WO2014048525A1 - Système de pile à combustible - Google Patents

Système de pile à combustible Download PDF

Info

Publication number
WO2014048525A1
WO2014048525A1 PCT/EP2013/002467 EP2013002467W WO2014048525A1 WO 2014048525 A1 WO2014048525 A1 WO 2014048525A1 EP 2013002467 W EP2013002467 W EP 2013002467W WO 2014048525 A1 WO2014048525 A1 WO 2014048525A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heat
air
cell system
gas
Prior art date
Application number
PCT/EP2013/002467
Other languages
German (de)
English (en)
Inventor
Gert Hinsenkamp
Gerhard Konrad
Benjamin Steinhauser
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2014048525A1 publication Critical patent/WO2014048525A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the fuel cell system The fuel cell system
  • the invention relates to a fuel cell system with an air conveyor for compressing supply air for a fuel cell according to the closer defined in the preamble of claim 1.
  • Art also relates to the use of such a fuel cell system.
  • Fuel cell systems are known from the general state of the art. They typically include a fuel cell, which is designed as a stack of individual cells, as a so-called fuel cell stack or fuel cell stack.
  • This fuel cell is usually supplied with hydrogen or a hydrogen-containing gas on the anode side as fuel and air as an oxygen supplier on the cathode side.
  • the air supplied to the fuel cell is typically compressed, for example via a flow compressor, a piston compressor, a Roots blower or the like.
  • the compressed supply air is then heated after the compressor in most operating situations by the compression and has a relatively high temperature. At least when using PEM fuel cells, this represents a serious disadvantage, since the membranes present in the fuel cell are dried out and damaged by the hot supply air.
  • disadvantageous is the comparatively high temperature of the compressed air affecting further components of the fuel cell system which are arranged in the air-conveying line between the compressor outlet and the stack inlet, such as e.g.
  • Humidifier, valves or flaps Here are the possible disadvantages, especially in the form of formerlystensive expenses in construction and materials for
  • the cooling medium of a cooling circuit uses, in particular the cooling circuit, in which the fuel cell is arranged to dissipate heat.
  • Reverse direction come in the gas / gas heat exchanger.
  • the membranes of the fuel cell are heated unnecessarily and thereby burdened.
  • the structure should also be simple and compact feasible.
  • the fuel cell system according to the invention uses a gas / gas intercooler as a charge air cooler comparable to the above-mentioned prior art. Unlike the gas / gas intercoolers used in the prior art, which realize a heat transfer between the gases by means of heat conduction, in particular by a highly thermally conductive metallic material, uses the inventive
  • Fuel cell system a charge air cooler, wherein at least one
  • Heat pipe preferably several heat pipes, the transfer of heat takes place.
  • a heat pipe is known from the general state of the art and is also used under the name "heat pipe.” It consists essentially of a pipe element in which a liquid medium is enclosed, which at one end of the heat pipe of a heat source - the hot supply air At the other end of the tube, the medium then condenses in the area of a heat sink - the colder exhaust air - and thus transfers energy from the heat source to the heat sink to cool the supply air, such heat pipes are capable of doing so Heat transfer rates, for example, to copper as a good heat-conducting material on the order of a hundred times to a thousand times are possible, and the gas / gas intercooler which uses the heat pipes according to the invention can thus be very much transferred more compact than the Ga s / gas intercooler according to the prior art.
  • heat-trapped medium trapped in the heat pipe typically can only vaporize on one side of the heat pipe and flow in a vaporous manner to the other side of the heat pipe. There it condenses and typically travels by gravity in liquid form along the walls of the
  • this construction also prevents heat transfer from the area of the heat sink to the heat source safely and reliably, even if in certain operating situations of
  • the temperatures in the supply air should be below the temperatures in the exhaust air. As a result of this, undesired problems in the operation management are prevented by means of the charge air cooler according to the invention.
  • a turbine is arranged downstream of the charge air cooler in the flow direction of the exhaust air.
  • a turbine which may be part of an electric turbocharger, in particular, so as to make the power available to the turbine directly available to the air conveyor, makes it possible
  • the fuel cell system according to the invention can be constructed correspondingly compact and enables safe and reliable operation in all
  • Fuel cell system in a vehicle in particular for the provision of electrical drive power.
  • difficult operating conditions such as a start under difficult environmental conditions -.
  • temperatures below freezing - often encountered, so that an adjustment of
  • the structure must be implemented in accordance compact, since in a vehicle typically only very little space is available.
  • the cooling system of the vehicle is correspondingly relieved, since the available radiator surface in vehicle applications of fuel cell systems in general already a critical point in the design of the fuel cell system, since the temperature difference between the fuel cell and the environment is typically much lower than between an internal combustion engine and the environment and the available area of the cooling heat exchanger so that has a limiting effect on the performance of the fuel cell system.
  • FIG. 1 shows a vehicle with a fuel cell system according to the invention.
  • Fig. 2 is a schematic diagram of a heat pipe for explaining the principle of operation.
  • a fuel cell system 1 can be seen, which is arranged in an indicated vehicle 2, and which is to serve in this vehicle 2 for providing electrical drive power.
  • vehicle 2 it can This preferably involves a motor vehicle, for example a rail-bound or trackless land vehicle, a logistics transporter, a watercraft or the like.
  • Core of the fuel cell system 1 is a fuel cell 3 and a
  • Fuel cell stack 3 which is constructed as a stack of single cells in PEM technology.
  • the individual cells are not visible in the representation of the figure.
  • Each of the individual cells has a cathode space and an anode space, wherein a common anode space 4 and a common cathode space 5 are shown symbolically in the representation of FIG.
  • a heat exchanger 6 for removing waste heat from the fuel cell 3 via a liquid cooling medium is indicated.
  • This liquid cooling medium flows from a coolant conveyor 7 promoted in the circuit between the fuel cell 3 and the heat exchanger 6 of the fuel cell 3 and a
  • Cooling heat exchanger 8 for dissipating the waste heat to the environment of the vehicle 2.
  • the cooling power for example, by influencing the speed of the
  • Coolant conveyor 7 can be adjusted or can be adjusted via a bypass, not shown here parallel to the cooling heat exchanger 8 with a suitable valve.
  • Hydrogen is supplied from a compressed gas reservoir 9 via a pressure regulating and metering valve 10 to the anode compartment 4 of the fuel cell 3. Unconsumed hydrogen passes from the fuel cell via an exhaust pipe 11, for example, to the
  • the cathode chamber 5 of the fuel cell 3 air via an air conveyor 12, a charge air cooler 13 and a humidifier 14 is supplied. Exhaust air from the
  • Cathode space 5 in turn passes through the humidifier 14 and the intercooler 13 and a turbine 16 to the environment.
  • the turbine 16 serves to use pressure energy and thermal energy in the exhaust air and converts them at least partly into mechanical energy.
  • the turbine 16 sits together with the
  • the power occurring in the region of the turbine 16 will not be sufficient for driving the air conveying device 12. Therefore, an electric machine 18 is provided, which provides the required power difference for driving the air conveyor 12. Should it be in individual
  • the supply air to the fuel cell 3 is correspondingly hot and dry after the air conveyor 12. This is arranged for those in the fuel cell 3
  • Proton exchange membranes are very unfavorable, as they dry out easily and can be damaged thereby.
  • the supply air heated by the compression in the air conveyor 12 first flows through the intercooler 13, in the region of which the supply air is cooled.
  • the heat of the heated supply air via heat pipes 15, three of which are indicated by way of example in the intercooler 13, transmitted to the air flowing from the cathode chamber 5 and the humidifier 14 exhaust air of the fuel cell 3.
  • the heat pipes 15 are preferably formed in the manner of a two-phase thermosyphone, which is explained in more detail below with reference to FIG 2.
  • FIG. 2 In the illustration of Figure 2 is a schematic representation of a heat pipe 15 can be seen. About the dot-dash line the center of the heat pipe 15 is indicated in principle.
  • a liquid medium 20 In the intended use lower end 19 is a liquid medium 20, which is in the charge air cooler 13 in heat-conducting contact with the hot supply air. Due to the hot supply air, the medium 20 is vaporized and rises, as shown by the arrow designated 21, within of a single preferably straight pipe constructed heat pipe 15 upwards to condense at the end in the intended use upper end 22 by the heat-conductive contact with the cool exhaust air of the fuel cell 3 on the other side of the charge air cooler 13 and thereby transfer the latent heat to the exhaust air.
  • condensed liquid medium 20 drips or then runs downwards due to the force of gravity along the walls of the heat pipe 15, as indicated by the arrows 23.
  • the process begins again.
  • this structure of the heat pipe 15, which preferably follows gravity in its orientation or is arranged at an angle to gravity such that gravity allows the condensate to flow back into the lower region 19, a very high amount of heat can be transmitted with minimal space become.
  • significantly more heat can be transmitted than by direct heat conduction by means of a good heat-conducting material, such as copper.
  • the intercooler 13 may thus, although it is designed as a gas / gas intercooler 13, extremely small and compact, which is a decisive advantage in terms of total space required. In particular, it can be integrated into the gas / gas humidifier 14 in order to save additional space and to save further line elements and connecting elements.
  • the heat pipe 15 for heat transfer, the principle-related functionality that heat only from the lower end 19 to the upper end 22 of the heat pipe 15 can be transmitted.
  • a reverse heat flow, namely from the exhaust air to the supply air is prevented by the heat pipes 15 principle, since heating of the heat pipes 15 at the upper ends 22 no or only a minimal heat transfer through the material of the pipe walls.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Système de pile à combustible (1) pourvu d'un dispositif d'apport d'air (12) destiné à comprimer de l'air frais pour une pile à combustible (3) et d'un refroidisseur d'air comprimé (13) destiné à refroidir l'air frais par l'air évacué de la pile à combustible (3). La présente invention se caractérise en ce que le refroidisseur d'air comprimé (13) comporte au moins un caloduc (15) en vue du transfert de chaleur de l'air frais à l'air évacué.
PCT/EP2013/002467 2012-09-25 2013-08-16 Système de pile à combustible WO2014048525A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012018874.9A DE102012018874A1 (de) 2012-09-25 2012-09-25 Brennstoffzellensystem
DE102012018874.9 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014048525A1 true WO2014048525A1 (fr) 2014-04-03

Family

ID=49035518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002467 WO2014048525A1 (fr) 2012-09-25 2013-08-16 Système de pile à combustible

Country Status (2)

Country Link
DE (1) DE102012018874A1 (fr)
WO (1) WO2014048525A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015106976U1 (de) 2015-12-21 2017-03-22 Reinz-Dichtungs-Gmbh Gaszu- und -abführsystem
DE102018212644A1 (de) * 2018-07-30 2020-01-30 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einem Brennstoffzellensystem
DE102019212398A1 (de) * 2019-08-20 2021-02-25 Audi Ag Ladeluftkühler und Brennstoffzellensystem
DE102020207746A1 (de) 2020-06-23 2021-12-23 Robert Bosch Gesellschaft mit beschränkter Haftung Wärmeübertrag im Kathodenpfad eines Brennstoffzellensystems mittels Verdampfung/Kondensation von Produktwasser
DE102020207747A1 (de) 2020-06-23 2021-12-23 Robert Bosch Gesellschaft mit beschränkter Haftung Wärmeübertrag im Kathodenpfad eines Brennstoffzellensystems mittels Verdampfung/Kondensation von Produktwasser
DE102021204643A1 (de) * 2021-05-07 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem ohne Energierekuperation und ein Verfahren zum Betreiben eines solchen Brennstoffzellensystems
DE102021207000A1 (de) 2021-07-05 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem mit einer passiven Wärmeübertragung und einer aktiven Befeuchtung in einem Kathodenpfad und ein Verfahren zum Betreiben eines solchen Systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775186A (en) * 1970-04-16 1973-11-27 Inst Petrole Carburants Lubrif Fuel cell
JPH05343081A (ja) * 1992-06-11 1993-12-24 Toshiba Corp 燃料電池発電プラントの排熱放散装置
DE102004046922A1 (de) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102009014743A1 (de) 2009-03-25 2010-09-30 Daimler Ag Brennstoffzellensystem mit einer Niedertemperatur-Brennstoffzelle
DE102009043569A1 (de) 2009-09-30 2011-04-07 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
DE102010008205A1 (de) * 2010-02-17 2011-08-18 Daimler AG, 70327 Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
EP2472660A1 (fr) * 2010-12-29 2012-07-04 Robert Bosch GmbH Système de cellules combustibles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775186A (en) * 1970-04-16 1973-11-27 Inst Petrole Carburants Lubrif Fuel cell
JPH05343081A (ja) * 1992-06-11 1993-12-24 Toshiba Corp 燃料電池発電プラントの排熱放散装置
DE102004046922A1 (de) * 2004-09-28 2006-03-30 Daimlerchrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102009014743A1 (de) 2009-03-25 2010-09-30 Daimler Ag Brennstoffzellensystem mit einer Niedertemperatur-Brennstoffzelle
DE102009043569A1 (de) 2009-09-30 2011-04-07 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
DE102010008205A1 (de) * 2010-02-17 2011-08-18 Daimler AG, 70327 Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
EP2472660A1 (fr) * 2010-12-29 2012-07-04 Robert Bosch GmbH Système de cellules combustibles

Also Published As

Publication number Publication date
DE102012018874A1 (de) 2014-03-27

Similar Documents

Publication Publication Date Title
WO2014048525A1 (fr) Système de pile à combustible
EP3269002B1 (fr) Dispositiv de refroidissement pour refroidir une pile à combustible
DE102011111742A1 (de) Brennstoffzellensystem
DE60319291T2 (de) Anordnung zur thermischen Verwaltung, insbesondere für ein Fahrzeug, das mit einer Brennstoffzelle ausgerüstet ist
DE102017118424A1 (de) Kreislaufsystem für ein Brennstoffzellen-Fahrzeug
CH701709A2 (de) System zur Aufbereitung eines in eine luftverbrauchende Maschine eintretenden Luftstroms.
EP3747074B1 (fr) Système de refroidissement conçu pour un empilement de pile à combustible
DE112009001821T5 (de) Vorrichtung zur Versorgung einer Brennstoffzelle in einem Brennstoffzellensystem mit Brenngas
EP2287952B1 (fr) Dispositif de régulation
DE102013002847B4 (de) Batterieanordnung für ein Fahrzeug und Verfahren zum Betreiben einer Batterieanordnung
DE102007061959A1 (de) Brennstoffzellensystem mit verbessertem Wärmemanagement
DE102018219069A1 (de) Brennstoffzellensystem
DE102011114721A1 (de) Brennstoffzellensystem
WO2014012615A1 (fr) Système de pile à combustible
DE102008011235A1 (de) Temperaturregelanlage für Brennstoffzellen und Verfahren zur Temperaturregelung von Brennstoffzellen
DE102012000460A1 (de) Antriebsystem für ein Kraftfahrzeug
DE102008045170A1 (de) Einrichtung zur Erzeugung von Energie mit einem Brennstoffzellensystem
DE102013001209A1 (de) Brennstoffzellensystem
WO2014173529A2 (fr) Dispositif de traitement d'air
DE102014209506A1 (de) Brennstoffzellenvorrichtung mit Wärmeübertragungseinrichtung sowie Kraftfahrzeug mit Brennstoffzellenvorrichtung
DE102018217298A1 (de) Batterie-Wärmemanagement-System für Hybrid und vollelektrische Fahrzeuge unter Verwendung eines Heizkondensators
DE102016119440A1 (de) Kühleranordnung für ein Brennstoffzellenfahrzeug
DE102012018107A1 (de) Vorrichtung zum Erwärmen von Wasserstoff
WO2005088113A1 (fr) Moteur a combustion interne a dispositif d'humidification et echangeur thermique
DE102013208181A1 (de) Kühlsystem für Komponenten in einem Kraftfahrzeug sowie Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13753097

Country of ref document: EP

Kind code of ref document: A1