JPS60110393A - Material for removing phosphoric acid in water - Google Patents

Material for removing phosphoric acid in water

Info

Publication number
JPS60110393A
JPS60110393A JP21910683A JP21910683A JPS60110393A JP S60110393 A JPS60110393 A JP S60110393A JP 21910683 A JP21910683 A JP 21910683A JP 21910683 A JP21910683 A JP 21910683A JP S60110393 A JPS60110393 A JP S60110393A
Authority
JP
Japan
Prior art keywords
water
phosphoric acid
magnesium oxide
calcium
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21910683A
Other languages
Japanese (ja)
Other versions
JPS6231997B2 (en
Inventor
Shiro Kaneko
金子 四郎
Moriyuki Sumiyoshi
住吉 盛幸
Masamitsu Ito
真実 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP21910683A priority Critical patent/JPS60110393A/en
Publication of JPS60110393A publication Critical patent/JPS60110393A/en
Publication of JPS6231997B2 publication Critical patent/JPS6231997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To develop phosphoric acid removing capacity equal to that of a crystallized material based on magnesia clinker being a matrix material, by using a material prepared by fixedly depositing magnesium oxide and calcium salt to the surface of a granular solid substance having absolute specific gravity of a specific value or less and insoluble in water. CONSTITUTION:A granular solid substance having absolute specific gravity of 3.5 or less and insoluble in water, for example, silica sand, silica stone or zeolite is immersed in a slurry containing 10-30% of magnesium oxide while the impregnated solid substance is baked at 1,000-2,000 deg.C to fixedly deposit magnesium oxide to the surface thereof. In the next step, the baked substance is immersed in a solution containing a proper amount of calcium chloride and calcium hydroxide and the impregnated substance is heated and dried at 120-200 deg.C for about 2hr to further fixedly deposit the calcium salts.

Description

【発明の詳細な説明】 (1)発明の分野 この発明は水中のリン酸塩を所定の条件下で晶析させて
除去するだめのリン酸除去拐に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a phosphoric acid removal method for removing phosphate from water by crystallizing it under predetermined conditions.

(2)背景技術 自然水系に排出される各種排水には、各種形態のリン酸
塩が含まれており、これらのリン酸塩の存在が閉鎖性水
域の富栄養化の大きな原因と寿っている。これらのリン
酸塩を除去する方法の一つとして晶析法が知られている
。この方法は例えば。
(2) Background technology Various types of wastewater discharged into natural water systems contain various forms of phosphates, and the presence of these phosphates is believed to be a major cause of eutrophication in closed water bodies. There is. A crystallization method is known as one of the methods for removing these phosphates. This method is for example.

リン酸塩を含有する排水をCa塩の存在下でpHを7以
上に調整し2粒状のリン鉱石を種晶として。
The pH of wastewater containing phosphate was adjusted to 7 or higher in the presence of Ca salt, and two grains of phosphate rock were used as seed crystals.

これを塔内に充填し、排水中のリン酸塩をリン酸カルシ
ウムとしてリン鉱石の表面に析出させる。
This is filled into a tower, and the phosphate in the waste water is precipitated on the surface of the phosphate rock as calcium phosphate.

採用されつつある。It is being adopted.

ところで、この方法は種晶材料である天然産のリン鉱石
が、比較的高価であること、不純物を含むためリン酸の
処理能力が一定しないこと、水中の炭酸成分によりリン
酸の除去性能が低下する欠点を有していた。このリン鉱
石の欠点を改善するため、マグネシアクリンカを母材と
して、その表面にカルシウム塩を固着させた晶析材の開
発が試みられている。しかし、この晶析利は母材である
マグネシアクリンカの真比重が約35と大きいため、充
填した層を逆洗する場合、逆洗のための水量を多く必要
とすること、逆洗時に支持層である小砂利と晶析材が上
下に逆転し、安定な運転が阻害される欠点を有していた
However, with this method, the natural phosphate rock that is the seed crystal material is relatively expensive, the phosphoric acid processing capacity is not constant because it contains impurities, and the phosphoric acid removal performance is reduced due to carbonic acid components in the water. It had the disadvantage of In order to improve this drawback of phosphate rock, attempts have been made to develop a crystallization material that uses magnesia clinker as a base material and has calcium salt fixed to its surface. However, since the true specific gravity of magnesia clinker, which is the base material for this crystallization, is high at about 35, when backwashing the packed bed, a large amount of water is required for backwashing, and when backwashing, the support layer is The problem was that the small gravel and crystallizing material were upside down, which hindered stable operation.

(3)発明の目的 本発明は前記先行技術の欠点を解消し、上記マグネシア
クリンカを母材とする晶析材の長所を生かしつつ、逆洗
に必要な水量を低減でき、支持層と晶析材の逆転が生じ
にくい水中のリン酸除去材を提供するにある。
(3) Purpose of the Invention The present invention eliminates the drawbacks of the prior art, makes use of the advantages of the crystallization material whose base material is magnesia clinker, reduces the amount of water required for backwashing, and allows the support layer and crystallization To provide a material for removing phosphoric acid in water that hardly causes material reversal.

(4)発明の要点 本発明に係るリン酸除去材は、真比重が35未満で水に
不溶の粒状固体物質の表面に酸化マグネシウムおよびカ
ルシウム塩を固着させたものであることを特徴とする。
(4) Key Points of the Invention The phosphoric acid removal material according to the present invention is characterized by having magnesium oxide and calcium salts fixed to the surface of a granular solid substance having a true specific gravity of less than 35 and insoluble in water.

上記粒状固体物質としては、SiO2および/またはA
t203を主成分とする天然産のもの1例えば珪砂、軽
石、ゼオライトなどが好寸しく用いられる。この粒状固
体物質の表面に酸化マグネシウムおよびカルシウム塩を
固着させる方法としては。
The particulate solid material may include SiO2 and/or A
Natural products containing T203 as a main component 1, such as silica sand, pumice, zeolite, etc., are suitably used. A method for fixing magnesium oxide and calcium salts to the surface of this granular solid material is as follows.

水酸化マグネシウムを10−30%含むスラリに粒状物
質を浸漬したのち、1000−2,000℃で焼成し、
まず2粒状物質の表面に酸化マグネシウムを固着させる
。この操作を数回操り返して2粒状物質の表面が酸化マ
グネシウムによってほぼ完全に被覆させることがより好
ましい。次いで、塩化カルシウム、水酸化カルシウム塩
たはリン酸カルシウムを適量に含む液に2粒状物質f:
IO〜100偕間浸漬したのち、乾、桑、加熱する。加
熱温度は1・ ’j:i20〜200 ’Cで2時間程度行う。以上の
操作により1粒状物質の表面に酸化マグネシウムの被膜
が形成され、この酸化マグネシウムの被膜上に。
After immersing the granular material in a slurry containing 10-30% magnesium hydroxide, it is fired at 1000-2000°C,
First, magnesium oxide is fixed on the surface of two particulate materials. It is more preferable to repeat this operation several times so that the surfaces of the two particulate materials are almost completely covered with magnesium oxide. Next, two particulate substances f:
After soaking for IO~100 minutes, dry, mulberry, and heat. The heating temperature is 1.'j: i20 to 200'C for about 2 hours. Through the above operations, a magnesium oxide film is formed on the surface of one particulate material, and on this magnesium oxide film.

カルシウム塩が固着して、多数の活性点を形成する。固
着方法は上記に限らず1粒状物質に酸化マグネシウムの
被膜を形成する方法として、水酸化マグネシウムスラリ
ーに結合剤として水ガラスを03〜3%添加したのち1
粒状物質を浸漬し、そののち300〜500℃で焼成し
てもよい。この場合、水酸化マグネシウムスラIJ −
100部に対して粒状物質を100〜300部の割合で
浸漬すれば2粒状物質の表面に50〜300μの酸化マ
グネシウムの被膜が形成される。
Calcium salts stick together and form numerous active sites. The fixing method is not limited to the above, but a method of forming a coating of magnesium oxide on one granular material is to add 0.3 to 3% water glass as a binder to magnesium hydroxide slurry, and then
The granular material may be soaked and then fired at 300-500°C. In this case, magnesium hydroxide slurry IJ −
If the granular material is immersed in a ratio of 100 to 300 parts per 100 parts, a magnesium oxide film of 50 to 300 microns will be formed on the surface of the two granular materials.

以上に述べた方法などによって製造した本すン酸除去拐
は、マグネシアクリンカを母材とする晶析材と同等のリ
ン酸除去性能を有し、排水中の炭酸成分の影響を受けな
い。また、上記マグネシアクリンカを母材とする晶析材
に比べて、真比重が小さいので、逆洗時において逆洗水
量を低減で。
The present phosphoric acid removal material produced by the method described above has a phosphoric acid removal performance equivalent to that of a crystallization material whose base material is magnesia clinker, and is not affected by carbonic acid components in waste water. In addition, since the true specific gravity is lower than the crystallization material whose base material is magnesia clinker, the amount of backwash water can be reduced during backwashing.

実施例1 水酸化マグネシウムの濃度がそれぞれ10%。Example 1 The concentration of magnesium hydroxide is 10% in each case.

20%、30%の水酸化マグネシウムスラリーに有効径
0.6 mmの珪砂を浸漬したのち、それぞれに対して
、1000℃、1500℃、2000℃。
Silica sand with an effective diameter of 0.6 mm was immersed in 20% and 30% magnesium hydroxide slurry, and then heated to 1000°C, 1500°C, and 2000°C, respectively.

2500℃で焼成した。この焼成した珪砂を5%の塩化
カルシウム溶液に浸漬し、乾慄後、180℃で2時間加
熱して、リン酸除去材とした。500m1三角フラスコ
に、 POa P 3.5!/ l、 Ca、 50m
g/l、pH8,5の供試液を入れ、これに上記リン酸
除去材1yk添加し、24時間振とうした。
It was fired at 2500°C. This calcined silica sand was immersed in a 5% calcium chloride solution, dried, and then heated at 180° C. for 2 hours to obtain a phosphoric acid removal material. POa P 3.5 in a 500m Erlenmeyer flask! / l, Ca, 50m
A test solution having a pH of 8.5 and a pH of 8.5 g/l was added thereto, the above phosphoric acid removing material 1yk was added thereto, and the mixture was shaken for 24 hours.

その結果、供試液中のPO4−P の濃度は表1に示す
とおりでちゃ、いずれの場合も良好なリン酸除去性能を
発揮した。また、上記リン酸除去材の真比重は2.6〜
;27であり、マグネシアクリンカを母材とする晶析材
に比べて真比重が約30%低く。
As a result, the concentrations of PO4-P in the test solutions were as shown in Table 1, and good phosphoric acid removal performance was exhibited in all cases. In addition, the true specific gravity of the above phosphoric acid removal material is 2.6~
; 27, and the true specific gravity is about 30% lower than that of crystallized materials whose base material is magnesia clinker.

逆洗時の水量をその分低減することができる。The amount of water during backwashing can be reduced accordingly.

表 1 実施例2 前記実施例1のリン酸除去材のうち1粒状物質の表面に
酸化マグネシウムの被膜を形成させる際に、水酸化マグ
ネシウムの!li”520%、焼成温度を1500℃で
作製したものを27.φのカラムに層高50ctn充填
し、供試液として実施例1とh 同一のものを5V=30 で、このカラムに通水し。
Table 1 Example 2 When forming a coating of magnesium oxide on the surface of one of the granular substances of the phosphoric acid removal material of Example 1, magnesium hydroxide! Li"520% and a calcination temperature of 1500°C was packed in a 27.φ column with a bed height of 50ctn, and the same sample solution as in Example 1 was passed through the column at 5V=30. .

リン除去性能の経時変化を調べた。その結果、処理水の
PO4−P の濃度は、2500時間を経過しても安定
して0.5 TIF / l−以下の値を示し、比較実
験として行ったマグネシアクリンカを母材とする晶析材
と同等の性能を示した。
Changes in phosphorus removal performance over time were investigated. As a result, the concentration of PO4-P in the treated water remained stable at less than 0.5 TIF/l- even after 2,500 hours, and compared with crystallization using magnesia clinker as a base material, which was conducted as a comparative experiment. It showed performance equivalent to that of wood.

実施例3 粒状物質として天然軽石を用いた以外は、実施例1およ
び実施例2と同一の条件で実験した。その結果、珪砂を
用いた実施例1.実施例2と同等の処理結果が得られた
。本実施例に係るリン酸除去材の真比重は23〜24で
あり、より一層逆洗水量を低減できる。
Example 3 An experiment was conducted under the same conditions as in Example 1 and Example 2, except that natural pumice was used as the granular material. As a result, Example 1 using silica sand. Processing results equivalent to those of Example 2 were obtained. The true specific gravity of the phosphoric acid removing material according to this example is 23 to 24, and the amount of backwash water can be further reduced.

実施例4 供試液にM−アルカリ度を種々に変化させて添加した以
外は、実施例2と同一の条件で通水実験した。通水時間
500時間における処理水のPO4−Pの濃度を、従来
のリン鉱石を晶析材を用いて通水実験した場合と比較し
て1図面に示す。本発明に係るリン酸除去材を用いた場
合は、M−アルカリ度が500ηIr / を以下であ
ればいずれの場合においても、1■−アルカリ度の影響
を受けず安定したリン酸除去性能を示した。一方を、従
来のリン鉱石を用いた場合には9M−アルカリ度の影響
を強く受け、+n−アルカリ度が5oomy7tのとき
は、供試液のPO4−P の濃度が3.5 my / 
lであるのにズ・1し、処理水中のPO4−P は2.
8 mg/ tと高く、リン酸除去性能が著しく低減し
た。
Example 4 A water flow experiment was conducted under the same conditions as in Example 2, except that various M-alkalinity levels were added to the test solution. The concentration of PO4-P in the treated water after 500 hours of water flow time is shown in Figure 1 in comparison with a conventional water flow experiment using phosphate rock as a crystallizer. When the phosphoric acid removal material according to the present invention is used, it exhibits stable phosphoric acid removal performance without being affected by 1■-alkalinity in any case where the M-alkalinity is 500ηIr/ or less. Ta. On the other hand, when conventional phosphate rock is used, it is strongly influenced by 9M-alkalinity, and when +n-alkalinity is 5oomy7t, the concentration of PO4-P in the test solution is 3.5 my /
1, but PO4-P in the treated water is 2.
It was as high as 8 mg/t, and the phosphoric acid removal performance was significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図は、実施I+ll 4における実験結果を示すグラフ
である。
The figure is a graph showing the experimental results in Run I+ll4.

Claims (1)

【特許請求の範囲】 (]) 真比重が35未満で水に不溶の粒状固体物質の
表面に酸化マグネシウムおよびカルシウム塩を固着させ
たことを特徴とする水中のリン酸除去材。 (2) 前記リン酸除去材は2粒状固体物質の表面に酸
化マグネシウムの被膜を形成し、この酸化マグネシウム
の被膜にカルシウム塩を固着させたものであることを特
徴とする特許請求の範囲第1.11Nに記載の水中のリ
ン酸除去材。
[Claims] (]) A material for removing phosphoric acid in water, characterized in that magnesium oxide and calcium salts are fixed to the surface of a granular solid substance having a true specific gravity of less than 35 and insoluble in water. (2) The phosphoric acid removing material is characterized in that a magnesium oxide film is formed on the surface of two granular solid substances, and a calcium salt is fixed to the magnesium oxide film. The phosphoric acid removal material in water described in .11N.
JP21910683A 1983-11-21 1983-11-21 Material for removing phosphoric acid in water Granted JPS60110393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21910683A JPS60110393A (en) 1983-11-21 1983-11-21 Material for removing phosphoric acid in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21910683A JPS60110393A (en) 1983-11-21 1983-11-21 Material for removing phosphoric acid in water

Publications (2)

Publication Number Publication Date
JPS60110393A true JPS60110393A (en) 1985-06-15
JPS6231997B2 JPS6231997B2 (en) 1987-07-11

Family

ID=16730347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21910683A Granted JPS60110393A (en) 1983-11-21 1983-11-21 Material for removing phosphoric acid in water

Country Status (1)

Country Link
JP (1) JPS60110393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027807A1 (en) * 2011-08-24 2013-02-28 株式会社 東芝 Phosphorous recovery agent, and method for producing same
WO2014049897A1 (en) * 2012-09-25 2014-04-03 株式会社 東芝 Phosphorus-collecting agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027807A1 (en) * 2011-08-24 2013-02-28 株式会社 東芝 Phosphorous recovery agent, and method for producing same
JP5665891B2 (en) * 2011-08-24 2015-02-04 株式会社東芝 Phosphorus recovery agent and method for producing the same
WO2014049897A1 (en) * 2012-09-25 2014-04-03 株式会社 東芝 Phosphorus-collecting agent
JP2014079744A (en) * 2012-09-25 2014-05-08 Toshiba Corp Phosphorus recovery agent

Also Published As

Publication number Publication date
JPS6231997B2 (en) 1987-07-11

Similar Documents

Publication Publication Date Title
US2881051A (en) Process for forming a stable agglomerated mass of active alumina
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
JPH0881217A (en) Solidification of caco3
JPH05508342A (en) Alumina-containing acid adsorbent and its manufacturing method
US4367215A (en) Method of acid leaching of silicates
JPS60110393A (en) Material for removing phosphoric acid in water
JPH03249940A (en) Selective adsorbent for ammonium ion and its production
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JPS58199090A (en) Production of seed crystal material for crystallization treatment of phosphate in liquid
PL176297B1 (en) Method of obtaining porous ammonium nitrate
JPS58199091A (en) Production of seed crystal material for crystallization treatment of phosphate in liquid
CN112691636A (en) Efficient and stable synchronous nitrogen and phosphorus removal adsorbent and preparation method thereof
JPH0632610A (en) Production of type a or faujasite-type zeolite membrane
JP6742102B2 (en) Coated diatomaceous earth, product containing coated diatomaceous earth, and method for producing coated diatomaceous earth
CN1040185A (en) A kind of method of production of active carbon
SU1527204A1 (en) Binder composition
JPS61204087A (en) Crystallizing agent for phosphate ion in waste water and its preparation
JPH0710531A (en) Porous powder and production thereof
RU2146403C1 (en) Method for water cleaning from radionuclides
CN107089836A (en) Ion activity multi-microporous ceramic filter core composition of raw materials and its manufacturing process
Matveychuk et al. Growth of Srso Crystals in Silica Gel Media
JP3154763B2 (en) Portable water purifier and manufacturing method thereof
SU1521723A1 (en) Method of activating cement
JPS6082188A (en) Dephosphorizing method
JPS61281093A (en) Adsorbent treatment