WO2014041260A1 - Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium - Google Patents

Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium Download PDF

Info

Publication number
WO2014041260A1
WO2014041260A1 PCT/FR2013/000240 FR2013000240W WO2014041260A1 WO 2014041260 A1 WO2014041260 A1 WO 2014041260A1 FR 2013000240 W FR2013000240 W FR 2013000240W WO 2014041260 A1 WO2014041260 A1 WO 2014041260A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
photovoltaic
solar cell
temperature
tank
Prior art date
Application number
PCT/FR2013/000240
Other languages
English (en)
Inventor
Sébastien Dubois
Nicolas Enjalbert
Jean-Paul Garandet
Pierre Gidon
Florent TANAY
Jordi Veirman
Original Assignee
Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique et aux Energies Alternatives filed Critical Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority to US14/428,555 priority Critical patent/US9520528B2/en
Priority to CN201380055429.4A priority patent/CN104737306B/zh
Priority to EP13774464.5A priority patent/EP2896075B1/fr
Priority to JP2015531617A priority patent/JP2015528646A/ja
Publication of WO2014041260A1 publication Critical patent/WO2014041260A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a device and a method for suppressing the effects of degradation of the efficiency under illumination of silicon-based photovoltaic solar cells.
  • Photovoltaic solar cells made from amorphous (a-Si), monocrystalline (sc-Si) or multicrystalline (mc-Si) silicon substrates may suffer from a performance degradation effect under illumination. This phenomenon occurs during the first uses of photovoltaic solar cells, and is usually called “LID" (Light-Induced-Degradation). The physical mechanisms at the origin of this deterioration of the efficiency of photovoltaic solar cells under illumination remain poorly known. In addition, some scientific studies have shown that light elements present in silicon, especially hydrogen (H), boron (B) and oxygen (O) atoms, generally participate in the formation and activation of defects in the illumination of photovoltaic solar cells.
  • H hydrogen
  • B boron
  • O oxygen
  • the "LID" effects can be suppressed by injecting charge carriers into the photovoltaic solar cells while heating said cells.
  • International application WO 2007/107351 discloses a method for stabilizing the efficiency of photovoltaic solar cells during illumination.
  • the method for restoring the cells comprises a step of injecting charge carriers via a illumination or a direct polarization of the photovoltaic solar cell, and a step of heating the substrate at a temperature between 50 ° C and 230 ° C.
  • This restoration process has allowed the photovoltaic solar cell treated, to find stable performance under normal operating conditions.
  • this type of restoration process requires precise control of the temperature.
  • the restoration effects only take place if the temperature of the solar photovoltaic cells does not exceed a certain limit temperature which is typically of the order of 200 ° C or even lower temperature. Indeed, the performance of some silicon-based photovoltaic solar cells can be affected when they are maintained at temperatures above 150 ° C.
  • treatment time is meant the time during which the solar cells are maintained at a certain temperature during the generation of charge carriers in the cells.
  • the treatment times can reach a hundred hours, which makes this process incompatible with conventional industrial processes for manufacturing photovoltaic solar cells.
  • the kinetics of restoration of the photovoltaic cells can be accelerated by increasing the amount of charge carriers injected into the solar photovoltaic cell treated. This increase can be achieved in particular by increasing, the power of the incident illumination or the intensity of the electric current injected into the cell. However, increasing the incident light power or the electric current injected, causes a very significant increase in the temperature of the photovoltaic solar cell, limiting or eliminating the restoration effects of the photovoltaic solar cell.
  • Utility model application CN201450015 discloses a device for heating and illuminating silicon-based solar cells to restore them.
  • the device includes a fan system for cooling the photovoltaic cells during processing.
  • a fan-based system does not make it possible to obtain good quality solar cells.
  • this type of device can cause mechanical stress problems, thus creating microcracks in photovoltaic solar cells.
  • a device for restoring at least one silicon-based photovoltaic solar cell comprising a support for the photovoltaic solar cell, and means for generating charge carriers in the photovoltaic solar cell.
  • the device comprises a tank intended to be filled with a liquid, and the support is configured to dispose the photovoltaic solar cell in the liquid.
  • a method of restoring at least one silicon-based photovoltaic solar cell against degradation of the output under illumination by generation of charge carriers in the cell is also provided.
  • the method comprises a step where the photovoltaic solar cell is immersed in a liquid during the generation of charge carriers in the photovoltaic solar cell, so as to regulate the temperature of the solar photovoltaic cell at a temperature value or in a range of target temperature in the temperature range 50 ° C - 230 ° C.
  • FIG. 5 schematically illustrates a view from above of the device of FIG. 4.
  • a device for healing silicon-based photovoltaic solar cells described below differs from the prior art in particular in that it provides elements for regulating the temperature of photovoltaic solar cells during the implementation of the restoration process. to increase the kinetics of restoration of the treated cells.
  • a device for restoring silicon-based photovoltaic cells comprises a support 1 of at least one photovoltaic solar cell 2.
  • the restoration device also comprises carrier generation means 3 charge in the photovoltaic solar cell 2, and preferably a heat source (not shown) configured to heat the photovoltaic solar cell 2.
  • the generation means 3 of charge carriers may, for example, comprise a light source illuminating the photovoltaic solar cell 2 and / or means for injecting an electric current into the photovoltaic solar cell 2.
  • Generation means 3 of charge carriers are represented as being a light source 3b, illuminating the solar photovoltaic cell 2 by a light beam 3f.
  • the generation means 3 of charge carriers can also constitute the heat source of the restoration device.
  • halogen lamps can constitute both the means of generating charge carriers and the source of heat.
  • the restoration device makes it possible to heat the photovoltaic solar cell 2 while injecting charge carriers therein, in order to restore said cell to effects of degradation of the efficiency under illumination.
  • the device comprises a tank 4 intended to be filled with a liquid 5.
  • the support 1 is configured to arrange the photovoltaic solar cell 2 in the liquid 5. This is, in particular, completely immersed in the liquid 5.
  • the tank 4 comprises a bottom 4-f and side walls.
  • the side walls comprise a first side wall 4-1 disposed at a first end of the tank 4, and a second side wall 4-2 disposed. at a second end opposite the first end along a longitudinal axis 4-a of scrolling solar cells 2.
  • the recovery device provided with the tank 4 advantageously allows efficient and homogeneous dissipation of the temperature of the photovoltaic solar cell 2 during the injection of charge carriers, including during a strong injection of charge carriers.
  • a strong injection of charge carriers allows an acceleration of the kinetics of restoration, and thus a reduction in the processing time of the photovoltaic cells.
  • the liquid 5 submerging the photovoltaic solar cell 2 the rise in temperature, generated by the amount of charge carrier injected, is effectively dissipated, which allows to obtain a temperature regulation of the photovoltaic solar cell, while avoiding thermomechanical stress problems.
  • the healing device allows the realization of a fast and efficient restoration of silicon-based photovoltaic cells, while preserving the mechanical integrity of said cells.
  • the restoration device preferably comprises a heat source configured to heat the photovoltaic solar cell.
  • the heat source may be optional: the solar photovoltaic cell could be heated directly by the liquid 5.
  • the tank 4 of the restoration device comprises a regulator 6 of the liquid temperature 5.
  • the regulator 6 may comprise thermoelectric devices or heating electric resistances, arranged in the walls of the tank 4, and controlled by a control circuit not shown in FIG. 2.
  • the regulator 6 makes it possible to precisely control the temperature of the liquid 5 in the tank 4, and thus the temperature of the photovoltaic solar cell 2.
  • the regulator 6 makes it possible to regulate the temperature of the photovoltaic solar cell 2 to a value or a target temperature range, when injecting charge carriers.
  • the regulator 6 of the temperature of the liquid 5 is configured to regulate the temperature of the photovoltaic solar cell 2 to a particular temperature value (for example at 170 ° C.) or in a particular temperature range (for example between 120 ° C. C and 190 ° C). Whether the regulation concerns a given temperature value or a temperature range, the target value or temperature range still remains in the temperature range 50 ° C - 230 ° C. Indeed, for silicon-based photovoltaic cells, the restoration effects can only be realized if the temperature of the cell is in this temperature range.
  • thermocouples can be placed along the entire length of the device in order to precisely control the temperature of the liquid 5 and / or the photovoltaic solar cells 2.
  • the tank 4 comprises a device 7 for circulating the liquid 5 in the tank 4.
  • the circulation means 7 for the liquid 5 comprise first 7c-1s and second 7c-2 conduits connected to each other, at one of their end.
  • the first duct 7c-1 can be connected to the tank 4 via an orifice formed in the first side wall 4-1.
  • the second duct is connected to the tank 4 via an orifice formed, preferably, in the second lateral wall 4-2.
  • the first duct 7c-1 may comprise, for example, a first pump 7p-1 configured to suck the liquid 5 from the tank 4 to the second duct 7c-2, which comprises a second pump 7p-2.
  • the second pump 7p-2 is configured to inject the liquid 5 into the tank 4. This configuration of the first 7c-1 and second 7c-2 ducts allows a circulation of the liquid 5 in the tank 4 along the longitudinal axis 4-a.
  • a circulation of the liquid 5 in the tank 4 advantageously allows a better homogenization of the temperature of the liquid 5 in the tank 4, which allows a better dissipation of the heat of the photovoltaic solar cell 2 towards the liquid 5.
  • the circulation means 7 are connected to the temperature regulator 6 of the liquid 5.
  • the temperature regulator 6 is configured to control the temperature of the liquid injected into the tank 4 via the second conduit 7c -2.
  • the control circuit of the temperature controller 6 also controls the first 7p-1 and second 7p-2 pumps.
  • the control circuit is configured to define the temperature of the solar photovoltaic cell 2 or a temperature range allowed for the solar cell.
  • the tank 4 may comprise a mechanical stirring circuit 8 of the liquid 5 in the tank 4.
  • this mixing circuit 8 is associated with the liquid circulation means 5 in the tank 4.
  • the mechanical means 8 may comprise at least one propeller disposed in the tank 4, for example on one of the side walls.
  • the tank 4 may also include an ultrasound transducer.
  • the ultrasound transducer is disposed in the tank so as to be as close as possible to the photovoltaic solar cell 2 to be treated. In order not to disturb the propagation of the ultrasonic waves towards the photovoltaic solar cell 2, the transducer is preferentially arranged so as to avoid any solid obstacle, such as the support 1, between the ultrasound transducer and said cell.
  • the ultrasound transducer advantageously allows a generation of a convection movement in the liquid 5, thus leading to a stirring of the liquid and a homogenization of its temperature.
  • the transducer generates ultrasonic waves that can promote the effects of diffusion, reorientation and dissociation of defects and impurity complexes, thus further accelerating the kinetics of restoration.
  • the restoration device comprises displacement means 9 of the support 1 in the tank 4.
  • the displacement means 9 are configured to move the photovoltaic solar cell 2 in a direction parallel to the surface of the liquid 5 in the tank 4.
  • the support 1 is shaped so as to ensure a stable holding of photovoltaic solar cells 2 on its surface.
  • the moving means 9 of the support 1 may be of conveyor belt type.
  • the displacement means 9 may comprise first 9r-1 and second 9r-2 main rollers, around which the support 1 is wound to form a closed loop 9b.
  • the displacement means 9 comprise secondary rollers 9s configured to modify the axis of translation of the support 1 during its displacement along the path of the closed loop 9b. As illustrated in FIG. 5, the secondary rollers 9s are in contact only with the edges of the support 1. This arrangement makes it possible to avoid any contact between the secondary rollers 9s and the photovoltaic solar cells 2 during the displacement of the support 1.
  • at least one of the two main rollers 9r-1 and 9r-2 is a driving roll, configured to move the support 1 along the path of the closed loop 9b.
  • the restoration device thus allows an accelerated restoration of several photovoltaic cells arranged, for example the one after another or side by side, on the support 1 rolling.
  • the restoration device can thus easily integrate a large-scale production line.
  • the first main roll 9r-1 is a free roll
  • the second main roll 9r-2 is a motor roll.
  • the drive roll is configured to obtain a direction of movement of the support 1, opposite to the direction of displacement of the liquid 5 in the tank 4. These opposite displacements of the support 1 and the liquid 5, then allow a better dissipation of the heat from the photovoltaic solar cells 2 to the liquid 5 and promote the mixing of the liquid 5.
  • the support 1 has through-holes 10 so that the liquid 5 is in contact with the face of the photovoltaic solar cell 2 disposed on the support 1.
  • This configuration of the support 1 makes it possible to increase the contact area between the photovoltaic solar cells 2 and the liquid 5, when these are embedded in the tank 4. Consequently, the increase of the contact surface between the liquid 5 and the photovoltaic solar cells advantageously makes it possible to ensure better heat exchange between the cells 2 and the liquid 5.
  • the support 1 it is also advantageous for the support 1 to be based on a material having a thermal conductivity ⁇ 3 greater than the thermal conductivity of the cell solar photovoltaic c.
  • the support 1 consists of flexible meshes of stainless steel.
  • the restoration device comprises a general control circuit (not illustrated in the figures) configured to control:
  • the general control circuit is configured to regulate the temperature of the photovoltaic solar cell 2 to a stable value or temperature range, in the temperature range 50 ° C - 230 ° C, and preferably 120 ° C - 210 ° C.
  • the general control circuit also controls the speed of movement of the support 1 in the tank 4, and the stirring means.
  • the charge carrier generating means 3 comprise a light source 3b intended to illuminate the photovoltaic solar cell 2.
  • the light source 3b may comprise monochromatic lamps making it possible to produce an incident light beam having a length wavelength between 300 and 1300 nm.
  • the light source 3b can also include halogen or xenon lamps to produce a white light.
  • the light source 3b is configured to provide intense illumination so that the photovoltaic cells receive an illumination greater than 0.05 W cm -2 .
  • the light source 3 b may comprise a laser source, which generates The use of a laser source advantageously makes it possible to reduce the energy consumption in comparison with the other light sources According to a particular embodiment illustrated in FIG. 6, the light source 3b comprises an optical system.
  • the light source 3b is a laser source
  • a diverging lens as the optical system 3b'. to increase the area of the photovoltaic solar cell receiving the illumination.
  • a convergent lens as an optical system to concentrate the light beam and to increase the intensity of the illumination received by the photovoltaic solar cell 2.
  • the charge carrier generating means 3 may comprise means for injecting an electric current into the photovoltaic solar cell 2.
  • the restoration device comprises spikes, connected to a potential difference source.
  • the tips are configured to contact the photovoltaic solar cell 2 to inject an electric current therein.
  • the means for injecting an electric current may comprise means for moving the tips, configured so that the tips and the support 1 have the same movement.
  • the tips can be considered as fixed elements relative to the photovoltaic solar cell 2 in displacement.
  • the constraints on the step of generating the charge carriers in the cells are released.
  • the method uses one of the restoration devices described above, and illustrated in FIGS. 1 to 6.
  • the restoration method comprises a step where at least one photovoltaic solar cell 2 is provided made in a substrate or in a layer active, silicon based (amorphous, monocrystalline or multicrystalline).
  • the restoration process is carried out by immersing the photovoltaic solar cell 2 in a liquid 5 during the generation of charge carriers in said cell 2, so as to regulate the temperature of the photovoltaic solar cell 2 to a value or a temperature range target, in the temperature range 50 ° C - 230 ° C and preferably 120 ° C - 210 ° C.
  • the heating of the photovoltaic solar cell 2 can be carried out by a heat source or by the means 3 for generating charge carriers, for example by halogen lamps.
  • the restoration device comprising the regulator of the temperature 6 of the liquid 5 is used.
  • the liquid 5 can be either transparent to the emitted light beam, or electrically insulating.
  • the charge carriers are injected into the photovoltaic solar cell 2 by generation means 3 comprising a light source 3b, and the liquid 5 is transparent to the light beam 3f emitted by said source 3b.
  • the liquid 5 can be chosen according to its physicochemical properties, in particular, the volume heat capacity, the latent heat of vaporization, the thermal conductivity, and the viscosity.
  • the liquid 5 does not have toxicity problems and does not affect the performance of silicon-based photovoltaic solar cells.
  • the wettability criterion of the liquid 5 on the photovoltaic solar cell 2 is also a criterion that can be taken into account. Indeed, this criterion can play a role in ensuring an efficient heat transfer between the liquid 5 and the photovoltaic solar cell 2.
  • the liquid 5 has a contact angle, with the cell 2, of less than 90 ° and preferably of order of 45 °.
  • the liquid used for regulating the temperature of the photovoltaic solar cell is advantageously chosen so as not to evaporate during the restoration treatment.
  • the choice of the liquid used is closely related to the criteria mentioned above, but also to the temperature range in which the restoration process is carried out.
  • the recovery process is preferably performed at a target temperature or temperature range in the range of 50 ° C - 230 ° C.
  • the liquid 5 has a boiling point above 100 ° C and advantageously greater than or equal to about 230 ° C.
  • the liquid 5 may be selected from the family of heat transfer liquids. This type of liquid is distinguished by its ability to regulate the temperature of its environment.
  • the liquid 5 is ethylene glycol or glycerol.
  • Ethylene glycol is a coolant, non-toxic and has a boiling point of 198 ° C.
  • glycerol is a nontoxic liquid and has a boiling point of 290 ° C but begins to decompose from a temperature of 171 ° C.
  • the liquid may be a soluble cutting oil, which comprises in particular a mineral oil, an emulsifier and water.
  • the oils of cut have interesting physical characteristics. Indeed, cutting oils are generally transparent, and they have a viscosity close to that of water.
  • this type of liquid has an interesting cooling power, and it remains in the liquid state for temperatures above 100 ° C.
  • the restoration process advantageously makes it possible to release the constraint on the charge carrier generation step, in order to increase the kinetics of restoration of the photovoltaic cells by the effects of degradation of the efficiency under illumination.
  • the method thus makes it possible to increase the intensity of carrier generation in the cell, while regulating its temperature to a temperature suitable for stable healing.
  • a photovoltaic solar cell restoration device has been produced according to the invention.
  • the charge carrier generation means consist of halogen lamps allowing the solar photovoltaic cell to receive illumination with an intensity of 3 W.cm -2 .
  • the temperature of the solar cell The photovoltaic cell can not be kept below 145 ° C when the solar photovoltaic cell receives an illumination intensity higher than a few tenths of W.cm "2 .
  • ethylene glycol temperature controlled was used to regulate the temperature of the treated cell to a temperature substantially equal to 145 ° C.
  • the method according to the invention made it possible to restore the cell using intense illumination (3 W.cm -2 ), after only 4 minutes of treatment
  • restoration methods according to the method of the prior art showed that healing mechanisms took place between 10 and 40 hours of treatment. These tests were carried out by heating the cells at a temperature between 150 ° C. and 180 ° C., and an illumination of 0.1 W.cm -2 .
  • the device and the restoration method described above can be applied to one or more photovoltaic solar cells, which can be modulated or not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Prostheses (AREA)

Abstract

Le dispositif de restauration d'au moins une cellule solaire photovoltaïque a base de silicium, comporte un support (1 ) de ladite cellule (2), et des moyens de génération (3) de porteurs de charge dans la cellule solaire photovoltaïque (2). En outre, le dispositif est muni d'une cuve (4) destinée a être remplie par un liquide (5), et le support (1 ) est configure pour disposer la cellule solaire photovoltaïque (2) dans le liquide (5).

Description

Dispositif et procédé de restauration de cellules solaires photovoltaïques à base de silicium
Domaine technique de l'invention
L'invention est relative à un dispositif et un procédé destinés à supprimer les effets de dégradation du rendement sous éclairement des cellules solaires photovoltaïques à base de silicium.
État de la technique
Les cellules solaires photovoltaïques réalisées à partir de substrats en silicium amorphe (a-Si), monocristallin (sc-Si) ou multicristallin (mc-Si), peuvent souffrir d'un effet de dégradation du rendement sous éclairement. Ce phénomène survient lors des premières utilisations des cellules solaires photovoltaïques, et il est usuellement appelé, effet « LID » (LID pour l'abréviation anglaise de « Light-Induced-Degradation »). Les mécanismes physiques à l'origine de cette dégradation du rendement des cellules solaires photovoltaïques sous éclairement, restent néanmoins mal connus. Par ailleurs, quelques études scientifiques ont montré que des éléments légers présents dans le silicium, notamment les atomes d'hydrogène (H), de bore (B) et d'oxygène (O) participent généralement à la formation et à l'activation de défauts lors de l'éclairement des cellules solaires photovoltaïques.
Les effets « LID » peuvent être supprimés en injectant des porteurs de charges dans les cellules solaires photovoltaïques tout en chauffant lesdites cellules. La demande internationale WO 2007/107351 divulgue un procédé visant une stabilisation du rendement des cellules solaires photovoltaïques lors de l'éclairement. Dans ce document, le procédé de restauration des cellules comporte une étape d'injection de porteurs de charge via un éclairement ou une polarisation en direct de la cellule solaire photovoltaïque, et une étape de chauffage du substrat à une température comprise entre 50 °C et 230 °C. Ce procédé de restauration a permis à la cellule solaire photovoltaïque traitée, de retrouver des performances stables sous des conditions normales de fonctionnement. Cependant, ce type de procédé de restauration nécessite un contrôle précis de la température. En effet, les effets de restauration ne prennent place que si la température des cellules solaires photovoltaïques ne dépasse pas une certaine température-limite qui est typiquement de l'ordre de 200 °C voire une température encore plus basse. En effet, les performances de certaines cellules solaires photovoltaïques à base de silicium peuvent être affectées lorsqu'elles sont maintenues à des températures supérieures à 150 °C.
En outre, le procédé décrit dans le document cité ci-dessus, nécessite des temps de traitement très élevés pour une restauration complète des cellules photovoltaïques. Par temps de traitement, on entend la durée au cours de laquelle les cellules solaires sont maintenues à une certaine température lors de la génération de porteurs de charge dans les cellules. Les temps de traitement peuvent atteindre une centaine d'heures, ce qui rend ce procédé incompatible avec les procédés industriels classiques de fabrication des cellules solaires photovoltaïques.
En effet, des traitements ont été réalisés, selon le procédé décrit dans ce document, pour restaurer des cellules solaires réalisées à partir de substrats en silicium purifiés par voie métallurgique. Pour ce type de cellules solaires, les mécanismes de restauration ont nécessité entre 10 et 40 heures pour des températures élevées comprises entre 150 et 180 °C.
Par ailleurs, la cinétique de restauration des cellules photovoltaïques peut être accélérée en augmentant la quantité de porteurs de charge injectée dans la cellule solaire photovoltaïque traitée. Cette augmentation peut être réalisée notamment en augmentant, la puissance de l'éclairement incident ou l'intensité du courant électrique injecté dans la cellule. Cependant, augmenter la puissance lumineuse incidente ou le courant électrique injecté, entraîne une élévation très importante de la température de la cellule solaire photovoltaïque, limitant ou supprimant les effets de restauration de la cellule solaire photovoltaïque.
La demande de modèle d'utilité CN201450015 décrit un dispositif permettant de chauffer et d'éclairer des cellules solaires à base de silicium pour les restaurer. Le dispositif comporte un système de ventilateurs pour refroidir les cellules photovoltaïques lors du traitement. Cependant, l'utilisation d'un système à base de ventilateurs ne permet pas l'obtention de cellules solaires de bonne qualité. Notamment, il a été observé que ce type de dispositif peut engendrer des problèmes de contraintes mécaniques, créant ainsi des microfissures dans les cellules solaires photovoltaïques.
Objet de l'invention
Il existe un besoin de prévoir un dispositif efficace pour restaurer les cellules solaires photovoltaïques à base de silicium contre la dégradation du rendement lors de l'éclairement, tout en préservant l'intégrité mécanique et les performances photovoltaïques des cellules traitées.
On tend à satisfaire ce besoin en prévoyant un dispositif de restauration d'au moins une cellule solaire photovoltaïque à base de silicium, ledit dispositif comportant un support de la cellule solaire photovoltaïque, et des moyens de génération de porteurs de charge dans la cellule solaire photovoltaïque. En outre, le dispositif comporte une cuve destinée à être remplie par un liquide, et le support est configuré pour disposer la cellule solaire photovoltaïque dans le liquide. On prévoit également un procédé de restauration d'au moins une cellule solaire photovoltaïque à base de silicium contre la dégradation du rendement sous éclairement par génération de porteurs de charge dans la cellule. Le procédé comporte une étape où la cellule solaire photovoltaïque est plongée dans un liquide lors de la génération de porteurs de charge dans la cellule solaire photovoltaïque, de manière à réguler la température de la cellule solaire photovoltaïque à une valeur de température ou dans une plage de température cible, comprise dans l'intervalle de température 50 °C - 230 °C.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- les figure 1 à 4 et 6 illustrent schématiquement, en coupe, des dispositifs selon différents modes de réalisation ;
- la figure 5 illustre schématiquement, une vue de dessus du dispositif de la figure 4.
Description de modes préférentiels de réalisation
Le dispositif de guérison de cellules solaires photovoltaiques à base de silicium décrit ci-après diffère de l'art antérieur notamment en ce qu'il prévoit des éléments permettant de réguler la température des cellules solaires photovoltaiques lors de la mise en œuvre du procédé de restauration afin d'augmenter la cinétique de restauration des cellules traitées. Selon un mode particulier de réalisation illustré à la figure 1 , un dispositif de restauration de cellules photovoltaïques à base de silicium comporte un support 1 d'au moins une cellule solaire photovoltaïque 2. Le dispositif de restauration comporte également des moyens de génération 3 de porteurs de charge dans la cellule solaire photovoltaïque 2, et préférentiellement une source de chaleur (non représentée) configurée pour chauffer la cellule solaire photovoltaïque 2.
Les moyens de génération 3 de porteurs de charges peuvent, par exemple, comporter une source lumineuse éclairant la cellule solaire photovoltaïque 2 et/ou des moyens d'injection d'un courant électrique dans la cellule solaire photovoltaïque 2. Sur la figure 1 , les moyens de génération 3 de porteurs de charge sont représentés comme étant une source lumineuse 3b, éclairant la cellule solaire photovoltaïque 2 par un faisceau lumineux 3f. Les moyens de génération 3 de porteurs de charge peuvent également constituer la source de chaleur du dispositif de restauration. À titre d'exemple, des lampes halogènes peuvent constituer à la fois les moyens de génération de porteurs de charge et la source de chaleur. Le dispositif de restauration permet de chauffer la cellule solaire photovoltaïque 2 tout en y injectant des porteurs de charges, pour restaurer ladite cellule des effets de dégradation du rendement sous l'éclairement.
Afin d'augmenter l'efficacité de la restauration et accélérer sa cinétique, le dispositif comporte une cuve 4 destinée à être remplie par un liquide 5. En outre, le support 1 est configuré pour disposer la cellule solaire photovoltaïque 2 dans le liquide 5. Celle-ci est, en particulier, totalement immergée dans le liquide 5. La cuve 4 comporte un fond 4-f et des parois latérales. Dans un mode de réalisation particulier, les parois latérales comportent une première paroi latérale 4-1 disposée au niveau d'une première extrémité de la cuve 4, et une seconde paroi latérale 4-2 disposée au niveau d'une seconde extrémité opposée à la première extrémité selon un axe longitudinal 4-a de défilement des cellules solaires 2.
Le dispositif de restauration muni de la cuve 4 permet avantageusement une dissipation efficace et homogène de la température de la cellule solaire photovoltaïque 2 lors de l'injection de porteurs de charge, y compris lors d'une forte injection de porteurs de charge. Une forte injection de porteurs de charge, permet une accélération de la cinétique de restauration, et ainsi une réduction du temps de traitement des cellules photovoltaïques. Grâce au liquide 5 submergeant la cellule solaire photovoltaïque 2, l'élévation de la température, générée par la quantité de porteurs de charge injectée, est efficacement dissipée, ce qui permet d'obtenir une régulation de la température de la cellule solaire photovoltaïque, tout en évitant les problèmes de contraintes thermomécaniques. C'est ainsi que le dispositif de guérison permet la réalisation d'une restauration rapide et efficace des cellules photovoltaïques à base de silicium, tout en préservant l'intégrité mécanique desdites cellules.
Dans le mode de réalisation décrit ci-dessus, le dispositif de restauration comporte préférentiellement une source de chaleur configurée pour chauffer la cellule solaire photovoltaïque. Néanmoins, la source de chaleur peut être facultative : la cellule solaire photovoltaïque pourrait aussi bien être chauffée directement par le liquide 5. Dans un mode de réalisation particulier illustré à la figure 2, la cuve 4 du dispositif de restauration comporte un régulateur 6 de la température du liquide 5. À titre d'exemple, le régulateur 6 peut comporter des dispositifs thermoélectriques ou des résistances électriques chauffantes, disposés dans les parois de la cuve 4, et commandés par un circuit de commande non représenté sur la figure 2. Le régulateur 6 permet de contrôler avec précision la température du liquide 5 dans la cuve 4, et ainsi la température de la cellule solaire photovoltaïque 2. De ce fait, le régulateur 6 permet de réguler la température de la cellule solaire photovoltaïque 2 à une valeur ou une plage de température cible, lors de l'injection de porteurs de charge. Avantageusement, le régulateur 6 de la température du liquide 5 est configuré pour réguler la température de la cellule solaire photovoltaïque 2 à une valeur de température particulière (par exemple à 170°C) ou dans une plage de température particulière (par exemple entre 120°C et 190°C). Que la régulation concerne une valeur donnée de température ou une plage de température, la valeur ou la plage de température cible reste néanmoins toujours comprise dans l'intervalle de température 50 °C - 230 °C. En effet, pour des cellules photovoltaïques à base de silicium, les effets de restauration ne peuvent être réalisés que si la température de la cellule est comprise dans cette gamme de températures. La gamme de températures 50 °C - 230 °C permet ainsi d'obtenir une restauration rapide et efficace des cellules photovoltaïques 2, des effets de dégradation du rendement sous éclairement, tout en préservant les performances photovoltaïques des cellules traitées. Par ailleurs, des thermocouples peuvent être mis en place sur toute la longueur du dispositif afin de contrôler avec précision la température du liquide 5 et/ou des cellules solaires photovoltaïques 2.
Dans un mode de réalisation particulier illustré à la figure 3, la cuve 4 comporte un dispositif de mise en circulation 7 du liquide 5 dans la cuve 4. Préférentiellement, les moyens de mise en circulation 7 du liquide 5 comporte des premier 7c-1 et deuxième 7c-2 conduits reliés l'un à l'autre, à l'une de leur extrémité. Le premier conduit 7c-1 peut être connecté à la cuve 4 via un orifice formé dans la première paroi latérale 4-1. Le second conduit est connecté à la cuve 4 via un orifice formé, de manière préférentielle, dans la deuxième paroi latérale 4-2. Afin de faire circuler le liquide 5 dans la cuve 4, le premier conduit 7c-1 peut comporter, par exemple, une première pompe 7p-1 configurée pour aspirer le liquide 5 de la cuve 4 vers le deuxième conduit 7c-2, qui comporte une deuxième pompe 7p-2. La deuxième pompe 7p-2 est configurée pour injecter le liquide 5 dans la cuve 4. Cette configuration des premiers 7c-1 et deuxième 7c-2 conduits permet une circulation du liquide 5 dans la cuve 4 suivant l'axe longitudinal 4-a.
Une circulation du liquide 5 dans la cuve 4 permet avantageusement, une meilleure homogénéisation de la température du liquide 5 dans la cuve 4, ce qui permet une meilleure dissipation de la chaleur de la cellule solaire photovoltaïque 2 vers le liquide 5. De manière avantageuse, les moyens de circulation 7 sont connectés au régulateur de la température 6 du liquide 5. Suivant ce mode de réalisation, le régulateur de la température 6 est configuré de manière à contrôler la température du liquide 5 injecté dans la cuve 4 via le deuxième conduit 7c-2. Préférentiellement, le circuit de commande du régulateur de la température 6 contrôle également les première 7p-1 et deuxième 7p-2 pompes. Avantageusement, le circuit de commande est configuré pour définir la température de la cellule solaire photovoltaïque 2 ou une plage de température autorisées pour la cellule solaire.
De manière avantageuse, la cuve 4 peut comporter un circuit de brassage mécanique 8 du liquide 5 dans la cuve 4. Préférentiellement, ce circuit de brassage 8 est associé aux moyens de circulation du liquide 5 dans la cuve 4. Les moyens mécaniques 8 peuvent comporter au moins une hélice disposée dans la cuve 4, par exemple sur l'une des parois latérales. Par ailleurs, la cuve 4 peut également comporter un transducteur ultrason. Préférentiellement, le transducteur ultrason est disposé dans la cuve de manière à être le plus proche possible de la cellule solaire photovoltaïque 2 à traiter. Pour ne pas perturber la propagation des ondes ultra-sonores vers la cellule solaire photovoltaïque 2, le transducteur est préférentiellement disposé de manière à éviter tout obstacle solide, tel que le support 1 , entre le transducteur ultrason et ladite cellule. Le transducteur ultrason permet avantageusement une génération d'un mouvement de convection dans le liquide 5, conduisant ainsi à un brassage du liquide et une homogénéisation de sa température. En outre, le transducteur génère des ondes ultra-sonores qui peuvent favoriser les effets de diffusion, de réorientation et dissociation des défauts et complexes d'impuretés, accélérant ainsi davantage la cinétique de restauration. Selon un mode de réalisation illustré aux figures 4 et 5, le dispositif de restauration comporte des moyens de déplacement 9 du support 1 dans la cuve 4. Les moyens de déplacement 9 sont configurés pour faire déplacer la cellule solaire photovoltaïque 2 suivant une direction parallèle à la surface du liquide 5 dans la cuve 4. Le support 1 est conformé de manière à assurer un maintien stable des cellules solaires photovoltaïques 2 sur sa surface. Les moyens de déplacement 9 du support 1 peuvent être de type tapis roulant. De préférence, les moyens de déplacement 9 peuvent comporter des premier 9r-1 et deuxième 9r-2 rouleaux principaux, autour desquels le support 1 est enroulé pour former une boucle fermée 9b. En outre, les moyens de déplacement 9 comportent des rouleaux secondaires 9s configurés pour modifier l'axe de translation du support 1 lors de son déplacement suivant le chemin de la boucle fermée 9b. Comme illustré à la figure 5, les rouleaux secondaires 9s sont en contact uniquement avec les bords du support 1. Cette disposition permet d'éviter tout contact entre les rouleaux secondaires 9s et les cellules solaires photovoltaïques 2 lors du déplacement du support 1. Par ailleurs, au moins un des deux rouleaux principaux 9r-1 et 9r-2 est un rouleau moteur, configuré pour faire déplacer le support 1 en suivant le chemin de la boucle fermée 9b. Cette configuration du dispositif de restauration permet ainsi une restauration accélérée de plusieurs cellules photovoltaïques disposées, par exemple les unes à la suite des autres ou bien côte à côte, sur le support 1 roulant. Le dispositif de restauration peut ainsi intégrer facilement une chaîne de production à grande échelle. Avantageusement, le premier rouleau principal 9r-1 est un rouleau libre, et le deuxième rouleau principal 9r-2 est un rouleau moteur. De manière préférentielle, le rouleau moteur est configuré pour obtenir un sens de déplacement du support 1 , opposé au sens de déplacement du liquide 5 dans la cuve 4. Ces déplacements opposés du support 1 et du liquide 5, permettent alors une meilleure dissipation de la chaleur depuis les cellules solaires photovoltaïques 2 vers le liquide 5 et favorisent le brassage du liquide 5.
Selon un mode de réalisation illustré à la figure 5, le support 1 comporte des trous traversants 10 de manière à ce que le liquide 5 soit en contact avec la face de la cellule solaire photovoltaïque 2 disposée sur le support 1. Cette configuration du support 1 permet d'augmenter la surface de contact entre les cellules solaires photovoltaïques 2 et le liquide 5, lorsque celles-ci sont noyées dans la cuve 4. Dès lors, l'augmentation de la surface de contact entre le liquide 5 et les cellules solaires photovoltaïques permet avantageusement d'assurer de meilleurs échanges thermiques entre les cellules 2 et le liquide 5. Par ailleurs, il est également avantageux que le support 1 soit à base d'un matériau ayant une conductivité thermique λ3 supérieure à la conductivité thermique de la cellule solaire photovoltaïque c. De préférence, le support 1 est constitué de mailles souples en acier inoxydable .
Avantageusement, le dispositif de restauration comporte un circuit de commande général (non illustré aux figures) configuré pour commander :
- le régulateur de la température 6 du liquide 5 dans la cuve 4 ; - les moyens de génération 3 de porteurs de charges injectée dans la cellule solaire photovoltaïque 2.
Le circuit de commande général est configuré pour réguler la température de la cellule solaire photovoltaïque 2 à une valeur ou dans une plage de température stable, comprise dans l'intervalle de température 50 °C - 230 °C, et avantageusement 120 °C - 210 °C. Préférentiellement le circuit de commande général contrôle également la vitesse de déplacement du support 1 dans la cuve 4, et les moyens de brassage.
Comme illustré aux figures 1 à 4, les moyens de génération de porteurs de charges 3 comportent une source lumineuse 3b destinée à éclairer la cellule solaire photovoltaïque 2. La source lumineuse 3b peut comporter des lampes monochromatiques permettant de produire un faisceau lumineux incident ayant une longueur d'onde comprise entre 300 et 1300 nm. La source lumineuse 3b peut aussi bien comporter des lampes halogènes ou xénon permettant de produire une lumière blanche. Préférentiellement, la source lumineuse 3b est configurée pour fournir un éclairement intense de manière à ce que les cellules photovoltaïques reçoivent un éclairement supérieur à 0,05 W.cm"2. Par ailleurs, la source lumineuse 3b peut comporter une source laser, qui génère avantageusement un éclairement intense. L'utilisation d'une source laser permet avantageusement une réduction de la consommation énergétique, en comparaison avec les autres sources lumineuses. Selon un mode particulier de réalisation illustré à la figure 6, la source lumineuse 3b comporte un système optique 3b' disposé entre les cellules solaires photovoltaïques et la source lumineuse 3b. À titre d'exemple, lorsque la source lumineuse 3b est une source laser, il est avantageux d'utiliser une lentille divergente comme système optique 3b'. Une lentille divergente permet ainsi d'augmenter la surface de la cellule solaire photovoltaïque recevant l 'éclairement. Par ailleurs, lorsque la source lumineuse est constituée par une lampe halogène ou une lampe monochromatique, il est avantageux d'utiliser une lentille convergente comme système optique pour concentrer le faisceau lumineux et augmenter l'intensité de l'éclairement reçu par la cellule solaire photovoltaïque 2.
Selon un mode de réalisation, non illustré aux figures, les moyens de génération de porteurs de charge 3 peuvent comporter des moyens d'injection d'un courant électrique dans la cellule solaire photovoltaïque 2. À titre d'exemple, le dispositif de restauration comporte des pointes, reliées à une source de différence de potentiel. Lesdites pointes sont configurées pour entrer en contact avec la cellule solaire photovoltaïque 2 pour y injecter un courant électrique. Les moyens d'injection d'un courant électrique peuvent comporter des moyens de déplacement des pointes, configurés pour que les pointes et le support 1 aient le même mouvement. Ainsi, les pointes peuvent être considérées comme des éléments fixes par rapport à la cellule solaire photovoltaïque 2 en déplacement.
Les procédés classiques de restauration des cellules solaires photovoltaïques sont réalisés en chauffant les cellules dans un four classique (conventionnel ou à plaque chauffante), tout en générant une quantité de porteurs de charge dans les cellules. De tels équipements ne permettent cependant pas d'obtenir une dissipation suffisamment efficace de la chaleur apportée par la génération des porteurs de charge. En effet l'éclairement intense des cellules, indispensable à une restauration rapide des cellules, entraîne inévitablement une hausse très importante de la température des cellules solaires photovoltaïques, qui est dans les procédés classiques très difficile à contrôler et à réguler à la température souhaitée.
Selon un mode particulier de mise en œuvre d'un procédé de restauration d'au moins une cellule solaire photovoltaïque à base de silicium contre les effets de dégradation du rendement sous éclairement, les contraintes sur l'étape de génération des porteurs de charge dans les cellules sont relâchées.
Préférentiellement, le procédé utilise un des dispositifs de restauration décrits ci-dessus, et illustrés aux figures 1 à 6. Le procédé de restauration comporte une étape où l'on prévoit au moins une cellule solaire photovoltaïque 2 réalisée dans un substrat ou dans une couche active, à base de silicium (amorphe, monocristallin ou multicristallin). Le procédé de restauration est réalisé en plongeant la cellule solaire photovoltaïque 2 dans un liquide 5 lors de la génération de porteurs de charge dans ladite cellule 2, de manière à réguler la température de la cellule solaire photovoltaïque 2 à une valeur ou une plage de température cible, comprise dans l'intervalle de température 50 °C - 230 °C et avantageusement 120 °C - 210 °C. Le chauffage de la cellule solaire photovoltaïque 2 peut être réalisé par une source de chaleur ou par les moyens de génération 3 de porteurs de charge, par exemple par des lampes halogènes. Préférentiellement, pour réaliser le procédé, on utilise le dispositif de restauration comportant le régulateur de la température 6 du liquide 5. En fait, suivant le type des moyens de génération 3, par éclairement ou par injection d'un courant électrique, le liquide 5 peut être soit transparent au faisceau lumineux émis, soit électriquement isolant. Préférentiellement, les porteurs de charge sont injectés dans la cellule solaire photovoltaïque 2 par des moyens de génération 3 comportant une source de lumière 3b, et le liquide 5 est transparent au faisceau lumineux 3f émis par ladite source 3b.
Le liquide 5 peut être choisi en fonction de ses propriétés physico-chimiques notamment, la capacité thermique volumique, la chaleur latente de vaporisation, la conductivité thermique, et la viscosité. Avantageusement, le liquide 5 ne présente pas de problèmes de toxicité et n'affecte pas les performances des cellules solaires photovoltaïques à base de silicium. Par ailleurs, le critère de mouillabilité du liquide 5 sur la cellule solaire photovoltaïque 2 est également un critère susceptible d'être pris en compte. En effet, ce critère peut jouer un rôle pour assurer un transfert thermique efficace entre le liquide 5 et la cellule solaire photovoltaïque 2. Avantageusement, le liquide 5 a un angle de contact, avec la cellule 2, inférieur à 90° et préférentiellement de l'ordre de 45°. Pour réaliser le procédé de restauration, le liquide 5 utilisé pour la régulation de la température de la cellule solaire photovoltaïque est avantageusement choisi de manière à ne pas s'évaporer au cours du traitement de restauration. Ainsi, le choix du liquide utilisé est intimement lié aux critères cités ci-dessus, mais également à la gamme de température dans laquelle le procédé de restauration est réalisé. Comme décrit ci-dessus, le procédé de restauration est avantageusement réalisé à une valeur ou une plage de température cible, comprise dans l'intervalle de température 50 °C - 230 °C. De manière avantageuse, le liquide 5 a une température d'ébullition supérieure strictement à 100 °C et avantageusement supérieure ou égale à environ 230 °C.
À titre d'exemple, le liquide 5 peut être choisi parmi la famille des liquides caloporteurs. Ce type de liquide se distingue par sa facilité à réguler la température de son environnement. Avantageusement, le liquide 5 est de l'éthylène glycol ou du glycérol. L'éthylène glycol est un fluide caloporteur, non toxique et qui a une température d'ébullition de 198 °C. Par ailleurs, le glycérol est un liquide non toxique et qui a une température d'ébullition de 290 °C mais, il commence à se décomposer à partir d'une température de 171 °C. En outre, le liquide 5 peut être une huile de coupe soluble, qui comporte notamment une huile minérale, un émulgateur et de l'eau. Les huiles de coupe ont des caractéristiques physiques intéressantes. En effet, les huiles de coupe sont généralement transparentes, et elles ont une viscosité proche de celle de l'eau. De plus, ce type de liquide possède un pouvoir refroidisseur intéressant, et il reste à l'état liquide pour des températures supérieures à 100 °C.
Le procédé de restauration permet avantageusement de relâcher la contrainte sur l'étape de génération des porteurs de charge, pour augmenter la cinétique de restauration des cellules photovoltaïques des effets de dégradation du rendement sous éclairement. Le procédé permet ainsi d'augmenter l'intensité de la génération des porteurs dans la cellule, tout en régulant sa température à une température convenable pour obtenir une guérison stable. À titre d'exemple, un dispositif de restauration de cellule solaire photovoltaïque a été réalisé selon l'invention. Les moyens de génération de porteurs de charge sont constitués par des lampes halogènes permettant à la cellule solaire photovoltaïque de recevoir un éclairement d'une intensité de 3 W.cm"2. En utilisant des dispositifs classiques de restauration, la température de la cellule solaire photovoltaïque ne peut pas être maintenue en dessous de 145 °C lorsque la cellule solaire photovoltaïque reçoit une intensité d'éclairement supérieure à quelques dixièmes de W.cm"2.
Pour le procédé de restauration, l'éthylène glycol régulé en température a été utilisé pour réguler la température de la cellule traitée à une température sensiblement égale à 145 °C. Le procédé selon l'invention a permis de restaurer la cellule en utilisant un éclairement intense (3 W.cm"2), après seulement 4 minutes de traitement. À titre de comparaison, des procédés de restauration selon le procédé de l'art antérieur ont montré que les mécanismes de guérison ont pris place entre 10 et 40 heures de traitement. Ces essais ont été réalisés en chauffant les cellules à une température comprise entre 150 °C et 180 °C, et un éclairement de 0,1 W.cm"2.
Par ailleurs, le dispositif et le procédé de restauration décrits ci-dessus peuvent s'appliquer à une ou plusieurs cellules solaires photovoltaïques, qui peuvent être mises en module ou non.

Claims

2013 / 0 0 0 2 h QO 2014/041260 PCT/FR2013/000240 17 Revendications
1. Dispositif de restauration d'au moins une cellule solaire photovoltaïque à
base de silicium, ledit dispositif comportant :
- un support (1 ) de la cellule solaire photovoltaïque (2) ;
- des moyens de génération (3) de porteurs de charge dans la cellule
solaire photovoltaïque (2) ;
caractérisé en ce qu'il comporte une cuve (4) destinée à être remplie par un
liquide (5), et en ce que le support (1 ) est configuré pour disposer la cellule
solaire photovoltaïque (2) dans le liquide (5).
2. Dispositif selon la revendication 1 , caractérisé en ce que la cuve (4)
comporte un régulateur (6) de la température du liquide (5).
3. Dispositif selon la revendication 2, caractérisé en ce que le régulateur (6)
de la température du liquide (5) est configuré pour réguler la température de
la cellule solaire photovoltaïque (2) à une valeur ou une plage de
température cible, comprise dans l'intervalle de température 50 °C - 230 °C.
4. Dispositif selon la revendication 3, caractérisé en ce que le régulateur (6)
de la température du liquide (5) comporte des résistances électriques
chauffantes et/ou des dispositifs thermoélectriques disposés dans les parois
de la cuve (4).
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé
en ce que la cuve (4) comporte des moyens de mise en circulation (7) du
liquide (5) dans la cuve (4).
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé
en ce que la cuve (4) comporte un circuit de brassage mécanique (8) du
liquide (5) dans la cuve (4). 18
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte des moyens de déplacement (9) du support (1 ) dans la cuve (4) configurés pour déplacer la cellule solaire photovoltaïque (2) suivant une direction (4-a) parallèle à la surface du liquide (6) dans la cuve (4).
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le support (1 ) comporte des trous traversants (10) de manière à ce que le liquide (6) soit en contact avec la face de la cellule solaire photovoltaïque (2) disposée sur le support (1 ).
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le support (1 ) est à base d'un matériau ayant une conductivité thermique (λ8) supérieure à la conductivité thermique de la cellule solaire (Xc) photovoltaïque (2).
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les moyens de génération de porteurs de charge (3) comportent une source lumineuse (3b) destinée à éclairer la cellule solaire photovoltaïque (2).
11. Dispositif selon la revendication 10, caractérisé en ce que la source lumineuse (3b) comporte une source laser.
12. Dispositif selon l'une des revendications 10 et 11 , caractérisé en ce qu'il comporte un système optique (3b') disposé entre la source lumineuse (3b) et la cellule solaire photovoltaïque (2).
13. Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les moyens de génération de porteurs de charge (3) comportent PCÎ/FR 2013 / 0 0 0 2 h Û 2014/041260 PCT/FR2013/000240
19
des moyens d'injection d'un courant électrique dans la cellule solaire
photovoltaïque (2).
14. Procédé de restauration d'au moins une cellule solaire photovoltaïque (2) à base de silicium, contre la dégradation du rendement sous éclairement par génération de porteurs de charge dans ladite cellule (2), caractérisé en ce
que la cellule solaire photovoltaïque (2) est plongée dans un liquide (5) lors
de la génération de porteurs de charge dans ladite cellule (2), de manière à
réguler la température de la cellule solaire photovoltaïque (2) à une valeur de
température ou dans une plage de température cible, comprise dans
l'intervalle de température 50 °C - 230 °C.
15. Procédé de restauration selon la revendication 14, caractérisé en ce que
le liquide (5) a une température d'ébullition supérieure strictement à 100 °C.
16. Procédé de restauration selon la revendication 14, caractérisé en ce que
le liquide (5) comporte de l'éthylène glycol ou du glycérol ou une huile de
coupe soluble.
PCT/FR2013/000240 2012-09-14 2013-09-16 Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium WO2014041260A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/428,555 US9520528B2 (en) 2012-09-14 2013-09-16 Device and method for restoring silicon-based photovoltaic solar cells
CN201380055429.4A CN104737306B (zh) 2012-09-14 2013-09-16 修复硅基光伏太阳能电池的装置和方法
EP13774464.5A EP2896075B1 (fr) 2012-09-14 2013-09-16 Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium
JP2015531617A JP2015528646A (ja) 2012-09-14 2013-09-16 シリコン系太陽光電池を回復させる装置および方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1202454 2012-09-14
FR1202454A FR2995727B1 (fr) 2012-09-14 2012-09-14 Dispositif et procede de restauration de cellules photovoltaiques a base de silicium

Publications (1)

Publication Number Publication Date
WO2014041260A1 true WO2014041260A1 (fr) 2014-03-20

Family

ID=47427315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000240 WO2014041260A1 (fr) 2012-09-14 2013-09-16 Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium

Country Status (6)

Country Link
US (1) US9520528B2 (fr)
EP (1) EP2896075B1 (fr)
JP (1) JP2015528646A (fr)
CN (1) CN104737306B (fr)
FR (1) FR2995727B1 (fr)
WO (1) WO2014041260A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028418A (ja) * 2014-07-03 2016-02-25 中美▲せき▼晶製品股▲ふん▼有限公司 光起電装置の光誘起劣化を抑止するための方法および装置
CN105449044A (zh) * 2015-12-30 2016-03-30 江南大学 Led硅太阳电池光诱导氢钝化与缺陷修复装置
KR20170128360A (ko) * 2015-03-13 2017-11-22 뉴사우스 이노베이션즈 피티와이 리미티드 실리콘 재료의 가공 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114298A1 (de) * 2015-08-27 2017-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Stabilisieren einer photovoltaischen Silizium-Solarzelle
US20220262973A1 (en) * 2018-07-30 2022-08-18 mPower Technology, Inc. In-situ rapid annealing and operation of solar cells for extreme environment applications
CN109616555B (zh) * 2018-12-17 2020-08-28 中节能太阳能科技(镇江)有限公司 一种提高太阳能电池抗光衰能力的方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332598A (ja) * 2002-05-09 2003-11-21 Sharp Corp 半導体装置の製造方法
WO2007107351A1 (fr) 2006-03-21 2007-09-27 Universität Konstanz Procédé de fabrication d'un élément photovoltaïque à efficacité stabilisée
CN201450015U (zh) 2009-07-08 2010-05-05 中电电气(南京)光伏有限公司 一种改善晶体硅太阳能电池片光致衰减特性的装置
DE102009059300A1 (de) * 2009-12-23 2011-06-30 SolarWorld Innovations GmbH, 09599 Photovoltaikzellen-Transport- und Regenerationsbehälter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026710A (en) * 1956-10-01 1962-03-27 Phillips Petroleum Co Ammonium nitrate analysis and control
JPH01100975A (ja) * 1987-10-14 1989-04-19 Sanyo Electric Co Ltd 光起電力装置
JP3150681B2 (ja) * 1988-09-30 2001-03-26 鐘淵化学工業株式会社 薄膜非晶質半導体装置
JP3078938B2 (ja) * 1992-12-28 2000-08-21 キヤノン株式会社 太陽電池
JP2001074927A (ja) * 1999-09-07 2001-03-23 Fuji Xerox Co Ltd 着色膜の形成方法、駆動素子及び液晶表示装置
JP4801833B2 (ja) * 1999-10-19 2011-10-26 光 小林 太陽電池及びその製造方法
JP4636719B2 (ja) * 2001-03-27 2011-02-23 光 小林 半導体膜の処理方法及び光起電力素子の製造方法
US20080035489A1 (en) * 2006-06-05 2008-02-14 Rohm And Haas Electronic Materials Llc Plating process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332598A (ja) * 2002-05-09 2003-11-21 Sharp Corp 半導体装置の製造方法
WO2007107351A1 (fr) 2006-03-21 2007-09-27 Universität Konstanz Procédé de fabrication d'un élément photovoltaïque à efficacité stabilisée
CN201450015U (zh) 2009-07-08 2010-05-05 中电电气(南京)光伏有限公司 一种改善晶体硅太阳能电池片光致衰减特性的装置
DE102009059300A1 (de) * 2009-12-23 2011-06-30 SolarWorld Innovations GmbH, 09599 Photovoltaikzellen-Transport- und Regenerationsbehälter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI YOUN LEE: "Rapid Thermal Processing of Silicon Solar Cells-Passivation and Diffusion", DISSERTATION,, 1 January 2003 (2003-01-01), pages 35 - 64, XP002439621 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028418A (ja) * 2014-07-03 2016-02-25 中美▲せき▼晶製品股▲ふん▼有限公司 光起電装置の光誘起劣化を抑止するための方法および装置
KR20170128360A (ko) * 2015-03-13 2017-11-22 뉴사우스 이노베이션즈 피티와이 리미티드 실리콘 재료의 가공 방법
CN107408497A (zh) * 2015-03-13 2017-11-28 新南创新私人有限公司 用于处理硅材料的方法
EP3268982A4 (fr) * 2015-03-13 2019-04-24 NewSouth Innovations Pty Limited Procédé pour le traitement de matériau de silicium
US10505069B2 (en) 2015-03-13 2019-12-10 Newsouth Innovations Pty Limited Method for processing silicon material
KR102571109B1 (ko) 2015-03-13 2023-08-25 뉴사우스 이노베이션즈 피티와이 리미티드 실리콘 재료의 가공 방법
CN105449044A (zh) * 2015-12-30 2016-03-30 江南大学 Led硅太阳电池光诱导氢钝化与缺陷修复装置

Also Published As

Publication number Publication date
CN104737306B (zh) 2017-07-11
EP2896075A1 (fr) 2015-07-22
US9520528B2 (en) 2016-12-13
US20150236190A1 (en) 2015-08-20
FR2995727A1 (fr) 2014-03-21
FR2995727B1 (fr) 2014-10-24
EP2896075B1 (fr) 2016-06-01
JP2015528646A (ja) 2015-09-28
CN104737306A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
EP2896075B1 (fr) Dispositif et procede de restauration de cellules solaires photo voltaiques a base de silicium
EP2896076B1 (fr) Dispositif et procédé de restauration des cellules solaires à base de silicium avec transducteur ultrason
FR2977079A1 (fr) Procede de traitement de cellules photovoltaiques a heterojonction pour ameliorer et stabiliser leur rendement
FR2953999A1 (fr) Cellule photovoltaique heterojonction a contact arriere
FR2929446A1 (fr) Implantation a temperature controlee
EP3021365A1 (fr) Procédé de restauration de cellules solaires photovoltaïques à base de silicium
FR3007892A1 (fr) Procede de transfert d'une couche mince avec apport d'energie thermique a une zone fragilisee via une couche inductive
FR2870988A1 (fr) Procede de realisation d'une structure multi-couches comportant, en profondeur, une couche de separation
EP1042847B1 (fr) Microlaser a declenchement passif et a polarisation controlee
EP2870627A1 (fr) Détachement d'une couche autoportée de silicium<100>
FR2834654A1 (fr) Procede de traitement d'une piece en vue de modifier au moins une de ses proprietes
FR2969401A1 (fr) Dispositif d'emission d'un faisceau laser anti lasage transverse et a refroidissement longitudinal
FR2901067A1 (fr) Dispositif anti-lasage transverse pour un cristal laser
BE1027475B1 (fr) Procédé de traitement thermique en volume et système associé
WO2014037878A1 (fr) Procédé de fabrication d'une plaquette en silicium monolithique a multi-jonctions verticales
FR2552265A1 (fr) Procede de formation d'une jonction pn
EP3660928B1 (fr) Procédé de fabrication de cellules photovoltaiques
FR2932001A1 (fr) Dispositif d'eclairage de cellules solaires par eclairage indirect selectif en frequence.
WO2001039281A1 (fr) Procede de fabrication d'une lamelle ou plaquette photovoltaique et cellule comportant une telle plaquette
FR3047351A1 (fr)
WO2014177809A1 (fr) Formation d'une couche semi-conductrice i-iii-vi2 par traitement thermique et chalcogenisation d'un precurseur metallique i-iii
EP3097616B1 (fr) Procede de fabrication de miroirs a absorbant saturable semiconducteur
FR3117674A1 (fr) Procédé de détermination d’une température d’échauffement d’une cellule photovoltaïque a hétérojonction lors d’un procédé de traitement
EP4262082A1 (fr) Système de traitement d'un module photovoltaïque pour augmenter son rendement
Gaiaschi Fabrication, characterization and modeling of microcrystalline silicon-carbon alloys thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13774464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14428555

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013774464

Country of ref document: EP