WO2014045804A1 - Water purification device and method for manufacturing purified water - Google Patents

Water purification device and method for manufacturing purified water Download PDF

Info

Publication number
WO2014045804A1
WO2014045804A1 PCT/JP2013/072726 JP2013072726W WO2014045804A1 WO 2014045804 A1 WO2014045804 A1 WO 2014045804A1 JP 2013072726 W JP2013072726 W JP 2013072726W WO 2014045804 A1 WO2014045804 A1 WO 2014045804A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
raw water
membrane
membrane module
raw
Prior art date
Application number
PCT/JP2013/072726
Other languages
French (fr)
Japanese (ja)
Inventor
丸木 祐治
Original Assignee
株式会社タカギ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タカギ filed Critical 株式会社タカギ
Publication of WO2014045804A1 publication Critical patent/WO2014045804A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • B01D61/081Apparatus therefor used at home, e.g. kitchen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43195Wires or coils
    • B01F25/431951Spirally-shaped baffle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431972Mounted on an axial support member, e.g. a rod or bar
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • B01D2313/086Meandering flow path over the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a water purifier and a method for producing purified water.
  • Patent Document 1 a filtration apparatus using a membrane module is known (for example, Patent Documents 1 to 3).
  • Patent Document 1 a plurality of membrane modules, an introduction line for introducing a stock solution to the primary side of each of the membrane modules, and a secondary side of each of the membrane modules are connected and filtered by the membrane module.
  • a filtration liquid discharge line for discharging the filtrate, and at the time of backwashing, the flow path of the introduction line communicating with the membrane module to be backwashed is provided in the introduction line in a filtration device that is closed
  • the flow path from the membrane module to be backwashed during backwashing is opened and connected to the primary side of each of the membrane modules and the backwash line through which the filtrate flows as backwashing liquid.
  • Patent Document 2 in a method of operating a membrane separation apparatus having a plurality of membrane modules having a common permeate line, the permeate from other membrane modules is used when backwashing is performed in some membrane modules.
  • a method of operating a membrane separation device characterized in that it is supplied to the secondary side of the membrane module to be backwashed by the discharge pressure and then pressurized gas is supplied to the secondary side.
  • Patent Document 3 discloses that in a membrane filtration apparatus including a plurality of membrane modules, a membrane passage that performs backwashing is directly passed with membrane permeated water obtained from another membrane module and backwashed. Equipped with a fluid passage switching mechanism for switching, a compressor and air piping for supplying pressurized air to each membrane module, stops the introduction of raw water into the membrane module performing backwashing, and instead pressurizes from the compressor Introduce air to the primary side of the membrane module for backwashing and introduce permeated water from other membrane modules to the secondary side of the membrane module for backwashing to perform backwashing or backwashing.
  • a membrane filtration device configured to supply pressurized air to the secondary side of a membrane module that performs washing, mix in backwash water, and backwash with a gas-liquid mixed fluid.
  • the main pipe is connected, and the raw water main pipe Branch pipes are branched, the end side of each raw water branch pipe is connected to the raw water inlet of each membrane module, each raw water branch pipe is provided with an open / close valve, and the concentrated water outlet of each membrane module is connected via the pipe
  • the three-way valve is connected to an inflow port of the three-way valve, and each of the three-way valves has two outflow ports. One of the outflow ports is connected to a branch pipe for circulating the concentrated water.
  • one end of the branch pipe for backwash drainage is connected to the other outflow port of the three-way valve, and the other end of the branch pipe is connected to the main pipe for backwash drainage discharge
  • One end of a branch pipe for extracting permeate is connected to the permeate outlet of the membrane module, and the other end of the branch pipe is connected to a main pipe for extracting permeate, Raw water branch piping
  • the end side of the air branch pipe is connected to the portion between each on-off valve and each membrane module, the upstream end side of each air branch pipe is connected to the air main pipe, and this air main pipe is connected to the compressor.
  • the water purifier of the present invention includes a raw water supply channel, a raw water supply unit that is disposed in the raw water supply channel, and that feeds raw water, a plurality of raw water branch channels that branch the raw water supply channel into at least two, A plurality of membrane modules that are disposed in the raw water branch path and that purify the raw water, a discharge path that is connected upstream of the membrane means that purifies the raw water included in the plurality of membrane modules, and a downstream side of the plurality of membrane modules And a plurality of water purification branches and the water purification paths where the plurality of water purification branches merge.
  • the discharge path is provided with a discharge valve that opens and closes the discharge path
  • the raw water branch path is provided with an inflow valve that opens and closes the flow path of the raw water branch path.
  • the membrane module includes a raw water area to which raw water is supplied, a membrane means for purifying the raw water, and a purified water area from which purified water purified by the membrane means flows out, and the discharge path is in the raw water area of the membrane module. It is preferable that they are connected.
  • the membrane means include a microfiltration membrane and an ultrafiltration membrane.
  • the said discharge path may be connected to the raw
  • the water purifier of the present invention preferably has an inverter control unit for controlling the raw water supply means so as to pulsate the water pressure of the raw water. It is preferable that a flow path including microbubble generating means is formed in parallel in the water purification branch.
  • the water purifier of the present invention preferably includes a raw water tank and means for supplying a chemical solution to the raw water tank.
  • raw water is supplied in parallel to a plurality of membrane modules having at least a first membrane module and a second membrane module, and the raw water is filtered through the plurality of membrane modules.
  • the reverse cleaning operation the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the water pressure of the raw water, the raw water is filtered, and at least a part of the obtained purified water is reversed.
  • the other membrane module is backwashed from the downstream side to the upstream side of the other membrane module, and the other membrane module is backwashed.
  • raw water is supplied to the first membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is used as backwash water from the downstream side of the second membrane module.
  • the raw water may be pulsated so that the ratio (Pmax / Pmix) of the maximum pressure value Pmax to the minimum pressure value Pmin of the raw water water pressure is 1.3 or more and 2.5 or less. preferable.
  • the water purification apparatus of the present invention can be suitably used for the method for producing water purification of the present invention.
  • a water purifier with high backwashing efficiency can be obtained.
  • the water purifier of the present invention can be reduced in size.
  • purified water having excellent hygiene can be stably provided.
  • FIG. 1 is a diagram schematically showing the configuration of the water purifier of the present invention.
  • the water purifier 1 of the present invention is disposed in the raw water supply path 3, the raw water supply path 3, and the raw water supply means P1 that feeds the raw water, and a plurality of raw water branch paths that branch the raw water supply path 3 into at least two or more. 5A, 5B, and a plurality of membrane modules 9A, 9B that are disposed in the plurality of raw water branch paths 5A, 5B and purify the raw water, and upstream of the membrane means 9c that purifies the raw water included in the membrane modules 9A, 9B.
  • the side to which raw water is supplied (left side in FIG. 1) is referred to as the upstream side
  • the side from which purified water is discharged (right side in FIG. 1) is referred to as the downstream side.
  • the raw water supply path 3 supplies raw water to be subjected to purification treatment such as tap water and well water.
  • the raw water supply channel 3 may be directly connected to a water main supplied to a building such as an apartment, an apartment, a building, a hotel, or a plurality of detached houses, or a raw water for storing tap water from the water main. You may connect to the aquarium.
  • the raw water supply path 3 is constituted by a pipe line having a predetermined pipe diameter.
  • the raw water supply path 3 preferably includes an inflow valve (first valve V1) for opening and closing the raw water supply path 3.
  • the inflow valve may be a check valve.
  • raw water supply means P1 for sending raw water is disposed.
  • the raw water supply means P1 include a vertical multi-stage centrifugal pump, a horizontal multi-stage centrifugal pump, and a positive displacement pump. Among these, it is preferable to use a vertical multistage centrifugal pump as the raw water supply means P1 because the raw water is stably pressurized and fed.
  • the downstream end of the raw water supply path 3 is connected at the branch point 4 to the upstream ends of the raw water branch paths 5A and 5B that branch the raw water supply path 3 into a plurality.
  • the raw water branch paths 5A and 5B are constituted by pipe lines having a predetermined pipe diameter.
  • the raw water branch paths 5A and 5B include inflow valves (second valve V2 and third valve V3) for opening and closing the raw water branch paths 5A and 5B, respectively.
  • the downstream ends of the raw water branch paths 5A and 5B are connected to membrane modules 9A and 9B that purify the raw water.
  • the membrane modules 9A and 9B remove foreign matters such as fine particles and turbidity in the raw water, purify the raw water, and discharge the purified water.
  • the membrane modules 9A and 9B include membrane means 9c for purifying raw water, and a substantially cylindrical container 9d for housing the membrane means 9c.
  • the raw water region 9e to which raw water is supplied and the purified water purified by the membrane means flow in between the membrane means 9c for purifying the raw water inside the substantially cylindrical container 9d. It is preferable to provide the purified water area 9f.
  • Examples of the membrane means 9c included in the membrane modules 9A and 9B include a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane (UF membrane).
  • a filtration membrane can be mentioned.
  • the reverse osmosis membrane (RO membrane) has a high water flow pressure during filtration, so that the raw water supply means P1 needs to have high performance or a large size.
  • the power cost during operation may be high, and the amount of water used is also high because waste water is required.
  • the membrane means 9c included in the membrane module includes a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane.
  • NF membrane nanofiltration membrane
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the membrane modules 9A and 9B may be either an external pressure type or an internal pressure type, and preferably an internal pressure type.
  • the membrane modules 9A and 9B are provided with a raw water inlet 9g and a purified water outlet 9h, and further with a concentrated water outlet 9i for discharging concentrated water.
  • the raw water inlet 9g and the concentrated water outlet 9i are connected to the raw water area 9e of the membrane modules 9A and 9B, and the purified water outlet 9h is connected to the purified water area 9f of the membrane modules 9A and 9B.
  • the water purifier of the present invention has a discharge path connected to the upstream side of the membrane means 9c included in the membrane module.
  • the discharge path is a flow path for discharging the backwash water when the membrane module is mainly backwashed.
  • the said discharge path should just be connected to the upstream of the membrane means 9c with which membrane module 9A, 9B is equipped, for example, the aspect connected to the raw
  • the discharge passages 7A and 7B are preferably composed of pipe passages having a predetermined pipe diameter, and are provided with valves (fourth valve V4 and fifth valve V5) for opening and closing the respective passages.
  • the discharge paths 7A and 7B may further merge.
  • FIG. 2 shows a modification of the aspect in which the discharge path is provided.
  • the water purification apparatus 1 of the aspect shown in FIG. 2 includes discharge paths 7A and 7B connected to the raw water areas 9e of the membrane modules 9A and 9B, and discharge paths 15A and 15B connected to the raw water branch paths 5A and 5B.
  • the backwash water can be discharged from any of the discharge paths 7A and 7B or the discharge paths 15A and 15B.
  • the discharge passages 15A and 15B are each configured by a pipe passage having a predetermined pipe diameter, and are provided with discharge valves (sixth valve V6 and seventh valve V7) for opening and closing the discharge passage.
  • the discharge paths 15A and 15B are connected to the raw water branch paths 5A and 5B on the downstream side of the inflow valves (second valve V2 and third valve V3) of the raw water branch paths 5A and 5B, respectively.
  • the upstream ends of the purified water branch paths 11A and 11B are connected to the downstream side of the membrane modules 9A and 9B.
  • the purified water branch paths 11A and 11B are connected to the purified water discharge port 9h of the membrane modules 9A and 9B.
  • the downstream sides of the purified water branch paths 11A and 11B are formed so that the purified water branch paths 11A and 11B connected at the junction 17 and connected to the plurality of membrane modules communicate with each other.
  • the raw water branch 5A and 5B are preferably provided with pressure gauges 14A and 14B for measuring the pressure of the raw water flowing in the raw water branch. Moreover, it is preferable that the pressure gauges 16A and 16B which measure the pressure of the purified water which flows through the inside of the purified water branch are provided in the purified water branches 11A and 11B.
  • the purified water path 13 is connected to the junction 17 of the purified water branch paths 11A and 11B.
  • the water purification channel 13 is provided with a valve (eighth valve V8) for opening and closing the water purification channel 13.
  • the water purification path 13 is composed of a pipe having a predetermined pipe diameter. It is preferable that the purified water path 13 is provided with a purified water discharge path 19 for discharging purified water.
  • the purified water discharge path 19 is constituted by a pipeline having a predetermined pipe diameter, and includes a valve (a ninth valve V9) for opening and closing the purified water discharge path 19.
  • the membrane module has been described based on the form having the first membrane module and the second membrane module, but the membrane module is not particularly limited as long as it is 2 or more.
  • the aspect which has two or more pairs of membrane module sets which consist of a 1st membrane module and a 2nd membrane module can be mentioned. Since the water purifier of the present invention has a plurality of pairs of membrane module sets each composed of a first membrane module and a second membrane module, the amount of raw water treated can be increased.
  • the purified water obtained from one membrane module in a filtered state is configured to be used as backwash water for another membrane module to be backwashed. That is, the ratio of the number of membrane modules in a filtered state to the membrane module to be backwashed is 1: 1.
  • the purified water obtained from a plurality of membrane modules in a filtered state may be merged and used as backwash water for one membrane module to be backwashed, or 1 in a filtered state. You may comprise so that the purified water obtained from one membrane module may be branched and used as the backwash water of the several membrane module used as the backwash object.
  • membrane module to be backwashed multiple: 1
  • the pressure of backwashing water becomes too high, and there is a risk of damaging the filtration membrane provided in the membrane module to be backwashed .
  • the membrane module to be backwashed 1: many
  • the pressure of backwashing water is lowered, so that the backwashing efficiency may be lowered. Therefore, it is preferable that the ratio of the number of membrane modules in a filtered state and the number of membrane modules to be backwashed is 1: 1.
  • the water purifier 1 of the present invention preferably includes a control means 21.
  • the control means 21 preferably includes, for example, an inverter control unit 23, a valve control unit 25, a membrane differential pressure calculation unit 27, a display 29, a manual switch 31, a timer 33, and the like.
  • the water purifier 1 of the present invention has an inverter control unit 23 that controls the raw water supply means P1. It is preferable to control the raw water pressure supplied by the raw water supply means by controlling the raw water supply means P1 with an inverter.
  • the inverter control unit 23 controls the raw water supply means P1 so that the pressure of the raw water becomes substantially constant during the normal filtration operation, and controls the raw water supply means P1 so that the pressure of the raw water pulsates during the reverse cleaning operation. To do.
  • the membrane differential pressure calculation unit 23 receives the measurement values of the pressure gauges 14A, 14B, 16A, and 16B, and calculates the pressure difference between the membrane modules 9A and 9B. For example, according to the pressure difference data, the membrane differential pressure calculation unit 23 instructs the valve control unit 25 to switch the valve so that the normal filtration operation or the reverse cleaning operation is performed.
  • the valve control unit 25 opens and closes the valve based on manual switch operation data, membrane differential pressure data supplied by the membrane differential pressure calculation unit, time data supplied by a timer, and the like.
  • the valve controller and each valve are preferably connected by wire or wirelessly.
  • the timer measures the time of normal filtration operation and the time of backwash operation, and when each operation time reaches a predetermined time, the valve control unit 25 performs normal filtration operation or backwash operation. In addition, the switching of the valve can be instructed.
  • the display can display, for example, the pressure value received from the pressure gauge, the membrane differential pressure, the current operation process, and the like.
  • FIG. 3 shows another embodiment of the water purifier of the present invention.
  • the water purifier 1 of the present invention includes means for supplying a chemical solution to purified water or raw water.
  • the means for supplying the chemical liquid include a chemical liquid tank and a pump for supplying the chemical liquid.
  • the water purifier 1 of the present invention includes a raw water tank 35, a chemical liquid tank 37 for supplying a chemical liquid such as a nucleating agent, a flocculant, or a pH adjuster to the raw water tank 35, and the chemical liquid as a raw material. It is preferable to have a pump P3 for supplying to the water tank 35.
  • the water purifier 1 of the present invention may include a plurality of chemical tanks.
  • a chemical tank that stores a nucleating agent or a flocculant
  • a chemical tank that stores a pH adjuster.
  • the water purifier 1 of this invention has the chemical
  • the purified water obtained by the water purification apparatus 1 of the present invention is shown to be supplied to the water receiving tank 45, but the water receiving tank 45 is not necessarily required.
  • the raw water tank 35 and the water receiving tank 45 include level meters L1 and L2.
  • the valve control unit 25 switches the valve so that the normal filtration operation and the reverse cleaning operation are switched when a certain amount of raw water is processed. You may be instructed.
  • the water purifier 1 of the present invention includes microbubble generators 47A and 47B in parallel with the water purification branches 11A and 11B.
  • a microbubble can be mixed in backwash water at the time of backwash operation.
  • the microbubble generators 47A and 47B are connected in parallel to the purified water branch paths 11A and 11B via, for example, three-way valves 49A and 49B and pipe lines 48A and 48B having a predetermined pipe diameter.
  • Examples of the method for generating microbubbles include a pore method, a pressure dissolution method, an ultrasonic method, a gas-liquid mixing / shearing method, an ultra-high speed swirling method, and a flip-flop phenomenon generating method.
  • a pore method a pressure dissolution method
  • an ultrasonic method a gas-liquid mixing / shearing method
  • an ultra-high speed swirling method a flip-flop phenomenon generating method.
  • the fluid discharge ring structure includes a cylinder body, an inlet side connection member having a through hole provided at one end of the cylinder body, a discharge side connection member having a through hole provided at the other end of the cylinder body, and an outer periphery.
  • the shaft body for the phenomenon of occurrence of a phenomenon is formed with a frustoconical end at one end and a conical end at the other end. It is characterized by being formed with regularity.
  • FIG. 4 to 9 are views relating to the fluid discharge pipe structure 101
  • FIG. 4 is an exploded perspective view of the fluid discharge pipe structure
  • FIG. 5 is a perspective view of the fluid discharge pipe structure
  • FIG. 6 is a fluid discharge pipe structure.
  • FIG. 7 is an explanatory diagram showing a large number of rhombus convex portions having regularity of the flip-flop phenomenon generating shaft
  • FIG. 8 is an explanation showing one rhombus convex portion of the flip-flop phenomenon generating shaft.
  • FIG. 9 is an explanatory view of the spiral blade formed in the spiral blade body.
  • the fluid discharge pipe structure 101 includes a cylinder body 102, an inlet side connection member 104 having a through hole 103, a discharge side connection member 106 having a through hole 105, and a spiral blade body. 107 and a flip-flop phenomenon generating shaft 108.
  • the cylinder main body 102 (see FIGS. 4 and 6) is a straight cylindrical metal tube formed to have a predetermined diameter and length, and is provided at the inlet side on the inner peripheral surfaces of both ends.
  • the internal thread 109,110 which can attach the connecting member 104 and the discharge side connecting member 106 by screwing together is formed.
  • the inlet side connecting member 104 (see FIGS. 4 and 6) having the through hole 103 includes a flange portion 111 formed substantially at the center, a hexagonal nut portion 112 formed on one side of the flange portion 111, It has a cylindrical portion 114 formed on the other side of the flange portion 111 with a male screw 113 that can be screwed to the female screw 109 of the cylindrical main body 102.
  • a tapered portion 115 is formed inside the flange portion 111.
  • the diameter of the through hole 103a on the nut portion 112 side is smaller than the diameter of the through hole 103b of the cylindrical portion 114, and the tapered portion 115 is located between the through hole 103a and the through hole 103b and penetrates from the through hole 103a side. It is formed so as to gradually expand the diameter toward the hole 103b.
  • a stepped portion 114a is formed by forming an inner diameter near the tapered portion 115 slightly smaller than other inner diameters.
  • the length from the end 114b of the cylindrical portion 114 to the stepped portion 114a is equal to the entire length of the spiral blade main body 107 described later, and when the spiral blade main body 107 is housed in the cylindrical portion 114, the end 107a of the spiral blade main body 107 is The end 107b of the spiral blade main body 107 is flush with the end 114b of the cylindrical portion 114.
  • a space portion 129 is formed between the end 107 a of the spiral blade body 107 and the small diameter end 115 a of the tapered portion 115.
  • the nut portion 112 has an internal thread 116 on the inner peripheral surface so that other pipes can be screwed and connected.
  • the discharge-side connecting member 106 (see FIGS. 4 and 6) having the through hole 105 includes a flange portion 117 formed near one end, a hexagonal nut portion 118 formed on one side of the flange portion 117, and a flange portion 117.
  • a cylindrical portion 120 having a male screw 119 that can be screwed to the female screw 110 of the cylindrical main body 102 is formed.
  • a tapered portion 121 is formed inside the cylindrical portion 120.
  • the diameter of the through hole 105a on the nut part 118 side is smaller than the diameter of the through hole 105b of the cylindrical part 120.
  • the tapered portion 121 is formed in a truncated conical hole shape whose diameter is gradually enlarged from the intermediate portion to the end of the cylindrical portion 120.
  • the nut portion 118 has an internal thread 122 on the inner peripheral surface so that other pipes can be screwed and connected.
  • the spiral blade main body 107 (see FIGS. 4 and 6) is obtained by processing a short cylindrical member made of a metal having an outer diameter close to the inner peripheral surface of the cylinder main body 102 during storage, and has a circular cross section. It consists of a shaft part 123 and three spiral blades 124a, 124b, 124c. Each of the blades 124a, 124b, 124c is positioned by shifting the positions of the end portions 125a, 125b, 125c by 120 degrees in the circumferential direction of the shaft portion 123. Thus, it is spirally formed counterclockwise.
  • Each of the blades 124a, 124b, 124c has a spiral shape as described above at an angle of 75 ° to 76 ° with respect to the horizontal line 126 on the outer periphery of the shaft portion 123 when viewed in plan as shown in FIG. Is formed.
  • the width of the groove which is the interval between the blades 124a, 124b, 124c, is 8 mm
  • the thickness of each blade 124a, 124b, 124c is 2 mm
  • the depth to the outer peripheral surface 128 is 9 mm.
  • both end portions 125a, 125b, and 125c of the blades 124a, 124b, and 124c are formed in an acute angle in a blade shape.
  • the flip-flop phenomenon generating shaft 108 (see FIGS. 4 and 6 to 8) has an outer diameter close to the inner peripheral surface of the cylinder main body 102 when stored, and is about 4/5 of the length of the cylinder main body 102.
  • a metal cylindrical member having a length of 3 mm is processed, and a large number of rhombus convex portions 132 are formed with a predetermined regularity on the outer peripheral surface 131 of the shaft portion 130 having a circular cross section.
  • the flip-flop phenomenon generating shaft 108 is formed with a frustoconical end portion 134a located on the spiral blade body 107 side when housed in the cylinder body 102, and on the discharge side connecting member 106 side.
  • the other end portion 134b is formed in a conical shape.
  • the other end portion 134b has a top portion 134c formed at 60 °, is positioned in the tapered portion 121 of the discharge-side connecting member 106, and is opposed to the inclined inner surface 121a of the tapered portion 121 with a certain interval. is there.
  • rhombus convex portions 132 having a predetermined regularity are formed on the outer peripheral surface 131 of the shaft portion 130 of the shaft body 108 for generating the flip-flop phenomenon.
  • Each rhombus convex portion 132 is formed so as to protrude outward from the outer peripheral surface 131 by grinding a cylindrical member.
  • each rhombus convex portion 132 includes a plurality of lines 136 having a constant interval in a direction (circumferential direction) of 90 ° with respect to the longitudinal direction of the cylindrical member, and 60 with respect to the longitudinal direction.
  • Cross the line 137 at regular intervals with an angle of ° (or 62 °), grind between the lines 136 and 136 one by one, and jump between the diagonal lines 137 and 137 It is ground every time and formed so as to protrude from the outer peripheral surface 131 of the shaft portion 130 one by one in the vertical direction (circumferential direction) and right and left (longitudinal direction of the shaft portion 130).
  • each rhombus convex portion 132 By forming each rhombus convex portion 132 in this manner, a large number of rhombus convex portions 132 are arranged with a predetermined regularity on the outer peripheral surface 131 of the shaft portion 130 between both end portions 134a and 134b. .
  • the fluid discharge pipe structure 101 (FIG. 4) configured by the cylinder main body 102, the inlet-side connection member 104, the discharge-side connection member 106, the spiral blade main body 107, and the flip-flop phenomenon generating shaft 108.
  • the discharge-side connecting member 106 is screwed and attached to one end of the cylinder body 102, and the other end 134b of the conical shape of the flip-flop phenomenon generating shaft 108 is inserted into the cylinder body 102 from the other end.
  • the spiral blade main body 107 is inserted, and finally the inlet side connecting member 104 is screwed into one end of the tube main body 102 and attached.
  • the tip 133 (see FIG. 6) of one end of the frustoconical shape of the shaft 108 for generating the flip-flop phenomenon comes into contact with one side (one end 107b) of the spiral blade body 107.
  • the spiral blade body 107 is sandwiched between the flip-flop phenomenon generating shaft 108 and the stepped portion 114 a of the inlet side connecting member 104 and is accommodated in the cylinder body 102.
  • the flow when purified water passes through the fluid discharge pipe structure 101 will be described.
  • the purified water passes between the blades 124a, 124b, and 124c formed in the counterclockwise direction of the spiral blade body 107. At this time, the purified water is sent to the frustoconical one end portion 134a of the flip-flop phenomenon generating shaft 108 as a strong tornado flow by the blades 124a, 124b, 124c. The purified water is then fed between a plurality of rhombus-shaped convex portions 132 having a predetermined regularity formed on the outer peripheral surface 131 of the shaft portion 130 (a plurality of flow paths).
  • the purified water that passes between the plurality of rhombic convex portions 132 having a regularity (a plurality of flow paths) becomes a turbulent flow and generates innumerable minute vortices (a flip-flop phenomenon is a flow of fluid). It flows toward the other end part 134b of the shaft 108 for generating the flip-flop phenomenon while causing a phenomenon that the direction is periodically changed alternately and flows.
  • the purified water that has flowed into the other end 134b of the conical shape is erased by a tornado flow more than the flip-flop phenomenon due to the size of the gap space with the discharge-side connecting member 106, but the Coanda effect (fluid)
  • the phenomenon that the fluid is attracted to the wall surface due to the pressure drop between the fluid and the wall surface is amplified, and the entanglement phenomenon is induced to be discharged from the through-hole 105 of the discharge side connecting member 106.
  • the water purifier of the present invention is a large water purifier that can be supplied to a building such as an apartment, an apartment, a building, a hotel, or a plurality of detached houses.
  • the supply amount of purified water of the water purification apparatus of the present invention is appropriately set according to the number of supply destinations and the amount of water used.
  • the supply amount of purified water of the water purification device of the present invention is preferably 3000 L / hour or more, more preferably 4000 L / hour or more. 5000 L / hour or more is more preferable, 8000 L / hour or less is preferable, 7000 L / hour or less is more preferable, and 6000 L / hour or less is more preferable.
  • raw water is supplied to the first membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is backwashed.
  • FIG. 10 is a diagram showing a water flow state of the purification device 1 of the present invention during normal filtration operation.
  • the first to third valves V1 to V3 and the eighth valve V8 are released, and the fourth to fifth valves V4 to V5 and the ninth valve V9 are closed.
  • a raw water treatment line is formed in which the raw water supply path 3, the raw water branch paths 5A and 5B, the purified water branch paths 11A and 11B, and the purified water path 13 communicate with each other through the membrane modules 9A and 9B.
  • the valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled.
  • the raw water supply means P1 pressurizes the raw water and sends it to the raw water supply path.
  • the pressure of the raw water is preferably set as appropriate according to the allowable pressure of the membrane module to be used.
  • the allowable pressure is about 0.35 MPa
  • the pressure Pf of the pressurized raw water is preferably 0.2 MPa or more, 0.25 MPa or more is more preferable, 0.28 MPa or more is more preferable, 0.35 MPa or less is preferable, 0.32 MPa or less is more preferable, and 0.30 MPa or less is more preferable.
  • the pressure Pf of the pressurized raw water exceeds the allowable pressure, the filtration membrane is easily damaged.
  • the pressure Pf of the pressurized raw water is too low, the flow rate of the raw water is reduced.
  • the pressure Pf of the raw water is preferably substantially constant during the normal filtration operation.
  • the raw water branches at the branch point 4 and is supplied to the first and second membrane modules 9A and 9B through the raw water branch paths 5A and 5B.
  • the raw water is filtered by the first and second membrane modules 9A and 9B. Foreign matter and turbidity contained in the raw water are removed by the membrane module.
  • the fourth and fifth valves V4 and V5 are opened, and the concentrated water is filtered while being discharged from the discharge passages 7A and 7B.
  • a method may be adopted.
  • the dead end method is adopted, foreign matter accumulates in the reservoirs in the membrane modules 9A and 9B, so the fourth and fifth valves V4 and V5 are occasionally released to discharge the foreign matter. It is preferable to do.
  • the purified water discharged from the first and second membrane modules 9A and 9B merges at the junction 17 through the purified water branch paths 11A and 11B, and flows out to the purified water path 13, respectively.
  • Chemicals may be added to the purified water as necessary. As shown in FIG. 3, the chemical liquid is supplied from the chemical liquid tank 41 to the purified water flowing through the water purification path 13 via the pump P2.
  • medical solution For example, hypochlorous acid, sodium hypochlorite, hypochlorous acid aqueous solution, etc. can be mentioned. Among these, it is preferable to use a sodium hypochlorite aqueous solution. By adding sodium hypochlorite, it ionizes to hypochlorite ions in water, and part of it reacts with water to form hypochlorous acid.
  • the chlorine concentration in the obtained purified water is preferably 0.3 mg / L or more in consideration of the relationship between sterilizing power and chlorine removal efficiency in the secondary water purification device. 0.4 mg / L or more is more preferable, 0.5 mg / L or more is more preferable, 0.8 mg / L or less is preferable, and 0.7 mg / L or less is more preferable.
  • the purified water flowing out from the device Chlorine can be contained, and even when water containing no chlorine is used as raw water, chlorine can be added, and the sanitation is excellent.
  • a nucleating agent a flocculant or a pH adjuster
  • a nucleating agent a flocculant or a pH adjuster
  • impurities such as charged metal ions, arsenic, fluorine, silica, and chlorine contained in the raw water can be agglomerated.
  • the obtained agglomerates have a large particle size and are easily removed by precipitation or filtration.
  • a nucleating agent there is an effect of binding at an ion level, and minute metal ions in water can be aggregated with little remaining.
  • a nucleating agent should be used when heavy metals such as arsenic, lead, and iron are present as ions in water, and a flocculant should be used when removing large amounts of impurities in water.
  • a ferric hydroxide colloid solution can be used as the nucleating agent.
  • sodium hydroxide or the like can be used when adjusting from the acid side to the alkali side, and dilute hydrochloric acid or carbonic acid can be used when adjusting from the alkali side to the acid side.
  • the flocculant for example, polyaluminum chloride generally called PAC and aluminum sulfate generally called sulfate band can be used.
  • a chemical solution such as a nucleating agent or a flocculant may be added from the chemical solution tank 37 to the raw water tank 35 provided on the upstream side of the raw water supply path 3 via the pump P3 as shown in FIG. However, it may be added directly to the raw water flowing in the raw water supply path 3.
  • the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the raw water pressure and filtered, and at least a part of the obtained purified water is used as the backwash water.
  • the other membrane module is backwashed by flowing backward from the downstream side of the membrane module to the upstream side.
  • the first and second valves V1, V2, the fifth valve V5, and the eighth valve V8 are released, and the third, fourth, The valves V3 and V4 and the ninth valve V9 are closed.
  • the valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled.
  • a raw water treatment line is formed in which the raw water supply path 3, the raw water branch path 5A, the purified water branch path 11A, and the purified water path 13 communicate with each other through the membrane module 9A.
  • a backwash line is formed in which the purified water branch path 11B and the discharge path 7B communicate with each other via the second membrane module 9B.
  • the backwash water that has entered the second membrane module 9B passes through the membrane means 9c disposed in the second membrane module 9B, and flows out from the upstream concentrated water discharge port 9i to the discharge path 7B.
  • the foreign matter adhering to the membrane means 9c of the second membrane module 9B is released and flows out into the discharge path 7B together with the backwash water.
  • the foreign matter adhering to the backwash water and the second membrane module 9B is discharged out of the water purifier from the discharge path 7B connected to the concentrated water discharge port 9i.
  • the remaining portion of the purified water discharged from the first membrane module 9A flows out to the purified water channel 13. Thereby, it is possible to continue discharging a certain amount of purified water while backwashing the second membrane module 9B.
  • the eighth valve V8 may be closed and all the purified water discharged from the first membrane module 9A may be backwashed water.
  • the backwash line a line in which the purified water branch path 11B, the second membrane module 9B, and the discharge path 7B communicate with each other is adopted.
  • the purified water branch path 11B, A line in which the raw water branch 5B and the discharge path 15B communicate with each other via the second membrane module 9B may be adopted.
  • the raw water supply means P1 supplies raw water to the first membrane module 9A while pulsating the water pressure of the raw water.
  • Supplying the raw water to the first membrane module 9A while pulsating the water pressure of the raw water pulsates the purified water discharged from the first membrane module 9A, that is, the backwash water pressure, so that the reverse of the second membrane module 9B This is because the cleaning efficiency is increased.
  • a method of pulsating the water pressure of the raw water for example, it is preferable to continuously change the rotation speed of the raw material supply means P1 by the inverter control unit 23.
  • FIG. 12 is a graph schematically showing changes in pressure of raw water during normal filtration operation and backwash operation.
  • the area of T0 represents the pressure Pf of the raw water during the normal filtration operation
  • the area of T1 represents the pressure change of the raw water during the reverse cleaning operation.
  • the pressure Pf of the raw water is substantially constant during the normal filtration operation, and the pressure of the raw water is pulsated during the back washing operation.
  • the normal filtration operation time T0 is preferably as long as possible.
  • the quality of raw water Or it may be set appropriately according to the raw water treatment amount.
  • the normal filtration operation time T0 may vary within a range of several minutes, several hours to several days.
  • the time T1 during the reverse cleaning operation is preferably as short as possible from the viewpoint of increasing the water purification efficiency.
  • the time T1 during the reverse cleaning operation is preferably 0.5 minutes to 20 minutes, more preferably 1 minute to 10 minutes, and further preferably about 5 minutes to 7 minutes.
  • the pulsation of the pressure of the raw water means that the pressure of the raw water changes periodically or aperiodically. More preferably, the pressure of the raw water during the reverse cleaning operation is periodically changed between a high pressure and a low pressure, and more preferably continuously changed between the high pressure and the low pressure.
  • FIG. 12A shows a mode in which the pressure of the raw water during the reverse cleaning operation is changed so as to draw a sine curve.
  • the magnitude of the pressure change may be changed so as to attenuate. This is because it is considered that the influence of the first pressure increase / decrease is large in the removal of foreign matters during reverse cleaning.
  • the pressure of the raw water during the reverse cleaning operation is periodically increased as shown in FIG. 12C, for example, by linearly increasing and decreasing between the maximum pressure value Pmax and the minimum pressure value Pmin. You may make it change to low pressure.
  • FIG. 12D after the pressure is linearly decreased from the maximum pressure value Pmax to the minimum pressure value Pmin, the minimum pressure value Pmin is maintained for a predetermined time, and the minimum pressure value Pmin is changed to the maximum pressure value.
  • the pressure may be linearly increased to the value Pmax, the maximum pressure value Pmax may be maintained for a predetermined time, and periodically changed between high pressure and low pressure.
  • the ratio (Pmax / Pmix) of the maximum pressure value Pmax to the minimum pressure value Pmin is preferably 1.3 or more, more preferably 1.5 or more, and 2.5 or less. Is preferably 2.3 or less, more preferably 2.0 or less. If the value of the ratio (Pmax / Pmix) is greater than or equal to the lower limit, the pressure difference becomes large and the reverse cleaning ability increases. Moreover, if the value of the ratio (Pmax / Pmix) is less than or equal to the upper limit, the filtration membrane is less likely to be damaged due to the pressure difference of the raw water.
  • the maximum pressure value Pmax may be appropriately set according to the permissible pressure of the filtration membrane provided in the membrane module.
  • the maximum pressure value Pmax is preferably 0.15 MPa or more, more preferably 0.17 MPa or more, particularly preferably 0.18 MPa or more, and 0.25 MPa. The following is preferable, 0.20 MPa or less is more preferable, and 0.19 MPa or less is particularly preferable. If the maximum pressure value Pmax becomes too large, the filtration membrane of the membrane module may be damaged. In addition, if the maximum pressure value Pmax is too small, the difference between the maximum pressure value Pmax and the minimum pressure value Pmin becomes small, which may reduce the back cleaning effect.
  • the minimum pressure value Pmin is preferably 0.10 MPa or more, more preferably 0.12 MPa or more, particularly preferably 0.13 MPa or more, and 0.20 MPa. The following is preferable, 0.15 MPa or less is more preferable, and 0.14 MPa or less is particularly preferable. If the minimum pressure value Pmin becomes too large, the difference between the maximum pressure value Pmax and the minimum pressure value Pmin becomes small, and the back cleaning effect may be reduced. If the minimum pressure value Pmin is too small, the back cleaning effect may be reduced due to the resistance of the film.
  • the frequency (f) for periodically changing the water pressure of the raw water is, for example, preferably 5 cycles / minute or more, more preferably 7 cycles / minute or more, further preferably 10 cycles / minute or more, and 20 cycles / minute or less. Preferably, 15 cycles / min or less is more preferable, and 12 cycles / min or less is more preferable. If the frequency becomes too high, the pressure increases and decreases sharply, and the membrane of the membrane module may be damaged. In addition, if the frequency is too small, the increase or decrease in pressure is too small, and the back cleaning effect may be reduced.
  • the reciprocal of the frequency (f) (cycles / minute) means a period (T) (minutes) in which one cycle is performed.
  • the value [(Pmax / Pmin) ⁇ T] (unit: minute) obtained by multiplying the ratio (Pmax / Pmin) of the maximum pressure value Pmax to the minimum pressure value Pmin by the period (T) (minutes) is 3 or more. Is preferable, 5 or more is more preferable, 7 or more is more preferable, 20 or less is preferable, 15 or less is more preferable, and 10 or less is more preferable. If the value of [(Pmax / Pmin) ⁇ T] becomes too large, the degree of pressure change becomes abrupt and the filtration membrane is easily damaged. Moreover, if the value of [(Pmax / Pmin) ⁇ T] becomes too small, the back cleaning effect may be insufficient.
  • the first, third valves V1, V3, the fourth valve V4, and the eighth valve V8 are released, The same operation may be performed by closing the second valve V2, the fifth valve V5, and the ninth valve V9.
  • the valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled.
  • a raw water treatment line is formed in which the raw water supply path 3, the raw water branch path 5B, the purified water branch path 11B, and the purified water path 13 communicate with each other through the second membrane module 9B. Moreover, the purified water branch path 11A and the discharge path 7A form a backwash line communicating with the first membrane module 9A.
  • the purified water branch path 11A and the discharge path 7A adopted the backwash line communicated via the first membrane module 9A.
  • the backwash line a line in which the purified water branch path 11A, the raw water branch path 5A, and the discharge path 15A communicate with each other via the first membrane module 9A may be adopted.
  • the operation time T0 of the normal filtration operation may be appropriately set according to the quality of raw water, the treatment speed, and the like. Therefore, the normal filtration operation time T0 may vary within a range of several minutes, several hours to several days.
  • the time T1a of the back washing operation in which the first membrane module 9A is filtered and the second membrane module 9B is back washed is preferably 30 seconds or more, more preferably 1 minute or more, particularly preferably 5 minutes or more, 20 Minutes or less is preferable, 10 minutes or less is more preferable, and 7 minutes or less is particularly preferable.
  • the time T1b of the back washing operation in which the second membrane module 9B is in the filtration state and the first membrane module 9A is in the back washing state is preferably 30 seconds or more, more preferably 1 minute or more, particularly preferably 5 minutes or more, 20 Minutes or less is preferable, 10 minutes or less is more preferable, and 7 minutes or less is particularly preferable.
  • microbubbles in the backwash water for washing the membrane module.
  • the microbubbles mixed in the backwash water give vibration to the filtration membrane when passing through the filtration membrane. As a result, foreign matter adhering to the filtration membrane is released, and the back cleaning efficiency is increased.
  • a microbubble is a fine bubble having a diameter of 10 ⁇ m to several tens of micrometers or less when it is generated. The reason for the occurrence is that the microbubbles may contract and change into micro-nano bubbles.
  • Micro-nano bubbles are fine bubbles having a diameter of several hundred nanometers to less than 10 ⁇ m.
  • the volume average particle diameter of microbubbles is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the lower limit of the volume average particle diameter of microbubbles (including micronanobubbles) is not particularly limited, but is preferably 1 nm, more preferably 10 nm, and even more preferably 100 nm.
  • the proportion of microbubbles (including micro-nano bubbles) having a particle diameter of 500 ⁇ m or less and 1 nm or more in all bubbles is preferably 50% by volume or more, more preferably 70% by volume or more, and still more preferably 90% by volume or more.
  • the particle diameter and volume average particle diameter of microbubbles (including micro-nano bubbles) are the particle diameter and volume average particle diameter at the outlet of the microbubble generator.
  • the ratio (V1 / V2) of the total volume V1 of the generated microbubbles (including micro-nanobubbles) to the volume V2 of the backwash liquid mixed with the microbubbles is not particularly limited, but is preferably 0.01 or more, and 05 or more is more preferable, 0.1 or more is more preferable, 0.5 or less is preferable, 0.3 or less is more preferable, and 0.2 or less is more preferable.
  • the ratio is too small, the effect of increasing the back cleaning efficiency is reduced. If the ratio is too large, the proportion of backwash water may be too small, and the backwash efficiency may decrease. In addition, the cost of generating microbubbles increases.
  • FIG. 14 is a front view of a water purifier according to an embodiment of the present invention.
  • 15 is a right side view of FIG. 14,
  • FIG. 16 is a left side view of FIG. 14,
  • FIG. 17 is a rear view of FIG. 14, and
  • FIG. 18 is a plan view of FIG.
  • FIG. 19 is a bottom view of FIG.
  • FIG. 20 shows a flow chart of the water purifier of FIGS.
  • the water purifier of this invention is not limited to the form illustrated in the said drawing.
  • the water purifier 1 is disposed in the raw water supply path 3, the raw water supply path 3, and the raw water supply means P1 that feeds the raw water, and a plurality of raw water branch paths 5A and 5B that branch the raw water supply path 3 into at least two or more. And a plurality of membrane modules 9A, 9B disposed in the plurality of raw water branch paths 5A, 5B and purifying the raw water, and discharge paths 7A, 7B connected to the upstream side of the membrane means for purifying the raw water included in the membrane module. And a plurality of water purification branches 11A and 11B connected to the downstream side of the plurality of membrane modules, and a water purification path 13 where the plurality of water purification branches 11A and 11B merge.
  • each component constituting the water purifier 1 is housed in a gantry having a width of 1400 mm ⁇ a depth of 1000 mm ⁇ a height of 1985 mm and is unitized.
  • the raw water supply port 40 is disposed below the left side surface on the back side of the water purifier 1.
  • the raw water supply port 40 may be directly coupled to the water main or may be connected to a raw water tank that stores tap water from the water main.
  • the raw water is fed by a pump as raw water supply means P1.
  • the raw water supply path 3 is disposed so as to be inclined obliquely upward from the discharge port of the raw water supply means P ⁇ b> 1 and bend from the back side to the front side at a predetermined height. At the predetermined height, the raw water supply path 3 from the back side to the front side is provided with a check valve for preventing a backflow of backwash water.
  • natural water supply path 3 is arrange
  • raw water branch paths 5 ⁇ / b> A and 5 ⁇ / b> B are connected to a portion of the raw water supply path 3 from the front side to the back side.
  • the raw water supply paths 5A and 5B are each provided with inflow valves (air valves) V2 and V3 for opening and closing the flow paths.
  • the water purifier 1 has two membrane modules 9A and two membrane modules 9B connected to the raw water supply paths 5A and 5B, respectively.
  • the membrane modules 9A and 9B have a substantially cylindrical shape.
  • the membrane modules 9A and 9B are connected to the raw water branch 5A and 5B at the raw water inlet 9g, connected to the outlets 7A and 7B at the concentrated water outlet 9i, and the purified water branch 11A and 11B at the purified water outlet 9h. Connected to.
  • raw water can be supplied to both the two membrane modules 9A and the two membrane modules 9B for filtration. As shown in FIG.
  • the purified water purified by the membrane modules 9A and 9B is discharged to the purified water branch paths 11A and 11B connected to the downstream side of the membrane modules 9A and 9B.
  • the purified water branch paths 11 ⁇ / b> A and 11 ⁇ / b> B merge at a junction 17 to form a purified water path 13.
  • the purified water is discharged from the purified water discharge port 42 disposed on the upper side of the left side surface.
  • raw water is supplied to one of the two membrane modules 9A or two membrane modules 9B and filtered, and the obtained purified water is supplied to the other membrane module as backwash water.
  • the backwash water is discharged from the discharge paths 7A and 7B.
  • the discharge paths 7A and 7B are respectively connected to the raw water regions of the membrane modules 9A and 9B, and are provided with inflow valves (air valves) V4 and V5 for opening and closing the flow paths. As shown in FIGS. 16 and 17, the discharge path 7A and the discharge path 7B merge and are connected to the discharge path 7C.
  • the backwash water is discharged from a discharge port 48 that is an end of the discharge path 7C.
  • the control unit 21 includes an air valve control unit having a solenoid valve, and controls opening and closing of each air valve.
  • the downstream end of the raw water supply passage 3 is connected to the drainage passage 44 via the tenth valve V10.
  • the drainage channel 44 is for draining water in the membrane module when the membrane means of the membrane module is replaced.
  • the drainage channel 44 merges with the discharge channel 7C.
  • the water purifier 1 may include a chemical tank 46 for adding a chemical to raw water or purified water.
  • medical solution tank 46 the flocculant added to raw
  • the water purifier of the present invention is small and has high backwashing efficiency.
  • the water purifier of the present invention is suitable as a water purifier that supplies purified water to the entire building such as an apartment or a building.

Abstract

[Problem] To provide technology for increasing backwashing efficiency in a water purification device provided with membrane modules and a method for manufacturing purified water using the same. [Solution] This water purification device is characterized by being provided with: a raw water supply path; a raw water supply means that is disposed in the raw water supply path and feeds the raw water; a plurality of raw water branch paths that branches the raw water supply path into at least two or more branches; a plurality of membrane modules that is disposed in the plurality of raw water branch paths and purify the raw water; an elimination pathway connected on the upstream side of a membrane means that is provided in the plurality of membrane modules and purifies the raw water; a plurality of purified water branch paths connected to the downstream side of the plurality of membrane modules; and a purified water path into which the plurality of purified water branch paths is combined.

Description

浄水装置および浄水の製造方法Water purification device and water purification method
 本発明は、浄水装置および浄水の製造方法に関するものである。 The present invention relates to a water purifier and a method for producing purified water.
 近年、水道水から残留塩素(次亜塩素酸)、カビ臭、濁り、微生物等を除去することを目的とした小型浄水器が広く普及している。これらの浄水器には、水道水中の残留塩素、異味や異臭を取り除く活性炭、セラミックフィルタや、濁質や微生物を取り除く精密濾過膜、中空糸膜等が用いられていた。このような浄水器を住居等に設ける場合、台所の蛇口やシンク下に設置されることが多く、水道水を飲用や調理用に適するように浄化していた。 In recent years, small water purifiers for the purpose of removing residual chlorine (hypochlorous acid), musty odor, turbidity, microorganisms and the like from tap water have become widespread. In these water purifiers, residual chlorine in tap water, activated carbon that removes off-flavors and odors, ceramic filters, microfiltration membranes that remove turbidity and microorganisms, hollow fiber membranes, and the like were used. When such a water purifier is provided in a residence or the like, it is often installed under a kitchen faucet or sink, and tap water has been purified to be suitable for drinking and cooking.
 一方で、ビルやホテルなどの建物内の全域で浄化した水道水を使用したい、あるいは井戸水を浄化して建物内の全域で使用したいといったニーズが存在したが、全ての浄水の使用場所にそれぞれ浄水器を設置するのは煩雑である。そこで、建物へ水道水等を導入する入口に大型の浄水装置を取り付けて、水道水をまとめて浄化して建物全体に給水する浄水システムも普及し始めている。これらの大型浄水装置も、小型浄水器と同様に活性炭、セラミックフィルタ、精密濾過膜などで構成され、これらを通過させることにより水道水中の残留塩素や濁質等を取り除き、建物内にある複数の浄水の使用場所へ浄水を供給する。 On the other hand, there was a need to use purified tap water in the entire area of buildings such as buildings and hotels, or to purify well water and use it in the entire area of the building. Installing the vessel is cumbersome. Therefore, a water purification system that attaches a large water purification device to an entrance for introducing tap water or the like into a building, purifies the tap water collectively, and supplies the entire building to water has begun to spread. These large water purifiers are also composed of activated carbon, ceramic filters, microfiltration membranes, etc., just like small water purifiers. By passing these, residual chlorine and turbidity in tap water are removed, and a plurality of water purifiers in the building are removed. Supply purified water to the place where it is used.
 このような大型浄水装置に関するものとしては、膜モジュールを使用する濾過装置が知られている(例えば、特許文献1~3)。特許文献1には、複数の膜モジュールと、前記膜モジュールそれぞれの1次側に原液を導入する導入ラインと、前記膜モジュールそれぞれの2次側に接続されると共に、前記膜モジュールによって濾過された濾過液を排出する濾過液排出ラインと、を備え、逆洗時には、逆洗対象となる前記膜モジュールに連絡する前記導入ラインの流路は閉鎖される濾過装置において、前記導入ラインに設けられると共に、所定流量の原液を前記膜モジュールに供給する原液供給ポンプと、前記濾過液排出ラインに設けられると共に、前記濾過液を圧送する濾過液圧送ポンプと、前記濾過液排出ラインの前記濾過液圧送ポンプよりも下流側と前記膜モジュールそれぞれの2次側とを連絡すると共に、逆洗時に逆洗対象となる前記膜モジュールとの間で流路が開放されて前記濾過液が逆洗液として流動する逆洗ラインと、前記膜モジュールそれぞれの1次側に接続されると共に、逆洗時に逆洗対象となる前記膜モジュールからの流路が開放されて前記膜モジュールを透過した前記逆洗液が排出される洗浄液排出ラインと、前記濾過液圧送ポンプの吸い込み側における前記濾過液の圧力を検出する圧検出手段と、前記圧検出手段で検出された圧力に基づいて前記濾過液圧送ポンプの駆動を制御する制御手段と、を備えたことを特徴とする濾過装置が開示されている。 As such a large water purification apparatus, a filtration apparatus using a membrane module is known (for example, Patent Documents 1 to 3). In Patent Document 1, a plurality of membrane modules, an introduction line for introducing a stock solution to the primary side of each of the membrane modules, and a secondary side of each of the membrane modules are connected and filtered by the membrane module. A filtration liquid discharge line for discharging the filtrate, and at the time of backwashing, the flow path of the introduction line communicating with the membrane module to be backwashed is provided in the introduction line in a filtration device that is closed A filtrate supply pump for supplying a filtrate at a predetermined flow rate to the membrane module; a filtrate pump for pumping the filtrate while being provided in the filtrate discharge line; and a filtrate pump for the filtrate discharge line And a flow path between the downstream side of the membrane module and the secondary side of each of the membrane modules, and the membrane module to be backwashed during backwashing. The flow path from the membrane module to be backwashed during backwashing is opened and connected to the primary side of each of the membrane modules and the backwash line through which the filtrate flows as backwashing liquid. A cleaning liquid discharge line through which the backwash liquid that has passed through the membrane module is discharged, pressure detection means for detecting the pressure of the filtrate on the suction side of the filtrate pressure feed pump, and detected by the pressure detection means And a control means for controlling the drive of the filtrate pumping pump based on the pressure.
 特許文献2には、透過水ラインを共通とした複数の膜モジュールを備えてなる膜分離装置の運転方法において、一部の膜モジュールにて逆洗を行うときに他の膜モジュールの透過水をその吐出圧によって逆洗対象膜モジュールの二次側に供給し、次いでこの二次側に加圧気体を供給することを特徴とする膜分離装置の運転方法が開示されている。 In Patent Document 2, in a method of operating a membrane separation apparatus having a plurality of membrane modules having a common permeate line, the permeate from other membrane modules is used when backwashing is performed in some membrane modules. There is disclosed a method of operating a membrane separation device, characterized in that it is supplied to the secondary side of the membrane module to be backwashed by the discharge pressure and then pressurized gas is supplied to the secondary side.
 特許文献3には、複数の膜モジュールを備える膜濾過装置において、逆洗を行う膜モジュールに、他の膜モジュールから得られる膜透過水を直接通液して逆洗するように通液路を切り替える通液路切替機構と、各膜モジュールに加圧空気を供給するためのコンプレッサ及び空気配管とを備え、逆洗を行う膜モジュールへの原水の導入を停止し、代りにコンプレッサからの加圧空気を該逆洗を行う膜モジュールの1次側に導入すると共に、他の膜モジュールの透過水を該逆洗を行う膜モジュールの2次側に導入して逆洗を行うか、或いは、逆洗を行う膜モジュールの2次側に加圧空気を供給し、逆洗水中に混合して気液混合流体で逆洗を行うように構成されている膜濾過装置であって、原水槽に原水主配管が接続され、この原水主配管から原水枝配管が分岐しており、各原水枝配管の末端側が各膜モジュールの原水導入口に接続され、各原水枝配管に開閉バルブが設けられ、各膜モジュールの濃縮水流出口は、配管を介して三方バルブの流入ポートに接続され、該三方バルブはそれぞれ2個の流出ポートを備えており、そのうちの一方の流出ポートにそれぞれ濃縮水循環用の枝配管が接続され、これらの濃縮水枝配管は濃縮水主配管に接続されており、前記三方バルブの他方の流出ポートにはそれぞれ逆洗排水排出用の枝配管の一端が接続され、該枝配管の他端は逆洗排水排出用の主配管に接続されており、前記膜モジュールの透過水流出口には、それぞれ透過水取出用の枝配管の一端が接続されており、該枝配管の他端は透過水取出用の主配管に接続されており、前記原水枝配管の各開閉バルブと各膜モジュールとの間の部分に対し空気枝配管の末端側が接続され、各空気枝配管の上流端側は空気主配管に接続され、この空気主配管はコンプレッサに接続されていることを特徴とする膜濾過装置が開示されている。 Patent Document 3 discloses that in a membrane filtration apparatus including a plurality of membrane modules, a membrane passage that performs backwashing is directly passed with membrane permeated water obtained from another membrane module and backwashed. Equipped with a fluid passage switching mechanism for switching, a compressor and air piping for supplying pressurized air to each membrane module, stops the introduction of raw water into the membrane module performing backwashing, and instead pressurizes from the compressor Introduce air to the primary side of the membrane module for backwashing and introduce permeated water from other membrane modules to the secondary side of the membrane module for backwashing to perform backwashing or backwashing. A membrane filtration device configured to supply pressurized air to the secondary side of a membrane module that performs washing, mix in backwash water, and backwash with a gas-liquid mixed fluid. The main pipe is connected, and the raw water main pipe Branch pipes are branched, the end side of each raw water branch pipe is connected to the raw water inlet of each membrane module, each raw water branch pipe is provided with an open / close valve, and the concentrated water outlet of each membrane module is connected via the pipe The three-way valve is connected to an inflow port of the three-way valve, and each of the three-way valves has two outflow ports. One of the outflow ports is connected to a branch pipe for circulating the concentrated water. Connected to the main pipe, one end of the branch pipe for backwash drainage is connected to the other outflow port of the three-way valve, and the other end of the branch pipe is connected to the main pipe for backwash drainage discharge One end of a branch pipe for extracting permeate is connected to the permeate outlet of the membrane module, and the other end of the branch pipe is connected to a main pipe for extracting permeate, Raw water branch piping The end side of the air branch pipe is connected to the portion between each on-off valve and each membrane module, the upstream end side of each air branch pipe is connected to the air main pipe, and this air main pipe is connected to the compressor. A membrane filtration device characterized by this is disclosed.
特開2011-177653号公報JP 2011-177653 A 特開2001-190935号公報JP 2001-190935 A 特許第4178178号公報Japanese Patent No. 4178178
 濾過手段として膜モジュールを使用する濾過装置を継続的に使用していると、膜モジュールが備える濾過膜に異物が目詰まりして、濾過効率が低下する。濾過装置の膜モジュールの濾過効率を低下させないためには、膜モジュールを逆洗浄する必要があるが、従来技術の濾過装置では、逆洗浄効率が十分であるとは言えない。また、ビルやホテルなどの建物に濾過装置を設置するためには、濾過装置を小型化することが求められている。
 本発明は、前記事情に鑑みてなされたものであって、逆洗浄効率が高い新規な浄水装置、および、これを用いた浄水の製造方法を提供することを課題とする。また、本発明は、マンション、ビルなどの建物全域に浄水を供給する大型浄水装置の小型化をさらなる課題とする。
When a filtration device that uses a membrane module as the filtration means is continuously used, foreign matter is clogged in the filtration membrane provided in the membrane module, and the filtration efficiency is lowered. In order not to lower the filtration efficiency of the membrane module of the filtration device, it is necessary to back-wash the membrane module. However, in the conventional filtration device, it cannot be said that the back-washing efficiency is sufficient. Moreover, in order to install a filtration apparatus in buildings such as buildings and hotels, it is required to reduce the size of the filtration apparatus.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the novel water purifier with high backwashing efficiency, and the manufacturing method of the purified water using the same. Moreover, this invention makes it the further subject to size reduction of the large water purification apparatus which supplies purified water to the whole buildings, such as a condominium and a building.
 本発明の浄水装置は、原水供給路と、原水供給路に配置され、原水を送液する原水供給手段と、前記原水供給路を少なくとも二以上に分岐する複数の原水分岐路と、前記複数の原水分岐路に配置され、原水を浄化する複数の膜モジュールと、前記複数の膜モジュールが備える原水を浄化する膜手段の上流側に接続する排出路と、前記複数の膜モジュールの下流側に接続する複数の浄水分岐路と、前記複数の浄水分岐路が合流する浄水路とを備えることを特徴とする。 The water purifier of the present invention includes a raw water supply channel, a raw water supply unit that is disposed in the raw water supply channel, and that feeds raw water, a plurality of raw water branch channels that branch the raw water supply channel into at least two, A plurality of membrane modules that are disposed in the raw water branch path and that purify the raw water, a discharge path that is connected upstream of the membrane means that purifies the raw water included in the plurality of membrane modules, and a downstream side of the plurality of membrane modules And a plurality of water purification branches and the water purification paths where the plurality of water purification branches merge.
 前記排出路には、排出路を開閉する排出弁が備えられ、前記原水分岐路には、原水分岐路の流路を開閉する流入弁が備えられていることが好ましい。 Preferably, the discharge path is provided with a discharge valve that opens and closes the discharge path, and the raw water branch path is provided with an inflow valve that opens and closes the flow path of the raw water branch path.
 前記膜モジュールは、原水が供給される原水領域と、原水を浄化する膜手段と、前記膜手段によって浄化した浄水が流出する浄水領域とを備え、前記排出路が、前記膜モジュールの原水領域に接続していることが好ましい。前記膜手段としては、例えば、精密濾過膜または限外濾過膜を挙げることができる。また、前記排出路は、原水分岐路の流路を開閉する流入弁の下流側の原水分岐路に接続していてもよい。 The membrane module includes a raw water area to which raw water is supplied, a membrane means for purifying the raw water, and a purified water area from which purified water purified by the membrane means flows out, and the discharge path is in the raw water area of the membrane module. It is preferable that they are connected. Examples of the membrane means include a microfiltration membrane and an ultrafiltration membrane. Moreover, the said discharge path may be connected to the raw | natural water branch path downstream of the inflow valve which opens and closes the flow path of a raw | natural water branch path.
 本発明の浄水装置は、原水の水圧を脈動させるように、前記原水供給手段を制御するインバーター制御部を有することが好ましい。前記浄水分岐路には、マイクロバブル発生手段を備える流路が並列に形成されていることが好ましい。 The water purifier of the present invention preferably has an inverter control unit for controlling the raw water supply means so as to pulsate the water pressure of the raw water. It is preferable that a flow path including microbubble generating means is formed in parallel in the water purification branch.
 本発明の浄水装置は、原水槽と、前記原水槽に薬液を供給する手段を備えることが好ましい。 The water purifier of the present invention preferably includes a raw water tank and means for supplying a chemical solution to the raw water tank.
 本発明の浄水の製造方法は、通常濾過運転時には、少なくとも第一膜モジュールと第二膜モジュールとを有する複数の膜モジュールに原水を並列に供給して、原水を複数の膜モジュールで濾過することにより浄水を製造し、逆洗浄運転時には、第一膜モジュールまたは第二膜モジュールの一方に、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、他方の膜モジュールの下流側から上流側に逆流させて、他方の膜モジュールを逆洗浄することを特徴とする。 In the water purification method of the present invention, during normal filtration operation, raw water is supplied in parallel to a plurality of membrane modules having at least a first membrane module and a second membrane module, and the raw water is filtered through the plurality of membrane modules. In the reverse cleaning operation, the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the water pressure of the raw water, the raw water is filtered, and at least a part of the obtained purified water is reversed. As washing water, the other membrane module is backwashed from the downstream side to the upstream side of the other membrane module, and the other membrane module is backwashed.
 逆洗浄運転時には、第一膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第二膜モジュールの下流側から上流側に逆流させて、第二膜モジュールを逆洗浄し、さらに、第二膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第一膜モジュールの下流側から上流側に逆流させて、第一膜モジュールを逆洗浄することが好ましい。 At the time of backwashing operation, raw water is supplied to the first membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is used as backwash water from the downstream side of the second membrane module. Back flow to the side, back washing the second membrane module, supplying raw water to the second membrane module while pulsating the water pressure of raw water, filtering, and backwashing at least a part of the purified water obtained It is preferable to back-wash the first membrane module as water by flowing backward from the downstream side of the first membrane module to the upstream side.
 また、逆洗浄運転時において、原水の水圧の最小圧力値Pminに対する最大圧力値Pmaxの比(Pmax/Pmix)を、1.3以上、2.5以下になるように、原水を脈動させることが好ましい。 Further, during the reverse cleaning operation, the raw water may be pulsated so that the ratio (Pmax / Pmix) of the maximum pressure value Pmax to the minimum pressure value Pmin of the raw water water pressure is 1.3 or more and 2.5 or less. preferable.
 本発明の浄水の製造方法には、本発明の浄水装置を好適に用いることができる。 The water purification apparatus of the present invention can be suitably used for the method for producing water purification of the present invention.
 本発明によれば、逆洗浄効率が高い浄水装置が得られる。本発明の浄水装置は、小型化が可能である。本発明の浄水の製造方法によれば、衛生に優れる浄水を安定的に提供することができる。 According to the present invention, a water purifier with high backwashing efficiency can be obtained. The water purifier of the present invention can be reduced in size. According to the method for producing purified water of the present invention, purified water having excellent hygiene can be stably provided.
本発明の一実施形態の浄水装置を模式的に示す図である。It is a figure which shows typically the water purifier of one Embodiment of this invention. 本発明の別の実施形態の浄水装置を模式的に示す図である。It is a figure which shows typically the water purifier of another embodiment of this invention. 本発明のさらに別の実施形態の浄水装置を模式的に示す図である。It is a figure which shows typically the water purifier of another embodiment of this invention. マイクロバブル発生装置である流体吐出管構造体の分解斜視図である。It is a disassembled perspective view of the fluid discharge pipe structure which is a microbubble generator. マイクロバブル発生装置である流体吐出管構造体の斜視図である。It is a perspective view of the fluid discharge pipe structure which is a microbubble generator. マイクロバブル発生装置である流体吐出管構造体の縦断面図である。It is a longitudinal cross-sectional view of the fluid discharge pipe structure which is a microbubble generator. フリップフロップ現象発生用軸体の規則性をもった多数の各ひし形凸部を示す説明図である。It is explanatory drawing which shows many each rhombus convex part with the regularity of the shaft body for a flip-flop phenomenon generation | occurrence | production. フリップフロップ現象発生用軸体の一ひし形凸部を示す説明図である。It is explanatory drawing which shows the rhombus convex part of the shaft body for flip-flop phenomenon generation | occurrence | production. 螺旋羽根本体に形成される螺旋羽根の説明図である。It is explanatory drawing of the spiral blade formed in a spiral blade main body. 実施形態の浄水装置の通常濾過運転時の通水状態を示す図である。It is a figure which shows the water flow state at the time of the normal filtration driving | operation of the water purifier of embodiment. 実施形態の浄水装置の逆洗浄運転時の通水状態を示す図である。It is a figure which shows the water flow state at the time of the reverse washing operation | movement of the water purifier of embodiment. 膜モジュールに供給される原水の圧力変化を示すグラフである。It is a graph which shows the pressure change of the raw | natural water supplied to a membrane module. 実施形態の浄水装置の逆洗浄運転時の通水状態を示す図である。It is a figure which shows the water flow state at the time of the reverse washing operation | movement of the water purifier of embodiment. 本発明の一実施形態の浄水装置の正面図である。It is a front view of the water purifier of one embodiment of the present invention. 図14の浄水装置の右側面図である。It is a right view of the water purifier of FIG. 図14の浄水装置の左側面図である。It is a left view of the water purifier of FIG. 図14の浄水装置の背面図である。It is a rear view of the water purifier of FIG. 図14の浄水装置の平面図である。It is a top view of the water purifier of FIG. 図14の浄水装置の底面図である。It is a bottom view of the water purifier of FIG. 図14の浄水装置のフロー図である。It is a flowchart of the water purifier of FIG.
(1)浄水装置
 まず、本発明の浄水装置について、図面を参照しながら説明する。図1は、本発明の浄水装置の構成を模式的に示す図である。本発明の浄水装置1は、原水供給路3と、原水供給路3に配置され、原水を送液する原水供給手段P1と、前記原水供給路3を少なくとも二以上に分岐する複数の原水分岐路5A,5Bと、前記複数の原水分岐路5A,5Bに配置され、原水を浄化する複数の膜モジュール9A,9Bと、前記膜モジュール9A,9Bが備える原水を浄化する膜手段9cの上流側に接続する排出路7A,7Bと、前記複数の膜モジュール9A,9Bの下流側に接続する複数の浄水分岐路11A,11Bと、前記複数の浄水分岐路11A,11Bが合流する浄水路13とを備えることを特徴とする。なお、本発明において、原水が供給される側(図1において左側)を上流側とし、浄水が排出される側(図1において右側)を下流側と称する。
(1) Water purifier First, the water purifier of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing the configuration of the water purifier of the present invention. The water purifier 1 of the present invention is disposed in the raw water supply path 3, the raw water supply path 3, and the raw water supply means P1 that feeds the raw water, and a plurality of raw water branch paths that branch the raw water supply path 3 into at least two or more. 5A, 5B, and a plurality of membrane modules 9A, 9B that are disposed in the plurality of raw water branch paths 5A, 5B and purify the raw water, and upstream of the membrane means 9c that purifies the raw water included in the membrane modules 9A, 9B. The discharge paths 7A and 7B to be connected, the plurality of water purification branch paths 11A and 11B connected to the downstream side of the plurality of membrane modules 9A and 9B, and the water purification path 13 where the plurality of water purification branch paths 11A and 11B merge. It is characterized by providing. In the present invention, the side to which raw water is supplied (left side in FIG. 1) is referred to as the upstream side, and the side from which purified water is discharged (right side in FIG. 1) is referred to as the downstream side.
 原水供給路3は、水道水、井戸水などの浄化処理の対象となる原水を供給するものである。原水供給路3は、マンション、アパート、ビル、ホテル、複数の戸建て住宅などの建物に供給される水道本管に直接接続していてもよいし、あるいは、水道本管から水道水を貯蔵する原水槽に接続していてもよい。原水供給路3は、所定の管径を有する管路によって構成されている。原水供給路3は、原水供給路3を開閉するための流入弁(第1バルブV1)を備えることが好ましい。流入弁は、例えば、逆止弁としてもよい。 The raw water supply path 3 supplies raw water to be subjected to purification treatment such as tap water and well water. The raw water supply channel 3 may be directly connected to a water main supplied to a building such as an apartment, an apartment, a building, a hotel, or a plurality of detached houses, or a raw water for storing tap water from the water main. You may connect to the aquarium. The raw water supply path 3 is constituted by a pipe line having a predetermined pipe diameter. The raw water supply path 3 preferably includes an inflow valve (first valve V1) for opening and closing the raw water supply path 3. For example, the inflow valve may be a check valve.
 原水供給路3には、原水を送液するための原水供給手段P1が配置されている。原水供給手段P1としては、例えば、縦型多段渦巻きポンプ、横型多段渦巻きポンプ、容積型のポンプなどを挙げることができる。これらの中でも、原水を安定的に加圧して送液するという理由から、原水供給手段P1としては、縦型多段渦巻きポンプを用いることが好ましい。 In the raw water supply path 3, raw water supply means P1 for sending raw water is disposed. Examples of the raw water supply means P1 include a vertical multi-stage centrifugal pump, a horizontal multi-stage centrifugal pump, and a positive displacement pump. Among these, it is preferable to use a vertical multistage centrifugal pump as the raw water supply means P1 because the raw water is stably pressurized and fed.
 原水供給路3の下流端は、分岐点4において、原水供給路3を複数に分岐する原水分岐路5A、5Bの上流端に接続している。原水分岐路5A、5Bは、所定の管径を有する管路によって構成される。原水分岐路5A,5Bはそれぞれ、原水分岐路5A,5Bを開閉するための流入弁(第2バルブV2と第3バルブV3)を備える。原水分岐路5A,5Bの下流端は、原水を浄化する膜モジュール9A,9Bに接続している。 The downstream end of the raw water supply path 3 is connected at the branch point 4 to the upstream ends of the raw water branch paths 5A and 5B that branch the raw water supply path 3 into a plurality. The raw water branch paths 5A and 5B are constituted by pipe lines having a predetermined pipe diameter. The raw water branch paths 5A and 5B include inflow valves (second valve V2 and third valve V3) for opening and closing the raw water branch paths 5A and 5B, respectively. The downstream ends of the raw water branch paths 5A and 5B are connected to membrane modules 9A and 9B that purify the raw water.
 膜モジュール9A、9Bは、原水中の微粒子や濁質などの異物を除去して、原水を浄化し、浄水を排出する。前記膜モジュール9A,9Bは、原水を浄化する膜手段9cと、前記膜手段9cを収納する略円筒状の容器9dとを備える。前記膜モジュール9A,9Bは、前記略円筒状の容器9dの内部において、原水を浄化する膜手段9cを挟んで、原水が供給される原水領域9eと、前記膜手段によって浄化された浄水が流入する浄水領域9fとを備えることが好ましい。 The membrane modules 9A and 9B remove foreign matters such as fine particles and turbidity in the raw water, purify the raw water, and discharge the purified water. The membrane modules 9A and 9B include membrane means 9c for purifying raw water, and a substantially cylindrical container 9d for housing the membrane means 9c. In the membrane module 9A, 9B, the raw water region 9e to which raw water is supplied and the purified water purified by the membrane means flow in between the membrane means 9c for purifying the raw water inside the substantially cylindrical container 9d. It is preferable to provide the purified water area 9f.
 前記膜モジュール9A,9Bが備える膜手段9cとしては、例えば、逆浸透膜(RO膜)、ナノ濾過膜(NF膜)、精密濾過膜(MF膜)、限外濾過膜(UF膜)などの濾過膜を挙げることができる。逆浸透膜(RO膜)は、濾過する際の通水圧力が高くなるために、原水供給手段P1を高性能化、あるいは、大型化する必要がある。また、動作時の電力コストも高くなる場合があり、捨て水が必要なために、水使用量のコストも高くなる。そのため、比較的低圧で低コストで原水を濾過させることができるという観点から、膜モジュールが備える膜手段9cとしては、ナノ濾過膜(NF膜)、精密濾過膜(MF膜)、限外濾過膜(UF膜)が好ましく、精密濾過膜(MF膜)、限外濾過膜(UF膜)がより好ましく、限外濾過膜(UF膜)がさらに好ましい。前記膜モジュール9A、9Bは、外圧式または内圧式のいずれであってもよく、好ましくは、内圧式である。 Examples of the membrane means 9c included in the membrane modules 9A and 9B include a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane (UF membrane). A filtration membrane can be mentioned. The reverse osmosis membrane (RO membrane) has a high water flow pressure during filtration, so that the raw water supply means P1 needs to have high performance or a large size. In addition, the power cost during operation may be high, and the amount of water used is also high because waste water is required. Therefore, from the viewpoint that raw water can be filtered at a relatively low pressure and at a low cost, the membrane means 9c included in the membrane module includes a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane. (UF membrane) is preferable, a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane) are more preferable, and an ultrafiltration membrane (UF membrane) is more preferable. The membrane modules 9A and 9B may be either an external pressure type or an internal pressure type, and preferably an internal pressure type.
 前記膜モジュール9A,9Bは、原水流入口9gと、浄水排出口9hとを備え、さらに、濃縮水を排出するための濃縮水排出口9iとを備える。原水流入口9gと濃縮水排出口9iとは、膜モジュール9A,9Bの原水領域9eに接続し、浄水排出口9hは、膜モジュール9A,9Bの浄水領域9fに接続している。 The membrane modules 9A and 9B are provided with a raw water inlet 9g and a purified water outlet 9h, and further with a concentrated water outlet 9i for discharging concentrated water. The raw water inlet 9g and the concentrated water outlet 9i are connected to the raw water area 9e of the membrane modules 9A and 9B, and the purified water outlet 9h is connected to the purified water area 9f of the membrane modules 9A and 9B.
 本発明の浄水装置は、膜モジュールが備える膜手段9cの上流側に接続する排出路を有する。前記排出路は、主に膜モジュールを逆洗浄したときの逆洗浄水を排出するための流路である。前記排出路は、膜モジュール9A,9Bが備える膜手段9cの上流側に接続していればよく、例えば、膜モジュール9A,9Bの原水領域9eに接続する態様、原水分岐路5A,5Bに接続する態様、あるいは、膜モジュール9A,9Bの原水領域9e、および、原水分岐路5A,5Bの両方に接続する態様などを挙げることができる。 The water purifier of the present invention has a discharge path connected to the upstream side of the membrane means 9c included in the membrane module. The discharge path is a flow path for discharging the backwash water when the membrane module is mainly backwashed. The said discharge path should just be connected to the upstream of the membrane means 9c with which membrane module 9A, 9B is equipped, for example, the aspect connected to the raw | natural water area | region 9e of membrane module 9A, 9B, it connects with raw | natural water branch 5A, 5B Or a mode of connecting to both the raw water region 9e of the membrane modules 9A and 9B and the raw water branch paths 5A and 5B.
 図1に示した態様では、膜モジュール9A,9Bの濃縮水排出口9iに、排出路7A、7Bの一方端が接続されている。排出路7A、7Bは、所定の管径を有する管路から構成され、それぞれの流路を開閉するための弁(第4バルブV4、および第5バルブV5)を備えることが好ましい。排出路7A,7Bは、さらに合流してもよい。 1, one ends of the discharge paths 7A and 7B are connected to the concentrated water discharge ports 9i of the membrane modules 9A and 9B. The discharge passages 7A and 7B are preferably composed of pipe passages having a predetermined pipe diameter, and are provided with valves (fourth valve V4 and fifth valve V5) for opening and closing the respective passages. The discharge paths 7A and 7B may further merge.
 図2には、排出路を設ける態様の変形例を示した。図2に示した態様の浄水装置1は、膜モジュール9A,9Bの原水領域9eに接続する排出路7A,7B、および、原水分岐路5A,5Bに接続する排出路15A,15Bを備える。斯かる態様では、排出路7A,7Bまたは排出路15A,15Bのいずれからも逆洗浄水を排出することができる。排出路15A、15Bはそれぞれ、所定の管径を有する管路によって構成され、排出路を開閉するための排出弁(第6バルブV6および第7バルブV7)を備える。排出路15A、15Bはそれぞれ、原水分岐路5A,5Bの流入弁(第2バルブV2および第3バルブV3)の下流側で、原水分岐路5A、5Bに接続している。 FIG. 2 shows a modification of the aspect in which the discharge path is provided. The water purification apparatus 1 of the aspect shown in FIG. 2 includes discharge paths 7A and 7B connected to the raw water areas 9e of the membrane modules 9A and 9B, and discharge paths 15A and 15B connected to the raw water branch paths 5A and 5B. In such an embodiment, the backwash water can be discharged from any of the discharge paths 7A and 7B or the discharge paths 15A and 15B. The discharge passages 15A and 15B are each configured by a pipe passage having a predetermined pipe diameter, and are provided with discharge valves (sixth valve V6 and seventh valve V7) for opening and closing the discharge passage. The discharge paths 15A and 15B are connected to the raw water branch paths 5A and 5B on the downstream side of the inflow valves (second valve V2 and third valve V3) of the raw water branch paths 5A and 5B, respectively.
 前記膜モジュール9A、9Bの下流側には、浄水分岐路11A,11Bの上流端が接続されている。浄水分岐路11A,11Bは、膜モジュール9A,9Bの浄水排出口9hに接続している。浄水分岐路11A、11Bの下流側は、合流点17で接続し、複数の膜モジュールに接続する浄水分岐路11A,11Bが連通するように形成されている。浄水分岐路11A、11Bが連通することによって、一方の膜モジュールから排出された浄水を、他方の膜モジュールに逆流させることができる。 The upstream ends of the purified water branch paths 11A and 11B are connected to the downstream side of the membrane modules 9A and 9B. The purified water branch paths 11A and 11B are connected to the purified water discharge port 9h of the membrane modules 9A and 9B. The downstream sides of the purified water branch paths 11A and 11B are formed so that the purified water branch paths 11A and 11B connected at the junction 17 and connected to the plurality of membrane modules communicate with each other. By connecting the purified water branch paths 11 </ b> A and 11 </ b> B, the purified water discharged from one membrane module can be made to flow backward to the other membrane module.
 原水分岐路5A,5Bには、原水分岐路内を流れる原水の圧力を測定する圧力計14A,14Bが備えられていることが好ましい。また、浄水分岐路11A,11Bには、浄水分岐路内を流れる浄水の圧力を測定する圧力計16A,16Bが備えられていることが好ましい。 The raw water branch 5A and 5B are preferably provided with pressure gauges 14A and 14B for measuring the pressure of the raw water flowing in the raw water branch. Moreover, it is preferable that the pressure gauges 16A and 16B which measure the pressure of the purified water which flows through the inside of the purified water branch are provided in the purified water branches 11A and 11B.
 前記浄水分岐路11A,11Bの合流点17には、浄水路13が接続している。前記浄水路13には、浄水路13を開閉するための弁(第8バルブV8)が設けられている。前記浄水路13は、所定の管径を有する管路で構成されている。浄水路13には浄水を排出するための浄水排出路19が設けられていることが好ましい。浄水排出路19は、所定の管径を有する管路によって構成され、浄水排出路19を開閉するための弁(第9バルブV9)を備える。 The purified water path 13 is connected to the junction 17 of the purified water branch paths 11A and 11B. The water purification channel 13 is provided with a valve (eighth valve V8) for opening and closing the water purification channel 13. The water purification path 13 is composed of a pipe having a predetermined pipe diameter. It is preferable that the purified water path 13 is provided with a purified water discharge path 19 for discharging purified water. The purified water discharge path 19 is constituted by a pipeline having a predetermined pipe diameter, and includes a valve (a ninth valve V9) for opening and closing the purified water discharge path 19.
 図1、2の実施形態では、膜モジュールとして、第一膜モジュールと第二膜モジュールとを有する形態に基づいて説明したが、膜モジュールは、2以上であれば特に限定されない。例えば、第一膜モジュールと第二膜モジュールとからなる1対の膜モジュールセットを複数有する態様を挙げることができる。本発明の浄水装置が、第一膜モジュールと第二膜モジュールとからなる1対の膜モジュールセットを複数有することにより、原水の処理量を大きくすることができる。 In the embodiment of FIGS. 1 and 2, the membrane module has been described based on the form having the first membrane module and the second membrane module, but the membrane module is not particularly limited as long as it is 2 or more. For example, the aspect which has two or more pairs of membrane module sets which consist of a 1st membrane module and a 2nd membrane module can be mentioned. Since the water purifier of the present invention has a plurality of pairs of membrane module sets each composed of a first membrane module and a second membrane module, the amount of raw water treated can be increased.
 図1、2の実施形態では、濾過状態にある1つの膜モジュールから得られた浄水を、逆洗浄対象となる別の1つの膜モジュールの逆洗水として使用するように構成されている。すなわち、濾過状態の膜モジュールと逆洗対象の膜モジュールとの数の比が、1:1となっている。しかし、濾過状態にある複数の膜モジュールから得られた浄水を合流させて、逆洗対象となる1つの膜モジュールの逆洗水として使用するように構成してもよいし、濾過状態にある1つの膜モジュールから得られた浄水を分岐させて、逆洗対象となる複数の膜モジュールの逆洗水として使用するように構成してもよい。しかしながら、濾過状態の膜モジュール:逆洗対象の膜モジュール=多:1の場合には、逆洗水の圧力が高くなりすぎて、逆洗対象の膜モジュールが備える濾過膜を損傷するおそれがある。一方、濾過状態の膜モジュール:逆洗対象の膜モジュール=1:多の場合には、逆洗水の圧力が低下するので、逆洗浄効率が低下するおそれがある。従って、濾過状態の膜モジュールと逆洗対象の膜モジュールとの数の比は、1:1とすることが好ましい。 1 and 2, the purified water obtained from one membrane module in a filtered state is configured to be used as backwash water for another membrane module to be backwashed. That is, the ratio of the number of membrane modules in a filtered state to the membrane module to be backwashed is 1: 1. However, the purified water obtained from a plurality of membrane modules in a filtered state may be merged and used as backwash water for one membrane module to be backwashed, or 1 in a filtered state. You may comprise so that the purified water obtained from one membrane module may be branched and used as the backwash water of the several membrane module used as the backwash object. However, in the case of membrane module in filtration state: membrane module to be backwashed = multiple: 1, the pressure of backwashing water becomes too high, and there is a risk of damaging the filtration membrane provided in the membrane module to be backwashed . On the other hand, when the membrane module in the filtered state: the membrane module to be backwashed = 1: many, the pressure of backwashing water is lowered, so that the backwashing efficiency may be lowered. Therefore, it is preferable that the ratio of the number of membrane modules in a filtered state and the number of membrane modules to be backwashed is 1: 1.
 本発明の浄水装置1は、制御手段21を備えることが好ましい。制御手段21は、例えば、インバーター制御部23、バルブ制御部25、膜差圧演算部27、表示器29、手動スイッチ31、タイマー33などを有していることが好ましい。 The water purifier 1 of the present invention preferably includes a control means 21. The control means 21 preferably includes, for example, an inverter control unit 23, a valve control unit 25, a membrane differential pressure calculation unit 27, a display 29, a manual switch 31, a timer 33, and the like.
 本発明の浄水装置1は、原水供給手段P1を制御するインバーター制御部23を有することが特に好ましい。原水供給手段P1をインバーターで制御して、原水供給手段が供給する原水の水圧を制御することが好ましい。インバーター制御部23は、例えば、通常濾過運転時には、原水の圧力がほぼ一定となるように原水供給手段P1を制御し、逆洗浄運転時には、原水の圧力が脈動するように原水供給手段P1を制御する。 It is particularly preferable that the water purifier 1 of the present invention has an inverter control unit 23 that controls the raw water supply means P1. It is preferable to control the raw water pressure supplied by the raw water supply means by controlling the raw water supply means P1 with an inverter. For example, the inverter control unit 23 controls the raw water supply means P1 so that the pressure of the raw water becomes substantially constant during the normal filtration operation, and controls the raw water supply means P1 so that the pressure of the raw water pulsates during the reverse cleaning operation. To do.
 膜差圧演算部23は、圧力計14A,14B,16A,16Bの計測値を受信し、膜モジュール9A,9B前後の圧力差を演算する。膜差圧演算部23は、例えば、前記圧力差のデータに応じて、バルブ制御部25に、通常濾過運転または逆洗浄運転を行うように、バルブの切り替えを指示する。 The membrane differential pressure calculation unit 23 receives the measurement values of the pressure gauges 14A, 14B, 16A, and 16B, and calculates the pressure difference between the membrane modules 9A and 9B. For example, according to the pressure difference data, the membrane differential pressure calculation unit 23 instructs the valve control unit 25 to switch the valve so that the normal filtration operation or the reverse cleaning operation is performed.
 バルブ制御部25は、手動スイッチ操作データ、膜差圧演算部が供給する膜差圧データ、タイマーが供給する時間データなどに基づいて、バルブの開閉を行う。バルブ制御部と各バルブは、有線または無線で接続されていることが好ましい。 The valve control unit 25 opens and closes the valve based on manual switch operation data, membrane differential pressure data supplied by the membrane differential pressure calculation unit, time data supplied by a timer, and the like. The valve controller and each valve are preferably connected by wire or wirelessly.
 タイマーは、例えば、通常濾過運転の時間および逆洗浄運転の時間を計測し、それぞれの運転時間が所定時間に達した場合には、バルブ制御部25に、通常濾過運転または逆洗浄運転を行うように、バルブの切り替えを指示することができる。 For example, the timer measures the time of normal filtration operation and the time of backwash operation, and when each operation time reaches a predetermined time, the valve control unit 25 performs normal filtration operation or backwash operation. In addition, the switching of the valve can be instructed.
 表示器は、例えば、圧力計から受信した圧力値、および、膜差圧、現在の運転工程などを表示することができる。 The display can display, for example, the pressure value received from the pressure gauge, the membrane differential pressure, the current operation process, and the like.
 図3には、本発明の浄水装置の別の実施形態を示した。本発明の浄水装置1は、浄水または原水に、薬液を供給する手段を備えることも好ましい。薬液を供給する手段としては、例えば、薬液タンクと薬液を供給するためのポンプを挙げることができる。例えば、本発明の浄水装置1は、原水槽35と、前記原水槽35に、造核剤、凝集剤、または、pH調整剤などの薬液を供給するための薬液タンク37と、前記薬液を原水槽35に供給するためのポンプP3とを有することが好ましい。斯かる構成とすることにより、原水槽35において、原水中に含まれる電荷を帯びた金属イオン、ヒ素、フッ素、シリカ、塩素などの不純物を凝集させることができる。得られた凝集物は、原水とともに膜モジュールに供給されて、膜手段によって異物として除去される。本発明の浄水装置1は、薬液タンクを複数備えても良い。特に、造核剤または凝集剤を貯蔵する薬液タンクと、pH調整剤を貯蔵する薬液タンクとを備えることが好ましい。斯かる構成により、造核剤または凝集剤の作用効率が高いpH領域への調整が容易になる。 FIG. 3 shows another embodiment of the water purifier of the present invention. It is also preferable that the water purifier 1 of the present invention includes means for supplying a chemical solution to purified water or raw water. Examples of the means for supplying the chemical liquid include a chemical liquid tank and a pump for supplying the chemical liquid. For example, the water purifier 1 of the present invention includes a raw water tank 35, a chemical liquid tank 37 for supplying a chemical liquid such as a nucleating agent, a flocculant, or a pH adjuster to the raw water tank 35, and the chemical liquid as a raw material. It is preferable to have a pump P3 for supplying to the water tank 35. With such a configuration, in the raw water tank 35, impurities such as charged metal ions, arsenic, fluorine, silica, and chlorine contained in the raw water can be aggregated. The obtained agglomerates are supplied to the membrane module together with the raw water, and are removed as foreign substances by the membrane means. The water purifier 1 of the present invention may include a plurality of chemical tanks. In particular, it is preferable to include a chemical tank that stores a nucleating agent or a flocculant and a chemical tank that stores a pH adjuster. Such a configuration facilitates adjustment to a pH range in which the nucleating agent or the flocculant has a high working efficiency.
 また、本発明の浄水装置1は、浄水に、次亜塩素酸、次亜塩素酸ナトリウムなどの薬液を添加するための薬液タンク41および、薬液を送液するためのポンプP2を有することが好ましい。図3では、本発明の浄水装置1によって得られた浄水が、受水槽45に供給されるように図示されているが、受水槽45は、必ずしも必要ではない。 Moreover, it is preferable that the water purifier 1 of this invention has the chemical | medical solution tank 41 for adding chemical | medical solutions, such as hypochlorous acid and sodium hypochlorite, to the purified water, and the pump P2 for sending a chemical | medical solution. . In FIG. 3, the purified water obtained by the water purification apparatus 1 of the present invention is shown to be supplied to the water receiving tank 45, but the water receiving tank 45 is not necessarily required.
 原水槽35および受水槽45が、レベル計L1,L2を備えることも好ましい。例えば、レベル計L1が計測する原水槽35の水位データに基づいて、原水が一定量処理されたときに、バルブ制御部25が、通常濾過運転と逆洗浄運転を切り替えるように、バルブの切り替えを指示するようにしてよい。 It is also preferable that the raw water tank 35 and the water receiving tank 45 include level meters L1 and L2. For example, based on the water level data of the raw water tank 35 measured by the level meter L1, the valve control unit 25 switches the valve so that the normal filtration operation and the reverse cleaning operation are switched when a certain amount of raw water is processed. You may be instructed.
 図3に示すように、本発明の浄水装置1は、浄水分岐路11A,11Bに並列にマイクロバブル発生装置47A,47Bを備えることも好ましい。斯かる構成とすることにより、逆洗浄運転時に、逆洗水にマイクロバブルを混入させることができる。マイクロバブル発生装置47A,47Bは、例えば、三方バルブ49A,49Bと所定の管径を有する管路48A,48Bを介して、浄水分岐路11A,11Bに並列に接続されている。三方バルフ49A,49Bを用いることによって、浄水分岐路11A,11Bのみに逆洗水を逆流させる場合、浄水分岐路11A,11Bとマイクロバブル発生装置47A,47Bに並列に逆洗水を逆流させる場合、マイクロバブル発生装置47A,47Bのみに逆洗水を逆流させる場合などを選択することができる。マイクロバブル発生装置を備える構成として、図3に示したような構成を採用することにより、装置の小型化やコストを低減することができる。一方、マイクロバブルの供給量の制御範囲の拡大や、供給量の精度を向上する場合には、マイクロバブル発生装置47A,47Bに、別の水供給流路から水の供給を行い、マイクロバブル発生装置47A,47Bから導出されるマイクロバブル入りの逆洗水を、マイクロバブル発生装置47A,47Bから浄水分岐路11A、11Bをつなぐ流路を通して供給するようにしても良い。 As shown in FIG. 3, it is also preferable that the water purifier 1 of the present invention includes microbubble generators 47A and 47B in parallel with the water purification branches 11A and 11B. By setting it as such a structure, a microbubble can be mixed in backwash water at the time of backwash operation. The microbubble generators 47A and 47B are connected in parallel to the purified water branch paths 11A and 11B via, for example, three-way valves 49A and 49B and pipe lines 48A and 48B having a predetermined pipe diameter. When using three-way balf 49A, 49B to back flow backwash water only in the purified water branch 11A, 11B, backflow water back in parallel to the purified water branch 11A, 11B and the microbubble generators 47A, 47B In addition, it is possible to select a case where the backwash water is caused to flow backward only through the microbubble generators 47A and 47B. By adopting the configuration shown in FIG. 3 as a configuration including the microbubble generator, the size and cost of the device can be reduced. On the other hand, when expanding the control range of the supply amount of microbubbles or improving the accuracy of the supply amount, water is supplied to the microbubble generators 47A and 47B from another water supply flow path to generate microbubbles. You may make it supply the backwash water containing the microbubble derived | led-out from apparatus 47A, 47B through the flow path which connects the purified water branch path 11A, 11B from microbubble generator 47A, 47B.
 マイクロバブルを発生させる方式としては、例えば、細孔方式、加圧溶解方式、超音波方式、気液混合・剪断方式、超高速旋回方式、フリップフロップ現象発生方式などを挙げることができる。これらの中でも、本発明の浄水装置1に設置しやすいという理由から、超高速旋回方式、フリップフロップ現象発生方式などを採用することが好ましい。 Examples of the method for generating microbubbles include a pore method, a pressure dissolution method, an ultrasonic method, a gas-liquid mixing / shearing method, an ultra-high speed swirling method, and a flip-flop phenomenon generating method. Among these, since it is easy to install in the water purifier 1 of this invention, it is preferable to employ | adopt a super-high-speed turning system, a flip-flop phenomenon generation system, etc.
 本発明の浄水装置1に使用するマイクロバブル発生装置としては、例えば、特許第3835543号に開示されているような流体吐出環構造体が好ましい。この流体吐出環構造体は、筒本体と、この筒本体の一端部に設ける貫通孔を有する入口側接続部材と、筒本体の他端部に設ける貫通孔を有する吐出側接続部材と、外周に螺旋羽根を有して上記筒本体の入口側接続部材寄りに内蔵する螺旋羽根本体と、上記筒本体の吐出側接続部材寄りに内蔵するフリップフロップ現象発生用軸体とからなり、かつ、上記フリップフロップ現象発生用軸体は、一端部を截頭円錐形に形成するとともに他端部を円錐形に形成し、この両端部の間である軸部の外周面に多数のひし形凸部を所定の規則性を持って形成したものであることを特徴とする。 As the microbubble generator used in the water purifier 1 of the present invention, for example, a fluid discharge ring structure as disclosed in Japanese Patent No. 3835543 is preferable. The fluid discharge ring structure includes a cylinder body, an inlet side connection member having a through hole provided at one end of the cylinder body, a discharge side connection member having a through hole provided at the other end of the cylinder body, and an outer periphery. A spiral blade body having a spiral blade and built in the cylinder body near the inlet side connection member, and a flip-flop phenomenon generating shaft body built in the cylinder body near the discharge side connection member, and the flip-flop The shaft body for the phenomenon of occurrence of a phenomenon is formed with a frustoconical end at one end and a conical end at the other end. It is characterized by being formed with regularity.
 図4~図9は流体吐出管構造体101に関する図であり、図4は流体吐出管構造体の分解斜視図、図5は流体吐出管構造体の斜視図、図6は流体吐出管構造体の縦断面図、図7はフリップフロップ現象発生用軸体の規則性を持った多数の各ひし形凸部を示す説明図、図8はフリップフロップ現象発生用軸体の一ひし形凸部を示す説明図、図9は螺旋羽根本体に形成される螺旋羽根の説明図である。 4 to 9 are views relating to the fluid discharge pipe structure 101, FIG. 4 is an exploded perspective view of the fluid discharge pipe structure, FIG. 5 is a perspective view of the fluid discharge pipe structure, and FIG. 6 is a fluid discharge pipe structure. FIG. 7 is an explanatory diagram showing a large number of rhombus convex portions having regularity of the flip-flop phenomenon generating shaft, and FIG. 8 is an explanation showing one rhombus convex portion of the flip-flop phenomenon generating shaft. FIG. 9 is an explanatory view of the spiral blade formed in the spiral blade body.
 図4~図6に示すように上記流体吐出管構造体101は、筒本体102と、貫通孔103を有する入口側接続部材104と、貫通孔105を有する吐出側接続部材106と、螺旋羽根本体107と、フリップフロップ現象発生用軸体108とによって構成されている。 As shown in FIGS. 4 to 6, the fluid discharge pipe structure 101 includes a cylinder body 102, an inlet side connection member 104 having a through hole 103, a discharge side connection member 106 having a through hole 105, and a spiral blade body. 107 and a flip-flop phenomenon generating shaft 108.
 より具体的に説明すると、上記筒本体102(図4、図6参照)は、所定の径と長さに形成された真直な円筒の金属管であって、両端部の内周面に入口側接続部材104並びに吐出側接続部材106をねじ合わせて取り付けできる雌ねじ109、110を形成したものである。 More specifically, the cylinder main body 102 (see FIGS. 4 and 6) is a straight cylindrical metal tube formed to have a predetermined diameter and length, and is provided at the inlet side on the inner peripheral surfaces of both ends. The internal thread 109,110 which can attach the connecting member 104 and the discharge side connecting member 106 by screwing together is formed.
 また、この貫通孔103を有する入口側接続部材104(図4、図6参照)は、略中央に形成したフランジ部111と、このフランジ部111の片側に形成した六角形状のナット部112と、上記筒本体102の雌ねじ109にねじ合わせできる雄ねじ113を有して上記フランジ部111のもう一方の片側に形成した筒部114とからなる。フランジ部111の内側にはテーパ部115が形成されている。ナット部112側の貫通孔103aの径は、筒部114の貫通孔103bの径より小さく、上記テーパ部115は、貫通孔103aと貫通孔103bとの間に位置して貫通孔103a側から貫通孔103b側に径を漸次拡大するように形成されている。 In addition, the inlet side connecting member 104 (see FIGS. 4 and 6) having the through hole 103 includes a flange portion 111 formed substantially at the center, a hexagonal nut portion 112 formed on one side of the flange portion 111, It has a cylindrical portion 114 formed on the other side of the flange portion 111 with a male screw 113 that can be screwed to the female screw 109 of the cylindrical main body 102. A tapered portion 115 is formed inside the flange portion 111. The diameter of the through hole 103a on the nut portion 112 side is smaller than the diameter of the through hole 103b of the cylindrical portion 114, and the tapered portion 115 is located between the through hole 103a and the through hole 103b and penetrates from the through hole 103a side. It is formed so as to gradually expand the diameter toward the hole 103b.
 筒部114の内周面には、テーパ部115寄りの内径をその他の内径より僅かに小さく形成して段差部114aが形成されている。この筒部114の端114bから段差部114aまでの長さは、後述する螺旋羽根本体107の全長に等しく、螺旋羽根本体107を筒部114内に収納した時に、螺旋羽根本体107の端107aは段差部114aに当たって係止され、また、螺旋羽根本体107の端107bは筒部114の端114bと面一になる。そして螺旋羽根本体107を筒部114内に収納した時には、螺旋羽根本体107の端107aからテーパ部115の小径端115aまでの間に、空間部129が形成される。また、上記ナット部112は、内周面に雌ねじ116を有し、他の配管をねじ込み接続できるようにしてある。 On the inner peripheral surface of the cylindrical portion 114, a stepped portion 114a is formed by forming an inner diameter near the tapered portion 115 slightly smaller than other inner diameters. The length from the end 114b of the cylindrical portion 114 to the stepped portion 114a is equal to the entire length of the spiral blade main body 107 described later, and when the spiral blade main body 107 is housed in the cylindrical portion 114, the end 107a of the spiral blade main body 107 is The end 107b of the spiral blade main body 107 is flush with the end 114b of the cylindrical portion 114. When the spiral blade body 107 is housed in the cylindrical portion 114, a space portion 129 is formed between the end 107 a of the spiral blade body 107 and the small diameter end 115 a of the tapered portion 115. The nut portion 112 has an internal thread 116 on the inner peripheral surface so that other pipes can be screwed and connected.
 貫通孔105を有する吐出側接続部材106(図4、図6参照)は、一端寄りに形成したフランジ部117と、このフランジ部117の片側に形成した六角形状のナット部118と、フランジ部117のもう一方の片側に上記筒本体102の雌ねじ110にねじ合わせできる雄ねじ119を有する筒部120とからなる。この筒部120の内側には、テーパ部121が形成されている。ナット部118側の貫通孔105aの径は筒部120の貫通孔105bの径より小さい。テーパ部121は、筒部120の中間部から端まで径を漸次拡大した截頭円錐孔形状に形成してある。ナット部118は、内周面に雌ねじ122を有し、他の配管をねじ込み接続できるようにしてある。 The discharge-side connecting member 106 (see FIGS. 4 and 6) having the through hole 105 includes a flange portion 117 formed near one end, a hexagonal nut portion 118 formed on one side of the flange portion 117, and a flange portion 117. On the other side, a cylindrical portion 120 having a male screw 119 that can be screwed to the female screw 110 of the cylindrical main body 102 is formed. A tapered portion 121 is formed inside the cylindrical portion 120. The diameter of the through hole 105a on the nut part 118 side is smaller than the diameter of the through hole 105b of the cylindrical part 120. The tapered portion 121 is formed in a truncated conical hole shape whose diameter is gradually enlarged from the intermediate portion to the end of the cylindrical portion 120. The nut portion 118 has an internal thread 122 on the inner peripheral surface so that other pipes can be screwed and connected.
 螺旋羽根本体107(図4、図6参照)は、収納時に筒本体102の内周面に近接する位の外径からなる金属製の短い円柱部材を加工したものであって、横断面円形の軸部123と、3枚の螺旋状の羽根124a、124b、124cとから成る。各羽根124a、124b、124cは、それぞれの端部125a,125b,125c位置を軸部123の円周方向に120度づつずらして位置させ、軸部123の一端から他端まで外周面に所定間隔を以って反時計回りに螺旋状に形成してある。 The spiral blade main body 107 (see FIGS. 4 and 6) is obtained by processing a short cylindrical member made of a metal having an outer diameter close to the inner peripheral surface of the cylinder main body 102 during storage, and has a circular cross section. It consists of a shaft part 123 and three spiral blades 124a, 124b, 124c. Each of the blades 124a, 124b, 124c is positioned by shifting the positions of the end portions 125a, 125b, 125c by 120 degrees in the circumferential direction of the shaft portion 123. Thus, it is spirally formed counterclockwise.
 この各羽根124a、124b、124cは、図9に示すように平面視した場合に軸部123の外周面に図上の水平線126に対して75°乃至76°の角度で上記したように螺旋状に形成されている。各羽根124a、124b、124cの間隔である溝幅は8mmに、また、各羽根124a、124b、124cの厚さは2mmに、さらに各羽根124a、124b、124cの外端127から軸部123の外周面128までの深さは9mmに形成してある。また各羽根124a、124b、124cの両端部125a,125b,125cは、刃状に鋭角に形成してある。 Each of the blades 124a, 124b, 124c has a spiral shape as described above at an angle of 75 ° to 76 ° with respect to the horizontal line 126 on the outer periphery of the shaft portion 123 when viewed in plan as shown in FIG. Is formed. The width of the groove, which is the interval between the blades 124a, 124b, 124c, is 8 mm, the thickness of each blade 124a, 124b, 124c is 2 mm, and further, from the outer end 127 of each blade 124a, 124b, 124c to the shaft portion 123. The depth to the outer peripheral surface 128 is 9 mm. Further, both end portions 125a, 125b, and 125c of the blades 124a, 124b, and 124c are formed in an acute angle in a blade shape.
 フリップフロップ現象発生用軸体108(図4、図6~図8参照)は、収納時に筒本体102の内周面に近接する位の外径で、筒本体102の長さの約4/5の長さの金属製の円柱部材を加工したものであって、横断面円形の軸部130の外周面131に多数のひし形凸部132を所定の規則性を持って形成してある。 The flip-flop phenomenon generating shaft 108 (see FIGS. 4 and 6 to 8) has an outer diameter close to the inner peripheral surface of the cylinder main body 102 when stored, and is about 4/5 of the length of the cylinder main body 102. A metal cylindrical member having a length of 3 mm is processed, and a large number of rhombus convex portions 132 are formed with a predetermined regularity on the outer peripheral surface 131 of the shaft portion 130 having a circular cross section.
 すなわち、このフリップフロップ現象発生用軸体108は、筒本体102内に収納したときに螺旋羽根本体107側に位置する一端部134aを截頭円錐形に形成するとともに、吐出側接続部材106側に位置する他端部134bを円錐形に形成してある。上記他端部134bは、頂部134cを60°に形成して吐出側接続部材106のテーパ部121内に位置し、テーパ部121の傾斜内面121aと一定の間隔を以って対向するようにしてある。 That is, the flip-flop phenomenon generating shaft 108 is formed with a frustoconical end portion 134a located on the spiral blade body 107 side when housed in the cylinder body 102, and on the discharge side connecting member 106 side. The other end portion 134b is formed in a conical shape. The other end portion 134b has a top portion 134c formed at 60 °, is positioned in the tapered portion 121 of the discharge-side connecting member 106, and is opposed to the inclined inner surface 121a of the tapered portion 121 with a certain interval. is there.
 また、このフリップフロップ現象発生用軸体108の軸部130の外周面131には、所定の規則性を持った多数のひし形凸部132が形成してある。各ひし形凸部132は、円柱部材を研削加工して上記外周面131から外方に突出するように形成されている。 Further, on the outer peripheral surface 131 of the shaft portion 130 of the shaft body 108 for generating the flip-flop phenomenon, a large number of rhombus convex portions 132 having a predetermined regularity are formed. Each rhombus convex portion 132 is formed so as to protrude outward from the outer peripheral surface 131 by grinding a cylindrical member.
 すなわち、各ひし形凸部132(図7参照)は、円柱部材の長手方向に対して90°の方向(円周方向)に一定間隔をもった複数のライン136と、上記長手方向に対して60°(または62°)の角度をもった一定間隔毎のライン137とを交差させ、ライン136とライン136の間をひとつ飛び毎に研削するとともに、斜めのライン137とライン137の間をひとつ飛び毎に研削し、上下(円周方向)、左右(軸部130の長手方向)にひとつ飛び毎に、軸部130の外周面131から突出するように形成してある。 That is, each rhombus convex portion 132 (see FIG. 7) includes a plurality of lines 136 having a constant interval in a direction (circumferential direction) of 90 ° with respect to the longitudinal direction of the cylindrical member, and 60 with respect to the longitudinal direction. Cross the line 137 at regular intervals with an angle of ° (or 62 °), grind between the lines 136 and 136 one by one, and jump between the diagonal lines 137 and 137 It is ground every time and formed so as to protrude from the outer peripheral surface 131 of the shaft portion 130 one by one in the vertical direction (circumferential direction) and right and left (longitudinal direction of the shaft portion 130).
 このようにして各ひし形凸部132を形成することによって、多数のひし形凸部132が、両端部134a,134bの間である軸部130の外周面131に所定の規則性を持って並んでいる。 By forming each rhombus convex portion 132 in this manner, a large number of rhombus convex portions 132 are arranged with a predetermined regularity on the outer peripheral surface 131 of the shaft portion 130 between both end portions 134a and 134b. .
 このように筒本体102と、入口側接続部材104と、吐出側接続部材106と、螺旋羽根本体107と、フリップフロップ現象発生用軸体108とによって構成される流体吐出管構造体101(図4~図6参照)は、筒本体102の一端部に吐出側接続部材106をねじ込んで取り付け、この筒本体102の中に他端からフリップフロップ現象発生用軸体108の円錐形の他端部134bを挿入し、次に螺旋羽根本体107を挿入し、最後に入口側接続部材104を筒本体102の一端部にねじ込んで取り付ける。 As described above, the fluid discharge pipe structure 101 (FIG. 4) configured by the cylinder main body 102, the inlet-side connection member 104, the discharge-side connection member 106, the spiral blade main body 107, and the flip-flop phenomenon generating shaft 108. (See FIG. 6), the discharge-side connecting member 106 is screwed and attached to one end of the cylinder body 102, and the other end 134b of the conical shape of the flip-flop phenomenon generating shaft 108 is inserted into the cylinder body 102 from the other end. Next, the spiral blade main body 107 is inserted, and finally the inlet side connecting member 104 is screwed into one end of the tube main body 102 and attached.
 このときフリップフロップ現象発生用軸体108の截頭円錐形の一端部の先端133(図6参照)は、螺旋羽根本体107の片面(一端107b)に当接する。螺旋羽根本体107は、フリップフロップ現象発生用軸体108と入口側接続部材104の段差部114aとで挟まれて筒本体102内に収納されることになる。 At this time, the tip 133 (see FIG. 6) of one end of the frustoconical shape of the shaft 108 for generating the flip-flop phenomenon comes into contact with one side (one end 107b) of the spiral blade body 107. The spiral blade body 107 is sandwiched between the flip-flop phenomenon generating shaft 108 and the stepped portion 114 a of the inlet side connecting member 104 and is accommodated in the cylinder body 102.
 浄水が流体吐出管構造体101を通過する際の流れについて説明すると、入口側接続部材104(図4参照)の貫通孔103から流入した浄水は、螺旋羽根本体107の平坦な端107aに当る。 The flow when purified water passes through the fluid discharge pipe structure 101 will be described. The purified water that has flowed from the through-hole 103 of the inlet side connection member 104 (see FIG. 4) hits the flat end 107 a of the spiral blade body 107.
 浄水は、螺旋羽根本体107の反時計回りに形成された各羽根124a、124b、124cの間を通過していく。この時、浄水は、各羽根124a、124b、124cによって強烈な竜巻流となってフリップフロップ現象発生用軸体108の截頭円錐形の一端部134aに送り込まれる。そして、浄水は軸部130の外周面131に形成された所定の規則性を持った多数のひし形凸部132の間(複数の流路)に送り込まれる。 The purified water passes between the blades 124a, 124b, and 124c formed in the counterclockwise direction of the spiral blade body 107. At this time, the purified water is sent to the frustoconical one end portion 134a of the flip-flop phenomenon generating shaft 108 as a strong tornado flow by the blades 124a, 124b, 124c. The purified water is then fed between a plurality of rhombus-shaped convex portions 132 having a predetermined regularity formed on the outer peripheral surface 131 of the shaft portion 130 (a plurality of flow paths).
 規則性を持った多数の各ひし形凸部132の間(複数の流路)を通過する浄水は、乱流となり無数の微小な渦を発生させるフリップフロップ現象(フリップフロップ現象とは、流体の流れる方向が周期的に交互に方向変換して流れる現象)を起こしながらフリップフロップ現象発生用軸体108の他端部134b側に流動していく。この円錐形の他端部134bに流れ込んだ浄水は、吐出側接続部材106との隙間空間の広さによる上記フリップフロップ現象以上の竜巻流の発生によってフリップフロップ現象はかき消されるが、コアンダ効果(流体を壁面に沿って流した場合に、流体と壁面の間の圧力低下によって流体が壁面に吸い寄せられる現象)を増幅させて、からみ付き現象を誘発させ吐出側接続部材106の貫通孔105から吐出される。 The purified water that passes between the plurality of rhombic convex portions 132 having a regularity (a plurality of flow paths) becomes a turbulent flow and generates innumerable minute vortices (a flip-flop phenomenon is a flow of fluid). It flows toward the other end part 134b of the shaft 108 for generating the flip-flop phenomenon while causing a phenomenon that the direction is periodically changed alternately and flows. The purified water that has flowed into the other end 134b of the conical shape is erased by a tornado flow more than the flip-flop phenomenon due to the size of the gap space with the discharge-side connecting member 106, but the Coanda effect (fluid) When the fluid flows along the wall surface, the phenomenon that the fluid is attracted to the wall surface due to the pressure drop between the fluid and the wall surface is amplified, and the entanglement phenomenon is induced to be discharged from the through-hole 105 of the discharge side connecting member 106. The
 本発明の浄水装置は、マンション、アパート、ビル、ホテル、複数の戸建てなどの建物に供給しうる大型の浄水装置である。本発明の浄水装置の浄水の供給量は、供給先の数や水使用量に応じて適宜設定する。例えば100戸から200戸のマンション1棟に1個の浄水装置を設置する場合を想定すると、本発明の浄水装置の浄水の供給量は、3000L/時以上が好ましく、4000L/時以上がより好ましく、5000L/時以上がさらに好ましく、8000L/時以下が好ましく、7000L/時以下がより好ましく、6000L/時以下がさらに好ましい。 The water purifier of the present invention is a large water purifier that can be supplied to a building such as an apartment, an apartment, a building, a hotel, or a plurality of detached houses. The supply amount of purified water of the water purification apparatus of the present invention is appropriately set according to the number of supply destinations and the amount of water used. For example, assuming a case where one water purification device is installed in one apartment building of 100 to 200 units, the supply amount of purified water of the water purification device of the present invention is preferably 3000 L / hour or more, more preferably 4000 L / hour or more. 5000 L / hour or more is more preferable, 8000 L / hour or less is preferable, 7000 L / hour or less is more preferable, and 6000 L / hour or less is more preferable.
(2)本発明の浄水の製造方法
 次に、本発明の浄水の製造方法について説明する。本発明の浄水の製造方法は、通常濾過運転時には、少なくとも第一膜モジュールと第二膜モジュールとを有する複数の膜モジュールに原水を並列に供給して、原水を複数の膜モジュールで濾過することにより浄水を製造し、逆洗浄運転時には、第一膜モジュールまたは第二膜モジュールの一方に、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、他方の膜モジュールの下流側から上流側に逆流させて、他方の膜モジュールを逆洗浄することを特徴とする。
(2) Manufacturing method of the purified water of this invention Next, the manufacturing method of the purified water of this invention is demonstrated. In the water purification method of the present invention, during normal filtration operation, raw water is supplied in parallel to a plurality of membrane modules having at least a first membrane module and a second membrane module, and the raw water is filtered through the plurality of membrane modules. At the time of reverse cleaning operation, the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is reversed. As washing water, the other membrane module is backwashed from the downstream side to the upstream side of the other membrane module, and the other membrane module is backwashed.
 本発明の製造方法のより好ましい態様では、逆洗浄運転時には、第一膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第二膜モジュールの下流側から上流側に逆流させて、第二膜モジュールを逆洗浄し、さらに、第二膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第一膜モジュールの下流側から上流側に逆流させて、第一膜モジュールを逆洗浄する。 In a more preferred embodiment of the production method of the present invention, at the time of backwashing operation, raw water is supplied to the first membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is backwashed. Back flow from the downstream side of the second membrane module to the upstream side, back washing the second membrane module, and further, supplying raw water to the second membrane module while pulsating the water pressure of the raw water and filtering, At least a part of the purified water thus obtained is backwashed from the downstream side of the first membrane module to the upstream side, and the first membrane module is backwashed.
 まず、通常濾過運転工程について図面を参照しながら説明する。図10は、通常濾過運転時における本発明の浄化装置1の通水状態を示す図である。図10に示すように、通常濾過運転時には、第1~第3バルブV1~V3、第8バルブV8を解放し、第4~第5バルブV4~V5、および、第9バルブV9を閉鎖する。これにより、原水供給路3、原水分岐路5A,5Bと、浄水分岐路11A,11Bと、浄水路13とが、膜モジュール9A,9Bを介して連通した原水処理ラインが形成される。バルブの開閉操作は、バルブ制御部による自動制御でもよいし、手動で制御してもよい。 First, the normal filtration operation process will be described with reference to the drawings. FIG. 10 is a diagram showing a water flow state of the purification device 1 of the present invention during normal filtration operation. As shown in FIG. 10, during the normal filtration operation, the first to third valves V1 to V3 and the eighth valve V8 are released, and the fourth to fifth valves V4 to V5 and the ninth valve V9 are closed. Thus, a raw water treatment line is formed in which the raw water supply path 3, the raw water branch paths 5A and 5B, the purified water branch paths 11A and 11B, and the purified water path 13 communicate with each other through the membrane modules 9A and 9B. The valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled.
 原水供給手段P1は、原水を加圧して原水供給路に送液する。原水の圧力は、使用する膜モジュールの許容圧力に応じて、適宜設定されることが好ましい。例えば、限外濾過膜(UF膜)及び精密濾過膜(MF膜)の場合、許容圧力は、約0.35MPa程度であり、加圧された原水の圧力Pfは、0.2MPa以上が好ましく、0.25MPa以上がより好ましく、0.28MPa以上がさらに好ましく、0.35MPa以下が好ましく、0.32MPa以下がより好ましく、0.30MPa以下がさらに好ましい。加圧された原水の圧力Pfが、許容圧力を超えると、濾過膜が損傷しやすくなる。また、加圧された原水の圧力Pfが低すぎると、原水の流量が少なくなってしまうからである。なお、逆洗浄運転時とは異なり、通常濾過運転時においては、原水の圧力Pfは、ほぼ一定であることが好ましい。 The raw water supply means P1 pressurizes the raw water and sends it to the raw water supply path. The pressure of the raw water is preferably set as appropriate according to the allowable pressure of the membrane module to be used. For example, in the case of an ultrafiltration membrane (UF membrane) and a microfiltration membrane (MF membrane), the allowable pressure is about 0.35 MPa, and the pressure Pf of the pressurized raw water is preferably 0.2 MPa or more, 0.25 MPa or more is more preferable, 0.28 MPa or more is more preferable, 0.35 MPa or less is preferable, 0.32 MPa or less is more preferable, and 0.30 MPa or less is more preferable. When the pressure Pf of the pressurized raw water exceeds the allowable pressure, the filtration membrane is easily damaged. Moreover, if the pressure Pf of the pressurized raw water is too low, the flow rate of the raw water is reduced. Note that, unlike the reverse cleaning operation, the pressure Pf of the raw water is preferably substantially constant during the normal filtration operation.
 原水は、分岐点4で分岐して、原水分岐路5A,5Bを通って、第一および第二膜モジュール9A,9Bに供給される。原水は、第一および第二膜モジュール9A,9Bで濾過される。原水に含まれる異物や濁質などが、膜モジュールで除去される。原水を第一および第二膜モジュール9A,9Bで濾過する際には、第4および第5バルブV4,V5を解放して、濃縮水を、排出路7A,7Bから排出しながら濾過するクロスフロー方式を採用してもよい。また、第4及び第5バルブV4,V5を閉鎖して、原水を濾過するデッドエンド方式を採用してもよい。デッドエンド方式を採用する場合には、膜モジュール9A,9B内の溜まり部に異物が蓄積していくことになるので、時折、第4及び第5バルブV4,V5を解放して、異物を排出することが好ましい。 The raw water branches at the branch point 4 and is supplied to the first and second membrane modules 9A and 9B through the raw water branch paths 5A and 5B. The raw water is filtered by the first and second membrane modules 9A and 9B. Foreign matter and turbidity contained in the raw water are removed by the membrane module. When the raw water is filtered by the first and second membrane modules 9A and 9B, the fourth and fifth valves V4 and V5 are opened, and the concentrated water is filtered while being discharged from the discharge passages 7A and 7B. A method may be adopted. Moreover, you may employ | adopt the dead end system which closes the 4th and 5th valve | bulb V4, V5, and filters raw | natural water. When the dead end method is adopted, foreign matter accumulates in the reservoirs in the membrane modules 9A and 9B, so the fourth and fifth valves V4 and V5 are occasionally released to discharge the foreign matter. It is preferable to do.
 第一および第二膜モジュール9A,9Bから排出された浄水はそれぞれ、浄水分岐路11A,11Bを通って合流点17で合流し、浄水路13に流出する。 The purified water discharged from the first and second membrane modules 9A and 9B merges at the junction 17 through the purified water branch paths 11A and 11B, and flows out to the purified water path 13, respectively.
 浄水には、必要に応じて薬液を加えてもよい。図3に示したように、薬液は、薬液タンク41からポンプP2を介して、浄水路13に流れる浄水に供給される。前記薬液としては、特に限定されないが、例えば、次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸水溶液などを挙げることができる。これらの中でも、次亜塩素酸ナトリウム水溶液を用いることが好ましい。次亜塩素酸ナトリウムを添加することにより、水中で次亜塩素酸イオンに電離するとともに、その一部が水と反応して、次亜塩素酸となる。これらの殺菌力によって浄水装置から吐出される浄水において、例えば、本発明の浄水装置から各使用箇所までの配管における菌の繁殖を防止することができ、使用者が飲用などに用いるまでの浄水の安全性を維持することができる。 Chemicals may be added to the purified water as necessary. As shown in FIG. 3, the chemical liquid is supplied from the chemical liquid tank 41 to the purified water flowing through the water purification path 13 via the pump P2. Although it does not specifically limit as said chemical | medical solution, For example, hypochlorous acid, sodium hypochlorite, hypochlorous acid aqueous solution, etc. can be mentioned. Among these, it is preferable to use a sodium hypochlorite aqueous solution. By adding sodium hypochlorite, it ionizes to hypochlorite ions in water, and part of it reacts with water to form hypochlorous acid. In the purified water discharged from the water purifier by these sterilizing powers, for example, it is possible to prevent the growth of bacteria in the piping from the water purifier of the present invention to each use location, and the purified water until the user uses it for drinking etc. Safety can be maintained.
 次亜塩素酸ナトリウムを浄水に添加する場合、殺菌力と二次浄水装置での塩素除去効率などとの関係を考慮して、得られる浄水中の塩素濃度は、0.3mg/L以上が好ましく、0.4mg/L以上がより好ましく、0.5mg/L以上がさらに好ましく、0.8mg/L以下が好ましく、0.7mg/L以下がより好ましい。このように浄水中に塩素を含有させることにより、原水が塩素を含む水道水の場合に、本発明の浄水装置で不純物を除去する工程で塩素を除去した場合でも、当該装置から流出する浄水に塩素を含有させることができ、また、塩素を含まない水を原水として用いた場合にも、塩素を添加することができ、衛生に優れたものとなる。 When sodium hypochlorite is added to purified water, the chlorine concentration in the obtained purified water is preferably 0.3 mg / L or more in consideration of the relationship between sterilizing power and chlorine removal efficiency in the secondary water purification device. 0.4 mg / L or more is more preferable, 0.5 mg / L or more is more preferable, 0.8 mg / L or less is preferable, and 0.7 mg / L or less is more preferable. By containing chlorine in the purified water in this way, even when the raw water is tap water containing chlorine, even if the chlorine is removed in the process of removing impurities in the water purification device of the present invention, the purified water flowing out from the device Chlorine can be contained, and even when water containing no chlorine is used as raw water, chlorine can be added, and the sanitation is excellent.
 また、原水に造核剤、凝集剤またはpH調整剤を添加してから、膜モジュールで濾過することも好ましい。原水に、造核剤、凝集剤またはpH調整剤などを添加することにより、原水中に含まれる電荷を帯びた金属イオン、ヒ素、フッ素、シリカ、塩素などの不純物を凝集させることができる。得られた凝集物は、大粒子径化し、沈殿または濾過による除去が容易になる。造核剤を用いる場合はイオンレベルで結合するという作用効果があり、水中の微小な金属イオンを残存少なく凝集できる。一方、凝集剤を用いる場合は、高濁度に不純物が含まれる場合には、不純物を効率よく大量に凝集して除去できるという利点があるものの、微小な金属イオンは除去しきれない。よって、ヒ素や鉛、鉄などの重金属が水中でイオンとして存在する場合には造核剤を用いるのがよく、また水中の不純物の粒子を大量に除去する場合は凝集剤を使用するのが良い。前記造核剤としては、例えば、水酸化第二鉄コロイド溶液を用いることができる。pH調整剤としては、酸性側からアルカリ側へ調整する場合は水酸化ナトリウムなどを使用することでき、またアルカリ側から酸性側へ調整する場合は希塩酸や炭酸などを使用することができる。また、前記凝集剤としては、例えば、一般にPACと呼称されるポリ塩化アルミニウムや、一般に硫酸バンドと呼称される硫酸アルミニウムを用いる事ができる。造核剤や凝集剤などの薬液は、例えば、図3に示したように薬液タンク37からポンプP3を介して原水供給路3の上流側に設けた原水槽35に添加するようにしてもよいし、原水供給路3に流れる原水に直接添加してもよい。 It is also preferable to add a nucleating agent, a flocculant or a pH adjuster to the raw water and then filter with a membrane module. By adding a nucleating agent, a flocculant, or a pH adjuster to the raw water, impurities such as charged metal ions, arsenic, fluorine, silica, and chlorine contained in the raw water can be agglomerated. The obtained agglomerates have a large particle size and are easily removed by precipitation or filtration. When a nucleating agent is used, there is an effect of binding at an ion level, and minute metal ions in water can be aggregated with little remaining. On the other hand, when an aggregating agent is used, when impurities are included in high turbidity, there is an advantage that impurities can be efficiently aggregated and removed in large quantities, but minute metal ions cannot be completely removed. Therefore, a nucleating agent should be used when heavy metals such as arsenic, lead, and iron are present as ions in water, and a flocculant should be used when removing large amounts of impurities in water. . As the nucleating agent, for example, a ferric hydroxide colloid solution can be used. As the pH adjuster, sodium hydroxide or the like can be used when adjusting from the acid side to the alkali side, and dilute hydrochloric acid or carbonic acid can be used when adjusting from the alkali side to the acid side. As the flocculant, for example, polyaluminum chloride generally called PAC and aluminum sulfate generally called sulfate band can be used. For example, a chemical solution such as a nucleating agent or a flocculant may be added from the chemical solution tank 37 to the raw water tank 35 provided on the upstream side of the raw water supply path 3 via the pump P3 as shown in FIG. However, it may be added directly to the raw water flowing in the raw water supply path 3.
 次に、逆洗浄運転工程について、図面を参照しながら説明する。逆洗浄運転時には、第一膜モジュールまたは第二膜モジュールの一方に、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、他方の膜モジュールの下流側から上流側に逆流させて、他方の膜モジュールを逆洗浄する。 Next, the reverse cleaning operation process will be described with reference to the drawings. At the time of backwashing operation, the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the raw water pressure and filtered, and at least a part of the obtained purified water is used as the backwash water. The other membrane module is backwashed by flowing backward from the downstream side of the membrane module to the upstream side.
 以下、図11を参照しながら、第一膜モジュールを濾過状態として運転し、第二膜モジュールを逆洗する場合について、具体的に説明する。第一膜モジュールを濾過状態とし、第二膜モジュールを逆洗状態とするには、第1、第2バルブV1、V2、第5バルブV5、第8バルブV8を解放し、第3、第4バルブV3、V4、第9バルブV9を閉鎖する。バルブの開閉操作は、バルブ制御部による自動制御でもよいし、手動で制御してもよい。このバルブ操作により、原水供給路3と、原水分岐路5Aと、浄水分岐路11Aと、浄水路13とが、膜モジュール9Aを介して連通した原水処理ラインが形成される。また、浄水分岐路11Bと、排出路7Bとが、第二膜モジュール9Bを介して連通した逆洗ラインが形成される。 Hereinafter, the case where the first membrane module is operated in the filtered state and the second membrane module is back-washed will be specifically described with reference to FIG. In order to place the first membrane module in the filtration state and the second membrane module in the backwash state, the first and second valves V1, V2, the fifth valve V5, and the eighth valve V8 are released, and the third, fourth, The valves V3 and V4 and the ninth valve V9 are closed. The valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled. By this valve operation, a raw water treatment line is formed in which the raw water supply path 3, the raw water branch path 5A, the purified water branch path 11A, and the purified water path 13 communicate with each other through the membrane module 9A. Further, a backwash line is formed in which the purified water branch path 11B and the discharge path 7B communicate with each other via the second membrane module 9B.
 第一膜モジュール9Aから排出された浄水の少なくとも一部は、逆洗水として、浄水分岐路11Bを逆流して、第二膜モジュール9Bの下流側の浄水排出口9hから第二膜モジュール9Bに侵入する。第二膜モジュール9B内に侵入した逆洗水は、第二膜モジュール9B内に配置された膜手段9cを透過して、上流側の濃縮水排出口9iから、排出路7Bへと流出する。この際、第二膜モジュール9Bの膜手段9cに付着している異物が遊離し、逆洗水とともに、排出路7Bへと流出する。逆洗水と第二膜モジュール9Bに付着していた異物は、濃縮水排出口9iに接続する排出路7Bから浄水装置外に排出される。 At least a part of the purified water discharged from the first membrane module 9A flows back through the purified water branch 11B as backwash water, and passes from the purified water discharge port 9h downstream of the second membrane module 9B to the second membrane module 9B. invade. The backwash water that has entered the second membrane module 9B passes through the membrane means 9c disposed in the second membrane module 9B, and flows out from the upstream concentrated water discharge port 9i to the discharge path 7B. At this time, the foreign matter adhering to the membrane means 9c of the second membrane module 9B is released and flows out into the discharge path 7B together with the backwash water. The foreign matter adhering to the backwash water and the second membrane module 9B is discharged out of the water purifier from the discharge path 7B connected to the concentrated water discharge port 9i.
 また、第一膜モジュール9Aから排出された浄水の残部は、浄水路13に流出する。これにより、第二膜モジュール9Bを逆洗浄しながらも、一定量の浄水を排出し続けることができる。なお、第8バルブV8を閉じて、第一膜モジュール9Aから排出された浄水の全部を逆洗水としてもよい。 Further, the remaining portion of the purified water discharged from the first membrane module 9A flows out to the purified water channel 13. Thereby, it is possible to continue discharging a certain amount of purified water while backwashing the second membrane module 9B. Note that the eighth valve V8 may be closed and all the purified water discharged from the first membrane module 9A may be backwashed water.
 前記では、逆洗ラインとして、浄水分岐路11Bと、第二膜モジュール9B、排出路7Bが連通したラインを採用したが、例えば、図2で示した態様のように、浄水分岐路11Bと、原水分岐路5Bと、排出路15Bとが、第二膜モジュール9Bを介して連通したラインを採用してもよい。 In the above, as the backwash line, a line in which the purified water branch path 11B, the second membrane module 9B, and the discharge path 7B communicate with each other is adopted. For example, as shown in FIG. 2, the purified water branch path 11B, A line in which the raw water branch 5B and the discharge path 15B communicate with each other via the second membrane module 9B may be adopted.
 逆洗浄運転時では、原水供給手段P1は、原水の水圧を脈動させながら、第一膜モジュール9Aに原水を供給する。原水の水圧を脈動させながら、第一膜モジュール9Aに原水を供給することにより、第一膜モジュール9Aから排出される浄水、すなわち逆洗水の水圧が脈動するので、第二膜モジュール9Bの逆洗浄効率が高くなるからである。原水の水圧を脈動させる方法としては、例えば、原料供給手段P1の回転数をインバーター制御部23により連続的に変化させることが好ましい。 During the reverse cleaning operation, the raw water supply means P1 supplies raw water to the first membrane module 9A while pulsating the water pressure of the raw water. Supplying the raw water to the first membrane module 9A while pulsating the water pressure of the raw water pulsates the purified water discharged from the first membrane module 9A, that is, the backwash water pressure, so that the reverse of the second membrane module 9B This is because the cleaning efficiency is increased. As a method of pulsating the water pressure of the raw water, for example, it is preferable to continuously change the rotation speed of the raw material supply means P1 by the inverter control unit 23.
 図12は、通常濾過運転時、及び、逆洗浄運転時の原水の圧力変化を模式的に示すグラフである。T0の領域は、通常濾過運転時の原水の圧力Pfを表し、T1の領域は、逆洗浄運転時の原水の圧力変化を示している。図12から明らかなように、通常濾過運転時には、原水の圧力Pfをほぼ一定とし、逆洗浄運転時には、原水の圧力を脈動させることが好ましい。なお、通常濾過運転と逆洗浄運転とを、タイマーで交互に切り替えて、定期的に膜モジュールを逆洗浄するようにする場合、通常濾過運転の時間T0は、長いほど好ましく、例えば、原水の水質や、原水処理量などに応じて適宜設定すればよい。従って、通常濾過運転の時間T0は、数分、数時間~数日という範囲で変化する場合がある。一方、逆洗浄運転時の時間T1は、浄水化効率を高めるという観点から、短いほど好ましい。逆洗浄運転時の時間T1は、0.5分間~20分間が好ましく、1分間~10分間がより好ましく、5分間~7分間程度がさらに好ましい。 FIG. 12 is a graph schematically showing changes in pressure of raw water during normal filtration operation and backwash operation. The area of T0 represents the pressure Pf of the raw water during the normal filtration operation, and the area of T1 represents the pressure change of the raw water during the reverse cleaning operation. As is apparent from FIG. 12, it is preferable that the pressure Pf of the raw water is substantially constant during the normal filtration operation, and the pressure of the raw water is pulsated during the back washing operation. When the normal filtration operation and the reverse cleaning operation are alternately switched by a timer and the membrane module is periodically back cleaned, the normal filtration operation time T0 is preferably as long as possible. For example, the quality of raw water Or, it may be set appropriately according to the raw water treatment amount. Therefore, the normal filtration operation time T0 may vary within a range of several minutes, several hours to several days. On the other hand, the time T1 during the reverse cleaning operation is preferably as short as possible from the viewpoint of increasing the water purification efficiency. The time T1 during the reverse cleaning operation is preferably 0.5 minutes to 20 minutes, more preferably 1 minute to 10 minutes, and further preferably about 5 minutes to 7 minutes.
 逆洗浄運転時の原水の圧力は、脈動させることが好ましい。原水の圧力が脈動するとは、周期的あるいは非周期的に、原水の圧力が変化することを意味する。逆洗浄運転時の原水の圧力は、周期的に高圧と低圧に変化させることがより好ましく、高圧と低圧との間を連続的に変化させることがさらに好ましい。 It is preferable to pulsate the pressure of the raw water during the reverse cleaning operation. The pulsation of the pressure of the raw water means that the pressure of the raw water changes periodically or aperiodically. More preferably, the pressure of the raw water during the reverse cleaning operation is periodically changed between a high pressure and a low pressure, and more preferably continuously changed between the high pressure and the low pressure.
 逆洗浄運転時の原水の圧力としては、例えば、図12(a)に示したようにサインカーブを描くように変化させる態様を挙げることができる。高圧と低圧との間を連続的に変化させることにより、濾過膜に対する圧力増減の負担を低減することができる。図12(a)では、逆洗浄運転時の原水の圧力を、サインカーブを描くように変化させる態様を示したが、例えば、図12(b)に示したように、最初の圧力変化を大きくして、圧力変化の大きさが減衰していくように変化させてもよい。逆洗浄時の異物の除去には、最初の圧力増減による影響が大きいと考えられるからである。 As the pressure of the raw water during the reverse cleaning operation, for example, a mode in which the pressure is changed so as to draw a sine curve as shown in FIG. By continuously changing between the high pressure and the low pressure, it is possible to reduce the burden of pressure increase / decrease on the filtration membrane. FIG. 12A shows a mode in which the pressure of the raw water during the reverse cleaning operation is changed so as to draw a sine curve. For example, as shown in FIG. Then, the magnitude of the pressure change may be changed so as to attenuate. This is because it is considered that the influence of the first pressure increase / decrease is large in the removal of foreign matters during reverse cleaning.
 また、逆洗浄運転時の原水の圧力は、例えば、図12(c)に示すように、最大圧力値Pmaxと最小圧力値Pminとの間を直線的に増減するようにして、周期的に高圧と低圧に変化させるようにしてもよい。また、図12(d)に示したように、最大圧力値Pmaxから最小圧力値Pminまで圧力を直線的に低下させた後、最小圧力値Pminを所定時間維持し、最小圧力値Pminから最大圧力値Pmaxまで圧力を直線的に増加させ、最大圧力値Pmaxを所定時間維持させて、周期的に高圧と低圧に変化させるようにしてもよい。 Further, the pressure of the raw water during the reverse cleaning operation is periodically increased as shown in FIG. 12C, for example, by linearly increasing and decreasing between the maximum pressure value Pmax and the minimum pressure value Pmin. You may make it change to low pressure. Further, as shown in FIG. 12D, after the pressure is linearly decreased from the maximum pressure value Pmax to the minimum pressure value Pmin, the minimum pressure value Pmin is maintained for a predetermined time, and the minimum pressure value Pmin is changed to the maximum pressure value. The pressure may be linearly increased to the value Pmax, the maximum pressure value Pmax may be maintained for a predetermined time, and periodically changed between high pressure and low pressure.
 逆洗浄運転時の原水の圧力を脈動させる場合、最小圧力値Pminに対する最大圧力値Pmaxの比(Pmax/Pmix)は、1.3以上が好ましく、1.5以上がより好ましく、2.5以下が好ましく、2.3以下がより好ましく、2.0以下がさらに好ましい。比(Pmax/Pmix)の値が下限以上であれば、圧力差が大きくなり、逆洗浄能力が高くなる。また、比(Pmax/Pmix)の値が上限以下であれば、原水の圧力差による濾過膜の損傷が起こりにくくなる。 When pulsating the pressure of the raw water during the reverse cleaning operation, the ratio (Pmax / Pmix) of the maximum pressure value Pmax to the minimum pressure value Pmin is preferably 1.3 or more, more preferably 1.5 or more, and 2.5 or less. Is preferably 2.3 or less, more preferably 2.0 or less. If the value of the ratio (Pmax / Pmix) is greater than or equal to the lower limit, the pressure difference becomes large and the reverse cleaning ability increases. Moreover, if the value of the ratio (Pmax / Pmix) is less than or equal to the upper limit, the filtration membrane is less likely to be damaged due to the pressure difference of the raw water.
 また、最大圧力値Pmaxは、膜モジュールが備える濾過膜の許容圧力に応じて適宜設定すればよい。例えば、濾過膜として、限外濾過膜または精密濾過膜を用いる場合、最大圧力値Pmaxは、0.15MPa以上が好ましく、0.17MPa以上がより好ましく、0.18MPa以上が特に好ましく、0.25MPa以下が好ましく、0.20MPa以下がより好ましく、0.19MPa以下が特に好ましい。最大圧力値Pmaxが大きくなりすぎると、膜モジュールの濾過膜が損傷するおそれがある。また、最大圧力値Pmaxが小さくなりすぎると、最大圧力値Pmaxと最小圧力値Pminとの差が小さくなり、逆洗浄効果が小さくなるおそれがある。 Further, the maximum pressure value Pmax may be appropriately set according to the permissible pressure of the filtration membrane provided in the membrane module. For example, when an ultrafiltration membrane or a microfiltration membrane is used as the filtration membrane, the maximum pressure value Pmax is preferably 0.15 MPa or more, more preferably 0.17 MPa or more, particularly preferably 0.18 MPa or more, and 0.25 MPa. The following is preferable, 0.20 MPa or less is more preferable, and 0.19 MPa or less is particularly preferable. If the maximum pressure value Pmax becomes too large, the filtration membrane of the membrane module may be damaged. In addition, if the maximum pressure value Pmax is too small, the difference between the maximum pressure value Pmax and the minimum pressure value Pmin becomes small, which may reduce the back cleaning effect.
 例えば、濾過膜として、限外濾過膜または精密濾過膜を用いる場合、最小圧力値Pminは、0.10MPa以上が好ましく、0.12MPa以上がより好ましく、0.13MPa以上が特に好ましく、0.20MPa以下が好ましく、0.15MPa以下がより好ましく、0.14MPa以下が特に好ましい。最小圧力値Pminが大きくなりすぎると、最大圧力値Pmaxと最小圧力値Pminとの差が小さくなり、逆洗浄効果が小さくなるおそれがある。また、最小圧力値Pminが小さくなりすぎると、膜の抵抗によって、逆洗浄効果が低下する場合がある。 For example, when an ultrafiltration membrane or a microfiltration membrane is used as the filtration membrane, the minimum pressure value Pmin is preferably 0.10 MPa or more, more preferably 0.12 MPa or more, particularly preferably 0.13 MPa or more, and 0.20 MPa. The following is preferable, 0.15 MPa or less is more preferable, and 0.14 MPa or less is particularly preferable. If the minimum pressure value Pmin becomes too large, the difference between the maximum pressure value Pmax and the minimum pressure value Pmin becomes small, and the back cleaning effect may be reduced. If the minimum pressure value Pmin is too small, the back cleaning effect may be reduced due to the resistance of the film.
 原水の水圧を周期的に変化させる周波数(f)としては、例えば、5サイクル/分以上が好ましく、7サイクル/分以上がより好ましく、10サイクル/分以上がさらに好ましく、20サイクル/分以下が好ましく、15サイクル/分以下がより好ましく、12サイクル/分以下がさらに好ましい。周波数が大きくなりすぎると、圧力の増減が激しく、膜モジュールの濾過膜が損傷する場合がある。また、周波数が小さくなりすぎると、圧力の増減が少な過ぎ、逆洗浄効果が低下するおそれがある。 The frequency (f) for periodically changing the water pressure of the raw water is, for example, preferably 5 cycles / minute or more, more preferably 7 cycles / minute or more, further preferably 10 cycles / minute or more, and 20 cycles / minute or less. Preferably, 15 cycles / min or less is more preferable, and 12 cycles / min or less is more preferable. If the frequency becomes too high, the pressure increases and decreases sharply, and the membrane of the membrane module may be damaged. In addition, if the frequency is too small, the increase or decrease in pressure is too small, and the back cleaning effect may be reduced.
 また、周波数(f)(サイクル/分)の逆数は、1サイクルが行われる周期(T)(分)を意味する。本発明では、最小圧力値Pminに対する最大圧力値Pmaxの比(Pmax/Pmin)を周期(T)(分)で乗じた値[(Pmax/Pmin)・T](単位:分)が、3以上が好ましく、5以上がより好ましく、7以上がさらに好ましく、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。[(Pmax/Pmin)・T]の値が大きくなりすぎると、圧力変化の度合いが急激になり、濾過膜が損傷しやすくなる。また、[(Pmax/Pmin)・T]の値が小さくなりすぎると、逆洗浄効果が不十分となる場合がある。 Also, the reciprocal of the frequency (f) (cycles / minute) means a period (T) (minutes) in which one cycle is performed. In the present invention, the value [(Pmax / Pmin) · T] (unit: minute) obtained by multiplying the ratio (Pmax / Pmin) of the maximum pressure value Pmax to the minimum pressure value Pmin by the period (T) (minutes) is 3 or more. Is preferable, 5 or more is more preferable, 7 or more is more preferable, 20 or less is preferable, 15 or less is more preferable, and 10 or less is more preferable. If the value of [(Pmax / Pmin) · T] becomes too large, the degree of pressure change becomes abrupt and the filtration membrane is easily damaged. Moreover, if the value of [(Pmax / Pmin) · T] becomes too small, the back cleaning effect may be insufficient.
 次に、図13を参照しながら、第二膜モジュール9Bを濾過状態として運転し、第一膜モジュール9Aを逆洗する場合について説明する。第二膜モジュール9Bを濾過状態として運転し、第一膜モジュール9Aを逆洗状態とするには、第1、第3バルブV1、V3、第4バルブV4、第8バルブV8を解放し、第2バルブV2、第5バルブV5、第9バルブV9を閉鎖して、同様の操作を行えばよい。バルブの開閉操作は、バルブ制御部による自動制御でもよいし、手動で制御してもよい。このバルブ操作により、原水供給路3と、原水分岐路5Bと、浄水分岐路11Bと、浄水路13とが、第二膜モジュール9Bを介して連通した原水処理ラインが形成する。また、浄水分岐路11Aと、排出路7Aとが、第一膜モジュール9Aを介して連通した逆洗ラインを形成する。 Next, the case where the second membrane module 9B is operated in the filtered state and the first membrane module 9A is backwashed will be described with reference to FIG. In order to operate the second membrane module 9B in the filtration state and put the first membrane module 9A in the backwash state, the first, third valves V1, V3, the fourth valve V4, and the eighth valve V8 are released, The same operation may be performed by closing the second valve V2, the fifth valve V5, and the ninth valve V9. The valve opening / closing operation may be automatic control by the valve control unit or may be manually controlled. By this valve operation, a raw water treatment line is formed in which the raw water supply path 3, the raw water branch path 5B, the purified water branch path 11B, and the purified water path 13 communicate with each other through the second membrane module 9B. Moreover, the purified water branch path 11A and the discharge path 7A form a backwash line communicating with the first membrane module 9A.
 前記では、逆洗ラインとして、浄水分岐路11Aと、排出路7Aとが、第一膜モジュール9Aを介して連通した逆洗ラインを採用したが、例えば、図2に示した態様のように、逆洗ラインとして、浄水分岐路11Aと、原水分岐路5Aと、排出路15Aとが、第一膜モジュール9Aを介して連通したラインを採用してもよい。 In the above, as the backwash line, the purified water branch path 11A and the discharge path 7A adopted the backwash line communicated via the first membrane module 9A. For example, as shown in FIG. As the backwash line, a line in which the purified water branch path 11A, the raw water branch path 5A, and the discharge path 15A communicate with each other via the first membrane module 9A may be adopted.
 本発明の浄水の製造方法では、下記(1)~(3)の運転を適宜切り替えながら行うことが好ましい。
(1)第一膜モジュールと第二膜モジュールの両方で原水を濾過する通常濾過運転
(2)第一膜モジュールを濾過状態とし、第二膜モジュールを逆洗状態とする逆洗浄運転
(3)第二膜モジュールを濾過状態とし、第一膜モジュールを逆洗状態とする逆洗浄運転
 運転の切り替えは、例えば、手動スイッチ操作データ、膜差圧演算部が供給する差圧データ、タイマーが供給する時間データ等に基づいて行うことが好ましい。
In the method for producing purified water according to the present invention, it is preferable to perform the operations of the following (1) to (3) while switching appropriately.
(1) Normal filtration operation in which raw water is filtered by both the first membrane module and the second membrane module (2) Back washing operation in which the first membrane module is put into the filtration state and the second membrane module is put in the back washing state (3) Backwash operation in which the second membrane module is in the filtration state and the first membrane module is in the backwash state The operation is switched, for example, by manual switch operation data, differential pressure data supplied by the membrane differential pressure calculator, or a timer It is preferable to carry out based on time data or the like.
 通常濾過運転の運転時間T0は、原水の水質や、処理速度などに応じて適宜設定すればよい。従って、通常濾過運転の時間T0は、数分、数時間~数日という範囲で変化する場合がある。第一膜モジュール9Aを濾過状態とし、第二膜モジュール9Bを逆洗状態とする逆洗浄運転の時間T1aは、30秒以上が好ましく、1分以上がより好ましく、5分以上が特に好ましく、20分以下が好ましく、10分以下がより好ましく、7分以下が特に好ましい。第二膜モジュール9Bを濾過状態とし、第一膜モジュール9Aを逆洗状態とする逆洗浄運転の時間T1bは、30秒以上が好ましく、1分以上がより好ましく、5分以上が特に好ましく、20分以下が好ましく、10分以下がより好ましく、7分以下が特に好ましい。 The operation time T0 of the normal filtration operation may be appropriately set according to the quality of raw water, the treatment speed, and the like. Therefore, the normal filtration operation time T0 may vary within a range of several minutes, several hours to several days. The time T1a of the back washing operation in which the first membrane module 9A is filtered and the second membrane module 9B is back washed is preferably 30 seconds or more, more preferably 1 minute or more, particularly preferably 5 minutes or more, 20 Minutes or less is preferable, 10 minutes or less is more preferable, and 7 minutes or less is particularly preferable. The time T1b of the back washing operation in which the second membrane module 9B is in the filtration state and the first membrane module 9A is in the back washing state is preferably 30 seconds or more, more preferably 1 minute or more, particularly preferably 5 minutes or more, 20 Minutes or less is preferable, 10 minutes or less is more preferable, and 7 minutes or less is particularly preferable.
 本発明の浄水の製造方法では、膜モジュールを洗浄する逆洗水にマイクロバブルを混入させることも好ましい。逆洗水に混入されたマイクロバブルは、濾過膜を透過する際に、濾過膜に振動を与える。その結果、濾過膜に付着している異物が遊離して、逆洗浄効率が高くなる。マイクロバブルとは、発生時に気泡の直径が10μm~数十マイクロメートル以下の微細な気泡である。なお、発生時としているのは、マイクロバブルが収縮してマイクロナノバブルに変化する場合があるからである。マイクロナノバブルとは、気泡の直径が、数百ナノメートル~10μm未満の微細な気泡である。 In the method for producing purified water of the present invention, it is also preferable to mix microbubbles in the backwash water for washing the membrane module. The microbubbles mixed in the backwash water give vibration to the filtration membrane when passing through the filtration membrane. As a result, foreign matter adhering to the filtration membrane is released, and the back cleaning efficiency is increased. A microbubble is a fine bubble having a diameter of 10 μm to several tens of micrometers or less when it is generated. The reason for the occurrence is that the microbubbles may contract and change into micro-nano bubbles. Micro-nano bubbles are fine bubbles having a diameter of several hundred nanometers to less than 10 μm.
 逆洗浄効果を高めるためには、マイクロバブル(マイクロナノバブルを含む)の体積平均粒子径は、500μm以下が好ましく、100μm以下がより好ましく、10μm以下がさらに好ましい。マイクロバブル(マイクロナノバブルを含む)の体積平均粒子径の下限は、特に限定されないが、1nmが好ましく、10nmがより好ましく、100nmがさらに好ましい。マイクロバブル(マイクロナノバブルを含む)の体積平均粒子径が小さくなりすぎると、発生コストが高くなり、逆洗浄効果も飽和する傾向がある。また、全気泡に占める粒子径が500μm以下、1nm以上のマイクロバブル(マイクロナノバブルを含む)の割合は、50体積%以上が好ましく、70体積%以上がより好ましく、90体積%以上がさらに好ましい。なお、マイクロバブル(マイクロナノバブルを含む)の粒子径および体積平均粒子径は、マイクロバブル発生装置の出口での粒子径及び体積平均粒子径である。 In order to enhance the reverse cleaning effect, the volume average particle diameter of microbubbles (including micronanobubbles) is preferably 500 μm or less, more preferably 100 μm or less, and even more preferably 10 μm or less. The lower limit of the volume average particle diameter of microbubbles (including micronanobubbles) is not particularly limited, but is preferably 1 nm, more preferably 10 nm, and even more preferably 100 nm. When the volume average particle diameter of microbubbles (including micronanobubbles) becomes too small, the generation cost increases and the backwashing effect tends to be saturated. Further, the proportion of microbubbles (including micro-nano bubbles) having a particle diameter of 500 μm or less and 1 nm or more in all bubbles is preferably 50% by volume or more, more preferably 70% by volume or more, and still more preferably 90% by volume or more. In addition, the particle diameter and volume average particle diameter of microbubbles (including micro-nano bubbles) are the particle diameter and volume average particle diameter at the outlet of the microbubble generator.
 発生させるマイクロバブル(マイクロナノバブルを含む)の合計体積V1のマイクロバブルが混入された逆洗液の体積V2に対する比(V1/V2)は、特に限定されないが、0.01以上が好ましく、0.05以上がより好ましく、0.1以上がさらに好ましく、0.5以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましい。前記比が小さくなりすぎると、逆洗浄効率を高める効果が小さくなる。前記比が大きくなりすぎると、逆洗水の割合が少なくなりすぎて、却って逆洗浄効率が低下する場合がある。また、マイクロバブルを発生するコストも高くなる。 The ratio (V1 / V2) of the total volume V1 of the generated microbubbles (including micro-nanobubbles) to the volume V2 of the backwash liquid mixed with the microbubbles is not particularly limited, but is preferably 0.01 or more, and 05 or more is more preferable, 0.1 or more is more preferable, 0.5 or less is preferable, 0.3 or less is more preferable, and 0.2 or less is more preferable. When the ratio is too small, the effect of increasing the back cleaning efficiency is reduced. If the ratio is too large, the proportion of backwash water may be too small, and the backwash efficiency may decrease. In addition, the cost of generating microbubbles increases.
 [浄水装置]
 図14~図20には、本発明の一実施形態に係る浄水装置を示した。図14は、本発明の一実施形態に係る浄水装置の正面図である。図15は、図14の右側面図であり、図16は、図14の左側面図であり、図17は、図14の背面図であり、図18は、図14の平面図であり、図19は、図14の底面図である。図20には、図14~図19の浄水装置のフロー図を示した。なお、本発明の浄水装置は、前記図面に図示した形態に限定されるものではない。
[Water purification equipment]
14 to 20 show a water purifier according to an embodiment of the present invention. FIG. 14 is a front view of a water purifier according to an embodiment of the present invention. 15 is a right side view of FIG. 14, FIG. 16 is a left side view of FIG. 14, FIG. 17 is a rear view of FIG. 14, and FIG. 18 is a plan view of FIG. FIG. 19 is a bottom view of FIG. FIG. 20 shows a flow chart of the water purifier of FIGS. In addition, the water purifier of this invention is not limited to the form illustrated in the said drawing.
 浄水装置1は、原水供給路3と、原水供給路3に配置され、原水を送液する原水供給手段P1と、前記原水供給路3を少なくとも二以上に分岐する複数の原水分岐路5A,5Bと、前記複数の原水分岐路5A,5Bに配置され、原水を浄化する複数の膜モジュール9A,9Bと、前記膜モジュールが備える原水を浄化する膜手段の上流側に接続する排出路7A,7Bと、前記複数の膜モジュールの下流側に接続する複数の浄水分岐路11A,11Bと、前記複数の浄水分岐路11A,11Bが合流する浄水路13とを備える。 The water purifier 1 is disposed in the raw water supply path 3, the raw water supply path 3, and the raw water supply means P1 that feeds the raw water, and a plurality of raw water branch paths 5A and 5B that branch the raw water supply path 3 into at least two or more. And a plurality of membrane modules 9A, 9B disposed in the plurality of raw water branch paths 5A, 5B and purifying the raw water, and discharge paths 7A, 7B connected to the upstream side of the membrane means for purifying the raw water included in the membrane module. And a plurality of water purification branches 11A and 11B connected to the downstream side of the plurality of membrane modules, and a water purification path 13 where the plurality of water purification branches 11A and 11B merge.
 図14~図19に示したように、浄水装置1を構成する各構成部材は、幅1400mm×奥行き1000mm×高さ1985mmの架台に収納され、ユニット化されている。 As shown in FIG. 14 to FIG. 19, each component constituting the water purifier 1 is housed in a gantry having a width of 1400 mm × a depth of 1000 mm × a height of 1985 mm and is unitized.
 図16に示したように、原水供給口40は、浄水装置1の背面側で左側面下方に配置されている。原水供給口40は、水道本管に直接結合してもよいし、水道本管から水道水を貯蔵する原水槽に接続してもよい。原水は、原水供給手段P1としてのポンプにより、送液される。原水供給路3は、図17に示すように、原水供給手段P1の吐出口から、斜め上方へと向かい、所定の高さで背面側から前面側に折れ曲がるように配置されている。所定高さにおいて、背面側から前側へと向かう原水供給路3には、逆洗水の逆流を防止するための逆止弁が設けられている。また、原水供給路3は、図14および図19に示すように、浄水装置1の前面側で下方へと向かい、底部において前面側から背面側へと折れ曲がるように配置されている。図19に示すように、前面側から背面側へと向かう原水供給路3の部分に、原水分岐路5A、5Bが接続している。原水供給路5A,5Bはそれぞれ、流路を開閉する流入弁(エアバルブ)V2,V3を備える。 As shown in FIG. 16, the raw water supply port 40 is disposed below the left side surface on the back side of the water purifier 1. The raw water supply port 40 may be directly coupled to the water main or may be connected to a raw water tank that stores tap water from the water main. The raw water is fed by a pump as raw water supply means P1. As shown in FIG. 17, the raw water supply path 3 is disposed so as to be inclined obliquely upward from the discharge port of the raw water supply means P <b> 1 and bend from the back side to the front side at a predetermined height. At the predetermined height, the raw water supply path 3 from the back side to the front side is provided with a check valve for preventing a backflow of backwash water. Moreover, as shown in FIG.14 and FIG.19, the raw | natural water supply path 3 is arrange | positioned so that it may go down on the front side of the water purifier 1, and may bend from the front side to the back side in the bottom part. As shown in FIG. 19, raw water branch paths 5 </ b> A and 5 </ b> B are connected to a portion of the raw water supply path 3 from the front side to the back side. The raw water supply paths 5A and 5B are each provided with inflow valves (air valves) V2 and V3 for opening and closing the flow paths.
 図14~図15に示したように、浄水装置1は、原水供給路5A,5Bにそれぞれ接続する2本の膜モジュール9Aと、2本の膜モジュール9Bとを有する。膜モジュール9A,9Bは、略円筒状の形状を有する。前記膜モジュール9A,9Bは、原水流入口9gで原水分岐路5A,5Bに接続し、濃縮水排出口9iで排出路7A,7Bに接続し、浄水排出口9hで、浄水分岐路11A,11Bに接続している。通常濾過運転時には、2本の膜モジュール9Aと2本の膜モジュール9Bの両方に原水を供給して濾過することができる。図17に示すように、膜モジュール9A,9Bによって浄化された浄水は、膜モジュール9A、9Bの下流側に接続する浄水分岐路11A,11Bに排出される。図16および図17で示すように、浄水分岐路11A,11Bは、合流地点17で合流し、浄水路13を形成している。浄水は、左側面の上側に配置された浄水吐出口42から吐出される。 As shown in FIGS. 14 to 15, the water purifier 1 has two membrane modules 9A and two membrane modules 9B connected to the raw water supply paths 5A and 5B, respectively. The membrane modules 9A and 9B have a substantially cylindrical shape. The membrane modules 9A and 9B are connected to the raw water branch 5A and 5B at the raw water inlet 9g, connected to the outlets 7A and 7B at the concentrated water outlet 9i, and the purified water branch 11A and 11B at the purified water outlet 9h. Connected to. During normal filtration operation, raw water can be supplied to both the two membrane modules 9A and the two membrane modules 9B for filtration. As shown in FIG. 17, the purified water purified by the membrane modules 9A and 9B is discharged to the purified water branch paths 11A and 11B connected to the downstream side of the membrane modules 9A and 9B. As shown in FIGS. 16 and 17, the purified water branch paths 11 </ b> A and 11 </ b> B merge at a junction 17 to form a purified water path 13. The purified water is discharged from the purified water discharge port 42 disposed on the upper side of the left side surface.
 逆洗浄運転時には、2本の膜モジュール9A、または、2本の膜モジュール9Bの一方に、原水を供給して濾過し、得られた浄水を逆洗水として、他方の膜モジュールに供給する。逆洗水は、排出路7A,7Bから排出する。排出路7A,7Bはそれぞれ、膜モジュール9A,9Bの原水領域に接続し、流路を開閉するための流入弁(エアバルブ)V4,V5を備える。図16及び図17に示したように、排出路7Aと排出路7Bは、合流して排出路7Cに接続している。逆洗水は、排出路7Cの端部である排出口48から排出される。 During the reverse cleaning operation, raw water is supplied to one of the two membrane modules 9A or two membrane modules 9B and filtered, and the obtained purified water is supplied to the other membrane module as backwash water. The backwash water is discharged from the discharge paths 7A and 7B. The discharge paths 7A and 7B are respectively connected to the raw water regions of the membrane modules 9A and 9B, and are provided with inflow valves (air valves) V4 and V5 for opening and closing the flow paths. As shown in FIGS. 16 and 17, the discharge path 7A and the discharge path 7B merge and are connected to the discharge path 7C. The backwash water is discharged from a discharge port 48 that is an end of the discharge path 7C.
 流路の開閉に使用する流入弁としては、コンプレッサーCからの圧縮空気によって開閉が制御されるエアバルブを使用している。制御部21は、ソレノイドバルブを有するエアバルブ制御部を備え、各エアバルブの開閉を制御する。 As an inflow valve used for opening and closing the flow path, an air valve whose opening and closing is controlled by compressed air from the compressor C is used. The control unit 21 includes an air valve control unit having a solenoid valve, and controls opening and closing of each air valve.
 図19に示すように、原水供給路3の下流端は、第10バルブV10を介して、排水路44に接続している。排水路44は、膜モジュールの膜手段を交換するときに、膜モジュール内の水を排水するためのものである。排水路44は、排出路7Cと合流している。第2、第3、第10バルブV2,V3、V10を開けることにより、膜モジュール内の水を排出口48から排水することができる。 As shown in FIG. 19, the downstream end of the raw water supply passage 3 is connected to the drainage passage 44 via the tenth valve V10. The drainage channel 44 is for draining water in the membrane module when the membrane means of the membrane module is replaced. The drainage channel 44 merges with the discharge channel 7C. By opening the second, third, and tenth valves V2, V3, and V10, the water in the membrane module can be drained from the discharge port 48.
 浄水装置1は、原水または浄水に薬液を添加するための薬液タンク46を備えても良い。薬液タンク46の薬剤としては、原水に添加する凝集剤、pH調整剤などが好ましい。 The water purifier 1 may include a chemical tank 46 for adding a chemical to raw water or purified water. As a chemical | medical agent of the chemical | medical solution tank 46, the flocculant added to raw | natural water, a pH adjuster, etc. are preferable.
 本発明の浄水装置は、小型であり、逆洗条効率が高い。本発明の浄水装置は、マンション、ビルなどの建物全域に浄水を供給する浄水装置として好適である。 The water purifier of the present invention is small and has high backwashing efficiency. The water purifier of the present invention is suitable as a water purifier that supplies purified water to the entire building such as an apartment or a building.
1:浄水装置、3:原水供給路、5A,5B:原水分岐路、7A,7B:排出路、9A,9B:膜モジュール、11A,11B:浄水分岐路、13:浄水路、P1:原水供給手段、18:圧力計
 
1: Water purification device, 3: Raw water supply path, 5A, 5B: Raw water branch path, 7A, 7B: Discharge path, 9A, 9B: Membrane module, 11A, 11B: Purified water branch path, 13: Clean water path, P1: Raw water supply Means 18: Pressure gauge

Claims (12)

  1.  原水供給路と、
     原水供給路に配置され、原水を送液する原水供給手段と、
     前記原水供給路を少なくとも二以上に分岐する複数の原水分岐路と、
     前記複数の原水分岐路に配置され、原水を浄化する複数の膜モジュールと、
     前記複数の膜モジュールが備える原水を浄化する膜手段の上流側に接続する排出路と、
     前記複数の膜モジュールの下流側に接続する複数の浄水分岐路と、
     前記複数の浄水分岐路が合流する浄水路とを備えることを特徴とする浄水装置。
    Raw water supply channel,
    Raw water supply means that is disposed in the raw water supply path and feeds raw water,
    A plurality of raw water branch paths that branch the raw water supply path into at least two or more;
    A plurality of membrane modules arranged in the plurality of raw water branch paths to purify the raw water;
    A discharge path connected to the upstream side of the membrane means for purifying raw water included in the plurality of membrane modules;
    A plurality of water purification branches connected to the downstream side of the plurality of membrane modules;
    A water purification apparatus comprising: a water purification path where the plurality of water purification branch paths merge.
  2.  前記排出路には、排出路を開閉する排出弁が備えられ、前記原水分岐路には、原水分岐路の流路を開閉する流入弁が備えられている請求項1に記載の浄水装置。 The water purifier according to claim 1, wherein the discharge path is provided with a discharge valve for opening and closing the discharge path, and the raw water branch path is provided with an inflow valve for opening and closing the flow path of the raw water branch path.
  3.  前記膜モジュールは、原水が供給される原水領域と、原水を浄化する膜手段と、前記膜手段によって浄化された浄水が流出する浄水領域とを備え、前記排出路が原水領域に接続している請求項1または2に記載の浄水装置。 The membrane module includes a raw water region to which raw water is supplied, a membrane means for purifying the raw water, a purified water region from which purified water purified by the membrane means flows out, and the discharge path is connected to the raw water region. The water purifier of Claim 1 or 2.
  4.  前記排出路が、原水分岐路の流路を開閉する流入弁の下流側の原水分岐路に接続している請求項1または2に記載の浄水装置。 The water purifier according to claim 1 or 2, wherein the discharge path is connected to a raw water branch path downstream of an inflow valve that opens and closes the flow path of the raw water branch path.
  5.  前記原水の水圧を脈動させるように、前記原水供給手段を制御するインバーター制御部を有する請求項1~4のいずれか一項に記載の浄水装置。 The water purifier according to any one of claims 1 to 4, further comprising an inverter control unit that controls the raw water supply means so as to pulsate the water pressure of the raw water.
  6.  前記浄水分岐路には、マイクロバブル発生手段を備える流路が並列に形成されている請求項1~5のいずれか一項に浄水装置。 The water purifier according to any one of claims 1 to 5, wherein a flow path including microbubble generating means is formed in parallel in the water purification branch.
  7.  前記膜モジュールは、膜手段として、精密濾過膜または限外濾過膜を備えるものである請求項1~6のいずれか一項に記載の浄水装置。 The water purifier according to any one of claims 1 to 6, wherein the membrane module comprises a microfiltration membrane or an ultrafiltration membrane as membrane means.
  8.  原水槽と、原水槽に薬液を供給する手段を備える請求項1~7のいずれか一項に記載の浄水装置。 The water purifier according to any one of claims 1 to 7, comprising a raw water tank and means for supplying a chemical solution to the raw water tank.
  9.  通常濾過運転時には、少なくとも第一膜モジュールと第二膜モジュールとを有する複数の膜モジュールに、原水を並列に供給して、原水を複数の膜モジュールで濾過することにより浄水を製造し、
     逆洗浄運転時には、第一膜モジュールまたは第二膜モジュールの一方に、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、他方の膜モジュールの下流側から上流側に逆流させて、他方の膜モジュールを逆洗浄することを特徴とする浄水の製造方法。
    During normal filtration operation, raw water is supplied in parallel to a plurality of membrane modules having at least a first membrane module and a second membrane module, and purified water is produced by filtering the raw water through the plurality of membrane modules.
    At the time of backwashing operation, the raw water is supplied to one of the first membrane module or the second membrane module while pulsating the raw water pressure and filtered, and at least a part of the obtained purified water is used as the backwash water. A method for producing purified water, characterized in that a reverse flow is performed from the downstream side of the membrane module to the upstream side, and the other membrane module is backwashed.
  10.  逆洗浄運転時には、第一膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第二膜モジュールの下流側から上流側に逆流させて、第二膜モジュールを逆洗浄し、さらに、第二膜モジュールに、原水の水圧を脈動させながら原水を供給して濾過し、得られた浄水の少なくとも一部を、逆洗水として、第一膜モジュールの下流側から上流側に逆流させて、第一膜モジュールを逆洗浄する請求項9に記載の浄水の製造方法。 At the time of backwashing operation, raw water is supplied to the first membrane module while pulsating the water pressure of the raw water and filtered, and at least a part of the obtained purified water is used as backwash water from the downstream side of the second membrane module. Back flow to the side, back washing the second membrane module, supplying raw water to the second membrane module while pulsating the water pressure of raw water, filtering, and backwashing at least a part of the purified water obtained The method for producing purified water according to claim 9, wherein the first membrane module is backwashed as water by flowing backward from the downstream side of the first membrane module to the upstream side.
  11.  逆洗浄運転時において、原水の水圧の最小圧力値Pminに対する最大圧力値Pmaxの比(Pmax/Pmix)が、1.3以上、2.5以下になるように、原水を脈動させる請求項9または10に記載の浄水の製造方法。 10. The raw water is pulsated so that a ratio (Pmax / Pmix) of the maximum pressure value Pmax to the minimum pressure value Pmin of the water pressure of the raw water is 1.3 or more and 2.5 or less during the reverse cleaning operation. 10. The method for producing purified water according to 10.
  12.  請求項1~8のいずれかの浄水装置を用いて浄水を製造する請求項9~11のいずれか一項に記載の浄水の製造方法。
     
    The method for producing purified water according to any one of claims 9 to 11, wherein purified water is produced using the water purification device according to any one of claims 1 to 8.
PCT/JP2013/072726 2012-09-19 2013-08-26 Water purification device and method for manufacturing purified water WO2014045804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-205140 2012-09-19
JP2012205140A JP2014057926A (en) 2012-09-19 2012-09-19 Water purifier and production method of purified water

Publications (1)

Publication Number Publication Date
WO2014045804A1 true WO2014045804A1 (en) 2014-03-27

Family

ID=50341127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072726 WO2014045804A1 (en) 2012-09-19 2013-08-26 Water purification device and method for manufacturing purified water

Country Status (2)

Country Link
JP (1) JP2014057926A (en)
WO (1) WO2014045804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891696A (en) * 2015-06-05 2015-09-09 王金春 Modular-design waterway-board-bearing water purification unit
GR20170100128A (en) * 2017-03-30 2018-10-31 Ευαγγελος Παναγη Φαβας METHOD AND PRODUCTION OF NANO-BALANCE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059691A1 (en) * 2014-10-16 2016-04-21 株式会社タカギ Production method for purified daily life water and production apparatus for purified daily life water
KR20160050683A (en) * 2014-10-30 2016-05-11 주식회사 필드솔루션 Method for reducing membrane fouling in the water treatment apparatus
CN104445524A (en) * 2014-12-03 2015-03-25 刘维杰 Freshwater preparing device
JP6297627B2 (en) * 2016-06-20 2018-03-20 ビック工業株式会社 Liquid discharge pipe structure
JP6205099B1 (en) * 2016-09-01 2017-09-27 株式会社アルベールインターナショナル Microbubble generator, and microbubble-containing water generator using the same
JP7050304B2 (en) * 2016-12-19 2022-04-08 オオノ開發株式会社 Equipment and systems for producing gas and liquid containing fine bubbles
SG11201906099RA (en) * 2017-01-17 2019-08-27 Akiyoshi Mori Ultrafine bubble generator
JP2018158297A (en) * 2017-03-23 2018-10-11 株式会社ウェルシィ Method for operating membrane filtration device and membrane filtration device
JP6943119B2 (en) * 2017-09-28 2021-09-29 栗田工業株式会社 Membrane module evaluation method, evaluation equipment and ultrapure water production equipment
JP2020044467A (en) * 2018-09-14 2020-03-26 栗田工業株式会社 Water treatment device
US20200172414A1 (en) * 2018-11-30 2020-06-04 Pall Corporation System and method for filtering water
JP2021065853A (en) * 2019-10-25 2021-04-30 三浦工業株式会社 Water treatment device
JP6984919B1 (en) * 2020-12-17 2021-12-22 株式会社アルベール・インターナショナル Micro bubble generator
JP7338926B1 (en) 2023-03-24 2023-09-05 株式会社アルベール・インターナショナル microbubble generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277539A (en) * 1997-04-10 1998-10-20 Toray Ind Inc Water purifier and water purifying apparatus for emergency and method for washing thereof
JP2001190935A (en) * 2000-01-11 2001-07-17 Kurita Water Ind Ltd Method of operating membrane separator
JP2007268494A (en) * 2006-03-31 2007-10-18 Ebara Corp Filtering apparatus and its operation method
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
JP2010253457A (en) * 2009-04-21 2010-11-11 Kansai Kako Kk Method of washing membrane filtration apparatus using fine bubbles such as microbubbles and nano-bubbles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277539A (en) * 1997-04-10 1998-10-20 Toray Ind Inc Water purifier and water purifying apparatus for emergency and method for washing thereof
JP2001190935A (en) * 2000-01-11 2001-07-17 Kurita Water Ind Ltd Method of operating membrane separator
JP2007268494A (en) * 2006-03-31 2007-10-18 Ebara Corp Filtering apparatus and its operation method
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
JP2010253457A (en) * 2009-04-21 2010-11-11 Kansai Kako Kk Method of washing membrane filtration apparatus using fine bubbles such as microbubbles and nano-bubbles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891696A (en) * 2015-06-05 2015-09-09 王金春 Modular-design waterway-board-bearing water purification unit
GR20170100128A (en) * 2017-03-30 2018-10-31 Ευαγγελος Παναγη Φαβας METHOD AND PRODUCTION OF NANO-BALANCE

Also Published As

Publication number Publication date
JP2014057926A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
WO2014045804A1 (en) Water purification device and method for manufacturing purified water
JP5586565B2 (en) Water purification device and water purification system
RU2473472C2 (en) Reverse osmosis water treatment plant
US20120125846A1 (en) Filtering method, and membrane-filtering apparatus
KR100973912B1 (en) Economical reverse osmosis water purification system
CN209010264U (en) A kind of environmental protection purifier and water dispenser
WO2016066382A1 (en) A water purifier and a process of cleaning the membrane
US8101078B1 (en) Wastewater concentrator
ITFI20100048A1 (en) REVERSE OSMOSIS PLANT FOR WATER TREATMENT
WO2012175804A1 (en) High efficiency membrane filtration
CN212609720U (en) Household water purifying device and table-board water purifying machine
CN206142935U (en) Water -saving type water purifier
CN106007040B (en) Heavy metal wastewater treatment system and method
JP2017113735A (en) Operation method of separate membrane filtration device and water purification device
RU2199377C1 (en) Membrane plant for separation of solutions
JP2012176396A (en) Membrane separation activated sludge apparatus
CN212609718U (en) Household water purifying device and under-kitchen water purifier
CN210595635U (en) Drinking water treatment device
US20140144840A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
CN114890580A (en) GTRO wisdom reverse osmosis membrane system
CN211896440U (en) Water purification system and water purifier of first cup of water are removed in electro-adsorption
CN210656542U (en) Pure water preparation device
RU22434U1 (en) SOLUTION SEPARATION INSTALLATION
CN207596633U (en) Intelligent multifunctional shunting water purifier
CN207726839U (en) A kind of efficient water treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838903

Country of ref document: EP

Kind code of ref document: A1