WO2014045686A1 - Imaging lens and imaging device - Google Patents

Imaging lens and imaging device Download PDF

Info

Publication number
WO2014045686A1
WO2014045686A1 PCT/JP2013/069159 JP2013069159W WO2014045686A1 WO 2014045686 A1 WO2014045686 A1 WO 2014045686A1 JP 2013069159 W JP2013069159 W JP 2013069159W WO 2014045686 A1 WO2014045686 A1 WO 2014045686A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive power
imaging
image
shape
Prior art date
Application number
PCT/JP2013/069159
Other languages
French (fr)
Japanese (ja)
Inventor
彰史 武井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/410,888 priority Critical patent/US20150338608A1/en
Priority to JP2014536641A priority patent/JP6135674B2/en
Publication of WO2014045686A1 publication Critical patent/WO2014045686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present disclosure has, for example, an imaging lens suitable for a camera module for a portable information terminal or a mobile phone terminal having an F number of about 1.8 to 2.0 and a focal length of about 28 mm (35 mm film equivalent).
  • the present invention also relates to an imaging apparatus using such an imaging lens.
  • a lens configuration of four or less lenses is known as a lens for a camera module for a portable information terminal or a mobile phone terminal.
  • a lens configuration of four or less lenses for example, a bright and high resolution with an F number of about 2.0 or less. It is difficult to achieve performance. Therefore, in order to realize brighter and higher resolution performance, a five-lens lens has been proposed (see Patent Documents 1 to 3).
  • Patent Document 1 discloses a five-lens lens having positive, negative, positive, positive, and negative refractive powers in order from the object side.
  • the five-lens configuration lens having such a refractive power arrangement can disperse positive power among the three lenses, and is a type in which the manufacturing sensitivity of the first lens can be relatively easily suppressed.
  • the lens described in Patent Document 1 has a high resolving power up to a high frequency band, improvement of axial chromatic aberration is desired.
  • the fourth lens is a convex meniscus lens having a tight curvature on the image side, and it is difficult to shorten the principal point interval and to reduce the height. Further, if the F number is bright and the amount of peripheral light is to be secured, the outer diameter, particularly the effective diameter of the fifth lens, is enlarged.
  • Patent Documents 2 and 3 disclose a five-lens lens in which the fourth lens has negative refractive power and is arranged in order of positive, negative, positive, negative, and negative refractive power from the object side.
  • the lenses described in Patent Documents 2 and 3 are well corrected for aberrations, the F-number is bright and the focal length is about 28 mm (35 mm film equivalent), which is currently mainstream as a portable camera, from the center of the screen to the periphery.
  • further improvement in spherical aberration and curvature of field is desired.
  • the lens disclosed in Patent Document 2 since the third lens has a convex shape with a strong curvature on the image side, the distance between the principal points tends to be widened, which is disadvantageous in reducing the height.
  • An imaging lens includes, in order from the object side, a first lens having a convex shape on the object side and a positive refractive power, and a second lens having a negative shape and a negative refractive power on the image side.
  • a third lens having a positive refractive power in a biconvex shape or a plano-convex shape having a convex surface facing the image surface side in the paraxial region, a fourth lens having a negative refractive power in both surfaces being aspherical, and both surfaces Is a fifth lens having negative refractive power and having an aspherical shape and a concave shape in the paraxial region on the image plane side, and satisfies the following conditional expression.
  • ⁇ 4 Abbe number of the fourth lens.
  • An imaging apparatus includes an imaging lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens. It is comprised by the imaging lens which concerns on a form.
  • each lens is optimized with the five lens configurations of positive, negative, positive, negative, and negative refractive power arrangement in order from the object side. It has been.
  • the whole is configured with five lens configurations of positive, negative, positive, negative, and negative refractive power arrangement in order from the object side, and the optimal configuration of each lens As a result, it is possible to realize a small, bright and high resolution performance.
  • FIG. 1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present disclosure and corresponding to Numerical Example 1.
  • FIG. 2 is a lens cross-sectional view illustrating a second configuration example of the imaging lens and corresponding to Numerical Example 2.
  • FIG. 3 is a lens cross-sectional view illustrating a third configuration example of the imaging lens and corresponding to Numerical Example 3.
  • FIG. 4 is a lens cross-sectional view illustrating a fourth configuration example of the imaging lens and corresponding to Numerical Example 4.
  • FIG. 5 is a lens cross-sectional view illustrating a fifth configuration example of the imaging lens and corresponding to Numerical Example 5.
  • FIG. 6 is a lens cross-sectional view illustrating a sixth configuration example of the imaging lens and corresponding to Numerical Example 6.
  • FIG. 7 is a lens cross-sectional view illustrating a seventh configuration example of the imaging lens and corresponding to Numerical Example 7.
  • FIG. 8 illustrates an eighth configuration example of the imaging lens and is a lens cross-sectional view corresponding to Numerical Example 8.
  • FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 1.
  • 6 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 2.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 3.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 4.
  • 10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 5.
  • FIG. 10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 6.
  • FIG. 10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 7.
  • 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 8. It is a front view which shows the example of 1 structure of an imaging device. It is a rear view which shows the example of 1 structure of an imaging device.
  • FIG. 1 illustrates a first configuration example of an imaging lens according to an embodiment of the present disclosure. This first configuration example corresponds to the lens configuration of Numerical Example 1 described later. A basic configuration of the imaging lens according to the present embodiment will be described with reference to FIG. 1 as appropriate.
  • the symbol “Simg” represents an image plane or an image sensor, and “Z1” represents an optical axis.
  • the imaging lens according to the present embodiment includes, in order from the object side along the optical axis Z1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. Are substantially composed of five lenses.
  • the first lens L1 is convex on the object side and has a positive refractive power.
  • the second lens L2 has a negative refractive power with a concave shape on the image surface side.
  • the third lens L3 is a biconvex shape in the paraxial region and has a positive refractive power.
  • the third lens L3 may also have a plano-convex shape with the convex surface facing the image surface side in the paraxial region, as in the configuration example of FIG. 8 described later.
  • the fourth lens L4 has an aspheric shape on both surfaces and negative refractive power.
  • the fifth lens L5 has a negative refracting power, with both surfaces being aspherical and the image side being concave in the paraxial region. It is preferable that both surfaces of the fifth lens L5 have an aspheric shape having an inflection point such that the concavo-convex shape changes along the way from the center to the periphery.
  • the imaging lens according to the present embodiment preferably satisfies a predetermined conditional expression described later.
  • the outer diameter, particularly the fifth is obtained when it is attempted to brighten the F number and secure the peripheral light quantity.
  • the effective diameter of the lens L5 is enlarged.
  • the fourth lens L4 has a negative refractive power, and is a lens having a five-lens configuration in which positive, negative, positive, negative, and negative refractive power are arranged in order from the object side. It becomes easy to secure the peripheral light quantity while brightening the F number.
  • the fourth lens L4 has a negative refractive power
  • the effective diameter is reduced, and accordingly, the enlargement of the effective diameter of the fifth lens L5 can be suppressed.
  • the fourth lens L4 is made of, for example, a polycarbonate-based high-refractive and high-dispersion material, so that axial chromatic aberration and lateral chromatic aberration are corrected well. High resolution performance can be maintained from the center to the periphery. Furthermore, the second lens L2 also satisfies conditional expression (1) described later with a negative refractive power, and the same effect can be obtained by, for example, comprising a polycarbonate-based high-refractive and high-dispersion material. .
  • the entire structure is made up of five lenses having positive, negative, positive, negative, and negative refractive power arrangement in order from the object side, and the configuration of each lens is optimized. Therefore, it is small, bright and high resolution performance can be realized. By using a bright lens, high sensitivity photography is possible when applied to an imaging device. Further, all the lenses are made of plastic lenses, so that the cost can be reduced.
  • conditional expressions In the imaging lens according to the present embodiment, by optimizing the configuration of each lens so as to satisfy at least one of the following conditional expressions, preferably a combination of two or more conditional expressions, better performance is achieved. Can be obtained.
  • ⁇ 2 Abbe number of second lens L2
  • ⁇ 4 Abbe number of fourth lens L4.
  • Conditional expression (1) defines an appropriate value for the Abbe number ⁇ 2 of the second lens L2.
  • Conditional expression (2) defines an appropriate value of the Abbe number ⁇ 4 of the fourth lens L4. If the upper limit of conditional expression (1) or conditional expression (2) is exceeded, axial chromatic aberration and lateral chromatic aberration will deteriorate. In addition, the high-frequency resolution performance deteriorates from the center to the periphery.
  • Conditional expression (3) defines an appropriate value for the focal length f3 of the third lens L3. If the lower limit of conditional expression (3) is exceeded, spherical aberration will deteriorate. Also, the sagittal curvature of field deteriorates in the over direction, and the resolution performance of the peripheral portion tends to deteriorate. If the upper limit of conditional expression (3) is exceeded, axial chromatic aberration and lateral chromatic aberration will deteriorate. In addition, high-frequency resolution performance is degraded. For this reason, it is difficult to brighten the F number.
  • f2 The focal length of the second lens L2.
  • Conditional expression (4) defines an appropriate value for the focal length f2 of the second lens L2.
  • the lower limit of conditional expression (4) is exceeded, axial chromatic aberration deteriorates and high-frequency resolution performance near the center decreases.
  • the upper limit of conditional expression (4) is exceeded, spherical aberration will deteriorate and it will be difficult to brighten the F number. Further, the curvature of field in the tangential direction deteriorates in the over direction, and the resolution performance of the peripheral portion tends to deteriorate.
  • L Distance in the optical axis direction from the apex on the object side of the first lens L1 to the position that protrudes to the most image side on the image side surface of the fifth lens L5 (see FIG. 1).
  • Ymax Maximum image height (half value of diagonal length of image sensor to be used)
  • L is the first lens L1 when the image side surface of the fifth lens L5 is an aspherical surface having an inflection point that changes from a concave shape to a convex shape as in the configuration example of FIG. The distance in the optical axis direction from the vertex on the object side to the inflection point on the image side surface of the fifth lens L5.
  • conditional expression (5) If the lower limit of conditional expression (5) is exceeded, the power of the first lens L1 becomes too strong, it becomes difficult to correct spherical aberration, and it becomes difficult to brighten the F-number.
  • Imaging device 17 and 18 show a configuration example of an imaging apparatus to which the imaging lens according to this embodiment is applied.
  • This configuration example is an example of a mobile terminal device (for example, a mobile information terminal or a mobile phone terminal) provided with an imaging device.
  • This portable terminal device includes a substantially rectangular casing 201.
  • a display unit 202 and a front camera unit 203 are provided on the front side (FIG. 17) of the housing 201.
  • a main camera unit 204 and a camera flash 205 are provided on the back side (FIG. 18) of the housing 201.
  • the display unit 202 is a touch panel that enables various operations, for example, by detecting a contact state with the surface. Thereby, the display unit 202 has a function of displaying various types of information and an input function that enables various types of input operations by the user.
  • the display unit 202 displays various data such as an operation state and an image captured by the front camera unit 203 or the main camera unit 204.
  • the imaging lens according to the present embodiment can be applied as a camera module lens of an imaging device (front camera unit 203 or main camera unit 204) in a mobile terminal device as shown in FIGS. 17 and 18, for example.
  • a CCD (Charge Coupled Devices) or CMOS (Complementary) that outputs an imaging signal (image signal) corresponding to an optical image formed by the imaging lens near the image plane Simg of the imaging lens.
  • An image sensor such as Metal (Oxide Semiconductor) is arranged.
  • an optical member LC such as a cover glass for protecting the imaging device and various optical filters may be disposed between the fifth lens L5 and the image plane Simg.
  • the imaging lens according to the present embodiment is not limited to the above-described portable terminal device, but can also be applied as an imaging lens for other electronic devices such as a digital still camera and a digital video camera.
  • each lens surface of the first lens L1 to the fifth lens L5 is aspheric.
  • the shape of the aspheric surface is expressed by the following equation.
  • E indicates that the next numerical value is a “power exponent” with a base of 10
  • E the numerical value represented by an exponential function with the base 10
  • [Table 1] and [Table 2] show specific lens data corresponding to the imaging lens according to the first configuration example shown in FIG.
  • [Table 1] shows the basic lens data
  • [Table 2] shows data related to the aspherical surface.
  • the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 3] and [Table 4] show specific lens data corresponding to the imaging lens according to the second configuration example shown in FIG.
  • [Table 3] shows the basic lens data
  • [Table 4] shows data related to the aspherical surface.
  • the aperture stop St is provided on the object side of the first lens L1. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 5] and [Table 6] show specific lens data corresponding to the imaging lens according to the third configuration example shown in FIG.
  • [Table 5] shows the basic lens data
  • [Table 6] shows data related to the aspherical surface.
  • the aperture stop St is provided on the object side of the first lens L1. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 7] and [Table 8] show specific lens data corresponding to the imaging lens according to the fourth configuration example shown in FIG.
  • [Table 7] shows the basic lens data
  • [Table 8] shows data related to the aspherical surface.
  • the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 9] and [Table 10] show specific lens data corresponding to the imaging lens according to the fifth configuration example shown in FIG.
  • [Table 9] shows the basic lens data
  • [Table 10] shows data related to the aspherical surface.
  • the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 11] and [Table 12] show specific lens data corresponding to the imaging lens according to the sixth configuration example shown in FIG.
  • [Table 11] shows the basic lens data
  • [Table 12] shows data related to the aspherical surface.
  • the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 13] and [Table 14] show specific lens data corresponding to the imaging lens according to the seventh configuration example shown in FIG.
  • [Table 13] shows the basic lens data
  • [Table 14] shows data related to the aspherical surface.
  • the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Table 15] and [Table 16] show specific lens data corresponding to the imaging lens according to the eighth configuration example shown in FIG.
  • [Table 15] shows basic lens data
  • [Table 16] shows data related to aspheric surfaces.
  • the aperture stop St is provided on the object side of the first lens L1.
  • the third lens L3 has a plano-convex shape with a convex surface facing the image plane side in the paraxial region.
  • each of the first lens L1 to the fifth lens L5 is made of a plastic lens.
  • an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
  • [Other numerical data of each example] [Table 17] shows a summary of values relating to the above-described conditional expressions for each numerical example. [Table 17] also shows the values of the half angle of view ⁇ , the back focus fb, and the F number (Fno) for each numerical example. As can be seen from [Table 17], for each conditional expression, the value of each numerical example is within the numerical range.
  • [Aberration performance] 9 to 16 show the aberration performance of each numerical example.
  • spherical aberration, astigmatism, and distortion (distortion aberration) are shown as aberration diagrams.
  • X indicates the sagittal direction
  • Y indicates the aberration in the meridional (tangential) direction.
  • an imaging lens with good aberration correction can be realized for each example.
  • the configuration including substantially five lenses has been described.
  • the configuration may further include a lens having substantially no refractive power.
  • this technique can take the following composition.
  • a first lens having a positive refractive power with a convex shape on the object side;
  • a second lens having a negative refractive power and a concave shape on the image surface side;
  • a third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region;
  • a fourth lens having both surfaces aspherical and negative refractive power;
  • An imaging lens that satisfies the following conditional expression.
  • the imaging lens is From the object side, A first lens having a positive refractive power with a convex shape on the object side; A second lens having a negative refractive power and a concave shape on the image surface side; A third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region; A fourth lens having both surfaces aspherical and negative refractive power;
  • An image pickup apparatus comprising: a fifth lens having an aspheric shape on both sides and a concave shape on the image plane side in a paraxial region and having a negative refractive power, and satisfies the following conditional expression: ⁇ 2 ⁇ 30 (1) ⁇ 4 ⁇ 30 (2) However, ⁇ 2: Abbe number of the second lens ⁇ 4: Abbe number of the fourth lens. [7] The imaging

Abstract

This imaging lens comprises, in order, from the object side: a first lens that has a convex shape on the object side, and has positive refractive power; a second lens that has a concave shape on the image side, and has negative refractive power; a third lens that has a bi-convex shape or a plano-convex shape, wherein the convex surface faces the image side, in a paraxial region, and has positive refractive power; a fourth lens that has an asperhical shape on both sides, and has negative refractive power; and a fifth lens that has an asperhical shape on both sides, has a concave shape on the image side in the paraxial region, and has negative refractive power. The imaging lens satisfies the conditional expressions below. ν2 is the Abbe number of the second lens, and ν4 is the Abbe number of the fourth lens. ν2 < 30 (1) ν4 < 30 (2)

Description

撮像レンズおよび撮像装置Imaging lens and imaging apparatus
 本開示は、例えばFナンバーが1.8~2.0程度、焦点距離が28mm程度(35mmフィルム換算)の性能を有し、携帯情報端末や携帯電話端末用のカメラモジュールに適した撮像レンズ、およびそのような撮像レンズを用いた撮像装置に関する。 The present disclosure has, for example, an imaging lens suitable for a camera module for a portable information terminal or a mobile phone terminal having an F number of about 1.8 to 2.0 and a focal length of about 28 mm (35 mm film equivalent). The present invention also relates to an imaging apparatus using such an imaging lens.
 携帯情報端末や携帯電話端末向けのカメラモジュール用レンズとして、4枚以下のレンズ構成が知られているが、4枚以下のレンズ構成では、例えばFナンバーが2.0程度以下の明るく高い解像性能を実現することが困難である。そこで、より明るく高い解像性能を実現するために、5枚構成のレンズが提案されている(特許文献1ないし3参照)。 A lens configuration of four or less lenses is known as a lens for a camera module for a portable information terminal or a mobile phone terminal. With a lens configuration of four or less lenses, for example, a bright and high resolution with an F number of about 2.0 or less. It is difficult to achieve performance. Therefore, in order to realize brighter and higher resolution performance, a five-lens lens has been proposed (see Patent Documents 1 to 3).
特開2012-98737号公報JP 2012-98737 A 特開2007-264180号公報JP 2007-264180 A 特開2010-256608号公報JP 2010-256608 A
 特許文献1には、物体側から順に正、負、正、正、負の屈折力を有する5枚構成のレンズが開示されている。このような屈折力配置の5枚構成のレンズは、正のパワーを3枚のレンズに分散させることができ、特に第1レンズの製造敏感度を比較的抑え易いタイプとなる。一方、市場には、明るく高い解像力を持ち、かつ低背化(光軸方向の短縮化)への要求がある。しかしながら、特許文献1に記載のレンズでは、高周波帯まで高い解像力を持つため、軸上色収差の改善が望まれる。また、第4レンズが像側にきつい曲率を持った凸メニスカスレンズになっており、主点間隔を縮めにくく、低背化しにくい。また、Fナンバーを明るく、かつ周辺光量を確保しようとすると外径、特に第5レンズの有効径が肥大化してしまう。 Patent Document 1 discloses a five-lens lens having positive, negative, positive, positive, and negative refractive powers in order from the object side. The five-lens configuration lens having such a refractive power arrangement can disperse positive power among the three lenses, and is a type in which the manufacturing sensitivity of the first lens can be relatively easily suppressed. On the other hand, there is a demand in the market for bright and high resolution and low profile (shortening in the optical axis direction). However, since the lens described in Patent Document 1 has a high resolving power up to a high frequency band, improvement of axial chromatic aberration is desired. Further, the fourth lens is a convex meniscus lens having a tight curvature on the image side, and it is difficult to shorten the principal point interval and to reduce the height. Further, if the F number is bright and the amount of peripheral light is to be secured, the outer diameter, particularly the effective diameter of the fifth lens, is enlarged.
 一方、特許文献2,3には、第4レンズを負の屈折力とし、物体側から順に正、負、正、負、負の屈折力配置にした5枚構成のレンズが開示されている。特許文献2,3に記載のレンズは、良好に収差補正されているが、Fナンバーを明るく、かつ携帯用カメラとして現在主流である焦点距離28mm程度(35mmフィルム換算)とし、画面中心から周辺に至るまで高い解像を得るためには、球面収差や像面湾曲においてさらに改善が望まれる。また特に、特許文献2に記載のレンズでは、第3レンズが像側に強い曲率を持った凸形状となっているため、主点間隔が広がる傾向にあり、低背化に不利である。 On the other hand, Patent Documents 2 and 3 disclose a five-lens lens in which the fourth lens has negative refractive power and is arranged in order of positive, negative, positive, negative, and negative refractive power from the object side. Although the lenses described in Patent Documents 2 and 3 are well corrected for aberrations, the F-number is bright and the focal length is about 28 mm (35 mm film equivalent), which is currently mainstream as a portable camera, from the center of the screen to the periphery. In order to obtain a high resolution, further improvement in spherical aberration and curvature of field is desired. In particular, in the lens disclosed in Patent Document 2, since the third lens has a convex shape with a strong curvature on the image side, the distance between the principal points tends to be widened, which is disadvantageous in reducing the height.
 従って、小型で、明るく高い解像性能を実現できる撮像レンズおよび撮像装置を提供することが望ましい。 Therefore, it is desirable to provide an imaging lens and an imaging apparatus that are small, bright, and capable of realizing high resolution performance.
 本開示の一実施の形態に係る撮像レンズは、物体側より順に、物体側が凸形状で正の屈折力を有する第1レンズと、像面側が凹形状で負の屈折力を有する第2レンズと、近軸領域において両凸形状または像面側に凸面を向けた平凸形状で正の屈折力を有する第3レンズと、両面が非球面形状で負の屈折力を有する第4レンズと、両面が非球面形状で像面側が近軸領域において凹形状の負の屈折力を有する第5レンズとからなり、以下の条件式を満足する。
 ν2<30 ……(1)
 ν4<30 ……(2)
ただし、
 ν2:第2レンズのアッベ数
 ν4:第4レンズのアッベ数
とする。
An imaging lens according to an embodiment of the present disclosure includes, in order from the object side, a first lens having a convex shape on the object side and a positive refractive power, and a second lens having a negative shape and a negative refractive power on the image side. A third lens having a positive refractive power in a biconvex shape or a plano-convex shape having a convex surface facing the image surface side in the paraxial region, a fourth lens having a negative refractive power in both surfaces being aspherical, and both surfaces Is a fifth lens having negative refractive power and having an aspherical shape and a concave shape in the paraxial region on the image plane side, and satisfies the following conditional expression.
ν2 <30 (1)
ν4 <30 (2)
However,
ν2: Abbe number of the second lens ν4: Abbe number of the fourth lens.
 本開示の一実施の形態に係る撮像装置は、撮像レンズと、撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを備え、撮像レンズを、上記本開示の一実施の形態に係る撮像レンズによって構成したものである。 An imaging apparatus according to an embodiment of the present disclosure includes an imaging lens and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens. It is comprised by the imaging lens which concerns on a form.
 本開示の一実施の形態に係る撮像レンズまたは撮像装置では、物体側から順に正、負、正、負、負の屈折力配置の5枚のレンズ構成で、各レンズの構成の最適化が図られている。 In the imaging lens or the imaging device according to the embodiment of the present disclosure, the configuration of each lens is optimized with the five lens configurations of positive, negative, positive, negative, and negative refractive power arrangement in order from the object side. It has been.
 本開示の一実施の形態の撮像レンズまたは撮像装置によれば、全体を物体側から順に正、負、正、負、負の屈折力配置の5枚のレンズ構成とし、各レンズの構成の最適化を図るようにしたので、小型で、明るく高い解像性能を実現できる。 According to the imaging lens or the imaging device of the embodiment of the present disclosure, the whole is configured with five lens configurations of positive, negative, positive, negative, and negative refractive power arrangement in order from the object side, and the optimal configuration of each lens As a result, it is possible to realize a small, bright and high resolution performance.
本開示の一実施の形態に係る撮像レンズの第1の構成例を示すものであり、数値実施例1に対応するレンズ断面図である。1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present disclosure and corresponding to Numerical Example 1. FIG. 撮像レンズの第2の構成例を示すものであり、数値実施例2に対応するレンズ断面図である。2 is a lens cross-sectional view illustrating a second configuration example of the imaging lens and corresponding to Numerical Example 2. FIG. 撮像レンズの第3の構成例を示すものであり、数値実施例3に対応するレンズ断面図である。3 is a lens cross-sectional view illustrating a third configuration example of the imaging lens and corresponding to Numerical Example 3. FIG. 撮像レンズの第4の構成例を示すものであり、数値実施例4に対応するレンズ断面図である。4 is a lens cross-sectional view illustrating a fourth configuration example of the imaging lens and corresponding to Numerical Example 4. FIG. 撮像レンズの第5の構成例を示すものであり、数値実施例5に対応するレンズ断面図である。5 is a lens cross-sectional view illustrating a fifth configuration example of the imaging lens and corresponding to Numerical Example 5. FIG. 撮像レンズの第6の構成例を示すものであり、数値実施例6に対応するレンズ断面図である。6 is a lens cross-sectional view illustrating a sixth configuration example of the imaging lens and corresponding to Numerical Example 6. FIG. 撮像レンズの第7の構成例を示すものであり、数値実施例7に対応するレンズ断面図である。7 is a lens cross-sectional view illustrating a seventh configuration example of the imaging lens and corresponding to Numerical Example 7. FIG. 撮像レンズの第8の構成例を示すものであり、数値実施例8に対応するレンズ断面図である。8 illustrates an eighth configuration example of the imaging lens and is a lens cross-sectional view corresponding to Numerical Example 8. FIG. 数値実施例1に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 1. 数値実施例2に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。6 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 2. FIG. 数値実施例3に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 3. 数値実施例4に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 4. 数値実施例5に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 5. FIG. 数値実施例6に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 6. FIG. 数値実施例7に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。10 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 7. FIG. 数値実施例8に対応する撮像レンズの球面収差、非点収差、および歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens corresponding to Numerical Example 8. 撮像装置の一構成例を示す正面図である。It is a front view which shows the example of 1 structure of an imaging device. 撮像装置の一構成例を示す背面図である。It is a rear view which shows the example of 1 structure of an imaging device.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.レンズの基本構成
 2.作用・効果
 3.撮像装置への適用例
 4.レンズの数値実施例
 5.その他の実施の形態
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1. Basic configuration of lens Action and effect 3. Application example to imaging device 4. Numerical example of lens Other embodiments
[1.レンズの基本構成]
 図1は、本開示の一実施の形態に係る撮像レンズの第1の構成例を示している。この第1の構成例は、後述の数値実施例1のレンズ構成に対応している。図1を適宜参照して本実施の形態に係る撮像レンズの基本構成を説明する。図1において、符号Simgは像面または撮像素子、Z1は光軸を示す。
[1. Basic lens configuration]
FIG. 1 illustrates a first configuration example of an imaging lens according to an embodiment of the present disclosure. This first configuration example corresponds to the lens configuration of Numerical Example 1 described later. A basic configuration of the imaging lens according to the present embodiment will be described with reference to FIG. 1 as appropriate. In FIG. 1, the symbol “Simg” represents an image plane or an image sensor, and “Z1” represents an optical axis.
 本実施の形態に係る撮像レンズは、光軸Z1に沿って物体側より順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とが配置された、実質的に5つのレンズで構成されている。 The imaging lens according to the present embodiment includes, in order from the object side along the optical axis Z1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. Are substantially composed of five lenses.
 第1レンズL1は、物体側が凸形状で正の屈折力を有している。第2レンズL2は、像面側が凹形状で負の屈折力を有している。第3レンズL3は、近軸領域において両凸形状で正の屈折力を有している。第3レンズL3はまた、後述する図8の構成例のように、近軸領域において像面側に凸面を向けた平凸形状であっても良い。第4レンズL4は、両面が非球面形状で負の屈折力を有している。第5レンズL5は、両面が非球面形状で像面側が近軸領域において凹形状であり負の屈折力を有している。第5レンズL5の両面は、中心部から周辺部に行くに従い、凹凸形状が途中で変化するような変曲点を有する非球面形状であることが好ましい。 The first lens L1 is convex on the object side and has a positive refractive power. The second lens L2 has a negative refractive power with a concave shape on the image surface side. The third lens L3 is a biconvex shape in the paraxial region and has a positive refractive power. The third lens L3 may also have a plano-convex shape with the convex surface facing the image surface side in the paraxial region, as in the configuration example of FIG. 8 described later. The fourth lens L4 has an aspheric shape on both surfaces and negative refractive power. The fifth lens L5 has a negative refracting power, with both surfaces being aspherical and the image side being concave in the paraxial region. It is preferable that both surfaces of the fifth lens L5 have an aspheric shape having an inflection point such that the concavo-convex shape changes along the way from the center to the periphery.
 その他、本実施の形態に係る撮像レンズは、後述する所定の条件式を満足することが好ましい。 In addition, the imaging lens according to the present embodiment preferably satisfies a predetermined conditional expression described later.
[2.作用・効果]
 次に、本実施の形態に係る撮像レンズの作用および効果を説明する。
[2. Action / Effect]
Next, functions and effects of the imaging lens according to the present embodiment will be described.
 上述したように、物体側から順に正、負、正、正、負の屈折力配置にした5枚構成のレンズでは、Fナンバーを明るく、かつ周辺光量を確保しようとすると外径、特に第5レンズL5の有効径が肥大化してしまう。本実施の形態に係る撮像レンズでは、第4レンズL4を負の屈折力とし、物体側から順に正、負、正、負、負の屈折力配置にした5枚構成のレンズとすることで、Fナンバーを明るくしつつ、周辺光量を確保することが容易となる。また、第4レンズL4が負の屈折力であることにより有効径が縮小し、これにともなって第5レンズL5の有効径の肥大化を抑えることが可能になる。この結果、例えば、鏡筒肉厚が薄くなることにより厚み精度が低下するのを抑えることができる。 As described above, in the five-lens configuration in which positive, negative, positive, positive, and negative refractive power arrangements are arranged in order from the object side, the outer diameter, particularly the fifth, is obtained when it is attempted to brighten the F number and secure the peripheral light quantity. The effective diameter of the lens L5 is enlarged. In the imaging lens according to the present embodiment, the fourth lens L4 has a negative refractive power, and is a lens having a five-lens configuration in which positive, negative, positive, negative, and negative refractive power are arranged in order from the object side. It becomes easy to secure the peripheral light quantity while brightening the F number. Further, since the fourth lens L4 has a negative refractive power, the effective diameter is reduced, and accordingly, the enlargement of the effective diameter of the fifth lens L5 can be suppressed. As a result, for example, it is possible to suppress a decrease in thickness accuracy due to a reduction in the thickness of the lens barrel.
 この撮像レンズでは、後述の条件式(2)を満足し、第4レンズL4を例えばポリカーボネート系の高屈折、高分散の材料で構成することで軸上色収差と倍率色収差とを良好に補正し、中心部から周辺部に至るまで高い解像性能を維持することができる。さらに、第2レンズL2についても、負の屈折力で、後述の条件式(1)を満足し、例えばポリカーボネート系の高屈折、高分散の材料で構成することで同様の効果を得ることができる。 In this imaging lens, the following conditional expression (2) is satisfied, and the fourth lens L4 is made of, for example, a polycarbonate-based high-refractive and high-dispersion material, so that axial chromatic aberration and lateral chromatic aberration are corrected well. High resolution performance can be maintained from the center to the periphery. Furthermore, the second lens L2 also satisfies conditional expression (1) described later with a negative refractive power, and the same effect can be obtained by, for example, comprising a polycarbonate-based high-refractive and high-dispersion material. .
 また、この撮像レンズでは、特に第3レンズL3~第5レンズL5レンズにおいて、きつい曲率を持たないレンズ形状にならないようにパワー配分を行っているため、比較的低背化に有利となっている。 In this imaging lens, in particular, in the third lens L3 to the fifth lens L5, power is distributed so as not to have a lens shape having no tight curvature, which is advantageous for a relatively low profile. .
 以上のように本実施の形態によれば、全体を物体側から順に正、負、正、負、負の屈折力配置の5枚のレンズ構成とし、各レンズの構成の最適化を図るようにしたので、小型で、明るく高い解像性能を実現できる。明るいレンズにすることで、撮像装置に適用した場合に、高感度撮影が可能になる。また、全てのレンズをプラスチックレンズで構成することで、低コスト化を図ることができる。 As described above, according to the present embodiment, the entire structure is made up of five lenses having positive, negative, positive, negative, and negative refractive power arrangement in order from the object side, and the configuration of each lens is optimized. Therefore, it is small, bright and high resolution performance can be realized. By using a bright lens, high sensitivity photography is possible when applied to an imaging device. Further, all the lenses are made of plastic lenses, so that the cost can be reduced.
(条件式の説明)
 本実施の形態に係る撮像レンズでは、以下の条件式を少なくとも1つ、好ましくは2つ以上の条件式を組み合わせて満足するように各レンズの構成の最適化を図ることで、より良好な性能を得ることができる。
(Explanation of conditional expressions)
In the imaging lens according to the present embodiment, by optimizing the configuration of each lens so as to satisfy at least one of the following conditional expressions, preferably a combination of two or more conditional expressions, better performance is achieved. Can be obtained.
 ν2<30 ……(1)
 ν4<30 ……(2)
ただし、
 ν2:第2レンズL2のアッベ数
 ν4:第4レンズL4のアッベ数
とする。
ν2 <30 (1)
ν4 <30 (2)
However,
ν2: Abbe number of second lens L2 ν4: Abbe number of fourth lens L4.
 条件式(1)は、第2レンズL2のアッベ数ν2の適切な値を規定している。条件式(2)は、第4レンズL4のアッベ数ν4の適切な値を規定している。条件式(1)または条件式(2)の上限を超えると、軸上色収差および倍率色収差が悪化する。また、中心部から周辺部にわたり高周波の解像性能が悪化する。 Conditional expression (1) defines an appropriate value for the Abbe number ν2 of the second lens L2. Conditional expression (2) defines an appropriate value of the Abbe number ν4 of the fourth lens L4. If the upper limit of conditional expression (1) or conditional expression (2) is exceeded, axial chromatic aberration and lateral chromatic aberration will deteriorate. In addition, the high-frequency resolution performance deteriorates from the center to the periphery.
 1<f3/f<30 ……(3)
ただし、
 f3:第3レンズL3の焦点距離
 f:全系の焦点距離
とする。
1 <f3 / f <30 (3)
However,
f3: Focal length of the third lens L3 f: The focal length of the entire system.
 条件式(3)は、第3レンズL3の焦点距離f3の適切な値を規定している。条件式(3)の下限を超えると、球面収差が悪化する。また、サジタル方向の像面湾曲がオーバ方向に悪化し、周辺部の解像性能が低下する傾向となる。条件式(3)の上限を超えると、軸上色収差および倍率色収差が悪化する。また、高周波の解像性能が低下する。このため、Fナンバーを明るくすることが困難となる。 Conditional expression (3) defines an appropriate value for the focal length f3 of the third lens L3. If the lower limit of conditional expression (3) is exceeded, spherical aberration will deteriorate. Also, the sagittal curvature of field deteriorates in the over direction, and the resolution performance of the peripheral portion tends to deteriorate. If the upper limit of conditional expression (3) is exceeded, axial chromatic aberration and lateral chromatic aberration will deteriorate. In addition, high-frequency resolution performance is degraded. For this reason, it is difficult to brighten the F number.
 -2.0<f2/f<-0.5 ……(4)
ただし、
 f2:第2レンズL2の焦点距離
とする。
-2.0 <f2 / f <-0.5 (4)
However,
f2: The focal length of the second lens L2.
 条件式(4)は、第2レンズL2の焦点距離f2の適切な値を規定している。条件式(4)の下限を超えると、軸上色収差が悪化し、中心付近の高周波の解像性能が低下する。条件式(4)の上限を超えると、球面収差が悪化し、Fナンバーを明るくすることが困難となる。また、タンジェンシャル方向の像面湾曲がオーバ方向に悪化し、周辺部の解像性能が低下する傾向となる。 Conditional expression (4) defines an appropriate value for the focal length f2 of the second lens L2. When the lower limit of conditional expression (4) is exceeded, axial chromatic aberration deteriorates and high-frequency resolution performance near the center decreases. If the upper limit of conditional expression (4) is exceeded, spherical aberration will deteriorate and it will be difficult to brighten the F number. Further, the curvature of field in the tangential direction deteriorates in the over direction, and the resolution performance of the peripheral portion tends to deteriorate.
 1.0<L/Ymax ……(5)
ただし、
 L:第1レンズL1の物体側の頂点から第5レンズL5の像側の面における最も像側に突出した位置までの光軸方向の距離(図1参照)。
 Ymax:最大像高(使用する撮像素子の対角長の半値)
とする。
 なお、Lは、例えば図1の構成例のように第5レンズL5の像側の面が凹形状から凸形状へと変化する変曲点を有する非球面である場合には、第1レンズL1の物体側の頂点から第5レンズL5の像側の面の変曲点までの光軸方向の距離となる。
1.0 <L / Ymax (5)
However,
L: Distance in the optical axis direction from the apex on the object side of the first lens L1 to the position that protrudes to the most image side on the image side surface of the fifth lens L5 (see FIG. 1).
Ymax: Maximum image height (half value of diagonal length of image sensor to be used)
And
Note that L is the first lens L1 when the image side surface of the fifth lens L5 is an aspherical surface having an inflection point that changes from a concave shape to a convex shape as in the configuration example of FIG. The distance in the optical axis direction from the vertex on the object side to the inflection point on the image side surface of the fifth lens L5.
 条件式(5)の下限を超えると、第1レンズL1のパワーが強くなりすぎ、球面収差の補正が困難となり、Fナンバーを明るくすることが困難となる。 If the lower limit of conditional expression (5) is exceeded, the power of the first lens L1 becomes too strong, it becomes difficult to correct spherical aberration, and it becomes difficult to brighten the F-number.
[3.撮像装置への適用例]
 図17および図18は、本実施の形態に係る撮像レンズを適用した撮像装置の一構成例を示している。この構成例は、撮像装置を備えた携帯端末機器(例えば携帯情報端末や携帯電話端末)の一例である。この携帯端末機器は、略長方形状の筐体201を備えている。筐体201の前面側(図17)には表示部202やフロントカメラ部203が設けられている。筐体201の背面側(図18)には、メインカメラ部204やカメラフラッシュ205が設けられている。
[3. Application example to imaging device]
17 and 18 show a configuration example of an imaging apparatus to which the imaging lens according to this embodiment is applied. This configuration example is an example of a mobile terminal device (for example, a mobile information terminal or a mobile phone terminal) provided with an imaging device. This portable terminal device includes a substantially rectangular casing 201. A display unit 202 and a front camera unit 203 are provided on the front side (FIG. 17) of the housing 201. A main camera unit 204 and a camera flash 205 are provided on the back side (FIG. 18) of the housing 201.
 表示部202は、例えば表面への接触状態を検知することによって各種の操作を可能にするタッチパネルとなっている。これにより、表示部202は、各種の情報を表示する機能とユーザによる各種の入力操作を可能にする入力機能とを有している。表示部202は、操作状態や、フロントカメラ部203またはメインカメラ部204で撮影した画像等の各種のデータを表示する。 The display unit 202 is a touch panel that enables various operations, for example, by detecting a contact state with the surface. Thereby, the display unit 202 has a function of displaying various types of information and an input function that enables various types of input operations by the user. The display unit 202 displays various data such as an operation state and an image captured by the front camera unit 203 or the main camera unit 204.
 本実施の形態に係る撮像レンズは、例えば図17および図18に示したような携帯端末機器における撮像装置(フロントカメラ部203またはメインカメラ部204)のカメラモジュール用レンズとして適用可能である。このようなカメラモジュール用レンズとして用いる場合、撮像レンズの像面Simg付近に、撮像レンズによって形成された光学像に応じた撮像信号(画像信号)を出力するCCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子が配置される。この場合、図1に示したように、第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されていても良い。 The imaging lens according to the present embodiment can be applied as a camera module lens of an imaging device (front camera unit 203 or main camera unit 204) in a mobile terminal device as shown in FIGS. 17 and 18, for example. When used as such a lens for a camera module, a CCD (Charge Coupled Devices) or CMOS (Complementary) that outputs an imaging signal (image signal) corresponding to an optical image formed by the imaging lens near the image plane Simg of the imaging lens. An image sensor such as Metal (Oxide Semiconductor) is arranged. In this case, as shown in FIG. 1, an optical member LC such as a cover glass for protecting the imaging device and various optical filters may be disposed between the fifth lens L5 and the image plane Simg.
 なお、本実施の形態に係る撮像レンズは、上記した携帯端末機器に限らず、その他の電子機器、例えばデジタルスチルカメラやデジタルビデオカメラ用の撮像レンズとしても適用可能である。 Note that the imaging lens according to the present embodiment is not limited to the above-described portable terminal device, but can also be applied as an imaging lens for other electronic devices such as a digital still camera and a digital video camera.
<4.レンズの数値実施例>
 次に、本実施の形態に係る撮像レンズの具体的な数値実施例について説明する。
<4. Numerical Examples of Lens>
Next, specific numerical examples of the imaging lens according to the present embodiment will be described.
(各数値実施例に共通の構成)
 以下の各数値実施例に係る撮像レンズはいずれも、上記したレンズの基本構成および、望ましい条件を満足した構成となっている。また、第1レンズL1ないし第5レンズL5の各レンズ面が非球面となっている。
(Configuration common to each numerical example)
All of the imaging lenses according to the following numerical examples have the basic configuration of the lens described above and a configuration that satisfies desirable conditions. In addition, each lens surface of the first lens L1 to the fifth lens L5 is aspheric.
 各実施例において、非球面の形状は次式で表される。非球面係数のデータにおいて、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E-05」であれば、「1.0×10-5」であることを示す。 In each embodiment, the shape of the aspheric surface is expressed by the following equation. In the aspheric coefficient data, the symbol “E” indicates that the next numerical value is a “power exponent” with a base of 10, and the numerical value represented by an exponential function with the base 10 is “E”. Indicates that the number before “is multiplied. For example, “1.0E-05” indicates “1.0 × 10 −5 ”.
(非球面の式)
 Z=(Y2/R)/[1+{1-(1+K)(Y2/R2)}1/2]+ΣAi・Yi
ただし、
 Z:非球面のサグ量
 Y:光軸からの高さ
 R:近軸曲率半径
 K:円錐定数
 Ai:第i次(iは3以上の整数)の非球面係数
とする。
(Aspherical formula)
Z = (Y 2 / R) / [1+ {1− (1 + K) (Y 2 / R 2 )} 1/2 ] + ΣAi · Y i
However,
Z: Sag amount of the aspheric surface Y: Height from the optical axis R: Paraxial radius of curvature K: Conical constant Ai: An aspherical coefficient of i-th order (i is an integer of 3 or more).
[数値実施例1]
 [表1]、[表2]は、図1に示した第1の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表1]にはその基本的なレンズデータを示し、[表2]には非球面に関するデータを示す。
[Numerical Example 1]
[Table 1] and [Table 2] show specific lens data corresponding to the imaging lens according to the first configuration example shown in FIG. In particular, [Table 1] shows the basic lens data, and [Table 2] shows data related to the aspherical surface.
 [表1]、[表2]において面番号は、最も物体側の構成要素の面を1番目として、像側に向かうに従い順次増加するようにして番号付けをしている。[表1]の基本的なレンズデータとしては、各面の近軸の曲率半径(mm)の値と、隣り合う面の光軸上の間隔(mm)の値と、レンズを構成する材質(媒質)のd線(波長587.6nm)における屈折率の値およびアッベ数の値とを示す。曲率半径が「INFINITY」である面は平面であることを示す。
 なお、以降の他の数値実施例の表についても同様の形式でデータを示す。
In [Table 1] and [Table 2], the surface numbers are numbered so that the surface of the component on the most object side is the first, and sequentially increases toward the image side. As basic lens data in [Table 1], the paraxial radius of curvature (mm) of each surface, the distance (mm) on the optical axis of adjacent surfaces, and the material ( The refractive index value and the Abbe number value of the d line (wavelength: 587.6 nm) of the medium are shown. A surface having a curvature radius of “INFINITY” indicates that it is a plane.
Note that data is shown in the same format for the tables of other numerical examples.
 この第1の構成例では、開口絞りStが、第1レンズL1と第2レンズL2との間に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the first configuration example, the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[数値実施例2]
 [表3]、[表4]は、図2に示した第2の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表3]にはその基本的なレンズデータを示し、[表4]には非球面に関するデータを示す。
[Numerical Example 2]
[Table 3] and [Table 4] show specific lens data corresponding to the imaging lens according to the second configuration example shown in FIG. In particular, [Table 3] shows the basic lens data, and [Table 4] shows data related to the aspherical surface.
 この第2の構成例では、開口絞りStが、第1レンズL1の物体側に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the second configuration example, the aperture stop St is provided on the object side of the first lens L1. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[数値実施例3]
 [表5]、[表6]は、図3に示した第3の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表5]にはその基本的なレンズデータを示し、[表6]には非球面に関するデータを示す。
[Numerical Example 3]
[Table 5] and [Table 6] show specific lens data corresponding to the imaging lens according to the third configuration example shown in FIG. In particular, [Table 5] shows the basic lens data, and [Table 6] shows data related to the aspherical surface.
 この第3の構成例では、開口絞りStが、第1レンズL1の物体側に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the third configuration example, the aperture stop St is provided on the object side of the first lens L1. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[数値実施例4]
 [表7]、[表8]は、図4に示した第4の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表7]にはその基本的なレンズデータを示し、[表8]には非球面に関するデータを示す。
[Numerical Example 4]
[Table 7] and [Table 8] show specific lens data corresponding to the imaging lens according to the fourth configuration example shown in FIG. In particular, [Table 7] shows the basic lens data, and [Table 8] shows data related to the aspherical surface.
 この第4の構成例では、開口絞りStが、第1レンズL1と第2レンズL2との間に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the fourth configuration example, the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[数値実施例5]
 [表9]、[表10]は、図5に示した第5の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表9]にはその基本的なレンズデータを示し、[表10]には非球面に関するデータを示す。
[Numerical Example 5]
[Table 9] and [Table 10] show specific lens data corresponding to the imaging lens according to the fifth configuration example shown in FIG. In particular, [Table 9] shows the basic lens data, and [Table 10] shows data related to the aspherical surface.
 この第5の構成例では、開口絞りStが、第1レンズL1と第2レンズL2との間に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the fifth configuration example, the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[数値実施例6]
 [表11]、[表12]は、図6に示した第6の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表11]にはその基本的なレンズデータを示し、[表12]には非球面に関するデータを示す。
[Numerical Example 6]
[Table 11] and [Table 12] show specific lens data corresponding to the imaging lens according to the sixth configuration example shown in FIG. In particular, [Table 11] shows the basic lens data, and [Table 12] shows data related to the aspherical surface.
 この第6の構成例では、開口絞りStが、第1レンズL1と第2レンズL2との間に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the sixth configuration example, the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[数値実施例7]
 [表13]、[表14]は、図7に示した第7の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表13]にはその基本的なレンズデータを示し、[表14]には非球面に関するデータを示す。
[Numerical Example 7]
[Table 13] and [Table 14] show specific lens data corresponding to the imaging lens according to the seventh configuration example shown in FIG. In particular, [Table 13] shows the basic lens data, and [Table 14] shows data related to the aspherical surface.
 この第7の構成例では、開口絞りStが、第1レンズL1と第2レンズL2との間に設けられている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the seventh configuration example, the aperture stop St is provided between the first lens L1 and the second lens L2. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[数値実施例8]
 [表15]、[表16]は、図8に示した第8の構成例に係る撮像レンズに対応する具体的なレンズデータを示している。特に[表15]にはその基本的なレンズデータを示し、[表16]には非球面に関するデータを示す。
[Numerical Example 8]
[Table 15] and [Table 16] show specific lens data corresponding to the imaging lens according to the eighth configuration example shown in FIG. In particular, [Table 15] shows basic lens data, and [Table 16] shows data related to aspheric surfaces.
 この第8の構成例では、開口絞りStが第1レンズL1の物体側に設けられている。第3レンズL3は、近軸領域において像面側に凸面を向けた平凸形状となっている。また、第1レンズL1ないし第5レンズL5の各レンズがプラスチックレンズで構成されている。第5レンズL5と像面Simgとの間には、撮像素子保護用のカバーガラスや各種の光学フィルタ等の光学部材LCが配置されている。 In the eighth configuration example, the aperture stop St is provided on the object side of the first lens L1. The third lens L3 has a plano-convex shape with a convex surface facing the image plane side in the paraxial region. Further, each of the first lens L1 to the fifth lens L5 is made of a plastic lens. Between the fifth lens L5 and the image plane Simg, an optical member LC such as a cover glass for protecting the image sensor and various optical filters is disposed.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[各実施例のその他の数値データ]
 [表17]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表17]にはまた、各数値実施例について、半画角ω、バックフォーカスfb、およびFナンバー(Fno)の値も示す。[表17]から分かるように、各条件式について、各数値実施例の値がその数値範囲内となっている。
[Other numerical data of each example]
[Table 17] shows a summary of values relating to the above-described conditional expressions for each numerical example. [Table 17] also shows the values of the half angle of view ω, the back focus fb, and the F number (Fno) for each numerical example. As can be seen from [Table 17], for each conditional expression, the value of each numerical example is within the numerical range.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[収差性能]
 図9~図16に、各数値実施例の収差性能を示す。これらの各図には収差図として、球面収差、非点収差、およびディストーション(歪曲収差)を示す。非点収差図において、Xはサジタル方向、Yはメリディオナル(タンジェンシャル)方向の収差を示す。
[Aberration performance]
9 to 16 show the aberration performance of each numerical example. In these drawings, spherical aberration, astigmatism, and distortion (distortion aberration) are shown as aberration diagrams. In the astigmatism diagram, X indicates the sagittal direction, and Y indicates the aberration in the meridional (tangential) direction.
 以上の各収差図から分かるように、各実施例について、良好に収差補正された撮像レンズを実現できている。 As can be seen from each of the above aberration diagrams, an imaging lens with good aberration correction can be realized for each example.
<5.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
<5. Other Embodiments>
The technology according to the present disclosure is not limited to the description of the above-described embodiments and examples, and various modifications can be made.
For example, the shapes and numerical values of the respective parts shown in the numerical examples are merely examples of embodiments for carrying out the present technology, and the technical scope of the present technology is interpreted in a limited manner by these. There should be no such thing.
 また、上記実施の形態および実施例では、実質的に5つのレンズからなる構成について説明したが、実質的に屈折力を有さないレンズをさらに備えた構成であっても良い。 In the above-described embodiments and examples, the configuration including substantially five lenses has been described. However, the configuration may further include a lens having substantially no refractive power.
 また例えば、本技術は以下のような構成を取ることができる。
[1]
 物体側より順に、
 物体側が凸形状で正の屈折力を有する第1レンズと、
 像面側が凹形状で負の屈折力を有する第2レンズと、
 近軸領域において両凸形状または像面側に凸面を向けた平凸形状で正の屈折力を有する第3レンズと、
 両面が非球面形状で負の屈折力を有する第4レンズと、
 両面が非球面形状で像面側が近軸領域において凹形状であり負の屈折力を有する第5レンズとからなり、
 以下の条件式を満足する
 撮像レンズ。
 ν2<30 ……(1)
 ν4<30 ……(2)
ただし、
 ν2:前記第2レンズのアッベ数
 ν4:前記第4レンズのアッベ数
とする。
[2]
 以下の条件式を満足する
 上記[1]に記載の撮像レンズ。
 1<f3/f<30 ……(3)
ただし、
 f3:前記第3レンズの焦点距離
 f:全系の焦点距離
とする。
[3]
 以下の条件式を満足する
 上記[1]または[2]に記載の撮像レンズ。
 -2.0<f2/f<-0.5 ……(4)
ただし、
 f2:前記第2レンズの焦点距離
とする。
[4]
 以下の条件式を満足する
 上記[1]ないし[3]のいずれか1つに記載の撮像レンズ。
 1.0<L/Ymax ……(5)
ただし、
 L:前記第1レンズの物体側の頂点から前記第5レンズの像側の面における最も像側に突出した位置までの光軸方向の距離
 Ymax:最大像高
とする。
[5]
 実質的に屈折力を有さないレンズをさらに備えた
 上記[1]ないし[4]のいずれか1つに記載の撮像レンズ。
[6]
 撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
 前記撮像レンズは、
 物体側より順に、
 物体側が凸形状で正の屈折力を有する第1レンズと、
 像面側が凹形状で負の屈折力を有する第2レンズと、
 近軸領域において両凸形状または像面側に凸面を向けた平凸形状で正の屈折力を有する第3レンズと、
 両面が非球面形状で負の屈折力を有する第4レンズと、
 両面が非球面形状で像面側が近軸領域において凹形状であり負の屈折力を有する第5レンズと
 とからなり、以下の条件式を満足する
 撮像装置。
 ν2<30 ……(1)
 ν4<30 ……(2)
ただし、
 ν2:前記第2レンズのアッベ数
 ν4:前記第4レンズのアッベ数
とする。
[7]
 前記撮像レンズは、実質的に屈折力を有さないレンズをさらに備える
 上記[6]に記載の撮像装置。
For example, this technique can take the following composition.
[1]
From the object side,
A first lens having a positive refractive power with a convex shape on the object side;
A second lens having a negative refractive power and a concave shape on the image surface side;
A third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region;
A fourth lens having both surfaces aspherical and negative refractive power;
A double-sided aspherical shape and an image surface side concave in the paraxial region, and a fifth lens having negative refractive power;
An imaging lens that satisfies the following conditional expression.
ν2 <30 (1)
ν4 <30 (2)
However,
ν2: Abbe number of the second lens ν4: Abbe number of the fourth lens.
[2]
The imaging lens according to [1], wherein the following conditional expression is satisfied.
1 <f3 / f <30 (3)
However,
f3: Focal length of the third lens f: The focal length of the entire system.
[3]
The imaging lens according to [1] or [2], wherein the following conditional expression is satisfied.
-2.0 <f2 / f <-0.5 (4)
However,
f2: The focal length of the second lens.
[4]
The imaging lens according to any one of [1] to [3], wherein the following conditional expression is satisfied.
1.0 <L / Ymax (5)
However,
L: Distance in the optical axis direction from the apex on the object side of the first lens to the position protruding to the most image side on the image side surface of the fifth lens. Ymax: Maximum image height.
[5]
The imaging lens according to any one of [1] to [4], further including a lens having substantially no refractive power.
[6]
An imaging lens, and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens;
The imaging lens is
From the object side,
A first lens having a positive refractive power with a convex shape on the object side;
A second lens having a negative refractive power and a concave shape on the image surface side;
A third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region;
A fourth lens having both surfaces aspherical and negative refractive power;
An image pickup apparatus comprising: a fifth lens having an aspheric shape on both sides and a concave shape on the image plane side in a paraxial region and having a negative refractive power, and satisfies the following conditional expression:
ν2 <30 (1)
ν4 <30 (2)
However,
ν2: Abbe number of the second lens ν4: Abbe number of the fourth lens.
[7]
The imaging device according to [6], wherein the imaging lens further includes a lens having substantially no refractive power.
 本出願は、日本国特許庁において2012年9月18日に出願された日本特許出願番号第2012-203904号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2012-203904 filed on September 18, 2012 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (5)

  1.  物体側より順に、
     物体側が凸形状で正の屈折力を有する第1レンズと、
     像面側が凹形状で負の屈折力を有する第2レンズと、
     近軸領域において両凸形状または像面側に凸面を向けた平凸形状で正の屈折力を有する第3レンズと、
     両面が非球面形状で負の屈折力を有する第4レンズと、
     両面が非球面形状で像面側が近軸領域において凹形状であり負の屈折力を有する第5レンズとからなり、
     以下の条件式を満足する
     撮像レンズ。
     ν2<30 ……(1)
     ν4<30 ……(2)
    ただし、
     ν2:前記第2レンズのアッベ数
     ν4:前記第4レンズのアッベ数
    とする。
    From the object side,
    A first lens having a positive refractive power with a convex shape on the object side;
    A second lens having a negative refractive power and a concave shape on the image surface side;
    A third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region;
    A fourth lens having both surfaces aspherical and negative refractive power;
    A double-sided aspherical shape and an image surface side concave in the paraxial region, and a fifth lens having negative refractive power;
    An imaging lens that satisfies the following conditional expression.
    ν2 <30 (1)
    ν4 <30 (2)
    However,
    ν2: Abbe number of the second lens ν4: Abbe number of the fourth lens.
  2.  以下の条件式を満足する
     請求項1に記載の撮像レンズ。
     1<f3/f<30 ……(3)
    ただし、
     f3:前記第3レンズの焦点距離
     f:全系の焦点距離
    とする。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    1 <f3 / f <30 (3)
    However,
    f3: Focal length of the third lens f: The focal length of the entire system.
  3.  以下の条件式を満足する
     請求項1に記載の撮像レンズ。
     -2.0<f2/f<-0.5 ……(4)
    ただし、
     f2:前記第2レンズの焦点距離
    とする。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    -2.0 <f2 / f <-0.5 (4)
    However,
    f2: The focal length of the second lens.
  4.  以下の条件式を満足する
     請求項1に記載の撮像レンズ。
     1.0<L/Ymax ……(5)
    ただし、
     L:前記第1レンズの物体側の頂点から前記第5レンズの像側の面における最も像側に突出した位置までの光軸方向の距離
     Ymax:最大像高
    とする。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    1.0 <L / Ymax (5)
    However,
    L: Distance in the optical axis direction from the apex on the object side of the first lens to the position protruding to the most image side on the image side surface of the fifth lens. Ymax: Maximum image height.
  5.  撮像レンズと、前記撮像レンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
     前記撮像レンズは、
     物体側より順に、
     物体側が凸形状で正の屈折力を有する第1レンズと、
     像面側が凹形状で負の屈折力を有する第2レンズと、
     近軸領域において両凸形状または像面側に凸面を向けた平凸形状で正の屈折力を有する第3レンズと、
     両面が非球面形状で負の屈折力を有する第4レンズと、
     両面が非球面形状で像面側が近軸領域において凹形状であり負の屈折力を有する第5レンズと
     とからなり、以下の条件式を満足する
     撮像装置。
     ν2<30 ……(1)
     ν4<30 ……(2)
    ただし、
     ν2:前記第2レンズのアッベ数
     ν4:前記第4レンズのアッベ数
    とする。
    An imaging lens, and an imaging element that outputs an imaging signal corresponding to an optical image formed by the imaging lens;
    The imaging lens is
    From the object side,
    A first lens having a positive refractive power with a convex shape on the object side;
    A second lens having a negative refractive power and a concave shape on the image surface side;
    A third lens having a positive refractive power in a biconvex shape or a plano-convex shape with a convex surface facing the image surface side in the paraxial region;
    A fourth lens having both surfaces aspherical and negative refractive power;
    An image pickup apparatus comprising: a fifth lens having an aspheric shape on both sides and a concave shape on the image plane side in a paraxial region and having a negative refractive power, and satisfies the following conditional expression:
    ν2 <30 (1)
    ν4 <30 (2)
    However,
    ν2: Abbe number of the second lens ν4: Abbe number of the fourth lens.
PCT/JP2013/069159 2012-09-18 2013-07-12 Imaging lens and imaging device WO2014045686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/410,888 US20150338608A1 (en) 2012-09-18 2013-07-12 Imaging lens and imaging unit
JP2014536641A JP6135674B2 (en) 2012-09-18 2013-07-12 Imaging lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012203904 2012-09-18
JP2012-203904 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045686A1 true WO2014045686A1 (en) 2014-03-27

Family

ID=50341012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069159 WO2014045686A1 (en) 2012-09-18 2013-07-12 Imaging lens and imaging device

Country Status (4)

Country Link
US (1) US20150338608A1 (en)
JP (1) JP6135674B2 (en)
TW (1) TW201415071A (en)
WO (1) WO2014045686A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153712A (en) * 2013-02-06 2014-08-25 Genius Electronic Optical Co Imaging lens
JP2015215398A (en) * 2014-05-08 2015-12-03 カンタツ株式会社 Image capturing lens having six-optical-element configuration
CN105824106A (en) * 2015-01-05 2016-08-03 亚太精密工业(深圳)有限公司 Imaging lens
US9638894B2 (en) 2014-08-12 2017-05-02 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
JP2018180024A (en) * 2017-04-03 2018-11-15 カンタツ株式会社 Image capturing lens having five-optical-element configuration
US10185122B2 (en) 2014-07-04 2019-01-22 Kantatsu Co., Ltd. Imaging lens
CN113640961A (en) * 2017-12-26 2021-11-12 康达智株式会社 Camera lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480573B (en) * 2014-01-17 2015-04-11 Ability Opto Electronics Technology Co Ltd Five-piece lens set for capturing images
TWI542918B (en) * 2014-11-19 2016-07-21 先進光電科技股份有限公司 Optical image capturing system
TWI707156B (en) 2019-05-17 2020-10-11 大立光電股份有限公司 Optical imaging lens assembly, image capturing unit and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121016A (en) * 1982-12-28 1984-07-12 Konishiroku Photo Ind Co Ltd Projection lens
JP2009103874A (en) * 2007-10-23 2009-05-14 Olympus Medical Systems Corp Photographic optical system
WO2011027690A1 (en) * 2009-09-02 2011-03-10 コニカミノルタオプト株式会社 Single-focus optical system, image pickup device, and digital apparatus
JP2013011710A (en) * 2011-06-29 2013-01-17 Optical Logic Inc Image pickup lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201690B2 (en) * 2009-10-30 2013-06-05 株式会社オプトロジック Imaging lens
TWI435135B (en) * 2010-10-06 2014-04-21 Largan Precision Co Ltd Optical lens system
JP5665229B2 (en) * 2011-03-30 2015-02-04 カンタツ株式会社 Imaging lens
TWI411830B (en) * 2011-06-22 2013-10-11 Largan Precision Co Ltd Image capturing optical lens assembly
TWI438479B (en) * 2012-02-08 2014-05-21 Largan Precision Co Ltd Image capturing optical lens assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121016A (en) * 1982-12-28 1984-07-12 Konishiroku Photo Ind Co Ltd Projection lens
JP2009103874A (en) * 2007-10-23 2009-05-14 Olympus Medical Systems Corp Photographic optical system
WO2011027690A1 (en) * 2009-09-02 2011-03-10 コニカミノルタオプト株式会社 Single-focus optical system, image pickup device, and digital apparatus
JP2013011710A (en) * 2011-06-29 2013-01-17 Optical Logic Inc Image pickup lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153712A (en) * 2013-02-06 2014-08-25 Genius Electronic Optical Co Imaging lens
US9274314B2 (en) 2013-02-06 2016-03-01 Genius Electronic Optical Co., Ltd. Imaging lens, and portable electronic apparatus including the same
JP2015215398A (en) * 2014-05-08 2015-12-03 カンタツ株式会社 Image capturing lens having six-optical-element configuration
US10185122B2 (en) 2014-07-04 2019-01-22 Kantatsu Co., Ltd. Imaging lens
US9638894B2 (en) 2014-08-12 2017-05-02 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
CN105824106A (en) * 2015-01-05 2016-08-03 亚太精密工业(深圳)有限公司 Imaging lens
CN105824106B (en) * 2015-01-05 2019-06-07 亚太精密工业(深圳)有限公司 Imaging lens
JP2018180024A (en) * 2017-04-03 2018-11-15 カンタツ株式会社 Image capturing lens having five-optical-element configuration
CN113640961A (en) * 2017-12-26 2021-11-12 康达智株式会社 Camera lens

Also Published As

Publication number Publication date
JP6135674B2 (en) 2017-05-31
JPWO2014045686A1 (en) 2016-08-18
US20150338608A1 (en) 2015-11-26
TW201415071A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5854227B2 (en) Imaging lens and imaging apparatus
JP6135674B2 (en) Imaging lens and imaging apparatus
JP6233408B2 (en) Imaging lens and imaging apparatus
JP5915462B2 (en) Imaging lens and imaging apparatus
JP5665229B2 (en) Imaging lens
JP6105317B2 (en) Wide-angle imaging lens
WO2016092944A1 (en) Imaging lens and imaging device
JP6226376B2 (en) Imaging lens
WO2017199633A1 (en) Imaging lens and imaging device
JP5654384B2 (en) Imaging lens
JP6021617B2 (en) Imaging lens
JP6226369B2 (en) Wide-angle imaging lens
JP6144954B2 (en) Imaging lens
JP6710473B2 (en) Imaging lens
JP6332851B2 (en) Imaging lens
JP2014044250A (en) Image pickup lens and image pickup device
JP6274942B2 (en) Imaging lens with 5 optical elements
JP2015125212A (en) Imaging lens and imaging unit
JP2009098516A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2009098513A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2009098514A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2013182132A (en) Imaging lens and imaging apparatus
JP2012002897A (en) Imaging lens, imaging apparatus, and information assistant
JP2006084720A (en) Imaging lens
KR20100041895A (en) Three pieces camera lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536641

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410888

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839917

Country of ref document: EP

Kind code of ref document: A1