WO2014047829A1 - 2d/3d切换的液晶透镜组件 - Google Patents

2d/3d切换的液晶透镜组件 Download PDF

Info

Publication number
WO2014047829A1
WO2014047829A1 PCT/CN2012/082140 CN2012082140W WO2014047829A1 WO 2014047829 A1 WO2014047829 A1 WO 2014047829A1 CN 2012082140 W CN2012082140 W CN 2012082140W WO 2014047829 A1 WO2014047829 A1 WO 2014047829A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
lens assembly
pixel
crystal layer
electrodes
Prior art date
Application number
PCT/CN2012/082140
Other languages
English (en)
French (fr)
Inventor
陈峙彣
萧嘉强
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/697,352 priority Critical patent/US9182628B2/en
Publication of WO2014047829A1 publication Critical patent/WO2014047829A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to a liquid crystal lens assembly, and more particularly to a high lens power 2D/3D switched liquid crystal lens assembly.
  • 3D 3-dimensional
  • the so-called 3D display device simulates the field of view of different angles of human eyes, allowing the left and right eyes to receive two 2-dimensional (2-dimension) with parallax.
  • 2D) Image which allows the human brain to acquire different 2D images seen by the left and right eyes, and then can be perceived as 3D images.
  • the current 3D display devices are mainly divided into two categories, namely auto-stereoscopic display devices (Auto-stereoscopic Display) and non-automatic stereo display devices (Stereoscopic Display).
  • Auto-stereoscopic Display Auto-stereoscopic Display
  • Steposcopic Display non-automatic stereo display devices
  • the user of the autostereoscopic display device can see the 3D stereoscopic image without wearing the special structure glasses.
  • Another non-automatic stereoscopic display device requires the user to wear special glasses to see 3D stereoscopic images.
  • the parallax barrier uses a grating to control the direction in which light travels, allowing the user's left and right eyes to see an image with parallax, and this parallax creates a stereoscopic effect in the brain.
  • the direction of the light is controlled by the difference of the refractive index.
  • ITO indium tin oxide
  • FIG. 1a and FIG. 1b are schematic diagrams of the prior art GRIN lens before and after voltage is applied.
  • the so-called GRIN lens is a Gradient in the Index of Refraction Lens.
  • the arrangement of the liquid crystal molecules is as shown in Fig. 1a.
  • the wavefront will be bent, resulting in a property similar to a convex lens, focusing the light at point F, and deriving the focal length as follows:
  • fGRIN is the focal length of the GRIN lens 10
  • d is the thickness of the liquid crystal cell
  • r is the radius of the lens
  • nmax is equal to the extraordinary refractive index ne of the liquid crystal molecules of the liquid crystal lens
  • n(r) is representative of the refractive index r function.
  • the present invention provides a liquid crystal lens assembly, which includes a plurality of adjacently arranged elongated convex lenses, a first transparent substrate, a second transparent substrate, and a plurality of cells disposed from a light emitting surface to a light incident surface.
  • An electrode on the second transparent substrate and a liquid crystal layer are sandwiched between the first transparent substrate and the second transparent substrate.
  • the plurality of electrodes are configured to control an alignment direction of liquid crystal molecules of the liquid crystal layer to adjust a refractive index of liquid crystal molecules of the liquid crystal layer with respect to at least one pixel, and increase or decrease from a center of the pixel to both sides And for controlling the traveling direction of the incident light, and guiding the passing incident light to one of the convex lenses.
  • the electrode is elongated and extends in a direction that is consistent with the direction in which the elongated convex lens extends.
  • the liquid crystal lens assembly is used with linearly polarized light
  • the plurality of elongated convex lenses extend along a first direction and are arranged along a second direction, the first direction being perpendicular to the first In the two directions, the polarization direction of the polarized light is parallel to the second direction.
  • the plurality of electrodes adjust the refractive index of the liquid crystal molecules of the liquid crystal layer relative to the pixel, decreasing from both sides toward the center of the pixel to form a 3D mode.
  • the plurality of electrodes adjust the refractive index of the liquid crystal molecules of the liquid crystal layer relative to the pixel, increasing from both sides toward the center of the pixel to form a 2D mode.
  • the present invention further provides a liquid crystal lens assembly, comprising: a first transparent substrate; a plurality of adjacently arranged elongated convex lenses; a second transparent substrate, the second a plurality of electrodes are disposed on the transparent substrate; a liquid crystal layer is sandwiched between the plurality of elongated convex lenses and the second transparent substrate; and the plurality of electrodes are used for controlling alignment directions of liquid crystal molecules of the liquid crystal layer And adjusting the refractive index of the liquid crystal molecules of the liquid crystal layer with respect to at least one pixel, increasing or decreasing from the center to the sides of the pixel, for controlling the traveling direction of the incident light, and then passing the incident light guide To one of the convex lenses.
  • the electrode is elongated and extends in a direction that is consistent with the direction in which the elongated convex lens extends.
  • the liquid crystal lens assembly is used with linearly polarized light
  • the plurality of elongated convex lenses extend along a first direction and are arranged along a second direction, the first direction being perpendicular to the In the second direction, the polarization direction of the polarized light is parallel to the second direction.
  • the plurality of electrodes adjust the refractive index of the liquid crystal molecules of the liquid crystal layer relative to the pixel, decreasing from both sides toward the center of the pixel to form a 3D mode.
  • the plurality of electrodes adjust the refractive index of the liquid crystal molecules of the liquid crystal layer relative to the pixel, increasing from both sides toward the center of the pixel to form a 2D mode.
  • the liquid crystal lens assembly of the present invention through the support of a set of external convex lenses, and the proper design of the electrodes on the transparent substrate, only need to apply a predetermined voltage on the electrodes, and can produce a convex lens in the liquid crystal layer.
  • the incident light is refracted by the convex lens in the liquid crystal layer, it travels to the external lens and is again refracted and concentrated to the human eye to form a 3D image on the light exit surface. Since the light has undergone two refractions during the process of traveling, the overall focusing ability is improved, and the lens capability is increased, and the gap of the liquid crystal layer can be simultaneously reduced.
  • the convex lens in the liquid crystal layer can be horizontally translated, and the effect of the external lens is cancelled, and a 2D image is formed on the light-emitting surface.
  • the liquid crystal lens assembly of the present invention not only has a simple switching but also reduces the thickness of the liquid crystal cell and effectively reduces the cost.
  • FIG. 1a and 1b are schematic views of a prior art GRIN lens before and after a voltage is applied.
  • FIG. 2 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of the first embodiment of the present invention is applied to a 3D mode.
  • FIG. 3 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of FIG. 2 is applied to a 2D mode.
  • FIG. 4 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of the second embodiment of the present invention is applied to a 3D mode.
  • FIG. 5 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of FIG. 4 is applied to a 2D mode.
  • FIG. 2 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of the first embodiment of the present invention is applied to a 3D mode.
  • the liquid crystal lens assembly 100 includes a plurality of external lenses 102, a transparent substrate 101a, a liquid crystal layer 104, a transparent substrate 101b, and a plurality of electrodes 106 disposed on the transparent substrate 101b from a light emitting surface 112 to a light incident surface 110. .
  • the plurality of external lenses 102 and the plurality of electrodes 106 extend toward the A direction perpendicular to the paper surface.
  • the electrodes 106a, 106b, and 106c corresponding to the sub-pixels 108a, 108b, and 108c are taken as an example. Description.
  • a polarizer (not shown) is disposed to provide polarized light to the liquid crystal lens assembly 100, and the direction of polarization of the polarized light is as indicated by an arrow in FIG.
  • the sub-pixels 108a, 108b, and 108c are a red sub-pixel, a green sub-pixel, and a blue sub-pixel, respectively, and the sub-pixels 108a, 108b, and 108c constitute a pixel 108.
  • the light emitted from the polarizer (not shown) is polarized, and the polarization direction is perpendicular to the direction in which the polarized light propagates.
  • the present invention is not limited thereto.
  • the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 104 to rotate, causing the alignment of the liquid crystal molecules near the electrodes 106a, 106c to become parallel to the polarization of the optical axis.
  • the direction is such that the alignment direction of the liquid crystal molecules by the electrode 106b becomes the polarization direction of the optical axis parallel to the incident light.
  • the liquid crystal molecules in the liquid crystal layer 104 have birefringence characteristics, when the direction of polarization of the incident liquid crystal lens assembly 100 is perpendicular to the optical axis direction of the liquid crystal molecules, the liquid crystal molecules have an ordinary refractive index (no), and when incident liquid crystal lenses When the direction of polarization of the component 100 is parallel to the optical axis direction of the liquid crystal molecules, the liquid crystal molecules have an extraordinary refractive index (ne), and the extraordinary refractive index is greater than the refractive index of the long wavelength.
  • the light near the electrodes 106a, 106c has the lowest refractive index due to the smallest refractive index of the liquid crystal molecules encountered, and vice versa.
  • the light near the electrode 106b has the slowest traveling speed because the refractive index of the liquid crystal molecules encountered is the largest. .
  • the alignment of the liquid crystal molecules causes a change in the overall refractive index, and the liquid crystal layer 104 of the pixel 108 acts as a convex lens to control the direction of refraction of the incident light.
  • the incident light When the incident light is refracted and travels to the external lens 102, since the external lens 102 is also a convex lens, the light is again refracted and concentrated to the human eye, so that the observer on the side of the light-emitting surface 112 sees the 3D image. Since the light has undergone two refractions during the process of traveling, the overall focusing ability is improved, and the lens capability is increased, and the gap of the liquid crystal layer can be simultaneously reduced.
  • FIG. 3 is a schematic diagram showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of FIG. 2 is applied to a 2D mode.
  • the voltage applied to the electrodes 106a, 106b, 106c is changed, and the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 104 to rotate, causing the alignment of the liquid crystal molecules close to the electrodes 106a, 106c to become
  • the optical axis is parallel to the polarization direction of the incident light, and the alignment direction of the liquid crystal molecules passing through the electrode 106b becomes the optical axis parallel to the direction of propagation of the polarized light.
  • the arrangement of the liquid crystal molecules changes to cause a change in the overall refractive index, and a convex lens is still generated in the liquid crystal layer 104 relative to the pixel 108, just as shown in the figure.
  • the positional shift of the convex lens happens to cancel the effect of the outer lens 102, which is equivalent to the absence of any lens.
  • the light will travel in a straight line, so the observer on the side of the light-emitting surface 112 will see the 2D image.
  • a set of electrodes may be additionally designed, and a voltage is applied to the set of electrodes.
  • a voltage is applied to the set of electrodes.
  • the liquid crystal layer 104 employs positive liquid crystal molecules, that is, when an electric field is generated by applying a voltage to the electrode 106, the alignment direction of the liquid crystal molecules is parallel to the direction of the electric field.
  • the liquid crystal layer 104 may also employ negative liquid crystal molecules, but the arrangement and extension direction of the electrodes must be changed to achieve a proper design.
  • FIG. 4 is a schematic view showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of the second embodiment of the present invention is applied to a 3D mode.
  • the plurality of external lenses 202 of the liquid crystal lens assembly 200 in the present embodiment are disposed between the transparent substrate 201a and the transparent substrate 201b and adjacent to the liquid crystal layer 204.
  • the plurality of external lenses 202 and the plurality of electrodes 206 extend toward the A direction perpendicular to the paper surface.
  • the electrodes 206a, 206b, and 206c corresponding to the sub-pixels 208a, 208b, and 208c are taken as an example. Description.
  • a polarizer (not shown) is disposed to provide polarized light to the liquid crystal lens assembly 200, and the direction of polarization of the polarized light is as indicated by an arrow in FIG.
  • the sub-pixels 208a, 208b, and 208c are respectively a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the sub-pixels 208a, 208b, and 208c constitute a pixel 208.
  • the light emitted from the polarizer (not shown) is polarized, and the polarization direction is perpendicular to the direction in which the polarized light propagates.
  • the present invention is not limited thereto.
  • the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 204 to rotate, causing the alignment of the liquid crystal molecules near the electrodes 206a, 206c to become parallel to the polarization of the optical axis.
  • the direction is such that the alignment direction of the liquid crystal molecules by the electrode 206b becomes the polarization direction of the optical axis parallel to the incident light.
  • the alignment of the liquid crystal molecules causes a change in the overall refractive index, and the liquid crystal layer 204 of the pixel 208 acts as a convex lens to control the direction of refraction of the incident light. The incident light is refracted and then enters the external lens 202.
  • the external lens 202 is also a convex lens, the light is again refracted and concentrated to the human eye, so the observer on the side of the light-emitting surface 212 will see the 3D image. Since the light has undergone two refractions during the process of traveling, the overall focusing ability is improved, and the lens capability is increased, and the gap of the liquid crystal layer can be simultaneously reduced.
  • FIG. 5 is a schematic diagram showing a cross section and a liquid crystal molecule alignment direction when the liquid crystal lens assembly of FIG. 4 is applied to a 2D mode.
  • the voltage applied to the electrodes 206a, 206b, 206c is changed, and the generated electric field will cause the liquid crystal molecules in the liquid crystal layer 204 to rotate, causing the alignment of the liquid crystal molecules close to the electrodes 206a, 206c to become
  • the optical axis is parallel to the polarization direction of the incident light, and the alignment direction of the liquid crystal molecules passing through the electrode 206b becomes the optical axis parallel to the polarization propagation direction.
  • the arrangement of the liquid crystal molecules changes to cause a change in the overall refractive index, and a convex lens is still generated in the liquid crystal layer 204 relative to the pixel 208, only the figure
  • the positional shift of the convex lens happens to cancel the effect of the outer lens 202, which is equivalent to the absence of any lens.
  • the light will travel in a straight line, so the observer on the side of the light-emitting surface 212 will see the 2D image.
  • a set of electrodes may be additionally designed, and then a voltage is applied to the set of electrodes to The purpose of translating the lens formed by the liquid crystal layer 204 is achieved.
  • the liquid crystal layer 204 employs positive liquid crystal molecules, that is, when an electric field is generated by applying a voltage to the electrode 206, the alignment direction of the liquid crystal molecules is parallel to the direction of the electric field.
  • the liquid crystal layer 204 may also employ negative liquid crystal molecules, but the arrangement of the electrodes and the direction of extension must be changed to achieve a proper design.
  • the liquid crystal lens assembly of the present invention can produce a convex lens in the liquid crystal layer via the support of a set of external convex lenses and the appropriate design of the electrodes on the transparent substrate, only by applying a predetermined voltage to the electrodes.
  • the incident light is refracted by the convex lens in the liquid crystal layer, it travels to the external lens and is again refracted and concentrated to the human eye to form a 3D image on the light exit surface. Since the light has undergone two refractions during the process of traveling, the overall focusing ability is improved, and the lens capability is increased, and the gap of the liquid crystal layer can be simultaneously reduced.
  • the convex lens in the liquid crystal layer can be horizontally translated, and the effect of the external lens is cancelled, and a 2D image is formed on the light-emitting surface.
  • the liquid crystal lens assembly of the present invention not only has a simple switching but also reduces the thickness of the liquid crystal cell and effectively reduces the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种2D/3D切换的液晶透镜组件(100),自出光面(112)至入光面(110)依序包括多个相邻排列的长条状凸透镜(102),第一透明基板(101a),第二透明基板(101b),设置于第二透明基板(101b)上的多个电极(106)和夹于第一、第二透明基板之间的液晶层(104)。多个电极(106)用于控制液晶层(104)的液晶分子的排列方向,以调整相对于至少一像素(108)的液晶层(104)的液晶分子折射率,该折射率由相对于像素(108)的中央向两边递增或递减,用于控制入射光的行进方向,再将通过的入射光导至凸透镜(102)之一。

Description

2D/3D切换的液晶透镜组件 技术领域
本发明涉及一种液晶透镜组件,尤指一种具高透镜光学能力 (high lens power) 的2D/3D切换的液晶透镜组件。
背景技术
人类是透过双眼所看到的展望而感知到真实世界的影像。而人类的大脑会进一步根据双眼所看到两个不同角度的展望之间的空间距离差异而形成所谓的3维(3-dimension, 3D) 影像,这种空间距离差异则被称为视差(parallax)。所谓的3D显示设备就是模拟人类双眼不同角度的视野,让左、右眼分别接收到有视差的两个2维(2-dimension, 2D)影像,使人脑获取左、右眼看到的不同2D影像后,能感知为3D影像。
目前的3D显示设备主要分为两类,分别是自动立体显示设备(Auto-stereoscopic display)以及非自动立体显示设备(Stereoscopic display)。自动立体显示设备的用户不用戴上特殊结构的眼镜就可以看出3D立体影像。而另一种非自动立体显示设备则需要使用者戴上特制的眼镜,才能看到3D立体影像。常见的自动立体显示设备有两种:主要分成视差光栅 (Parallax barrier)和柱状透镜 (Lenticular Lenses)两种。视差光栅是利用光栅来控制光前进的方向,让使用者的左右眼看到具有视差的影像,而此视差就会在大脑中形成立体感。至于柱状透镜则是利用折射率的不同来控制光的方向,可以有多种作法,其中一种作法是以液晶层来取代实体透镜,藉由上下玻璃基板的氧化铟锡(ITO)特殊图案设计,来造成液晶层空间中电位线分布不均,使液晶分子的排列改变。由于液晶分子的排列会影响到折射率的不同,经过适当的设计后,整体的折射率变化就像柱状透镜一样,控制入射光的折射方向。
请参阅图1a与图1b,图1a与图1b是现有技术的GRIN透镜被施加电压前后的示意图。所谓GRIN透镜就是折射率随着梯度分布的透镜(Gradient in the Index of Refraction Lens)。当未被施加任何电压时,液晶分子的排列如图1a所示。由于前述氧化铟锡电极图案(未显示)的特殊设计,于施加电压产生电场时,液晶分子的排列方向将如图1b所示,造成中心的液晶分子折射率最大(ne),愈往两边的液晶分子折射率愈小,直到最小液晶分子折射率(no)为止。而当光线行进时,两边的光线因为遇到的液晶分子折射率最小,行进速度最快,而中间的光线因为遇到的液晶分子折射率最大,所以行进速度最慢。以入射平面波而言,波前将会被弯曲,造成具有类似凸透镜的性质,将光线聚焦于F点,并可推导出焦距的公式如下 :
Figure PCTCN2012082140-appb-I000001
Figure PCTCN2012082140-appb-I000002
其中,fGRIN 为GRIN透镜10的焦距,d为液晶盒的厚度,r是透镜的半径,nmax等于液晶透镜的液晶分子的非寻常光折射率ne,而n(r)则代表折射率是r的函数。当以4mm的适当焦距作为设计目标时,若液晶分子的Dn为0.21,则必需将液晶盒的厚度d保持在大约30mm。同时,若要得到小的焦距,如果无法缩小GRIN透镜10的半径及改变液晶分子的种类,则唯一的选择就是加大液晶盒的厚度。然而,加大液晶盒的厚度不仅使液晶层间隙(cell gap)增加,也无疑地会增加成本,因此若能制作一种应用于2D/3D影像切换的液晶透镜组件,在不必增加液晶厚度的前提之下,就能够提升聚焦能力,将可有效地降低成本。
Figure PCTCN2012082140-appb-I000001
技术问题
因此本发明的目的是提供一种2D/3D切换的液晶透镜组件,该液晶透镜组件是利用一组外加的固定透镜,来增进透镜的光学能力,以解决背景技术的问题。
技术解决方案
本发明提供一种液晶透镜组件,其自一出光面至一入光面依序包括多个相邻排列的长条状凸透镜、一第一透明基板、一第二透明基板、多个设置于该第二透明基板上的电极和一液晶层夹于该第一透明基板与该第二透明基板之间。所述多个电极用于控制所述液晶层的液晶分子的排列方向,以调整相对于至少一像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增或递减,用于控制入射光的行进方向,再将所述通过的入射光导至所述的凸透镜其中之一。
依据本发明的实施例,所述电极为长条状,其延伸方向与所述长条状凸透镜延伸方向一致。
依据本发明的实施例,所述液晶透镜组件配合线性偏振光使用,且所述多个长条状凸透镜沿一第一方向延伸,并沿一第二方向排列,该第一方向垂直于该第二方向,所述偏振光的偏振方向平行于第二方向。
依据本发明的实施例,所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递减,以形成3D模式。
依据本发明的实施例,所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增,以形成2D模式。
本发明另提供一种液晶透镜组件,其自一出光面至一入光面依序包括:一第一透明基板;多个相邻排列的长条状凸透镜;一第二透明基板,该第二透明基板之上设置有多个电极;一液晶层夹于所述多个长条状凸透镜与该第二透明基板之间;所述多个电极用于控制所述液晶层的液晶分子的排列方向,以调整相对于至少一像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增或递减,用于控制入射光的行进方向,再将所述通过的入射光导至所述的凸透镜其中之一。
依据本发明的实施例,所述电极为长条状,其延伸方向与所述长条状凸透镜延伸方向一致。
依据本发明的实施例,该液晶透镜组件配合线性偏振光使用,且所述多个长条状凸透镜沿一第一方向延伸,并沿一第二方向排列,所述第一方向垂直于所述第二方向,所述偏振光的偏振方向平行于第二方向。
依据本发明的实施例,所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递减,以形成3D模式。
依据本发明的实施例,所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增,以形成2D模式。
有益效果
相较于现有技术,本发明的液晶透镜组件,经由一组外加凸透镜的支持,以及透明基板上电极的适当设计,仅需要施加预定的电压于电极之上,就可以在液晶层内产生凸透镜。当入射光经过液晶层内的凸透镜折射后,于行进至外加透镜,又会再次被折射,并集中到人眼,以于出光面形成3D影像。由于光线行进的过程中历经了两次折射,使整体的聚焦能力提升,加大了透镜能力的同时,将可同时减少液晶层的间隙。此外,在转换至2D模式时,也只要改变施加于电极上的电压,就可以将液晶层内的凸透镜水平平移,并抵消外加透镜的效果,于出光面形成2D影像。本发明的液晶透镜组件,不仅切换简单,亦可降低液晶盒的厚度,有效降低成本。
Figure PCTCN2012082140-appb-I000001
附图说明
图1a与图1b是现有技术的GRIN透镜被施加电压前后的示意图。
图2是本发明第一实施例的液晶透镜组件应用于3D模式时的剖面及液晶分子排列方向示意图。
图3是图2的液晶透镜组件应用于2D模式时的剖面及液晶分子排列方向示意图。
图4是本发明第二实施例的液晶透镜组件应用于3D模式时的剖面及液晶分子排列方向示意图。
图5是图4的液晶透镜组件应用于2D模式时的剖面及液晶分子排列方向示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」、「水平」、「垂直」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参阅图2,图2是本发明第一实施例的液晶透镜组件应用于3D模式时的剖面及液晶分子排列方向示意图。液晶透镜组件100自一出光面112到一入光面110依序包括数个外加透镜102、一透明基板101a、一液晶层104、一透明基板101b以及设置于透明基板101b上的数个电极106。其中数个外加透镜102以及数个电极106均是朝向垂直于纸面的A方向延伸,在本实施例中是以对应于子像素108a、108b、108c设置的电极106a、106b、106c为例作为说明。另外在液晶透镜组件100以及各子像素108a、108b、108c之间,设置有一偏光片(未显示),用以提供偏振光至液晶透镜组件100,偏振光的传播方向如图2中箭头所示,且子像素108a、108b、108c分别为红色子像素、绿色子像素以及蓝色子像素,子像素108a、108b、108c构成一像素108。本实施例中是以从偏光片(未显示)射出的光线,偏振方向垂直于偏振光传播方向为例进行说明,但不限于此。
当施加电压于电极106a、106b、106c之上时,所产生的电场将会使液晶层104中的液晶分子旋转,造成靠近电极106a、106c的液晶分子排列方向变为光轴平行于偏振光传播方向,而靠进电极106b的液晶分子排列方向变为光轴平行于入射光的偏振方向。由于液晶层104内的液晶分子具有双折射率特性,当入射液晶透镜组件100的偏振光方向垂直于液晶分子的光轴方向时,液晶分子具有寻常光折射率(no),而当入射液晶透镜组件100的偏振光方向平行于液晶分子的光轴方向时,液晶分子具有非寻常光折射率(ne),且非寻常光折射率系大于寻长光折射率。
因此当光线行进时,靠近电极106a、106c的光线因为遇到的液晶分子折射率最小,行进速度最快,反之,靠近电极106b的光线因为遇到的液晶分子折射率最大,所以行进速度最慢。经此适当设计,液晶分子的排列改变造成整体折射率的变化,相对于像素108的液晶层104就如同一个凸透镜,控制入射光的折射方向。
Figure PCTCN2012082140-appb-I000001
而当入射光经过折射行进至外加透镜102后,由于外加透镜102也是凸透镜,因此又会再次将光线折射,并集中到人眼,故在出光面112一侧的观察者会看到3D影像。由于光线行进的过程中历经了两次折射,使整体的聚焦能力提升,加大了透镜能力的同时,将可同时减少液晶层的间隙。
Figure PCTCN2012082140-appb-I000001
图2中的液晶透镜组件100亦可适用于2D模式。请参阅图3,图3是图2的液晶透镜组件应用于2D模式时的剖面及液晶分子排列方向示意图。当应用于2D模式时,改变施加于电极106a、106b、106c之上的电压,所产生的电场将会使液晶层104中的液晶分子旋转,造成靠近电极106a、106c的液晶分子排列方向变为光轴平行于入射光的偏振方向,而靠进电极106b的液晶分子排列方向变为光轴平行于偏振光传播方向。由于液晶层104内的液晶分子具有双折射率特性,经此适当设计,液晶分子的排列改变造成整体折射率的变化,液晶层104内相对于像素108附近,仍然会产生一个凸透镜,只是与图2的3D模式时相较,凸透镜的位置平移,恰巧抵消外部透镜102的效果,相当于无任何透镜的存在。光线会沿直线传播,故在出光面112一侧的观察者会看到2D影像。
在本发明中,将3D模式切换至2D模式时,除了透过改变施加于电极106a、106b、106c之上的电压,还可以另外设计一组电极,再将电压施加于该组电极之上,以达到平移液晶层104所形成透镜的目的,如此一来,就可以在2D及3D模式时分别选择不同组电极,而不必在每次切换显示模式时,都必需在同组电极之上改变所施加的电压。
在图2、图3中,液晶层104采用正性液晶分子,也就是说,当施加电压于电极106而产生电场时,液晶分子的排列方向是平行于电场方向。在另一实施例中,液晶层104亦可采用负性液晶分子,但是电极的排列以及延伸方向必需改变,以达到适当的设计。
请参阅图4,图4是本发明第二实施例的液晶透镜组件应用于3D模式时的剖面及液晶分子排列方向示意图。与第一实施例不同的是,本实施例中液晶透镜组件200的数个外加透镜202是设置于透明基板201a与透明基板201b之间,并邻接于液晶层204。其中数个外加透镜202以及数个电极206均是朝向垂直于纸面的A方向延伸,在本实施例中是以对应于子像素208a、208b、208c设置的电极206a、206b、206c为例作为说明。另外在液晶透镜组件200以及各子像素208a、208b、208c之间,设置有一偏光片(未显示),用以提供偏振光至液晶透镜组件200,偏振光的传播方向如图4中箭头所示,且子像素208a、208b、208c分别为红色子像素、绿色子像素以及蓝色子像素,子像素208a、208b、208c构成一像素208。本实施例中是以从偏光片(未显示)射出的光线,偏振方向垂直于偏振光传播方向为例进行说明,但不限于此。
当施加电压于电极206a、206b、206c之上时,所产生的电场将会使液晶层204中的液晶分子旋转,造成靠近电极206a、206c的液晶分子排列方向变为光轴平行于偏振光传播方向,而靠进电极206b的液晶分子排列方向变为光轴平行于入射光的偏振方向。经此适当设计,液晶分子的排列改变造成整体折射率的变化,相对于像素208的液晶层204就如同一个凸透镜,控制入射光的折射方向。而入射光经过折射后随即进入外加透镜202,由于外加透镜202也是凸透镜,因此又会再次将光线折射,并集中到人眼,故在出光面212一侧的观察者会看到3D影像。由于光线行进的过程中历经了两次折射,使整体的聚焦能力提升,加大了透镜能力的同时,将可同时减少液晶层的间隙。
请参阅图5,图5是图4的液晶透镜组件应用于2D模式时的剖面及液晶分子排列方向示意图。当应用于2D模式时,改变施加于电极206a、206b、206c之上的电压,所产生的电场将会使液晶层204中的液晶分子旋转,造成靠近电极206a、206c的液晶分子排列方向变为光轴平行于入射光的偏振方向,而靠进电极206b的液晶分子排列方向变为光轴平行于偏振光传播方向。由于液晶层204内的液晶分子具有双折射率特性,经此适当设计,液晶分子的排列改变造成整体折射率的变化,液晶层204内相对于像素208附近,仍然会产生一个凸透镜,只是与图4的3D模式时相较,凸透镜的位置平移,恰巧抵消外部透镜202的效果,相当于无任何透镜的存在。光线会沿直线传播,故在出光面212一侧的观察者会看到2D影像。
同理,欲将3D模式切换至2D模式时,除了透过改变施加于电极206a、206b、206c之上的电压,还可以另外设计一组电极,再将电压施加于该组电极之上,以达到平移液晶层204所形成透镜的目的。在图4、图5中,液晶层204采用正性液晶分子,也就是说,当施加电压于电极206而产生电场时,液晶分子的排列方向是平行于电场方向。在另一实施例中,液晶层204亦可采用负性液晶分子,但是电极的排列以及延伸方向必需改变,以达到适当的设计。
本发明的液晶透镜组件经由一组外加凸透镜的支持,以及透明基板上电极的适当设计,仅需要施加预定的电压于电极之上,就可以在液晶层内产生凸透镜。当入射光经过液晶层内的凸透镜折射后,于行进至外加透镜,又会再次被折射,并集中到人眼,以于出光面形成3D影像。由于光线行进的过程中历经了两次折射,使整体的聚焦能力提升,加大了透镜能力的同时,将可同时减少液晶层的间隙。此外,在转换至2D模式时,也只要改变施加于电极上的电压,就可以将液晶层内的凸透镜水平平移,并抵消外加透镜的效果,于出光面形成2D影像。本发明的液晶透镜组件,不仅切换简单,亦可降低液晶盒的厚度,有效降低成本。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
Figure PCTCN2012082140-appb-I000001
本发明的实施方式
工业实用性
序列表自由内容

Claims (10)

  1. 一种液晶透镜组件,其自一出光面至一入光面依序包括:
    多个相邻排列的长条状凸透镜;
    一第一透明基板;
    一第二透明基板,该第二透明基板之上设置有多个电极;
    一液晶层夹于该第一透明基板与该第二透明基板之间;
    其中所述多个电极用于控制所述液晶层的液晶分子的排列方向,以调整相对于至少一像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增或递减,用于控制入射光的行进方向,再将所述通过的入射光导至所述凸透镜其中之一。
    Figure PCTCN2012082140-appb-I000001
    Figure PCTCN2012082140-appb-I000001
  2. 根据权利要求1所述的液晶透镜组件,其中所述电极为长条状,其延伸方向与所述长条状凸透镜延伸方向一致。
  3. 根据权利要求2所述的液晶透镜组件,其中所述液晶透镜组件配合线性偏振光使用,且所述多个长条状凸透镜沿一第一方向延伸,并沿一第二方向排列,该第一方向垂直于该第二方向,所述偏振光的偏振方向平行于第二方向。
    Figure PCTCN2012082140-appb-I000001
  4. 根据权利要求1所述的液晶透镜组件,其中所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递减,以形成3D模式。
  5. 根据权利要求1所述的液晶透镜组件,其中所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增,以形成2D模式。
    Figure PCTCN2012082140-appb-I000001
  6. 一种液晶透镜组件,其自一出光面至一入光面依序包括:
    一第一透明基板;
    多个相邻排列的长条状凸透镜;
    一第二透明基板,该第二透明基板之上设置有多个电极;
    一液晶层夹于所述多个长条状凸透镜与该第二透明基板之间;
    其中所述多个电极用于控制所述液晶层的液晶分子的排列方向,以调整相对于至少一像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增或递减,用于控制入射光的行进方向,再将所述通过的入射光导至所述的凸透镜其中之一。
  7. 根据权利要求6所述的液晶透镜组件,其中所述电极为长条状,其延伸方向与所述长条状凸透镜延伸方向一致。
  8. 根据权利要求7所述的液晶透镜组件,其中该液晶透镜组件配合线性偏振光使用,且所述多个长条状凸透镜沿一第一方向延伸,并沿一第二方向排列,该第一方向垂直于该第二方向,所述偏振光的偏振方向平行于第二方向。
    Figure PCTCN2012082140-appb-I000003
  9. 根据权利要求6所述的液晶透镜组件,其中所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递减,以形成3D模式。
    Figure PCTCN2012082140-appb-I000004
  10. 根据权利要求6所述的液晶透镜组件,其中所述多个电极调整相对于所述像素的所述液晶层的液晶分子折射率,由相对于所述像素的中央向两边递增,以形成2D模式。
    Figure PCTCN2012082140-appb-I000001
PCT/CN2012/082140 2012-09-25 2012-09-27 2d/3d切换的液晶透镜组件 WO2014047829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/697,352 US9182628B2 (en) 2012-09-25 2012-09-27 Two dimension/three dimension switchable liquid crystal lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210359413.XA CN102854694B (zh) 2012-09-25 2012-09-25 2d/3d切换的液晶透镜组件
CN201210359413.X 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014047829A1 true WO2014047829A1 (zh) 2014-04-03

Family

ID=47401410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082140 WO2014047829A1 (zh) 2012-09-25 2012-09-27 2d/3d切换的液晶透镜组件

Country Status (2)

Country Link
CN (1) CN102854694B (zh)
WO (1) WO2014047829A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317135B (zh) * 2014-11-19 2018-09-11 京东方科技集团股份有限公司 光栅装置、显示装置及其驱动方法
CN106842600A (zh) * 2017-04-12 2017-06-13 武汉华星光电技术有限公司 一种裸眼透镜及显示装置
CN107884940A (zh) 2017-11-28 2018-04-06 腾讯科技(深圳)有限公司 显示模组、头戴式显示设备及图像立体显示方法
US11221517B2 (en) 2018-03-07 2022-01-11 Boe Technology Group Co., Ltd. Liquid crystal display apparatus and fabricating method thereof, back light and fabricating method thereof
TWI778262B (zh) * 2019-02-13 2022-09-21 源奇科技股份有限公司 可調式光投射器
GB2585188B (en) * 2019-06-26 2023-02-01 Flexenable Ltd Stacked liquid crystal cell device electrically operable to generate refractive index pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025490A (zh) * 2006-02-20 2007-08-29 三星电子株式会社 立体图像转换面板和具有其的立体图像显示设备
CN101285938A (zh) * 2007-04-12 2008-10-15 三星电子株式会社 高效二维-三维可切换显示器
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
CN201716500U (zh) * 2010-04-24 2011-01-19 华映光电股份有限公司 可切换二维与三维显示模式的显示装置及其液晶透镜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062985B (zh) * 2010-11-16 2012-02-22 深圳超多维光电子有限公司 液晶透镜及其控制方法以及3d显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025490A (zh) * 2006-02-20 2007-08-29 三星电子株式会社 立体图像转换面板和具有其的立体图像显示设备
CN101395928A (zh) * 2006-03-03 2009-03-25 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
CN101285938A (zh) * 2007-04-12 2008-10-15 三星电子株式会社 高效二维-三维可切换显示器
CN201716500U (zh) * 2010-04-24 2011-01-19 华映光电股份有限公司 可切换二维与三维显示模式的显示装置及其液晶透镜

Also Published As

Publication number Publication date
CN102854694A (zh) 2013-01-02
CN102854694B (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
US8045133B2 (en) Electrically-driven liquid crystal lens and display device using the same
KR101201848B1 (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
US8941786B2 (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
US8860894B2 (en) Electric field driven liquid crystal lens cell and stereoscopic image display device using the same
WO2014047829A1 (zh) 2d/3d切换的液晶透镜组件
US10274740B2 (en) Display module comprising liquid crystal lens, method for controlling display module, and display device
WO2011036736A1 (ja) 立体画像表示装置
US10036894B2 (en) Image display and liquid crystal lens therefor
TW201418777A (zh) 顯示裝置
WO2012048485A1 (zh) 2d/3d切换的液晶透镜组件及显示装置
KR20120074966A (ko) 회절 소자를 이용한 영상 표시 장치
KR20120032197A (ko) 3차원 표시 장치
CN102116988A (zh) 电驱动液晶透镜和使用该透镜的立体显示器
US8780287B2 (en) Electrically-driven liquid crystal lens panel and stereoscopic display panel
TWI499801B (zh) 顯示裝置
KR20150081106A (ko) 표시 장치
WO2013123797A1 (zh) 液晶透镜、其制造方法及制造设备
CN103278993B (zh) 液晶透镜及其驱动方法、立体显示装置
US9261708B2 (en) Three dimensional image display device
KR20060058406A (ko) 3차원 표시 장치
WO2014075297A1 (zh) 液晶透镜组件以及立体影像显示器
WO2022267545A1 (zh) 可切换液晶光学器件
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板
CN110456554B (zh) 显示装置
KR101869868B1 (ko) 액정표시장치 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13697352

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885857

Country of ref document: EP

Kind code of ref document: A1