WO2014040683A1 - Batterieeinzelzelle für eine hv-batterie - Google Patents

Batterieeinzelzelle für eine hv-batterie Download PDF

Info

Publication number
WO2014040683A1
WO2014040683A1 PCT/EP2013/002458 EP2013002458W WO2014040683A1 WO 2014040683 A1 WO2014040683 A1 WO 2014040683A1 EP 2013002458 W EP2013002458 W EP 2013002458W WO 2014040683 A1 WO2014040683 A1 WO 2014040683A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
channel
blow
sealing flange
Prior art date
Application number
PCT/EP2013/002458
Other languages
English (en)
French (fr)
Inventor
Jens Meintschel
Dirk SCHRÖTTER
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2014040683A1 publication Critical patent/WO2014040683A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a battery single cell for a high-voltage battery according to the closer defined in the preamble of claim 1.
  • the invention also relates to a battery of such battery single cells.
  • High-voltage batteries or high-performance batteries are known from the general state of the art. They are typically composed of a plurality of individual battery cells, which then together, for example, connected in series with each other, form the high-voltage battery. Such high-voltage batteries have a high power with a correspondingly high power density. They can be realized, for example, in lithium-ion technology. A typical application for such high performance or high voltage batteries is the use as a traction battery, for example in an electric vehicle or a hybrid vehicle. The high-voltage battery stores electric power in such a vehicle, which is then provided as sole or supplementary drive power available.
  • a blow-off which is also referred to as venting opening provided. This is normally closed by a layer of material and opens in the event of overpressure by destroying the
  • the material layer can, for example, the material of a
  • Outer shell of the battery single cell which is provided by appropriate example indented notches or grooves with suitable predetermined breaking points.
  • a membrane for example made of metallic material or of plastic can be applied to the blow-off, which is then destroyed above a critical overpressure in the interior of the battery single cell and the
  • One problem here may be that the cell chemistry fills the entire interior of the battery single cell and therefore may be hindered in the outflow of gas through the blow-off. It is therefore known from DE 10 2011 109 218 A1 to provide an additional space, for example a channel, in the interior of a single battery cell, which communicates with the discharge opening and which ensures a reliable and reliable outflow of gas from the field of cell chemistry.
  • the disadvantage of this structure consists essentially in the fact that additional space is required for the area of the free space or channel and the structure of the single battery cell, in this case a bipolar compassionflachzelle, must be made correspondingly larger. As a result, the power volume of the battery single cell decreases undesirably.
  • this object is achieved by a single battery cell with the features in the characterizing part of claim 1.
  • Advantageous developments of single battery cells result from the dependent claims.
  • a battery is also indicated with such battery cells.
  • the battery single cell according to the invention it is such that at least one of the Hüllbleche has a cup-shaped central part, which is surrounded by a sealing flange, said sealing flange is connected to the insulating frame.
  • This structure is possible in principle with a single such formed Hüllblech, on the other side of the insulating then one - for example, flat - Hüllblech would be arranged.
  • cup-shaped central part are connected to each other via a very thin insulating frame between the sealing flanges.
  • the cell chemistry is then in the
  • the sealing flange is transverse to the stacking direction on this cup-shaped part and, for example, by a heat seal with the interposed insulating frame, which should then be formed of thermoplastic material or has such a material, are sealed and insulated.
  • the cladding typically forms at the same time the poles of the battery, so it is a bipolar compassionflachzelle.
  • Sealing flange or in the area surrounding the cup-shaped central part, which lies behind the sealing flange from the other enveloping plate, is unused space.
  • This space is now used in the battery single cell constructed according to the invention, to arrange in exactly this space the channel, which ensures a safe and reliable connection of the individual areas of cell chemistry with the blow-off. Without the need for additional space, such a channel can be introduced, thereby significantly improving the reliability in the event of a possible blow-off of gases under overpressure.
  • the volume is thereby not or only minimally increased, since the channel is at least largely arranged in an area which would otherwise be present anyway as a dead space in the region of a battery single cell constructed in this way.
  • the channel is arranged running transversely to the stacking direction of the cell chemistry. This course transverse to the stacking direction of the cell chemistry opens up the connection of as many spaces as possible between electrodes and separators with the channel and thus enables the ideal removal of gases formed in the region of the cell chemistry in the event of an undesired overpressure.
  • the channel circumferentially around the
  • cup-shaped central part of the at least one Hüllbleches is formed.
  • Such a channel which not only runs over parts of the side surfaces of the cup-shaped central part, but encloses this circumferentially, made possible by a circumferential
  • Battery single cell according to the invention provided that the channel does not extend beyond the sealing flange transversely to the stacking direction of the cell chemistry. So the channel is in one
  • At least one cooling lug and / or contact lug is folded.
  • One or more such cooling and / or contact lugs may ideally be folded from the sealing flange by 90 degrees. They then run parallel to the stacking direction of
  • inventive embodiment of the battery used for the channel space used so can be formed on the battery single cell in a simple and effective way contact flags and / or cooling lugs.
  • the battery single cell according to the invention can be correspondingly simple, safe and reliable form. It is particularly suitable for constructing a battery from a plurality of such single battery cells, wherein the battery individual cells are preferably formed in lithium-ion technology.
  • the structure of the individual battery cells according to the invention enables the simple and cost-effective implementation of a
  • High-voltage battery or high-performance battery made of individual battery cells The construction according to the invention ensures a high degree of safety.
  • the battery is therefore particularly suitable for use as a traction battery in a vehicle,
  • FIG. 1 shows a battery single cell in a possible embodiment according to the invention in an exploded view
  • FIG. 2 shows the single battery cell from FIG. 1 in the assembled state
  • FIG. 3 shows a sectional view through a single battery cell according to FIG. 2;
  • FIG. 4 shows a three-dimensional view of a cover plate of the single battery cell according to FIG.
  • FIG. 5 shows a stack of individual battery cells in the structure according to FIG. 1;
  • FIG. 6 is a sectional view through a single battery cell analogous to the representation in FIG.
  • FIG. 7 shows a cladding sheet of the single battery cell in the embodiment according to FIG. 6.
  • the single battery cell 1 is constructed in the embodiment shown here as a so-called bipolar compassionflachzelle. It has a first cladding sheet 2 and a second cladding sheet 3, which in the embodiment shown here in each case a cup-shaped middle part 4 and the electric
  • both sheath plates 2, 3 In order to be able to cool the single battery cell 1, which is to be realized in lithium-ion technology, both sheath plates 2, 3 also have at their lower end cooling lugs 6 bent by 90 degrees.
  • the two Hüllbleche 2, 3 form, as usual in bipolar compassionflachzellen, next to the outer shell of the
  • a cell chemistry 7 in the form of a stack of electrodes and separators can be recognized.
  • This cell chemistry 7 is now introduced between the two bowl-shaped bulged middle parts 4 of the Hüllbleche 2, 3 and in each case in the region of a contact element 8, of which in the illustration of Figure 1 only one for the one Hüllblech 3 can be seen, with the respective Hüllblech. 2 , 3 connected.
  • Circumferentially around the cup-shaped middle part 4, each of the Hüllbleche 2, 3 a sealing flange 9, from which the contact lugs 5 and 5 cooling vanes are folded. In the area of these sealing flanges 9, the enveloping plates 2, 3 are joined together later.
  • thermoplastic insulating frame 10 are positioned between the sealing flange 9 and have been previously connected in the illustrated embodiment of FIG. 1 with the respective sealing flange 9 of the respective cover plate 2, 3, for example, laminated.
  • the cover plates 2, 3 are then with their
  • Single battery cell 1 is thereby closed and the area with the cell chemistry 7 is sealed from the environment.
  • blow-off opening 12 In the area of an upper side surface 11 of the shell of the enveloping sheet 3, a blow-off opening 12 can also be seen in the representation of FIG. This blow-off 12 serves, if necessary, if due to an overload or a
  • Overpressure-adjusting gases can escape in this way and an exothermic reaction of the cell chemistry 7 is prevented. After tearing the membrane 13 on the
  • Blow-off opening 12 which is also referred to as venting opening, is the
  • the battery cell 1 in the assembled state can be seen even better in the enlarged view in FIG.
  • a channel 14 is arranged circumferentially around the bowl-shaped middle part 4 on the side surface 12 of the enveloping sheet 3, which ensures that gases from all areas of the cell chemistry 7 in reach the area of the blow-off opening 12.
  • the security of the thus constructed single battery cell is increased.
  • the channel 14 extends from the side surface 1 in the direction of the cooling lug 6 and the contact lugs 5 and so is laterally adjacent to the sealing flange 9 in anyway due to the mandatory necessary expansion of the sealing flange 9 transversely to the stacking direction required space.
  • bowl-shaped central part 4 of the cladding 3 trained channel 14 security can be improved by a secure and reliable connection between almost all areas of the cell chemistry 7 and the discharge opening 12 is ensured.
  • the channel 14 thereby runs around the entire shell-shaped central part 4 of the enveloping sheet 3 and extends in its greatest extent transversely to the stacking direction, in which the individual electrodes and separators of the cell chemistry 7 indicated, for example, in FIGS. 1 and 3 are stacked.
  • the channel 14 may in particular be embossed into the material of the Hüllblechs 3 or can be realized by other suitable forming methods.
  • a stack 15 can now be recognized from a plurality of the battery individual cells 1, wherein all elements are provided with a reference numeral only at one of the battery individual cells 1.
  • This stack 15 of the battery individual cells 1 forms part of a battery, which is built up by stacking the battery individual cells.
  • Both the cooling vanes 6 and the contact lugs 7 of the respective adjacent cladding sheets 2, 3 of adjacent battery individual cells 1 are connected to one another, for example via an ultrasonic welding process.
  • Ultrasound points 16 are in the representation of FIG. 5 in the area of the contact lugs
  • the channel 14 is not circumferentially formed around the cup-shaped central part 4 of the Hüllblechs 3, but only on one of the side surfaces 1, in particular the intended use above arranged side surface 11, extending accordingly.
  • the channel is thus made correspondingly smaller, which is particularly evident in the illustration of FIG. It extends with its longest extent further transversely to the stacking direction of the electrodes and

Abstract

Die Erfindung betrifft eine Batterieeinzelzelle (1) für eine Hochvoltbatterie mit einer Außenhülle, welche zwei Hüllbleche (2, 3) und wenigstens einen dazwischen angeordneten Isolierrahmen (10) aufweist, mit einer innerhalb der Außenhülle angeordneten Zellchemie (7) sowie einer Abblasöffnung (12), welche im Normalzustand durch eine Materialschicht (13, 17) verschlossen ist, und welche sich im Falle eines Überdrucks durch zumindest teilweises Zerstören der Materialschicht (13, 17) öffnet, mit einem Kanal (14), welcher zwischen der Zellchemie (7) und der Außenhülle angeordnet ist, und welcher mit der Abblasöffnung (12) in Verbindung steht. Die Erfindung ist dadurch gekennzeichnet, dass wenigstens eines der Hüllbleche (2, 3) einen schalenförmigen Mitteilteil (4) aufweist, welcher von einem Siegelflansch (9) umgeben ist, wobei der Siegelflansch (9) mit dem Isolierrahmen (10) verbunden ist, und dass der Kanal (14) an wenigstens einem Teil wenigstens einer der Seitenflächen (11) des schalenförmigen Mittelteils (4) ausgebildet ist.

Description

Batterieeinzelzelle für eine HV-Batterie
Die Erfindung betrifft eine Batterieeinzelzelle für eine Hochvoltbatterie nach der im Oberbegriff von Anspruch 1 näher definierten Art. Außerdem betrifft die Erfindung eine Batterie aus solchen Batterieeinzelzellen.
Hochvoltbatterien bzw. Hochleistungsbatterien sind aus dem allgemeinen Stand der Technik bekannt. Sie werden typischerweise aus einer Mehrzahl von Batterieeinzelzellen zusammengesetzt, welche dann insgesamt, beispielsweise in Reihe miteinander verschaltet, die Hochvoltbatterie ausbilden. Solche Hochvoltbatterien weisen eine große Leistung bei entsprechend hoher Leistungsdichte auf. Sie können beispielsweise in Lithium-Ionen-Technologie realisiert sein. Ein typischer Anwendungszweck für derartige Hochleistungs- oder Hochvoltbatterien ist dabei die Verwendung als Traktionsbatterie, beispielsweise in einem Elektrofahrzeug oder einem Hybridfahrzeug. Die Hochvoltbatterie speichert in einem solchen Fahrzeug elektrische Leistung, welche dann als alleinige oder ergänzende Antriebsleistung zur Verfügung gestellt wird.
Insbesondere für Anwendungen in Fahrzeugen ist es dabei wichtig, dass einerseits die Leistungsdichte und andererseits das Leistungsvolumen vergleichsweise hoch sind, sodass mit einer möglichst kleinen und leichten Batterie eine möglichst große elektrische Leistung gespeichert werden kann. Für solche Anwendungen ist daher häufig die
Ausbildung in Lithium-Ionen-Technologie favorisiert, da hierdurch eine hohe
Leistungsdichte und ein hohes Leistungsvolumen erzielt werden kann. Problematisch bei Batterieeinzelzellen in Lithium-Ionen-Technologie ist es jedoch, dass im Falle einer unerwünschten Fehlreaktion, beispielsweise bei einem Überladen, einem Kurzschluss oder dergleichen, eine unerwünschte exotherme Kettenreaktion der Zellchemie, ein sogenannter„thermal runaway" auftreten kann. Dies kann bis hin zu einem Brand oder einer Explosion führen. Um einer solchen Gefahr einfach und effizient entgegenzuwirken, ist es aus dem allgemeinen Stand der Technik bekannt und beispielsweise in
verschiedenen Ausführungsformen in der DE 10 2009 020 185 A1 oder auch in der DE 10 2008 013 188 A1 beschrieben, eine Abblasöffnung, welche auch als Venting-Öffnung bezeichnet wird vorzusehen. Dies ist im Normalzustand durch eine Materialschicht verschlossen ist und öffnet sich im Falle eines Überdrucks durch Zerstören der
Materialschicht. Die Materialschicht kann dabei beispielsweise das Material einer
Außenhülle der Batterieeinzelzelle sein, welches durch entsprechende beispielsweise eingeprägte Kerben bzw. Nuten mit geeigneten Sollbruchstellen versehen ist. Ergänzend oder alternativ dazu kann eine Membran beispielsweise aus metallischem Material oder aus Kunststoff auf die Abblasöffnung aufgebracht werden, welche dann oberhalb eines kritischen Überdrucks im Inneren der Batterieeinzelzelle zerstört wird und die
Abblasöffnung freigibt, sodass der Überdruck abgebaut werden kann.
Ein Problem dabei kann darin liegen, dass die Zellchemie den gesamten Innenraum der Batterieeinzelzelle ausfüllt und deshalb im Abströmen von Gas durch die Abblasöffnung gegebenenfalls behindert werden kann. Aus der DE 10 2011 109 218 A1 ist es daher bekannt, im Inneren einer Batterieeinzelzelle einen zusätzlichen Raum, beispielsweise einen Kanal, vorzusehen, welcher mit der Abblasöffnung in Verbindung steht und welcher ein sicheres und zuverlässiges Abströmen von Gas aus dem Bereich der Zellchemie gewährleistet. Der Nachteil bei diesem Aufbau besteht im Wesentlichen darin, dass für den Bereich des Freiraums bzw. Kanals zusätzlicher Bauraum benötigt wird und der Aufbau der Batterieeinzelzelle, in diesem Fall einer bipolaren Rahmenflachzelle, entsprechend größer ausgeführt sein muss. Hierdurch sinkt das Leistungsvolumen der Batterieeinzelzelle in unerwünschter Weise.
Es ist die Aufgabe der hier vorliegenden Erfindung eine Batterieeinzelzelle anzugeben, welche diese Nachteile vermeidet, und welche ein hohes Leistungsvolumen ermöglicht.
Erfindungsgemäß wird diese Aufgabe durch eine Batterieeinzelzelle mit den Merkmalen im kennzeichnenden Teil des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Batterieeinzelzelle ergeben sich aus den hiervon abhängigen Unteransprüchen. Im Anspruch 9 ist außerdem eine Batterie mit derartigen Batterieeinzelzellen angegeben. Bei der erfindungsgemäßen Batterieeinzelzelle ist es so, dass wenigstens eines der Hüllbleche einen schalenförmigen Mittelteil aufweist, welcher von einem Siegelflansch umgeben ist, wobei dieser Siegelflansch mit dem Isolierrahmen verbunden ist. Dieser Aufbau ist prinzipiell mit einem einzigen derartigen ausgebildeten Hüllblech möglich, wobei auf der anderen Seite des Isolierrahmens dann ein - beispielsweise ebenes - Hüllblech angeordnet wäre. Insbesondere kann es bei dem Aufbau jedoch vorgesehen sein, dass zwei vergleichbar ausgebildete Hüllbleche, welche jeweils einen
schalenförmigen Mittelteil aufweisen, über einen sehr dünnen Isolierrahmen zwischen den Siegelflanschen miteinander verbunden sind. Die Zellchemie wird dann in dem
schalenförmigen Teil aufgenommen und der Siegelflansch steht quer zur Stapelrichtung über diesen schalenförmigen Teil über und kann beispielsweise durch eine Heißsiegelung mit dem dazwischen angeordneten Isolierrahmen, welcher dann aus thermoplastischem Material ausgebildet sein sollte oder ein derartiges Material aufweist, dicht und isolierend verbunden werden. Die Hüllbleche bilden typischerweise gleichzeitig die Pole der Batterie, sodass es sich um eine bipolare Rahmenflachzelle handelt. Im Bereich des
Siegelflanschs bzw. im um den schalenförmigen Mittelteil umlaufenden Bereich, welcher aus Blickrichtung vom jeweils anderen Hüllblech her hinter dem Siegelflansch liegt, ist dabei ungenutzter Bauraum. Dieser Bauraum wird bei der erfindungsgemäß aufgebauten Batterieeinzelzelle nun genutzt, um in genau diesen Bauraum den Kanal anzuordnen, welcher eine sichere und zuverlässige Verbindung der einzelnen Bereiche der Zellchemie mit der Abblasöffnung gewährleistet. Ohne dass zusätzlicher Bauraum benötigt wird, lässt sich so ein Kanal einbringen und hierdurch die Zuverlässigkeit bei einem eventuellen Abblasen von unter Überdruck stehenden Gasen deutlich verbessern. Das Volumen wird dadurch nicht oder nur minimal erhöht, da der Kanal zumindest größtenteils in einem Bereich angeordnet ist, welcher ansonsten als Totraum im Bereich einer so aufgebauten Batterieeinzelzelle ohnehin vorhanden wäre.
In einer sehr günstigen Weiterbildung der erfindungsgemäßen Batterieeinzelzelle ist es dabei vorgesehen, dass der Kanal quer zur Stapelrichtung der Zellchemie verlaufend angeordnet ist. Dieser Verlauf quer zur Stapelrichtung der Zellchemie erschließt die Verbindung von möglichst vielen Zwischenräumen zwischen Elektroden und Separatoren mit dem Kanal und ermöglicht so die ideale Abführung von im Bereich der Zellchemie im Falle eines unerwünschten Überdrucks entstehender Gase. In einer weiteren sehr günstigen Ausgestaltung der erfindungsgemäßen Batterieeinzelzelle ist es ferner vorgesehen, dass der Kanal umlaufend um den
schalenförmigen Mittelteil des wenigstens einen Hüllbleches ausgebildet ist. Ein solcher Kanal, welcher nicht nur über Teile der Seitenflächen des schalenförmigen Mittelteils verläuft, sondern dieses umlaufend umschließt, ermöglicht durch eine umlaufende
Ausbildung eine sehr gute Verbindung zwischen allen Bereichen der Zellchemie und der Abblasöffnung, sodass ein sehr sicherer und zuverlässiger Aufbau entsteht.
Dementsprechend ist es in einer besonders günstigen Ausgestaltung der
erfindungsgemäßen Batterieeinzelzelle vorgesehen, dass der Kanal den Siegelflansch quer zur Stapelrichtung der Zellchemie nicht überragt. Der Kanal ist also in einer
Projektion der Batterieeinzelzelle in Stapelrichtung in jedem Fall hinter dem Siegelflansch verborgen, sodass der Kanal kein zusätzliches Volumen benötigt und ausschließlich den Totraum nutzt.
In einer weiteren sehr günstigen Ausgestaltung der erfindungsgemäßen
Batterieeinzelzelle ist es dabei ferner vorgesehen, dass von dem Siegelflansch
wenigstens eine Kühlfahne und/oder Kontaktfahne abgekantet ist. Eine oder mehrere derartige Kühl- und/oder Kontaktfahnen können von dem Siegelflansch idealerweise um 90 Grad abgekantet sein. Sie verlaufen dann parallel zu den in Stapelrichtung der
Zellchemie ausgerichteten Seitenflächen des schalenförmigen Mittelteils, ohne im Bereich hinter dem Siegelflansch Bauraum zu benötigen. Ohne den bei dieser
erfindungsgemäßen Ausführungsform der Batterie für den Kanal genutzten Bauraum zu beeinträchtigen, können also in einfacher und effektiver Art Kontaktfahnen und/oder Kühlfahnen an der Batterieeinzelzelle ausgebildet werden.
Die erfindungsgemäße Batterieeinzelzelle lässt sich entsprechend einfach, sicher und zuverlässig ausbilden. Sie ist insbesondere geeignet, um eine Batterie aus einer Mehrzahl derartiger Batterieeinzelzellen aufzubauen, wobei die Batterieeinzelzellen bevorzugt in Lithium-Ionen-Technologie ausgebildet sind. Der Aufbau der Batterieeinzelzellen im Sinne der Erfindung ermöglicht die einfache und kostengünstige Realisierung einer
Hochvoltbatterie bzw. Hochleistungsbatterie aus Batterieeinzelzellen. Durch den erfindungsgemäßen Aufbau wird eine hohe Sicherheit gewährleistet. Die Batterie eignet sich daher insbesondere zum Einsatz als Traktionsbatterie in einem Fahrzeug,
beispielsweise einem Elektrofahrzeug oder einem HybVidfahrzeug. Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Batterieeinzelzelle ergeben sich aus den restlichen abhängigen Unteransprüchen und werden anhand des
Ausführungsbeispiels deutlich, welches nachfolgend unter Bezugnahme auf die Figuren näher beschrieben ist.
Dabei zeigen:
Fig. 1 eine Batterieeinzelzelle in einer möglichen Ausführungsform gemäß der Erfindung in einer Explosionsdarstellung;
Fig. 2 die Batterieeinzelzelle aus Fig. 1 im zusammengesetzten Zustand;
Fig. 3 eine Schnittdarstellung durch eine Batterieeinzelzelle gemäß Fig. 2;
Fig. 4 eine dreidimensionale Ansicht eines Hüllblechs der Batterieeinzelzelle gemäß Fig.
1 ;
Fig. 5 einen Stapel aus Batterieeinzelzellen im Aufbau gemäß Fig. 1 ;
Fig. 6 eine Schnittdarstellung durch eine Batterieeinzelzelle analog der Darstellung in
Fig. 3 in einer alternativen Ausführungsform; und
Fig. 7 ein Hüllblech der Batterieeinzelzelle in der Ausführungsform gemäß Figur 6.
In der Darstellung der Figur 1 ist eine Batterieeinzelzelle 1 in einer ersten
Ausführungsform dargestellt. Die Batterieeinzelzelle 1 ist in dem hier dargestellten Ausführungsbeispiel als sogenannte bipolare Rahmenflachzelle aufgebaut. Sie weist ein erstes Hüllblech 2 und ein zweites Hüllblech 3 auf, welche in dem hier dargestellten Ausführungsbeispiel jeweils ein schalenförmiges Mittelteil 4 und zur elektrischen
Kontaktierung im oberen Bereich jeweils zwei um 90 Grad abgekantete Kontaktfahnen 5 aufweisen. Um die Batterieeinzelzelle 1 , welche in Lithium-Ionen-Technologie realisiert sein soll, entsprechend kühlen zu können, weisen beide Hüllbleche 2, 3 an ihrem unteren Ende ebenfalls um 90 Grad abgekantete Kühlfahnen 6 auf. Die beiden Hüllbleche 2, 3 bilden, wie bei bipolaren Rahmenflachzellen üblich, neben der Außenhülle der
Batterieeinzelzelle 1 gleichzeitig deren elektrische Pole aus.
In der Mitte der Darstellung in Figur 1 ist eine Zellchemie 7 in Form eines Stapels aus Elektroden und Separatoren zu erkennen. Diese Zellchemie 7 wird nun zwischen die beiden schalenförmig ausgewölbten Mittelteilen 4 der Hüllbleche 2, 3 eingebracht und jeweils im Bereich eines Kontaktelements 8, von denen in der Darstellung der Figur 1 lediglich eines für das eine Hüllblech 3 zu erkennen ist, mit dem jeweiligen Hüllblech 2, 3 verbunden. Umlaufend um den schalenförmigen Mitteleteil 4 weist jedes der Hüllbleche 2, 3 einen Siegelflansch 9 auf, von dem aus die Kontaktfahnen 5 bzw. Kühlfahnen 6 abgekantet sind. Im Bereich dieser Siegelflansche 9 werden die Hüllbleche 2, 3 später miteinander verbunden. Hierfür werden thermoplastische Isolierrahmen 10 zwischen den Siegelflansch 9 positioniert bzw. sind in dem hier dargestellten Ausführungsbeispiel der Fig. 1 mit dem jeweiligen Siegelflansch 9 des jeweiligen Hüllblechs 2, 3 zuvor verbunden worden, beispielsweise auflaminiert. Die Hüllbleche 2, 3 werden dann mit ihren
Siegelflanschen 9 und dem oder den dazwischen angeordneten Isolierrahmen 10 unter Wärmeeinwirkung miteinander verpresst, wodurch die Isolierrahmen 10 zumindest teilweise aufschmelzen und die Hüllbleche 2, 3 miteinander verbinden. Die
Batterieeinzelzelle 1 wird hierdurch verschlossen und der Bereich mit der Zellchemie 7 wird gegenüber der Umgebung abgedichtet.
Im Bereich einer oberen Seitenfläche 11 der Schale des Hüllblechs 3 ist außerdem in der Darstellung der Figur 1 eine Abblasöffnung 12 zu erkennen. Diese Abblasöffnung 12 dient dazu, im Bedarfsfall, wenn sich aufgrund einer Überladung oder eines
Kurzschlusses oder gegebenenfalls auch einer anderen Störung, ein Überdruck im
Bereich der Batterieeinzelzelle 1 ausbildet, diesen Überdruck abzubauen und somit eine exotherme Reaktion der Zellchemie 7 zu verhindern. Im regulären Betrieb wird diese Abblasöffnung 12 dabei verschlossen, was bei dem in Figur 1 gezeigten Aufbau durch eine Membran 13 erfolgt, welche im Falle eines Überdrucks aufreißt und die
Abblasöffnung 12 zumindest teilweise freigibt. Die die Batterieeinzelzelle 1 unter
Überdruck setzenden Gase können so entweichen und eine exotherme Reaktion der Zellchemie 7 wird verhindert. Nach dem Aufreißen der Membran 13 auf der
Abblasöffnung 12, welche auch als Venting-Öffnung bezeichnet wird, ist die
Batterieeinzelzelle 1 dann zwar zerstört, eine kritische Reaktion, wie beispielsweise ein Brand, eine Explosion oder dergleichen ist jedoch verhindert worden.
Die Batterieeinzelle 1 im zusammengebauten Zustand ist in der vergrößerten Darstellung in Figur 2 nochmals besser zu erkennen. Um zu gewährleisten, dass die Abblasöffnung 12 mit möglichst vielen Teilbereichen der Zellchemie 7 in Verbindung steht, ist umlaufend um den schalenförmigen Mittelteil 4 auf der Seitenfläche 12 des Hüllblechs 3 ein Kanal 14 angeordnet, welcher sicherstellt, dass Gase aus allen Bereichen der Zellchemie 7 in den Bereich der Abblasöffnung 12 gelangen können. Hierdurch wird die Sicherheit der so aufgebauten Batterieeinzelzelle erhöht. Wie es insbesondere in der Schnittdarstellung der Batterieeinzelzelle 1 in Figur 3 zu erkennen ist, erstreckt sich der Kanal 14 von der Seitenfläche 1 aus in Richtung der Kühlfahne 6 bzw. der Kontaktfahnen 5 und liegt so seitlich neben dem Siegelflansch 9 in einem ohnehin aufgrund der zwingend notwendigen Ausdehnung des Siegelflansches 9 quer zur Stapelrichtung benötigten Raum. Durch den Kanal 14 wird also kein zusätzliches Volumen beim Aufbau der Batterieeinzelzelle benötigt. Ohne das Leistungsvolumen der Batterieeinzelzelle 1 zu erhöhen, kann somit durch den umlaufend um den
schalenförmigen Mittelteil 4 des Hüllblechs 3 ausgebildeten Kanal 14 die Sicherheit verbessert werden, indem eine sichere und zuverlässige Verbindung zwischen annähernd allen Bereichen der Zellchemie 7 und der Abblasöffnung 12 gewährleistet wird. Der Kanal 14 läuft dabei um den gesamten schalenförmigen Mittelteil 4 des Hüllblechs 3 um und erstreckt sich in seiner größten Ausdehnung quer zu der Stapelrichtung, in welcher die einzelnen beispielsweise in Figur 1 und 3 angedeuteten Elektroden und Separatoren der Zellchemie 7 aufgestapelt sind.
In der Darstellung der Figur 4 ist nochmals eine Ansicht des Hüllblechs 3 zu erkennen. Deutlich ist zu erkennen, dass der Kanal 14 umlaufend um den schalenförmigen Mittelteil
4 ausgebildet ist, und dass die Abblasöffnung 12 in dem Kanal 14 angeordnet ist. Der Kanal 14 kann insbesondere in das Material des Hüllblechs 3 eingeprägt werden oder kann durch andere geeignete Umformmethoden realisiert werden.
In der Darstellung der Figur 5 ist nun ein Stapel 15 aus mehreren der Batterieeinzelzellen 1 zu erkennen, wobei alle Elemente lediglich an einer der Batterieeinzelzellen 1 mit einem Bezugszeichen versehen sind. Dieser Stapel 15 der Batterieeinzelzellen 1 bildet dabei einen Teil einer Batterie aus, welche durch Aufstapeln der Batterieeinzelzellen aufgebaut wird. Sowohl die Kühlfahnen 6 als auch die Kontaktfahnen 7 der jeweils benachbarten Hüllbleche 2, 3 von benachbarten Batterieeinzelzellen 1 werden dabei miteinander verbunden, beispielsweise über ein Ultraschallschweißverfahren. Entsprechende
Ultraschweißpunkte 16 sind in der Darstellung der Figur 5 im Bereich der Kontaktfahnen
5 und der Kühlfahnen 6 angedeutet. Durch diese Verbindung entsteht eine
Reihenschaltung des Stapels 15, welcher dann lediglich an den jeweils außenliegenden Enden über entsprechende Kontaktpole angeschlossen werden muss. In der Schnittdarstellung der Figur 6 ist analog zur Darstellung in Figur 3 eine alternative Ausführungsform der Batterieeinzelzelle bzw. des Hüllblechs 3 der Batterieeinzelzelle 1 zu erkennen. Der erste Unterschied besteht darin, dass hier keine Membran 13 auf die Abblasöffnung 12 aufgebracht worden ist, sondern dass die Abblasöffnung 12 unmittelbar durch das Material des Kanals 14 verschlossen ist. Das im Bereich der Abblasöffnung 12 mit 17 bezeichnete Material des Kanals 14 ist in diesem Bereich über Nuten 18, beispielsweise zwei sich überkreuzende Nuten 18, wie es in der Darstellung der Figur 7 besser zu erkennen ist, entsprechend geschwächt. Im Falle eines Überdrucks im Inneren der Batterieeinzelzelle 1 reißt das Material 17 dann auf und gibt so die Abblasöffnung 12 frei.
Ein weiterer Unterschied in der Darstellung der Batterieeinzelzelle 1 gemäß den Figuren 6 und 7 besteht darin, dass der Kanal 14 nicht umlaufend um den schalenförmigen Mittelteil 4 des Hüllblechs 3 ausgebildet ist, sondern sich lediglich auf einer der Seitenflächen 1 , insbesondere der im bestimmungsgemäßen Gebrauch oben angeordneten Seitenfläche 11 , entsprechend erstreckt. Der Kanal wird damit entsprechend kleiner ausgebildet, was insbesondere in der Darstellung der Figur 7 gut zu erkennen ist. Er erstreckt sich mit seiner längsten Ausdehnung weiterhin quer zur Stapelrichtung der Elektroden und
Separatoren der Zellchemie 7 und gewährleistet hierdurch weiterhin eine gute Verbindung zwischen den einzelnen Bereichen der Zellchemie 7 und der Abblasöffnung 12, sofern eine Strömung zwischen den Separatoren und Elektroden gewährleistet bleibt, was typischerweise der Fall ist.

Claims

Patentansprüche
1. Batterieeinzelzelle (1 ) für eine Hochvoltbatterie mit einer Außenhülle, welche zwei Hüllbleche (2, 3) und wenigstens einen dazwischen angeordneten Isolierrahmen (10) aufweist, mit einer innerhalb der Außenhülle angeordneten Zellchemie (7) sowie einer Abblasöffnung (12), welche im Normalzustand durch eine
Materialschicht (13, 17) verschlossen ist und welche sich im Falle eines Überdrucks durch zumindest teilweises Zerstören der Materialschicht (13, 17) öffnet, mit einem Kanal (14), welcher zwischen der Zellchemie (7) und der Außenhülle angeordnet ist, und welcher mit der Abblasöffnung (12) in Verbindung steht,
dadurch gekennzeichnet, dass
wenigstens eines der Hüllbleche (23) einen schalenförmigen Mitteilteil (4) aufweist, welcher von einem Siegelflansch (9) umgeben ist, wobei der Siegelflansch (9) mit dem wenigstens einen Isolierrahmen (10) verbunden ist, und dass der Kanal (14) an wenigstens einem Teil wenigstens einer Seitenfläche (11 ) des schalenförmigen Mittelteils (4) ausgebildet ist.
2. Batterieeinzelzelle (1 ) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
der Kanal (14) quer zur Stapelrichtung der Zellchemie (7) verlaufend angeordnet ist.
3. Batterieeinzelzelle (1 ) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
der Kanal (14) umlaufend um den schalenförmigen Mittelteil (4) des wenigstens einen Hüllblechs (2, 3) ausgebildet ist.
4. Batterieeinzelzelle (1 ) nach Anspruch 1 , 2 oder 3,
dadurch gekennzeichnet, dass
der Kanal (14) den Siegelflansch (9) quer zur Stapelrichtung der Zellchemie (7) nicht überragt.
5. Batterieeinzelzelle (1 ) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Abblasöffnung (12) im Normalzustand durch eine auf der Abblasöffnung angebrachte Membran (13) verschlossen ist.
6. Batterieeinzelzelle (1 ) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Abblasöffnung (12) im Normalzustand durch das Material (17) des Kanals (14) verschlossen ist, wobei dieses Material (17) im Bereich der Abblasöffnung (12) durch wenigstens eine Nut (18) gezielt geschwächt ist.
7. Batterieeinzelzelle (1 ) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
von dem Siegelflansch (9) wenigstens eine Kühlfahne (6) und/oder Kontaktfahne (5) abgekantet ist.
8. Batterieeinzelzelle (1 ) nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
jedes der Hüllbleche (2, 3) einen schalenartigen Mittelteil (4) aufweist, welcher von einem Siegelflansch (9) umgeben ist.
9. Batterie aus einer Vielzahl von Batterieeinzelzellen (1 ), welche nach einem der
Ansprüche 1 bis 8 ausgebildet sind.
10. Batterie nach Anspruch 9, dadurch gekennzeichnet, dass die Batterieeinzelzellen (1 ) in Lithium-Ionen-Technologie realisiert sind.
PCT/EP2013/002458 2012-09-13 2013-08-14 Batterieeinzelzelle für eine hv-batterie WO2014040683A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012018058.6A DE102012018058A1 (de) 2012-09-13 2012-09-13 Batterieeinzelzelle für eine HV-Batterie
DE102012018058.6 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014040683A1 true WO2014040683A1 (de) 2014-03-20

Family

ID=49035514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002458 WO2014040683A1 (de) 2012-09-13 2013-08-14 Batterieeinzelzelle für eine hv-batterie

Country Status (2)

Country Link
DE (1) DE102012018058A1 (de)
WO (1) WO2014040683A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020119838A1 (de) 2020-07-28 2022-02-03 Bayerische Motoren Werke Aktiengesellschaft Batteriezellgehäuse
DE102022106343A1 (de) 2022-03-18 2023-09-21 Audi Aktiengesellschaft Energiespeicheranordnung für ein Kraftfahrzeug und Verfahren zum Herstellen einer Energiespeicheranordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063193A1 (de) * 2007-12-20 2009-01-02 Daimler Ag Batterie mit am Gehäuse angeordneter Überdrucksicherung
WO2009018940A1 (de) * 2007-08-06 2009-02-12 Daimler Ag Batteriegehäuse mit angefügter fluidströmleiteinheit
DE102008013188A1 (de) 2008-03-07 2009-09-17 Johnson Controls Hybrid And Recycling Gmbh Elektrochemischer Akkumulator und Fahrzeug mit einem elektrochemischen Akkumulator
DE102009020185A1 (de) 2009-05-06 2010-11-25 Continental Automotive Gmbh Energiespeicher aus Batteriezellen mit Gehäuse
DE102010050986A1 (de) * 2010-11-10 2012-05-10 Daimler Ag Batterie mit einem Zellverbund
DE102010055604A1 (de) * 2010-12-22 2012-06-28 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen
DE102011109218A1 (de) 2011-08-02 2013-02-07 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018940A1 (de) * 2007-08-06 2009-02-12 Daimler Ag Batteriegehäuse mit angefügter fluidströmleiteinheit
DE102007063193A1 (de) * 2007-12-20 2009-01-02 Daimler Ag Batterie mit am Gehäuse angeordneter Überdrucksicherung
DE102008013188A1 (de) 2008-03-07 2009-09-17 Johnson Controls Hybrid And Recycling Gmbh Elektrochemischer Akkumulator und Fahrzeug mit einem elektrochemischen Akkumulator
DE102009020185A1 (de) 2009-05-06 2010-11-25 Continental Automotive Gmbh Energiespeicher aus Batteriezellen mit Gehäuse
DE102010050986A1 (de) * 2010-11-10 2012-05-10 Daimler Ag Batterie mit einem Zellverbund
DE102010055604A1 (de) * 2010-12-22 2012-06-28 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen
DE102011109218A1 (de) 2011-08-02 2013-02-07 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen

Also Published As

Publication number Publication date
DE102012018058A1 (de) 2014-03-13

Similar Documents

Publication Publication Date Title
EP2606520B1 (de) Elektrochemische zelle mit wenigstens einer druckentlastungsvorrichtung
DE102009035492A1 (de) Batterie mit einer Vielzahl von plattenförmigen Batteriezellen
DE102009035463A1 (de) Batterie mit einer Vielzahl von plattenförmigen Batteriezellen
EP2593982B1 (de) Batteriezellenmodul, batterie und kraftfahrzeug
WO2011116801A1 (de) Batterie aus einer vielzahl von batterieeinzelzellen
WO2010012337A1 (de) Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie
EP2550694A1 (de) Einzelzelle und batterie mit einer mehrzahl von einzelzellen
WO2009103523A1 (de) Einzelzelle für eine batterie
WO2014040676A1 (de) Batterieeinzelzelle f?r eine hv-batterie
DE102013021332A1 (de) Zellmodul für eine Batterie, Batterie und Verfahren zur Herstellung eines Zellmoduls
DE102012222111A1 (de) Batteriezelle mit einem eine Kanalstruktur aufweisenden Arretierkörper
DE102010012935A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102015014343A1 (de) Zellhalter
WO2020078649A1 (de) Schutzeinheit für ein batteriemodul einer hochvoltbatterie, batteriemodul sowie hochvoltbatterie
DE102021109302B3 (de) Batterievorrichtung
DE102013202288A1 (de) Batteriezelle mit einem ein elastisch federndes Element aufweisenden Arretierkörper
WO2014040683A1 (de) Batterieeinzelzelle für eine hv-batterie
DE102010013031A1 (de) Batterie mit einem Zellenstapel von Batterieeinzelzellen
DE102008059958B4 (de) Einzelzelle und Batterie mit einer Mehrzahl elektrisch seriell und/oder parallel miteinander verbundener Einzelzellen
DE102019102032A1 (de) Energiespeicherzelle, Batteriemodul und Herstellungsverfahren
DE102010055599A1 (de) Batterie mit einem Stapel aus mehreren prismatischen Batterieeinzelzellen
DE102010055604A1 (de) Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen
EP2606522A1 (de) Elektrochemische zelle mit wenigstens einer druckentlastungsvorrichtung
DE102009035467A1 (de) Batterieeinzelzelle mit einem Gehäuse
DE102008059950A1 (de) Einzelzelle für eine Batterie mit schalenförmigem Gehäuseteil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13753093

Country of ref document: EP

Kind code of ref document: A1