WO2014048337A1 - Tube droit soudé à haute fréquence et son procédé de fabrication - Google Patents

Tube droit soudé à haute fréquence et son procédé de fabrication Download PDF

Info

Publication number
WO2014048337A1
WO2014048337A1 PCT/CN2013/084267 CN2013084267W WO2014048337A1 WO 2014048337 A1 WO2014048337 A1 WO 2014048337A1 CN 2013084267 W CN2013084267 W CN 2013084267W WO 2014048337 A1 WO2014048337 A1 WO 2014048337A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded pipe
frequency straight
straight seam
weld
manufacturing
Prior art date
Application number
PCT/CN2013/084267
Other languages
English (en)
Chinese (zh)
Inventor
王怡然
沈建兰
崔俊
谷中莹
吴文辉
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to AU2013324845A priority Critical patent/AU2013324845B2/en
Priority to CA2885696A priority patent/CA2885696C/fr
Publication of WO2014048337A1 publication Critical patent/WO2014048337A1/fr
Priority to SA515360196A priority patent/SA515360196B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a steel pipe and a method of manufacturing the same, and more particularly to a high frequency welded pipe and a method of manufacturing the same. Background technique
  • high-frequency straight seam welded pipe is widely used due to its low manufacturing cost, high dimensional accuracy and easy control of the length of the fixed length. It is mainly used for oil and gas on land and seabed. The transportation of pulp has a broad application prospect.
  • the object of the present invention is to provide a high-frequency straight seam welded pipe which has good anti-HIC performance and can achieve L360MCS steel grade performance, has high yield strength, tensile strength and impact. Toughness and weldability.
  • the present invention provides a high frequency straight seam welded pipe having a chemical element mass percentage of:
  • the balance is Fe and other unavoidable impurities.
  • C is the main solid solution strengthening element of pipeline steel.
  • HIC hydrogen induced cracking
  • Ca treatment has an important influence on the resistance to hydrogen induced cracking (HIC) of the strip.
  • HIC hydrogen induced cracking
  • the content control of Ca has a correlation with the S content. Therefore, the technical solution of the present invention controls the content of Ca to 0.001 0.003 wt%.
  • Cu Of the many alloying elements, only copper is advantageous against hydrogen induced cracking (HIC) properties. Adding a certain amount of copper to the pipeline steel, the hydrogen induced crack sensitivity is significantly reduced, mainly copper promotes blunt The formation of the film reduces the intrusion of hydrogen and hinders the formation of hydrogen induced cracks. In the technical solution of the present invention, the resistance to hydrogen induced cracking (HIC) is improved by adding a certain amount of copper. Therefore, the Cu content is controlled to be 0.125 to 0.135 wt%.
  • Mn The effect of Mn on the hydrogen induced cracking resistance of pipeline steel is mainly reflected in the influence of Mn on the phase transformation process of strip steel.
  • the Mn content exceeds 1.0 wt%, the sensitivity of hydrogen induced cracking (HIC) increases. Therefore, in the technical solution of the present invention, the Mn content is set to 0.75 to 0.95 wt%.
  • the present invention also provides a method for manufacturing the above-mentioned high-frequency straight seam welded pipe, comprising the following steps: in the waste pipe forming step, controlling the amount of extrusion to be 2 to 3% of the outer diameter of the welded pipe;
  • the welding speed is controlled to be 18 ⁇ 20m/min ;
  • the weld After the post-weld heat treatment, the weld is subjected to normalizing heat treatment at a temperature of 930 to 970 ° C. After normalizing, the weld is air-cooled to below 380 ° C, and then water-cooled to lower the temperature of the weld to below 80 ° C.
  • the opening angle is controlled to be 3 to 4.2°.
  • the amount of extrusion before and after welding is controlled to be 2 to 3% of the outer diameter of the welded pipe, and the amount of extrusion refers to the difference between the circumference of the waste pipe before extrusion and the circumference after extrusion.
  • the molten pool at the weld is exposed to the air, and the oxidation reaction is prone to occur.
  • the oxidation reaction product is closely related to the chemical composition of the strip. Therefore, it is necessary to use a large amount of extrusion to extrude the produced high melting point product onto the surface of the strip weld and remove it by deburring.
  • the amount of extrusion below 2% is prone to defects such as cold welding, which makes it impossible to remove the inclusions in the strip from the surface of the weld, thereby affecting the strip to set the welding speed to 18 to 20 m/min.
  • the reason is that the welding speed is usually inversely proportional to the welding power, and the faster welding speed easily offsets the high welding power and the large amount of extrusion, which is easy to discharge the inclusions, resulting in a decrease in the discharge inclusion effect. Therefore, for the present technical solution, the inventors controlled the welding speed to 18 to 20 m/min.
  • the manufacturing method of the high-frequency straight seam welded pipe according to the present invention is based on the high-frequency straight seam induction welding (HFW) manufacturing method, and the high-frequency welding forming and welding parameters are set by appropriately adjusting the extrusion amount and the molding process. Control the subsequent heat treatment technical parameters to produce high-frequency straight seam welded pipes that meet HIC resistance, tensile properties, impact toughness and microstructure requirements.
  • HAW high-frequency straight seam induction welding
  • the high-frequency straight seam welded pipe of the invention has good anti-HIC performance, and achieves L360MCS steel grade performance, has high yield strength, tensile strength, impact toughness. Sex and welding performance, suitable as a conveying pipe for harsh working environments with high H or S content or acid corrosion. detailed description
  • the high frequency straight seam welded pipe of the present invention is manufactured according to the following steps:
  • the head and the tail of the coil are cut off to form a flush cut 3° in the transverse direction of the coil, and the tail of the previous coil and the head of the next coil are rolled by carbon dioxide gas shielded welding.
  • Welded together; high-frequency straight seam welded pipe is produced by steel strip, and the edge width of the strip and the perpendicularity of the edge of the board are precisely controlled by the edge milling method; the strip forming method is used to form the strip into a waste pipe, and the pressing amount is controlled as a welded pipe.
  • control opening angle is 3 ⁇ 4.2°; when welding, the welding speed is controlled to 18 ⁇ 20m/min; after welding, the weld is subjected to normalizing heat treatment, and the normalizing heat treatment temperature is 930 ⁇ 970° C. After normalizing, the weld is air cooled to below 380 °C, then water cooled to reduce the temperature of the weld to below 80 °C.
  • the high-frequency straight seam welded pipe obtained by the above process has a wall thickness of 6.4 mm to 9.5 mm and a pipe diameter of 219.7 mm to 406.4 mm.
  • Table 1 shows the chemical distribution ratios of the high-frequency straight seam welded pipes in Examples 1-6.
  • Table 2 shows the detailed process parameters for manufacturing high frequency straight seam welded pipes in Examples 1-6. Table 2
  • Table 3 shows the performance parameters of each of the high frequency straight seam welded pipes in Examples 1-6.
  • the high-frequency straight seam welded pipe of the present invention has good mechanical properties and has anti-HIC performance, as follows: welded pipe body yield strength 399Mpa, tensile strength 505 ⁇ &, elongation 24%, welded pipe The tensile strength of the weld is 475Mpa, which indicates that the high-frequency straight seam welded pipe meets the high strength requirements and has high tensile strength.
  • the impact toughness of the welded pipe body is the minimum value of the Charpy impact work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne un tube droit soudé à haute fréquence. Le tube droit soudé à haute fréquence comprend les pourcentages d'éléments chimiques en masse suivants: 0,042-0,056% de C, 0,18-0,22% de Si, 0,75-0,95% de Mn, 0,0064-0,015% de P, 0,0006-0,002% de S, 0,012-0,018% de Ti, 0,001-0,002% de V, 0,026-0,038% d'Al, 0,080-0,13% de Ni, 0,020-0,029% de Nb, 0,125-0,135% de Cu, 0,018-0,03% de Cr, 0,004-0,008% de Mo, 0-0,0005% de B, 0,001-0,003% de Ca, et le reste de Fe et d'autres impuretés inévitables. En même temps, l'invention concerne aussi un procédé de fabrication pour le tube droit soudé à haute fréquence.
PCT/CN2013/084267 2012-09-29 2013-09-26 Tube droit soudé à haute fréquence et son procédé de fabrication WO2014048337A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2013324845A AU2013324845B2 (en) 2012-09-29 2013-09-26 High-frequency straight welded pipe and manufacturing method thereof
CA2885696A CA2885696C (fr) 2012-09-29 2013-09-26 Tube droit soude a haute frequence et son procede de fabrication
SA515360196A SA515360196B1 (ar) 2012-09-29 2015-03-26 ماسورة ملحومة مستقيمة عالية التردد وطريقة تصنيعها

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210378301.9A CN102912253B (zh) 2012-09-29 2012-09-29 一种高频直缝焊管及其制造方法
CN201210378301.9 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014048337A1 true WO2014048337A1 (fr) 2014-04-03

Family

ID=47610826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084267 WO2014048337A1 (fr) 2012-09-29 2013-09-26 Tube droit soudé à haute fréquence et son procédé de fabrication

Country Status (5)

Country Link
CN (1) CN102912253B (fr)
AU (1) AU2013324845B2 (fr)
CA (1) CA2885696C (fr)
SA (1) SA515360196B1 (fr)
WO (1) WO2014048337A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535939A (zh) * 2022-03-22 2022-05-27 湖南胜利湘钢钢管有限公司 直缝埋弧焊管制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912253B (zh) * 2012-09-29 2014-07-23 宝山钢铁股份有限公司 一种高频直缝焊管及其制造方法
CN106670743B (zh) * 2016-12-14 2019-06-11 安徽楚江特钢有限公司 一种精密气弹簧直缝焊管的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898295A (zh) * 2010-08-12 2010-12-01 中国石油天然气集团公司 一种高强度高塑韧性连续管制造方法
CN102330034A (zh) * 2011-09-30 2012-01-25 中国石油集团渤海石油装备制造有限公司 一种酸性腐蚀环境用x65ms钢级螺旋焊管及其制造方法
CN102642123A (zh) * 2012-04-28 2012-08-22 宝山钢铁股份有限公司 一种超低碳x42 钢级高频直缝焊管的制造工艺
CN102912253A (zh) * 2012-09-29 2013-02-06 宝山钢铁股份有限公司 一种高频直缝焊管及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499734B2 (ja) * 2009-01-30 2014-05-21 Jfeスチール株式会社 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898295A (zh) * 2010-08-12 2010-12-01 中国石油天然气集团公司 一种高强度高塑韧性连续管制造方法
CN102330034A (zh) * 2011-09-30 2012-01-25 中国石油集团渤海石油装备制造有限公司 一种酸性腐蚀环境用x65ms钢级螺旋焊管及其制造方法
CN102642123A (zh) * 2012-04-28 2012-08-22 宝山钢铁股份有限公司 一种超低碳x42 钢级高频直缝焊管的制造工艺
CN102912253A (zh) * 2012-09-29 2013-02-06 宝山钢铁股份有限公司 一种高频直缝焊管及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535939A (zh) * 2022-03-22 2022-05-27 湖南胜利湘钢钢管有限公司 直缝埋弧焊管制造方法
CN114535939B (zh) * 2022-03-22 2023-02-28 湖南胜利湘钢钢管有限公司 直缝埋弧焊管制造方法

Also Published As

Publication number Publication date
SA515360196B1 (ar) 2015-12-22
CN102912253A (zh) 2013-02-06
AU2013324845A1 (en) 2015-04-16
CA2885696A1 (fr) 2014-04-03
CN102912253B (zh) 2014-07-23
AU2013324845B2 (en) 2018-03-08
CA2885696C (fr) 2021-04-20

Similar Documents

Publication Publication Date Title
JP4970625B2 (ja) 熱延鋼板及びその製造方法
CN103436784B (zh) 一种海洋平台用钢板及其制造方法
CN104089109B (zh) 一种625MPa级UOE焊管及其制造方法
CN111057945B (zh) 一种500MPa级强韧耐候桥梁钢及其制备方法
KR101679498B1 (ko) 용접용 초고장력 강판
JP2006193771A (ja) 加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5884202B2 (ja) 高強度ラインパイプ用熱延鋼板
JP5918796B2 (ja) 靭性に優れたフェライト系ステンレス熱延鋼板および鋼帯
CN104561486A (zh) 具有优异超低温ctod性能的厚规格热连轧钢带及生产方法
CN104357756A (zh) 一种抗硫化氢应力腐蚀直缝焊接石油套管及其制造方法
CN113549827B (zh) 一种低温韧性优异的fh690级海工钢及其制造方法
WO2016157863A1 (fr) Tôle d'acier à résistance et ténacité élevées et procédé pour la produire
JP6817303B2 (ja) 靭性及び内部品質に優れた耐摩耗鋼材及びその製造方法
WO2010119911A1 (fr) Acier pour forgeage à poids spécifique réduit présentant une excellente aptitude à l'usinage
KR20130133030A (ko) 2상 스테인리스강
WO2014048337A1 (fr) Tube droit soudé à haute fréquence et son procédé de fabrication
JPWO2016208172A1 (ja) エタノール貯蔵及び輸送設備用鋼
KR101392448B1 (ko) 저항복비 및 저온인성이 우수한 라인파이프용 후강판 및 이의 제조방법
KR20160078600A (ko) 확관성이 우수한 파이프용 열연강판 및 그 제조방법
JP2015028207A (ja) 高強度熱延鋼板とその製造方法
CN107974613B (zh) 抗硫化物应力腐蚀开裂的x80级管线钢的生产方法
KR20140130324A (ko) 파이프용 열연강판 및 그 제조 방법
WO2021171836A1 (fr) Tuyau en acier inoxydable et procédé de fabrication d'un tel tuyau
JP6225439B2 (ja) 板厚中心部の靭性が優れた鋼板及びその製造方法
KR20140042108A (ko) 열연강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2885696

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013324845

Country of ref document: AU

Date of ref document: 20130926

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13840951

Country of ref document: EP

Kind code of ref document: A1