WO2014042226A1 - 抗原特異的ヘルパーt細胞レセプター遺伝子 - Google Patents

抗原特異的ヘルパーt細胞レセプター遺伝子 Download PDF

Info

Publication number
WO2014042226A1
WO2014042226A1 PCT/JP2013/074748 JP2013074748W WO2014042226A1 WO 2014042226 A1 WO2014042226 A1 WO 2014042226A1 JP 2013074748 W JP2013074748 W JP 2013074748W WO 2014042226 A1 WO2014042226 A1 WO 2014042226A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
cells
polynucleotide
peptide
helper
Prior art date
Application number
PCT/JP2013/074748
Other languages
English (en)
French (fr)
Inventor
治夫 杉山
文博 藤木
Original Assignee
株式会社癌免疫研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社癌免疫研究所 filed Critical 株式会社癌免疫研究所
Priority to JP2014535597A priority Critical patent/JP6535463B2/ja
Priority to CN201380058833.7A priority patent/CN104797711B/zh
Priority to RU2015113172A priority patent/RU2680588C2/ru
Priority to KR1020157008614A priority patent/KR20150046346A/ko
Priority to EP13837129.9A priority patent/EP2896693A4/en
Priority to EP18215510.1A priority patent/EP3495483A1/en
Priority to CA2884366A priority patent/CA2884366A1/en
Priority to US14/427,465 priority patent/US10815288B2/en
Publication of WO2014042226A1 publication Critical patent/WO2014042226A1/ja
Priority to US16/163,448 priority patent/US11091531B2/en
Priority to US17/076,842 priority patent/US20210070832A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4632T-cell receptors [TCR]; antibody T-cell receptor constructs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464452Transcription factors, e.g. SOX or c-MYC
    • A61K39/464453Wilms tumor 1 [WT1]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70514CD4

Definitions

  • the present invention relates to a polynucleotide contained in a T cell receptor (TCR) gene of a cancer antigen-specific helper T cell.
  • TCR T cell receptor
  • the present invention relates to a polynucleotide encoding each complementarity determining region 3 (CDR3) of TCR of TCR of CD4 + helper T cell specific for WT1 helper peptide having the amino acid sequence shown in SEQ ID NO: 123.
  • the invention also relates to peptides encoded by these polynucleotides.
  • the present invention further relates to CD4 + T cells into which a TCR gene containing these polynucleotides has been introduced, enhancement of induction of WT1-specific cytotoxic T cells (WT1-specific CTL) using the same, and cancer treatment.
  • the WT1 gene (Wilm's tumor 1 gene) has been identified as a responsible gene for Wilms tumor, which is a renal cancer of children (Non-patent Documents 1 and 2), and is a transcription factor having a zinc finger structure. Initially, the WT1 gene was considered to be a tumor suppressor gene, but subsequent studies (Non-Patent Documents 3, 4, 5, and 6) have shown that it functions as an oncogene in hematopoietic tumors and solid tumors. .
  • CTLs cytotoxic T cells
  • helper T cells are induced and activated by recognizing complexes of MHC class II molecules of antigen-presenting cells and antigenic peptides. Activated helper T cells produce cytokines such as IL-2, IL-4, IL-5, IL-6, or interferon, and help B cell proliferation, differentiation, and maturation. Activated helper T cells have a function of promoting proliferation, differentiation, and maturation of other subsets of T cells (such as Tc cells). Thus, the activated helper T cell has a function of activating the immune system by promoting the proliferation and activation of B cells and T cells. Therefore, an MHC class II binding antigen peptide in cancer immunotherapy It is considered useful to enhance the function of a cancer vaccine by enhancing the function of helper T cells via (helper peptide) (Non-patent Document 9).
  • TCR T cell receptor
  • the present inventors have conducted extensive research to solve the above-mentioned problems, and isolated the CD4 + helper T-cell TCR ⁇ chain gene and ⁇ chain gene specific for the WT1 helper peptide, and determined the sequence of each CDR3. Succeeded.
  • the inventors have also introduced a TCR gene containing the sequence thus sequenced into CD4 + T cells, which can be used to enhance the induction of WT1-specific CTLs and to injure WT1-expressing cancer cells. Successful.
  • the inventors have completed the present invention.
  • the present invention provides the following.
  • SEQ ID NOs: 1, 3, 5, 8, 10, 11, 13, 14, 16, 18, 20, 22, 23, 25, 27, 28, 30, 31, 33, 35, 37, 39 A polynucleotide having a base sequence selected from the group consisting of 41, 43, 45, 47, 49, 51, 53, 55, 56, 58, the amino acid sequence shown in SEQ ID NO: 123 or a mutant sequence thereof
  • each polynucleotide has the following base sequence: ⁇ CDR3 polynucleotide ⁇ CDR3 polynucleotide SEQ ID NO: 1 SEQ ID NO: 2 SEQ ID NO: 3 SEQ ID NO: 4 SEQ ID NO: 5 SEQ ID NO: 6 SEQ ID NO: 3 SEQ ID NO: 7 SEQ ID NO: 8 SEQ ID NO: 9 SEQ ID NO: 10 SEQ ID NO: 12 SEQ ID NO: 11 SEQ ID NO: 12 SEQ ID NO: 13 SEQ ID NO: 15 SEQ ID NO: 14 SEQ ID NO: 15 SEQ ID NO: 16 SEQ ID NO: 17 SEQ ID NO: 18 SEQ ID NO: 19 SEQ ID NO: 20 SEQ ID NO: 21 SEQ ID NO: 22 SEQ ID NO: 24 SEQ ID NO: 23 SEQ ID NO: 24 SEQ ID NO: 25 SEQ ID NO: 26 SEQ ID NO: 27 SEQ ID NO: 20 SEQ ID NO: 21 SEQ ID NO: 22 SEQ ID NO: 24 SEQ ID NO: 23
  • a TCR gene comprising any of the ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide described in (3).
  • the TCR gene described in (4) obtained from CD4 + T cells specific for the WT1 332 peptide.
  • CD4 + helper T cells obtained by the method described in (5).
  • a vector comprising a TCR gene comprising the ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide of any of the polynucleotide sets described in (3).
  • a DNA chip comprising the ⁇ CDR3 polynucleotide described in (1), the ⁇ CDR3 polynucleotide described in (2), or both the ⁇ CDR3 polynucleotide described in (1) and the ⁇ CDR3 polynucleotide described in (2).
  • a ⁇ CDR3 peptide encoded by any of the ⁇ CDR3 polynucleotides described in (2) are examples of the DNA chip.
  • CD4 + helper T cells into which a TCR gene having the CDR3 base sequence determined according to the present invention has been introduced can be obtained, and this can be used to induce WT1-specific CTLs, effectively producing cancer. Can be treated or prevented. Furthermore, a DNA chip can be prepared using these TCR sequences, and the frequency of WT1 332- specific CD4 + helper T cells in the sample can be measured.
  • FIG. 1A shows the CDR3 base sequence of the TCR ⁇ chain and ⁇ chain of CD4 + helper T cells obtained according to the present invention and the amino acid sequence of CDR3 encoded thereby.
  • the number in parentheses at the right end of each sequence indicates the SEQ ID No. in the sequence listing. These sequences are shown for each clone.
  • V-GENE, J-GENE, and D-GENE indicate the V region, J region, and D region of each gene, respectively.
  • FIG. 1B shows the nucleotide sequence of CDR3 of the TCR ⁇ chain and ⁇ chain of CD4 + helper T cells obtained according to the present invention and the amino acid sequence of CDR3 encoded thereby.
  • FIG. 2A shows interferon ⁇ production of WT1 332- specific CD4 + helper T cells introduced with the TCR gene shown in Table 3.
  • FIG. 2B shows IL-2 production of WT1 332- specific CD4 + helper T cells into which the TCR gene shown in Table 3 has been introduced.
  • FIG. 2C shows the TNF- ⁇ production response of WT1 332- specific CD4 + helper T cells into which the TCR gene has been introduced with respect to the WT1 332 peptide concentration.
  • FIG. 2A shows interferon ⁇ production of WT1 332- specific CD4 + helper T cells introduced with the TCR gene shown in Table 3.
  • FIG. 2B shows IL-2 production of WT1 332- specific CD4 + helper T cells into which the TCR gene shown in Table 3 has been introduced.
  • FIG. 2C shows the TNF- ⁇ production response of WT1 332- specific CD4 + helper T cells into which the TCR gene has been introduced with respect to the WT1 332 peptide concentration.
  • FIG. 2D shows the proliferation ability of WT1 332- specific CD4 + helper T cells into which the TCR gene has been introduced in various substance addition systems.
  • WT1 332 is present in the presence of WT1 332 peptide
  • ⁇ -DP is present in the presence of anti-HLA-DP antibody
  • ⁇ -DQ is present in the presence of anti-HLA-DQ antibody
  • ⁇ -DR is present in the presence of anti-HLA-DR antibody
  • HLA class I indicates culture in the presence of anti-HLA class I antibody
  • HIV indicates culture in the presence of HIV peptide (FRKQNPDIVIYQYMDDLYVG) (SEQ ID NO: 124).
  • WT1 332 is self PBMC pulsed with WT1 332 peptide
  • HWT1 is self PBMC pulsed with full-length WT1 protein
  • HWT3 is self PBMC pulsed with shortened WT1 protein (without WT1 332 sequence)
  • PHA- blast is PBMC pulsed with PHA-blast lysate
  • TF1 is pulsated lysate of leukemia cell line TF-1 expressing WT1
  • K562 is pulsated lysate of leukemia cell line K562 expressing WT1 It shows having been stimulated by.
  • WT1 332 is self PBMC pulsed with WT1 332 peptide
  • HWT1 is self PBMC pulsed with full-length WT1 protein
  • HWT3 is self PBMC pulsed with shortened WT1 protein (without WT1 332 sequence)
  • PHA- blast is PBMC pulsed with PHA-blast lysate
  • TF1 is pulsated lysate of leukemia cell line TF-1 expressing WT1
  • K562 is pulsated lysate of leukemia cell line K562 expressing WT1 It shows having been stimulated by.
  • FIG. 3A shows the ratio of CD3 + CD8 + T cells when WT1 332- specific CD4 + helper T cells introduced with PBMC and TCR gene are co-cultured at the ratio shown in the figure.
  • FIG. 3B shows the frequency of modified WT1 235 / HLA-A * 24:02 tetramer positive CD8 + T cells when WT1 332- specific CD4 + helper T cells introduced with PBMC and TCR gene were co-cultured at the rate shown in the figure.
  • FIG. 3C shows the number of WT1-specific CTL cells when WT1 332- specific CD4 + helper T cells introduced with PBMC and TCR gene were co-cultured at the ratio shown in the figure.
  • FIG. 3D shows the frequency of CD8 + T cells expressing interferon gamma by stimulation with modified WT1 235 when WT1 332- specific CD4 + helper T cells introduced with PBMC and TCR gene were co-cultured at the rate shown in the figure.
  • FIG. 4A shows HLA-DPB1 * 05 : 01-positive WT1-expressing leukemia cell lines TF-1 and HLA-DPB1 * by WT1 332- specific CD4 + helper T cells introduced with the TCR gene at the E: T ratio shown in the figure.
  • the injury of the 05:01 negative WT1-expressing leukemia cell line TF-1 is expressed in terms of lysis rate (%).
  • FIG. 4B shows HLA-DPB1 * 05 : 01 positive B-LCL cells and HLA that were forced to express WT1 by WT1 332- specific CD4 + helper T cells introduced with the TCR gene at the E: T ratio shown in the figure.
  • FIG. 4C shows the K562 and HLA-DPB1 * 05 : 01 positive and WT1 expressing leukemia cell line C2F8 with WT1 332- specific CD4 + helper T cells introduced with the TCR gene at the E: T ratio shown in the figure. Damage is expressed as a dissolution rate (%).
  • FIG. 4D shows the results of detecting the expression of granzyme B (left) and perforin (right) in WT1 332- specific CD4 + helper T cells into which the TCR gene has been introduced by flow cytometry.
  • FIG. 4E shows the results of flow cytometry in which the ratio of CD107a-producing cells and IFN- ⁇ -producing cells among WT1 332- specific CD4 + helper T cells introduced with the TCR gene cultured by the method described in Example 4 was examined. It is.
  • FIG. 4F shows the cytotoxic activity of WT1 332- specific CD4 + helper T cells transfected with TCR gene against HLA-DPB1 * 05 : 01-positive TF-1 cells pretreated with Ac-IETD-Cho
  • DMSO 2 is a bar graph showing the results of comparing the cytotoxic activity of WT1 332- specific CD4 + helper T cells introduced with a TCR gene against TF-1 cells previously treated.
  • Figure 5 is a survival curve showing the anti-tumor effect in NOG (TM) mice with human CD4 + T cells transfected with WT1 332-specific CD4 + T cell-derived TCR gene.
  • the solid line shows the survival curve of mice transfected with human CD4 + T cells transfected with HLA-DPB1 * 05 : 01 restricted WT1 332 specific TCR.
  • the broken line shows the survival curve of mice transfected with human CD4 + T cells introduced with the control vector.
  • the present invention relates to a nucleotide sequence encoding an ⁇ chain containing CDR3 of a TCR of a CD4 + helper T cell clone specific for a WT1 helper peptide (referred to as an ⁇ CDR3 polynucleotide) and a polynucleotide encoding a ⁇ chain containing CDR3 ( This is based on the determination of the base sequence of ⁇ CDR3 polynucleotide. Therefore, in one aspect, the present invention provides the nucleotide sequence shown in FIG. 1 (SEQ ID NOs: 1, 3, 5, 8, 10, 11, 13, 14, 16, 18, 20, 22, 23, 25, 27).
  • the present invention provides, in a further aspect, a set of ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide, wherein each polynucleotide constituting the set has the base sequence shown in FIG.
  • the combination of ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide varies from clone to clone.
  • the base sequences of the set of ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide in each clone are as shown in FIG.
  • a polynucleotide having a base sequence complementary to an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide is also included in the ⁇ CDR3 polynucleotide and the ⁇ CDR3 polynucleotide.
  • the degenerate sequences of the ⁇ CDR3 polynucleotide and the ⁇ CDR3 polynucleotide sequence are also included in the ⁇ CDR3 polynucleotide and the ⁇ CDR3 polynucleotide.
  • a polynucleotide having a base sequence that hybridizes under stringent conditions to the base sequence of the ⁇ CDR3 polynucleotide is also included in the ⁇ CDR3 polynucleotide.
  • Polynucleotides having a base sequence that hybridizes under stringent conditions to the base sequence of the ⁇ CDR3 polynucleotide are also included in the ⁇ CDR3 polynucleotide.
  • Examples of stringent hybridization conditions include hybridization at 48-52 ° C. in a solution containing 5 ⁇ SSC, 7% (w / v) SDS, 100 ⁇ g / ml denatured salmon sperm DNA and 5 ⁇ Denhardt's solution, Conditions of washing at 48 to 68 ° C.
  • ⁇ SSC for 1 hour in 0.1 ⁇ SSC, 0.5 ⁇ SSC, 1 ⁇ SSC or 2 ⁇ SSC, or 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide and 200 ⁇ g / ml denatured salmon sperm
  • the conditions include hybridization in a solution containing DNA at 42 ° C., and washing in a solution containing 15 mM NaCl, 1.5 mM trisodium citrate and 0.1% SDS.
  • the present invention provides peptides encoded by the above ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide (referred to as ⁇ CDR3 peptide and ⁇ CDR3 peptide, respectively). These peptides have the amino acid sequence shown in FIG. Preferably, these peptides form a set of ⁇ CDR3 peptide and ⁇ CDR3 peptide corresponding to each clone, as shown in FIG.
  • amino acid sequence of a peptide is represented by a conventional one-letter method or three-letter method.
  • Peptides encoded by the variants of the ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide described above are also included in the ⁇ CDR3 peptide and ⁇ CDR3 peptide.
  • Peptides having an amino acid sequence having 70% or more, such as 75% or more, 80% or more, 85% or more or 90% or more, such as 92% or 94% or more identity to the amino acid sequence of ⁇ CDR3 peptide Included in the ⁇ CDR3 peptide.
  • a peptide having an amino acid sequence in which 1 to several (for example, 1, 2, 3, 4 or 5) amino acids are substituted, deleted or added in the amino acid sequence of ⁇ CDR3 peptide is also a ⁇ CDR3 peptide. Is included. However, these mutant peptides have the same characteristics as the original ⁇ CDR3 peptide or ⁇ CDR 3 peptide.
  • polynucleotides and peptides can be synthesized using chemical methods and / or biological methods known to those skilled in the art.
  • the WT1 helper peptide is an amino acid sequence shown in SEQ ID NO: 123 (Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His) or a peptide having a mutant sequence thereof (this peptide is called WT1 332). Called peptides).
  • the WT1 332 peptide may be a partial sequence of a WT1 polypeptide or a mutant sequence thereof.
  • One example thereof is a peptide comprising the amino acid sequence shown in SEQ ID NO: 123 or a mutant sequence thereof.
  • the WT1 332 peptide is against HLA-DRB1 * 15 : 01 molecule, HLA-DPB1 * 09 : 01 molecule, HLA-DPB1 * 05 : 01 molecule, HLA-DRB1 * 04: 05 molecule or HLA-DRB1 * 15 : 02 molecule It is known to have binding ability.
  • the mutant sequence of the amino acid sequence shown in SEQ ID NO: 123 is one to several (for example, 1, 2, 3, 4 or 5) in the amino acid sequence shown in SEQ ID NO: 123.
  • the mutant sequence of the amino acid sequence shown in SEQ ID NO: 123 is 70% or more, eg, 75% or more, 80% or more, 85% or more, or 90% or more identical to the amino acid sequence shown in SEQ ID NO: 123 An amino acid sequence having sex.
  • the peptide having the amino acid sequence shown in SEQ ID NO: 123 or a mutated sequence thereof preferably has a length of 25 amino acids or less.
  • the peptide having the mutant sequence of the amino acid sequence shown in SEQ ID NO: 123 has the same characteristics as the peptide having the amino acid sequence shown in SEQ ID NO: 123.
  • the present invention relates to a TCR gene comprising an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide belonging to any set shown in FIG.
  • TCR genes may be isolated from CD4 + T cells specific for the WT1 332 peptide or may be prepared using known genetic engineering techniques.
  • the present invention provides a CD4 + helper T cell (TCR gene-introduced CD4 + helper T) obtained by introducing a TCR gene comprising an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide belonging to any of the sets shown in FIG. 1 into a CD4 + T cell.
  • TCR gene-introduced CD4 + helper T cells show proliferative responses and cytokine production in a WT1 332- specific and HLA class II-restricted manner.
  • TCR gene containing an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide belonging to one set shown in FIG. 1 into a CD4 + T cell.
  • the TCR gene can be introduced by using various vectors, electroporation, a gene gun, or the like.
  • the introduced TCR gene may be modified for the purpose of improving TCR expression efficiency.
  • the present invention provides a vector comprising a TCR gene comprising any set of ⁇ CDR3 polynucleotide and ⁇ CDR3 polynucleotide shown in FIG.
  • the TCR gene may be introduced by inserting the TCR ⁇ chain gene containing the ⁇ CDR3 polynucleotide and the TCR ⁇ chain gene containing the ⁇ CDR3 polynucleotide into separate vectors and introducing these vectors into CD4 + T cells. Good.
  • CD4 + T cells into which a TCR gene containing an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide is introduced include HLA-DRB1 * 15 : 01 positive, HLA-DPB1 * 09 : 01 positive, HLA-DPB1 * 05 : 01 positive, HLA-DRB1 * Derived from subjects who are 04:05 positive or HLA-DRB1 * 15 : 02 positive, but are not limited thereto.
  • the CD4 + T cells may be derived from any of a subject having cancer and a subject not including cancer (including a healthy person), or may be derived from a bone marrow transplant donor. Good.
  • the present invention also relates to a WT1 332- specific CD4 + helper T cell comprising a TCR gene comprising an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide belonging to any set shown in FIG.
  • the induction of WT1-specific CTL can be enhanced using TCR gene-introduced CD4 + helper T cells.
  • the induction of WT1-specific CTL can be enhanced by co-culturing TCR gene-introduced CD4 + helper T cells and peripheral blood mononuclear cells.
  • the present invention provides, in a further aspect, a method for enhancing induction of WT1-specific CTL, which comprises co-culturing TCR gene-introduced CD4 + helper T cells and peripheral blood mononuclear cells.
  • the present invention relates to a WT1-specific CTL obtained by the above method.
  • TCR gene-introduced CD4 + helper T cells Methods and conditions for co-culture of TCR gene-introduced CD4 + helper T cells and peripheral blood mononuclear cells are known. The method can be performed either in vivo or in vitro.
  • One type of TCR gene-introduced CD4 + helper T cells may be used when enhancing the induction of WT1-specific CTL, but it is preferable to use two or more types of TCR gene-introduced CD4 + helper T cells.
  • Peripheral blood mononuclear cells used in the method for enhancing induction of WT1-specific CTLs of the present invention include HLA-DRB1 * 15 : 01 positive, HLA-DPB1 * 09 : 01 positive, HLA-DPB1 * 05 : 01 positive, HLA Examples include, but are not limited to, those derived from subjects that are positive for DRB1 * 04: 05 or HLA-DRB1 * 15: 02.
  • the peripheral blood mononuclear cells and CD4 + T cells are obtained from a subject whose cancer is to be treated or prevented.
  • WT1 332 peptide and / or other WT1 peptide coexist during co-culture.
  • Other WT1 peptides include HLA-DRB1 * 15 : 01 molecule, HLA-DPB1 * 09 : 01 molecule, HLA-DPB1 * 05 : 01 molecule, HLA-DRB1 * 04: 05 molecule or HLA-DRB1 * 15 : 02 molecule
  • HLA-DRB1 * 15 01 molecule
  • HLA-DPB1 * 09 01 molecule
  • HLA-DPB1 * 05 : 01 molecule HLA-DRB1 * 04: 05 molecule
  • HLA-DRB1 * 15 : 02 molecule Although what has the binding ability with respect to is illustrated, it is not limited to these.
  • the WT1-specific CTL induced by the above method is further cultured as necessary to increase the number of cells and administered to the subject, which can contribute to the treatment or prevention of cancer in the subject. In the treatment or prevention of such cancer, it is preferred to co-administer WT1 332 peptide and / or other WT1 peptides. CTLs specific for other cancer antigens can also be induced by the action of WT1-specific CTL.
  • TCR gene-introduced CD4 + helper T cells can damage cancer cells expressing WT1. Therefore, in a further aspect, the present invention provides a method for treating or preventing cancer in a subject, characterized by introducing TCR gene-introduced CD4 + helper T cells into the subject.
  • the present invention provides a pharmaceutical composition for treating or preventing cancer, TCR transgenic CD4 + helper for producing a medicament for treating or preventing cancer, comprising TCR transgenic CD4 + helper T cells.
  • TCR transgenic CD4 + helper T cells comprising TCR transgenic CD4 + helper T cells.
  • treatment of cancer includes not only the treatment of cancer such as suppressing the progression of cancer, reducing the size of cancer, and eliminating the cancer, but also preventing the recurrence of cancer. Including.
  • Subjects to be treated or prevented for cancer include HLA-DRB1 * 15 : 01 positive, HLA-DPB1 * 09 : 01 positive, HLA-DPB1 * 05 : 01 positive, HLA-DRB1 * 04: 05 positive or HLA-DRB1 * 15:02 positive subjects are exemplified, but not limited to these.
  • the subject is not limited to a cancer patient, and may be a person (including a healthy person) who does not have cancer, or may be a bone marrow transplant donor.
  • CD4 + T cells are collected from the peripheral blood of a cancer patient in need of treatment, and a TCR gene containing an ⁇ CDR3 polynucleotide and a ⁇ CDR3 polynucleotide is introduced into this to obtain a TCR gene-introduced CD4 + helper T cell.
  • a sufficient number of TCR gene-introduced CD4 + helper T cells are cultured and proliferated under appropriate conditions. Once the cells are obtained, they can be administered to the cancer patient.
  • the number of TCR gene-introduced CD4 + helper T cells to be administered may be one, but it is more preferable to administer two or more types of TCR gene-introduced CD4 + helper T cells to the subject from the viewpoint of improving the therapeutic or preventive effect.
  • TCR gene-introduced CD4 + helper T cells When administering TCR gene-introduced CD4 + helper T cells to a subject, conditions such as the number of cells to be administered, the number of administrations, and the administration interval can be appropriately determined by a doctor.
  • the TCR gene-introduced CD4 + helper T cells may be administered only once, or may be administered in multiple portions.
  • the number of TCR transgenic CD4 + helper T cells administered at a time is from about 10 9 to about 10 11 , but is not limited to these amounts.
  • WT1 332 peptide and / or other WT1 peptide it is preferred to co-inject WT1 332 peptide and / or other WT1 peptide.
  • the doctor can appropriately determine the dose and frequency of administration of the WT1 332 peptide and / or other WT1 peptide.
  • other anticancer treatment or prevention may be used in combination.
  • cancers regardless of whether they are solid cancer or blood cancer, for example, acute myeloid leukemia, acute lymphocytic leukemia, malignant lymphoma, multiple lymphoma Hematological malignancies such as myeloma, chronic myelogenous leukemia, myelodysplastic syndrome, recurrence after allogeneic hematopoietic stem cell transplantation; solid cancers such as tongue cancer, gingival cancer, oral cavity cancer, pharyngeal cancer, laryngeal cancer, salivary gland cancer, thyroid cancer Breast cancer such as breast cancer, lung cancer and thymic cancer; cancer of the digestive organs such as colon cancer, small intestine cancer, stomach cancer, pancreatic cancer, liver cancer, bile duct cancer, gastrointestinal endocrine tumor, gastrointestinal carcinoid; kidney cancer, urothelium Cancers of the genitourinary system such as cancer, germ
  • CDR3 is the most diverse region and is the part most strongly involved in the specificity of antigen recognition. Therefore, the sequences of the ⁇ CDR3 polynucleotide, ⁇ CDR3 polynucleotide, ⁇ CDR3 peptide, and ⁇ CDR3 peptide of the present invention are considered to be sequences peculiar to CD4 + helper T cells specific for the WT1 332 peptide.
  • CD4 + helper T cells are believed to be specific for the WT1 332 peptide.
  • a DNA chip comprising one or more ⁇ CDR3 polynucleotides
  • a DNA chip comprising one or more ⁇ CDR3 polynucleotides
  • a DNA chip comprising one or more ⁇ CDR3 polynucleotides
  • a DNA chip comprising one or more ⁇ CDR3 polynucleotides
  • a DNA chip comprising one or more ⁇ CDR3 polynucleotides
  • one or more ⁇ CDR3 polynucleotides and A DNA chip containing both ⁇ CDR3 polynucleotides can be used to measure the frequency of CD4 + helper T cells specific for the WT1 332 peptide in the specimen. Specifically, cells in a specimen obtained from a subject are dissolved by a known method, and a sample prepared by extracting nucleic acid is brought into contact with a DNA chip.
  • the chip of (ii) when a sample is brought into contact with the chip of (i) and hybridization is observed at any position, the same sample is brought into contact with the chip of (ii) to check whether hybridization is observed. . If hybridization in the chip of (i) and the chip of (ii) occurs between the ⁇ CDR3 polynucleotide and the ⁇ CDR3 polynucleotide constituting any of the pairs shown in FIG. It can be determined that CD4 + helper T cells specific for the WT1 332 peptide having a unique TCR are present. If the chip of (iii) is used, the above operation can be performed in one step.
  • the DNA chip may be in the form of a microchip, a microarray, or the like. These chips can be produced by a known method. For example, ⁇ CDR3 polynucleotide and / or ⁇ CDR3 polynucleotide can be immobilized on a glass substrate by a known method. It is preferable to attach a label capable of indicating the presence or absence of hybridization and the amount of hybridization to the DNA in the sample or the DNA sequence on the chip.
  • the frequency of CD4 + helper T cells specific for the WT1 332 peptide in the sample can be measured using techniques such as Southern blot, Northern blot, and colony hybridization.
  • antibodies against CD4 + helper T cells specific for the WT1 332 peptide can be obtained using the ⁇ CDR3 peptide and the ⁇ CDR3 peptide. Such antibodies can be used to detect CD4 + helper T cells specific for the WT1 332 peptide in the specimen. Such antibodies can also be used to stimulate CD4 + helper T cell receptors specific for the WT1 332 peptide. Such stimulation can be performed in vivo or in vitro.
  • Antibodies against CD4 + helper T cells specific for the WT1 332 peptide can also be detected using a chip containing an ⁇ CDR3 peptide, a chip containing a ⁇ CDR3 peptide, or a chip containing both an ⁇ CDR3 peptide and a ⁇ CDR3 peptide.
  • a chip containing these peptides can be produced by a known method. It is preferable to attach a label capable of determining the presence or absence of specific binding to the peptide in the sample or the peptide on the chip.
  • the type and amount of ⁇ CDR3 peptide and / or ⁇ CDR3 peptide in the sample can be examined, or a CD4 + helper T specific to WT1 332 peptide in the sample The type and amount of cells can be examined.
  • a chip on which these antibodies are immobilized can be produced by a known method. It is preferable to attach a label capable of determining the presence or absence of specific binding to the peptide in the sample or the antibody on the chip.
  • SEQ ID NO: 1-59 is a nucleotide sequence encoding CDR3 contained in the TCR of a CD4 + helper T cell clone.
  • SEQ ID NOs: 60-118 are the amino acid sequences of CDR3 contained in the TCR of the CD4 + helper T cell clone.
  • SEQ ID NO: 119 is a reverse primer for TCR ⁇ chain amplification.
  • SEQ ID NO: 120 is a reverse primer for TCR ⁇ chain amplification.
  • SEQ ID NO: 121 is a reverse primer for TCR ⁇ chain amplification.
  • SEQ ID NO: 122 is a primer for CDR3 nucleotide sequencing.
  • SEQ ID NO: 123 is the amino acid sequence of the WT1 332 peptide.
  • SEQ ID NO: 124 is the amino chain sequence of HIV peptide.
  • SEQ ID NO: 125 is the amino acid sequence of a variant of the natural WT1 peptide.
  • T cell receptor (TCR) gene Establishment of WT1 332- specific CD4 + T cell clone and isolation and sequencing of T cell receptor (TCR) gene The experimental procedure was as follows.
  • PBMCs were collected and mixed from 3 healthy individuals, irradiated with 30 Gy of ⁇ -rays, final concentration 10% AB serum, final concentration 100 IU / ml IL-2, final concentration 3 ⁇ g / ml PHA added X-VIVO 15 Prepare with medium to 1 ⁇ 10 6 cells / ml. 100 ⁇ l of this is plated on a round bottom 96-well plate.
  • X After culturing for 10 to 14 days, the proliferating cells in each well are used as independent CD4 + T cell clones.
  • TCR ⁇ chain and ⁇ chain genes are amplified using the cDNA synthesized in (3) -iii above as a template.
  • the primers used were UPM primers attached to SMARTer TM RACE cDNA Amplification Kit as forward primers and the following TCR specific primers as reverse primers: C ⁇ 3′UTR-primer: 5′-CAC AGG CTG TCT TAC AAT CTT GCA GAT C-3 ′ (SEQ ID NO: 119) C ⁇ 1-3'UTR-primer: 5'-CTC CAC TTC CAG GGC TGC CTT CA-3 '(SEQ ID NO: 120) C ⁇ 2-3′UTR-primer: 5′-TGA CCT GGG ATG GTT TTG GAG CTA-3 ′ (SEQ ID NO: 121).
  • V The TCR gene was amplified using ToYoBo KOD FX under the conditions of 94 ° C., 3 min ⁇ (98 ° C., 10 sec ⁇ 68 ° C., 1 min) ⁇ 35 cycles.
  • Vi The size of the PCR product is confirmed using agarose gel electrophoresis, and a band around 1 kbp is cut out from the gel and purified.
  • Vii Adenine is added to the purified PCR product of (3) -vi using Taq polymerase, and then ligated to the pCR2.1 vector (Invitrogen).
  • RNA extraction from T cell clones was performed using TRIzol Reagent (Invitrogen). T cell clones to be used were prepared by culturing in the presence of IL-2 without antigen stimulation for 3 weeks or more for the purpose of preventing the contamination of feeder cells. The extracted RNA was dissolved in RNase-free water and stored at ⁇ 80 ° C.
  • the reverse primers used are as follows.
  • C ⁇ 3'UTR-RACE-primer CACAGGCTGTCTTACAATCTTGCAGATC (SEQ ID NO: 119)
  • C ⁇ 1 3'UTR-RACE-primer CTCCACTTCCAGGGCTGCCTTCA (SEQ ID NO: 120)
  • C ⁇ 2 3'UTR-RACE-primer TGACCTGGGATGGTTTTGGAGCTA (SEQ ID NO: 121)
  • PCR reaction was performed by the following reaction liquid composition using KOD FX (TOYOBO company).
  • the primer on the previous page that is, C ⁇ 3'UTR-primer, C ⁇ 1-3'UTR-primer, and C ⁇ 2-3'UTR-primer are the same. Let's do it.
  • adenine was added to both ends of the PCR product.
  • the addition of adenine was performed as follows using Platinum Taq DNA polymerase (Invitrogen).
  • the PCR product to which adenine was added was purified and concentrated by ethanol precipitation, and then inserted into a pCR2.1 vector (Invitrogen) using DNA Ligation Kit ⁇ Mighty Mix> (TaKaRa).
  • the pCR2.1 vector containing the PCR product was introduced and cloned into HST02 competent cells by transformation.
  • FIG. 1 shows the determined nucleotide sequence and amino acid sequence of CDR3. In some clones, there were two ⁇ chains and two CDR3 sequences.
  • Example 2 Human CD4 + WT1 332-specific CD4 + T cell-derived T cell receptor to T cells (TCR) gene transfer WT1 332-specific CD4 + T cell-derived T cell receptor (TCR) human introduced gene CD4 + T cells WT1 332 It was confirmed to show proliferation response and cytokine production in a specific and HLA class II-restricted manner.
  • the TCR genes shown in Table 3 were isolated from clone 9, which is a CD4 + T cell clone that specifically recognizes WT1 332 in a HLA-DPB1 * 05 : 01 restriction.
  • This TCR gene was introduced into CD4 + T cells derived from healthy human peripheral blood using a lentiviral vector, and the response to WT1 332 was examined using production of cytokines (interferon ⁇ and IL-2) as an index (FIGS. 2A and 2B).
  • cytokines interferon ⁇ and IL-2
  • CD4 + T cells transfected with WT1 332 specific TCR gene reacts only to WT1 332, i.e. WT1 332 specifically IFN-g and IL-2 Was produced.
  • WT1 332 -TCR-transduced CD4 + T cells did not show WT1 332 specific cytokine production. The effect of WT1 332 peptide concentration on cytokine expression of WT1 332 -TCR-transduced CD4 + T cells was examined.
  • WT1 332 -TCR-transduced CD4 + T cells were stimulated with various concentrations of WT1 332 peptide for 4 hours, and an intracellular cytokine staining assay was performed to examine the ratio of TNF- ⁇ producing CD4 + T cells to CD4 + T cells. Results are shown in FIG. 2C. Cytokine production was WT1 332 peptide concentration dependent with an ED50 of 4.85 ⁇ M. When the proliferation ability of WT1 332 -TCR-transduced CD4 + T cells was examined, WT1 332- specific strong proliferation ability was observed, and the proliferation reaction was remarkably suppressed by the anti-HLA-DP antibody (FIG. 2D).
  • FIGS. 2E and 2F The results are shown in FIGS. 2E and 2F, respectively.
  • WT1 332 -TCR-transduced CD4 + T cell proliferation and IFN- ⁇ production were significantly stimulated by PBMC pulsed with lysates of WT1-expressing leukemia cell lines (TF-1 and K562) and pulsed with WT1 332 peptide It was found that it was also stimulated by autologous PBMC and autologous PBMC pulsed with full-length WT1 protein.
  • WT1 332 -TCR-transduced CD4 + T cell line ie 3 types
  • WT1 332 peptides derived from 3 healthy individuals HLA-DPB1 * 05 : 01 positive
  • Various cytokine production in response was also examined.
  • the average value of the cytokine production ability of the three cell lines is shown in FIG. 2G.
  • Production of Th1-type cytokines such as IL-2, IFN- ⁇ , TNF- ⁇ and GM-CSF was high.
  • CD4 + T cells act as helper T cells and are the main effector cells that attack cancer cells It is known to be important for the induction and maintenance of CD8 + T cells (CTL). Therefore, it was examined whether WT1 332 -TCR-transduced CD4 + T cells enhance the induction of WT1-specific CTL.
  • WT1 332 -TCR-transduced CD4 + T cells made from healthy individuals identical to PBMCs of HLA-A * 24: 02 and HLA-DPB1 * 05 : 01 positive healthy individuals were in a ratio of 10: 1 and 5: 1 (in FIG. 3 1: 0.1 and 1: 0.2) and binds to the modified WT1 235 peptide (HLA-A * 24 : 02 molecule, a CTL epitope derived from HLA-A * 24 : 02 restriction WT1) Cultivated in the presence of WT1 332 (CYTWNQMNL) (SEQ ID NO: 125) with the second amino acid M of the natural WT1 peptide modified to Y.
  • WT1 332 CYTWNQMNL
  • modified WT1 235 peptide was again treated with HLA-A. * 24 : 02 with enhanced binding ability to molecules) and further cultured for one week. A series of cultures did not add any IL-2 to correctly assess the help activity of CD4 + T cells.
  • IFN-g interferon gamma
  • the frequency of CD8 + T cells was significantly higher in those co-cultured with WT1 332 -TCR-transduced CD4 + T cells compared to those cultured with the addition of mock-transduced CD4 + T cells as a control (FIG. 3A).
  • Example 4 HLA-DPB1 * 05 : 01-restricted injury of WT1-expressing leukemia cells by human CD4 + T cells introduced with TCR gene derived from WT1 332- specific CD4 + T cells Next, cytotoxic activity of WT1 332 -TCR-transduced CD4 + T cells That is, the killing activity was evaluated.
  • HLA-DPB1 * 05 : 01 gene was isolated and introduced into a leukemia cell line TF-1 expressing WT1 to prepare HLA-DPB1 * 05 : 01 positive TF-1 cells.
  • WT1 332 -TCR-transduced CD4 + T cells strongly injured HLA-DPB1 * 05 : 01 positive TF-1 cells, whereas HLA-DPB1 * 05 : 01 negative TF-1 cells It did not show cytotoxic activity.
  • HLA-DPB1 * 05 01-positive B-LCL cells that do not express WT1 (labeled B-LCL (-)) are forced to contain WT1 gene.
  • B-LCL (+) was prepared and the cytotoxic activity of WT1 332 -TCR-transduced CD4 + T cells was evaluated using these as target cells.
  • B-LCL (+) was strongly injured by WT1 332 -TCR-transduced CD4 + T cells, but B-LCL ( ⁇ ) was not injured.
  • WT1 332 -TCR-transduced CD4 + T cells have HLA-DPB1 * 05 : 01-restricted and WT1-specific cytotoxic activity. Furthermore, the cytotoxic activity of this WT1 332 -TCR-transduced CD4 + T cell was confirmed using a leukemia cell line C2F8 that is positive for HLA-DPB1 * 05 : 01 and expresses WT1 (FIG. 4C). Next, it was examined whether WT1 332 -TCR-transduced CD4 + T cells exert cytotoxic activity by granzyme B and perforin pathways.
  • WT1 332 -TCR-transduced CD4 + T cells High expression of granzyme B and perforin was observed in WT1 332 -TCR-transduced CD4 + T cells (FIG. 4D).
  • WT1 332 -TCR-transduced CD4 + T cells and CD4 + T cells similarly treated with empty vector (mock-transduced CD4 + T cells), WT1 332 peptide pulsed HLA-DPB1 * 05 : 01 positive TF-1 cells or WT1 332
  • the cells were cultured with HLA-DPB1 * 05 : 01 positive TF-1 cells not pulsed for 5 hours in the presence of anti-CD107a-APC monoclonal antibody. Thereafter, IFN- ⁇ staining was performed and subjected to flow cytometry.
  • HLA-pretreated with 100 ⁇ M granzyme inhibitor Ac-IETD-Cho DPB1 * 05 : 01 positive TF-1 cells were used as target cells.
  • HLA-DPB1 * 05 : 01-positive TF-1 cells were pretreated with 100 ⁇ M Ac-IETD-Cho or DMSO (control) for 2 hours, then labeled with 51 Cr, together with WT1 332 -TCR-transduced CD4 + T cells Incubate and perform 51 Cr release assay.
  • the cytotoxic activity of WT1 332 -TCR-transduced CD4 + T cells against HLA-DPB1 * 05 : 01-positive TF-1 cells pretreated with Ac-IETD-Cho is against TF-1 cells pretreated with DMSO It was significantly lower than the cytotoxic activity (FIG. 4F). Summing up these results, the WT1 332 -TCR-transduced CD4 + T cells obtained in the present invention directly recognize HLA-DPB1 * 05 : 01-positive leukemia cells expressing WT1 and those by granzyme B / perforin pathway Has been confirmed to cause injury.
  • Example 5 WT1 332-specific CD4 + T cells derived from TCR gene NOG by human CD4 + T cells transfected with (R) anti-tumor effect in mouse WT1 expression HLA-DPB1 * 05:01 positive human leukemia cells C2F8 (5 ⁇ 10 4 Were transferred to the NOG (registered trademark) mice (7 mice) from the tail vein. On the next day, as an experimental system, human CD4 + T cells (5 ⁇ 10 6 cells) into which HLA-DPB1 * 05: 01-restricted WT1 332- specific TCR (SEQ ID NOs: 14 and 15) was introduced and T cells as antigen-presenting cells were removed.
  • Human peripheral blood mononuclear cells (2 ⁇ 10 6 ) of the same person were transferred from the tail vein of the NOG (registered trademark) mice (3 mice).
  • human CD4 + T cells (5 ⁇ 10 6 cells) into which a control vector was introduced and human peripheral blood mononuclear cells (2 ⁇ 10 6 cells) from which the T cells were removed as antigen-presenting cells were treated with the above NOG (registered trademark).
  • the experimental mice were transfected with human CD4 + T cells (5 ⁇ 10 6 cells) into which HLA-DPB1 * 05 : 01-restricted WT1 332- specific TCR had been introduced from the tail vein.
  • mice were transfected with human CD4 + T cells (5 ⁇ 10 6 cells) introduced with a control vector from the tail vein. Thereafter, the survival of the mice was examined. The results are shown in FIG. The survival rate of experimental mice exceeded that of control mice, indicating that HLA-DPB1 * 05 : 01-restricted WT1 332- specific TCR-introduced human CD4 + T cells have anti-tumor effects in vivo It was done.
  • the present invention can be used in the field of pharmaceuticals for cancer treatment or prevention, the field of cancer research reagents, the field of cancer testing reagents and kits, and the like.

Abstract

 本発明は、配列番号:123に示されるアミノ酸配列を有するWT1ヘルパーペプチドに特異的なCD4+ヘルパーT細胞のTCRのα鎖遺伝子およびβ鎖遺伝子のCDR3をコードするポリヌクレオチドに関する。本発明は、これらのポリヌクレオチドによりコードされるペプチドにも関する。さらに本発明は、これらのポリヌクレオチドを含むTCR遺伝子を導入したCD4+T細胞、それを用いるWT1特異的CTLの誘導、ならびに癌の治療などにも関する。

Description

抗原特異的ヘルパーT細胞レセプター遺伝子
 本発明は、癌抗原特異的ヘルパーT細胞のT細胞レセプター(TCR)遺伝子に含まれるポリヌクレオチドに関する。詳細には、配列番号:123に示されるアミノ酸配列を有するWT1ヘルパーペプチドに特異的なCD4+ヘルパーT細胞のTCRのα鎖およびβ鎖の各 相補性決定領域3(CDR3)をコードするポリヌクレオチドに関する。本発明は、これらのポリヌクレオチドによりコードされるペプチドにも関する。さらに本発明は、これらのポリヌクレオチドを含むTCR遺伝子を導入したCD4+T細胞、それを用いるWT1特異的細胞傷害性T細胞(WT1特異的CTL)の誘導増強、ならびに癌の治療などにも関する。
 WT1遺伝子(Wilms' tumor 1 gene)は、小児の腎癌であるウイルムス腫瘍の責任遺伝子として同定された遺伝子であり(非特許文献1および2)、ジンクフィンガー構造を有する転写因子である。当初、WT1遺伝子は癌抑制遺伝子であるとされたが、その後の研究(非特許文献3、4、5および6)により、造血器腫瘍や固形癌においてはむしろ癌遺伝子として働くことが示された。
 WT1ペプチドを用いて末梢血単核球をインビトロで刺激することにより、ペプチド特異的な細胞傷害性T細胞(CTL)が誘導され、これらのCTLは、内因性にWT1を発現する造血器腫瘍や固形癌の癌細胞を傷害することが示された。CTLはWT1ペプチドをMHCクラスI分子に結合した複合体の形で認識するので、かかるWT1ペプチドはMHCクラスIのサブタイプにより異なる(特許文献1、非特許文献7、特許文献2、3および4)。
 CTLが有効に誘導されるためには、癌抗原に特異的なヘルパーT細胞の存在が重要である(非特許文献8)。ヘルパーT細胞は、抗原提示細胞のMHCクラスII分子と抗原ペプチドとの複合体を認識して誘導・活性化される。活性化されたヘルパーT細胞は、IL-2、IL-4、IL-5、IL-6、あるいはインターフェロンなどのサイトカインを産生し、B細胞の増殖、分化、成熟を助ける。また、活性化ヘルパーT細胞は、T細胞の他のサブセット(Tc細胞など)の増殖、分化、成熟を促進する機能を有する。このように、活性化ヘルパーT細胞は、B細胞、T細胞の増殖・活性化を促進することにより免疫系を活性化する機能を有することから、癌免疫療法においてMHCクラスII結合性の抗原ペプチド(ヘルパーペプチド)を介してヘルパーT細胞の機能を増強し、癌ワクチンの効果を増強することが有用であると考えられている(非特許文献9)。
 WT1に関して現在分かっているヘルパーペプチドとしては、HLA-DRB104:01分子に結合するもの(非特許文献10)、ならびにHLA-DRB104:05分子に結合するものおよびHLA-DRB115:02分子に結合するもの(特許文献5)、HLA-DRB104:05分子、HLA-DRB115:02、HLA-DRB115:01分子、HLA-DPB109:01分子およびHLA-DPB105:01分子に結合するもの(特許文献6)が挙げられる。
 しかしながら、ヘルパーペプチドを認識する抗原特異的CD4+ヘルパーT細胞のT細胞レセプター(TCR)遺伝子の配列は全く知られていなかった。
国際公開WO2003/106682号公報 国際公開WO2005/095598号公報 国際公開WO2007/097358号公報 国際出願PCT/JP2007/074146 国際公開WO2005/045027号公報 国際公開WO2008105462号公報
Daniel A. Haber et al., Cell. 1990 Jun 29;61(7):1257-69. Call KM et al., Cell. 1990 Feb 9;60(3):509-20. Menke AL et al., Int Rev Cytol. 1998;181:151-212. Review. Yamagami T et al., Blood. 1996 Apr 1;87(7):2878-84. Inoue K et al., Blood. 1998 Apr 15;91(8):2969-76. Tsuboi A et al., Leuk Res. 1999 May;23(5):499-505. Oka Y et al., Immunogenetics. 2000 Feb;51(2):99-107. Gao FG et al., Cancer Res. 2002 Nov 15;62(22):6438-41. Zeng G, J Immunother. 2001 May;24(3):195-204 Knights AJ et al., Cancer Immunol Immunother. 2002 Jul;51(5):271-81.
 WT1ヘルパーペプチドに特異的なCD4+ヘルパーT細胞のTCR遺伝子の配列を決定すること、これらのTCR遺伝子を導入したCD4+T細胞を得ること、かかる細胞を用いてWT1特異的CTLの誘導を増強すること、ならびにかかる細胞を用いて癌の治療または予防を行うことなどが、本発明の解決課題であった。
 本発明者らは、上記課題を解決せんと鋭意研究を重ね、WT1ヘルパーペプチドに特異的なCD4+ヘルパーT細胞のTCRのα鎖遺伝子およびβ鎖遺伝子を単離し、それぞれのCDR3の配列を決定することに成功した。さらに本発明者らは、かくして配列決定された配列を含むTCR遺伝子をCD4+T細胞に導入し、これを用いてWT1特異的CTLの誘導を増強すること、ならびにWT1発現癌細胞を傷害することにも成功した。かくして本発明者らは本発明を完成させるに至った。
 すなわち本発明は、以下のものを提供する。
 (1)配列番号:1、3、5、8、10、11、13、14、16、18、20、22、23、25、27、28、30、31、33、35、37、39、41、43、45、47、49、51、53、55、56、58からなる群より選択される塩基配列を有するポリヌクレオチドであって、配列番号:123に示されるアミノ酸配列またはその変異配列を有するWT1ヘルパーペプチド(WT1332ペプチド)に特異的なCD4+ヘルパーT細胞のTCRのα鎖のCDR3をコードするポリヌクレオチド(αCDR3ポリヌクレオチドという)。
 (2)配列番号:2、4,6、7、9、12、15、17、19、21,24、26、29、32、34、36、38、40、42、44、46、48、50、52、54、57、59からなる群より選択される塩基配列を有するポリヌクレオチドであって、WT1332ペプチドに特異的なCD4+ヘルパーT細胞のTCRのβ鎖のCDR3をコードするポリヌクレオチド(βCDR3ポリヌクレオチドという)。
 (3)αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの組であって、各ポリヌクレオチドが下記の塩基配列を有するものであるポリヌクレオチドの組:

αCDR3ポリヌクレオチド     βCDR3ポリヌクレオチド
  配列番号:1            配列番号:2   
  配列番号:3            配列番号:4   
  配列番号:5            配列番号:6   
  配列番号:3            配列番号:7   
  配列番号:8            配列番号:9   
  配列番号:10           配列番号:12   
  配列番号:11           配列番号:12   
  配列番号:13           配列番号:15   
  配列番号:14           配列番号:15   
  配列番号:16           配列番号:17   
  配列番号:18           配列番号:19   
  配列番号:20           配列番号:21   
  配列番号:22           配列番号:24   
  配列番号:23           配列番号:24   
  配列番号:25           配列番号:26   
  配列番号:27           配列番号:4   
  配列番号:28           配列番号:29   
  配列番号:30           配列番号:32   
  配列番号:31           配列番号:32   
  配列番号:33           配列番号:34   
  配列番号:35           配列番号:36   
  配列番号:37           配列番号:38   
  配列番号:39           配列番号:40   
  配列番号:41           配列番号:42   
  配列番号:43           配列番号:44   
  配列番号:45           配列番号:46   
  配列番号:47           配列番号:48   
  配列番号:49           配列番号:50   
  配列番号:51           配列番号:52   
  配列番号:53           配列番号:54   
  配列番号:55           配列番号:57   
  配列番号:56           配列番号:57   
  配列番号:58           配列番号:59   
ただし、上記配列はその相補配列または縮重配列であってもよい。
 (4)(3)に記載したいずれかの組のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子。
 (5)WT1332ペプチドに特異的なCD4+T細胞から得られる(4)に記載したTCR遺伝子。
 (6)(4)に記載したTCR遺伝子をCD4+T細胞に導入することを特徴とする、WT1332ペプチドに特異的なCD4+ヘルパー細胞の製造方法。
 (7)(5)に記載した方法により得られるCD4+ヘルパーT細胞。
 (8)(3)に記載したいずれかのポリヌクレオチドの組のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチド含むTCR遺伝子を含むベクター。
 (9)該導入が(8)に記載のベクターを用いて行われる(6)記載の方法。
 (10)(7)に記載したCD4+ヘルパーT細胞と末梢血単核細胞を共培養することを特徴とする、WT1特異的CTLの誘導増強方法。
 (11)(10)に記載した方法により得られるWT1特異的CTL。
 (12)(7)に記載したCD4+ヘルパーT細胞を対象に導入することを特徴とする、対象における癌の治療または予防方法。
 (13)(7)に記載したCD4+ヘルパーT細胞を含有する、癌の治療または予防のための医薬組成物。
 (14)癌の治療または予防のための医薬の製造のための、(7)に記載したCD4+ヘルパーT細胞の使用。
 (15)(1)に記載したαCDR3ポリヌクレオチド、(2)に記載したβCDR3ポリヌクレオチド、あるいは(1)に記載したαCDR3ポリヌクレオチドおよび(2)に記載したβCDR3ポリヌクレオチドの両方を含むDNAチップ。
 (16)(15)に記載のDNAチップを用いることを特徴とする、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度測定方法。
 (17)(1)に記載されたいずれかのαCDR3ポリヌクレオチドによりコードされるαCDR3ペプチド。
 (18)(2)に記載されたいずれかのβCDR3ポリヌクレオチドによりコードされるβCDR3ペプチド。
 (19)(3)に記載されたポリヌクレオチドのいずれかの組によりコードされるペプチドの組。
 (20)(17)もしくは(18)に記載のペプチドまたは(19)に記載のペプチドの組を含むチップ。
 (21)(17)~(19)のいずれかに記載のペプチドに対する抗体。
 (22)(21)に記載の抗体を用いることを特徴とする、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度測定方法。
 本発明によれば、本発明により決定されたCDR3塩基配列を有するTCR遺伝子を導入されたCD4+ヘルパーT細胞が得られ、これを用いてWT1特異的CTLを誘導することができ、効果的に癌を治療または予防することができる。さらに、これらのTCR配列を用いてDNAチップを作成し、検体中のWT1332特異的CD4+ヘルパーT細胞の頻度を測定することもできる。
図1Aは、本発明により得られたCD4+ヘルパーT細胞のTCRのα鎖およびβ鎖のCDR3の塩基配列およびそれによりコードされるCDR3のアミノ酸配列を示す。各配列の右端の括弧内の数は配列表の配列番号を示す。これらの配列をクローンごとに示す。V-GENE、J-GENE、D-GENEはそれぞれ、各遺伝子のV領域、J領域、D領域がどのようなものかを示す。 図1Bは、本発明により得られたCD4+ヘルパーT細胞のTCRのα鎖およびβ鎖のCDR3の塩基配列およびそれによりコードされるCDR3のアミノ酸配列を示す。各配列の右端の括弧内の数は配列表の配列番号を示す。これらの配列をクローンごとに示す。V-GENE、J-GENE、D-GENEはそれぞれ、各遺伝子のV領域、J領域、D領域がどのようなものかを示す。 図2Aは、表3に示すTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞のインターフェロンγ産生を示す。 図2Bは、表3に示すTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞のIL-2産生を示す。 図2Cは、WT1332ペプチド濃度に対するTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞のTNF-α産生応答を示す。 図2Dは、各種物質添加系でのTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞の増殖能を示す。WT1332はWT1332ペプチド存在下、α-DPは抗-HLA-DP抗体存在下、α-DQは抗-HLA-DQ抗体存在下、α-DRは抗-HLA-DR抗体存在下、HLA class Iは抗-HLAクラスI抗体存在下、HIVはHIVペプチド(FRKQNPDIVIYQYMDDLYVG)(配列番号:124)存在下での培養を示す。 図2Eは、各種物質をパルスしたPBMC存在下でのTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞の増殖を示す。WT1332はWT1332ペプチドをパルスした自己のPBMC、HWT1は全長のWT1蛋白をパルスした自己のPBMC、HWT3は短縮されたWT1蛋白(WT1332配列を含まない)をパルスした自己のPBMC、PHA-blastはPHA-blastの溶解物をパルスしたPBMC、TF1はWT1を発現する白血病細胞株TF-1の溶解物をパルスしたPBMC、K562はWT1を発現する白血病細胞株K562の溶解物をパルスしたPBMCにて刺激したことを示す。 図2Fは、各種物質をパルスしたPBMC存在下でのTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞のIFN-γ産生を示す。WT1332はWT1332ペプチドをパルスした自己のPBMC、HWT1は全長のWT1蛋白をパルスした自己のPBMC、HWT3は短縮されたWT1蛋白(WT1332配列を含まない)をパルスした自己のPBMC、PHA-blastはPHA-blastの溶解物をパルスしたPBMC、TF1はWT1を発現する白血病細胞株TF-1の溶解物をパルスしたPBMC、K562はWT1を発現する白血病細胞株K562の溶解物をパルスしたPBMCにて刺激したことを示す。 図2Gは、3人の健常人(HLA-DPB105:01陽性)に由来する、TCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞株のWT1332ペプチドに応答した各種サイトカイン産生の平均値を示す。黒棒はWT1332ペプチドでの刺激あり、白棒は刺激なしを示す。 図3Aは、PBMCとTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞を図に示した割合で共培養したときのCD3+CD8+T細胞の割合を示す。 図3Bは、PBMCとTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞を図に示した割合で共培養したときの改変型WT1235/HLA-A24:02テトラマー陽性CD8+T細胞の頻度を示す。 図3Cは、PBMCとTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞を図に示した割合で共培養したときのWT1特異的CTLの細胞数を示す。 図3Dは、PBMCとTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞を図に示した割合で共培養したときの、改変型WT1235の刺激によってインターフェロンγを発現するCD8+T細胞の頻度を示す。 図4Aは、図に示したE:T比における、TCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞によるHLA-DPB105:01陽性WT1発現白血病細胞株TF-1およびHLA-DPB105:01陰性WT1発現白血病細胞株TF-1の傷害を溶解率(%)で表す。 図4Bは、図に示したE:T比における、TCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞によるHLA-DPB105:01陽性でWT1を強制発現させたB-LCL細胞およびHLA-DPB105:01陽性でWT1を発現しないB-LCL細胞の傷害を溶解率(%)で表す。 図4Cは、図に示したE:T比における、TCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞によるK562細胞株およびHLA-DPB105:01陽性でWT1を発現する白血病細胞株C2F8の傷害を溶解率(%)で表す。 図4Dは、TCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞におけるグランザイムB(左)およびパーフォリン(右)の発現をフローサイトメトリーにて検出した結果を示す。 図4Eは、実施例4に記載された方法で培養されたTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞のCD107a産生細胞およびIFN-γ産生細胞の割合を調べたフローサイトメトリーの結果である。 図4Fは、Ac-IETD-Choにて前処理されたHLA-DPB105:01陽性TF-1細胞に対するTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞の細胞傷害活性と、DMSOにて前処理されたTF-1細胞に対するTCR遺伝子を導入されたWT1332特異的CD4+ヘルパーT細胞の細胞傷害活性を比較した結果を示す棒グラフである。棒の高さは平均値を示し、標準偏差のバーを添えてある。アステリスクはp<0.05であることを示す。 図5は、WT1332特異的CD4+T細胞由来TCR遺伝子を導入されたヒトCD4+T細胞によるNOG(登録商標)マウスでの抗腫瘍効果を示す生存曲線である。実線は、HLA-DPB105:01拘束性WT1332特異的TCRを導入したヒトCD4+T細胞を移入したマウスの生存曲線を示す。破線は、コントロールベクターを導入したヒトCD4+T細胞を移入したマウスの生存曲線を示す。
 本発明は、WT1ヘルパーペプチドに特異的なCD4+ヘルパーT細胞クローンのTCRのCDR3を含むα鎖をコードするポリヌクレオチド(αCDR3ポリヌクレオチドという)の塩基配列およびCDR3を含むβ鎖をコードするポリヌクレオチド(βCDR3ポリヌクレオチドという)の塩基配列を決定したことに基づく。したがって、本発明は、1つの態様において、図1に示す塩基配列(配列番号:1、3、5、8、10、11、13、14、16、18、20、22、23、25、27、28、30、31、33、35、37、39、41、43、45、47、49、51、53、55、56、58からなる群より選択される塩基配列)を有するαCDR3ポリヌクレオチド、ならびに図1に示す塩基配列(配列番号:2、4,6、7、9、12、15、17、19、21,24、26、29、32、34、36、38、40、42、44、46、48、50、52、54、57、59からなる群より選択される塩基配列)を有するβCDR3ポリヌクレオチドを提供する。
 好ましくは、図1に示すように、各クローンに含まれるαCDR3ポリヌクレオチドとβCDR3ポリヌクレオチドとが1つのTCRに含まれることが、受容体機能発現の観点から好ましい。すなわち、図1に示すように、各クローンに対応したαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドが組をなすことが好ましい。したがって、本発明は、さらなる態様において、αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの組であって、組を構成する各ポリヌクレオチドが図1に示す塩基配列を有するものである組を提供する。αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの組合せはクローンによって異なる。各クローン中のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの組の塩基配列は図1に示すとおりである。
 αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドに対して相補的な塩基配列を有するポリヌクレオチドも、αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドに包含される。また、図1に示すペプチドをコードする限り、αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチド配列の縮重配列も、αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドに包含される。
 αCDR3ポリヌクレオチドの塩基配列に対して、70%以上、例えば、75%以上、80%以上、85%以上または90%以上、例えば92%、94%、96%または98%以上の同一性を有する塩基配列を有するポリヌクレオチドも、αCDR3ポリヌクレオチドに包含される。βCDR3ポリヌクレオチドの塩基配列に対して、70%以上、例えば、75%以上、80%以上、85%以上または90%以上、例えば92%、94%、96%または98%以上の同一性を有する塩基配列を有するポリヌクレオチドも、βCDR3ポリヌクレオチドに包含される。
 αCDR3ポリヌクレオチドの塩基配列に対して、ストリンジェントな条件下でハイブリダイゼーションする塩基配列を有するポリヌクレオチドも、αCDR3ポリヌクレオチドに包含される。βCDR3ポリヌクレオチドの塩基配列に対して、ストリンジェントな条件下でハイブリダイゼーションする塩基配列を有するポリヌクレオチドも、βCDR3ポリヌクレオチドに包含される。
 ストリンジェントなハイブリダイゼーション条件の例としては、5xSSC、7%(w/v)SDS、100μg/ml 変性サケ精子DNAおよび5xデンハルト溶液を含む溶液中で、48~52℃にてハイブリダイゼーションを行い、0.1xSSC、0.5xSSC、1xSSCまたは2xSSC中で、48~68℃にて1時間洗浄する条件、あるいは250mM NaCl、25mM クエン酸三ナトリウム、1% SDS、50%ホルムアミドおよび200μg/ml変性サケ精子DNAを含む溶液中で、42℃にてハイブリダイゼーションを行い、15mM NaCl、1.5mM クエン酸三ナトリウムおよび0.1% SDSを含む溶液中で洗浄を行う条件が挙げられる。
 本発明は、もう1つの態様において、上記のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドによりコードされるペプチド(それぞれ、αCDR3ペプチド、βCDR3ペプチドという)を提供する。これらのペプチドは図1に示すアミノ酸配列を有する。好ましくは、これらのペプチドは、図1に示すように、各クローンに対応したαCDR3ペプチドおよびβCDR3ペプチドの組をなす。
 本明細書において、ペプチドのアミノ酸配列の表記は慣用的な1文字法または3文字法にて行う。
 上で説明したαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの変異体によりコードされるペプチドもαCDR3ペプチド、βCDR3ペプチドに包含される。αCDR3ペプチドのアミノ酸配列に対して、70%以上、例えば、75%以上、80%以上、85%以上または90%以上、例えば92%または94%以上の同一性を有するアミノ酸配列を有するペプチドも、αCDR3ペプチドに包含される。βCDR3ペプチドのアミノ酸配列に対して、70%以上、例えば、75%以上、80%以上、85%以上または90%以上、例えば92%または94%以上の同一性を有するアミノ酸配列を有するペプチドも、βCDR3ペプチドに包含される。さらに、αCDR3ペプチドのアミノ酸配列において、1個~数個(例えば、1個、2個、3個、4個または5個)のアミノ酸が置換、欠失、付加されたアミノ酸配列を有するペプチドも、αCDR3ペプチドに包含される。βCDR3ペプチドのアミノ酸配列において、1個~数個(例えば、1個、2個、3個、4個または5個)のアミノ酸が置換、欠失、付加されたアミノ酸配列を有するペプチドも、βCDR3ペプチドに包含される。ただし、これらの変異ペプチドは元のαCDR3ペプチドまたはβCDR3ペプチドと同様の特性を有するものである。
 これらのポリヌクレオチドおよびペプチドは、当業者に公知の化学的方法および/または生物学的方法を用いて合成することができる。
 本発明において、WT1ヘルパーペプチドは配列番号:123に示すアミノ酸配列(Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His)またはその変異配列を有するペプチドである(これらのペプチドをWT1332ペプチドと称する)。WT1332ペプチドはWT1ポリペプチドの部分配列またはその変異配列であってもよい。その一例として、配列番号:123に示すアミノ酸配列またはその変異配列からなるペプチドが挙げられる。
 WT1332ペプチドは、HLA-DRB115:01分子、HLA-DPB109:01分子、HLA-DPB105:01分子、HLA-DRB104:05分子またはHLA-DRB115:02分子に対する結合能を有していることが知られている。
 上記の配列番号:123に示すアミノ酸配列の変異配列とは、配列番号:123に示すアミノ酸配列において、1個~数個(例えば、1個、2個、3個、4個または5個)のアミノ酸が置換、欠失、付加されたアミノ酸配列をいう。あるいは上記の配列番号:123に示すアミノ酸配列の変異配列とは、配列番号:123に示すアミノ酸配列に対して70%以上、例えば75%以上、80%以上、85%以上または90%以上の同一性を有するアミノ酸配列をいう。配列番号:123に示すアミノ酸配列またはその変異配列を有するペプチドは、好ましくは25アミノ酸またはそれ未満の長さを有するものである。配列番号:123に示すアミノ酸配列の変異配列を有するペプチドは、配列番号:123に示すアミノ酸配列を有するペプチドと同様の特性を有するものである。
 本発明は、さらなる態様において、図1に示すいずれかの組に属するαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子に関する。かかるTCR遺伝子は、WT1332ペプチドに特異的なCD4+T細胞から単離してもよく、公知の遺伝子操作技術を用いて調製してもよい。
 本発明は、さらなる態様において、図1に示すいずれかの組に属するαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子をCD4+T細胞に導入することにより得られるCD4+ヘルパーT細胞(TCR遺伝子導入CD4+ヘルパーT細胞という)に関する。TCR遺伝子導入CD4+ヘルパーT細胞は、WT1332特異的かつHLAクラスII拘束性に増殖反応およびサイトカイン産生を示す。
 図1に示す1つの組に属するαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子をCD4+T細胞に導入することは、当業者が容易に行いうることである。例えば、各種ベクター、エレクトロポレーション、あるいは遺伝子銃などを用いることにより、TCR遺伝子を導入することができる。導入されるTCR遺伝子は、TCR発現効率の向上などを目的として、改変が加えられていてもよい。
 したがって、本発明は、さらなる態様において、図1に示すいずれかの組のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子を含むベクターを提供する。
 TCR遺伝子の導入は、αCDR3ポリヌクレオチドを含むTCRのα鎖遺伝子と、βCDR3ポリヌクレオチドを含むTCRのβ鎖遺伝子を別々のベクターに挿入し、これらのベクターをCD4+T細胞に導入することにより行ってもよい。
 αCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子を導入されるCD4+T細胞としては、HLA-DRB115:01陽性、HLA-DPB109:01陽性、HLA-DPB105:01陽性、HLA-DRB104:05陽性またはHLA-DRB115:02陽性の対象に由来するものが例示されるが、これらに限定されない。また、CD4+T細胞は、癌にかかっている対象および癌にかかっていない対象(健常人を含む)のいずれに由来するものであってもよく、あるいは骨髄移植のドナーに由来するものであってもよい。
 本発明は、さらなる態様において、図1に示すいずれかの組に属するαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子を含む、WT1332特異的CD4+ヘルパーT細胞にも関する。
 TCR遺伝子導入CD4+ヘルパーT細胞を用いて、WT1特異的CTLの誘導を増強することができる。具体的には、TCR遺伝子導入CD4+ヘルパーT細胞と末梢血単核細胞を共培養することにより、WT1特異的CTLの誘導を増強することができる。したがって、本発明は、さらなる態様において、TCR遺伝子導入CD4+ヘルパーT細胞と末梢血単核細胞を共培養することを特徴とする、WT1特異的CTLの誘導増強方法を提供する。もう1つの態様において、本発明は、上記方法により得られるWT1特異的CTLに関する。
 TCR遺伝子導入CD4+ヘルパーT細胞と末梢血単核細胞との共培養の方法および条件は公知である。当方法は、インビボあるいはインビトロいずれにおいても行うことができる。WT1特異的CTLの誘導を増強する際に用いるTCR遺伝子導入CD4+ヘルパーT細胞は1種類であってもよいが、2種類以上のTCR遺伝子導入CD4+ヘルパーT細胞を用いることが好ましい。
 本発明のWT1特異的CTLの誘導増強方法において用いられる末梢血単核細胞としては、HLA-DRB115:01陽性、HLA-DPB109:01陽性、HLA-DPB105:01陽性、HLA-DRB104:05陽性またはHLA-DRB115:02陽性の対象に由来するものが例示されるが、これらに限定されない。好ましくは、末梢血単核細胞およびCD4+T細胞は、癌を治療または予防すべき対象から得られたものである。
 共培養の際に、WT1332ペプチドおよび/または他のWT1ペプチドが共存していることは好ましい。他のWT1ペプチドとして、HLA-DRB115:01分子、HLA-DPB109:01分子、HLA-DPB105:01分子、HLA-DRB104:05分子またはHLA-DRB115:02分子に対する結合能を有するものが例示されるが、これらに限定されない。
 上記方法により誘導されたWT1特異的CTLを、必要に応じてさらに培養して細胞数を増加させ、対象に投与することにより、対象における癌の治療または予防に資することができる。このような癌の治療または予防において、WT1332ペプチドおよび/または他のWT1ペプチドを共投与することは好ましい。WT1特異的CTLの作用により、他の癌抗原に対して特異的なCTLも誘導されうる。
 TCR遺伝子導入CD4+ヘルパーT細胞は、WT1を発現する癌細胞に傷害を与えることができる。したがって、本発明は、さらなる態様において、TCR遺伝子導入CD4+ヘルパーT細胞を対象に導入することを特徴とする、対象における癌の治療または予防方法を提供する。
 本発明は、さらなる態様において、TCR遺伝子導入CD4+ヘルパーT細胞を含有する、癌の治療または予防のための医薬組成物、癌の治療または予防のための医薬の製造のためのTCR遺伝子導入CD4+ヘルパーT細胞の使用、ならびに癌の治療または予防のためのTCR遺伝子導入CD4+ヘルパーT細胞の使用を提供する。
 なお、本明細書において、癌の「治療」とは、癌の進行を抑制すること、癌を縮小させること、癌を消失させる等の癌の処置だけでなく、癌の再発を防止することも含む。
 癌を治療または予防される対象としては、HLA-DRB115:01陽性、HLA-DPB109:01陽性、HLA-DPB105:01陽性、HLA-DRB104:05陽性またはHLA-DRB115:02陽性の対象が例示されるが、これらに限定されない。上記対象は、癌患者に限られず、癌にかかっていない人(健常人を含む)であってもよく、骨髄移植のドナーであってもよい。
 上記治療または予防方法、医薬組成物および使用の具体例の1つを以下に説明するが、この例に限定されるものではない。まず、治療を要する癌患者の末梢血からCD4+T細胞を採取し、これにαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子を導入して、TCR遺伝子導入CD4+ヘルパーT細胞を得る。かくして得られたTCR遺伝子導入CD4+ヘルパーT細胞を当癌患者に投与するのであるが、その前に、適当な条件下でTCR遺伝子導入CD4+ヘルパーT細胞を培養して増殖させて、十分な数の細胞を得てから、当癌患者に投与することができる。
 投与されるTCR遺伝子導入CD4+ヘルパーT細胞は1種類であってもよいが、2種類以上のTCR遺伝子導入CD4+ヘルパーT細胞を対象に投与するほうが、治療または予防効果の向上の点から好ましい。
 TCR遺伝子導入CD4+ヘルパーT細胞を対象に投与する場合、投与細胞数、投与回数、投与間隔などの条件は医師が適宜決定することができる。例えばTCR遺伝子導入CD4+ヘルパーT細胞を1回だけ投与してもよく、複数回に分けて投与してもよい。典型的には、成人対象の場合、1回に投与されるTCR遺伝子導入CD4+ヘルパーT細胞数は約10個~約1011個であるが、これらの量に限定されない。
 上記治療または予防方法、医薬組成物および使用において、WT1332ペプチドおよび/または他のWT1ペプチドを共投することは好ましい。WT1332ペプチドおよび/または他のWT1ペプチドの投与量および投与回数は、医師が適宜決定することができる。また、他の抗癌治療または予防を併用してもよい。
 上記治療または予防方法、医薬組成物および使用は、固形癌、血液癌を問わず広範囲の種類の癌に適用することができ、例えば、急性骨髄性白血病、急性リンパ性白血病、悪性リンパ腫、多発性骨髄腫、慢性骨髄性白血病、骨髄異形成症候群、同種造血幹細胞移植後再発などの血液悪性疾患;舌癌、歯肉癌、口腔底癌、咽頭癌、喉頭癌、唾液腺癌、甲状腺癌などの固形癌;乳癌、肺癌、胸腺癌などの胸部の癌;大腸癌、小腸癌、胃癌、膵臓癌、肝癌、胆管癌、消化器内分泌腫瘍、消化管カルチノイドなどの消化器の癌;腎癌、尿路上皮癌、胚細胞腫、ウイルムス腫瘍、前立腺癌、子宮体癌、子宮頚癌、子宮肉腫、卵巣悪性腫瘍などの尿路生殖器系の癌;骨原発性悪性腫瘍(骨肉種、Ewing肉腫など)、軟部肉腫などの筋・骨格系の悪性腫瘍;その他皮膚癌、神経芽細胞腫、悪性神経膠腫(グリオブラストーマ)、中枢神経原発悪性リンパ腫、髄芽腫・PNETなどに適用できるが、これらの癌や腫瘍に限定されない。
 CDR3は最も多様性に富む領域であり、抗原認識の特異性に最も強く関与する部分である。それゆえ、本発明のαCDR3ポリヌクレオチド、βCDR3ポリヌクレオチド、αCDR3ペプチド、βCDR3ペプチドの配列は、WT1332ペプチドに特異的なCD4+ヘルパーT細胞に特有の配列であると考えられる。したがって、あるCD4+ヘルパーT細胞のTCRのα鎖およびβ鎖のCDR3領域をコードするポリヌクレオチドまたはそのCDR3領域のペプチドが本発明のポリヌクレオチドまたは本発明のペプチドの配列を有していれば、そのCD4+ヘルパーT細胞はWT1332ペプチドに特異的であると考えられる。
 例えば、(i)1種またはそれ以上のαCDR3ポリヌクレオチドを含むDNAチップ、(ii)1種またはそれ以上のβCDR3ポリヌクレオチドを含むDNAチップ、あるいは(iii)1種またはそれ以上のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドの両方を含むDNAチップを用いて、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度を測定することができる。具体的には、対象から得られた検体中の細胞を公知の方法により溶解させ、核酸を抽出することにより調製した試料をDNAチップに接触させる。
 例えば、(i)のチップに試料を接触させて、いずれかの位置にハイブリダイゼーションが見られたならば、(ii)のチップに同じ試料を接触させて、ハイブリダイゼーションが見られるかどうか確認する。そして、(i)のチップおよび(ii)のチップにおけるハイブリダイゼーションが、図1に示すいずれかの組を構成するαCDR3ポリヌクレオチドとβCDR3ポリヌクレオチドとの間で生じたならば、試料中に機能的なTCRを有するWT1332ペプチドに特異的なCD4+ヘルパーT細胞が存在すると判断することができる。(iii)のチップを用いれば、上記操作を1工程で行うことが可能である。
 DNAチップはマイクロチップ、マイクロアレイなどの形態であってもよい。これらのチップは公知の方法により作製することができ、例えば、ガラス基盤上にαCDR3ポリヌクレオチドおよび/またはβCDR3ポリヌクレオチドを公知の方法で固定することができる。試料中のDNAあるいはチップ上のDNA配列に、ハイブリダイゼーションの有無およびハイブリダイゼーション量を示すことのできる標識を付しておくことが好ましい。
 DNAチップ以外にも、サザンブロット、ノーザンブロット、コロニーハイブリダイゼーションなどの手法を用いて、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度を測定することができる。
 さらに、αCDR3ペプチドおよびβCDR3ペプチドを用いて、WT1332ペプチドに特異的なCD4+ヘルパーT細胞に対する抗体を得ることもできる。かかる抗体を用いて、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞を検出することができる。かかる抗体を用いて、WT1332ペプチドに特異的なCD4+ヘルパーT細胞の受容体を刺激することもできる。かかる刺激はインビボ、インビトロいずれにおいても行うことができる。
 αCDR3ペプチドを含むチップあるいはβCDR3ペプチドを含むチップ、あるいはαCDR3ペプチドおよびβCDR3ペプチドの両方を含むチップを用いて、WT1332ペプチドに特異的なCD4+ヘルパーT細胞に対する抗体を検出することもできる。
 これらのペプチドを含むチップは、公知の方法にて作製することができる。試料中のペプチドあるいはチップ上のペプチドに、特異的結合の有無を判別できる標識を付しておくことが好ましい。
 αCDR3ペプチドおよび/またはβCDR3ペプチドに対する抗体を含むチップを用いて、試料中のαCDR3ペプチドおよび/またはβCDR3ペプチドの種類や量を調べることもでき、あるいは試料中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の種類や量を調べることができる。
 これらの抗体を固定したチップは、公知の方法にて作製することができる。試料中のペプチドあるいはチップ上の抗体に、特異的結合の有無を判別できる標識を付しておくことが好ましい。
配列の説明
配列番号:1-59は、CD4+ヘルパーT細胞クローンのTCRに含まれるCDR3をコードするヌクレオチド配列である。
配列番号:60-118は、CD4+ヘルパーT細胞クローンのTCRに含まれるCDR3のアミノ酸配列である。
配列番号:119は、TCRα鎖増幅用のリバースプライマーである。
配列番号:120は、TCRβ鎖増幅用のリバースプライマーである。
配列番号:121は、TCRβ鎖増幅用のリバースプライマーである。
配列番号:122は、CDR3ヌクレオチド配列決定用のプライマーである。
配列番号:123は、WT1332ペプチドのアミノ酸配列である。
配列番号:124は、HIVペプチドのアミノ鎖配列である。
配列番号:125は、天然WT1ペプチドの変異体のアミノ酸配列である。
 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例は本発明を限定するものと解してはならない。
実施例1 WT1332特異的CD4+T細胞クローンの樹立とT細胞受容体(TCR)遺伝子の単離および配列決定
 実験手順は以下のとおりであった。
(1)WT1332特異的CD4+T細胞クローンの樹立法
(i)健常人由来末梢血単核球(PBMC)を採取し、24穴プレートに3×10 cells/wellで播く。メディウムは10% AB serum、40IU/ml IL-2添加X-VIVO 15メディウムを用いる。
(ii)上記iにWT1332ペプチドを終濃度20μg/mlで添加し7日間培養する。
(iii)7日後、細胞を回収し10% AB serum添加X-VIVO 15メディウムで1×10 cells/mlとなるように調製し、それを100μlずつ丸底96穴プレートに播く。
(iv)10% AB serum添加X-VIVO 15メディウムにWT1332ペプチド、BD GolgiStopTM (BD Bioscience)およびCD28/CD49d Costimulatory Reagent (BD Bioscience)をそれぞれ終濃度40μg/ml、終濃度4μg/mlおよび終濃度4μg/mlになるように添加する。
(v)上記ivを100μlずつ上記iiiに加える。
(vi)上記vに抗-ヒトCD154-APC標識抗体(BD Bioscience)を10μlずつ加えて、37℃、5% COインキュベーターで6時間インキュベーションする。
(vii)インキュベーション後、細胞を回収し、抗-ヒトCD4-APC-H7標識抗体(BD Bioscience)、抗-ヒトCD3-Pacific Blue標識抗体(BD Bioscience)および死細胞を除くために7-AAD(eBioscience)で染色する。
(viii)3人の健常人からPBMCを採取・混合し、30Gyのγ線を照射し終濃度10% AB serum、終濃度100IU/ml IL-2、終濃度3μg/ml PHA添加X-VIVO 15メディウムで1×10 cells/mlとなるように調製する。これを100μlずつ丸底96穴プレートに播く。
(ix)FACSAria cell sorterを用いて7-AAD-CD3+CD4+CD154+細胞分画、つまりWT1332特異的CD4+T細胞が含まれる細胞分画を上記viiiの各ウェルにシングルセルソーティングする。
(x)10~14日間の培養後、増殖してきた各ウェルの細胞を独立したCD4+T細胞クローンとする。
(2)WT1332特異的CD4+T細胞クローンのスクリーニング
(i)上記(1)-xの各CD4+T細胞クローンを3×10 cells/mlとなるように1% AB serum添加X-VIVO 15メディウム中に調製する。
(ii)WT1332をパルスした、もしくはペプチドを何もパルスしていない自己(autologous)PBMCに30Gyのγ線を照射し、1×10 cells/mlとなるように1% AB serum添加X-VIVO 15メディウム中に調製する。
(iii)上記(2)-iおよびiiを100μlずつ丸底96穴プレートに播く。
(iv)2日間の培養後、各ウェルにH-チミジンを1μCi/wellになるように添加する。
(v)18時間後に各CD4+T細胞クローンに取り込まれたH-チミジンを測定し、WT1332特異的な増殖反応を示すCD4+T細胞クローンを選び出す。これをWT1332特異的CD4+T細胞クローンとする。
(vi)WT1332特異的CD4+T細胞クローンの培養は1~2週間に一度くらいの頻度でWT1332をパルスした自己(autologous)PBMCに30Gyのγ線を照射したものと共培養することで、WT1332特異的CD4+T細胞クローンを刺激し行う。
(3)5’-RACE(Rapid Amplification of cDNA End)法を用いたTCR遺伝子の単離
(i)WT1332特異的CD4+T細胞クローンを最後の刺激から10日間以上培養する。これは刺激に用いる自己(autologous)PBMCに含まれるT細胞の混入を防ぐためである。
(ii)WT1332特異的CD4+T細胞クローンをペレットにし、そこにTRIzol試薬(Invitrogen)を加えて、そのマニュアルに従ってRNAを抽出する。
(iii)上記(3)-iiで抽出したRNAをクロンテック社SMARTerTM RACE cDNA Amplification Kitを用いてcDNAを合成する。
(iv)上記(3)-iiiで合成したcDNAを鋳型にしてTCR α鎖およびβ鎖遺伝子を増幅する。用いるプライマーはSMARTerTM RACE cDNA Amplification Kitに付属のUPMプライマーをフォワードプライマーとし、以下のTCR特異的プライマーをリバースプライマーとした:
Cα3’UTR-primer: 5’-CAC AGG CTG TCT TAC AAT CTT GCA GAT C-3’ (配列番号:119)
Cβ1-3’UTR-primer: 5’-CTC CAC TTC CAG GGC TGC CTT CA-3’ (配列番号:120)
Cβ2-3’UTR-primer: 5’-TGA CCT GGG ATG GTT TTG GAG CTA-3’ (配列番号:121)。
(v)TCR遺伝子の増幅にはToYoBo社のKOD FXを用いて、94℃、3min→(98℃、10sec→68℃、1min)×35サイクル、の条件で行った。
(vi)PCR産物の大きさをアガロースゲル電気泳動を用いて確認し1kbp付近のバンドをゲルから切り出して精製する。
(vii)上記(3)-viの精製済みPCR産物にアデニンをTaq polymeraseを用いて付加した後、pCR2.1ベクター(Invitrogen)にライゲーションする。
(viii)上記(3)-viiをコンピテントセルHST02に形質転換し、シングルコロニーからプラスミドを精製したのち、シークエンスを行う。
(ix)シークエンスの解析はThe International Immunogenetics Information System(http://www.imgt.org/IMGT_vquest/vquest?livret=0&Option=humanTcR)を用いて行い各TCR遺伝子を同定する。
 上記(3)「5’-RACE(Rapid Amplification of cDNA End)法を用いたTCR遺伝子の単離」について、詳細な実験手順を以下に示す。
(3-1)RNA抽出
 T細胞クローンからのRNA抽出はTRIzol Reagent(Invitrogen社)を用いて行った。用いるT細胞クローンはフィーダー細胞の混入を防ぐ目的で、3週間以上IL-2存在下で抗原刺激を加えないで培養したものを準備した。抽出されたRNAはRNase-free waterに溶かし、-80℃で保存した。
(3-2)5’-RACE(Rapid Amplification of cDNA Ends)法を用いた完全長TCR(T cell receptor)cDNAのクローニング
 TCR α/βのクローニングにはSMARTerTM RACE cDNA Amplification Kit(Clontech社)を用いた。まず最初に、そのマニュアルに従い5’-RACE反応を行い1stストランドcDNAを合成した。その後、完全長TCR α鎖およびβ鎖cDNAを得るために、それぞれの3’UTR (Untranslated Region)に特異的なリバースプライマーとキットに付属のユニバーサルプライマー(UPM)を用い、合成された1stストランドcDNAを鋳型としてPCR反応を行った。使用したリバースプライマーは以下の通りである。
Cα 3’UTR-RACE-primer: CACAGGCTGTCTTACAATCTTGCAGATC (配列番号:119)
Cβ1 3’UTR-RACE-primer: CTCCACTTCCAGGGCTGCCTTCA (配列番号:120)
Cβ2 3’UTR-RACE-primer: TGACCTGGGATGGTTTTGGAGCTA (配列番号:121)
また、PCR反応はKOD FX(TOYOBO社)を用いて以下の反応液組成で行った。
 2ページ前のプライマー、つまり、Cα3’UTR-primer、Cβ1-3’UTR-primerおよびCβ2-3’UTR-primerと同じものなので、名前をどちらかに統一したほうがいいかと思いますが、いかがでしょう。

Figure JPOXMLDOC01-appb-T000001
 PCR反応後に1.0%アガロースゲル電気泳動を行い、900~1000bp付近のシングルバンドを切り出し、QIAquick Gel Extraction Kit(QIAGEN社)を用いてPCR生成物を50μlの蒸留水で精製した。PCR生成物をTAクローニングするためには、PCR生成物の両末端にアデニンを付加する必要がある。アデニンの付加にはPlatinum Taq DNA polymerase(invitrogen社)を用い、以下のように行った。
(1)下表に示す2×反応液を作製する。
Figure JPOXMLDOC01-appb-T000002
(2)2×反応液を95℃,5分でインキュベーションする
(3)精製したPCR生成物を50μl加える。
(4)72℃,10分インキュベーションする。
 アデニンを付加したPCR生成物は、エタノール沈殿により精製・濃縮後、pCR2.1ベクター(invitrogen社)にDNA Ligation Kit <Mighty Mix>(TaKaRa社)を用いて挿入された。PCR productを含むpCR2.1ベクターはHST02コンピテント細胞に形質転換により導入・クローニングされた。
(3-3)完全長TCR α鎖およびβ鎖cDNAを含んだプラスミドの精製
 形質転換されたHST02コンピテント細胞は、アンピシリン/LBプレートに播種され、37℃でインキュベーションされた。その後、シングルコロニーをアンピシリン/LB液体培地に取り、37℃,200rpmで撹拌しつつインキュベーションした。その後、大腸菌液からプラスミドをAUTOMATIC DNA ISOLATION SYSTEM PI-50(KURABO社)を用いて精製した。
(3-4)シークエンスによるTCRのCDR3配列の決定
 精製したプラスミドのシークエンスにはBigDye(登録商標) Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems社)を用いた。またプライマーにはM13リバースプライマー:
caggaaacagctatgac (配列番号:122)
を使用した。TCRおよびCDR3の解析には、IMGT/V-QUEST(http://www.imgt.org/IMGT_vquest/share/textes/)を利用した。
 決定されたCDR3の塩基配列およびアミノ酸配列を図1に示す。いくつかのクローンにおいては、2種のα鎖が存在し、2種類のCDR3配列が存在した。
実施例2 ヒトCD4+T細胞へのWT1332特異的CD4+T細胞由来T細胞受容体(TCR)遺伝子の導入
 WT1332特異的CD4+T細胞由来T細胞受容体(TCR)遺伝子を導入されたヒトCD4+T細胞はWT1332特異的かつHLAクラスII拘束性に増殖反応およびサイトカイン産生を示すことを確認した。
 HLA-DPB105:01拘束性にWT1332を特異的に認識するCD4+T細胞クローンであるクローン9から表3に示すTCR遺伝子を単離した。このTCR遺伝子をレンチウイルスベクターを用いて、健常人末梢血由来CD4+T細胞に導入し、WT1332に対する反応をサイトカイン(インターフェロンγおよびIL-2)の産生を指標に検討した(図2A、B)。また、コントロールとしてTCR遺伝子を持たないレンチウイルスベクター(mockと標記)を導入したCD4+T細胞を用いた。WT1332特異的TCR遺伝子を導入したCD4+T細胞(実施例セクションにおいて「WT1332-TCR-transduced CD4+T細胞」という)はWT1332にのみ反応して、つまりWT1332特異的にIFN-gおよびIL-2を産生した。一方、mock-transduced CD4+T細胞はWT1332特異的サイトカイン産生を示さなかった。
 WT1332-TCR-transduced CD4+T細胞のサイトカイン発現に及ぼすWT1332ペプチド濃度の影響を調べた。WT1332-TCR-transduced CD4+T細胞を各種濃度のWT1332ペプチドにて4時間刺激し、細胞内サイトカイン染色アッセイを行って、CD4+T細胞に対するTNF-α産生CD4+T細胞の割合を調べた。結果を図2Cに示す。サイトカイン産生はWT1332ペプチド濃度依存的であり、ED50は4.85μMであった。
 WT1332-TCR-transduced CD4+T細胞の増殖能を調べると、WT1332特異的に強い増殖能が認められ、その増殖反応はanti-HLA-DP抗体で顕著に抑制された(図2D)。
 次に、WT1332ペプチドをパルスした自己のPBMC、全長のWT1蛋白をパルスした自己のPBMC、短縮されたWT1蛋白(WT1332配列を含まない)をパルスした自己のPBMC、PHA-blastの溶解物をパルスしたPBMC、WT1を発現する白血病細胞株TF-1の溶解物をパルスしたPBMC、WT1を発現する白血病細胞株K562の溶解物をパルスしたPBMCに対するWT1332-TCR-transduced CD4+T細胞の増殖応答およびIFN-γ産生を調べた。細胞増殖は[H]-チミジン取り込みにより測定し、IFN-γはELISAにより測定した。結果を図2Eおよび図2Fにそれぞれ示す。WT1332-TCR-transduced CD4+T細胞の増殖およびIFN-γ産生は、WT1を発現する白血病細胞株(TF-1およびK562)の溶解物をパルスしたPBMCにより顕著に刺激され、WT1332ペプチドをパルスした自己のPBMCおよび全長のWT1蛋白をパルスした自己のPBMCによっても刺激されることがわかった。
 さらに、3人の健常人(HLA-DPB105:01陽性)ドナーに由来する、実施例2と同様に調製されたWT1332-TCR-transduced CD4+T細胞株(つまり3種類)のWT1332ペプチドに応答した各種サイトカイン産生についても調べた。3種類の細胞株のサイトカイン産生能の平均値を図2Gに示す。IL-2、IFN-γ、TNF-αおよびGM-CSFといったTh1タイプのサイトカインの産生が多かった。

Figure JPOXMLDOC01-appb-T000003
実施例3 WT1332特異的CD4+T細胞由来TCR遺伝子を導入されたヒトCD4+T細胞によるWT1特異的CTLの誘導増強
 一般に、CD4+T細胞はヘルパーT細胞として働き、がん細胞を攻撃する主要なエフェクター細胞であるCD8+T細胞(CTL)の誘導やその維持に重要である事が知られている。そこで、WT1332-TCR-transduced CD4+T細胞がWT1特異的CTLの誘導を増強するか検討した。
 HLA-A24:02およびHLA-DPB105:01陽性健常人のPBMCに同一の健常人から作製したWT1332-TCR-transduced CD4+T細胞を10:1および5:1の割合(図3では1:0.1および1:0.2と表記)で混合し、HLA-A24:02拘束性WT1由来CTLエピトープである改変型WT1235ペプチド(HLA-A24:02分子に結合する天然型WT1ペプチドの2番目のアミノ酸MをYに改変したもの(CYTWNQMNL)(配列番号:125)とWT1332の存在下で一週間培養した。その後、再び改変型WT1235ペプチドで、HLA-A24:02分子への結合能を増強させたもの)で刺激して、さらに一週間培養した。一連の培養は、CD4+T細胞のhelp activityを正しく評価するためにIL-2は一切加えなかった。計2週間の培養後にCD8+T細胞の頻度、改変型WT1235/ HLA-A24:02テトラマー陽性CD8+T細胞の頻度および改変型WT1235特異的インターフェロンγ(IFN-g)発現CD8+T細胞の頻度を指標に、WT1332-TCR-transduced CD4+T細胞によってWT1特異的CTLの誘導が増強されたか評価した。その結果、コントロールであるmock-transduced CD4+T細胞を加えて培養したものと比べ、WT1332-TCR-transduced CD4+T細胞と共培養したものでCD8+T細胞の頻度が有意に高かった(図3A)。さらにWT1特異的CTLである改変型WT1235/HLA-A24:02テトラマー陽性CD8+T細胞はWT1332-TCR-transduced CD4+T細胞と共培養したもので明らかな陽性集団が確認できたが、コントロールでは確認できなかった(図3B)。これらの結果から100000個のリンパ球に存在するWT1特異的CTLの細胞数を算出すると、その細胞数はコントロールと比較してWT1332-TCR-transduced CD4+T細胞と共培養したもので約28倍高かった(図3C)。同様に、改変型WT1235の刺激によってIFN-gを発現するCD8+T細胞の頻度も、WT1332-TCR-transduced CD4+T細胞と共培養したもので有意に高かった(図3D)。以上よりWT1332-TCR-transduced CD4+T細胞はWT1特異的CTLの誘導を増強することが明らかになった。
実施例4 WT1332特異的CD4+T細胞由来TCR遺伝子を導入されたヒトCD4+T細胞によるWT1発現白血病細胞のHLA-DPB105:01拘束性傷害
 次に、WT1332-TCR-transduced CD4+T細胞の細胞傷害活性、つまりkilling activityを評価した。
 まず、HLA-DPB105:01遺伝子を単離しWT1を発現する白血病細胞株TF-1に遺伝子導入しHLA-DPB105:01陽性TF-1細胞を作製した。図4Aに示すように、WT1332-TCR-transduced CD4+T細胞はHLA-DPB105:01陽性TF-1細胞を強く傷害したが、HLA-DPB105:01陰性TF-1細胞に対しては細胞傷害活性を示さなかった。そこで、この細胞傷害活性がWT1特異的なものか確認するためにHLA-DPB105:01陽性で、WT1を発現しないB-LCL細胞(B-LCL(-)と標記)にWT1遺伝子を強制発現させたB-LCL(+)を作製し、これらを標的細胞としてWT1332-TCR-transduced CD4+T細胞の細胞傷害活性を評価した。図4Bに示すようにB-LCL(+)はWT1332-TCR-transduced CD4+T細胞によって強く傷害されたが、B-LCL(-)は傷害されなかった。これらの結果より、WT1332-TCR-transduced CD4+T細胞はHLA-DPB105:01拘束性かつWT1特異的に細胞傷害活性を有することが明らかとなった。さらに、HLA-DPB105:01陽性でWT1を発現する白血病細胞株C2F8を用いて、このWT1332-TCR-transduced CD4+T細胞の細胞傷害活性を確認した(図4C)。
 次に、WT1332-TCR-transduced CD4+T細胞が、グランザイムB(granzyme B)およびパーフォリン(perforin)経路により細胞傷害活性を発揮するかどうかについて調べた。WT1332-TCR-transduced CD4+T細胞において、グランザイムBおよびパーフォリンの高発現がみられた(図4D)。
 WT1332-TCR-transduced CD4+T細胞および空のベクターで同様に処理されたCD4+T細胞(mock-transduced CD4+T細胞)を、WT1332ペプチドをパルスしたHLA-DPB105:01陽性TF-1細胞またはWT1332ペプチドをパルスしていないHLA-DPB105:01陽性TF-1細胞とともに、抗-CD107a-APCモノクローナル抗体の存在下で5時間培養した。その後IFN-γ染色を行ってフローサイトメトリーに供した。WT1332-TCR-transduced CD4+T細胞をWT1332ペプチドをパルスしたHLA-DPB105:01陽性TF-1細胞とともにインキュベーションした場合にのみ、WT1332-TCR-transduced CD4+T細胞においてIFN-γおよびCD107aの同時発現がみられた(図4E)。このことは、WT1332-TCR-transduced CD4+T細胞において脱顆粒が起こっていることを示す。
 WT1332-TCR-transduced CD4+T細胞の細胞傷害活性がグランザイムB/パーフォリン経路に依存するものであるかどうかを確認するために、100μMのグランザイム阻害剤Ac-IETD-Choにて前処理されたHLA-DPB105:01陽性TF-1細胞を標的細胞として用いた。HLA-DPB105:01陽性TF-1細胞を100μMのAc-IETD-ChoまたはDMSO(コントロール)にて2時間前処理し、その後51Crにて標識し、WT1332-TCR-transduced CD4+T細胞とともにインキュベーションし、51Cr放出アッセイを行った。Ac-IETD-Choにて前処理されたHLA-DPB105:01陽性TF-1細胞に対するWT1332-TCR-transduced CD4+T細胞の細胞傷害活性は、DMSOにて前処理されたTF-1細胞に対する細胞傷害活性と比較して著しく低かった(図4F)。
 これらの結果を総合すると、本発明で得られたWT1332-TCR-transduced CD4+T細胞は、WT1を発現する、HLA-DPB105:01陽性白血病細胞を直接認識し、グランザイムB/パーフォリン経路によりそれらに傷害を与えることが確認された。
実施例5 WT1332特異的CD4+T細胞由来TCR遺伝子を導入されたヒトCD4+T細胞によるNOG(登録商標)マウスでの抗腫瘍効果
 WT1発現HLA-DPB105:01陽性ヒト白血病細胞C2F8(5×10個)をNOG(登録商標)マウス(7匹)に尾静脈より移入した。翌日、実験系として、HLA-DPB1*05:01拘束性WT1332特異的TCR(配列番号14と15)を導入したヒトCD4+T細胞(5×10 個)および抗原提示細胞としてT細胞を除去した同一人のヒト末梢血単核球(2×10 個)を上記NOG(登録商標)マウス(3匹)の尾静脈より移入した。コントロールとして、コントロールベクターを導入したヒトCD4+T細胞(5×10 個)および抗原提示細胞としてT細胞を除去した同一人のヒト末梢血単核球(2×10 個)を上記NOG(登録商標)マウス(4匹)の尾静脈より移入した。
 1週間後および2週間後に、実験系のマウスにはHLA-DPB105:01拘束性WT1332特異的TCRを導入したヒトCD4+T細胞(5×10 個)を尾静脈より移入した。コントロールのマウスにはコントロールベクターを導入したヒトCD4+T細胞(5×10 個)を尾静脈より移入した。その後、マウスの生存を調べた。
 結果を図5に示す。実験系のマウスの生存率はコントロールのマウスの生存率を上回ったことから、HLA-DPB105:01拘束性WT1332特異的TCR導入ヒトCD4+T細胞は、インビボで抗腫瘍効果を有することが示された。
 本発明は、癌の治療または予防のための医薬品の分野、癌の研究用試薬の分野、癌の検査試薬やキットの分野などにおいて利用可能である。

Claims (22)

  1.  配列番号:1、3、5、8、10、11、13、14、16、18、20、22、23、25、27、28、30、31、33、35、37、39、41、43、45、47、49、51、53、55、56、58からなる群より選択される塩基配列を有するポリヌクレオチドであって、配列番号:123に示されるアミノ酸配列またはその変異配列を有するWT1ヘルパーペプチド(WT1332ペプチドという)に特異的なCD4+ヘルパーT細胞のTCRのα鎖のCDR3をコードするポリヌクレオチド(αCDR3ポリヌクレオチドという)。
  2.  配列番号:2、4,6、7、9、12、15、17、19、21,24、26、29、32、34、36、38、40、42、44、46、48、50、52、54、57、59からなる群より選択される塩基配列を有するポリヌクレオチドであって、WT1332ペプチドに特異的なCD4+ヘルパーT細胞のTCRのβ鎖のCDR3をコードするポリヌクレオチド(βCDR3ポリヌクレオチドという)。
  3.  請求項1に記載のαCDR3ポリヌクレオチドおよび請求項2記載のβCDR3ポリヌクレオチドの組であって、各ポリヌクレオチドが下記の塩基配列を有するものであるポリヌクレオチドの組:

    αCDR3ポリヌクレオチド     βCDR3ポリヌクレオチド
      配列番号:1            配列番号:2   
      配列番号:3            配列番号:4   
      配列番号:5            配列番号:6   
      配列番号:3            配列番号:7   
      配列番号:8            配列番号:9   
      配列番号:10           配列番号:12   
      配列番号:11           配列番号:12   
      配列番号:13           配列番号:15   
      配列番号:14           配列番号:15   
      配列番号:16           配列番号:17   
      配列番号:18           配列番号:19   
      配列番号:20           配列番号:21   
      配列番号:22           配列番号:24   
      配列番号:23           配列番号:24   
      配列番号:25           配列番号:26   
      配列番号:27           配列番号:4   
      配列番号:28           配列番号:29   
      配列番号:30           配列番号:32   
      配列番号:31           配列番号:32   
      配列番号:33           配列番号:34   
      配列番号:35           配列番号:36   
      配列番号:37           配列番号:38   
      配列番号:39           配列番号:40   
      配列番号:41           配列番号:42   
      配列番号:43           配列番号:44   
      配列番号:45           配列番号:46   
      配列番号:47           配列番号:48   
      配列番号:49           配列番号:50   
      配列番号:51           配列番号:52   
      配列番号:53           配列番号:54   
      配列番号:55           配列番号:57   
      配列番号:56           配列番号:57   
      配列番号:58           配列番号:59   
    ただし、上記配列はその相補配列または縮重配列であってもよい。
  4.  請求項3に記載したいずれかの組のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチドを含むTCR遺伝子。
  5.  WT1332ペプチドに特異的なCD4+T細胞から得られる請求項4に記載したTCR遺伝子。
  6.  請求項4または5に記載したTCR遺伝子をCD4+T細胞に導入することを特徴とする、WT1332ペプチドに特異的なCD4+ヘルパー細胞の製造方法。
  7.  請求項6に記載した方法により得られるCD4+ヘルパーT細胞。
  8.  請求項3に記載したいずれかのポリヌクレオチドの組のαCDR3ポリヌクレオチドおよびβCDR3ポリヌクレオチド含むTCR遺伝子を含むベクター。
  9.  該導入が請求項8に記載のベクターを用いて行われる請求項6に記載の方法。
  10.  請求項7に記載したCD4+ヘルパーT細胞と末梢血単核細胞を共培養することを特徴とする、WT1特異的CTLの誘導増強方法。
  11.  請求項10に記載した方法により得られるWT1特異的CTL。
  12.  請求項7に記載したCD4+ヘルパーT細胞を対象に導入することを特徴とする、対象における癌の治療または予防方法。
  13.  請求項7に記載したCD4+ヘルパーT細胞を含有する、癌の治療または予防のための医薬組成物。
  14.  癌の治療または予防のための医薬の製造のための、請求項7に記載したCD4+ヘルパーT細胞の使用。
  15.  請求項1に記載したαCDR3ポリヌクレオチド、請求項2に記載したβCDR3ポリヌクレオチド、あるいは請求項1に記載したαCDR3ポリヌクレオチドおよび請求項2に記載したβCDR3ポリヌクレオチドの両方を含むDNAチップ。
  16.  請求項15に記載のDNAチップを用いることを特徴とする、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度測定方法。
  17.  請求項1に記載されたいずれかのαCDR3ポリヌクレオチドによりコードされるαCDR3ペプチド。
  18.  請求項2に記載されたいずれかのβCDR3ポリヌクレオチドによりコードされるβCDR3ペプチド。
  19.  請求項3に記載されたポリヌクレオチドのいずれかの組によりコードされるペプチドの組。
  20.  請求項17もしくは請求項18に記載のペプチドまたは請求項19に記載のペプチドの組を含むチップ。
  21.  請求項17~19のいずれかに記載のペプチドに対する抗体。
  22.  請求項21に記載の抗体を用いることを特徴とする、検体中のWT1332ペプチドに特異的なCD4+ヘルパーT細胞の頻度測定方法。
PCT/JP2013/074748 2012-09-12 2013-09-12 抗原特異的ヘルパーt細胞レセプター遺伝子 WO2014042226A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2014535597A JP6535463B2 (ja) 2012-09-12 2013-09-12 抗原特異的ヘルパーt細胞レセプター遺伝子
CN201380058833.7A CN104797711B (zh) 2012-09-12 2013-09-12 抗原特异性辅助性t细胞受体基因
RU2015113172A RU2680588C2 (ru) 2012-09-12 2013-09-12 Гены рецепторов антигенспецифичных хелперных т-клеток
KR1020157008614A KR20150046346A (ko) 2012-09-12 2013-09-12 항원 특이적 헬퍼 t 세포 리셉터 유전자
EP13837129.9A EP2896693A4 (en) 2012-09-12 2013-09-12 ANTIGEN SPECIFIC HELPER T CELL RECEPTOR GENES
EP18215510.1A EP3495483A1 (en) 2012-09-12 2013-09-12 Antigen-specific helper t-cell receptor genes
CA2884366A CA2884366A1 (en) 2012-09-12 2013-09-12 Antigen-specific helper t-cell receptor genes
US14/427,465 US10815288B2 (en) 2012-09-12 2013-09-12 Antigen-specific helper T-cell receptor genes
US16/163,448 US11091531B2 (en) 2012-09-12 2018-10-17 Antigen-specific helper T-cell receptor genes
US17/076,842 US20210070832A1 (en) 2012-09-12 2020-10-22 Antigen-specific helper t-cell receptor genes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-200480 2012-09-12
JP2012200480 2012-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/427,465 A-371-Of-International US10815288B2 (en) 2012-09-12 2013-09-12 Antigen-specific helper T-cell receptor genes
US16/163,448 Division US11091531B2 (en) 2012-09-12 2018-10-17 Antigen-specific helper T-cell receptor genes

Publications (1)

Publication Number Publication Date
WO2014042226A1 true WO2014042226A1 (ja) 2014-03-20

Family

ID=50278334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074748 WO2014042226A1 (ja) 2012-09-12 2013-09-12 抗原特異的ヘルパーt細胞レセプター遺伝子

Country Status (8)

Country Link
US (3) US10815288B2 (ja)
EP (2) EP2896693A4 (ja)
JP (2) JP6535463B2 (ja)
KR (1) KR20150046346A (ja)
CN (1) CN104797711B (ja)
CA (1) CA2884366A1 (ja)
RU (1) RU2680588C2 (ja)
WO (1) WO2014042226A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174278A1 (ja) * 2013-12-19 2015-11-19 国立研究開発法人国立精神・神経医療研究センター GM-CSF産生T細胞制御剤、及びTh1/Th2免疫バランス調節剤
WO2016051205A1 (en) * 2014-10-03 2016-04-07 Isis Innovation Limited Analysis of t-cell monotypia
JP2018143247A (ja) * 2012-09-12 2018-09-20 株式会社癌免疫研究所 抗原特異的ヘルパーt細胞レセプター遺伝子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
WO2018231958A1 (en) * 2017-06-13 2018-12-20 Adaptive Biotechnologies Corp. Determining wt-1 specific t cells and wt-1 specific t cell receptors (tcrs)
US20230399402A1 (en) * 2020-11-03 2023-12-14 La Jolla Institute For Immunology Hla class ii-restricted tcrs against the kras g12>v activating mutation
CN114480399A (zh) * 2022-03-17 2022-05-13 江苏医药职业学院 降低CPB1基因表达的siRNA、重组载体及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079253A1 (fr) * 2001-03-22 2002-10-10 Haruo Sugiyama Peptide modifie wt1
WO2003106682A1 (ja) 2002-06-12 2003-12-24 中外製薬株式会社 Hla−a24拘束性癌抗原ペプチド
WO2005045027A1 (ja) 2003-11-05 2005-05-19 International Institute Of Cancer Immunology, Inc. Wt1由来のhla−dr結合性抗原ペプチド
WO2005095598A1 (ja) 2004-03-31 2005-10-13 International Institute Of Cancer Immunology, Inc. Wt1由来の癌抗原ペプチド
WO2007097358A1 (ja) 2006-02-22 2007-08-30 International Institute Of Cancer Immunology, Inc. Hla-a*3303拘束性wt1ペプチド、およびそれを含む医薬組成物
WO2008105462A1 (ja) 2007-02-27 2008-09-04 International Institute Of Cancer Immunology, Inc. ヘルパーt細胞の活性化方法およびそのための組成物
WO2008108257A1 (ja) * 2007-03-05 2008-09-12 International Institute Of Cancer Immunology, Inc. 癌抗原特異的t細胞のレセプター遺伝子およびそれによりコードされるペプチドならびにそれらの使用
WO2012046730A1 (ja) * 2010-10-05 2012-04-12 国立大学法人大阪大学 ヘルパーt細胞の活性化方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0328363D0 (en) 2003-12-06 2004-01-14 Imp College Innovations Ltd Therapeutically useful molecules
JP4111394B2 (ja) * 2003-12-22 2008-07-02 北海道ティー・エル・オー株式会社 改変標的化t細胞の製造方法及び医薬
AU2007340679B2 (en) 2006-12-28 2013-09-12 International Institute Of Cancer Immunology, Inc. HLA-A*1101-restricted WT1 peptide and pharmaceutical composition comprising the same
JP5292550B2 (ja) 2007-03-23 2013-09-18 静岡県 T細胞レセプターβ鎖遺伝子及びα鎖遺伝子
JP2009011236A (ja) 2007-07-04 2009-01-22 Shizuoka Prefecture 1細胞レベルでのt細胞抗原レセプター遺伝子の解析・同定方法
CA2881594C (en) * 2007-12-05 2016-04-12 International Institute Of Cancer Immunology, Inc. Cancer vaccine composition
JP5829606B2 (ja) 2009-06-29 2015-12-09 カリフォルニア・インスティテュート・オブ・テクノロジーCalifornia Institute Oftechnology 単一細胞からの未知の再配列されたt細胞受容体の単離
GB0917090D0 (en) 2009-09-29 2009-11-11 Ucl Biomedica Plc T-cell receptor
US10815288B2 (en) * 2012-09-12 2020-10-27 International Institute Of Cancer Immunology, Inc. Antigen-specific helper T-cell receptor genes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079253A1 (fr) * 2001-03-22 2002-10-10 Haruo Sugiyama Peptide modifie wt1
WO2003106682A1 (ja) 2002-06-12 2003-12-24 中外製薬株式会社 Hla−a24拘束性癌抗原ペプチド
WO2005045027A1 (ja) 2003-11-05 2005-05-19 International Institute Of Cancer Immunology, Inc. Wt1由来のhla−dr結合性抗原ペプチド
WO2005095598A1 (ja) 2004-03-31 2005-10-13 International Institute Of Cancer Immunology, Inc. Wt1由来の癌抗原ペプチド
WO2007097358A1 (ja) 2006-02-22 2007-08-30 International Institute Of Cancer Immunology, Inc. Hla-a*3303拘束性wt1ペプチド、およびそれを含む医薬組成物
WO2008105462A1 (ja) 2007-02-27 2008-09-04 International Institute Of Cancer Immunology, Inc. ヘルパーt細胞の活性化方法およびそのための組成物
WO2008108257A1 (ja) * 2007-03-05 2008-09-12 International Institute Of Cancer Immunology, Inc. 癌抗原特異的t細胞のレセプター遺伝子およびそれによりコードされるペプチドならびにそれらの使用
WO2012046730A1 (ja) * 2010-10-05 2012-04-12 国立大学法人大阪大学 ヘルパーt細胞の活性化方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
CALL KM ET AL., CELL, vol. 60, no. 3, 9 February 1990 (1990-02-09), pages 509 - 20
CHAMOTO K. ET AL.: "Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells.", CANCER RES., vol. 64, no. 1, 1 January 2004 (2004-01-01), pages 386 - 390, XP055227697 *
DANIEL A. HABER ET AL., CELL, vol. 61, no. 7, 29 June 1990 (1990-06-29), pages 1257 - 69
GAO FG ET AL., CANCER RES., vol. 62, no. 22, 15 November 2002 (2002-11-15), pages 6438 - 41
INOUE K ET AL., BLOOD, vol. 91, no. 8, 15 April 1998 (1998-04-15), pages 2969 - 7 6
KNIGHTS AJ ET AL., CANCER IMMUNOL IMMUNOTHER., vol. 51, no. 5, July 2002 (2002-07-01), pages 271 - 81
MENKE AL ET AL., INT REV CYTOL., vol. 181, 1998, pages 151 - 212
OKA Y ET AL., IMMUNOGENETICS, vol. 51, no. 2, February 2000 (2000-02-01), pages 99 - 107
PFIZENMAIER K. ET AL.: "T-T cell interactions during in vitro cytotoxic T lymphocyte responses. III. Antigen-specific T helper cells release nonspecific mediator(s) able to help induction of H-2-restricted cytotoxic T lymphocyte responses across cell-impermeable membranes.", EUR.J.IMMUNOL., vol. 10, no. 8, August 1980 (1980-08-01), pages 577 - 582, XP055227700 *
PILCH H. ET AL.: "Antigen-driven T-cell selection in patients with cervical cancer as evidenced by T-cell receptor analysis and recognition of autologous tumor.", CLIN.DIAGN.LAB IMMUNOL., vol. 9, no. 2, March 2002 (2002-03-01), pages 267 - 278, XP055227701 *
See also references of EP2896693A4
STRATEN P.T. ET AL.: "T-cell clonotypes in cancer.", J.TRANSL.MED., vol. 2, no. 1, 2004, pages 1 - 11, XP021009813 *
TSUBOI A ET AL., LEUK RES., vol. 23, no. 5, May 1999 (1999-05-01), pages 499 - 505
YAMAGAMI T ET AL., BLOOD, vol. 87, no. 7, 1 April 1996 (1996-04-01), pages 2878 - 84
ZAROUR H.M. ET AL.: "NY-ESO-1 119-143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1- and Th2-type tumor-reactive CD4+ T cells.", CANCER RES., vol. 62, no. 1, 1 January 2002 (2002-01-01), pages 213 - 218, XP055214005 *
ZENG G, J IMMUNOTHER., vol. 24, no. 3, May 2001 (2001-05-01), pages 195 - 204

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143247A (ja) * 2012-09-12 2018-09-20 株式会社癌免疫研究所 抗原特異的ヘルパーt細胞レセプター遺伝子
WO2015174278A1 (ja) * 2013-12-19 2015-11-19 国立研究開発法人国立精神・神経医療研究センター GM-CSF産生T細胞制御剤、及びTh1/Th2免疫バランス調節剤
WO2016051205A1 (en) * 2014-10-03 2016-04-07 Isis Innovation Limited Analysis of t-cell monotypia
CN106795566A (zh) * 2014-10-03 2017-05-31 牛津大学科技创新有限公司 T细胞单型的分析
EP3868388A1 (en) * 2014-10-03 2021-08-25 Oxford University Innovation Limited Analysis of t-cell monotypia
CN106795566B (zh) * 2014-10-03 2022-03-15 牛津大学科技创新有限公司 T细胞单型的分析

Also Published As

Publication number Publication date
CN104797711B (zh) 2018-09-21
RU2015113172A (ru) 2016-11-10
KR20150046346A (ko) 2015-04-29
US20160009781A1 (en) 2016-01-14
CA2884366A1 (en) 2014-03-20
CN104797711A (zh) 2015-07-22
US20190135893A1 (en) 2019-05-09
US11091531B2 (en) 2021-08-17
JPWO2014042226A1 (ja) 2016-08-18
EP2896693A4 (en) 2016-10-12
EP2896693A1 (en) 2015-07-22
JP2018143247A (ja) 2018-09-20
US20210070832A1 (en) 2021-03-11
EP3495483A1 (en) 2019-06-12
JP6535463B2 (ja) 2019-06-26
US10815288B2 (en) 2020-10-27
RU2680588C2 (ru) 2019-02-22

Similar Documents

Publication Publication Date Title
AU2021202223B2 (en) Methods of isolating T cells having antigenic specificity for a cancer-specific mutation
JP6625705B2 (ja) 抗原特異的t細胞受容体およびt細胞エピトープ
US11155595B2 (en) Compositions and methods for use of recombinant T cell receptors for direct recognition of tumor antigen
US20210070832A1 (en) Antigen-specific helper t-cell receptor genes
JP6686008B2 (ja) がん特異的突然変異に対し抗原特異性を有するt細胞受容体を単離する方法
EP3795177B1 (en) Claudin-18.2-specific immunoreceptors and t cell epitopes
EP3399985B1 (en) Compositions and libraries comprising recombinant t-cell receptors and methods of using recombinant t-cell receptors
JP2020534839A (ja) P53がん特異的変異に対して抗原特異性を有するt細胞を単離する方法
WO2014098012A1 (ja) ヘルパーt細胞の活性化方法
JP2022513390A (ja) Tcr及びペプチド
EP3683229A1 (en) Specific t cell receptors against epitopes of mutant myd88l265p protein for adoptive t cell therapy
JP7437444B2 (ja) がん特異的突然変異に対し抗原特異性を有するt細胞受容体を単離する方法
JP7340144B2 (ja) がん特異的突然変異に対し抗原特異性を有するt細胞を単離する方法
KR20240026910A (ko) 부조직적합 항원 ha-1을 표적으로 하는 t 세포 수용체(tcr)
CN117580856A (zh) 靶向次要组织相容性抗原ha-1的t细胞受体(tcr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535597

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2884366

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14427465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013837129

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157008614

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015113172

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005277

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015005277

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150310