover, since impurities other than phosphorus are recovered in a relatively large amount, the crystallization method such as MAP has a problem that the recovery rate of phosphorus is relatively reduced and the recovery efficiency of phosphorus is low. Furthermore, there is a problem that the cost of phosphorus recovery increases because magnesium salts and the like are expensive.
  • phosphorus is recognized as a rare element, and if the adsorbent after adsorbing phosphorus is treated as industrial waste, it results in extra costs. Therefore, reusing phosphorus is an essential requirement. Since phosphorus can be used as a constituent element of chemical fertilizer, phosphorus recovered from water can be reused as chemical fertilizer.
  • the present invention is intended to efficiently recover phosphorus that is contained in a large amount in wastewater such as sewage and that is depleted as a resource, and to reuse it as a chemical fertilizer.
  • the phosphorus recovery agent of the embodiment (hereinafter sometimes referred to as “recovery agent” for short) has a general formula ((MO) ⁇ (MCO 3 ) ⁇ (M (OH) 2 ) 1- ⁇ - ⁇ ) ⁇ ⁇ SiO 2.
  • ⁇ X 2 O (0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1, 0 ⁇ 1- ⁇ - ⁇ ⁇ 1, 0.01 ⁇ ⁇ ⁇ 20, 0 ⁇ ⁇ 15, M: at least one of magnesium and calcium, X: at least one of sodium and potassium), the pore volume having a pore diameter of 5 ⁇ m to 500 ⁇ m is formed at a ratio of 50% to 85% with respect to the total pore volume, and is porous.
  • the phosphorus recovery agent in the embodiment is ((MO) ⁇ (MCO 3 ) ⁇ (M (OH) 2 ) 1- ⁇ - ⁇ ) ⁇ ⁇ SiO 2 ⁇ ⁇ X 2 O (0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1) 0 ⁇ 1- ⁇ - ⁇ ⁇ 1, 0.01 ⁇ ⁇ ⁇ 20, 0 ⁇ ⁇ 15, M: at least one of magnesium and calcium, and X: at least one of sodium and potassium).
  • the porous body has a pore volume of 5 ⁇ m to 500 ⁇ m with a ratio of 50% to 85% with respect to the total pore volume.
  • magnesium ions and calcium ions are sequentially eluted from the surface of the recovery agent. It is held in pores (first pores) of 5 ⁇ m to 500 ⁇ m. Therefore, the reaction product is stably held against the recovery agent due to the anchor effect on the first pores and the like.
  • magnesium and calcium that adsorb ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in wastewater by ionization as described above are ((MO) ⁇ (MCO 3 ) ⁇ in the above general formula. (M (OH) 2 ) 1- ⁇ - ⁇ ).
  • such a composition is obtained depending on the raw materials used in the production method described below, and the composition of the composition is the ammonium ion (ammonia nitrogen) and phosphorus of the recovery agent described above. It has no effect on the adsorptivity of acid ions (phosphorus).
  • the magnesium content in the recovery agent represented by the above general formula is preferably 4.5% by mass or more and 25% by mass or less.
  • the magnesium content is less than 4.5% by mass, for example, based on the above reaction formulas (1) and (3), the production amount of the phosphorus-containing magnesium compound decreases, and the phosphorus recovery efficiency is sufficiently increased. It may not be possible to improve.
  • the magnesium content exceeds 25% by mass, the magnesium amount for producing the phosphorus-containing magnesium compound is saturated, and the drug cost may be improved while the phosphorus recovery efficiency may not be improved.
  • the silicon compound of the above general formula (silicic anhydride, silica; SiO 2 ) is represented by ((MO) ⁇ (MCO 3 ) ⁇ (M (OH) 2 ) 1- ⁇ - ⁇ ) in the general formula. It functions as a substance for holding at least one of a magnesium compound and a calcium compound, that is, a binder.
  • ⁇ represented by the above general formula needs to be in the range of 0.01 ⁇ ⁇ ⁇ 20.
  • is less than 0.01, the magnesium compound and calcium compound cannot be sufficiently retained, and when ⁇ is greater than 20, the amount of magnesium compound and calcium compound in the recovery agent is relatively decreased. Since the amount of magnesium (ion) and calcium (ion) that can be supplied to the wastewater is relatively reduced, the recovery efficiency of ammonium ion (ammonia nitrogen) and phosphate ion (phosphorus) in the wastewater is lowered.
  • the ⁇ X 2 O portion of the above general formula has the effect of previously containing sodium and potassium, which are chemical fertilizer elements, in the recovery agent as a composition, and the recovery agent of the present embodiment as described above. Is a part that enables the recovery agent after adsorbing ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in wastewater to be used as a chemical fertilizer as it is. Therefore, unlike the case where sodium and potassium are added later, it is possible to avoid the problem that only sodium and potassium are dissolved into the soil immediately after fertilization.
  • ⁇ X 2 O also has a role of holding at least one of a magnesium compound and a calcium compound represented by ((MO) ⁇ (MCO 3 ) ⁇ ) in the general formula, like the silicon compound. .
  • the OH in the above general formula is taken in by placing the recovery agent or composition obtained by the production method described below in a moisture-containing atmosphere such as the air, It is thought that it does not contribute to recovery.
  • the form of reuse is different, but recovery including phosphorus or the like as described above.
  • the agent itself can be reused as a chemical fertilizer.
  • an operation such as a separate separation step is required.
  • phosphorus or the like adsorbed from the recovery agent is not separated and used as a chemical fertilizer as it is.
  • the recovered agent can be reused at low cost.
  • the shape of the recovery agent is not particularly limited, and if necessary, spherical, granular, angular, fibrous, thread-like, rod-like, tubular, sheet-like, film-like Any shape such as a plate-like material can be used. However, it is preferably a spherical object.
  • a spherical object for example, when the recovery agent is packed in the column and the wastewater is passed, an appropriate gap is generated between the recovery agents, and the wastewater does not cause a large pressure loss before and after passing through the gap. It flows smoothly and the contact efficiency with the recovery agent is improved, so that phosphorus in the waste water can be recovered efficiently.
  • the recovery agent is a porous body, and magnesium ions and calcium ions are sequentially eluted from the surface of the recovery agent, and the above reaction products such as magnesium ammonium phosphate, hydroxyapatite and magnesium phosphate are removed.
  • a first pore for holding is formed.
  • the pore diameter of the first pore is 5 ⁇ m to 500 ⁇ m, and the pore volume of the first pore is a ratio of 50% to 85%, preferably 60%, with respect to the whole pores formed in the recovery agent. The ratio is ⁇ 85%.
  • the phosphorus recovery agent is a porous body as described above, and the porosity is not particularly limited as long as phosphorus recovery is possible. However, in order to recover phosphorus efficiently, the porosity is 30% or more. A range of 70% or less is preferable.
  • the ratio of the pore diameter of the first pore is out of the above range, the retention performance of the generated reaction product is deteriorated. Further, when the pore volume of the first pore is less than 50%, the amount of the reaction product that can be retained cannot be sufficiently secured, and the phosphorus recovery efficiency is lowered. On the other hand, if the pore volume of the first pore exceeds 85%, the strength of the recovery agent is extremely reduced, and even if a relatively small external force is applied, the recovery agent may be damaged and cannot be used as the recovery agent. is there. For example, when the recovery agent is packed in a column and wastewater is passed through, it may be damaged by the water pressure of the wastewater.
  • the recovery agent has a volume of pores (second pores) having a pore diameter of 0.005 ⁇ m to 5 ⁇ m in a ratio of 15% to 50%, further 15% to 40% with respect to the total pore volume.
  • at least one of magnesium and calcium in the recovery agent is produced on the surface of the recovery agent as a reaction product obtained by, for example, phosphorus in wastewater according to the above reaction formulas (1) to (3), And it can produce
  • the pore volume that is, the pore distribution and the pore diameter can be measured by, for example, pore distribution measurement by mercury porosimetry.
  • the porosity of the phosphorus recovery agent can also be measured by a mercury intrusion method.
  • the size can be set as necessary. However, if the size of the recovery agent is too small, the recovery agent is immersed in the waste water, and magnesium ions and calcium ions are dissolved in the waste water, and phosphoric acid obtained according to the above reaction formulas (1) to (3) There is a tendency that the size of reaction products such as magnesium ammonium becomes too fine and is released into waste water. Moreover, it is not preferable when the recovered agent is sprayed as fertilizer. Therefore, in order to avoid such a problem, the size of the recovery agent is preferably on the order of submicron to millimeter, and particularly preferably 0.3 to 5 mm. In addition, the collection
  • a raw material for the composition represented by the above general formula constituting the recovery agent of this embodiment is prepared.
  • the kind of raw material to prepare can be divided into the following four forms. (i) at least one of magnesium source and calcium source, silicon source and at least one of potassium source and sodium source (ii) Magnesium-calcium source, silicon source and at least one of potassium source and sodium source (iii) at least one of a magnesium source and a calcium source, and at least one of a silicon-potassium source and a silicon-sodium source (iv) Magnesium-calcium source and silicon-potassium-sodium source
  • the magnesium source is easily available and inexpensive, it can be at least one selected from the group consisting of magnesium hydroxide, magnesium oxide and magnesium carbonate.
  • the calcium source can be at least one selected from the group consisting of calcium hydroxide, calcium oxide and calcium carbonate for the same reason.
  • the silicon source can be at least one selected from the group consisting of quartz sand, diatomaceous earth, waste glass, fly ash, rice husk, rice husk ash, and steel slag.
  • fly ash, rice husk, rice husk ash, steel slag, and the like are wastes generated from coal burning, rice threshing, iron refining, etc., but these wastes are silicic acid (silica; Since SiO 2 ) is contained as a main component, the waste can be effectively used by using these wastes as a silicon source.
  • the potassium source can be at least one of potassium hydroxide, potassium carbonate and potassium hydrogen carbonate
  • the sodium source can be at least one of sodium hydroxide, sodium carbonate and sodium hydrogen carbonate
  • the calcium source can be at least one of dolomite (CaMg (CO 3 ) 2 ) and semi-baked dolomite (MgO ⁇ CaCO 3 ).
  • the silicon-potassium source can be potassium silicate and the silicon-sodium source can be sodium silicate.
  • the silicon-potassium source may be rapeseed oil meal, soybean oil meal, cottonseed oil meal, castor oil meal, rice bran oil meal, rice bran, sesame oil meal, peanut oil meal, sunflower oil meal, sweet potato oil, kabok oil meal, corn Vegetable oil cakes such as oil cakes, enjuukasu, tofu residue, tobacco waste, licorice residue, corn germ, etc.
  • Animal meals such as wool, meat, bone meal such as steamed bone meal, shellfish such as steamed fish scales and crab shells, dried yeast such as dried yeast, dried bacteria, dried cocoon cake, potato pupa oil cake, Organic materials such as silk powder such as silk spinning waste, chicken powder, human waste sludge, palm ash, and sewage sludge can be used.
  • silicon-potassium-sodium source among the above-mentioned organic materials, those containing sodium in particular can be appropriately selected and used.
  • each raw material is weighed and mixed so as to satisfy the element ratio of the composition represented by the general formula.
  • an appropriate solvent is used, and an appropriate organic material is used, and the above raw materials and an appropriate organic material are dispersed and stirred in the solvent to form a slurry.
  • the reason for using the organic material is that the organic material is carbonized in the firing step described below, and as a result, the first pore and the second pore described above are included in the resulting composition (recovery agent). It is because it can form easily in a ratio.
  • examples of such an organic material include starch, cellulose, methyl cellulose, polyvinyl alcohol, paraffin, ⁇ -1,3-glucan, graphite, acrylic resin beads, and the like.
  • the silicon-potassium source is composed of the above-described organic material, the silicon-potassium source itself is an organic material, so that the first pores and the second pores described above can be used without separately using the above-described starch. Can be easily formed at the above-described ratio.
  • the first pores and the second pores described above are described above by appropriately controlling the molding pressure, firing temperature, firing time, and the like in the following molding step and firing step. Can be formed in proportions.
  • the slurry (mixture) obtained as described above can be dried, and the granular material obtained using a granulator or the like can be formed into various shapes, for example, extrusion such as strand cutting, sheet cutting, etc. It can shape
  • the molding step is not an essential requirement, and the above-described slurry (mixture) can be directly subjected to the firing step described below.
  • the molded product obtained in the molding step or the slurry obtained in the mixing step is put in a predetermined mold and subjected to a drying treatment as necessary. Is fired at a temperature of 400 ° C. to 750 ° C. About temperature, it sets suitably according to melting
  • the raw materials in the mixture (molded product) react with each other to form the composition represented by the above general formula.
  • the raw material in the mixture (molded product) is decomposed (for example, magnesium carbonate is decomposed and carbon dioxide gas is released to the outside), and further, a part of the raw material is partially liquefied.
  • the resulting composition becomes porous particles.
  • a drying process can be performed at the temperature of 50 degrees C or less as needed. Accordingly, the solvent in the slurry can be vaporized and removed at a certain rate, so that the firing time in the firing step can be shortened.
  • the composition obtained as described above is used as a recovery agent having a desired size using a pulverizer or a granulator.
  • the composition has a desired size in advance, and thus the composition obtained in the firing process can be used as it is as a recovery agent without passing through this process. .
  • acid treatment or washing treatment can be performed on the recovered agent after pulverization or the composition before pulverization.
  • residues residues (potassium salts and the like) can be removed from the recovery agent or the surface of the composition, and the recovery ability of the recovery agent can be improved.
  • acid treatment for example, the recovery agent or the composition is immersed in an acetic acid aqueous solution having a concentration of 0.01 mol / L or more and 1 mol / L or less.
  • OH in the general formula is taken in by placing the recovery agent or composition obtained as described above in a moisture-containing atmosphere such as the air.
  • the method of using the phosphorus recovery agent in this embodiment is very simple, and is performed by bringing the recovery agent obtained as described above into contact with waste water.
  • the above-described principle that is, magnesium ions or calcium ions contained in the recovery agent are combined with ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water, thereby causing ammonia nitrogen and It can recover phosphorus.
  • at least one of magnesium and calcium in the recovery agent is released from the second pores onto the surface of the recovery agent, and phosphorus in the wastewater, for example, the above reaction formulas (1) to (3) To produce a reaction product. Thereafter, the reaction product is retained in the first pores, and phosphorus recovery can be performed.
  • the recovery agent As a specific method for bringing the recovery agent into contact with waste water, for example, the recovery agent is put into waste water, and stirred as necessary to ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus). And a method of sedimentation after recovery.
  • This method is effective when treating a relatively large amount of waste water. According to this method, there is a concern that the water purification equipment becomes relatively large, but there is an advantage that a large amount of waste water can be treated at one time.
  • ammonium ions ammonia nitrogen
  • phosphate ions phosphorus
  • recovery agent in this embodiment can be applied with respect to waste water of arbitrary pH.
  • a preferable pH range for applying the ion recovery agent according to the present embodiment is 5.0 or more and 12.0 or less, and a more preferable pH range is 7.0 or more and 10.0 or less.
  • the wastewater may or may not contain carbonate ions, but when carbonate ions are included, the reaction rate between the phosphorus recovery agent and phosphorus increases, which is advantageous in that the phosphorus recovery rate is improved. It is.
  • the solubility is a characteristic required for phosphate fertilizer and was calculated by the following method. Since the phosphate fertilizer is required to have high solubility, it is preferable that the proportion of the soluble phosphate content eluted with citric acid is high. Based on the fertilizer analysis method, 1 g of phosphorus recovery agent was shaken with 2% citric acid at 30 ° C. for 1 hour, and the dissolved phosphoric acid was quantified by ICP emission spectrometry.
  • Phosphorus recovery rate (phosphoric acid amount adhering to the phosphorus recovery agent (mg / L) / phosphoric acid amount removed from the solution by the phosphorus removal test (mg / L)) ⁇ 100
  • the pore volume of the phosphorus recovery agent was measured using the following apparatus. -Trade name manufactured by Shimadzu Corporation; Shimadzu pore distribution measuring device Using an Autopore 9520 type, measurement was performed under conditions of an initial pressure of about 4 kPa.
  • the water content in the phosphorus recovery agent was quantified using the following method. Elemental analysis of Mg, Ca, Si, Na, and K, which are phosphorus recovery agents, involves completely dissolving a sample by pressure acid decomposition and alkali melting, and then measuring various ion concentrations by ion chromatography or ICP (Inductively Coupled Plasma). ) Measured and quantified using an emission spectrometer. C was measured by a high-frequency combustion overheating-infrared absorption method, and O was measured by an inert gas melting-infrared absorption method. The water content in the phosphorus recovery agent was measured by TG (thermogravimetric analysis). The structure of the phosphorus recovery agent was determined by combining structural analysis such as X-ray diffraction, XPS (X-ray photoelectron spectroscopy), IR (infrared absorption spectrometry) analysis.
  • ICP Inductively Coupled Plasma
  • Example 1 Dolomite (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: 0.8 were mixed with 0.35 weight ratio of slurry A mixture was made. The obtained slurry-like mixture was dried at 50 ° C. for 25 hours using a dryer. Then, it heat-processed at 650 degreeC for 1 hour with the electric furnace. Next, the heat-treated molded body was pulverized so that the particle size was 0.5 mm or more and 1 mm or less.
  • composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • Table 1 shows the pore volume of this phosphorus recovery agent.
  • the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / L phosphate ion, 500 mg / L ammonia nitrogen, and 1000 mL of 3000 mg / L carbonate ion-containing liquid (pH 8) were prepared as water to be treated. To this aqueous solution, 250 mg of the phosphorus recovery agent obtained above was added and shaken with a shaker to bring phosphate ions and ammonia nitrogen into contact with the phosphorus recovery agent. The contact time and shaking time were 24 hours, and a phosphorus recovery test was conducted. After the test, the phosphorus recovery agent was recovered and the phosphorus recovery rate and solubility were evaluated. The results are shown in Table 1.
  • Example 2 The and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: except were mixed in 0.2 weight ratio of implementation
  • a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 3 And the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: except were mixed in 0.7 weight ratio of implementation
  • a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 4 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 5 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .35, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 6 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 1
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.5, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 3 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 4 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 3
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 7 And the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in 0.7 weight ratio of implementation
  • a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 1.33SiO 2 ⁇ 0.66Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 8 And the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in a weight ratio of 0.5, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 1.33SiO 2 ⁇ 0.66Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 9 And the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in a weight ratio of 1.4, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 1.33SiO 2 ⁇ 0.66Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 10 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 1.2: 0.19: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .85, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 11 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 1.2: 0.19: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.5, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 12 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 1.2: 0.19: 1
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 7 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 1.2: 0.19: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .2 and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 8 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 1.2: 0.19: 3
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .4, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 13 Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.37, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 ⁇ 0.56SiO 2 ⁇ 0.28Na 2 O]. The pore volume was as shown in Table 1.
  • Example 14 Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.2, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 ⁇ 0.56SiO 2 ⁇ 0.28Na 2 O]. The pore volume was as shown in Table 1.
  • Example 15 Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.74, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 ⁇ 0.56SiO 2 ⁇ 0.28Na 2 O]. The pore volume was as shown in Table 1.
  • Example 16 Magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 4: except were mixed in a weight ratio of 1.4, Example A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 ⁇ 1.4SiO 2 ⁇ 0.71Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 17 Magnesium oxide (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: 4: except were mixed at a mass ratio, as in Example 1 Similarly, a phosphorus recovery agent was produced, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 ⁇ 1.4SiO 2 ⁇ 0.71Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 18 Magnesium oxide (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: 4: except were mixed in 2 mass ratio, as in Example 1 Similarly, a phosphorus recovery agent was produced, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 ⁇ 1.4SiO 2 ⁇ 0.71Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 11 Magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 4: except were mixed in a weight ratio of 0.5, Example A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 ⁇ 1.4SiO 2 ⁇ 0.71Na 2 O]. The pore volume was as shown in Table 1.
  • Example 19 Calcium carbonate (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 0.8: except were mixed in 0.8 weight ratio, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(CaCO 3 ) ⁇ 0.7SiO 2 ⁇ 0.35Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 20 Calcium carbonate (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: 0.8: except were mixed in a weight ratio of 0.5, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(CaCO 3 ) ⁇ 0.7SiO 2 ⁇ 0.35Na 2 O].
  • the pore volume was as shown in Table 1.
  • Example 21 Calcium carbonate (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) pure water, 1: 0.8: except were mixed in a weight ratio of 1.5, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(CaCO 3 ) ⁇ 0.7SiO 2 ⁇ 0.35Na 2 O].
  • the pore volume was as shown in Table 1.
  • the phosphorus-recovering agents obtained in Examples 1 to 21 have a high soluble phosphate content and phosphorus recovery rate, and the phosphorus-recovering agent of this example has a high soluble phosphate content and phosphorus recovery rate. It was found that the recovery rate was excellent.
  • Comparative Examples 1 to 12 since the formation ratio of the first pores is outside the scope of the present invention and phosphorus cannot be retained, the soluble phosphonic acid content and the phosphorus recovery rate of the phosphorus recovery agent are It turned out to be low.
  • Example 22 Except for mixing dolomite (average diameter: 20 ⁇ m) and aqueous potassium silicate (SiO 2 27.5% to 29%, K 2 O 21% to 23%) in a mass ratio of 1: 2.14 A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 23 Dolomite (average diameter: 20 ⁇ m) and aqueous sodium silicate (SiO 2 36.5% or less, Na 2 O 18%) were mixed in the same manner as in Example 1 except that they were mixed at a mass ratio of 1: 1.16.
  • the recovery agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.67SiO 2 ⁇ 0.32Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 24 Phosphorus recovery in the same manner as in Example 1 except that dolomite (average diameter: 20 ⁇ m), silica, sodium hydrogen carbonate, and pure water were mixed at a mass ratio of 1: 0.42: 0.59: 0.5.
  • the agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 25 Phosphorus recovery was carried out in the same manner as in Example 1 except that dolomite (average diameter: 20 ⁇ m), silica, sodium hydrogen carbonate, and pure water were mixed at a mass ratio of 1: 0.42: 0.38: 0.45.
  • the agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 26 Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O), 1: 0.8: 0.13: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 27 Dolomite (average diameter: 20 ⁇ m), potassium silicate aqueous solution (SiO 2 27.5% or more and 29% or less, K 2 O 21% or more and 23% or less) and ⁇ -1,3-glucan 1: 2.14: 0. Except for mixing at a mass ratio of 13, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 28 Dolomite (average diameter: 20 ⁇ m), silica, sodium bicarbonate, ⁇ -1,3-glucan and pure water were mixed at a mass ratio of 1: 0.42: 0.59: 0.13: 0.75. Except for the above, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O]. The pore volume was as shown in Table 2.
  • Example 29 Dolomite (average diameter: 20 ⁇ m), silica, potassium bicarbonate, ⁇ -1,3-glucan and pure water were mixed at a mass ratio of 1: 0.42: 0.38: 0.13: 0.8. Except for the above, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O]. The pore volume was as shown in Table 2.
  • Example 30 And sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and sodium bicarbonate and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.25: 0.35 by mass of Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.47Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 31 And sodium silicate powder and (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and potassium hydrogen carbonate pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.38: 0.35 by mass of Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 32 Dolomite (average diameter: 20 [mu] m) of sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and the sodium bicarbonate beta-1,3-glucan and the pure water, 1: 0.8: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that mixing was performed at a mass ratio of .25: 0.13: 0.71, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.47Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 33 Dolomite (average diameter: 20 [mu] m) of sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and the potassium bicarbonate beta-1,3-glucan and the pure water, 1: 0.8: 0
  • a phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .38: 0.13: 0.35, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 34 And sodium silicate powder (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and carboxymethylcellulose sodium and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.25: 0.7 mass Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.36Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 35 Except for mixing dolomite (average diameter: 20 ⁇ m), silica, potassium hydrogen carbonate, sodium carboxymethyl cellulose and pure water in a mass ratio of 1: 0.42: 0.38: 0.2: 0.8.
  • a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O ⁇ 0.03Na].
  • the pore volume was as shown in Table 2.
  • Example 36 Dolomite (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and rapeseed oil cake and pure water, 1: 0.8: 0.36: 0.85 weight ratio of A phosphorus recovery agent was produced in the same manner as in Example 1 except that mixing was performed, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O ⁇ 0.01K 2 O].
  • the pore volume was as shown in Table 2.
  • Example 37 Dolomite (average diameter: 20 [mu] m) and the powdered sodium silicate and (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) ⁇ -1,3- glucan and the rapeseed meal and pure water, 1: 0.8: 0. Except for mixing at a mass ratio of 13: 0.36: 0.7, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.33Na 2 O ⁇ 0.01K 2 O]. The pore volume was as shown in Table 2.
  • Example 1 The and powdered sodium silicate (Na 2 O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 2: except were mixed with 0.85 weight ratio of Example 1
  • the phosphorus recovery agent was produced in the same manner as described above, and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 1.78SiO 2 ⁇ 0.89Na 2 O].
  • the pore volume was as shown in Table 2.
  • Example 3 Calcium and sodium silicate powder carbonate (Na2O ⁇ 2SiO 2 ⁇ 2.53H 2 O) and the pure water, 1: 0.8: except were mixed in 0.6 mass ratio, in the same manner as in Example 1 Phosphorus
  • the recovery agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated.
  • the composition of the obtained phosphorus recovery agent is [CaCO 3 ⁇ 0.7SiO 2 ⁇ 0.35Na 2 O] [(MgO) 0,39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 ⁇ 0.66SiO 2 ⁇ 0.18K 2 O].
  • the pore volume was as shown in Table 2.
  • the magnesium content of the phosphorus recovery agents obtained in Examples 22 to 37 is as high as 4.5% by mass or more, specifically 6.5% by mass or more. It was found that the content of soluble phosphoric acid was also high. That is, it was found that by setting the magnesium content to 4.5 mass% or more and 25 mass% or less, a phosphorus recovery agent having a high soluble phosphate content can be obtained.
  • the phosphorus recovery agents obtained in Reference Examples 1 to 3 satisfy the requirements of the present invention, but have a lower magnesium solubility than the phosphorus recovery agents obtained in the above examples because of the low magnesium content. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Specific Substances (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

It is intended to collect phosphorus, which is contained in waste water such as sewage water in a large quantity and is pointed out as being a depleted resource, with high efficiency and to reuse the phosphorus as a chemical fertilizer. A phosphorus-collecting agent according to an embodiment is a porous body comprising a composition represented by the formula: ((MO)α(MCO3)β(M(OH)2)1-α-β)·γSiO2·δX2O (wherein 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ 1-α-β ≤ 1, 0.01 ≤ γ ≤ 20, 0 < δ ≤ 15, M: magnesium and/or calcium, and X: sodium and/or potassium), wherein the pore volume of pores each having a pore diameter of 5 to 500 μm makes up 50 to 85% of the total pore volume.

Description

リン回収剤Phosphorus recovery agent
 本発明の実施形態は、リン回収剤に関する。 Embodiments of the present invention relate to a phosphorus recovery agent.
 近年、経済活動の急速なグローバル化によって、世界規模での環境汚染・水質汚染が深刻な問題となっている。また、世界規模での生産活動は同時に資源枯渇を招き、希少元素として認識される元素の種類も増加する傾向にある。最近では世界規模でのリン鉱石の減少が進んでおり、近年では、リンも希少元素として認識されてきている。 In recent years, due to the rapid globalization of economic activities, global environmental pollution and water pollution have become serious problems. In addition, worldwide production activities simultaneously lead to resource depletion, and the types of elements recognized as rare elements tend to increase. Recently, the reduction of phosphorus ore on a global scale has progressed, and in recent years phosphorus has also been recognized as a rare element.
 一方、従来から湖沼や湾内など閉鎖性水域における富栄養化問題への対策として、リンに対する厳格な排出基準が設けられている。水中からのリン(実際には、リン酸イオンの形態となっている)の除去手段としては、鉄、マグネシウム、アルミニウム、カルシウム等の多価金属のイオンを廃水中に供給し、これとリン酸イオンとを反応させ、固体化または粒子化して沈殿、浮上又はろ過等によって除去する反応凝集法が多く用いられている。多価金属イオンを廃水中に供給する方法としては、塩化第二鉄、ポリ硫酸第二鉄、ポリ塩化アルミニウム等の水溶液状の凝集剤を注入ポンプにより供給する凝集剤添加法がある(特許文献1)。 On the other hand, strict emission standards for phosphorus have been established as countermeasures against eutrophication problems in closed waters such as lakes and bays. As means for removing phosphorus from water (actually in the form of phosphate ions), ions of polyvalent metals such as iron, magnesium, aluminum and calcium are supplied to waste water, and this is combined with phosphate. A reactive agglomeration method is often used in which ions are reacted and solidified or granulated to be removed by precipitation, flotation, filtration, or the like. As a method for supplying polyvalent metal ions into waste water, there is a coagulant addition method in which an aqueous coagulant such as ferric chloride, polyferric sulfate, or polyaluminum chloride is supplied by an injection pump (Patent Document). 1).
 このような薬剤添加による凝集法の他にはイオン交換樹脂、ハイドロタルサイト様粘土鉱物、酸化ジルコニウム等を使用した吸着法等が知られている。これは、リン吸着剤を充填した充填層にリン含有処理水を通水してリンを除去する方法である(特許文献2)。他には、粒状のリン酸カルシウム系のリン鉱石を種晶として、これを反応槽内に充填し、カルシウム塩の存在下で、廃水中のリン酸塩をリン酸カルシウムとしてリン鉱石の表面に析出させる方法や、粒状のリン酸アンモニウムマグネシウムを種晶として、これを反応槽内に充填し、アンモニア性窒素及びリンを含有する廃水から、種晶表面にリン酸アンモニウムマグネシウムを晶析させ、リンを除去する晶析法がある(特許文献3)。 In addition to the agglomeration method by addition of such chemicals, an adsorption method using an ion exchange resin, a hydrotalcite-like clay mineral, zirconium oxide or the like is known. This is a method of removing phosphorus by passing phosphorus-containing treated water through a packed bed filled with a phosphorus adsorbent (Patent Document 2). In addition, a method in which granular calcium phosphate-based phosphate ore is used as a seed crystal and filled in a reaction tank, and in the presence of calcium salt, phosphate in waste water is precipitated as calcium phosphate on the surface of the phosphate ore. A crystal that removes phosphorus by using granular ammonium magnesium phosphate as a seed crystal, filling it into a reaction tank, crystallizing ammonium magnesium phosphate on the surface of the seed crystal from waste water containing ammoniacal nitrogen and phosphorus There is an analysis method (Patent Document 3).
 しかしながら、上記凝集剤添加法は、リン酸と凝集剤との反応効率が低く、汚泥が大量に発生し、汚泥処理が問題となる。また、薬剤コストが高いことが問題となっている。吸着法は、リン吸着剤に吸着したリンを回収するための工程が別途必要になり、操作が煩雑化するという問題がある。 However, the above flocculant addition method has low reaction efficiency between phosphoric acid and the flocculant, generates a large amount of sludge, and sludge treatment becomes a problem. In addition, high drug costs are a problem. The adsorption method requires a separate process for recovering the phosphorus adsorbed on the phosphorus adsorbent, and there is a problem that the operation becomes complicated.
 また、晶析法は、脱離液中の微粒子が回収しきれずに残存し、その微粒子がプロセスを循環している間に大きくなり、配管の閉塞原因になってしまうという問題がある。また、リン以外の不純物も比較的多量に回収してしまうことから、MAP等の晶析法は、リンの回収割合が相対的に減少し、リンの回収効率が低いという問題がある。さらには、マグネシウム塩等が高価であるためにリン回収コストが増大してしまうという問題がある。 Also, the crystallization method has a problem that the fine particles in the desorbed liquid remain without being recovered, and the fine particles become larger during circulation of the process, causing the piping to be blocked. Moreover, since impurities other than phosphorus are recovered in a relatively large amount, the crystallization method such as MAP has a problem that the recovery rate of phosphorus is relatively reduced and the recovery efficiency of phosphorus is low. Furthermore, there is a problem that the cost of phosphorus recovery increases because magnesium salts and the like are expensive.
 一方、上述のように、リンは希少元素として認識されており、また、リンを吸着した後の吸着剤は、産業廃棄物として処理してしまうと、結果的に余分なコストがかかってしまう。そのためリンを再利用させることが必須の要件となる。リンは化成肥料の構成元素として利用できることから、水中から回収したリンは化成肥料として再利用が可能である。 On the other hand, as described above, phosphorus is recognized as a rare element, and if the adsorbent after adsorbing phosphorus is treated as industrial waste, it results in extra costs. Therefore, reusing phosphorus is an essential requirement. Since phosphorus can be used as a constituent element of chemical fertilizer, phosphorus recovered from water can be reused as chemical fertilizer.
 しかしながら、化成肥料はリン、窒素及びカリウムのうち2種類以上を含むことが必要であり、必要に応じてナトリウムやケイ素を含むことが必要ともなるため、回収したリンのみでは化成肥料を製造することができない。上述したリン酸アンモニウムマグネシウムを種晶として用いる晶析法では、種晶表面にリン酸アンモニウムマグネシウムを晶析させることができるので、化成肥料を構成するリンに加えて窒素を確保することができる。但し、この方法では、カリウムを含有させることができず、回収したリン酸アンモニウムマグネシウムにカリウムを添加して化成肥料とするような試みがなされている。しかしながら、カリウムを後添加した場合は、施肥後直ちにカリウムのみが土壌に溶け出してしまい、実用に供する化成肥料を得ることができなかった。 However, chemical fertilizers need to contain two or more of phosphorus, nitrogen and potassium, and it is necessary to contain sodium and silicon as needed. I can't. In the above-described crystallization method using ammonium magnesium phosphate as a seed crystal, ammonium magnesium phosphate can be crystallized on the surface of the seed crystal, so that nitrogen can be secured in addition to phosphorus constituting the chemical fertilizer. However, in this method, potassium cannot be contained, and attempts have been made to add potassium to the recovered ammonium magnesium phosphate to obtain a chemical fertilizer. However, when potassium was added later, only potassium was dissolved into the soil immediately after fertilization, and a chemical fertilizer for practical use could not be obtained.
 換言すれば、従来の方法では、吸着したリンの化成肥料としての実用的な再利用の技術は確立されていない。 In other words, in the conventional method, a practical technique for reusing adsorbed phosphorus as a chemical fertilizer has not been established.
特開2001-048791号公報JP 2001-048791 A 特開2009-113034号公報JP 2009-113034 A 特開2004-089931号公報JP 2004-089931 A
 本発明は、下水などの廃水中に大量に含まれ、資源としての枯渇性が指摘されるリンを効率良く回収するとともに、化成肥料として再利用することを目的とする。 The present invention is intended to efficiently recover phosphorus that is contained in a large amount in wastewater such as sewage and that is depleted as a resource, and to reuse it as a chemical fertilizer.
 実施形態のリン回収剤(以下、略して“回収剤”という場合がある)は、一般式((MO)α(MCOβ(M(OH)1-α-β)・γSiO・δXO(0≦α≦1、0≦β≦1、0≦1-α-β≦1、0.01≦γ≦20、0<δ≦15、M:マグネシウム及びカルシウムの少なくとも一方、X:ナトリウム及びカリウムの少なくとも一方)で表わされる組成物を含み、孔径5μm~500μmの気孔体積が、全気孔体積に対して50%~85%の割合で形成されており、多孔質である。 The phosphorus recovery agent of the embodiment (hereinafter sometimes referred to as “recovery agent” for short) has a general formula ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) · γSiO 2. ΔX 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, 0 ≦ 1-α-β ≦ 1, 0.01 ≦ γ ≦ 20, 0 <δ ≦ 15, M: at least one of magnesium and calcium, X: at least one of sodium and potassium), the pore volume having a pore diameter of 5 μm to 500 μm is formed at a ratio of 50% to 85% with respect to the total pore volume, and is porous.
(リン回収剤)
 実施形態におけるリン回収剤は、((MO)α(MCOβ(M(OH)1-α-β)・γSiO・δXO(0≦α≦1、0≦β≦1、0≦1-α-β≦1、0.01≦γ≦20、0<δ≦15、M:マグネシウム及びカルシウムの少なくとも一方、X:ナトリウム及びカリウムの少なくとも一方)で表わされる組成物を含み、孔径5μm~500μmの気孔体積が、全気孔体積に対して50%~85%の割合で形成されている多孔質体である。
(Phosphorus recovery agent)
The phosphorus recovery agent in the embodiment is ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) · γSiO 2 · δX 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1) 0 ≦ 1-α-β ≦ 1, 0.01 ≦ γ ≦ 20, 0 <δ ≦ 15, M: at least one of magnesium and calcium, and X: at least one of sodium and potassium). The porous body has a pore volume of 5 μm to 500 μm with a ratio of 50% to 85% with respect to the total pore volume.
 上記回収剤において、当該回収剤を廃水中に浸漬させた場合、廃水中には一般にアンモニアが含まれていることから、上記組成物の((MO)α(MCOβ(M(OH)1-α-β)部分のマグネシウム及びカルシウムはイオンとして溶存し、以下に示すような反応式に基づいて、廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)と反応する。その結果、リン酸マグネシウムアンモニウム、ハイドロキシアパタイト及びリン酸マグネシウム等の反応生成物が得られる。 In the above recovery agent, when the recovery agent is immersed in wastewater, since the wastewater generally contains ammonia, ((MO) α (MCO 3 ) β (M (OH)) 2 ) Magnesium and calcium in the 1-α-β ) part are dissolved as ions and react with ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the wastewater based on the reaction formula shown below. . As a result, reaction products such as magnesium ammonium phosphate, hydroxyapatite, and magnesium phosphate are obtained.
 Mg2++NH +PO 3-+6HO→MgNHPO・6HO (1)
 10Ca2++2OH+6PO 3-→Ca10(OH)(PO (2)
 3Mg2++2PO 3-→Mg(PO            (3)
Mg 2+ + NH 4 + + PO 4 3 − + 6H 2 O → MgNH 4 PO 4 .6H 2 O (1)
10Ca 2+ + 2OH + 6PO 4 3− → Ca 10 (OH) 2 (PO 4 ) 6 (2)
3Mg 2+ + 2PO 4 3- → Mg 3 (PO 4 ) 2 (3)
 廃水中では、回収剤の表面から逐次的にマグネシウムイオン、カルシウムイオンが溶出され、上述した反応生成物であるリン酸マグネシウムアンモニウム、ハイドロキシアパタイト及びリン酸マグネシウム等は、主として回収剤に形成された孔径5μm~500μmの気孔(第1の気孔)中に保持されるようになる。したがって、上記反応生成物は、第1の気孔に対するアンカー効果等に起因して上記回収剤に対して安定的に保持されるようになる。 In the wastewater, magnesium ions and calcium ions are sequentially eluted from the surface of the recovery agent. It is held in pores (first pores) of 5 μm to 500 μm. Therefore, the reaction product is stably held against the recovery agent due to the anchor effect on the first pores and the like.
 なお、上述したようにイオン化することによって廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を吸着するマグネシウム及びカルシウムは、上記一般式中で((MO)α(MCOβ(M(OH)1-α-β)の組成物として含まれる。ところが、このような組成物は、以下に説明する製造方法において使用する原料に依存して得られるものであって、その組成物の形態が上述した回収剤のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着性に対して何ら影響をもたらすものではない。 Note that magnesium and calcium that adsorb ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in wastewater by ionization as described above are ((MO) α (MCO 3 ) β in the above general formula. (M (OH) 2 ) 1-α-β ). However, such a composition is obtained depending on the raw materials used in the production method described below, and the composition of the composition is the ammonium ion (ammonia nitrogen) and phosphorus of the recovery agent described above. It has no effect on the adsorptivity of acid ions (phosphorus).
 したがって、α及びβの範囲に基づいて、上記組成物がMO(α=1、β=0)、((MO)α(MCOβ(M(OH)1-α-β)及びMCO(α=0、β=1)の組成を有するとしても、廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の吸着性に対して何ら影響をもたらすものではない。 Therefore, based on the range of α and β, the composition is composed of MO (α = 1, β = 0), ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) and Even if it has a composition of MCO 3 (α = 0, β = 1), it does not have any influence on the adsorptivity of ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in wastewater.
 但し、上記一般式で表わされる回収剤中のマグネシウムの含有量は、4.5質量%以上25質量%以下であることが好ましい。マグネシウムの含有量が4.5質量%未満であると、例えば上記反応式(1)及び(3)に基づいて、リン含有マグネシウム化合物の生成量が減少してしまい、リンの回収効率を十分に向上させることができない場合がある。一方、マグネシウムの含有量が25質量%を超えると、リン含有マグネシウム化合物を生成するためのマグネシウム量が飽和してしまい、薬剤コストが向上する一方でリン回収効率を向上させることができない場合がある。 However, the magnesium content in the recovery agent represented by the above general formula is preferably 4.5% by mass or more and 25% by mass or less. When the magnesium content is less than 4.5% by mass, for example, based on the above reaction formulas (1) and (3), the production amount of the phosphorus-containing magnesium compound decreases, and the phosphorus recovery efficiency is sufficiently increased. It may not be possible to improve. On the other hand, when the magnesium content exceeds 25% by mass, the magnesium amount for producing the phosphorus-containing magnesium compound is saturated, and the drug cost may be improved while the phosphorus recovery efficiency may not be improved. .
 また、上記一般式のケイ素化合物(無水ケイ酸、シリカ;SiO)は、一般式中で((MO)α(MCOβ(M(OH)1-α-β)によって表わされるマグネシウム化合物及びカルシウム化合物の少なくとも一方を保持するための物質、すなわちバインダーとして機能するものである。この場合、上記一般式で表わされるγは0.01≦γ≦20の範囲であることが必要である。γが0.01未満であると、マグネシウム化合物及びカルシウム化合物を十分に保持することができず、γが20よりも大きくなると、回収剤中におけるマグネシウム化合物及びカルシウム化合物の量が相対的に減少し、廃水中に供給できるマグネシウム(イオン)及びカルシウム(イオン)の量が相対的に減少するので、廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)の回収効率が低下する。 Further, the silicon compound of the above general formula (silicic anhydride, silica; SiO 2 ) is represented by ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) in the general formula. It functions as a substance for holding at least one of a magnesium compound and a calcium compound, that is, a binder. In this case, γ represented by the above general formula needs to be in the range of 0.01 ≦ γ ≦ 20. When γ is less than 0.01, the magnesium compound and calcium compound cannot be sufficiently retained, and when γ is greater than 20, the amount of magnesium compound and calcium compound in the recovery agent is relatively decreased. Since the amount of magnesium (ion) and calcium (ion) that can be supplied to the wastewater is relatively reduced, the recovery efficiency of ammonium ion (ammonia nitrogen) and phosphate ion (phosphorus) in the wastewater is lowered.
 δXO部分のナトリウム、カリウムがリン回収剤中に存在することにより、リン回収剤表面及び孔内のpHがアルカリ側に傾き、リン回収剤中のマグネシウムイオンと溶液中のリン酸イオン(リン)及びアンモニウムイオン(アンモニア性窒素)との反応が促進されるため、リン回収効率が高まる。 By the presence of sodium and potassium in the δX 2 O portion in the phosphorus recovery agent, the pH of the surface of the phosphorus recovery agent and the pores are inclined to the alkali side, so that magnesium ions in the phosphorus recovery agent and phosphate ions (phosphorus ions in the solution) ) And ammonium ions (ammonia nitrogen) are promoted, so that phosphorus recovery efficiency is increased.
 また、上記一般式のδXO部分は、化成肥料の元素であるナトリウム、カリウムを予め回収剤中に組成物として含有させておく効果を有し、上述のようにして本実施形態の回収剤が廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を吸着した後の回収剤を、そのまま化成肥料として使用できるようにする部分である。したがって、ナトリウム、カリウムを後添加した場合と異なり、施肥後直ちにナトリウム、カリウムのみが土壌に溶け出してしまうような問題を回避することができる。 Further, the δX 2 O portion of the above general formula has the effect of previously containing sodium and potassium, which are chemical fertilizer elements, in the recovery agent as a composition, and the recovery agent of the present embodiment as described above. Is a part that enables the recovery agent after adsorbing ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in wastewater to be used as a chemical fertilizer as it is. Therefore, unlike the case where sodium and potassium are added later, it is possible to avoid the problem that only sodium and potassium are dissolved into the soil immediately after fertilization.
 また、δXOは、上記ケイ素化合物と同様に、一般式中で((MO)α(MCOβ)によって表わされるマグネシウム化合物及びカルシウム化合物の少なくとも一方を保持する役割をも有している。 ΔX 2 O also has a role of holding at least one of a magnesium compound and a calcium compound represented by ((MO) α (MCO 3 ) β ) in the general formula, like the silicon compound. .
 なお、上記一般式中のOHは、以下に説明する製造方法により得た回収剤あるいは組成物を、例えば大気中などの水分含有雰囲気中に置くことにより取り込まれるものであって、廃水中のリン回収には寄与しないと考えられる。 The OH in the above general formula is taken in by placing the recovery agent or composition obtained by the production method described below in a moisture-containing atmosphere such as the air, It is thought that it does not contribute to recovery.
 このように、本実施形態では、回収剤から吸着したリン等を分離除去して当該回収剤を再利用することはできないため、再利用の形態は異なるものの、上述のようにリン等を含む回収剤自体を化成肥料として再利用することができる。また、回収剤からリン等を分離するには別途分離工程等の操作が必要になるが、本実施形態のように、上記回収剤から吸着したリン等を分離することなく、そのまま化成肥料として用いることにより、回収剤の再利用を低コストで行うことができる。 As described above, in the present embodiment, since the phosphorus and the like adsorbed from the recovery agent cannot be separated and removed, and the recovery agent cannot be reused, the form of reuse is different, but recovery including phosphorus or the like as described above. The agent itself can be reused as a chemical fertilizer. Further, in order to separate phosphorus or the like from the recovery agent, an operation such as a separate separation step is required. However, as in this embodiment, phosphorus or the like adsorbed from the recovery agent is not separated and used as a chemical fertilizer as it is. Thus, the recovered agent can be reused at low cost.
 なお、回収剤の形状は特に限定されるものではなく、必要に応じて、球状物、粒状物、角状物、繊維状物、糸状物、棒状物、管状物、シート状物、膜状物、板状物等、任意の形状とすることができる。但し、好ましくは、球形物とする。この場合、例えば、回収剤をカラム中に充填し、廃水を通水した際に、回収剤間に適度な隙間が生じ、この隙間を介して廃水が通水前後で大きな圧力損失を生じることなく円滑に流れ、また、回収剤との接触効率も向上して、排水中のリンを効率良く回収することができる。 The shape of the recovery agent is not particularly limited, and if necessary, spherical, granular, angular, fibrous, thread-like, rod-like, tubular, sheet-like, film-like Any shape such as a plate-like material can be used. However, it is preferably a spherical object. In this case, for example, when the recovery agent is packed in the column and the wastewater is passed, an appropriate gap is generated between the recovery agents, and the wastewater does not cause a large pressure loss before and after passing through the gap. It flows smoothly and the contact efficiency with the recovery agent is improved, so that phosphorus in the waste water can be recovered efficiently.
 但し、上記回収剤は多孔質体であって、回収剤の表面から逐次的にマグネシウムイオン、カルシウムイオンが溶出され、上述した反応生成物であるリン酸マグネシウムアンモニウム、ハイドロキシアパタイト及びリン酸マグネシウム等を保持するための第1の気孔が形成されている。この第1の気孔の孔径は5μm~500μmであり、第1の気孔の気孔体積は、回収剤中に形成された気孔の全体に対して50%~85%の割合であり、好ましくは60%~85%の割合である。また、リン回収剤は上記のように多孔質体であって、リン回収が可能であればその気孔率は特に限定されないが、リンを効率的に回収するために、その気孔率が30%以上70%以下の範囲であることが好ましい。 However, the recovery agent is a porous body, and magnesium ions and calcium ions are sequentially eluted from the surface of the recovery agent, and the above reaction products such as magnesium ammonium phosphate, hydroxyapatite and magnesium phosphate are removed. A first pore for holding is formed. The pore diameter of the first pore is 5 μm to 500 μm, and the pore volume of the first pore is a ratio of 50% to 85%, preferably 60%, with respect to the whole pores formed in the recovery agent. The ratio is ~ 85%. Further, the phosphorus recovery agent is a porous body as described above, and the porosity is not particularly limited as long as phosphorus recovery is possible. However, in order to recover phosphorus efficiently, the porosity is 30% or more. A range of 70% or less is preferable.
 上記第1の気孔の孔径の割合が、上記範囲外であると、生成した反応生成物の保持性能が低下する。また、第1の気孔の気孔体積が50%未満であると、保持できる反応生成物の量を十分に担保することができず、リンの回収効率が低下する。一方、第1の気孔の気孔体積が85%を超えると、回収剤の強度が極端に減少し、比較的小さい外力が作用しても破損してしまい、回収剤として使用できなくなってしまう場合がある。例えば、上記回収剤をカラム中に充填し、廃水を通水した際に、当該廃水の水圧によって破損してしまう場合がある。 When the ratio of the pore diameter of the first pore is out of the above range, the retention performance of the generated reaction product is deteriorated. Further, when the pore volume of the first pore is less than 50%, the amount of the reaction product that can be retained cannot be sufficiently secured, and the phosphorus recovery efficiency is lowered. On the other hand, if the pore volume of the first pore exceeds 85%, the strength of the recovery agent is extremely reduced, and even if a relatively small external force is applied, the recovery agent may be damaged and cannot be used as the recovery agent. is there. For example, when the recovery agent is packed in a column and wastewater is passed through, it may be damaged by the water pressure of the wastewater.
 なお、本実施形態において、上記回収剤は、孔径0.005μm~5μmの気孔(第2の気孔)の体積が、全気孔体積に対して15%~50%の割合、さらには15%~40%の割合で形成されていることが好ましい。この場合、回収剤中のマグネシウム及びカルシウムの少なくとも一方を、回収剤の表面上に、廃水中のリンを例えば上述した反応式(1)~(3)にしたがって得た反応生成物として生成し、かつ上記第1の気孔中に確実に保持できるような量で生成することができる。すなわち、上記回収剤による廃水中のリン回収効率を向上させることができる。 In the present embodiment, the recovery agent has a volume of pores (second pores) having a pore diameter of 0.005 μm to 5 μm in a ratio of 15% to 50%, further 15% to 40% with respect to the total pore volume. % Is preferably formed. In this case, at least one of magnesium and calcium in the recovery agent is produced on the surface of the recovery agent as a reaction product obtained by, for example, phosphorus in wastewater according to the above reaction formulas (1) to (3), And it can produce | generate in the quantity which can be reliably hold | maintained in the said 1st pore. That is, it is possible to improve the phosphorus recovery efficiency in the wastewater by the recovery agent.
 上記気孔体積、すなわち気孔分布及び孔径は、例えば水銀圧入法による細孔分布測定により測定することができる。また、リン回収剤の気孔率も水銀圧入法により測定することができる。 The pore volume, that is, the pore distribution and the pore diameter can be measured by, for example, pore distribution measurement by mercury porosimetry. Moreover, the porosity of the phosphorus recovery agent can also be measured by a mercury intrusion method.
 また、その大きさも適宜必要に応じて設定することができる。但し、回収剤の大きさが小さすぎると、回収剤を廃水中に浸漬させてマグネシウムイオン及びカルシウムイオンが廃水中に溶存し、上述した反応式(1)~(3)にしたがって得られるリン酸マグネシウムアンモニウム等の反応生成物の大きさが微細になりすぎ、廃水中に遊離してしまう傾向がある。また回収剤を肥料として散布する場合に好ましくない。したがって、このような問題を回避すべく、回収剤の大きさはサブミクロンオーダーからミリメートルのオーダとすることが好ましく、特に0.3~5mmであることが好ましい。なお、このような大きさの回収剤は、以下に説明する製造方法によれば比較的簡易に形成することができる。 Also, the size can be set as necessary. However, if the size of the recovery agent is too small, the recovery agent is immersed in the waste water, and magnesium ions and calcium ions are dissolved in the waste water, and phosphoric acid obtained according to the above reaction formulas (1) to (3) There is a tendency that the size of reaction products such as magnesium ammonium becomes too fine and is released into waste water. Moreover, it is not preferable when the recovered agent is sprayed as fertilizer. Therefore, in order to avoid such a problem, the size of the recovery agent is preferably on the order of submicron to millimeter, and particularly preferably 0.3 to 5 mm. In addition, the collection | recovery agent of such a magnitude | size can be formed comparatively easily according to the manufacturing method demonstrated below.
 なお、上述した回収剤は、以下に説明する製造方法にしたがって製造することにより自ずから多孔質かつ粒子状に製造されるものである。 In addition, the collection | recovery agent mentioned above is naturally manufactured by the porous and particulate form by manufacturing according to the manufacturing method demonstrated below.
(リン回収剤の製造方法)
 次に、本実施形態のリン回収剤の製造方法について説明する。
(Method for producing phosphorus recovery agent)
Next, the manufacturing method of the phosphorus collection | recovery agent of this embodiment is demonstrated.
(混合工程)
 最初に、本実施形態の回収剤を構成する上記一般式で表わされる組成物の原料を準備する。なお、原料の種類に応じて、準備する原料の種類は以下のような4つの形態に分けることができる。
(i) マグネシウム源及びカルシウム源の少なくとも一方、ケイ素源並びにカリウム源及びナトリウム源の少なくとも一方
(ii)マグネシウム-カルシウム源、ケイ素源並びにカリウム源及びナトリウム源の少なくとも一方
(iii)マグネシウム源及びカルシウム源の少なくとも一方、並びにケイ素-カリウム源及びケイ素-ナトリウム源の少なくとも一方
(iv) マグネシウム-カルシウム源、及びケイ素-カリウム-ナトリウム源
(Mixing process)
First, a raw material for the composition represented by the above general formula constituting the recovery agent of this embodiment is prepared. In addition, according to the kind of raw material, the kind of raw material to prepare can be divided into the following four forms.
(i) at least one of magnesium source and calcium source, silicon source and at least one of potassium source and sodium source
(ii) Magnesium-calcium source, silicon source and at least one of potassium source and sodium source
(iii) at least one of a magnesium source and a calcium source, and at least one of a silicon-potassium source and a silicon-sodium source
(iv) Magnesium-calcium source and silicon-potassium-sodium source
 マグネシウム源は、入手が容易であって、安価であることから、水酸化マグネシウム、酸化マグネシウム及び炭酸マグネシウムからなる群より選ばれる少なくとも一種とすることができる。また、カルシウム源は、同様の理由から、水酸化カルシウム、酸化カルシウム及び炭酸カルシウムからなる群より選ばれる少なくとも一種とすることができる。 Since the magnesium source is easily available and inexpensive, it can be at least one selected from the group consisting of magnesium hydroxide, magnesium oxide and magnesium carbonate. The calcium source can be at least one selected from the group consisting of calcium hydroxide, calcium oxide and calcium carbonate for the same reason.
 ケイ素源は、ケイ砂、珪藻土、廃ガラス、フライアッシュ、籾殻、籾殻灰、及び鉄鋼スラグからなる群より選ばれる少なくとも一種とすることができる。これらの中でも、特にフライアッシュ、籾殻、籾殻灰及び鉄鋼スラグ等は、石炭の焼成、米の脱穀及び鉄の精錬などから生じた廃棄物であるが、これらの廃棄物は無水ケイ酸(シリカ;SiO)を主成分として含むため、これら廃棄物をケイ素源として用いることにより廃棄物の有効利用が可能となる。 The silicon source can be at least one selected from the group consisting of quartz sand, diatomaceous earth, waste glass, fly ash, rice husk, rice husk ash, and steel slag. Among these, fly ash, rice husk, rice husk ash, steel slag, and the like are wastes generated from coal burning, rice threshing, iron refining, etc., but these wastes are silicic acid (silica; Since SiO 2 ) is contained as a main component, the waste can be effectively used by using these wastes as a silicon source.
 また、カリウム源は、水酸化カリウム及び炭酸カリウム、炭酸水素カリウムの少なくとも一方とすることができ、ナトリウム源は、水酸化ナトリウム及び炭酸ナトリウム、炭酸水素ナトリウムの少なくとも一方とすることができ、マグネシウム-カルシウム源は、ドロマイト(CaMg(CO)及び半焼ドロマイト(MgO・CaCO)の少なくとも一方とすることができる。 Further, the potassium source can be at least one of potassium hydroxide, potassium carbonate and potassium hydrogen carbonate, and the sodium source can be at least one of sodium hydroxide, sodium carbonate and sodium hydrogen carbonate, The calcium source can be at least one of dolomite (CaMg (CO 3 ) 2 ) and semi-baked dolomite (MgO · CaCO 3 ).
 ケイ素-カリウム源は、ケイ酸カリウムとすることができ、ケイ素-ナトリウム源は、ケイ酸ナトリウムとすることができる。 The silicon-potassium source can be potassium silicate and the silicon-sodium source can be sodium silicate.
 また、ケイ素-カリウム源は、上述した無機材料の他に、菜種油粕、大豆油粕、綿実油粕、ひまし油粕、米ぬか油粕、米ぬか、ごま油粕、落花生油粕、向日葵油粕、あまに油粕、カボック油粕、とうもろこし油粕等の植物油粕類やえんじゅかす、豆腐かす、タバコ屑、甘草かす、とうもろこし胚芽等の植物かす類や魚粕粉末、魚荒粕粉末等の魚粕や蒸製蹄角粉、蒸製皮革粉、蒸製毛粉、肉粕等の動物粕類や蒸製骨粉等の骨粉類や蒸製魚鱗やカニ殻等の甲殻類質や乾燥酵母、乾燥菌体等の乾燥菌体や干蚕蛹かす、蚕さなぎ油かす、絹紡蚕蛹くず等の蚕蛹かす粉末類や鶏粉類やし尿汚泥やパーム椰子灰や下水汚泥等の有機材料を用いることができる。 In addition to the above-mentioned inorganic materials, the silicon-potassium source may be rapeseed oil meal, soybean oil meal, cottonseed oil meal, castor oil meal, rice bran oil meal, rice bran, sesame oil meal, peanut oil meal, sunflower oil meal, sweet potato oil, kabok oil meal, corn Vegetable oil cakes such as oil cakes, enjuukasu, tofu residue, tobacco waste, licorice residue, corn germ, etc. Animal meals such as wool, meat, bone meal such as steamed bone meal, shellfish such as steamed fish scales and crab shells, dried yeast such as dried yeast, dried bacteria, dried cocoon cake, potato pupa oil cake, Organic materials such as silk powder such as silk spinning waste, chicken powder, human waste sludge, palm ash, and sewage sludge can be used.
 ケイ素-カリウム-ナトリウム源は、上述した有機材料の中で、特にナトリウムを含むものを適宜選択して使用することができる。 As the silicon-potassium-sodium source, among the above-mentioned organic materials, those containing sodium in particular can be appropriately selected and used.
 なお、上述した(i)~(iv)から明らかなように、(i)に比較して(ii)~(iv)は、使用する原料の種類が少ないので回収剤の製造工程を簡易化することができる。 As is clear from the above (i) to (iv), (ii) to (iv) simplify the manufacturing process of the recovery agent because the types of raw materials used are small compared to (i). be able to.
 上述した原料を準備した後は、それぞれの原料を一般式で表わされる組成物の元素割合を満足するように秤量し、混合する。混合に際しては、適宜溶媒を用い、さらには適宜有機材料を用いて、当該溶媒中に上記原料、さらには適宜有機材料を分散撹拌してスラリーとする。 After preparing the above raw materials, each raw material is weighed and mixed so as to satisfy the element ratio of the composition represented by the general formula. In mixing, an appropriate solvent is used, and an appropriate organic material is used, and the above raw materials and an appropriate organic material are dispersed and stirred in the solvent to form a slurry.
 なお、有機材料を用いる理由は、以下に説明する焼成工程において当該有機材料が炭化し、その結果、得られる組成物(回収剤)中に上述した第1の気孔及び第2の気孔を上述した割合において簡易に形成することができるためである。このような有機材料としては、澱粉、セルロース、メチルセルロース、ポリビニルアルコール、パラフィン、β-1,3-グルカン、黒鉛、アクリル樹脂ビーズ等を挙げることができる。また、ケイ素-カリウム源を上述した有機材料から構成した場合は、ケイ素-カリウム源自体が有機材料であるので、上述のような澱粉等を別途用いることなく、上述した第1の気孔及び第2の気孔を上述した割合において簡易に形成することができる。 The reason for using the organic material is that the organic material is carbonized in the firing step described below, and as a result, the first pore and the second pore described above are included in the resulting composition (recovery agent). It is because it can form easily in a ratio. Examples of such an organic material include starch, cellulose, methyl cellulose, polyvinyl alcohol, paraffin, β-1,3-glucan, graphite, acrylic resin beads, and the like. Further, when the silicon-potassium source is composed of the above-described organic material, the silicon-potassium source itself is an organic material, so that the first pores and the second pores described above can be used without separately using the above-described starch. Can be easily formed at the above-described ratio.
 但し、このような有機材料を用いることなく、以下の成形工程及び焼成工程における成形圧力、焼成温度及び焼成時間等を適宜制御することにより、上述した第1の気孔及び第2の気孔を上述した割合において形成することができる。 However, without using such an organic material, the first pores and the second pores described above are described above by appropriately controlling the molding pressure, firing temperature, firing time, and the like in the following molding step and firing step. Can be formed in proportions.
(成形工程)
 次いで、上述のようにして得たスラリー(混合物)を乾燥し、造粒機等を用いて得られた粒状物を様々な形状に成形することができ、例えば、ストランドカット、シートカット等の押し出し造粒法を含む押出成形法、圧縮成形法、加圧成形造粒法、転動造粒法および製丸法等任意の造粒法を用いて成形することができる。但し、成形工程は必須の要件ではなく、上述したスラリー(混合物)を以下に説明する焼成工程に直接供することもできる。
(Molding process)
Next, the slurry (mixture) obtained as described above can be dried, and the granular material obtained using a granulator or the like can be formed into various shapes, for example, extrusion such as strand cutting, sheet cutting, etc. It can shape | mold using arbitrary granulation methods, such as the extrusion molding method including a granulation method, a compression molding method, a pressure molding granulation method, a rolling granulation method, and a rounding method. However, the molding step is not an essential requirement, and the above-described slurry (mixture) can be directly subjected to the firing step described below.
(焼成工程)
 次に、成形工程にて得た成形物あるいは混合工程で得たスラリーを所定の型に入れ、必要に応じて乾燥処理を施した後、例えば大気中で50℃以上900℃以下の温度、好ましくは400℃以上750℃以下の温度で焼成する。温度については、ケイ素源の融点に応じて適宜設定する。これによって、混合物(成形物)中の原料同士が互いに反応し、上述した一般式で表わされる組成物を構成するようになる。この際、混合物(成形物)中の原料が分解等(例えば、炭酸マグネシウム等が分解して炭酸ガスが外部に放出される)し、さらには原料の一部が部分的に液化等することによって、得られた組成物が多孔質の粒子となる。
(Baking process)
Next, the molded product obtained in the molding step or the slurry obtained in the mixing step is put in a predetermined mold and subjected to a drying treatment as necessary. Is fired at a temperature of 400 ° C. to 750 ° C. About temperature, it sets suitably according to melting | fusing point of a silicon source. As a result, the raw materials in the mixture (molded product) react with each other to form the composition represented by the above general formula. At this time, the raw material in the mixture (molded product) is decomposed (for example, magnesium carbonate is decomposed and carbon dioxide gas is released to the outside), and further, a part of the raw material is partially liquefied. The resulting composition becomes porous particles.
 なお、焼成工程の前に、必要に応じて、50℃以下の温度において乾燥工程を行うことができる。これによって、スラリー中の溶媒をある程度の割合で気化して除去させることができるので、上記焼成工程における焼成時間を短縮することができる。 In addition, before a baking process, a drying process can be performed at the temperature of 50 degrees C or less as needed. Accordingly, the solvent in the slurry can be vaporized and removed at a certain rate, so that the firing time in the firing step can be shortened.
(粉砕工程)
 次いで、上述のようにして得た組成物を、粉砕機や整粒機などを用いて所望の大きさの回収剤とする。なお、上述のように成形工程を経た場合は、上記組成物は予め所望の大きさとなっているので、本工程を経ることなく、焼成工程で得た組成物をそのまま回収剤として用いることができる。
(Crushing process)
Next, the composition obtained as described above is used as a recovery agent having a desired size using a pulverizer or a granulator. In addition, when the molding process is performed as described above, the composition has a desired size in advance, and thus the composition obtained in the firing process can be used as it is as a recovery agent without passing through this process. .
 また、必要に応じて、粉砕後の回収剤あるいは粉砕前の組成物に対して酸処理あるいは洗浄処理を行うことができる。これによって、回収剤あるいは組成物の表面に残留物(カリウム塩等)を除去することができ、回収剤の回収能を向上させることができる。酸処理の場合は、例えば、0.01mol/L以上1mol/L以下の濃度の酢酸水溶液中に上記回収剤あるいは上記組成物を浸漬させる。 Further, if necessary, acid treatment or washing treatment can be performed on the recovered agent after pulverization or the composition before pulverization. Thereby, residues (potassium salts and the like) can be removed from the recovery agent or the surface of the composition, and the recovery ability of the recovery agent can be improved. In the case of acid treatment, for example, the recovery agent or the composition is immersed in an acetic acid aqueous solution having a concentration of 0.01 mol / L or more and 1 mol / L or less.
 なお、一般式中のOHは、上述のようにして得た回収剤あるいは組成物を、例えば大気中などの水分含有雰囲気中に置くことにより取り込まれるものである。 In addition, OH in the general formula is taken in by placing the recovery agent or composition obtained as described above in a moisture-containing atmosphere such as the air.
(リン回収剤の使用方法)
 本実施形態のリン回収剤の使用方法について説明する。
(How to use phosphorus recovery agent)
The usage method of the phosphorus collection | recovery agent of this embodiment is demonstrated.
 本実施形態におけるリン回収剤の使用方法は極めて簡易であって、上述のようにして得た回収剤を廃水に接触させることによって行う。これによって、上述した原理、すなわち、回収剤に含まれるマグネシウムイオンまたはカルシウムイオンが廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)と結合することにより、廃水中のアンモニア性窒素及びリンを回収できるものである。具体的には、好ましくは第2の気孔から回収剤中のマグネシウム及びカルシウムの少なくとも一方が、回収剤の表面上に放出され、廃水中のリンと例えば上述した反応式(1)~(3)にしたがって反応生成物を生成する。その後、当該反応生成物は第1の気孔で保持されリン回収を行うことができる。 The method of using the phosphorus recovery agent in this embodiment is very simple, and is performed by bringing the recovery agent obtained as described above into contact with waste water. Thus, the above-described principle, that is, magnesium ions or calcium ions contained in the recovery agent are combined with ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the waste water, thereby causing ammonia nitrogen and It can recover phosphorus. Specifically, preferably, at least one of magnesium and calcium in the recovery agent is released from the second pores onto the surface of the recovery agent, and phosphorus in the wastewater, for example, the above reaction formulas (1) to (3) To produce a reaction product. Thereafter, the reaction product is retained in the first pores, and phosphorus recovery can be performed.
 上記回収剤を廃水と接触させる具体的な方法としては、例えば、上記回収剤を廃水中に投入し、必要に応じて撹拌などをしてアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を回収したあと、沈降させる方法が挙げられる。この方法は、比較的大量の廃水を処理する場合に有効な方法である。この方法によると、水質浄化設備が比較的大型になることが懸念点であるが、大量の廃水を一度に処理できるという利点がある。 As a specific method for bringing the recovery agent into contact with waste water, for example, the recovery agent is put into waste water, and stirred as necessary to ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus). And a method of sedimentation after recovery. This method is effective when treating a relatively large amount of waste water. According to this method, there is a concern that the water purification equipment becomes relatively large, but there is an advantage that a large amount of waste water can be treated at one time.
 また、上記回収剤をカラムに充填し、このカラム中に廃水を導入することで接触させ、廃水中のアンモニウムイオン(アンモニア性窒素)及びリン酸イオン(リン)を回収することもできる。この方法は、処理装置が比較的小規模となるが、廃水処理量も限定されるので、少量の廃水を処理するのに好適である。 In addition, it is possible to collect ammonium ions (ammonia nitrogen) and phosphate ions (phosphorus) in the wastewater by filling the column with the recovery agent and introducing the wastewater into the column. This method is suitable for treating a small amount of waste water because the treatment apparatus is relatively small but the amount of waste water treated is also limited.
 なお、本実施形態における回収剤は、任意のpHの廃水に対して適用することができる。しかしながら、強酸酸性下においては回収剤の溶解が生じる可能性がある。したがって、本実施形態によるイオン回収剤を適用するのに好ましいpH範囲は5.0以上12.0以下であり、更に好ましいpH範囲は7.0以上10.0以下である。さらに、廃水中に炭酸イオンが含まれる場合と含まれない場合があるが、炭酸イオンが含まれる場合には、リン回収剤とリンとの反応速度が高まり、リン回収速度が向上する点で有利である。 In addition, the collection | recovery agent in this embodiment can be applied with respect to waste water of arbitrary pH. However, there is a possibility that the recovery agent dissolves under strong acidity. Therefore, a preferable pH range for applying the ion recovery agent according to the present embodiment is 5.0 or more and 12.0 or less, and a more preferable pH range is 7.0 or more and 10.0 or less. Furthermore, the wastewater may or may not contain carbonate ions, but when carbonate ions are included, the reaction rate between the phosphorus recovery agent and phosphorus increases, which is advantageous in that the phosphorus recovery rate is improved. It is.
 以下に実施例及び比較例で製造したリン回収剤の各種特性の測定方法を示す。 Hereinafter, methods for measuring various properties of the phosphorus recovery agents produced in the examples and comparative examples are shown.
[ク溶性リン酸含有量]
 ク溶性とは、リン酸質肥料に求められる特性であり、以下の方法で算出した。リン酸質肥料はク溶性が高いことが求められるため、クエン酸によって溶出されるク溶性リン酸含有量の割合が高いほうが好ましい。
・肥料分析法に基づき、1gのリン回収剤を2%クエン酸で30℃、1時間振とうし、溶解したリン酸をICP発光分析法で定量した。
[Cu-soluble phosphoric acid content]
The solubility is a characteristic required for phosphate fertilizer and was calculated by the following method. Since the phosphate fertilizer is required to have high solubility, it is preferable that the proportion of the soluble phosphate content eluted with citric acid is high.
Based on the fertilizer analysis method, 1 g of phosphorus recovery agent was shaken with 2% citric acid at 30 ° C. for 1 hour, and the dissolved phosphoric acid was quantified by ICP emission spectrometry.
[リン回収率]
 リン回収率は、以下の方法で算出した。リン回収率が高い方が、溶液中に発生する微細なリン生成物量が少ないことを示しており、効率よくリン回収剤でリンを回収できていることを示している。
・リン回収率(%)=(リン回収剤に付着したリン酸量(mg/L)/リン除去試験により溶液中から除去したリン酸量(mg/L))×100
[Phosphorus recovery rate]
The phosphorus recovery rate was calculated by the following method. The higher the phosphorus recovery rate, the smaller the amount of fine phosphorus products generated in the solution, indicating that phosphorus can be efficiently recovered with the phosphorus recovery agent.
Phosphorus recovery rate (%) = (phosphoric acid amount adhering to the phosphorus recovery agent (mg / L) / phosphoric acid amount removed from the solution by the phosphorus removal test (mg / L)) × 100
[気孔体積]
 リン回収剤の気孔体積は以下の装置を用いて行った。
・島津製作所社製商標名;島津細孔分布測定装置 オートポア9520形を用いて、初期圧約4kPaの条件で測定した。
[Pore volume]
The pore volume of the phosphorus recovery agent was measured using the following apparatus.
-Trade name manufactured by Shimadzu Corporation; Shimadzu pore distribution measuring device Using an Autopore 9520 type, measurement was performed under conditions of an initial pressure of about 4 kPa.
[組成評価方法]
 リン回収剤における含水量は次の方法を用いて定量した。
 リン回収剤のMg、Ca、Si、Na、Kの元素分析は、試料を加圧酸分解及びアルカリ融解にて完全溶解させ、各種イオン濃度をイオンクロマトグラフやICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析装置を用いて測定し定量した。また、Cは高周波燃焼過熱-赤外線吸収法で、Oは不活性ガス融解-赤外線吸収法で測定した。また、リン回収剤における含水量はTG(熱重量分析)で測定した。リン回収剤の構造は、X線回折、XPS(X-ray photoelectron spectroscopy:X線光電子分光 )、IR(infrared absorption spectrometry:赤外吸収分析)分析等の構造解析を併用して行った。
[Composition evaluation method]
The water content in the phosphorus recovery agent was quantified using the following method.
Elemental analysis of Mg, Ca, Si, Na, and K, which are phosphorus recovery agents, involves completely dissolving a sample by pressure acid decomposition and alkali melting, and then measuring various ion concentrations by ion chromatography or ICP (Inductively Coupled Plasma). ) Measured and quantified using an emission spectrometer. C was measured by a high-frequency combustion overheating-infrared absorption method, and O was measured by an inert gas melting-infrared absorption method. The water content in the phosphorus recovery agent was measured by TG (thermogravimetric analysis). The structure of the phosphorus recovery agent was determined by combining structural analysis such as X-ray diffraction, XPS (X-ray photoelectron spectroscopy), IR (infrared absorption spectrometry) analysis.
(実施例1)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.35の質量比で混合し、スラリー状の混合物を作製した。得られたスラリー状の混合物を、乾燥機を用いて、50℃下で25時間乾燥させた。その後、電気炉にて650℃で1時間加熱処理した。次に熱処理した成形体を、粒径が0.5mm以上1mm以下になるように粉砕した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。このリン回収剤の気孔体積を表1に示す。
(Example 1)
Dolomite (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: 0.8 were mixed with 0.35 weight ratio of slurry A mixture was made. The obtained slurry-like mixture was dried at 50 ° C. for 25 hours using a dryer. Then, it heat-processed at 650 degreeC for 1 hour with the electric furnace. Next, the heat-treated molded body was pulverized so that the particle size was 0.5 mm or more and 1 mm or less. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. Table 1 shows the pore volume of this phosphorus recovery agent.
 次に得られたリン回収剤のリン回収性能評価を行った。具体的には容器内に60mg/Lのリン酸イオン、500mg/Lのアンモニア性窒素、3000mg/Lの炭酸イオン含有液(pH8)1000mLを被処理水として準備した。この水溶液に上記で得たリン回収剤250mgを加え、振とう機で振とうさせ、リン酸イオン及びアンモニア性窒素とリン回収剤とを接触させた。なお、接触時間及び振とう時間は24時間としてリン回収試験を実施した。試験後、リン回収剤を回収し、リン回収率及びク溶性を評価した。結果を表1に示す。 Next, the phosphorus recovery performance of the obtained phosphorus recovery agent was evaluated. Specifically, 60 mL / L phosphate ion, 500 mg / L ammonia nitrogen, and 1000 mL of 3000 mg / L carbonate ion-containing liquid (pH 8) were prepared as water to be treated. To this aqueous solution, 250 mg of the phosphorus recovery agent obtained above was added and shaken with a shaker to bring phosphate ions and ammonia nitrogen into contact with the phosphorus recovery agent. The contact time and shaking time were 24 hours, and a phosphorus recovery test was conducted. After the test, the phosphorus recovery agent was recovered and the phosphorus recovery rate and solubility were evaluated. The results are shown in Table 1.
(実施例2)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.2の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 2)
The and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: except were mixed in 0.2 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例3)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 3)
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: except were mixed in 0.7 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例1)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.07の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 1)
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: except were mixed in 0.07 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例2)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:1.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 2)
Dolomite (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: 0.8: except were mixed in a weight ratio of 1.5, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例4)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
Example 4
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例5)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:0.35の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 5)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .35, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例6)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:1.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 6)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 1 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.5, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例3)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:0.1の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 3)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例4)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:3の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 4)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 3 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例7)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:1.2:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.33SiO2・0.66Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 7)
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in 0.7 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.33SiO 2 · 0.66Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例8)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:1.2:0.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.33SiO2・0.66Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 8)
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in a weight ratio of 0.5, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.33SiO 2 · 0.66Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例9)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:1.2:1.4の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.33SiO2・0.66Na2O]であった。また、気孔体積は表1に示す通りであった。
Example 9
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in a weight ratio of 1.4, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.33SiO 2 · 0.66Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例5)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:1.2:0.2の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.33SiO2・0.66Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 5)
The and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except were mixed in 0.2 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.33SiO 2 · 0.66Na 2 O]. The pore volume was as shown in Table 1.
(比較例6)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:1.2:2.8の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.33SiO2・0.66Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 6)
And the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: dolomite (20 [mu] m mean diameter): 1.2: except for mixing 2.8 weight ratio of implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.33SiO 2 · 0.66Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例10)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:1.2:0.19:0.85の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 10)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 1.2: 0.19: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .85, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例11)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:1.2:0.19:0.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 11)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 1.2: 0.19: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.5, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例12)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:1.2:0.19:1.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
Example 12
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 1.2: 0.19: 1 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例7)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:1.2:0.19:0.2の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 7)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 1.2: 0.19: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .2 and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例8)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:1.2:0.19:3.4の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 8)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 1.2: 0.19: 3 A phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .4, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例13)
 ドロマイト(平均径:20μm)と酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.08:0.8:0.37の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.48(CaCO30.5(Mg(OH)20.02・0.56SiO2・0.28Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 13)
Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.37, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 · 0.56SiO 2 · 0.28Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例14)
 ドロマイト(平均径:20μm)と酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.08:0.8:0.2の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.48(CaCO30.5(Mg(OH)20.02・0.56SiO2・0.28Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 14)
Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.2, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 · 0.56SiO 2 · 0.28Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例15)
 ドロマイト(平均径:20μm)と酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.08:0.8:0.74の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.48(CaCO30.5(Mg(OH)20.02・0.56SiO2・0.28Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 15)
Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.74, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 · 0.56SiO 2 · 0.28Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例9)
 ドロマイト(平均径:20μm)と酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.08:0.8:0.1の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.48(CaCO30.5(Mg(OH)20.02・0.56SiO2・0.28Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 9)
Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 0.1, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 · 0.56SiO 2 · 0.28Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例10)
 ドロマイト(平均径:20μm)と酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.08:0.8:1.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.48(CaCO30.5(Mg(OH)20.02・0.56SiO2・0.28Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 10)
Dolomite (average diameter: 20 [mu] m) and magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.08: 0.8: Except for mixing at a mass ratio of 1.5, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.48 (CaCO 3 ) 0.5 (Mg (OH) 2 ) 0.02 · 0.56SiO 2 · 0.28Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例16)
 酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:4:1.4の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.95(Mg(OH)20.05・1.4SiO2・0.71Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 16)
Magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 4: except were mixed in a weight ratio of 1.4, Example A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 · 1.4SiO 2 · 0.71Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例17)
 酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:4:1の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.95(Mg(OH)20.05・1.4SiO2・0.71Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 17)
Magnesium oxide (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: 4: except were mixed at a mass ratio, as in Example 1 Similarly, a phosphorus recovery agent was produced, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 · 1.4SiO 2 · 0.71Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例18)
 酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:4:2の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.95(Mg(OH)20.05・1.4SiO2・0.71Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 18)
Magnesium oxide (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: 4: except were mixed in 2 mass ratio, as in Example 1 Similarly, a phosphorus recovery agent was produced, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 · 1.4SiO 2 · 0.71Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例11)
 酸化マグネシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:4:0.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.95(Mg(OH)20.05・1.4SiO2・0.71Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 11)
Magnesium oxide (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 4: except were mixed in a weight ratio of 0.5, Example A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.95 (Mg (OH) 2 ) 0.05 · 1.4SiO 2 · 0.71Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例19)
 炭酸カルシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.8の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(CaCO3)・0.7SiO2・0.35Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 19)
Calcium carbonate (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.8: except were mixed in 0.8 weight ratio, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(CaCO 3 ) · 0.7SiO 2 · 0.35Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例20)
 炭酸カルシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(CaCO3)・0.7SiO2・0.35Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 20)
Calcium carbonate (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.8: except were mixed in a weight ratio of 0.5, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(CaCO 3 ) · 0.7SiO 2 · 0.35Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(実施例21)
 炭酸カルシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:1.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(CaCO3)・0.7SiO2・0.35Na2O]であった。また、気孔体積は表1に示す通りであった。
(Example 21)
Calcium carbonate (average diameter: 20 [mu] m) and the sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) pure water, 1: 0.8: except were mixed in a weight ratio of 1.5, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(CaCO 3 ) · 0.7SiO 2 · 0.35Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
(比較例12)
 炭酸カルシウム(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.35の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(CaCO3)・0.7SiO2・0.35Na2O]であった。また、気孔体積は表1に示す通りであった。
(Comparative Example 12)
Calcium carbonate (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: 0.8: except were mixed in 0.35 mass ratio, A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(CaCO 3 ) · 0.7SiO 2 · 0.35Na 2 O]. The pore volume was as shown in Table 1.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表1に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~21で得たリン回収剤のク溶性リン酸含有量及びリン回収率は高く、本実施例のリン回収剤は、ク溶性リン酸含有量及びリン回収率に優れることが判明した。一方、比較例1~12では、第1の気孔の形成割合が本発明の範囲外であって、リンを保持することができないため、リン回収剤のク溶性リン酸含有量及びリン回収率は低いことが判明した。 As is apparent from Table 1, the phosphorus-recovering agents obtained in Examples 1 to 21 have a high soluble phosphate content and phosphorus recovery rate, and the phosphorus-recovering agent of this example has a high soluble phosphate content and phosphorus recovery rate. It was found that the recovery rate was excellent. On the other hand, in Comparative Examples 1 to 12, since the formation ratio of the first pores is outside the scope of the present invention and phosphorus cannot be retained, the soluble phosphonic acid content and the phosphorus recovery rate of the phosphorus recovery agent are It turned out to be low.
(実施例22)
 ドロマイト(平均径:20μm)とケイ酸カリウム水溶液(SiO2 27.5%以上29%以下、K2O 21%以上23%以下)とを、1:2.14の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 22)
Except for mixing dolomite (average diameter: 20 μm) and aqueous potassium silicate (SiO 2 27.5% to 29%, K 2 O 21% to 23%) in a mass ratio of 1: 2.14 A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例23)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム水溶液(SiO2 36.5%以下、Na2O 18%)とを、1:1.16の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.67SiO2・0.32Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 23)
Dolomite (average diameter: 20 μm) and aqueous sodium silicate (SiO 2 36.5% or less, Na 2 O 18%) were mixed in the same manner as in Example 1 except that they were mixed at a mass ratio of 1: 1.16. The recovery agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.67SiO 2 · 0.32Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例24)
 ドロマイト(平均径:20μm)とシリカと炭酸水素ナトリウムと純水とを、1:0.42:0.59:0.5の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 24)
Phosphorus recovery in the same manner as in Example 1 except that dolomite (average diameter: 20 μm), silica, sodium hydrogen carbonate, and pure water were mixed at a mass ratio of 1: 0.42: 0.59: 0.5. The agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例25)
 ドロマイト(平均径:20μm)とシリカと炭酸水素ナトリウムと純水とを、1:0.42:0.38:0.45の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 25)
Phosphorus recovery was carried out in the same manner as in Example 1 except that dolomite (average diameter: 20 μm), silica, sodium hydrogen carbonate, and pure water were mixed at a mass ratio of 1: 0.42: 0.38: 0.45. The agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例26)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと純水とを、1:0.8:0.13:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 26)
Dolomite (average diameter: 20 [mu] m) and the beta-1,3-glucan and pure water sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O), 1: 0.8: 0.13: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that the mixture was mixed at a mass ratio of 0.7, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例27)
 ドロマイト(平均径:20μm)とケイ酸カリウム水溶液(SiO2 27.5%以上29%以下、K2O 21%以上23%以下)とβ-1,3-グルカンとを1:2.14:0.13の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 27)
Dolomite (average diameter: 20 μm), potassium silicate aqueous solution (SiO 2 27.5% or more and 29% or less, K 2 O 21% or more and 23% or less) and β-1,3-glucan 1: 2.14: 0. Except for mixing at a mass ratio of 13, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例28)
 ドロマイト(平均径:20μm)とシリカと炭酸水素ナトリウムとβ-1,3-グルカンと純水とを、1:0.42:0.59:0.13:0.75の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 28)
Dolomite (average diameter: 20 μm), silica, sodium bicarbonate, β-1,3-glucan and pure water were mixed at a mass ratio of 1: 0.42: 0.59: 0.13: 0.75. Except for the above, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例29)
 ドロマイト(平均径:20μm)とシリカと炭酸水素カリウムとβ-1,3-グルカンと純水とを、1:0.42:0.38:0.13:0.8の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 29)
Dolomite (average diameter: 20 μm), silica, potassium bicarbonate, β-1,3-glucan and pure water were mixed at a mass ratio of 1: 0.42: 0.38: 0.13: 0.8. Except for the above, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例30)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と炭酸水素ナトリウムと純水とを、1:0.8:0.25:0.35の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.47Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 30)
And sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) and sodium bicarbonate and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.25: 0.35 by mass of Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.47Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例31)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と炭酸水素カリウムと純水とを、1:0.8:0.38:0.35の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 31)
And sodium silicate powder and (Na 2 O · 2SiO 2 · 2.53H 2 O) and potassium hydrogen carbonate pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.38: 0.35 by mass of Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例32)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と炭酸水素ナトリウムとβ-1,3-グルカンと純水とを、1:0.8:0.25:0.13:0.71の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.47Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 32)
Dolomite (average diameter: 20 [mu] m) of sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) and the sodium bicarbonate beta-1,3-glucan and the pure water, 1: 0.8: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that mixing was performed at a mass ratio of .25: 0.13: 0.71, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.47Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例33)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と炭酸水素カリウムとβ-1,3-グルカンと純水とを、1:0.8:0.38:0.13:0.35の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 33)
Dolomite (average diameter: 20 [mu] m) of sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) and the potassium bicarbonate beta-1,3-glucan and the pure water, 1: 0.8: 0 A phosphorus recovery agent was produced in the same manner as in Example 1 except that it was mixed at a mass ratio of .38: 0.13: 0.35, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例34)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とカルボキメチルセルロースナトリウムと純水とを、1:0.8:0.25:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.36Na2O]であった。また、気孔体積は表2に示す通りであった。
(Example 34)
And sodium silicate powder (Na 2 O · 2SiO 2 · 2.53H 2 O) and carboxymethylcellulose sodium and pure water, 1: dolomite (20 [mu] m mean diameter): 0.8: 0.25: 0.7 mass Except for mixing at a ratio, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.36Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例35)
 ドロマイト(平均径:20μm)とシリカと炭酸水素カリウムとカルボキメチルセルロースナトリウムと純水とを、1:0.42:0.38:0.2:0.8の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O・0.03Na]であった。また、気孔体積は表2に示す通りであった。
(Example 35)
Except for mixing dolomite (average diameter: 20 μm), silica, potassium hydrogen carbonate, sodium carboxymethyl cellulose and pure water in a mass ratio of 1: 0.42: 0.38: 0.2: 0.8. A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O · 0.03Na]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例36)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と菜種油粕と純水とを、1:0.8:0.36:0.85の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O・0.01K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 36)
Dolomite (average diameter: 20 [mu] m) and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and rapeseed oil cake and pure water, 1: 0.8: 0.36: 0.85 weight ratio of A phosphorus recovery agent was produced in the same manner as in Example 1 except that mixing was performed, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O · 0.01K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(実施例37)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)とβ-1,3-グルカンと菜種油粕と純水とを、1:0.8:0.13:0.36:0.7の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.33Na2O・0.01K2O]であった。また、気孔体積は表2に示す通りであった。
(Example 37)
Dolomite (average diameter: 20 [mu] m) and the powdered sodium silicate and (Na 2 O · 2SiO 2 · 2.53H 2 O) β-1,3- glucan and the rapeseed meal and pure water, 1: 0.8: 0. Except for mixing at a mass ratio of 13: 0.36: 0.7, a phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.33Na 2 O · 0.01K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(参考例1)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:2:0.85の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・1.78SiO2・0.89Na2O]であった。また、気孔体積は表2に示す通りであった。
(Reference Example 1)
The and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 2: except were mixed with 0.85 weight ratio of Example 1 The phosphorus recovery agent was produced in the same manner as described above, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 1.78SiO 2 · 0.89Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(参考例2)
 ドロマイト(平均径:20μm)とケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:3.2:1.4の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[(MgO)0.39(CaCO30.59(Mg(OH)20.02・2.66SiO2・1.33Na2O]であった。また、気孔体積は表2に示す通りであった。
(Reference Example 2)
The and powdered sodium silicate (Na 2 O · 2SiO 2 · 2.53H 2 O) and pure water, 1: dolomite (20 [mu] m mean diameter): 3.2: except were mixed in a weight ratio of 1.4, implementation A phosphorus recovery agent was produced in the same manner as in Example 1, and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent was [(MgO) 0.39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 2.66SiO 2 · 1.33Na 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
(参考例3)
 炭酸カルシウムとケイ酸ナトリウム粉末(Na2O・2SiO2・2.53H2O)と純水とを、1:0.8:0.6の質量比で混合した以外は、実施例1と同様にしてリン回収剤を製造し、リン回収剤の特性評価を実施した。得られたリン回収剤の組成は[CaCO3・0.7SiO2・0.35Na2O][(MgO)0,39(CaCO30.59(Mg(OH)20.02・0.66SiO2・0.18K2O]であった。また、気孔体積は表2に示す通りであった。
(Reference Example 3)
Calcium and sodium silicate powder carbonate (Na2O · 2SiO 2 · 2.53H 2 O) and the pure water, 1: 0.8: except were mixed in 0.6 mass ratio, in the same manner as in Example 1 Phosphorus The recovery agent was manufactured and the characteristics of the phosphorus recovery agent were evaluated. The composition of the obtained phosphorus recovery agent is [CaCO 3 · 0.7SiO 2 · 0.35Na 2 O] [(MgO) 0,39 (CaCO 3 ) 0.59 (Mg (OH) 2 ) 0.02 · 0.66SiO 2 · 0.18K 2 O]. The pore volume was as shown in Table 2.
 次に得られたリン回収剤を用いて、実施例1と同様の方法でリン回収試験を実施し、試験後のリン回収物のリン回収率及びク溶性を評価した。結果を表2に示す。 Next, using the obtained phosphorus recovery agent, a phosphorus recovery test was performed in the same manner as in Example 1, and the phosphorus recovery rate and solubility of the phosphorus recovery product after the test were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例22~37で得たリン回収剤のマグネシウム含有量は4.5質量%以上、具体的には6.5質量%以上と高く、これに随伴してク溶性リン酸含有量も高いことが判明した。すなわち、マグネシウム含有量を4.5質量%以上25質量%以下とすることにより、ク溶性リン酸含有量が大きいリン回収剤が得られることがわかった。 As is apparent from Table 2, the magnesium content of the phosphorus recovery agents obtained in Examples 22 to 37 is as high as 4.5% by mass or more, specifically 6.5% by mass or more. It was found that the content of soluble phosphoric acid was also high. That is, it was found that by setting the magnesium content to 4.5 mass% or more and 25 mass% or less, a phosphorus recovery agent having a high soluble phosphate content can be obtained.
 一方、参考例1~3で得たリン回収剤は、本発明の要件を満足するものの、マグネシウム含有量が小さいために、上記実施例で得たリン回収剤と比較してク溶性量が小さかった。 On the other hand, the phosphorus recovery agents obtained in Reference Examples 1 to 3 satisfy the requirements of the present invention, but have a lower magnesium solubility than the phosphorus recovery agents obtained in the above examples because of the low magnesium content. It was.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments have been presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (9)

  1.  一般式((MO)α(MCOβ(M(OH)1-α-β)・γSiO・δXO(0≦α≦1、0≦β≦1、0≦1-α-β≦1、0.01≦γ≦20、0<δ≦15、M:マグネシウム及びカルシウムの少なくとも一方、X:ナトリウム及びカリウムの少なくとも一方)で表わされる組成物を含み、孔径5μm~500μmの気孔体積が、全気孔体積に対して50%~85%の割合で形成されており、多孔質であることを特徴とする、リン回収剤。 General formula ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) · γSiO 2 · δX 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, 0 ≦ 1-α -Β ≦ 1, 0.01 ≦ γ ≦ 20, 0 <δ ≦ 15, M: at least one of magnesium and calcium, X: at least one of sodium and potassium), and a pore size of 5 μm to 500 μm A phosphorus recovery agent characterized in that the pore volume is 50% to 85% of the total pore volume and is porous.
  2.  マグネシウム含有量が4.5質量%以上25質量%以下であることを特徴とする、請求項1記載のリン回収剤。 The phosphorus recovery agent according to claim 1, wherein the magnesium content is 4.5 mass% or more and 25 mass% or less.
  3.  前記リン回収剤は、孔径0.005μm~5μmの気孔の体積が、全気孔体積に対して15%~50%の割合で形成されていることを特徴とする、請求項1又は2に記載のリン回収剤。 The phosphorus recovery agent according to claim 1 or 2, wherein the volume of pores having a pore diameter of 0.005 to 5 µm is formed at a ratio of 15% to 50% with respect to the total pore volume. Phosphorus recovery agent.
  4.  リン回収剤の原料を混合してスラリーを得る混合工程と、
     前記スラリーを焼成して、一般式((MO)α(MCOβ(M(OH)1-α-β)・γSiO・δXO(0≦α≦1、0≦β≦1、0≦1-α-β≦1、0.01≦γ≦20、0<δ≦15、M:マグネシウム及びカルシウムの少なくとも一方、X:ナトリウム及びカリウムの少なくとも一方)で表わされる組成物を含み、孔径5μm~500μmの気孔体積が、全気孔体積に対して50%~85%の割合で形成されており、多孔質であるリン回収剤を形成する焼成工程と、
    を有することを特徴とする、リン回収剤の製造方法。
    A mixing step of mixing a raw material of the phosphorus recovery agent to obtain a slurry;
    The slurry is fired to obtain a general formula ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) · γSiO 2 · δX 2 O (0 ≦ α ≦ 1, 0 ≦ β ≦ 1, 0 ≦ 1-α-β ≦ 1, 0.01 ≦ γ ≦ 20, 0 <δ ≦ 15, M: at least one of magnesium and calcium, and X: at least one of sodium and potassium) A firing step in which a pore volume of 5 μm to 500 μm in pore size is formed at a ratio of 50% to 85% with respect to the total pore volume, and forms a porous phosphorus recovery agent;
    The manufacturing method of the phosphorus collection | recovery agent characterized by having.
  5.  前記スラリーを焼成前に所望の大きさに成形する成形工程を有することを特徴とする、請求項4記載のリン回収剤の製造方法。 The method for producing a phosphorus recovery agent according to claim 4, further comprising a forming step of forming the slurry into a desired size before firing.
  6.  前記焼成工程を経て得られたリン回収剤を、粉砕して所望の大きさにする粉砕工程を有することを特徴とする、請求項4記載のリン回収剤の製造方法。 The method for producing a phosphorus recovery agent according to claim 4, further comprising a pulverization step of pulverizing the phosphorus recovery agent obtained through the baking step to obtain a desired size.
  7.  アンモニウムイオン及びリン酸イオンを含有する廃水に、一般式((MO)α(MCOβ(M(OH)1-α-β)・γSiO・δXO(0≦α≦1、0≦β≦1、0≦1-α-β≦1、0.01≦γ≦20、0<δ≦15、M:マグネシウム及びカルシウムの少なくとも一方、X:ナトリウム及びカリウムの少なくとも一方)で表わされる組成物を含み、孔径5μm~500μmの気孔体積が、全気孔体積に対して50%~85%の割合で形成されており、多孔質であるリン回収剤を接触させることを特徴とする、リン回収剤の使用方法。 To wastewater containing ammonium ions and phosphate ions, the general formula ((MO) α (MCO 3 ) β (M (OH) 2 ) 1-α-β ) · γSiO 2 · δX 2 O (0 ≦ α ≦ 1 0 ≦ β ≦ 1, 0 ≦ 1-α−β ≦ 1, 0.01 ≦ γ ≦ 20, 0 <δ ≦ 15, M: at least one of magnesium and calcium, X: at least one of sodium and potassium) A pore volume having a pore diameter of 5 μm to 500 μm is formed at a ratio of 50% to 85% with respect to the total pore volume, and is in contact with a porous phosphorus recovery agent. , How to use phosphorus recovery agent.
  8.  前記廃水のpHが5.0以上12.0以下であることを特徴とする、請求項7記載のリン回収剤の使用方法。 The method for using a phosphorus recovery agent according to claim 7, wherein the pH of the wastewater is 5.0 or more and 12.0 or less.
  9.  前記廃水中に炭酸イオンを含有することを特徴とする、請求項7記載のリン回収剤の使用方法。 The method for using a phosphorus recovery agent according to claim 7, wherein the waste water contains carbonate ions.
PCT/JP2013/001681 2012-09-25 2013-03-13 Phosphorus-collecting agent WO2014049897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210498 2012-09-25
JP2012-210498 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014049897A1 true WO2014049897A1 (en) 2014-04-03

Family

ID=50387353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001681 WO2014049897A1 (en) 2012-09-25 2013-03-13 Phosphorus-collecting agent

Country Status (2)

Country Link
JP (1) JP5579296B2 (en)
WO (1) WO2014049897A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7407025B2 (en) 2020-03-06 2023-12-28 太平洋セメント株式会社 Waste liquid treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110393A (en) * 1983-11-21 1985-06-15 Hitachi Plant Eng & Constr Co Ltd Material for removing phosphoric acid in water
JPH0342096A (en) * 1989-04-21 1991-02-22 Shigenobu Kasamatsu Method for removing phosphate ion and sulfate ion in water
JPH05192663A (en) * 1992-01-22 1993-08-03 Inax Corp Dephosphorizing agent for sewage
JPH07242413A (en) * 1994-03-08 1995-09-19 Kao Corp Production of crystalline siliceous compound
JP2000135493A (en) * 1998-11-02 2000-05-16 Sekisui Chem Co Ltd Removal of phosphate ion in wastewater
JP2002361266A (en) * 2001-06-04 2002-12-17 Jidosha Imono Kk Chemicals for water treatment and method for using the same
JP2005028272A (en) * 2003-07-11 2005-02-03 Kunimine Industries Co Ltd Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110393A (en) * 1983-11-21 1985-06-15 Hitachi Plant Eng & Constr Co Ltd Material for removing phosphoric acid in water
JPH0342096A (en) * 1989-04-21 1991-02-22 Shigenobu Kasamatsu Method for removing phosphate ion and sulfate ion in water
JPH05192663A (en) * 1992-01-22 1993-08-03 Inax Corp Dephosphorizing agent for sewage
JPH07242413A (en) * 1994-03-08 1995-09-19 Kao Corp Production of crystalline siliceous compound
JP2000135493A (en) * 1998-11-02 2000-05-16 Sekisui Chem Co Ltd Removal of phosphate ion in wastewater
JP2002361266A (en) * 2001-06-04 2002-12-17 Jidosha Imono Kk Chemicals for water treatment and method for using the same
JP2005028272A (en) * 2003-07-11 2005-02-03 Kunimine Industries Co Ltd Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method

Also Published As

Publication number Publication date
JP2014079744A (en) 2014-05-08
JP5579296B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
Xia et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿ loaded diatomite
Yue et al. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal
Zhang et al. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere
Li et al. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue
Yan et al. Removal of phosphate from wastewater using alkaline residue
Zhao et al. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents
Minh et al. Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution
CN104383873A (en) Method for preparing composite adsorbent by utilizing low-grade attapulgite clay
CN112371080B (en) Mesoporous adsorption material and preparation method and application thereof
Zhao et al. Influence of sintering temperature on orthophosphate and pyrophosphate removal behaviors of red mud granular adsorbents (RMGA)
JP2011240325A (en) Agent for eliminating heavy metal ion and phosphate ion in wastewater, and method for eliminating heavy metal ion and phosphate ion using the same
Guo et al. Increasing phosphate sorption on barium slag by adding phosphogypsum for non-hazardous treatment
JP5562994B2 (en) Ammonia nitrogen and phosphorus recovery agent and method for producing the same
Si et al. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water
JP6263233B2 (en) Inorganic material for removing harmful substances in wastewater, method for producing the same, and wastewater treatment method
JP4920007B2 (en) Method for producing glass foam, glass foam and method for regenerating glass foam
CN108367267A (en) Sorbing material particle
JP5579296B2 (en) Phosphorus recovery agent
CN112246214A (en) Preparation method and application of phosphorus-removing ceramsite in wastewater
JP5665891B2 (en) Phosphorus recovery agent and method for producing the same
WO2017061115A1 (en) Adsorbent particles and granular adsorbent
Dhanke et al. Phosphate removal from industrial wastewater effluent using modified coal fly ash
Zong et al. Research status of soda residue in the field of environmental pollution control
CN114950347B (en) Defluorinating agent prepared from natural gypsum and clay and preparation method thereof
WO2023092144A1 (en) Modified biochar/coal lignites and their use in phosphate remediation and as solid amendments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841576

Country of ref document: EP

Kind code of ref document: A1