WO2014040585A1 - Stahllegierung für einen niedrig legierten, hochfesten stahl - Google Patents

Stahllegierung für einen niedrig legierten, hochfesten stahl Download PDF

Info

Publication number
WO2014040585A1
WO2014040585A1 PCT/DE2013/000519 DE2013000519W WO2014040585A1 WO 2014040585 A1 WO2014040585 A1 WO 2014040585A1 DE 2013000519 W DE2013000519 W DE 2013000519W WO 2014040585 A1 WO2014040585 A1 WO 2014040585A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
steel
steel alloy
weight
alloy according
Prior art date
Application number
PCT/DE2013/000519
Other languages
German (de)
English (en)
French (fr)
Inventor
Philippe SCHAFFNIT
Jürgen KLABBERS-HEIMANN
Joachim Konrad
Original Assignee
Salzgitter Mannesmann Precision Gmbh
Ilsenburger Grobblech Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/428,286 priority Critical patent/US20150267282A1/en
Priority to BR112015005216A priority patent/BR112015005216A2/pt
Application filed by Salzgitter Mannesmann Precision Gmbh, Ilsenburger Grobblech Gmbh filed Critical Salzgitter Mannesmann Precision Gmbh
Priority to EP13789475.4A priority patent/EP2895635B1/de
Priority to RU2015113522A priority patent/RU2620216C2/ru
Priority to PL13789475T priority patent/PL2895635T3/pl
Priority to AU2013314787A priority patent/AU2013314787A1/en
Priority to KR1020157009568A priority patent/KR102079612B1/ko
Priority to CA2881686A priority patent/CA2881686A1/en
Priority to SI201331451T priority patent/SI2895635T1/sl
Priority to MX2015003103A priority patent/MX2015003103A/es
Priority to JP2015531464A priority patent/JP6513568B2/ja
Priority to DK13789475.4T priority patent/DK2895635T3/da
Priority to ES13789475T priority patent/ES2729562T3/es
Priority to UAA201503379A priority patent/UA116111C2/uk
Publication of WO2014040585A1 publication Critical patent/WO2014040585A1/de
Priority to ZA2015/02450A priority patent/ZA201502450B/en
Priority to AU2018201165A priority patent/AU2018201165B2/en
Priority to US15/898,890 priority patent/US20200131608A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention relates to a steel alloy for a low alloy, high strength and at the same time tough steel with excellent wear resistance according to claim 1.
  • the invention relates to tubes made of this alloy, strips, and sheets of which z. B. components for the automotive industry, such as body panels,
  • Wear plates made of this alloy can be used for excavator buckets. Also, such steels are used for applications where suddenly occurring
  • Impact energies must be absorbed, e.g. as bulletproof armor.
  • Tubes made from this alloy can be designed as welded, hot or cold strip or seamless tubes, which may occasionally have deviating from the circular cross-sections.
  • Construction tubes or sheets of this steel alloy can also be used for highly stressed welded steel structures, for example in crane, bridge, ship, hoist and truck construction.
  • Characteristic of these steels is e.g. a strength of 1000 to about 2000 MPa, depending on the strength of an elongation at break of at least 5% and a very finely (nano-) structured bainitic structure with shares of retained austenite.
  • Carbide-free bainitic steels for rails are e.g. known from DE 696 31 953 T2.
  • the steel alloy disclosed therein in addition to additions of manganese, chromium and other elements such as molybdenum, nickel, vanadium, tungsten, titanium and boron, a silicon content between 1 and 3%.
  • This steel is designed for the requirements of highly wear-stressed rails, but for tapes, sheets and tubes for the stated application uneconomical or not applicable, since in addition to the requirements for wear resistance, both the strength and toughness requirements are met.
  • the cross-sectional dimensions of the rails differ significantly from those of the strips, sheets and tubes due to their compact cross-section, which means that the alloy concept can be adapted to the material properties to be achieved after the Air cooling of the steel required.
  • a disadvantage of the known steel is also the expensive addition of titanium and other alloying elements such as nickel, molybdenum and tungsten.
  • Another problem with the known steel is that no information is made on the nitrogen content, which exerts a negative influence on the material properties, in particular with aluminum additions by the formation of aluminum nitrides.
  • Notched impact strength at -20 ° C at least 15 J
  • the object of the invention is to provide a steel alloy for a low-alloy, high-strength, tough and wear-resistant carbide bainitic steel for the production of strips, sheets and tubes, on the one hand cheaper than the known steel alloys and on the other hand uniform, the requirements of the material properties such Strength, elongation at break, toughness etc. guaranteed. moreover These material properties should be achieved by air hardening even when cooling to still air.
  • Remaining iron with melting impurities with optional addition of one or more elements of Mo, Ni, Co, W, Nb, Ti, or V as well as Zr and rare earths with the proviso that to avoid primary excretions of AIN the condition
  • rare earths and reactive elements such as Ce, Hf, La, Re, Sc and / or Y can be alloyed with a total of up to 1 wt .-%.
  • Cooling in air has a strength (R m ) of more than 1250 MPa, an elongation at break of more than 12% and a toughness (KBZ) at -20 ° C of at least 15 J (see Table 1).
  • the structure consists of carbide-free bainite and retained austenite with a content of at least 75% bainitic ferrite, at least 10% retained austenite and up to a maximum of 5% martensite (or martensite phase and / or decomposed austenite).
  • the steel alloy according to the invention is based on the development of the
  • chromium in the range from 0.10 to 2.00 wt.%, Moreover, the kinetics of ferrite formation can be decisively controlled so that the formation of coarse polygonal ferrite grains, which can negatively influence the material properties, is effectively avoided.
  • Crucial here is the interaction of aluminum and chrome. While aluminum accelerates ferritic and bainitic transformation, the addition of chromium retards ferritic transformation (see Figure 2). Through a specific combination of these two elements, both the kinetics of ferrite and bainite formation can be controlled.
  • the nitrogen content be as specified Upper limit of 0.025 wt .-%, better still 0.015 wt .-%, or optimally 0.010 wt .-% does not exceed the number and size of harmful aluminum nitrides as
  • AI x N ⁇ 5 x 10 "3 (wt .-%) must be fulfilled.
  • the investigated alloy compositions and the determined mechanical characteristics are given in Table 1. All samples were heated to about 950 ° C and then cooled in still air or accelerated. The required cooling rate is made dependent on the sheet thickness and the composition. As the results of the mechanical sampling show, the required properties could not be achieved with the test melt 14 because of the too low Cr content.
  • the test melt 6 according to the invention fulfilled the requirements because of the larger sheet thicknesses of 12 mm only by accelerated cooling. Typical temperature profiles for cooling in still air or with quenching are shown in FIG.
  • Substructure (such as subgrains) with fine lamellar microstructure is outlined in FIG. Nb (C, N) precipitation stabilizes the former austenite grain structure.
  • TRIP Transformation Induced Plasticity
  • Carbon for reasons of sufficient strength of the material, the minimum content should not be less than 0.10% by weight. In view of a sufficiently low martensite start temperature and thus the setting of a very fine microstructure but still good weldability, the carbon content should not exceed 0.70 wt .-%. Carbon contents between 0.15 and 0.60% by weight have been found to be favorable, optimal properties being achieved when the carbon content is between 0.18 and 0.50% by weight.
  • Aluminum / silicon the essential element to achieve the required
  • the aluminum content should be at least 0.05% by weight, but not more than 3.00% by weight, since otherwise coarse polygonal ferrite grains may be produced which again impair the mechanical properties.
  • silicon may additionally be added in amounts of from 0.25 to 4.00% by weight. Good material properties are achieved at aluminum contents of between 0.07 and 1.55% by weight and optimally between 0.09 and 0.75% by weight. Corresponding silicon contents are from 0.50 to 1.75% by weight or between 0.75 and 1.50% by weight.
  • the selective addition of chromium of at least 0.10 to 2.00 wt .-%, the ferritic conversion can be delayed and controlled by combining with aluminum, both the kinetics of ferrite and bainite formation targeted.
  • Advantageous chromium contents are 0.10 to 1.75% by weight or between 0.10 and 1.50% by weight.
  • Manganese the manganese addition in the range of 1.00 to 3.00% by weight results, depending on the respective requirements of the steel alloy, from a compromise between strength which can be achieved by higher additions and one
  • the manganese content should be between 1.50 and 2.50 wt.% Or between 1.70 and 2.50 wt.%.
  • Niobium / nitrogen adjust the niobium content from 0.001 to 0.50 wt.% To ensure the formation of Nb (C, N).
  • the resulting grain refining contributes to a significant improvement in toughness properties.
  • Advantageous niobium contents are from 0.001 to 0.10 or 0.001 to 0.05 wt .-% with advantageous nitrogen contents of 0.001 to 0.015 or 0.002 to 0.010 wt .-%.
  • micro-alloying elements based on vanadium can be added to 0.20% by weight and / or titanium to 0.10% by weight. It should be a Summengehalt at Ti, V of max. 0.20 wt .-% and Ni, Mo, Co, W, Zr a Summengehalt of max. 5.50 wt .-% are maintained. In order to be able to exploit the effect of these alloying elements, a minimum content of 0.01% by weight should be maintained in each case.
  • Rare earths and reactive elements the optional addition of rare earths and reactive elements such as Ce, Hf, La, Re, Sc and / or Y can be used to set a targeted fin spacing and thus to further strength / and
  • Toughening in amounts of up to 1 wt .-% take place. If necessary, a total amount of 20 ppm should be added.
  • the martensite starting temperature shall be determined as follows:
  • cementite formation must be suppressed. This is achieved by a targeted alloy with Si and Al, since both elements have a very low solubility in cementite. For this, the following condition must be observed:
  • Austenitization of the steels of the invention can be achieved (see Figure 1).
  • the microstructure of the steel according to the invention consists of bainitic ferrite and retained austenite lamellae. It may have fractions of up to 5% martensite (or martensite / austenite phase and / or decomposed austenite).
  • the two most important parameters of the microstructure, which significantly influence the mechanical properties of the steel, are the fin spacing and the proportion of retained austenite. The smaller the fin spacing and the higher the proportion of retained austenite, the higher the strength and elongation at break of the material become. In order to achieve the required high strength of the material of at least 1250 up to 2500 MPa, the average fin spacing should be less than 750 nm, advantageously less than 500 nm.
  • a residual austenite content of at least 10% and a martensite proportion of at most 5% should be present.
  • the average former Austenitkornucc should not exceed a value of 100 ⁇ .
  • the microstructure is very fine, the microstructural constituents can hardly be differentiated by light microscopy, so that a combination of electron microscopy and X-ray diffraction can be used on a case-by-case basis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
PCT/DE2013/000519 2012-09-14 2013-08-28 Stahllegierung für einen niedrig legierten, hochfesten stahl WO2014040585A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
ES13789475T ES2729562T3 (es) 2012-09-14 2013-08-28 Aleación de acero para un acero de baja aleación con alta resistencia
CA2881686A CA2881686A1 (en) 2012-09-14 2013-08-28 Steel alloy for a low alloy high-strength steel
EP13789475.4A EP2895635B1 (de) 2012-09-14 2013-08-28 Stahllegierung für einen niedrig legierten, hochfesten stahl
RU2015113522A RU2620216C2 (ru) 2012-09-14 2013-08-28 Стальной сплав для получения низколегированной высокопрочной стали
PL13789475T PL2895635T3 (pl) 2012-09-14 2013-08-28 Stop stalowy dla niskostopowej stali o wysokiej wytrzymałości
AU2013314787A AU2013314787A1 (en) 2012-09-14 2013-08-28 Steel alloy for a low-alloy, high-strength steel
KR1020157009568A KR102079612B1 (ko) 2012-09-14 2013-08-28 저합금 고강도 강을 위한 강 합금
US14/428,286 US20150267282A1 (en) 2012-09-14 2013-08-28 Steel alloy for a low-alloy high-strength steel
SI201331451T SI2895635T1 (sl) 2012-09-14 2013-08-28 Legirano jeklo za nizko legirano, visokotrdnostno jeklo
JP2015531464A JP6513568B2 (ja) 2012-09-14 2013-08-28 低合金高張力鋼用の合金鋼
MX2015003103A MX2015003103A (es) 2012-09-14 2013-08-28 Aleacion de acero para un acero de alta resistencia, de baja aleacion.
DK13789475.4T DK2895635T3 (da) 2012-09-14 2013-08-28 Stållegering til lavlegeret højstyrkestål
BR112015005216A BR112015005216A2 (pt) 2012-09-14 2013-08-28 Liga de aço para aço de alta resistência e baixa liga
UAA201503379A UA116111C2 (uk) 2012-09-14 2013-08-28 Низьколегована високоміцна сталь та її застосування
ZA2015/02450A ZA201502450B (en) 2012-09-14 2015-04-13 Steel alloy for a low-alloy, high-strength steel
AU2018201165A AU2018201165B2 (en) 2012-09-14 2018-02-16 Steel alloy for a low-alloy, high-strength steel
US15/898,890 US20200131608A1 (en) 2012-09-14 2018-02-19 Method of determining a composition of a steel alloy for use in a low-alloy high-strength steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012018833.1 2012-09-14
DE102012018833 2012-09-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/428,286 A-371-Of-International US20150267282A1 (en) 2012-09-14 2013-08-28 Steel alloy for a low-alloy high-strength steel
US15/898,890 Continuation US20200131608A1 (en) 2012-09-14 2018-02-19 Method of determining a composition of a steel alloy for use in a low-alloy high-strength steel

Publications (1)

Publication Number Publication Date
WO2014040585A1 true WO2014040585A1 (de) 2014-03-20

Family

ID=49578053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/000519 WO2014040585A1 (de) 2012-09-14 2013-08-28 Stahllegierung für einen niedrig legierten, hochfesten stahl

Country Status (21)

Country Link
US (2) US20150267282A1 (ru)
EP (1) EP2895635B1 (ru)
JP (1) JP6513568B2 (ru)
KR (1) KR102079612B1 (ru)
AR (1) AR092556A1 (ru)
AU (2) AU2013314787A1 (ru)
BR (1) BR112015005216A2 (ru)
CA (1) CA2881686A1 (ru)
CL (1) CL2015000634A1 (ru)
DK (1) DK2895635T3 (ru)
ES (1) ES2729562T3 (ru)
MX (1) MX2015003103A (ru)
PE (1) PE20151042A1 (ru)
PL (1) PL2895635T3 (ru)
RU (1) RU2620216C2 (ru)
SI (1) SI2895635T1 (ru)
TR (1) TR201903460T4 (ru)
TW (1) TW201432061A (ru)
UA (1) UA116111C2 (ru)
WO (1) WO2014040585A1 (ru)
ZA (1) ZA201502450B (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119839A1 (de) * 2015-11-17 2017-05-18 Benteler Steel/Tube Gmbh Stahllegierung mit hohem Energieaufnahmevermögen und Stahlrohrprodukt
US20170297369A1 (en) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Motor vehicle trailer, chassis axle, in particular for a motor vehicle trailer and use of the chassis axle and of a material
WO2020109850A1 (en) 2018-11-30 2020-06-04 Arcelormittal Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
WO2021032858A1 (de) 2019-08-21 2021-02-25 Ilsenburger Grobblech Gmbh Verfahren zur herstellung von hochfesten blechen oder bändern aus einem niedrig legierten, hochfesten bainitischen stahl sowie ein stahlband oder stahlblech hieraus
US11384415B2 (en) 2015-11-16 2022-07-12 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
CN115298347A (zh) * 2020-02-11 2022-11-04 布里卡拉反应堆斯德哥尔摩股份有限公司 马氏体钢

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088090A (zh) 2015-08-28 2015-11-25 宝山钢铁股份有限公司 一种抗拉强度2000MPa级的防弹钢板及其制造方法
ES2774091T3 (es) * 2015-12-29 2020-07-16 Arcelormittal Procedimiento para producir una lámina de acero galvanizada y recocida de ultra alta resistencia y lámina galvanizada y recocida obtenida
JP6967628B2 (ja) * 2015-12-29 2021-11-17 アルセロールミタル 超高強度合金化溶融亜鉛めっき鋼板を製造するための方法、及び得られた合金化溶融亜鉛めっき鋼板
CN106191666B (zh) * 2016-07-06 2018-01-02 马钢(集团)控股有限公司 一种低成本精节生产的轨道交通用贝氏体钢车轮及其制造方法
WO2018215813A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
CN110616366B (zh) * 2018-06-20 2021-07-16 宝山钢铁股份有限公司 一种125ksi钢级抗硫油井管及其制造方法
SE542672C2 (en) 2018-09-14 2020-06-23 Ausferritic Ab Method for producing an ausferritic steel austempered during continuous cooling followed by annealing
CN109536843B (zh) * 2019-01-04 2020-08-25 武汉钢铁有限公司 一种含氮双相耐腐蚀耐磨热轧钢及生产方法
US20210404028A1 (en) * 2020-01-17 2021-12-30 Indian Institute Of Technology Bombay High strength and toughness low carbon nanostructured bainitic steel and preparation method thereof
CN111471934B (zh) * 2020-05-25 2021-08-13 武汉钢铁有限公司 无碳化物贝氏体的自强化齿轮用钢及制备方法
US20220195550A1 (en) * 2020-12-23 2022-06-23 Caterpillar Inc. Air-hardened machine components
CN115011867B (zh) * 2022-04-19 2023-04-14 清华大学 高强韧耐磨钢衬板及其制备方法
CN116574978B (zh) * 2023-04-23 2024-01-09 鞍钢股份有限公司 一种多阶段热处理细晶压力容器钢板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69631953T2 (de) 1995-01-20 2005-05-25 Corus Uk Ltd. Verfahren zur herstellung von carbidfreien bainitischen stählen
EP1867747A1 (en) * 2005-03-31 2007-12-19 JFE Steel Corporation Alloyed hot-dip galvanized steel sheet and method for producing same
WO2008102009A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Cold rolled and continuously annealed high strength steel strip and method for producing said steel
WO2009075494A1 (en) 2007-12-06 2009-06-18 Posco High carbon steel sheet superior in tensile strength and elongation and method for manufacturing the same
EP2365103A1 (en) * 2008-10-31 2011-09-14 Usui Kokusai Sangyo Kaisha Limited High-strength steel machined product and method for manufacturing the same, and method for manufacturing diesel engine fuel injection pipe and common rail
WO2011111330A1 (ja) * 2010-03-09 2011-09-15 Jfeスチール株式会社 高強度鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254698B1 (en) * 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
JP4091894B2 (ja) * 2003-04-14 2008-05-28 新日本製鐵株式会社 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法
JP4698968B2 (ja) * 2004-03-30 2011-06-08 株式会社神戸製鋼所 塗膜密着性と加工性に優れた高強度冷延鋼板
JP2005325393A (ja) * 2004-05-13 2005-11-24 Jfe Steel Kk 高強度冷延鋼板およびその製造方法
JP4529549B2 (ja) * 2004-06-15 2010-08-25 Jfeスチール株式会社 延性と穴広げ加工性に優れた高強度冷延鋼板の製造方法
EP1749895A1 (fr) * 2005-08-04 2007-02-07 ARCELOR France Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
EP1832667A1 (fr) * 2006-03-07 2007-09-12 ARCELOR France Procédé de fabrication de tôles d'acier à très hautes caractéristiques de résistance, de ductilité et de tenacité, et tôles ainsi produites
EP1990431A1 (fr) * 2007-05-11 2008-11-12 ArcelorMittal France Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
AU2009275671B2 (en) * 2008-07-31 2014-11-20 The Secretary Of State For Defence Super bainite steels and methods of manufacture thereof
JP5126326B2 (ja) * 2010-09-17 2013-01-23 Jfeスチール株式会社 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP5298114B2 (ja) * 2010-12-27 2013-09-25 株式会社神戸製鋼所 塗膜密着性と加工性に優れた高強度冷延鋼板、及びその製造方法
JP5648596B2 (ja) * 2011-07-06 2015-01-07 新日鐵住金株式会社 冷延鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69631953T2 (de) 1995-01-20 2005-05-25 Corus Uk Ltd. Verfahren zur herstellung von carbidfreien bainitischen stählen
EP1867747A1 (en) * 2005-03-31 2007-12-19 JFE Steel Corporation Alloyed hot-dip galvanized steel sheet and method for producing same
WO2008102009A1 (en) * 2007-02-23 2008-08-28 Corus Staal Bv Cold rolled and continuously annealed high strength steel strip and method for producing said steel
WO2009075494A1 (en) 2007-12-06 2009-06-18 Posco High carbon steel sheet superior in tensile strength and elongation and method for manufacturing the same
EP2365103A1 (en) * 2008-10-31 2011-09-14 Usui Kokusai Sangyo Kaisha Limited High-strength steel machined product and method for manufacturing the same, and method for manufacturing diesel engine fuel injection pipe and common rail
WO2011111330A1 (ja) * 2010-03-09 2011-09-15 Jfeスチール株式会社 高強度鋼板およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384415B2 (en) 2015-11-16 2022-07-12 Benteler Steel/Tube Gmbh Steel alloy with high energy absorption capacity and tubular steel product
DE102015119839A1 (de) * 2015-11-17 2017-05-18 Benteler Steel/Tube Gmbh Stahllegierung mit hohem Energieaufnahmevermögen und Stahlrohrprodukt
US20170297369A1 (en) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Motor vehicle trailer, chassis axle, in particular for a motor vehicle trailer and use of the chassis axle and of a material
WO2020109850A1 (en) 2018-11-30 2020-06-04 Arcelormittal Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
WO2021032858A1 (de) 2019-08-21 2021-02-25 Ilsenburger Grobblech Gmbh Verfahren zur herstellung von hochfesten blechen oder bändern aus einem niedrig legierten, hochfesten bainitischen stahl sowie ein stahlband oder stahlblech hieraus
CN115298347A (zh) * 2020-02-11 2022-11-04 布里卡拉反应堆斯德哥尔摩股份有限公司 马氏体钢

Also Published As

Publication number Publication date
EP2895635A1 (de) 2015-07-22
KR20150070150A (ko) 2015-06-24
DK2895635T3 (da) 2019-05-20
RU2620216C2 (ru) 2017-05-23
AU2018201165B2 (en) 2019-09-26
CA2881686A1 (en) 2014-03-20
TR201903460T4 (tr) 2019-04-22
US20200131608A1 (en) 2020-04-30
AU2013314787A1 (en) 2015-04-30
JP2015533942A (ja) 2015-11-26
BR112015005216A2 (pt) 2022-07-26
KR102079612B1 (ko) 2020-02-20
PL2895635T3 (pl) 2019-08-30
EP2895635B1 (de) 2019-03-06
PE20151042A1 (es) 2015-07-27
MX2015003103A (es) 2015-10-22
AR092556A1 (es) 2015-04-22
US20150267282A1 (en) 2015-09-24
CL2015000634A1 (es) 2015-11-20
ES2729562T3 (es) 2019-11-04
UA116111C2 (uk) 2018-02-12
ZA201502450B (en) 2016-09-28
TW201432061A (zh) 2014-08-16
SI2895635T1 (sl) 2019-06-28
AU2018201165A1 (en) 2018-03-22
RU2015113522A (ru) 2016-11-10
JP6513568B2 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
EP2895635B1 (de) Stahllegierung für einen niedrig legierten, hochfesten stahl
EP1309734B1 (de) Höherfester, kaltumformbarer stahl und stahlband oder -blech, verfahren zur herstellung von stahlband und verwendungen eines solchen stahls
EP3168312B1 (de) Edelbaustahl mit bainitischem gefüge, daraus hergestelltes schmiedeteil und verfahren zur herstellung eines schmiedeteils
EP3571324A1 (de) Warmgewalztes stahlflachprodukt bestehend aus einem komplexphasenstahl mit überwiegend bainitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
EP3325678B1 (de) Umformbarer leichtbaustahl mit verbesserten mechanischen eigenschaften und verfahren zur herstellung von halbzeug aus diesem stahl
WO2019223854A1 (de) Aus einem stahl geformtes blechformteil mit einer hohen zugfestigkeit und verfahren zu dessen herstellung
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE102019122515A1 (de) Verfahren zur Herstellung von hochfesten Blechen oder Bändern aus einem niedrig legierten, hochfesten bainitischen Stahl sowie ein Stahlband oder Stahlblech hieraus
EP3013513B1 (de) Siebstange, stangensieb und verfahren zur herstellung einer siebstange
WO2015117934A1 (de) Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
WO2018210574A1 (de) DREILAGIGER VERSCHLEIßSTAHL ODER SICHERHEITSSTAHL, VERFAHREN ZUR HERSTELLUNG EINER KOMPONENTE UND VERWENDUNG
DE112006003553B9 (de) Dicke Stahlplatte für eine Schweißkonstruktion mit ausgezeichneter Festigkeit und Zähigkeit in einem Zentralbereich der Dicke und geringen Eigenschaftsänderungen durch ihre Dicke und Produktionsverfahren dafür
EP3847284B1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP2255021B1 (de) Stahllegierung für einen niedrig legierten stahl zur herstellung hochfester nahtloser stahlrohre
EP3894217A1 (de) Stahlprodukt mit hohem energieaufnahmevermögen bei schlagartiger beanspruchung und verwendung eines solchen stahlproduktes
WO2020038883A1 (de) Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
EP3225702B1 (de) Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
EP3469108A1 (de) Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl
EP4211279A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
WO2020239676A1 (de) WARMGEWALZTES STAHLFLACHPRODUKT MIT OPTIMIERTER SCHWEIßEIGNUNG UND VERFAHREN ZUR HERSTELLUNG EINES SOLCHEN STAHLFLACHPRODUKTS
EP3964591A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
WO2020187419A1 (de) Verfahren zur herstellung eines warmgewalzten stahlflachproduktes mit unterschiedlichen eigenschaften, ein entsprechend warmgewalztes stahlflachprodukt sowie eine entsprechende verwendung
WO2020020889A1 (de) Verfahren zur herstellung eines schwingungsbelasteten bauteils und verwendung dieses bauteils
EP4047105A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2881686

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 000339-2015

Country of ref document: PE

Ref document number: MX/A/2015/003103

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015531464

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015000634

Country of ref document: CL

Ref document number: 14428286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201502145

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157009568

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015113522

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005216

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013314787

Country of ref document: AU

Date of ref document: 20130828

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015005216

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150309