WO2014048154A1 - 远端控制单元序列号和天线扇区号的匹配方法及装置 - Google Patents

远端控制单元序列号和天线扇区号的匹配方法及装置 Download PDF

Info

Publication number
WO2014048154A1
WO2014048154A1 PCT/CN2013/078723 CN2013078723W WO2014048154A1 WO 2014048154 A1 WO2014048154 A1 WO 2014048154A1 CN 2013078723 W CN2013078723 W CN 2013078723W WO 2014048154 A1 WO2014048154 A1 WO 2014048154A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
rcu
reference point
sector number
Prior art date
Application number
PCT/CN2013/078723
Other languages
English (en)
French (fr)
Inventor
王建民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014048154A1 publication Critical patent/WO2014048154A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the electric adjustable antenna consists of an antenna and a remote control unit (English called Remote Control Unit, abbreviated as RCU). The two are connected by a transmission rod.
  • RCU Remote Control Unit
  • the RCU drives the transmission rod to move through the rotation of the gear of its internal drive structure, which in turn drives the antenna inside.
  • the multi-channel phase shifter changes the downtilt angle of the antenna.
  • the base station needs to scan the RCU serial number of the lower electrical adjustment antenna to obtain the serial number of each RCU, and then control the angle of the antenna according to the serial number.
  • some adjustments are often made according to needs.
  • the RCU of the ESC antenna can be cascaded, that is, one RCU is connected to the RF module, and the other is The RCU is connected to the previous RCU step by step.
  • one RF module corresponds to multiple sector antennas. If only one ESC interface is available for the RF module, only one RCU can be connected to the RF module.
  • the RCU of the antenna is cascaded.
  • Embodiments of the present invention provide a method and a device for matching a remote control unit serial number and an antenna sector number, which can solve the problem that the RCU cannot match the serial number of the RCU and the antenna sector in the scenario of the RCU cascading. Relationship problems, improve work efficiency, and reduce costs.
  • the first aspect provides a method for matching a remote control unit serial number and an antenna sector number, including:
  • the sequence number of the RCU and the sector number of the antenna are re-matched according to signal changes.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference point is located in a range of a sector of the antenna.
  • the matching the sequence number and the sector number of the antenna in a preset order includes: randomly matching the sequence number and the sector number; or The number and the same number in the sector number are matched together, wherein the serial numbers are sequentially numbered in the reading order, and the sector numbers of the antennas are sequentially clockwise numbered starting from the north direction. Further, before the re-matching the sequence number of the RCU and the sector number of the antenna according to the signal change situation, the method further includes:
  • the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point
  • the signal change of the signal reference point exceeds the change threshold, it is determined that the sector number of the sector in which the signal reference point is matched with the RCU.
  • the re-matching the sequence number of the RCU and the sector number of the antenna according to the signal change situation includes: when the matching relationship of the sequence is consistent, the matching relationship of the preset sequence is used as a final matching relationship. When the matching relationship of the sequence is inconsistent, the sector number matching the sequence number of the RCU is modified to the correct sector number obtained after the measurement.
  • the method further includes:
  • the MDT task is configured to measure a signal strength change received by the terminal, and the neighboring area signal scanning task is used to measure a signal strength of the neighboring cell Variety.
  • a matching device for a remote control unit serial number and an antenna sector number including:
  • a serial number reading module configured to read a serial number of the remote control unit RCU of the antenna, and match the serial number and the sector number of the antenna in a preset order
  • a reference point selection module configured to select a signal change reference point for the antenna
  • control detection module configured to control the RCU to adjust an inclination of an antenna matched thereto, and simultaneously detect a signal change of each of the signal change reference points;
  • a matching module configured to re-match the sequence number of the RCU and the sector number of the antenna according to a signal change condition.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference point is located in a range of a sector of the antenna.
  • the reader is further configured to: perform random matching on the serial number and the sector number; or: use the same sequence number in the serial number and the sector number The two are matched together, wherein the serial numbers are sequentially numbered according to the reading order, and the sector numbers of the antennas are sequentially clockwise numbered starting from the north direction.
  • control detection module further includes:
  • a determining unit configured to determine whether a signal change of the signal reference point exceeds a change threshold after controlling an inclination of the one of the RCUs, wherein the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point;
  • a determining unit configured to determine that a sector number of a sector in which the signal reference point is located matches a sequence number of the RCU when a signal change of the signal reference point exceeds a variation threshold.
  • the matching module includes: when the matching relationship between the real matching relationship and the preset sequence is consistent, the matching relationship of the preset sequence is used as a final matching relationship; and the second matching unit is configured to be used by the antenna
  • the second matching unit is configured to be used by the antenna
  • a task initiation module configured to start a minimization of a drive test MDT task and/or a neighboring area signal scanning task, where the MDT task is used to measure a signal strength change received by the terminal, and the neighboring area signal scanning task is used to measure the The signal strength of neighboring cells changes.
  • a third aspect provides a matching device for a remote control unit serial number and an antenna sector number, including: a reader, configured to read a serial number of a remote control unit RCU of the antenna, and match the serial number and the sector number of the antenna in a preset order;
  • a selector configured to select a signal change reference point for the antenna
  • a detector configured to control the RCU to adjust an inclination of an antenna matched thereto, and simultaneously detect a signal change of each of the signal change reference points;
  • a processor configured to re-match the serial number of the RCU and the sector number of the antenna according to a signal change condition.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference point is located in a range of a sector of the antenna.
  • the reader is further configured to: perform random matching on the serial number and the sector number; or: use the same sequence number in the serial number and the sector number The two are matched together, wherein the serial numbers are sequentially numbered according to the reading order, and the sector numbers of the antennas are sequentially clockwise numbered starting from the north direction.
  • the detector further includes:
  • a judging device configured to determine whether a signal change of the signal reference point exceeds a change threshold after controlling an inclination of the one of the RCUs, wherein the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point; When the signal change of the signal reference point exceeds the change threshold, it is determined that the sector number of the sector in which the signal reference point is located matches the sequence number of the RCU.
  • the processor is specifically configured to: when the true matching relationship between the sector number of the antenna and the sequence number of the RCU is consistent with the matching relationship of the preset sequence, the matching relationship of the preset sequence is As a final matching relationship, when the true matching relationship between the sector number of the antenna and the sequence number of the RCU is inconsistent with the matching relationship of the preset sequence, the sector number matching the sequence number of the RCU is modified to The correct sector number obtained after the measurement.
  • An initiator configured to initiate a minimization of a drive test MDT task and/or a neighboring area signal scan task,
  • the MDT task is used to measure a signal strength change received by the terminal
  • the neighboring area signal scanning task is used to measure a signal strength change of the neighboring cell.
  • Embodiment 1 is a flowchart of a method according to Embodiment 1 of the present invention.
  • FIG. 3 and FIG. 4 are schematic structural diagrams of a device according to Embodiment 3 of the present invention.
  • FIG. 5 and FIG. 6 are schematic diagrams showing the structure of a device according to Embodiment 4 of the present invention.
  • This embodiment provides a method for matching a remote control unit serial number and an antenna sector number. As shown in FIG. 1, the method includes:
  • the matching the sequence number and the sector number of the antenna in a preset order includes: randomly matching the sequence number and the sector number; or, numbering the serial number and the sector number The two in the same order are matched together, wherein the serial numbers are sequentially numbered in the order of reading, and the sector numbers of the antennas are sequentially clockwise numbered starting from the north direction.
  • the method further includes: determining, after controlling the inclination of the antenna by one of the RCUs, determining whether there is a signal reference point The signal change exceeds a change threshold, and the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point; if the signal change of the signal reference point exceeds the change threshold, the fan of the signal reference point is determined
  • the sector number of the zone is matched to the serial number of the RCU.
  • the matching relationship with the preset sequence is consistent, the matching relationship of the preset order is used as the final matching relationship;
  • the matching relationship of the sequence is inconsistent, the sector number matching the sequence number of the RCU is modified to the correct sector number obtained after the measurement.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference point is located in a range of a sector of the antenna.
  • the method further includes:
  • the MDT task is configured to measure a signal strength change received by the terminal, and the neighboring area signal scanning task is used to measure a signal strength of the neighboring cell Variety.
  • the embodiment provides a method for matching the serial number of the remote control unit and the antenna sector number. As shown in FIG. 2, the method includes:
  • the system selects a base station that needs to be matched with an electrical adjustment antenna, and creates a corresponding configuration task for the base station. After the configuration task is created, go to step 202.
  • the MDT task is used to measure the change of the received signal strength of the selected terminal
  • the neighboring area signal scanning task is used to measure the signal strength change sent by the received antenna of the neighboring cell.
  • the two tasks in this step are to measure the change of the signal strength at a far point from the antenna after adjusting the antenna angle, so one of the two measurement tasks may be selected in the actual measurement.
  • the MDT task is used preferentially, and if a suitable terminal is not used as a reference point, the neighboring area signal scanning task is used; or, in order to improve the accuracy of the signal change measurement, two tasks can be simultaneously used for measurement.
  • the selection of the terminal and/or the neighboring cell may be performed by the step of minimizing the drive test MDT task and/or the neighboring area signal scan task, or minimizing the drive test MDT task and/or the neighboring area signal scan.
  • the selected terminal is located at a mid-range point of the antenna in the antenna sector of the base station, for example, three quarters or more of the coverage radius of the antenna sector. If the distance between the terminal and the antenna is too close, the signal change will not be obvious. If the distance is too far, it will be difficult to detect a stable signal, and when the terminal is at the far center, the most obvious signal change can be detected.
  • the neighboring cell within the communication range of the base station to which the antenna belongs is selected, and the relationship between the antenna sector and the RCU serial number is determined by measuring the signal change response of the neighboring cell to the antenna under the adjusted base station.
  • each antenna sector matches the RCU.
  • the order of the sector numbers of the antennas is as follows: The clockwise number is sequentially clocked from the north direction, and the order of the sector numbers is ac.
  • the signal strength change of the signal reference point can be judged by changing the threshold value, and the variation threshold is used to specify the normal fluctuation range of the signal change of the terminal and/or the neighboring cell.
  • the signal has a certain fluctuation range. As long as it is within the range of varying thresholds, it is a normal change; however, when adjusting the downtilt angle of the antenna, the signal change will change significantly with the angle of the antenna adjustment, for example, for a terminal at a medium-distance point, When the downtilt angle of the antenna is adjusted from 0 degrees to 6 degrees, the signal will change by about 13dB, and the signal change value will obviously exceed the change threshold.
  • the RCU when adjusting the RCU, detecting whether the signal of the reference point in all antenna sectors exceeds the variation threshold, if the signal change of the reference point in the sector of the antenna sector b exceeds the variation threshold, then the RCU can be determined. The serial number and the sector number of the antenna sector b are matched. All RCUs are continuously adjusted to complete the matching between the antenna sectors and the RCU in the base station.
  • the true matching relationship between each antenna sector number and the RCU sequence number in the base station may be determined. If the RCU sequence number and the antenna sector number that were previously matched in the preset order in step 203 are correct, Modifying the matching relationship between the two; if the RCU sequence number matched in the preset order and the sector number of the antenna are erroneous, the sector number matching the sequence number of the RCU is modified according to the detection result of step 205 to the real value obtained after the measurement. The matching sector number.
  • the next base station is continuously processed to establish a new configuration task.
  • Embodiment 3 when the ESC antenna is deployed in a cascade manner, the problem of the correspondence between each antenna sector number and the RCU serial number cannot be accurately matched, and the need for the staff to go to the near end to copy the RCU serial number band is avoided.
  • the increase in cost and the reduction in accuracy can improve the quality of the project and reduce the engineering cost.
  • the present embodiment provides a matching device 30 for the remote control unit serial number and the antenna sector number. As shown in FIG. 3, the device 30 includes:
  • the serial number reading module 31 is configured to read a serial number of the remote control unit RCU of the antenna, and match the serial number and the sector number of the antenna in a preset order;
  • a reference point selection module 32 configured to select a signal change reference point for the antenna
  • control detection module 33 configured to control the RCU to adjust an inclination of an antenna matched thereto, and simultaneously detect a signal change of each of the signal change reference points;
  • the matching module 34 is configured to re-match the sequence number of the RCU and the sector number of the antenna according to a signal change condition.
  • serial number reading module 31 is further configured to:
  • control detection module 33 may further include:
  • the determining unit 331 is configured to: after controlling one of the RCUs to adjust the tilt angle of the antenna, determine whether The signal having a signal reference point changes beyond a change threshold, the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point; and the determining unit 332 is configured to: when the signal change of the signal reference point exceeds the change threshold And determining that the sector number of the sector in which the signal reference point is located is matched with the sequence number of the RCU.
  • the matching module 34 is further configured to: when the matching relationship between the real matching relationship and the preset sequence is consistent, the matching relationship of the preset sequence is used as a final matching relationship; When the matching relationship with the preset sequence is inconsistent, the sector number matching the sequence number of the RCU is modified to the correct sector number obtained after the measurement.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference point is located in a range of a sector of the antenna.
  • the device 30 may further include:
  • the task initiation module 35 is configured to start a minimization of a drive test MDT task and/or a neighboring area signal scanning task, where the MDT task is used to measure a signal strength change received by the terminal, and the neighboring area signal scanning task is used for a measurement center. The signal strength of the neighboring cell changes.
  • the embodiment provides a matching device 40 for a remote control unit serial number and an antenna sector number. As shown in FIG. 5, the device 40 includes:
  • the reader 41 is configured to read a serial number of the remote control unit RCU of the antenna, and match the serial number and the sector number of the antenna according to a preset sequence;
  • a selector 42 is configured to select a signal change reference point for the antenna
  • a detector 43 configured to control the RCU to adjust an inclination of an antenna matched thereto, and simultaneously detect a signal change of each of the signal change reference points;
  • the processor 44 is configured to re-match the sequence number of the RCU and the sector number of the antenna according to a signal change condition.
  • reader 41 is further configured to:
  • the detector 43 may further include:
  • a determining unit 431, configured to determine, when one of the RCUs adjusts the tilt angle of the antenna, whether a signal change of the signal reference point exceeds a change threshold, where the change threshold is used to specify a normal fluctuation range of the signal change of the signal reference point; When the signal change of the signal reference point exceeds the change threshold, it is determined that the sector number of the sector in which the signal reference point is located matches the sequence number of the RCU.
  • the processor 44 is further configured to: when the matching relationship of the sequence is consistent, the matching relationship of the preset sequence is used as a final matching relationship; when the matching relationship of the sequence is inconsistent, the sequence number of the RCU is matched. The sector number is modified to the correct sector number obtained after the measurement.
  • the signal change reference point is a terminal and/or a neighboring cell, and the signal change reference is used.
  • the point is within the range of the sector of the antenna.
  • the device 40 may further include:
  • the initiator 45 is configured to start a minimization of a drive test MDT task and/or a neighboring area signal scan task, where the MDT task is used to measure a signal strength change received by the terminal, and the neighboring area signal scan task is used to measure the The signal strength of neighboring cells changes.
  • the apparatus for matching the remote control unit serial number and the antenna sector number provided by the embodiment of the present invention may implement the foregoing method embodiments.
  • the method and apparatus for matching the remote control unit serial number and the antenna sector number provided by the embodiments of the present invention may be applied to an electrical adjustment antenna, but are not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种远端控制单元序列号和天线扇区号的匹配方法及装置,涉及通信技术领域,所述方法包括:读取天线的远端控制单元RCU的序列号,并按预设顺序匹配所述序列号与所述天线的扇区号;为所述天线选取信号变化参考点;控制所述RCU调节与其匹配的天线的倾角,并同时检测各个所述信号变化参考点的信号变化;根据信号变化情况对所述RCU的序列号和所述天线的扇区号进行重新匹配。本发明适用于电调天线。

Description

远端控制单元序列号和天线扇区号的匹配方法及装置 本申请要求于 2012 年 09 月 28 日提交中国专利局、 申请号为 201210370618.8、 发明名称为 "远端控制单元序列号和天线扇区号的匹配方 法及装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域 本发明涉及通信技术领域, 特别涉及一种远端控制单元序列号和天线 扇区号的匹配方法及装置。
背景技术 随着全球通信网络的大规模建设和电调天线技术的成熟, 越来越多的 运营商开始使用电调天线。 电调天线的优点在于能够使维护人员和网络优 化人员在机房里就可以实现对天线下倾角的精确调整, 大幅降低运营维护 成本,提高工作效率。 电调天线由天线和远端控制单元(英文全称为 Remote Control Unit , 简写为 RCU )组成, 二者通过传动杆相连, RCU通过其内部 驱动结构的齿轮的转动带动传动杆移动, 进而带动天线内部的多路移相器, 从而改变天线的下倾角。
在使用上述的电调天线时, 基站需要对其下电调天线的 RCU序列号进 行扫描以获取每个 RCU的序列号, 进而根据序列号控制天线的角度。 在实 际的安装设计时, 往往会根据需要做一些调整, 例如, 在射频模块上塔安 装时,为了节省连接电缆,可以将电调天线的 RCU进行级联, 即将一个 RCU 与射频模块相连, 其他 RCU逐级与前一个 RCU相连; 或者, 一个射频模块 对应多个扇区天线, 若该射频模块只有一个电调接口可用时, 只能够将一 个 RCU与射频模块相连, 此时也需要将电调天线的 RCU进行级联。 在实现本发明的过程中, 发现现有技术中至少存在如下问题: 当电调 天线的 RCU进行级联时, 由于 RCU序列号上报顺序是随机的, 无法得知 每个序列号是与哪个天线以及天线扇区相匹配的, 因此需要人工去近端抄 写, 影响交付成本和工程进度。
发明内容 本发明的实施例提供一种远端控制单元序列号和天线扇区号的匹配方 法及装置, 能够解决 RCU级联的场景下, 无法通过远端匹配 RCU的序列号 和天线扇区的对应关系的问题, 提高工作效率, 降低成本。
第一方面, 提供一种远端控制单元序列号和天线扇区号的匹配方法, 包括:
读取天线的远端控制单元 RCU的序列号, 并按预设顺序匹配所述序列 号与所述天线的扇区号;
为所述天线选取信号变化参考点;
控制所述 RCU调节与其匹配的天线的倾角, 并同时检测各个所述信号 变化参考点的信号变化;
根据信号变化情况对所述 RCU的序列号和所述天线的扇区号进行重新 匹配。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
在第一种可能的实现方式中, 所述按预设顺序匹配所述序列号与所述 天线的扇区号包括: 将所述序列号和所述扇区号进行随机匹配; 或者, 将 所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中所述序 列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为起始位 置按照顺时针依次编号。 进一步的, 在所述根据信号变化情况对所述 RCU的序列号和所述天线 的扇区号进行重新匹配之前, 还包括:
当控制其中一个 RCU调节天线的倾角后, 判断是否有信号参考点的信 号变化超过变化阈值, 所述变化阈值用于规定所述信号参考点的信号变化 的正常波动范围;
若有信号参考点的信号变化超过变化阔值, 则确定所述信号参考点所 在扇区的扇区号是与所述 RCU相匹配的。
可选的, 所述根据信号变化情况对所述 RCU的序列号和所述天线的扇 区号进行重新匹配包括: 序的匹配关系一致时, 将所述预设顺序的匹配关系作为最终的匹配关系; 序的匹配关系不一致时, 将所述 RCU的序列号匹配的所述扇区号修改为测 量后得到的正确的扇区号。
进一步的, 在所述检测各个所述信号变化参考点的信号变化之前还包 括:
启动最小化路测 MDT任务和 /或邻区信号扫描任务,所述 MDT任务用于 测量所述终端接收的信号强度变化, 所述邻区信号扫描任务用于测量所述 相邻小区的信号强度变化。
第二方面, 提供一种远端控制单元序列号和天线扇区号的匹配装置, 包括:
序列号读取模块, 用于读取天线的远端控制单元 RCU的序列号, 并按 预设顺序匹配所述序列号与所述天线的扇区号;
参考点选取模块, 用于为所述天线选取信号变化参考点;
控制检测模块, 用于控制所述 RCU调节与其匹配的天线的倾角, 并同 时检测各个所述信号变化参考点的信号变化; 匹配模块, 用于根据信号变化情况对所述 RCU的序列号和所述天线的 扇区号进行重新匹配。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
在第一种可能的实现方式中, 所述读取器还用于: 将所述序列号和所 述扇区号进行随机匹配; 或者, 将所述序列号和所述扇区号中编号次序相 同的两者匹配在一起, 其中所述序列号按照读取先后顺序依次编号, 所述 天线的扇区号以正北方向为起始位置按照顺时针依次编号。
进一步的, 所述控制检测模块还包括:
判断单元, 用于当控制其中一个 RCU调节天线的倾角后, 判断是否有 信号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号参 考点的信号变化的正常波动范围;
确定单元, 用于当有信号参考点的信号变化超过变化阔值时, 确定所 述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹配的。
可选的, 所述匹配模块包括: 实匹配关系与预设顺序的匹配关系一致时, 将所述预设顺序的匹配关系作 为最终的匹配关系; 第二匹配单元, 用于当所述天线的扇区号与所述 RCU 的序列号间的真实匹配关系与预设顺序的匹配关系不一致时, 将所述 RCU 的序列号匹配的所述扇区号修改为测量后得到的正确的扇区号。
进一步的, 还包括:
任务启动模块, 用于启动最小化路测 MDT任务和 /或邻区信号扫描任 务, 所述 MDT任务用于测量所述终端接收的信号强度变化, 所述邻区信号 扫描任务用于测量所述相邻小区的信号强度变化。
第三方面, 提供一种远端控制单元序列号和天线扇区号的匹配装置, 包括: 读取器, 用于读取天线的远端控制单元 RCU的序列号, 并按预设顺序 匹配所述序列号与所述天线的扇区号;
选取器, 用于为所述天线选取信号变化参考点;
检测器, 用于控制所述 RCU调节与其匹配的天线的倾角, 并同时检测 各个所述信号变化参考点的信号变化;
处理器, 用于根据信号变化情况对所述 RCU的序列号和所述天线的扇 区号进行重新匹配。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
在第一种可能的实现方式中, 所述读取器还用于: 将所述序列号和所 述扇区号进行随机匹配; 或者, 将所述序列号和所述扇区号中编号次序相 同的两者匹配在一起, 其中所述序列号按照读取先后顺序依次编号, 所述 天线的扇区号以正北方向为起始位置按照顺时针依次编号。
进一步的, 所述检测器还包括:
判断器, 用于当控制其中一个 RCU调节天线的倾角后, 判断是否有信 号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号参考 点的信号变化的正常波动范围; 当有信号参考点的信号变化超过变化阔值 时, 确定所述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹配 的。
可选的, 所述处理器具体用于: 当所述天线的扇区号与所述 RCU的序 列号间的真实匹配关系与预设顺序的匹配关系一致时, 将所述预设顺序的 匹配关系作为最终的匹配关系; 当所述天线的扇区号与所述 RCU的序列号 间的真实匹配关系与预设顺序的匹配关系不一致时, 将所述 RCU的序列号 匹配的所述扇区号修改为测量后得到的正确的扇区号。
进一步的, 还包括:
启动器, 用于启动最小化路测 MDT任务和 /或邻区信号扫描任务, 所述 MDT任务用于测量所述终端接收的信号强度变化, 所述邻区信号扫描任务 用于测量所述相邻小区的信号强度变化。
与现有技术相比, 通过利用终端或相邻小区为参考, 逐一调节基站下 的所有电调天线, 并且在调节天线角度的同时, 检测终端或者相邻小区接 收到的信号变化程度,根据检测到的信号变化结果,确定天线扇区号和 RCU 序列号的对应关系, 完成二者的匹配。 解决现有技术中, 当电调天线釆用 级联的方式部署时, 无法准确匹配每个天线扇区号和 RCU序列号的对应关 系的问题, 避免了需要工作人员去近端抄写 RCU序列号带来的成本的增加 和准确率降低, 能够提高工程质量, 降低工程成本。
附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明实施例一提供的方法流程图;
图 2为本发明实施例二提供的方法流程图;
图 3、 图 4为本发明实施例三提供的装置结构示意图;
图 5、 图 6为本发明实施例四提供的装置结构示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发 明作详细说明。
实施例一
本实施例提供一种远端控制单元序列号和天线扇区号的匹配方法, 如 图 1所示, 所述方法包括:
101、 读取天线的远端控制单元 RCU的序列号, 并按预设顺序匹配所述 序列号与所述天线的扇区号。
102、 为所述天线选取信号变化参考点。
103、 控制所述 RCU调节与其匹配的天线的倾角, 并同时检测各个所述 信号变化参考点的信号变化。
104、根据信号变化情况对所述 RCU的序列号和所述天线的扇区号进行 重新匹配。
其中, 所述按预设顺序匹配所述序列号与所述天线的扇区号包括: 将 所述序列号和所述扇区号进行随机匹配; 或者, 将所述序列号和所述扇区 号中编号次序相同的两者匹配在一起, 其中所述序列号按照读取先后顺序 依次编号, 所述天线的扇区号以正北方向为起始位置按照顺时针依次编号。
进一步的, 在所述根据信号变化情况对所述 RCU的序列号和所述天线 的扇区号进行重新匹配之前, 还包括: 当控制其中一个 RCU调节天线的倾 角后, 判断是否有信号参考点的信号变化超过变化阔值, 所述变化阔值用 于规定所述信号参考点的信号变化的正常波动范围; 若有信号参考点的信 号变化超过变化阔值, 则确定所述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹配的。 与预设顺序的匹配关系一致时, 将所述预设顺序的匹配关系作为最终的匹 配关系; 序的匹配关系不一致时, 将所述 RCU的序列号匹配的所述扇区号修改为测 量后得到的正确的扇区号。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
进一步的, 在所述检测各个所述信号变化参考点的信号变化之前还包 括:
启动最小化路测 MDT任务和 /或邻区信号扫描任务,所述 MDT任务用于 测量所述终端接收的信号强度变化, 所述邻区信号扫描任务用于测量所述 相邻小区的信号强度变化。
与现有技术相比, 通过利用终端或相邻小区为参考, 逐一调节基站下 的所有电调天线, 并且在调节天线角度的同时, 检测终端或者相邻小区接 收到的信号变化程度,根据检测到的信号变化结果,确定天线扇区号和 RCU 序列号的对应关系, 完成二者的匹配。 解决现有技术中, 当电调天线釆用 级联的方式部署时, 无法准确匹配每个天线扇区号和 RCU序列号的对应关 系的问题, 避免了需要工作人员去近端抄写 RCU序列号带来的成本的增加 和准确率降低, 能够提高工程质量, 降低工程成本。 实施例二
本实施例提供一种远端控制单元序列号和天线扇区号的匹配方法, 如 图 2所示, 所述方法包括:
201、 创建电调天线配置任务。
例如, 系统选取需要进行匹配电调天线的基站, 为该基站创建对应的 配置任务, 创建配置任务后, 执行步骤 202。
202、 启动最小化路测 MDT任务和 /或邻区信号扫描任务, 选取合适的 终端和 /或相邻小区。 其中, MDT任务用于测量被选取的终端接收的信号强度的变化, 邻区 信号扫描任务用于测量相邻小区的接收到的天线下发的信号强度变化。 可 选的, 此步骤中的两个任务均是为了测量天线角度调整后, 距离天线中远 点处的信号强度变化, 所以在实际测量中选取二者其中一种测量任务即可。 优选的, 优先釆用 MDT任务, 若找不到合适的终端作为参考点, 则釆用邻 区信号扫描任务; 或者, 为了提高信号变化测量的精度, 可以同时使用两 种任务进行测量。
可选的, 终端和 /或相邻小区的选择由步骤可以在最小化路测 MDT任务 和 /或邻区信号扫描任务启动之前,也可以在最小化路测 MDT任务和 /或邻区 信号扫描任务启动之后。 其中, 选取的终端要在基站的天线扇区中距离天 线的中远点位置, 例如在所述天线扇区覆盖半径的四分之三或更远处。 如 果终端距离天线距离太近, 那么信号变化会艮不明显, 距离太远又会艮难 检测到稳定的信号, 而当终端处于中远点时能够检测到最明显的信号变化; 当启动邻区信号扫描任务时, 选取天线所属基站的通信范围内的相邻小区, 通过测量该相邻小区对调整基站下的天线后的信号变化反应确定天线扇区 和 RCU序列号的关系。
203、 扫描读取基站下天线的 RCU的序列号, 并按预设顺序匹配所述序 列号与所述天线的扇区号。
其中, 由于每个天线的 RCU都是级联的, 所以在读取 RCU的序列号时, 得到 RCU序列号的顺序是随机的, 并不是与天线的扇区号正确对应的, 此 时我们按照 RCU序列号的读取顺序为每个天线扇区匹配 RCU。 例如, 基站 下共有三个天线扇区, 分别为 a、 b和 c, 天线的扇区号的排列顺序为: 以正 北方向为起始位置按照顺时针依次编号, 假设扇区号的排列顺序为 a-c, 读 取到三个 RCU序列号, 用 x、 y和 z代替, 读取顺序为 x-z, 那么天线扇区 a与 X 匹配, 天线扇区 b与 y匹配, 天线扇区 c与 z匹配; 或者, 将读取的 RCU序列 号和天线的扇区号进行随机匹配。 其中, 虽然每个天线扇区号均与 RCU序列号进行了匹配, 但是实际上 有一些天线扇区并不是与匹配的 RCU对应, 所以如果按照匹配结果进行天 线调节的话, 可能会出现想调节天线 a, 结果却调节了天线 b的情况。
204、按照 RCU的读取顺序,依次控制 RCU调节与其匹配的天线的倾角。
205、 根据信号参考点的信号强度变化, 确定所述 RCU对应的天线的扇 区。
例如, 信号参考点的信号强度变化可以通过变化阔值来判断, 变化阔 值用于规定终端和 /或相邻小区的信号变化的正常波动范围, 一般情况下, 信号都会有一定的波动范围, 只要处于变化阔值范围内则属于正常变化; 但是, 当调节天线的下倾角时, 信号变化会随着天线调整的角度发生较为 明显的信号变化, 例如, 对于某个中远点的终端, 当将天线的下倾角由 0度 调整为 6度时, 信号会发生大约 13dB的变化, 这个信号变化值会明显的超过 变化阔值。
例如, 当调节 RCU时, 检测所有天线扇区内的参考点的信号是否有超 过变化阔值, 若天线扇区 b的扇区内的参考点的信号变化超过变化阔值, 那 么就可以确定 RCU的序列号和天线扇区 b的扇区号是匹配的。 继续依次对所 有 RCU进行调节, 完成基站内天线扇区与 RCU的匹配。
206、 对 RCU序列号和天线扇区号进行重新匹配。
例如, 经过步骤 205之后, 可以确定基站内每个天线扇区号和 RCU序列 号的真实匹配关系, 若之前在步骤 203中按预设顺序匹配的 RCU序列号与天 线的扇区号是正确的, 无需进行修改二者的匹配关系; 若按预设顺序匹配 的 RCU序列号与天线的扇区号是错误的,则根据步骤 205的检测结果将 RCU 的序列号匹配的扇区号修改为测量后得到的真实匹配的扇区号。
进一步的, 在为本基站的天线匹配完成后, 继续处理下一个基站, 建 立新的配置任务。
与现有技术相比, 通过先读取 RCU序列号, 并将读取的序列号按照预 设顺序与基站下的天线扇区号匹配, 再通过 MDT任务和 /或邻区扫描任务, 当控制某个 RCU调节天线角度后, 检测天线覆盖范围内的终端和 /或相邻小 区的信号变化, 将信号变化符合要求的终端所在扇区的扇区号与该 RCU进 行配对, 以此类推, 完成基站下所有天线扇区号与 RCU序列号的匹配。 解 决现有技术中, 当电调天线釆用级联的方式部署时, 无法准确匹配每个天 线扇区号和 RCU序列号的对应关系的问题, 避免了需要工作人员去近端抄 写 RCU序列号带来的成本的增加和准确率降低, 能够提高工程质量, 降低 工程成本。 实施例三
本实施例提供一种远端控制单元序列号和天线扇区号的匹配装置 30 , 如图 3所示, 所述装置 30包括:
序列号读取模块 31 , 用于读取天线的远端控制单元 RCU的序列号, 并 按预设顺序匹配所述序列号与所述天线的扇区号;
参考点选取模块 32, 用于为所述天线选取信号变化参考点;
控制检测模块 33 , 用于控制所述 RCU调节与其匹配的天线的倾角, 并 同时检测各个所述信号变化参考点的信号变化;
匹配模块 34, 用于根据信号变化情况对所述 RCU的序列号和所述天线 的扇区号进行重新匹配。
进一步的, 所述序列号读取模块 31还用于:
将所述序列号和所述扇区号进行随机匹配; 或者,
将所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中 所述序列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为 起始位置按照顺时针依次编号。
进一步的, 如图 4所示, 所述控制检测模块 33还可以包括:
判断单元 331 , 用于当控制其中一个 RCU调节天线的倾角后, 判断是否 有信号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号 参考点的信号变化的正常波动范围; 确定单元 332, 用于当有信号参考点的 信号变化超过变化阔值时, 确定所述信号参考点所在扇区的扇区号是与所 述 RCU的序列号相匹配的。
进一步的, 如图 4所示, 所述匹配模块 34包括还用于: 真实匹配关系与预设顺序的匹配关系一致时, 将所述预设顺序的匹配关系 作为最终的匹配关系; 真实匹配关系与预设顺序的匹配关系不一致时, 将所述 RCU的序列号匹配 的所述扇区号修改为测量后得到的正确的扇区号。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
进一步的, 如图 4所示, 所述装置 30还可以包括:
任务启动模块 35 , 用于启动最小化路测 MDT任务和 /或邻区信号扫描任 务, 所述 MDT任务用于测量所述终端接收的信号强度变化, 所述邻区信号 扫描任务用于测量所述相邻小区的信号强度变化。
与现有技术相比, 通过利用终端或相邻小区为参考, 逐一调节基站下 的所有电调天线, 并且在调节天线角度的同时, 检测终端或者相邻小区接 收到的信号变化程度,根据检测到的信号变化结果,确定天线扇区号和 RCU 序列号的对应关系, 完成二者的匹配。 解决现有技术中, 当电调天线釆用 级联的方式部署时, 无法准确匹配每个天线扇区号和 RCU序列号的对应关 系的问题, 避免了需要工作人员去近端抄写 RCU序列号带来的成本的增加 和准确率降低, 能够提高工程质量, 降低工程成本。
实施例四
本实施例提供一种远端控制单元序列号和天线扇区号的匹配装置 40 , 如图 5所示, 所述装置 40包括:
读取器 41 , 用于读取天线的远端控制单元 RCU的序列号, 并按预设顺 序匹配所述序列号与所述天线的扇区号;
选取器 42, 用于为所述天线选取信号变化参考点;
检测器 43 , 用于控制所述 RCU调节与其匹配的天线的倾角, 并同时检 测各个所述信号变化参考点的信号变化;
处理器 44, 用于根据信号变化情况对所述 RCU的序列号和所述天线的 扇区号进行重新匹配。
进一步的, 所述读取器 41还用于:
将所述序列号和所述扇区号进行随机匹配; 或者,
将所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中 所述序列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为 起始位置按照顺时针依次编号。
进一步的, 如图 6所示, 所述检测器 43还可以包括:
判断器 431 , 用于当控制其中一个 RCU调节天线的倾角后, 判断是否有 信号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号参 考点的信号变化的正常波动范围; 当有信号参考点的信号变化超过变化阔 值时, 确定所述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹 配的。
进一步的, 所述处理器 44还用于: 序的匹配关系一致时, 将所述预设顺序的匹配关系作为最终的匹配关系; 序的匹配关系不一致时, 将所述 RCU的序列号匹配的所述扇区号修改为测 量后得到的正确的扇区号。
其中, 所述信号变化参考点为终端和 /或相邻小区, 所述信号变化参考 点位于所述天线的扇区的范围内。
进一步的, 如图 6所示, 所述装置 40还可以包括:
启动器 45 , 用于启动最小化路测 MDT任务和 /或邻区信号扫描任务, 所 述 MDT任务用于测量所述终端接收的信号强度变化, 所述邻区信号扫描任 务用于测量所述相邻小区的信号强度变化。
与现有技术相比, 通过利用终端或相邻小区为参考, 逐一调节基站下 的所有电调天线, 并且在调节天线角度的同时, 检测终端或者相邻小区接 收到的信号变化程度,根据检测到的信号变化结果,确定天线扇区号和 RCU 序列号的对应关系, 完成二者的匹配。 解决现有技术中, 当电调天线釆用 级联的方式部署时, 无法准确匹配每个天线扇区号和 RCU序列号的对应关 系的问题, 避免了需要工作人员去近端抄写 RCU序列号带来的成本的增加 和准确率降低, 能够提高工程质量, 降低工程成本。
本发明实施例提供的远端控制单元序列号和天线扇区号的匹配装置可 以实现上述提供的方法实施例, 具体功能实现请参见方法实施例中的说明, 在此不再赘述。 本发明实施例提供的远端控制单元序列号和天线扇区号的 匹配方法及装置可以适用于电调天线, 但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储 于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的 实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体
RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发 明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种远端控制单元序列号和天线扇区号的匹配方法, 其特征在于, 包括:
读取天线的远端控制单元 RCU的序列号, 并按预设顺序匹配所述序列 号与所述天线的扇区号;
为所述天线选取信号变化参考点;
控制所述 RCU调节与其匹配的天线的倾角, 并同时检测各个所述信号 变化参考点的信号变化;
根据信号变化情况对所述 RCU的序列号和所述天线的扇区号进行重新 匹配。
2、 根据权利要求 1所述的方法, 其特征在于, 所述按预设顺序匹配所 述序列号与所述天线的扇区号包括:
将所述序列号和所述扇区号进行随机匹配; 或者,
将所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中 所述序列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为 起始位置按照顺时针依次编号。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 在所述根据信号变化 情况对所述 RCU的序列号和所述天线的扇区号进行重新匹配之前, 还包括: 当控制其中一个 RCU调节天线的倾角后, 判断是否有信号参考点的信 号变化超过变化阈值, 所述变化阈值用于规定所述信号参考点的信号变化 的正常波动范围;
若有信号参考点的信号变化超过变化阔值, 则确定所述信号参考点所 在扇区的扇区号是与所述 RCU的序列号相匹配的。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据信号变化情况 对所述 RCU的序列号和所述天线的扇区号进行重新匹配包括: 序的匹配关系一致时, 将所述预设顺序的匹配关系作为最终的匹配关系; 序的匹配关系不一致时, 将所述 RCU的序列号匹配的所述扇区号修改为测 量后得到的正确的扇区号。
5、 根据权利要求 1所述的方法, 其特征在于, 所述信号变化参考点为 终端和 /或相邻小区, 所述信号变化参考点位于所述天线的扇区的范围内。
6、 根据权利要求 5所述的方法, 其特征在于, 在所述检测各个所述信 号变化参考点的信号变化之前还包括:
启动最小化路测 MDT任务和 /或邻区信号扫描任务,所述 MDT任务用于 测量所述终端接收的信号强度变化, 所述邻区信号扫描任务用于测量所述 相邻小区的信号强度变化。
7、 一种远端控制单元序列号和天线扇区号的匹配装置, 其特征在于, 包括:
序列号读取模块, 用于读取天线的远端控制单元 RCU的序列号, 并按 预设顺序匹配所述序列号与所述天线的扇区号;
参考点选取模块, 用于为所述天线选取信号变化参考点;
控制检测模块, 用于控制所述 RCU调节与其匹配的天线的倾角, 并同 时检测各个所述信号变化参考点的信号变化;
匹配模块, 用于根据信号变化情况对所述 RCU的序列号和所述天线的 扇区号进行重新匹配。
8、 根据权利要求 7所述的装置, 其特征在于, 所述序列号读取模块还 用于:
将所述序列号和所述扇区号进行随机匹配; 或者,
将所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中 所述序列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为 起始位置按照顺时针依次编号。
9、 根据权利要求 7或 8所述的装置, 其特征在于, 所述控制检测模块包 括:
判断单元, 用于当控制其中一个 RCU调节天线的倾角后, 判断是否有 信号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号参 考点的信号变化的正常波动范围;
确定单元, 用于当有信号参考点的信号变化超过变化阔值时, 确定所 述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹配的。
10、 根据权利要求 9所述的装置, 其特征在于, 所述匹配模块包括: 实匹配关系与预设顺序的匹配关系一致时, 将所述预设顺序的匹配关系作 为最终的匹配关系; 实匹配关系与预设顺序的匹配关系不一致时, 将所述 RCU的序列号匹配的 所述扇区号修改为测量后得到的正确的扇区号。
11、 根据权利要求 7所述的装置, 其特征在于, 所述信号变化参考点为 终端和 /或相邻小区, 所述信号变化参考点位于所述天线的扇区的范围内。
12、 根据权利要求 11所述的装置, 其特征在于, 还包括:
任务启动模块, 用于启动最小化路测 MDT任务和 /或邻区信号扫描任 务, 所述 MDT任务用于测量所述终端接收的信号强度变化, 所述邻区信号 扫描任务用于测量所述相邻小区的信号强度变化。
13、 一种远端控制单元序列号和天线扇区号的匹配装置, 其特征在于, 包括:
读取器, 用于读取天线的远端控制单元 RCU的序列号, 并按预设顺序 匹配所述序列号与所述天线的扇区号;
选取器, 用于为所述天线选取信号变化参考点; 检测器, 用于控制所述 RCU调节与其匹配的天线的倾角, 并同时检测 各个所述信号变化参考点的信号变化;
处理器, 用于根据信号变化情况对所述 RCU的序列号和所述天线的扇 区号进行重新匹配。
14、 根据权利要求 13所述的装置, 其特征在于, 所述读取器还用于: 将所述序列号和所述扇区号进行随机匹配; 或者,
将所述序列号和所述扇区号中编号次序相同的两者匹配在一起, 其中 所述序列号按照读取先后顺序依次编号, 所述天线的扇区号以正北方向为 起始位置按照顺时针依次编号。
15、 根据权利要求 13或 14所述的装置, 其特征在于, 所述检测器包括: 判断器, 用于当控制其中一个 RCU调节天线的倾角后, 判断是否有信 号参考点的信号变化超过变化阈值, 所述变化阈值用于规定所述信号参考 点的信号变化的正常波动范围; 当有信号参考点的信号变化超过变化阔值 时, 确定所述信号参考点所在扇区的扇区号是与所述 RCU的序列号相匹配 的。
16、 根据权利要求 15所述的装置, 其特征在于, 所述处理器具体用于: 序的匹配关系一致时, 将所述预设顺序的匹配关系作为最终的匹配关系; 序的匹配关系不一致时, 将所述 RCU的序列号匹配的所述扇区号修改为测 量后得到的正确的扇区号。
17、 根据权利要求 13所述的装置, 其特征在于, 所述信号变化参考点 为终端和 /或相邻小区,所述信号变化参考点位于所述天线的扇区的范围内。
18、 根据权利要求 17所述的装置, 其特征在于, 还包括:
启动器, 用于启动最小化路测 MDT任务和 /或邻区信号扫描任务, 所 述 MDT任务用于测量所述终端接收的信号强度变化,所述邻区信号扫描任 务用于测量所述相邻小区的信号强度变化。
PCT/CN2013/078723 2012-09-28 2013-07-03 远端控制单元序列号和天线扇区号的匹配方法及装置 WO2014048154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210370618.8A CN102905279B (zh) 2012-09-28 2012-09-28 远端控制单元序列号和天线扇区号的匹配方法及装置
CN201210370618.8 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014048154A1 true WO2014048154A1 (zh) 2014-04-03

Family

ID=47577269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078723 WO2014048154A1 (zh) 2012-09-28 2013-07-03 远端控制单元序列号和天线扇区号的匹配方法及装置

Country Status (2)

Country Link
CN (1) CN102905279B (zh)
WO (1) WO2014048154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160856A (zh) * 2015-09-24 2015-12-16 武汉虹信通信技术有限责任公司 一种基于短距离无线通信的电调天线监控装置及其方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102905279B (zh) * 2012-09-28 2015-06-03 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置
WO2015039314A1 (zh) * 2013-09-18 2015-03-26 华为技术有限公司 天线调整处理方法、装置及系统
CN103945414B (zh) * 2014-04-23 2017-04-26 华为技术有限公司 一种确认频段与远程电调倾角之间映射关系的方法、设备
MX359279B (es) * 2014-05-05 2018-09-21 Huawei Tech Co Ltd Antena de inclinacion electrica remota, estacion base, y metodo para emparejamiento de una rcu con puerto rf.
WO2016015221A1 (zh) * 2014-07-29 2016-02-04 华为技术有限公司 电调天线以及天线阵列与基站配对方法
CN105487412B (zh) * 2014-09-30 2018-06-22 中国电信股份有限公司 一种获取远程电调天线控制单元级联的方法和系统
CN106412946B (zh) * 2015-07-31 2019-10-29 中国电信股份有限公司 确定远程控制单元与扇区对应关系的方法、装置及系统
CN110177009B (zh) * 2019-04-30 2022-04-19 武汉虹信科技发展有限责任公司 远端控制单元的电机序列号配置方法及装置
CN113315590B (zh) * 2020-02-26 2022-07-22 上海华为技术有限公司 一种线序检测方法以及多天线网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136630A (zh) * 2010-11-23 2011-07-27 华为技术有限公司 天线装置、天线系统和天线电调方法
CN102292869A (zh) * 2010-11-16 2011-12-21 华为技术有限公司 基站天线角度的在线调节方法和系统
CN102439881A (zh) * 2011-09-09 2012-05-02 华为技术有限公司 冲突检测的方法和设备
CN102655269A (zh) * 2012-04-20 2012-09-05 广东通宇通讯股份有限公司 基于方位校正调节的电调天线
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100558001C (zh) * 2006-08-08 2009-11-04 华为技术有限公司 一种实现2g网络电调天线集中控制的方法及系统
CN102456948B (zh) * 2010-10-27 2014-12-03 华为技术有限公司 电调天线的控制方法及系统、电调天线控制器及维护终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292869A (zh) * 2010-11-16 2011-12-21 华为技术有限公司 基站天线角度的在线调节方法和系统
CN102136630A (zh) * 2010-11-23 2011-07-27 华为技术有限公司 天线装置、天线系统和天线电调方法
CN102439881A (zh) * 2011-09-09 2012-05-02 华为技术有限公司 冲突检测的方法和设备
CN102655269A (zh) * 2012-04-20 2012-09-05 广东通宇通讯股份有限公司 基于方位校正调节的电调天线
CN102905279A (zh) * 2012-09-28 2013-01-30 华为技术有限公司 远端控制单元序列号和天线扇区号的匹配方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160856A (zh) * 2015-09-24 2015-12-16 武汉虹信通信技术有限责任公司 一种基于短距离无线通信的电调天线监控装置及其方法

Also Published As

Publication number Publication date
CN102905279A (zh) 2013-01-30
CN102905279B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2014048154A1 (zh) 远端控制单元序列号和天线扇区号的匹配方法及装置
JP2018129813A5 (ja) ユーザ装置、プロセッサ、及び方法
US20130002495A1 (en) Electromagnetic radiation measuring device for electronic devices
CN106304163B (zh) 一种wifi天线性能异常的确定方法及终端
WO2014176846A1 (zh) 一种终端天线总辐射功率的快速测试方法
TW201325273A (zh) 無線網路裝置測試系統及測試方法
WO2020077978A1 (zh) 屏幕亮度调节方法、装置及终端设备
US20220085868A1 (en) Auto-acquisition cellular repeater
CN111225383B (zh) 一种NB-IoT终端的测试方法及装置
WO2011107043A2 (zh) 天线方位检测装置和天线反接检测装置及方法
US20120142290A1 (en) Apparatus and method for detecting effective radiated power
RU2690100C2 (ru) Способ установки спутниковой антенны с применением электронного устройства и электронное устройство для такой установки
CN107889049B (zh) 一种干扰定位方法及定位装置
JP2022171550A (ja) アンテナ装置及びアンテナの制御方法
EP2677599A1 (en) Method and apparatus for testing antennas
CN104904258B (zh) 天线调整处理方法、装置及系统
US20240064590A1 (en) Method and system for automatically measuring handover performance in a multi-cell environment
US20230292146A1 (en) Method and system for post-construction check-out processing
CN111787556B (zh) 转台设备控制方法、移动终端、转台设备及无线网络系统
CN113904113B (zh) 一种硬限位条件下电磁环境测试的天线调节方法与装置
US9137699B2 (en) Antenna device and control method thereof
US11128357B2 (en) Automatically select codebook
US12027751B2 (en) Antenna device and antenna controlling method
JP6662526B2 (ja) 無線lan通信装置及び電波強度表示方法
TW201635844A (zh) 無線網路基地台及相關的天線選擇方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841360

Country of ref document: EP

Kind code of ref document: A1