WO2014040310A1 - 一种基于逆卡诺原理设备工况的监测装置及方法 - Google Patents

一种基于逆卡诺原理设备工况的监测装置及方法 Download PDF

Info

Publication number
WO2014040310A1
WO2014040310A1 PCT/CN2012/081796 CN2012081796W WO2014040310A1 WO 2014040310 A1 WO2014040310 A1 WO 2014040310A1 CN 2012081796 W CN2012081796 W CN 2012081796W WO 2014040310 A1 WO2014040310 A1 WO 2014040310A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply line
monitoring
line information
rated
Prior art date
Application number
PCT/CN2012/081796
Other languages
English (en)
French (fr)
Inventor
陈广
李旭东
Original Assignee
成都光码智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光码智能科技有限公司 filed Critical 成都光码智能科技有限公司
Publication of WO2014040310A1 publication Critical patent/WO2014040310A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays

Definitions

  • the invention relates to the field of equipment condition monitoring, in particular to the field of working condition monitoring based on the inverse Carnot principle device.
  • the compressor pressurizes the medium, and absorbs heat during the evaporation and condensation process.
  • the compressor pressurizes the medium, and absorbs heat during the evaporation and condensation process.
  • air conditioners, heat pumps, refrigerators, etc. these devices contain four major components, namely compressor, condenser, throttle, evaporator.
  • the refrigerant circulates therein.
  • these devices based on the inverse Carnot cycle principle consume the rated power of the input power under the specified operating conditions, and the rated output power is generated.
  • the object of the present invention is to provide a working condition monitoring method and a monitoring device capable of detecting abnormal operation of a device in time based on the inverse Carnot principle device.
  • the present invention firstly provides a monitoring method based on the inverse Carnot principle equipment condition, the monitoring method comprising the steps of: inputting a rated operating parameter and a fault characteristic library of a monitoring object; and setting a rated operating parameter and a fault characteristic database Stored in the data storage module; collects the power supply line information of the monitoring object; compares the rated operating parameters of the monitored object with the collected power supply line information, and determines whether the power supply line information is in a reasonable fluctuation range of the rated operating parameters; if the power supply line information exceeds If the rated operating range of the rated operating parameters is reasonable, the monitoring object is abnormally operated, and the fluctuation rules of the power supply line information of the abnormal operation monitoring object are extracted, and the similarity comparison is performed with the fault characteristic database to determine the cause of the abnormal operation of the monitoring object.
  • the monitoring method further includes the following steps: after determining the cause of the abnormal operation of the monitoring object, prompting the monitoring object to operate abnormally, and outputting the power supply line information of the monitoring object and the cause of the abnormal operation.
  • the monitoring method further includes the following steps: if the power supply line information does not exceed a reasonable fluctuation range of the rated operating parameters, it is determined that the monitoring object is operating normally.
  • the reasonable fluctuation range of the power supply line information beyond the rated operating parameter means that the power supply line information is higher than 30% of the rated operating parameter or less than 80% of the rated operating parameter.
  • the rated operating parameter is a nameplate parameter
  • the nameplate parameter includes a rated input power or a rated voltage or a rated current or a rated frequency
  • the fault signature library includes a type of the fault of the monitored object, and a power or current fluctuation characteristic corresponding to the fault type
  • the line information contains the power or voltage or current or frequency of the monitored object.
  • the above describes a monitoring method based on the inverse Carnot principle equipment condition
  • the invention also provides a monitoring device based on the inverse Carnot principle equipment condition
  • the monitoring device includes: the rated operating parameter and the fault characteristic of the input monitoring object
  • the input module of the library includes: the data storage module storing the rated operating parameters and the fault characteristic library; the power supply information collecting module for collecting the power supply line information of the monitoring object; comparing the rated operating parameters of the monitoring object with the collected power supply line information, and judging the power supply line Whether the information is in a reasonable fluctuation range of the rated operating parameters, and if the power supply line information exceeds the reasonable fluctuation range of the rated operating parameters, it is judged that the monitoring object is operating abnormally, and the fluctuation rules of the power supply line information of the abnormal operation monitoring object are extracted, and the fault
  • the feature library performs a similarity comparison and determines a module for monitoring the cause of the abnormal operation of the object.
  • the monitoring device further comprises a temperature collecting module for collecting temperature, and using the temperature information collected by the temperature collecting module to determine whether the current monitoring object is in cooling or heating The working mode, and the working mode judging module corresponding to the rated operating parameter is selected according to the determined working mode.
  • the monitoring device further includes an output module that prompts the monitoring object to operate abnormally after determining the cause of the abnormal operation of the monitoring object, and outputs the power supply line information of the monitoring object and the cause of the abnormal operation.
  • the present invention firstly detects the abnormal operation state of the device by monitoring the power supply line information of the device, so as to save energy and delay the degradation; secondly, the fluctuation of the power supply line information under the abnormal state of the device.
  • the rules are compared with the fault signature database to automatically find out the reason for the abnormal operation of the equipment, and it is convenient to check and repair the equipment with abnormal operation.
  • Figure 1 is a flow chart of the monitoring method of equipment based on the inverse Carnot principle
  • Figure 2 is a structural diagram of the equipment condition monitoring device based on the inverse Carnot principle
  • Figure 3 is the operating power diagram in the information of the heat pump dirty plugged power supply line.
  • Figure 4 is the operating power diagram in the information of the refrigerator ice block power supply line.
  • FIG. 5 is the operating power diagram in the air conditioning lack of refrigerant supply line information
  • FIG. 1 it is a flow chart of a device condition monitoring method based on the inverse Carnot principle, and the method includes the following steps:
  • the rated operational parameters and the fault characteristic library of the monitoring object, and the monitoring object is a device based on the inverse Carnot principle.
  • the typical equipment based on the inverse Carnot principle includes an air conditioner, a refrigerator, a heat pump and the like.
  • the rated operating parameters input are mainly nameplate parameters, and the nameplate parameters include information such as rated input power, rated output power, rated voltage, rated current, and rated frequency. If the device based on the inverse Carnot principle is air conditioner, it also involves whether there is frequency conversion.
  • the fault signature library contains the type of fault of the monitored object and the power or current fluctuation characteristics corresponding to the fault type.
  • the corresponding power or current fluctuation characteristics are: the running power or current continues to be higher than the rated fluctuation range of the rated operating power or current when the device is turned on; the corresponding power or current fluctuation characteristic when the fault type is ice blocking is: the operating power when the device is turned on Or the current is higher than the reasonable fluctuation range of the rated operating power or current.
  • the running power or current returns to the reasonable fluctuation range of the rated operating power or current.
  • the principle is: the essence of the ice block is the circulation pipe of the equipment.
  • the operation of the equipment is observed in hours, and the power or current of the equipment is normal when the ice jam occurs; the power or current fluctuation characteristic of the equipment when the fault type is lack of refrigerant is: the running power when the equipment is turned on or The current continues to fall below the reasonable fluctuation range of the rated operating power or current.
  • S13 Collecting power supply line information of the monitoring object, and the power supply line information includes information such as power, voltage, current, frequency, and the like of the monitoring object. Read the current, voltage, power, frequency and other information on the power supply circuit of the monitoring object. The principle of information collection is the same as that of the electricity meter.
  • Comparing the rated operating parameters of the monitored object with the collected power supply line information, and comparing the plurality of parameters, for example, the rated input power in the rated operating parameter may be compared with the power in the power supply line information, or may be adopted.
  • the rated operating current in the rated operating parameters is compared with the current in the power supply line information, and generally one of the parameters such as current, voltage, power, and frequency is used for comparison.
  • the power supply line information is in the reasonable fluctuation range of the rated operating parameters. It means that the power supply line information is not higher than the rated operating parameters by 30% or not lower than the rated operating parameters. 80%, if the power in the power supply line information is not higher than 30% of the rated input power or not less than 80% of the rated input power; if the power supply line information exceeds the reasonable fluctuation range of the rated operating parameters, then enter S16, the power supply line information A reasonable fluctuation range beyond the rated operating parameters means that the power supply line information is higher than 30% of the rated operating parameters or less than 80% of the rated operating parameters.
  • the current in the power supply line information is higher than the rated current by 30% or lower than the rated current. 80%.
  • its rated operating parameter is a range, such as the rated input power is 800W-1200W. Therefore, when verifying whether the rated operating parameter is higher than the upper limit of the range, it is compared with the upper limit of the range. Compare 1200W, see if the power in the power supply line information is 30% higher than 1200W, that is, 1560W higher.
  • the lower limit is compared, that is, compared with 800W, whether the power in the power supply line information is lower than 80% of 1200W, that is, lower than 640W. If it is lower than 640W, it is judged that the device is abnormal.
  • Extracting a fluctuation rule of the power supply line information of the abnormal operation monitoring object that is, extracting a fluctuation rule of power or current in the power supply line information, such as whether the power or current continuously rises or falls below the rated operating power or current when the device is turned on. Fluctuation range, or normal when the time is high.
  • S18 Perform a similarity comparison between the fluctuation rule of the power supply line information of the abnormal monitoring object and the power or current fluctuation characteristic corresponding to the type of the monitored object fault stored in the fault feature library.
  • S20 The monitoring object is abnormally operated, and the power supply line information of the monitoring object and the cause of the abnormal operation are output.
  • the method for monitoring the condition of the device based on the inverse Carnot principle further comprises the steps of: collecting the temperature of the point near the device, The collected temperature information is used to judge whether the current monitoring object is in the working mode of cooling or heating, and the corresponding rated operating parameter is selected according to the determined working mode. For example, when the working mode is in the cooling mode, the rated operating parameters of the cooling and the collected power supply are adopted. The line information is compared to determine whether the equipment is operating abnormally, and in the heating mode, the subsequent rated parameters of the heating are used for subsequent judgment.
  • FIG. 2 it is a structural diagram of a device condition monitoring device based on the inverse Carnot principle.
  • the monitoring device 2 based on the inverse Carnot principle equipment condition comprises an input module 21, a data storage module 22, a power supply information collection module 23, a determination module 24 and an output module 25.
  • the input module 21 is configured to collect and input a rated operation parameter and a fault feature library of the monitoring object.
  • the input module 21 can be in several ways, such as a peripheral interface such as a button, a touch screen or a USB, and is input through a button input, a touch screen input or a USB peripheral interface.
  • the input rated operating parameters are mainly nameplate parameters.
  • the nameplate parameters include rated input power, rated output power, rated voltage, rated current, rated frequency, etc. If the device based on the inverse Carnot principle is air conditioner, it also involves whether there is a frequency conversion function. And other information, the fault signature library contains the type of fault of the monitored object, and the power or current fluctuation characteristics corresponding to the fault type.
  • the data storage module 22 is configured to store a library of rated operational parameters and fault characteristics, and the data storage module 22 can be a device such as a hard disk of a computer that can store data.
  • the power supply information collecting module 23 is configured to collect power supply line information of the monitoring object, where the power supply line information includes power, voltage or current, frequency, and the like of the monitored object.
  • the power supply information collecting module 23 mainly reads information such as current, voltage, power, frequency, and the like on the power supply circuit of the monitoring object.
  • the power supply line information collected by the power supply information collection module 23 is also stored in the data storage module 22.
  • the judging module 24 is configured to compare the rated operating parameters of the monitoring object with the collected power supply line information, determine whether the power supply line information is in a reasonable fluctuation range of the rated operating parameter, and if the power supply line information exceeds a reasonable fluctuation range of the rated operating parameter, determine The monitoring object runs abnormally, and the fluctuation rule of the power supply line information of the operation abnormal monitoring object is extracted, and the similarity comparison is performed with the fault characteristic database to determine the cause of the abnormal operation of the monitoring object.
  • the cause of the monitoring object running abnormality and the running abnormality obtained by the determining module 24 may be stored in the data storage module 22.
  • the output module 25 is configured to prompt the monitoring object to operate abnormally after determining the cause of the abnormal operation of the monitoring object, and output the power supply line information of the monitoring object and the cause of the abnormal operation.
  • the output module 25 can be a display screen or a peripheral output interface such as USB or WIFI. Through the display screen, the running status information of the monitoring object displayed in real time and the cause of the abnormal operation are outputted, and the real-time running status information can be output through the peripheral interface such as USB and WIFI, and the historical running record can also be output.
  • the device for monitoring the condition based on the inverse Carnot principle also includes a temperature collecting module for collecting temperature, and determining the current monitoring by using the temperature information collected by the temperature collecting module.
  • the object is in a working mode of cooling or heating, and selects a working mode judging module corresponding to the rated operating parameter according to the determined working mode. If it is in the cooling mode, the rated operating parameters of the cooling are compared with the collected power supply line information to determine whether the equipment is operating abnormally. When in the heating mode, the rated operating parameters of the heating are used for subsequent operation. Judgment.
  • the operating power map in the power supply line information is blocked by the heat pump.
  • the rated input power of the heat pump is 800W. It can be seen from the operating power diagram that the heat pump is turned on at the 0.5th hour, and the operating power is about 1300W from the 0.5th to the 2.5th hour, which is more than 30% higher than the rated input power of 800W. After the 2.5th hour to the 4.8th hour shutdown, after the 4.8th hour to the 6.2th hour, the running power is still about 1300W.
  • the heat pump is operating abnormally, and the fluctuation rule of the operation power of the heat pump is extracted therefrom, and the running power is continuously higher than the rated fluctuation range of the rated operating power, and the heat pump is judged to be the same as the dirty plugging feature stored in the fault characteristic library.
  • the type of fault is dirty.
  • FIG. 4 it is an operating power map in the information of the power supply line of the refrigerator.
  • the rated input power of the refrigerator is 800W. It can be seen from the operating power diagram that the refrigerator is turned on at the 0.5th hour, the operating power is about 800W in the 0.5th to 2.5th hours, and the operating power is increased to 1400 in the 2.5th to 3.2th hours. About 1500W, higher than the rated input power of 800W more than 30%, shutdown from the 3.2th to the 4.8th hour, after the 4.8th to 6.2th hours, the operating power is restored to 800W.
  • the fluctuation rule of the operating power of the refrigerator is extracted from the reasonable fluctuation range of the operating power higher than the rated operating power when the device is turned on, and the operating power is restored to the reasonable fluctuation range of the rated operating power when the device is turned off again. That is, the operation of the device is observed in units of hours, and the power of the device is high when it is high, and the characteristics of the ice block stored in the fault feature library are the same, and the fault type of the refrigerator is determined to be ice block.
  • FIG. 5 it is an operating power map in the air conditioner lacking refrigerant supply line information.
  • the rated input power of the air conditioner is 800W. It can be seen from the operating power diagram that the air conditioner is turned on at the 0.5th hour, and the operating power is about 600W from the 0.5th to the 2.5th hour, which is less than 20% of the rated input power of 800W. After the 2.5th to 3.8 hours shutdown, after the 3.8th to 5.3th hours, the running power is still about 600W. It is judged that the air conditioner is running abnormally, and the fluctuation rule of the air conditioning operating power is extracted from it. The reasonable fluctuation range of the operating power is the same as the characteristic of the refrigerant lacking stored in the fault signature database, and it is judged that the fault type of the air conditioner is the lack of refrigerant.
  • the device and method for monitoring the condition of the equipment based on the inverse Carnot principle are introduced above.
  • the present invention is not limited to the above embodiments, and any modifications or changes that are not known to those of ordinary skill in the art are intended to be within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种基于逆卡诺原理设备工况的监测装置及方法,能够通过监测设备的供电线路信息,及时发现设备运行异常,以达到节省能源,延缓劣化的目的。该监测方法包含如下步骤:输入监测对象的额定运行参数和故障特征库;将额定运行参数和故障特征库存储在数据存储模块(22)中;采集监测对象的供电线路信息;将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围;若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取该运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因。

Description

一种基于逆卡诺原理设备工况的监测装置及方法 技术领域
本发明涉及设备工况监测领域,特别涉及基于逆卡诺原理设备的工况监测领域。
背景技术
基于逆卡诺原理,即基于逆卡诺循环原理的设备,用压缩机加压媒质,在蒸发和冷凝的过程中吸热放热。例如空调、热泵、冰箱等,这些设备均包含了四大部件,分别为压缩机,冷凝器,节流阀,蒸发器。冷媒在其中循环,理想状态下,这些基于逆卡诺循环原理的设备在符合规定的运行条件下,消耗额定输入功率的电能开销,会产生额定输出功率。
但在实际的工况中,此类设备的能效转换效率,会随着使用时间的增加产生劣化,从而出现能效比下降的问题。引起这种能效比下降的原因很多,可能包括蒸发器或冷凝器因灰尘、油烟导致散热器片热交换效率降低,制冷剂泄漏,毛细管堵塞、压缩机磨损等。
一般情况下,只要这些设备还没有达到彻底停止工作,或者严重不制冷或制热的程度,多数用户可能都不知晓这些设备已经运行异常。已经发生工况异常的设备继续运行,一方面会浪费能源,增加能耗开支,另一方面会加速设备劣化的进程,进一步缩短其寿命。市面上虽然有电力检测仪之类的设备,可以对运行中的电器设备进行功耗、电流等参数的测量。但是仅仅是显示出测量时段的实际运行值,对于非专业人士的普通用户来说,根本无法利用此类仪器来进行设备工况异常的检测。
技术问题
本发明的目的就是针对现有技术存在的不足,为基于逆卡诺原理设备提供一种能及时发现设备运行异常的工况监测方法和监测装置。
技术解决方案
为实现上述目的,本发明首先提供一种基于逆卡诺原理设备工况的监测方法,该监测方法包含如下步骤:输入监测对象的额定运行参数和故障特征库;将额定运行参数和故障特征库存储在数据存储模块中;采集监测对象的供电线路信息;将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围;若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取该运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因。
进一步地,该监测方法还包括如下步骤:当判断监测对象运行异常的原因后,提示监测对象运行异常,并将监测对象的供电线路信息和运行异常的原因输出。
更进一步地,该监测方法还包括如下步骤:若供电线路信息未超出额定运行参数合理的波动范围,则判断监测对象运行正常。
更进一步地,该供电线路信息超出额定运行参数合理的波动范围是指供电线路信息高出额定运行参数的30%或低于额定运行参数的80%。
更进一步地,该额定运行参数为铭牌参数,铭牌参数包含额定输入功率或额定电压或额定电流或额定频率;故障特征库包含监测对象故障的类型,以及故障类型对应的功率或电流波动特征;供电线路信息包含监测对象的功率或电压或电流或频率。
以上介绍了一种基于逆卡诺原理设备工况的监测方法,本发明还提供一种基于逆卡诺原理设备工况的监测装置,该监测装置包含:输入监测对象的额定运行参数和故障特征库的输入模块;存储额定运行参数和故障特征库的数据存储模块;采集监测对象的供电线路信息的供电信息采集模块;将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围,以及若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取所述运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因的判断模块。
进一步地,当该基于逆卡诺原理设备具备制冷和制热的转换功能时,监测装置还包含采集温度的温度采集模块,以及利用温度采集模块采集的温度信息判断当前监测对象处于制冷或制热的工作模式,并根据判断的工作模式选择对应的额定运行参数的工作模式判断模块。
更进一步地,该监测装置还包含当判断监测对象运行异常的原因后,提示监测对象运行异常,并将监测对象的供电线路信息和运行异常的原因输出的输出模块。
有益效果
本发明相对于现有技术,首先,通过监测设备的供电线路信息,能够及时发现设备运行异常的状态,以达到节省能源,延缓劣化的目的;其次,通过设备异常状态下的供电线路信息的波动规则与故障特征库进行相似性比对,能够自动得出设备运行异常的原因,方便对运行异常的设备进行检查和维修。
附图说明
图 1 是基于逆卡诺原理设备工况监测方法流程图
图 2 是 基于逆卡诺原理设备工况监测装置结构图
图 3 是热泵脏堵供电线路信息中的运行功率图
图 4 是冰箱冰堵供电线路信息中的运行功率图
图 5 是空调缺制冷剂供电线路信息中的运行功率图
本发明的最佳实施方式
本发明的实施方式
下面结合附图,详细说明本发明的具体实施方式。
如图1所示,为基于逆卡诺原理设备工况监测方法流程图,该方法包含如下步骤:
S11、输入监测对象的额定运行参数和故障特征库,监测对象为基于逆卡诺原理的设备,典型的基于逆卡诺原理的设备包括空调、冰箱、热泵等。其中输入的额定运行参数主要为铭牌参数,铭牌参数包含额定输入功率、额定输出功率、额定电压、额定电流、额定频率等信息,如基于逆卡诺原理的设备为空调时,还涉及是否有变频功能。故障特征库包含监测对象故障的类型,以及故障类型对应的功率或电流波动特征,故障的类型很多,如脏堵、冰堵、四通阀串气、缺制冷剂等,其中故障类型为脏堵时对应的功率或电流波动特征为:设备开启时运行功率或电流持续高出额定运行功率或电流的合理波动范围;故障类型为冰堵时对应的功率或电流波动特征为:设备开启时运行功率或电流高出额定运行功率或电流的合理波动范围,设备关闭后再次开启时运行功率或电流恢复到额定运行功率或电流的合理波动范围,其原理为:冰堵的实质是在设备的循环管路中因为安装不规范或者管路泄漏等原因导致有微量水,当设备制冷时,微量水会结冰,如果结冰的位置正好是在设备的毛细管处等狭小处,就会造成管路阻塞,即冰堵,造成运行功率或电流高出额定运行参数的合理波动范围,停机足够时间后,冰会融化,下次再启动时,结冰不在狭小处,冰堵可能消失,整个设备的运行又恢复正常,恢复到额定运行功率或电流的合理波动范围。因此,以小时为单位对设备的运行进行观察,发生冰堵时设备运行功率或电流时高时正常;故障类型为缺制冷剂时设备对应的功率或电流波动特征为:设备开启时运行功率或电流持续低于额定运行功率或电流的合理波动范围。
S12、将额定运行参数和故障特征库存储在数据存储模块中。
S13、采集监测对象的供电线路信息,供电线路信息包含监测对象的功率、电压、电流、频率等信息。读取监测对象的供电电路上的电流、电压、功率、频率等信息,信息采集的原理与电表相同。
S14、将监测对象的额定运行参数和采集的供电线路信息进行比较,可以用多种参数进行比较,如可以采用额定运行参数中的额定输入功率与供电线路信息中的功率进行比较,也可以采用额定运行参数中的额定运行电流与供电线路信息中的电流进行比较,一般使用电流、电压、功率、频率等其中的一种参数进行比较即可。
若供电线路信息处于额定运行参数合理的波动范围,则进入S15,供电线路信息处于额定运行参数合理的波动范围是指供电线路信息未高出额定运行参数的30%或不低于额定运行参数的80%,如供电线路信息中的功率未高出额定输入功率的30%或不低于额定输入功率的80%;若供电线路信息超出额定运行参数合理的波动范围,则进入S16,供电线路信息超出额定运行参数合理的波动范围是指供电线路信息高出额定运行参数的30%或低于额定运行参数的80%,如供电线路信息中的电流高出额定电流的30%或低于额定电流的80%。值得注意的是,若涉及到变频空调时,其额定运行参数是一个范围,如额定输入功率为800W-1200W,因此,在验证是否高出额定运行参数时,与范围的上限做比较,即与1200W做比较,看供电线路信息中的功率是否高出1200W的30%,即高出1560W,若高出1560W,即判断为设备运行异常,而在验证是否低于额定运行参数时,与范围的下限做比较,即与800W做比较,看供电线路信息中的功率是否低于1200W的80%,即低于640W,若低于640W,即判断为设备运行异常。
S15、判断监测对象运行正常;
S16、判断监测对象运行异常;
S17、提取运行异常监测对象的供电线路信息的波动规则,即提取供电线路信息中的功率或电流的波动规则,如是否设备开启时功率或电流持续高出或低于额定运行功率或电流的合理波动范围,或时高时正常等。
S18、将运行异常监测对象的供电线路信息的波动规则与故障特征库中存储的监测对象故障类型对应的功率或电流波动特征做相似性比对。
S19、根据供电线路信息的功率或电流的波动规则与故障特征库存储的功率或电流的波动特征判断监测对象运行异常的原因,即通过二者存在相同的波动规则,从而判断设备故障的类型;
S20、提示监测对象运行异常并将监测对象的供电线路信息和运行异常的原因输出。
值得注意的是,当基于逆卡诺原理设备具备制冷和制热的转换功能时,如当设备为空调,该基于逆卡诺原理设备工况监测方法还包含步骤:采集设备附近点的温度,利用采集的温度信息判断当前监测对象处于制冷或制热的工作模式,并根据判断的工作模式选择对应的额定运行参数,如处于制冷的工作模式时,即采用制冷的额定运行参数与采集的供电线路信息进行比较,以判断设备是否运行异常,而处于制热的工作模式时,则采用制热的额定运行参数进行后续的判断。
如图2所示,为基于逆卡诺原理设备工况监测装置结构图。该基于逆卡诺原理设备工况的监测装置2包含输入模块21、数据存储模块22、供电信息采集模块23、判断模块24和输出模块25。
输入模块21用于采集并输入监测对象的额定运行参数和故障特征库,输入模块21可以有几种方式,如按键、触摸屏或USB等外围接口,通过按键输入、触摸屏输入或USB外围接口输入额定运行参数和故障特征库的相关信息。输入的额定运行参数主要为铭牌参数,铭牌参数包含额定输入功率、额定输出功率、额定电压、额定电流、额定频率等信息,如基于逆卡诺原理的设备为空调时,还涉及是否有变频功能等信息,故障特征库包含监测对象故障的类型,以及故障类型对应的功率或电流波动特征。
数据存储模块22用于存储额定运行参数和故障特征库,数据存储模块22可以为计算机的硬盘等可以存储数据的设备。
供电信息采集模块23用于采集监测对象的供电线路信息,其中供电线路信息包含监测对象的功率、电压或电流、频率等。供电信息采集模块23主要通过读取监测对象的供电电路上的电流、电压、功率、频率等信息。供电信息采集模块23采集的供电线路信息同样存储在数据存储模块22中。
判断模块24用于将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围,若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取所述运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因。判断模块24得出的监测对象运行异常以及运行异常的原因可存储在数据存储模块22中。
输出模块25用于当判断监测对象运行异常的原因后,提示监测对象运行异常,并将监测对象的供电线路信息和运行异常的原因输出。输出模块25可以为显示屏或USB、WIFI等外围输出接口。通过显示屏输出实时显示的监测对象的运行状态信息以及运行异常的原因,通过USB、WIFI等外围接口除了输出实时运行状态信息外,还可以输出历史运行记录。
当该基于逆卡诺原理设备具备制冷和制热的转换功能时,该基于逆卡诺原理设备工况监测装置还包含采集温度的温度采集模块,以及利用温度采集模块采集的温度信息判断当前监测对象处于制冷或制热的工作模式,并根据判断的工作模式选择对应的额定运行参数的工作模式判断模块。如处于制冷的工作模式时,即采用制冷的额定运行参数与采集的供电线路信息进行比较,以判断设备是否运行异常,而处于制热的工作模式时,则采用制热的额定运行参数进行后续的判断。
实施例1
如图3所示,为热泵脏堵供电线路信息中的运行功率图。该热泵的额定输入功率为800W,从运行功率图中可以看出,热泵在第0.5小时开启运行,第0.5至第2.5小时运行功率为1300W左右,高出额定输入功率的800W的30%以上,第2.5小时至第4.8小时关机,第4.8小时至第6.2小时再次开启运行后,运行功率仍然为1300W左右。因此判断该热泵运行异常,并从中提取出该热泵运行功率的波动规则为开启时运行功率持续高出额定运行功率的合理波动范围,与故障特征库中存储的脏堵的特征相同,判断该热泵的故障类型为脏堵。
实施例2
如图4所示,为冰箱冰堵供电线路信息中的运行功率图。该冰箱的额定输入功率为800W,从运行功率图中可以看出,该冰箱在第0.5小时开启运行,第0.5至第2.5小时运行功率在800W左右,第2.5至3.2小时运行功率上升至1400-1500W左右,高出额定输入功率800W的30%以上,第3.2至第4.8小时关机,第4.8至6.2小时再次开启运行后,运行功率恢复至800W左右。判断该冰箱运行异常,并从中提取出该冰箱运行功率的波动规则为开启时运行功率高出额定运行功率的合理波动范围,设备关闭后再次开启时运行功率恢复到额定运行功率的合理波动范围,即以小时为单位对设备的运行进行观察,设备运行功率时高时正常,与故障特征库中存储的冰堵的特征相同,判断该冰箱的故障类型为冰堵。
实施例3
如图5所示,为空调缺制冷剂供电线路信息中的运行功率图。该空调的额定输入功率为800W,从运行功率图中可以看出,该空调在第0.5小时开启运行,第0.5至第2.5小时运行功率为600W左右,低于额定输入功率800W的20%以上,第2.5至3.8小时关机,第3.8至5.3小时再次开启运行后,运行功率仍然为600W左右,判断该空调运行异常,并从中提取出该空调运行功率的波动规则为开启时运行功率持续低于额定运行功率的合理波动范围,与故障特征库中存储的缺制冷剂的特征相同,判断该空调的故障类型为缺制冷剂。
以上介绍了基于逆卡诺原理设备工况监测装置及方法。本发明并不限定于以上实施例,任何未脱离本发明技术方案,即仅仅对其进行本领域普通技术人员所知悉的改进或变更,均属于本发明的保护范围之内。
工业实用性
序列表自由内容

Claims (10)

  1. 一种基于逆卡诺原理设备工况的监测方法,其特征在于,所述监测方法包含如下步骤:
    输入监测对象的额定运行参数和故障特征库;
    将额定运行参数和故障特征库存储在数据存储模块中;
    采集监测对象的供电线路信息;
    将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围;
    若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取所述运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因。
  2. 根据权利要求 1 所述的基于逆卡诺原理设备工况的监测方法,其特征在于,所述监测方法还包括如下步骤:
    当判断监测对象运行异常的原因后,提示监测对象运行异常,并将监测对象的供电线路信息和运行异常的原因输出。
  3. 根据权利要求 1 或 2 任一所述的基于逆卡诺原理设备工况的监测方法,其特征在于,所述监测方法还包括如下步骤:
    若供电线路信息未超出额定运行参数合理的波动范围,则判断监测对象运行正常。
  4. 根据权利要求1或2任一所述的基于逆卡诺原理设备工况的监测方法,其特征在于,所述供电线路信息超出额定运行参数合理的波动范围是指供电线路信息高出额定运行参数的30%或低于额定运行参数的80%。
  5. 根据权利要求1所述的基于逆卡诺原理设备工况的监测方法,其特征在于:所述额定运行参数为铭牌参数,所述铭牌参数包含额定输入功率或额定电压或额定电流或额定频率。
  6. 根据权利要求1所述的基于逆卡诺原理设备工况的监测方法,其特征在于:所述故障特征库包含监测对象故障的类型,以及故障类型对应的功率或电流波动特征。
  7. 根据权利要求1所述的基于逆卡诺原理设备工况的监测方法,其特征在于:所述供电线路信息包含监测对象的功率或电压或电流或频率。
  8. 一种基于逆卡诺原理设备工况的监测装置,其特征在于:所述监测装置包含:
    输入监测对象的额定运行参数和故障特征库的输入模块;
    存储额定运行参数和故障特征库的数据存储模块;
    采集监测对象的供电线路信息的供电信息采集模块;
    将监测对象的额定运行参数和采集的供电线路信息进行比较,判断供电线路信息是否处于额定运行参数合理的波动范围,以及若供电线路信息超出额定运行参数合理的波动范围,则判断监测对象运行异常,并提取所述运行异常监测对象的供电线路信息的波动规则,与故障特征库做相似性比对,判断监测对象运行异常的原因的判断模块。
  9. 根据权利要求8所述的基于逆卡诺原理设备工况的监测装置,其特征在于:当所述基于逆卡诺原理设备具备制冷和制热的转换功能时,所述监测装置还包含采集温度的温度采集模块,以及利用温度采集模块采集的温度信息判断当前监测对象处于制冷或制热的工作模式,并根据判断的工作模式选择对应的额定运行参数的工作模式判断模块。
  10. 根据权利要求8或9任一所述的基于逆卡诺原理设备工况的监测装置,其特征在于:所述监测装置还包含当判断监测对象运行异常的原因后,提示监测对象运行异常,并将监测对象的供电线路信息和运行异常的原因输出的输出模块。
PCT/CN2012/081796 2012-09-12 2012-09-22 一种基于逆卡诺原理设备工况的监测装置及方法 WO2014040310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210334266.0A CN102818964B (zh) 2012-09-12 2012-09-12 一种基于逆卡诺原理设备工况的监测装置及方法
CNCN201210334266.0 2012-09-12

Publications (1)

Publication Number Publication Date
WO2014040310A1 true WO2014040310A1 (zh) 2014-03-20

Family

ID=47303197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081796 WO2014040310A1 (zh) 2012-09-12 2012-09-22 一种基于逆卡诺原理设备工况的监测装置及方法

Country Status (2)

Country Link
CN (1) CN102818964B (zh)
WO (1) WO2014040310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116467142A (zh) * 2023-04-07 2023-07-21 北京众谊越泰科技有限公司 一种基于数据中心负载变化查找僵尸设备的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105808902B (zh) * 2014-12-27 2020-09-18 上海麦杰环境科技有限公司 用于湿法脱硫系统运行工况分析的定性方法
CN104864553B (zh) * 2015-04-30 2017-10-27 广东美的制冷设备有限公司 空调控制方法及装置
CN105512195B (zh) * 2015-11-26 2019-08-23 中国航空工业集团公司沈阳飞机设计研究所 一种产品fmeca报告分析决策辅助方法
CN108278719B (zh) * 2017-01-05 2021-05-28 松下知识产权经营株式会社 检查管理系统和检查管理方法
CN108627711B (zh) * 2017-03-16 2023-06-30 开利公司 用于制冷系统的故障检测系统和方法以及制冷系统
CN107144085B (zh) * 2017-04-12 2019-09-17 海信(山东)冰箱有限公司 一种确定冰箱故障的方法、装置及系统
CN110094842B (zh) * 2019-04-16 2021-11-02 青岛海尔空调电子有限公司 空调运行状态监测方法
CN112104508B (zh) * 2020-09-23 2023-04-18 辽宁奥普泰通信股份有限公司 网络数据采集设备的故障智能监测及自修复方法、存储介质和计算机设备
CN113156254B (zh) * 2021-05-10 2023-05-09 中国工商银行股份有限公司 网点设备电压状态监测方法及系统
CN113779328B (zh) * 2021-08-11 2023-10-31 邹平市供电有限公司 供电监测数据整合处理方法、系统、终端及存储介质
CN113495199A (zh) * 2021-09-09 2021-10-12 深圳博润缘科技有限公司 一种电力设备安全监控方法及系统
CN115622023B (zh) * 2022-11-02 2023-05-09 中国铁塔股份有限公司河北省分公司 一种直流配电系统与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356853B1 (en) * 1999-07-23 2002-03-12 Daniel B. Sullivan Enhancing voltmeter functionality
CN1735811A (zh) * 2002-12-05 2006-02-15 穆尔蒂布拉斯家电公司 家用电器的诊断系统
CN101334445A (zh) * 2007-06-28 2008-12-31 英业达股份有限公司 辅助故障检测系统及方法
CN101865960A (zh) * 2010-06-04 2010-10-20 中兴通讯股份有限公司 一种设备能效性能监测方法和装置
CN201828289U (zh) * 2010-10-26 2011-05-11 北京华清荣昊新能源开发有限责任公司 地源热泵系统运行参数监测仪
CN102175945A (zh) * 2011-02-22 2011-09-07 合肥美的荣事达电冰箱有限公司 用于制冷设备的自主检测方法及装置、制冷设备
CN102654551A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 故障检测装置、电器以及故障检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908987A (zh) * 2006-08-24 2007-02-07 上海地铁运营有限公司 基于波形识别的地铁机车牵引电路故障诊断方法
US20080077260A1 (en) * 2006-09-22 2008-03-27 Michael Ramey Porter Refrigeration system fault detection and diagnosis using distributed microsystems
CN101988867A (zh) * 2009-08-06 2011-03-23 中华电信股份有限公司 性能检测方法
JP2012127625A (ja) * 2010-12-17 2012-07-05 Samsung Yokohama Research Institute Co Ltd 空気調和装置に用いられる故障診断装置
CN102313580A (zh) * 2011-09-24 2012-01-11 三一重型装备有限公司 一种煤机变频器的故障诊断装置与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356853B1 (en) * 1999-07-23 2002-03-12 Daniel B. Sullivan Enhancing voltmeter functionality
CN1735811A (zh) * 2002-12-05 2006-02-15 穆尔蒂布拉斯家电公司 家用电器的诊断系统
CN101334445A (zh) * 2007-06-28 2008-12-31 英业达股份有限公司 辅助故障检测系统及方法
CN101865960A (zh) * 2010-06-04 2010-10-20 中兴通讯股份有限公司 一种设备能效性能监测方法和装置
CN201828289U (zh) * 2010-10-26 2011-05-11 北京华清荣昊新能源开发有限责任公司 地源热泵系统运行参数监测仪
CN102175945A (zh) * 2011-02-22 2011-09-07 合肥美的荣事达电冰箱有限公司 用于制冷设备的自主检测方法及装置、制冷设备
CN102654551A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 故障检测装置、电器以及故障检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116467142A (zh) * 2023-04-07 2023-07-21 北京众谊越泰科技有限公司 一种基于数据中心负载变化查找僵尸设备的方法

Also Published As

Publication number Publication date
CN102818964A (zh) 2012-12-12
CN102818964B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2014040310A1 (zh) 一种基于逆卡诺原理设备工况的监测装置及方法
Brambley A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps
CN111397132B (zh) 基于大数据的工业机房节能调控系统、方法及存储介质
CN202769873U (zh) 一种用于空调的冷媒不足的判断系统
JP2013247751A (ja) 電力制御装置、電力供給制御方法及び電力供給制御プログラム
CN103499460A (zh) 一种空调器故障诊断方法
CN104216307A (zh) 家庭电能分配控制系统及方法
TWI704320B (zh) 冷凍循環系統
CN102230850B (zh) 一种实现风冷柜外机在线测试的方法及系统
CN109752624B (zh) 液冷流路通断检测方法及装置
CN111788598B (zh) 利用高楼能量管理系统数据的能量效率分析系统
CN104102194A (zh) 一种家电多维信息综合管理方法
Yu et al. Multivariate diagnosis analysis for chiller system for improving energy performance
Gou et al. Experimental research on the performance and parameters sensitivity analysis of variable refrigerant flow system with common faults imposed in heating mode
CN110220615B (zh) 一种机房发热设备布置位置合理性的持续监测方法及系统
CN109613860B (zh) 一种基于制冷设备的智能控制管理系统
JP2002228226A (ja) 空調制御装置
EP3933988A1 (en) Fuel cell device
JPH10300166A (ja) 空調熱源設備の運転性能評価方式
Sonawan et al. Performances and economics of heat pump water heater
Lai et al. Non-Intrusive Load Monitoring applied in energy efficiency of the smart manufacturing industry: A case of air-conditioner
CN117356519B (zh) 一种大型海鲜池集中降温控制系统
Li Electrical signal based fault detection and diagnosis for rooftop units
CN113639399B (zh) 冷媒缺失故障判定方法、装置、空调器、计算机存储介质
CN110360719B (zh) 一种中央空调紧急控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884466

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12884466

Country of ref document: EP

Kind code of ref document: A1