WO2014045045A1 - Système d'imagerie par projection de diffraction dispersive - Google Patents

Système d'imagerie par projection de diffraction dispersive Download PDF

Info

Publication number
WO2014045045A1
WO2014045045A1 PCT/GB2013/052463 GB2013052463W WO2014045045A1 WO 2014045045 A1 WO2014045045 A1 WO 2014045045A1 GB 2013052463 W GB2013052463 W GB 2013052463W WO 2014045045 A1 WO2014045045 A1 WO 2014045045A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
high energy
energy radiation
radiation beam
pixels
Prior art date
Application number
PCT/GB2013/052463
Other languages
English (en)
Inventor
Robert Cernik
Original Assignee
The University Of Manchester
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Manchester filed Critical The University Of Manchester
Publication of WO2014045045A1 publication Critical patent/WO2014045045A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/087Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20091Measuring the energy-dispersion spectrum [EDS] of diffracted radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • X-ray imaging methods measure X-ray scattering processes in order to add structural or chemical information to a 3D density contrast image ⁇ 1-9). Such methods often record spectral information at every pixel and can thus be referred to as multispectral (collection of a small number of broad bands), pseudo-hyperspectral or hyperspectral (collection over a wavelength continuum with a narrow sampling bandwidth). Hyperspectral imaging requires good statistical quality from weakly scattered signals so these methods are often time-consuming. Significant inroads in terms of reducing exposure durations have been made by using ever brighter X-ray sources and improved detector technology. However these imaging techniques are generally the preserve of central facilities such as synchrotrons or require specialist sample preparation that can be destructive.
  • each collimator channel 9A, 9B, etc shown in Figure 2 represents a column of collimator channels
  • each portion of the sample 8A, 8B, etc shown in Figure 2 represents a column of sample portions.
  • the collimator array has a cross-section, perpendicular to the direction of X-ray radiation 4, of a square or rectangular two-dimensional array of channels, corresponding to the square or rectangular two-dimensional array of pixels within imaging detector 6.
  • X-ray radiation from a portion of the sample therefore passes through a corresponding collimator channel to reach a corresponding pixel.
  • each collimator channel isolates an individual pixel not only in the row direction but also in the column direction.
  • the invention to analyse thin samples of, say, boilogical material, it is possible to obtain an image through the sample using a detector array placed in the bright field of the high energy radiation beam, as well as structural, chemical and other information using one or more detectors placed in the dark field.
  • Figure 9 depicts the spatial and spectral dimensions of a hyperspectral X-ray image of the USB dongle captured by the hyperspectral imaging detector over 400 spectral bands - spectra for individual pixels or images at individual energies, can be extracted.
  • the top ray 19B passes at one limit of the pinhole aperture 15, while the bottom ray 19A passes at the other limit of the aperture 15, so all X-ray radiation from point 103 that reaches the detector 6 via the aperture 15 is within the spread of extremal rays 19A, 19B. Note however that the X-ray radiation from point 103 is split between pixel 7B (as per ray 19 A) and pixel 7C (as per ray 19B).
  • the system of Figures 1 and 2 has a unique (discrete) correspondence between a sample portion and a respective pixel, this is not the case for the system of Figures 4 and 5, because the mapping of the sample 3 is continuous across the detector 6.
  • the size of the pinhole aperture 15 is less than the size of a pixel 7. If the size of the sample slice 8 is approximately equal to the size of the imaging detector 6 (for example), so that SW ⁇ N*PW, then D1-D2, and 2W-PW/2, i.e. the aperture size is about half that of a pixel.
  • the effective size and shape of the pinhole aperture 15 (and hence transfer function H) is also dependent on the alignment of the plate 16.
  • the plane of plate 16 should be perpendicular to the X-ray radiation 4 from the centre of the sample slice 8 to the centre of the imaging detector 6. Any slight angular offset will reduce the effective size (and shape) of the opening formed by pinhole aperture 15.
  • the sensitivity to any such offset is much smaller than for the collimator array 5 in the system of Figures 1 and 2. This is because the length of a channel 9A, 9B, etc in the collimator array 5 in the direction of beam 4 is significantly greater than the width of a channel in the direction perpendicular to beam 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Un mode de réalisation de la présente invention porte sur un système d'imagerie par projection de diffraction dispersive pour imagerie d'un échantillon à l'aide de rayons X ou de rayons gamma. Le système comprend un détecteur (6) d'imagerie hyperspectrale comprenant un réseau bidimensionnel de pixels sensibles à une énergie et une ouverture (15) de trou d'épingle positionnée entre l'échantillon (3) et le détecteur (6) d'imagerie hyperspectrale pour production d'une image inversée de l'échantillon sur le réseau de pixels. Le système comprend en outre un moyen (1) de production d'un faisceau (2) de rayonnement haute énergie pour éclairage de l'échantillon (3) à imager ou analyser. Le faisceau (2) de rayonnement haute énergie comprend des rayons X ou des rayons gamma et peut avoir une section transversale en forme de boîte aux lettres ayant un axe long et un axe court de manière à éclairer une tranche (8) à travers l'échantillon (3). Un axe de l'image formée sur le réseau de pixels correspond de manière appropriée à l'axe long de la section transversale de boîte aux lettres et l'autre axe de l'image formée sur le réseau de pixels correspond à la distance dans l'échantillon du faisceau de rayonnement haute énergie. Selon un mode de réalisation en variante, un échantillon mince est placé tourné vers le faisceau et est imagé/analysé entièrement en une fois par le détecteur. Plus particulièrement, le système d'imagerie peut réaliser une imagerie par tomographie assistée par ordinateur ou fluorescence.
PCT/GB2013/052463 2012-09-20 2013-09-20 Système d'imagerie par projection de diffraction dispersive WO2014045045A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB201216785A GB201216785D0 (en) 2012-09-20 2012-09-20 A dispersive diffraction projection imaging system
GB1216785.4 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045045A1 true WO2014045045A1 (fr) 2014-03-27

Family

ID=47190326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2013/052463 WO2014045045A1 (fr) 2012-09-20 2013-09-20 Système d'imagerie par projection de diffraction dispersive

Country Status (2)

Country Link
GB (1) GB201216785D0 (fr)
WO (1) WO2014045045A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031740A1 (fr) 2015-08-27 2017-03-02 Shenzhen Xpectvision Technology Co., Ltd. Imagerie par rayons x avec un détecteur susceptible de résoudre l'énergie photonique
EP3185003A1 (fr) 2015-12-24 2017-06-28 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'analyse d'un objet par diffraction x
EP3185002A1 (fr) 2015-12-24 2017-06-28 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de calibration d'un système d'analyse par diffraction x
GB2552535A (en) * 2016-07-28 2018-01-31 Smiths Heimann Sas Detection of scatter radiation
WO2021016793A1 (fr) * 2019-07-29 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Systèmes et procédés d'imagerie tridimensionnelle
TWI755785B (zh) * 2019-07-29 2022-02-21 大陸商深圳幀觀德芯科技有限公司 三維成像的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A KOSTENKO ET AL: "The Use Of Full-Field XRF For Simultaneous Elemental Mapping", AIP CONFERENCE PROCEEDINGS, 6 April 2010 (2010-04-06), XP055092736, Retrieved from the Internet <URL:http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=21371749> [retrieved on 20131210] *
SCUFFHAM J W ET AL: "A CdTe detector for hyperspectral SPECT imaging", JOURNAL OF INSTRUMENTATION, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 7, no. 8, 30 August 2012 (2012-08-30), pages P08027, XP020228053, ISSN: 1748-0221, DOI: 10.1088/1748-0221/7/08/P08027 *
SELLER P ET AL: "Pixellated Cd(Zn)Te high-energy X-ray instrument", JOURNAL OF INSTRUMENTATION, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 6, no. 12, 6 December 2011 (2011-12-06), pages C12009, XP020215957, ISSN: 1748-0221, DOI: 10.1088/1748-0221/6/12/C12009 *
VELOSO J F C A ET AL: "Energy resolved X-ray fluorescence imaging based on a micropattern gas detector", SPECTROCHIMICA ACTA. PART B: ATOMIC SPECTROSCOPY, NEW YORK, NY, US, US, vol. 65, no. 3, 1 March 2010 (2010-03-01), pages 241 - 247, XP027016890, ISSN: 0584-8547, [retrieved on 20100315] *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031740A1 (fr) 2015-08-27 2017-03-02 Shenzhen Xpectvision Technology Co., Ltd. Imagerie par rayons x avec un détecteur susceptible de résoudre l'énergie photonique
US10705031B2 (en) 2015-08-27 2020-07-07 Shenzhen Xpectvision Technology Co., Ltd. X-ray imaging with a detector capable of resolving photon energy
EP3341756A4 (fr) * 2015-08-27 2019-05-22 Shenzhen Xpectvision Technology Co., Ltd. Imagerie par rayons x avec un détecteur susceptible de résoudre l'énergie photonique
FR3046241A1 (fr) * 2015-12-24 2017-06-30 Commissariat Energie Atomique Procede de calibration d’un systeme d’analyse par diffraction x
JP7007091B2 (ja) 2015-12-24 2022-01-24 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ X線回折により物体を分析する方法
JP2017142232A (ja) * 2015-12-24 2017-08-17 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ X線回折により物体を分析する方法
JP2017142233A (ja) * 2015-12-24 2017-08-17 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ X線回折システムのキャリブレーション方法
FR3046240A1 (fr) * 2015-12-24 2017-06-30 Commissariat Energie Atomique Procede d’analyse d’un objet par diffraction x
EP3185002A1 (fr) 2015-12-24 2017-06-28 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de calibration d'un système d'analyse par diffraction x
US10371651B2 (en) 2015-12-24 2019-08-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for analyzing an object by X-ray diffraction
US10386508B2 (en) 2015-12-24 2019-08-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of calibrating an X ray diffraction analysis system
EP3185003A1 (fr) 2015-12-24 2017-06-28 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'analyse d'un objet par diffraction x
GB2552535A (en) * 2016-07-28 2018-01-31 Smiths Heimann Sas Detection of scatter radiation
GB2552535B (en) * 2016-07-28 2020-09-09 Smiths Heimann Sas Detection of scatter radiation
WO2021016793A1 (fr) * 2019-07-29 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Systèmes et procédés d'imagerie tridimensionnelle
TWI755785B (zh) * 2019-07-29 2022-02-21 大陸商深圳幀觀德芯科技有限公司 三維成像的方法
CN114206204A (zh) * 2019-07-29 2022-03-18 深圳帧观德芯科技有限公司 三维成像的系统和方法

Also Published As

Publication number Publication date
GB201216785D0 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
Longo et al. Towards breast tomography with synchrotron radiation at Elettra: first images
EP2675358B1 (fr) Mosaïque de détecteurs possédant une dimension utile supérieure à la dimension réelle
US6399951B1 (en) Simultaneous CT and SPECT tomography using CZT detectors
US7590215B2 (en) Coherent-scatter computer tomograph
US8477904B2 (en) X-ray diffraction and computed tomography
WO2014045045A1 (fr) Système d&#39;imagerie par projection de diffraction dispersive
US8373135B2 (en) Counting detector and computed tomography system
CN110678125B (zh) 能量鉴别光子计数检测器及其用途
Jacques et al. A laboratory system for element specific hyperspectral X-ray imaging
US9921173B2 (en) X-ray diffraction imaging system using debye ring envelopes
JP2007500357A (ja) ファンビームコヒーレント散乱コンピュータ断層撮影
US20140037045A1 (en) Dual energy ct scanner
CN108135560B (zh) X射线ct数据处理装置以及搭载其的x射线ct装置
JP6727155B2 (ja) 画像処理装置、x線ct装置及び画像処理方法
EP3363049B1 (fr) Détecteurs de rayons x à haute résolution spatiale
Rebuffel et al. New functionalities of SINDBAD simulation software for spectral X-ray imaging using counting detectors with energy discrimination
Dydula et al. Development and assessment of an x-ray tube-based multi-beam x-ray scatter projection imaging system
Cook et al. Illicit drug detection using energy dispersive X-ray diffraction
Schumacher et al. Influencing parameters on image quality using photon counting detectors for laminography
IL296143A (en) Radiation whispering system
Meng et al. X-ray fluorescence tomography using imaging detectors
Montemont et al. CZT pixel detectors for improved SPECT imaging
Rebuffel et al. SINDBAD: a simulation software tool for multienergy X-ray imaging
Zemlicka et al. Mobile system for in-situ imaging of cultural objects
JP2006017532A (ja) Pet装置及びその検出器ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782810

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13782810

Country of ref document: EP

Kind code of ref document: A1