WO2014040216A1 - 一种信号频率的调节方法及装置 - Google Patents

一种信号频率的调节方法及装置 Download PDF

Info

Publication number
WO2014040216A1
WO2014040216A1 PCT/CN2012/081223 CN2012081223W WO2014040216A1 WO 2014040216 A1 WO2014040216 A1 WO 2014040216A1 CN 2012081223 W CN2012081223 W CN 2012081223W WO 2014040216 A1 WO2014040216 A1 WO 2014040216A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
local oscillator
optical signal
received optical
Prior art date
Application number
PCT/CN2012/081223
Other languages
English (en)
French (fr)
Inventor
卫国
程宁
廖振兴
周雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280001547.2A priority Critical patent/CN103004112B/zh
Priority to PCT/CN2012/081223 priority patent/WO2014040216A1/zh
Publication of WO2014040216A1 publication Critical patent/WO2014040216A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for adjusting a signal frequency. Background technique
  • PON Passive Optical Network
  • FTTH Fiber To The Home
  • the basic principle of the coherent detection technique is that the optical signals from each optical network unit are decomposed into two optical signals of polarization orthogonality through a polarization beam splitter.
  • the local oscillator is also decomposed into two polarizations of polarization with orthogonal polarization by a polarization beam splitter.
  • the optical signal and the local oscillator light pass through 180.
  • the mixer obtains two mixed optical signals with a phase difference of 180°, and then outputs an intermediate frequency (IF) signal after photoelectric conversion by the photodetector.
  • the intermediate frequency electrical signal recovers the baseband signal after envelope detection, and finally recovers the data through the judgment.
  • the frequency of the IF signal is much larger than the optical signal rate, and at least the frequency of the IF signal is twice the rate of the optical signal, otherwise the envelope detection will be invalid, resulting in data. Lost.
  • the frequency of the IF signal is less than twice the signal rate, it is necessary to change the frequency of the IF by adjusting the frequency of the local oscillator.
  • the frequency of the IF signal is greater than or equal to twice the rate of the input optical signal, and then gradually reducing the adjusted offset until the frequency of the IF signal.
  • the value of the frequency of the IF signal is less than the bandwidth of the receiver and greater than twice the rate of the input optical signal.
  • this method of adjustment introduces a large bias current due to a large frequency offset to the local oscillator, resulting in a large variation in the power fluctuation of the local oscillator, thereby generating a large noise, resulting in a coherent receiver.
  • Another aspect of the present invention provides a device for adjusting a signal frequency, the device comprising: a receiving module, configured to receive an optical signal and a local oscillator signal;
  • a processing module configured to determine, according to a frequency of the intermediate frequency signal, a rate of the received optical signal, and a bandwidth of the receiver, a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal; And when the frequency of the intermediate frequency signal exceeds a preset frequency range, and the frequency of the local oscillation signal is adjusted according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillation signal.
  • Another aspect of the present invention provides an apparatus for adjusting another signal frequency, the apparatus comprising a processor for performing the following method:
  • FIG. 2 is a flowchart of a method for determining a current stage according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing the frequency of determining the frequency of the intermediate frequency signal according to the embodiment of the present invention
  • FIG. 5 is a flow chart showing the frequency of determining the frequency of the intermediate frequency signal according to the embodiment of the present invention
  • FIG. 6 is a flowchart of the embodiment of the present invention
  • the third method for determining the frequency of the intermediate frequency signal is shown in FIG. 7 is a flowchart for determining the frequency of the intermediate frequency signal according to the embodiment of the present invention
  • FIG. 8 is a method for recovering the intermediate frequency signal according to the embodiment of the present invention
  • FIG. 9 is a flowchart of another method for recovering an intermediate frequency signal according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of another method for adjusting a signal frequency according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a frequency level of a fifth type of determining an intermediate frequency signal according to an embodiment of the present invention
  • FIG. 12 is a flow chart showing the frequency of determining the frequency of the intermediate frequency signal according to the sixth embodiment of the present invention
  • FIG. 13 is a flowchart showing the frequency of determining the frequency of the intermediate frequency signal according to the embodiment of the present invention
  • the eighth is a flowchart for determining the frequency of the IF signal
  • FIG. 15 is a schematic diagram showing the frequency of the optical signal and the frequency of the local oscillator signal according to an embodiment of the present invention
  • FIG. 16 is a schematic diagram of adjusting the frequency of a local oscillator signal according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram showing the frequency of another optical signal and the frequency of the local oscillator signal according to an embodiment of the present invention
  • FIG. 1 is a flow chart of a method for adjusting a signal frequency.
  • an embodiment of the present invention provides a method for adjusting a signal frequency, which may include:
  • Step 102 The receiver performs mixing and photoelectric conversion on the received optical signal and the local oscillator signal, and outputs an intermediate frequency signal.
  • Step 103 The receiver determines, according to a frequency of the intermediate frequency signal, a rate of the received optical signal, and a bandwidth of the receiver, a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal;
  • Step 104 When the frequency of the intermediate frequency signal exceeds a preset frequency range, adjust the frequency of the local oscillator signal according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillator signal;
  • Step 105 Receive After performing the mixing and photoelectric conversion on the received optical signal and the adjusted local oscillator signal, the intermediate frequency signal is outputted such that the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the receiver and greater than or equal to The rate of the received optical signal is twice. Further, the step 103 specifically includes the following three situations:
  • the frequency of the intermediate frequency signal is greater than the bandwidth of the receiver, obtaining an adjusted local oscillator signal by adding a first increment to a frequency of the local oscillator signal; wherein, the first increment is greater than 0 And less than a difference between the bandwidth of the coherent receiver and twice the rate of the received optical signal; mixing and photoelectrically converting the received optical signal and the adjusted local oscillator signal Outputting the adjusted intermediate frequency signal;
  • Determining a frequency of the received optical signal if a frequency of the adjusted intermediate frequency signal is less than twice a rate of the received optical signal or a frequency of the adjusted intermediate frequency signal is greater than a bandwidth of the receiver Less than the frequency of the local oscillator signal; otherwise, determining that the frequency of the received optical signal is greater than the frequency of the local oscillator signal.
  • the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal, obtaining an adjusted local oscillator signal by adding a third increment to a frequency of the local oscillator signal; wherein, the Three increments greater than zero and less than or equal to twice the rate of the received optical signal; Performing mixing and photoelectric conversion on the received optical signal and the adjusted local oscillator signal, and outputting the adjusted intermediate frequency signal;
  • the lower limit of the preset frequency range in the step 104 is a first frequency
  • the upper limit of the preset frequency range is a second frequency
  • the value of the first frequency is the receiving
  • the value of the rate of the optical signal is twice the value obtained by adding the fourth increment
  • the value of the second frequency is the value obtained by subtracting the preset fifth increment from the bandwidth of the receiver.
  • step 104 may include the following two situations:
  • adjusting the frequency of the local oscillator signal according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillator signal comprises:
  • the second case is a first case:
  • the adjusted increment is obtained by reducing the seventh increment on the frequency of the local oscillator signal Local oscillator signal
  • the IF signal is divided into two paths, one of which is processed by data and clock recovery, and is encapsulated into a data packet and sent out, wherein a specific flag bit is set in the encapsulated data packet, and the specific flag bit is used.
  • the data message is identified as a data transmission phase (also referred to as a tracking phase) or a registration phase (which may also be referred to as a training phase).
  • the filter can be used to determine the size of the IF signal by filtering the filter whose frequency is twice the rate of the received optical signal, and the filtering frequency is a coherent receiver bandwidth filter. The following may be included in the following four modes:
  • connection method of the device is serial, which can be specifically as follows:
  • the high-pass filter with a filtering frequency of twice the rate of the received optical signal is used to filter the intermediate frequency signal to obtain a third filtered signal. If the power of the third filtered signal is less than the third power, the intermediate frequency signal is determined. The frequency is less than twice the rate of the received optical signal;
  • the low-pass filter that filters the frequency of the received optical signal and the high-pass filter whose filter frequency is the bandwidth of the coherent receiver determines the size of the intermediate frequency signal, and the low-pass filter and the high-pass filter
  • the connection method of the device is parallel, which can be specifically as follows: 1061c: dividing the intermediate frequency signal into a third intermediate frequency signal and a fourth intermediate frequency signal; 1062c: filtering the third intermediate frequency signal by using a low pass filter whose filtering frequency is twice the rate of the received optical signal to obtain a third filtered signal If the power of the third filtered signal is greater than the preset third power, determining that the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal, and if the power of the third filtered signal is less than or equal to the third power, determining The frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal;
  • 1064c determining, according to the low-pass filter, that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal, and determining, by the high-pass filter, that the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the coherent receiver, determining The frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver.
  • 1063d filtering the fourth intermediate frequency signal by using a low-pass filter whose filtering frequency is the bandwidth of the coherent receiver to obtain a fourth filtered signal. If the power of the fourth filtered signal is greater than or equal to a preset fourth power, determining the intermediate frequency The frequency of the signal is less than or equal to the bandwidth of the coherent receiver. If the power of the fourth filtered signal is less than the preset fourth power, it is determined that the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver;
  • step 104 performing the step of determining whether the frequency of the intermediate frequency signal exceeds a preset frequency range.
  • the filtering frequency is a filter of a first frequency and a filter having a filtering frequency of a second frequency, and determining whether a frequency of the intermediate frequency signal exceeds a preset frequency range, and specifically includes the following four modes, respectively:
  • connection method determining whether the frequency of the intermediate frequency signal exceeds a preset frequency range by using a low-pass filter whose filtering frequency is the first frequency and a high-pass filter whose filtering frequency is the second frequency, and the low-pass filter and the high-pass filter
  • the connection method is tandem, which can be specifically as follows:
  • connection method determining whether the frequency of the intermediate frequency signal exceeds a preset frequency range by using a high-pass filter whose filtering frequency is the first frequency and a low-pass filter whose filtering frequency is the second frequency, and the low-pass filter and the high-pass filter
  • the connection method is tandem, which can be specifically as follows:
  • 1042c Filtering the first intermediate frequency signal by using a low-pass filter whose filtering frequency is the first frequency to obtain a first filtered signal. If the power of the first filtered signal is greater than a preset first power, determining that the frequency of the intermediate frequency signal is smaller than a first frequency, if the power of the first filtered signal is greater than or equal to the first power, determining that the frequency of the intermediate frequency signal is greater than or equal to the first frequency;
  • 1043c filtering the second intermediate frequency signal by using a high-pass filter whose filtering frequency is the second frequency to obtain a second filtered signal. If the power of the second filtered signal is less than or equal to the preset second power, determining the frequency of the intermediate frequency signal. If the power of the second filtered signal is greater than the preset second power, determining that the frequency of the intermediate frequency signal is greater than the second frequency;
  • 1044c determining, according to the low-pass filter, that the frequency of the intermediate frequency signal is greater than or equal to the first frequency, and determining that the frequency of the intermediate frequency signal is less than or equal to the second frequency, determining that the frequency of the intermediate frequency signal is within a preset frequency range within.
  • connection method determining whether the frequency of the intermediate frequency signal exceeds a preset frequency range by using a high-pass filter whose filtering frequency is the first frequency and a low-pass filter whose filtering frequency is the second frequency, and the low-pass filter and the high-pass filter
  • the connection method is parallel, which can be specifically as follows:
  • 1043d Filtering the second intermediate frequency signal by using a low-pass filter whose filtering frequency is the second frequency to obtain a second filtered signal. If the power of the second filtered signal is greater than or equal to the preset second power, determining the intermediate frequency signal The frequency is less than or equal to the second frequency, and if the power of the second filtered signal is less than the preset second power, determining that the frequency of the intermediate frequency signal is greater than the second frequency;
  • the optical signal and the local oscillator signal are received by the receiver; after the mixed optical signal and the local oscillator signal are mixed and photoelectrically converted, the intermediate frequency signal is output; according to the frequency of the intermediate frequency signal Determining a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal, and a frequency of the intermediate frequency signal exceeding a preset frequency range, according to Adjusting a relationship between a frequency of the optical signal and a frequency of the local oscillator signal, adjusting a frequency of the local oscillator signal; performing mixing and photoelectric conversion on the received optical signal and the adjusted local oscillator signal Afterwards, the intermediate frequency signal is output such that the value of the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the receiver and greater than or equal to twice the rate of the received optical signal, avoiding a large adjustment at one time, and subsequently attempting
  • the adjustment method enables the receiver to quickly and accurately adjust the IF signal, improving the receiver's receiving sensitivity.
  • Step 201 receiving the optical signal and the local oscillator signal generated by the local oscillator light source, mixing and photoelectrically converting the received optical signal and the local oscillator signal, and outputting the intermediate frequency signal;
  • the receiving end receives the optical signal and the local oscillator signal generated by the local oscillator light source; the frequency of the intermediate frequency signal is equal to the absolute value of the difference between the frequency of the local oscillator signal and the frequency of the optical signal.
  • the obtained packet includes a specific flag bit, and the specific flag bit is used to identify whether the data packet is a data transmission phase (also referred to as a tracking phase) or a registration phase (which may also be referred to as a training phase).
  • the baseband signal corresponding to the intermediate frequency signal can be successfully processed to obtain a bit stream corresponding to the intermediate frequency signal; if the frequency of the intermediate frequency signal is greater than The bandwidth of the coherent receiver cannot successfully determine the baseband signal corresponding to the intermediate frequency signal to obtain a bit stream corresponding to the intermediate frequency signal.
  • the first registration is connected to the network in the registration phase, and the packet sent to the receiving end in the registration phase is a registration message; then the data is sent to the receiving end in the data sending phase, and the data is sent.
  • the packet sent to the receiving end is a data packet.
  • 3 is a flow chart for determining the relationship between the frequency of the optical signal and the frequency of the local oscillator signal in the registration phase.
  • the optical signal can be determined in the registration phase according to the flow shown in FIG.
  • the relationship between the frequency and the frequency of the local oscillator signal including:
  • Step 301 For another intermediate frequency signal, determine the frequency of the intermediate frequency signal. If the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, perform step 302 if the frequency of the intermediate frequency signal is greater than or equal to the received optical signal. If the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the coherent receiver, step 306 is performed; if the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal, step 310 is performed;
  • the frequency of the intermediate frequency signal is determined by filtering a filter whose frequency is the bandwidth of the coherent receiver and a filter whose filter frequency is twice the rate of the received optical signal.
  • FIGS. 4 to 7 are flowcharts for determining the frequency range of the intermediate frequency signal in the registration phase (training phase), and the flow of determining the frequency range of the intermediate frequency signal in FIGS. 4 to 7 will be separately described in detail below.
  • FIG. 5 is a flow chart for determining the frequency range of the intermediate frequency signal, and in the flow shown in FIG. 5, the low pass filter that filters the bandwidth of the coherent receiver and the filtered frequency are the received optical signals.
  • a high-pass filter having twice the rate determines the frequency of the intermediate frequency signal, and the high-pass filter and the low-pass filter are connected in series, including:
  • 31b detecting a power of the third filtered signal, and determining a power of the third filtered signal
  • 35b If the power of the fourth filtered signal is greater than or equal to the preset fourth power, determining that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver, ending the return ; 36b: If the power of the fourth filtered signal is less than the preset fourth power, it is determined that the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, and the return is ended.
  • the high pass filter that filters the bandwidth of the coherent receiver and the filter frequency are the rate of the received optical signal.
  • the low-pass filter twice determines the frequency of the IF signal, and the high-pass filter and the low-pass filter are connected in parallel, including:
  • 35c filtering the fourth intermediate frequency signal by using a high-pass filter whose filtering frequency is the bandwidth of the coherent receiver to obtain a fourth filtered signal;
  • 39c determining, according to the low-pass filter, that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal, and determining, by the high-pass filter, that the intermediate frequency signal is less than or equal to the bandwidth of the coherent receiver.
  • the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver, ending the return.
  • FIG. 7 is a flow chart for determining the frequency range of the intermediate frequency signal, and in the flow shown in FIG. 7, the low pass filter that filters the bandwidth of the coherent receiver and the filtered frequency are the received optical signals.
  • a high-pass filter having twice the rate determines the frequency of the intermediate frequency signal, and the high-pass filter and the low-pass filter are connected in parallel, including:
  • 30d dividing the intermediate frequency signal into a third intermediate frequency signal and a fourth intermediate frequency signal; 31d: filtering the third intermediate frequency signal by using a high-pass filter whose filtering frequency is twice the rate of the received optical signal to obtain a third filtered signal;
  • the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver.
  • Step 302 Acquire an adjusted local oscillator signal by adding a first increment to the frequency of the local oscillator signal.
  • the first increment is greater than 0 and less than twice the bandwidth of the coherent receiver and the received optical signal. Difference between
  • the local oscillator signal of the first increment of the frequency of the local oscillator is increased, and the local oscillator signal whose frequency is increased by the local oscillator is received.
  • the first increment 1 satisfies: 0 ⁇ Af l ⁇ B-2*b, where B is the bandwidth of the coherent receiver and b is the rate of the optical signal.
  • the received local signal of the first increment of the frequency generated by the optical signal and the local oscillator is increased, and the mixed signal is obtained by mixing the local oscillator signal and the received optical signal with the first increment of the received frequency to obtain a mixed optical signal.
  • the mixed optical signal is photoelectrically converted to obtain an intermediate frequency signal.
  • Step 304 If the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal or the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, determine that the frequency of the optical signal is less than the frequency of the local oscillator signal, otherwise, determine the optical signal.
  • the frequency is greater than the frequency of the local oscillator signal;
  • the frequency of the intermediate frequency signal is determined, if the frequency of the intermediate frequency signal is smaller than the reception
  • the frequency of the optical signal is twice or the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, and then the frequency of the optical signal is determined to be less than the frequency of the local oscillator signal. Otherwise, the frequency of the optical signal is determined to be greater than the frequency of the local oscillator signal.
  • step 301 For the detailed operation of determining the frequency of the intermediate frequency signal by filtering the filter whose frequency is the bandwidth of the coherent receiver and the filter whose filter frequency is twice the rate of the received optical signal, refer to the corresponding operation of step 301. The content is not described in detail here.
  • Step 305 Adjust the frequency of the local oscillator signal according to the relationship between the frequency of the optical signal and the frequency of the local oscillator signal, so that the frequency of the intermediate frequency signal is restored according to the adjusted local oscillator signal, and the operation ends;
  • FIG. 8 is a flowchart for recovering the frequency of the intermediate frequency signal, and this step may specifically include 3051-3054, respectively:
  • the first value ⁇ ' is calculated according to the following formula (1);
  • Afl, Afl+B/2-b ( 1 );
  • the local oscillator signal whose frequency of the local oscillator is reduced by the first value ⁇ is adjusted, the local oscillator signal and the optical signal with reduced frequency generated by the local oscillator light source are received, and the received local oscillator information and the optical signal are mixed and photoelectrically converted and outputted to the intermediate frequency. signal.
  • the second value ⁇ 2 is calculated according to the following formula (2);
  • Af2, Afl-B/2+b ( 2 ).
  • Step 3054 By reducing the second value ⁇ ' at the frequency of the local oscillator signal, the frequency value of the intermediate frequency signal is restored to the previous value, and the previous value is based on the frequency range of the intermediate frequency signal obtained from the received optical signal and the local oscillator signal.
  • Step 306 Obtain an adjusted local oscillator signal by adding a second increment to the frequency of the local oscillator signal, where the second increment is greater than or equal to twice the bandwidth of the coherent receiver and twice the rate of the received optical signal. The difference is less than or equal to the sum of the bandwidth of the coherent receiver and the rate of the received optical signal; wherein, the local oscillator signal of the second increment of the frequency of the local oscillator is increased, and the frequency generated by the receiving local oscillator is reduced.
  • the local oscillator signal and the optical signal are used to mix and receive the received local oscillator information and the optical signal to output an intermediate frequency signal having a frequency greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent
  • Step 307 Receive an optical signal, perform mixing, photoelectric conversion, and output an intermediate frequency signal on the local oscillator signal and the received optical signal with increased frequency;
  • Step 308 If the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal or the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, determining that the frequency of the optical signal is less than the frequency of the local oscillator signal, otherwise, determining the optical signal The frequency is greater than the frequency of the local oscillator signal;
  • the frequency of the intermediate frequency signal is determined, if the frequency of the intermediate frequency signal is smaller than the reception
  • the frequency of the optical signal is twice or the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, and then the frequency of the optical signal is determined to be less than the frequency of the local oscillator signal. Otherwise, the frequency of the optical signal is determined to be greater than the frequency of the local oscillator signal.
  • step 301 For the detailed operation of determining the frequency of the intermediate frequency signal by filtering the filter whose frequency is the bandwidth of the coherent receiver and the filter whose filter frequency is twice the rate of the received optical signal, refer to the corresponding operation of step 301. The content is not described in detail here.
  • Step 309 By reducing the local oscillator signal of the second increment by decreasing the frequency of the local oscillator signal, the local oscillator signal according to the frequency reduction is restored to the frequency of the intermediate frequency signal, and the operation is ended;
  • Step 310 Obtain an adjusted local oscillator signal by adding a third increment to a frequency of the local oscillator signal, where the third increment is greater than zero and less than or equal to twice the rate of the received optical signal; Specifically, adjusting a local oscillator signal whose frequency is increased by a preset third increment, and receiving a local oscillator signal whose frequency is increased by the local oscillator light source, and the third increment is greater than zero and less than or equal to the rate of the received optical signal. Twice.
  • the third increment Af3 satisfies: 0 ⁇ Af 3 ⁇ 2 * b, where b is the rate of the optical signal.
  • Step 311 Receive an optical signal, perform mixing, photoelectric conversion, and output an intermediate frequency signal on the local oscillator signal and the received optical signal generated by the local oscillator light source;
  • the optical signal is received, and the local oscillator signal with the third increment of the frequency generated by the local oscillator light source and the received optical signal are subjected to mixing processing to obtain a mixed optical signal, and the mixed optical signal is photoelectrically converted to obtain an intermediate frequency signal.
  • Step 312 If the frequency of the intermediate frequency signal is less than twice the rate of the received optical signal or the frequency of the intermediate frequency signal is greater than the bandwidth of the coherent receiver, determine that the frequency of the optical signal is less than the frequency of the local oscillator signal, otherwise, determine the optical signal. The frequency is greater than the frequency of the local oscillator signal;
  • step 301 For the detailed operation of determining the frequency of the intermediate frequency signal by filtering the filter whose frequency is the bandwidth of the coherent receiver and the filter whose filter frequency is twice the rate of the received optical signal, refer to the corresponding operation of step 301. The content is not described in detail here.
  • Step 313 Adjust the frequency of the local oscillator signal generated by the local oscillator according to the relationship between the frequency of the optical signal and the frequency of the local oscillator signal, so that the frequency of the intermediate frequency signal is restored according to the adjusted local oscillator signal, and the operation ends; specifically, see FIG. FIG. 9 is a flowchart of recovering the frequency of the intermediate frequency signal.
  • This step may specifically include 3131-3134, which are respectively:
  • Af3' Af3+B/2+3b ( 3 ) ;
  • the fourth value Af4 is calculated according to the following formula (4);
  • the frequency value of the intermediate frequency signal is restored to the previous value, and the previous value is based on the frequency range of the intermediate frequency signal obtained from the received optical signal and the local oscillator signal.
  • . 10 is a flow chart of adjusting the frequency of the signal in the data transmission phase. Referring to FIG. 10, when it is determined that the current phase is the data transmission phase, the frequency of the optical signal may be according to the flow shown in FIG. The relationship between the frequency of the local oscillator signal and the frequency of the local oscillator signal is adjusted such that the frequency of the adjusted intermediate frequency signal is greater than or equal to the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver, including:
  • Step 401 Determine the frequency of the intermediate frequency signal. If the frequency of the intermediate frequency signal is less than or equal to the preset first frequency, perform step 402. If the frequency of the intermediate frequency signal is greater than or equal to the preset second frequency, perform the step. 407;
  • the filter frequency is a filter of a first frequency and a filter whose filter frequency is a second frequency determines a frequency of the intermediate frequency signal, and determines whether the frequency of the intermediate frequency signal exceeds a preset frequency range, a preset frequency
  • the lower limit of the range is the first frequency
  • the upper limit of the preset frequency range is the second frequency.
  • FIGS. 11 to 14 are flowcharts for determining the frequency range of the intermediate frequency signal in the data transmission phase (tracking phase), and the flow of determining the frequency range of the intermediate frequency signal in FIGS. 11 to 14 will be separately described in detail below.
  • the second frequency is obtained by increasing the rate of the received optical signal by a preset second increment to obtain the first frequency, and subtracting the bandwidth of the coherent receiver by the preset fifth increment to obtain the second frequency.
  • the fourth increment of the phase difference between the first frequency and twice the rate of the received optical signal may be equal to 1
  • the fifth increment of the phase difference between the second frequency and the bandwidth of the coherent receiver may Equal to 1.
  • 11 is a flowchart for determining a frequency range of the intermediate frequency signal, and in the flow shown in FIG. 11, a low pass filter with a filter frequency of a first frequency and a high pass filter with a second filter frequency of a second frequency can be used. The frequency of the intermediate frequency signal is determined.
  • the connection between the high-pass filter and the low-pass filter is in series, including:
  • FIG. 12 is a flow chart for determining the frequency range of the intermediate frequency signal, and in the flow shown in FIG. 12, a high pass filter with a frequency of a first frequency and a low pass filter with a second frequency of a second frequency can be passed.
  • the frequency of the intermediate frequency signal is determined.
  • the connection between the high-pass filter and the low-pass filter is in series, including:
  • FIG. 14 is a flow chart for determining a frequency range of the intermediate frequency signal, and in the flow shown in FIG. 14, a high pass filter with a frequency of a first frequency and a low pass filter with a second frequency of a filter can be used.
  • the frequency of the intermediate frequency signal is determined, and the high pass filter and the low pass filter are connected in parallel, including: 40d: dividing the intermediate frequency signal into a first intermediate frequency signal and a second intermediate frequency signal;
  • 49d determining, according to the high-pass filter, that the frequency of the intermediate frequency signal is greater than or equal to the first frequency and determining, by the low-pass filter, that the frequency of the intermediate frequency signal is less than or equal to the second frequency, determining that the frequency of the intermediate frequency signal does not exceed a preset The frequency range.
  • Step 402 Determine a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal. If the frequency of the optical signal is less than the frequency of the local oscillator signal, perform step 403. If the frequency of the optical signal is greater than the frequency of the local oscillator signal, Perform step 405;
  • Step 403 Obtain an adjusted local oscillator signal by adding a sixth increment to the frequency of the local oscillator signal.
  • the local oscillator signal whose sixth frequency is increased by the frequency generated by the local oscillator light source is adjusted, and the optical signal whose frequency is increased by the local oscillator light source is received.
  • Step 404 Receive an optical signal, perform mixing and photoelectric conversion on the obtained local oscillator signal and the received optical signal, and output an intermediate frequency signal, so that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to The bandwidth of the coherent receiver, ending the operation;
  • the optical signal is received, and the received optical signal and the local oscillator signal with increased frequency are subjected to mixing processing to obtain a mixed optical signal, and the mixed optical signal is photoelectrically converted, and the output frequency is increased by a sixth increment.
  • the intermediate frequency signal is obtained such that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver.
  • the frequency of the intermediate frequency signal must be greater than or equal to 5 GHz and less than or equal to 25 GHz.
  • the preset first frequency is 6 GHz, preset.
  • the second frequency is 24 GHz, and the frequency of the intermediate frequency signal is determined to be less than or equal to the first frequency of 6 GHz, so the frequency of the intermediate frequency signal is greater than or equal to 5 GHz and less than or equal to the first frequency of 6 GHz.
  • Figure 16 is a schematic diagram of the relationship between the adjusted signal frequencies, adjusting the frequency generated by the local oscillator light source to increase the local oscillator signal L1 of the preset sixth increment ci, the frequency of the adjusted local oscillator signal L1 is fl+cl, and the intermediate frequency The frequency of the signal is
  • the optical signal is received, and the received optical signal and the frequency-reduced local oscillator signal are mixed to obtain a mixed optical signal, and the mixed optical signal is photoelectrically converted, and then the intermediate frequency signal whose frequency is decreased by the seventh increment is output to obtain an intermediate frequency.
  • the frequency of the signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver.
  • the frequency f0 of the optical signal L0 is greater than the frequency fl of the local oscillator signal L1. If the frequency fO of the optical signal L0 is greater than the frequency fl of the local oscillator signal L1, the frequency f0 of the optical signal L0.
  • of the difference from the frequency fl of the local oscillation signal L1 is less than or equal to the first frequency of 6 GHz, that is, the frequency of the intermediate frequency signal is less than or equal to the first frequency of 6 GHz, see FIG. 18, FIG. 18 It is a schematic diagram of the relationship between the adjusted signal frequencies and the frequency of the local oscillator source.
  • the local oscillator signal L1 of the seventh increment c2 is preset, the frequency of the adjusted local oscillator signal L1 is fl-c2, and the frequency of the intermediate frequency signal is
  • the seventh increment c2 value can be set smaller.
  • the frequency adjustment of the local oscillator signal generated by the local oscillator light source takes a certain period of time, that is, the preset sixth increment is added to the local oscillator light source or the preset seventh increment is decreased, and the local oscillator light source generates a frequency increase after a period of time.
  • Step 407 Determine a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal. If the frequency of the optical signal is greater than the frequency of the local oscillator signal, perform 408. If the frequency of the optical signal is less than the frequency of the local oscillator signal, Execution 410;
  • Step 408 Add a sixth increment to the frequency of the local oscillator signal to obtain the adjusted local oscillator signal. Specifically, adjust the local oscillator signal of the sixth increment by the frequency generated by the local oscillator light source, and receive the local oscillator signal generated by the local oscillator light source. The local oscillator signal with increased frequency.
  • Step 409 Receive an optical signal, mix and receive the received optical signal and the increased local oscillator signal, and output the intermediate frequency signal, so that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or Equal to the bandwidth of the coherent receiver, ending the operation;
  • FIG. 19 is a schematic diagram of the relationship between the adjusted signal frequencies, and the frequency reduction of the local oscillator light source is adjusted.
  • the local oscillator signal LI of the seventh increment c2 is preset, the frequency of the adjusted local oscillator signal L1 is fl-c2, and the frequency of the IF signal is
  • the amount c2, the seventh increment c2 value can be set smaller.
  • Step 410 Decrease the seventh increment on the frequency of the local oscillator signal to obtain the adjusted local oscillator signal. Specifically, adjusting the frequency generated by the local oscillator light source to reduce the local oscillator signal of the seventh increment, and receiving the local oscillator light source The local oscillator signal whose frequency is reduced by the seventh increment.
  • Step 411 Receive an optical signal, mix the received optical signal and the frequency-reduced local oscillator signal, and output the intermediate frequency signal after the photoelectric conversion, so that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or Equal to the bandwidth of the coherent receiver, ending the operation.
  • the optical signal is received, and the received optical signal and the frequency-reduced local oscillator signal are mixed to obtain a mixed optical signal, and the mixed optical signal is photoelectrically converted, and then the intermediate frequency signal whose frequency is decreased by the seventh increment is output to obtain an intermediate frequency.
  • the frequency of the signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver.
  • the local oscillator signal L1 of the quantity cl, the frequency of the adjusted local oscillation signal L1 is fl+cl, and the frequency of the intermediate frequency signal is
  • the incremental cl value can be set smaller.
  • the frequency adjustment of the local oscillator signal generated by the local oscillator light source takes a certain period of time, that is, the preset sixth increment is added to the local oscillator light source or the preset seventh increment is decreased, and the local oscillator light source generates a frequency increase after a period of time.
  • the optical signal is received, the intermediate frequency signal is obtained according to the local oscillator signal generated by the local oscillator light source and the received optical signal, and the intermediate frequency signal is divided into two intermediate frequency signals, and the current intermediate frequency is determined according to one of the intermediate frequency signals.
  • the phase if it is the registration phase, the relationship between the frequency of the optical signal and the frequency of the local oscillator signal is determined; if the current phase is the data transmission phase, the intermediate frequency signal is adjusted according to the relationship between the frequency of the optical signal and the frequency of the local oscillator signal, so that The frequency of the adjusted intermediate frequency signal is greater than or equal to The rate of the received optical signal is twice and less than or equal to the bandwidth of the coherent receiver.
  • FIG. 21 is a schematic structural diagram of a signal frequency adjusting apparatus. Referring to FIG. 21, an embodiment of the present invention provides a signal frequency adjusting apparatus, including:
  • a receiving module 501 configured to receive an optical signal and a local oscillator signal
  • the processing module 503 is configured to determine, according to a frequency of the intermediate frequency signal, a rate of the received optical signal, and a bandwidth of the receiver, a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal;
  • the adjusting module 504 is configured to: when the frequency of the intermediate frequency signal exceeds a preset frequency range, adjust the frequency of the local oscillator signal according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillator signal.
  • Afl, Afl+B/2-b ( 1 );
  • a third calculating module configured to: if the frequency of the optical signal is less than a frequency of the local oscillator signal, according to the first increment Afl, the rate b of the optical signal, and the bandwidth B of the coherent receiver, Calculating the second value ⁇ 2 according to the following formula (2), adjusting the local oscillator signal whose frequency of the local oscillator light source is reduced by the first value ⁇ 2';
  • Af2, Afl-B/2+b ( 1 ).
  • the processing module 503 is specifically configured to: when the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the receiver, pass the frequency of the local oscillator signal Adding a second increment to obtain an adjusted local oscillator signal; wherein the second increment is greater than or equal to a difference between a bandwidth of the receiver and twice a rate of the received optical signal and Less than or equal to the sum of the bandwidth of the receiver and twice the rate of the received optical signal;
  • Determining the received optical signal if the frequency of the adjusted intermediate frequency signal is less than twice the rate of the received optical signal, or the frequency of the adjusted intermediate frequency signal is greater than the bandwidth of the receiver The frequency is less than the frequency of the local oscillator signal; otherwise, the frequency of the optical signal is determined to be greater than the frequency of the local oscillator signal.
  • the apparatus further includes:
  • a second recovery module configured to adjust a local oscillator signal whose frequency of the local oscillator light source is reduced by the second increment.
  • Determining a frequency of the received optical signal if a frequency of the adjusted intermediate frequency signal is less than twice a rate of the received optical signal or a frequency of the adjusted intermediate frequency signal is greater than a bandwidth of the receiver Less than the frequency of the local oscillator signal; otherwise, determining that the frequency of the received optical signal is greater than the frequency of the local oscillator signal.
  • the apparatus further includes:
  • Af3' Af3+B/2+3b ( 3 ) ;
  • the processing module 503 acquires the relationship between the frequency of the received optical signal and the frequency of the local oscillator signal, the frequency of the intermediate frequency signal needs to be determined.
  • the apparatus further includes a first determining module that implements determining a frequency magnitude of the intermediate frequency signal: the first determining module is specifically configured to use low-pass filtering with a filtering frequency that is twice the rate of the received optical signal. Filtering the intermediate frequency signal to obtain a third filtered signal, if the power of the third filtered signal is greater than a preset third power, determining that the frequency of the intermediate frequency signal is less than two of the rates of the received optical signal Times
  • the power of the third filtered signal is greater than or equal to the third power, filtering the intermediate frequency signal to obtain a fourth filtered signal by using a low pass filter whose filtering frequency is a bandwidth of the coherent receiver, if Determining that the frequency of the fourth filtered signal is greater than or equal to the preset fourth power, determining that the frequency of the intermediate frequency signal is greater than or equal to twice the rate of the received optical signal and less than or equal to the bandwidth of the coherent receiver And if the power of the fourth filtered signal is less than the fourth power, determining that the frequency of the intermediate frequency signal is greater than a bandwidth of the coherent receiver.
  • the first determining module is specifically configured to divide the intermediate frequency signal into a third intermediate frequency signal and a fourth intermediate frequency signal;
  • the lower limit of the preset frequency range is the first frequency
  • the upper limit of the preset frequency range is the second frequency
  • the value of the first frequency is two of the values of the rate of the received optical signal
  • the value obtained by multiplying the fourth increment; the value of the second frequency is a value obtained by subtracting the preset fifth increment from the bandwidth of the receiver.
  • the adjusting module 504 is specifically configured to: when a frequency of the intermediate frequency signal is less than the first frequency, and a frequency of the optical signal is less than a frequency of the local oscillator signal, increase by using a frequency of the local oscillator signal a sixth increment, obtaining an adjusted local oscillator signal; when the frequency of the intermediate frequency signal is less than the first frequency and the frequency of the optical signal is greater than a frequency of the local oscillator signal, passing the local oscillator signal The seventh increment is reduced in frequency to obtain an adjusted local oscillator signal.
  • the adjusted increment is obtained by adding a sixth increment to the local oscillator signal. Local oscillator signal.
  • the power of the first filtered signal is greater than or equal to the first power, filtering the intermediate frequency signal by using a high-pass filter whose filtering frequency is the first frequency to obtain a second filtered signal, if the second If the power of the filtered signal is less than or equal to the preset second power, it is determined that the frequency of the intermediate frequency signal is within the preset frequency range, and if the power of the second filtered signal is greater than the preset second power, It is determined that the frequency of the intermediate frequency signal is greater than the second frequency.
  • the second determining module is specifically configured to filter the intermediate frequency signal by using a high-pass filter whose filtering frequency is the first frequency to obtain a first filtered signal, if the power of the first filtered signal is less than the first Power, determining that the frequency of the intermediate frequency signal is less than the first frequency;
  • the power of the first filtered signal is greater than or equal to the first power, filtering the intermediate frequency signal by using a low pass filter whose filtering frequency is the first frequency, to obtain a second filtered signal, if the If the power of the second filtered signal is greater than or equal to the second power, it is determined that the frequency of the intermediate frequency signal is within the preset frequency range, and if the power of the second filtered signal is less than the second power, Then determining that the frequency of the intermediate frequency signal is greater than the second frequency.
  • Determining the intermediate frequency signal according to determining, by the low pass filter, that the frequency of the intermediate frequency signal is greater than or equal to the first frequency, and determining that the second frequency is less than or equal to the second frequency by the high pass filter The frequency is within the frequency range of the preset setting.
  • the second determining module is specifically configured to divide the intermediate frequency signal into a first intermediate frequency signal and a second intermediate frequency signal;
  • the frequency of the intermediate frequency signal is greater than or equal to the first frequency by the high-pass filter, and determining that the intermediate frequency signal is less than or equal to the second frequency by the low-pass filter
  • the frequency of the intermediate frequency signal is within the preset set frequency range.
  • the optical signal and the local oscillator signal are received by the receiver; after the mixed optical signal and the local oscillator signal are mixed and photoelectrically converted, the intermediate frequency signal is output; according to the frequency of the intermediate frequency signal Determining a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal, and a frequency of the intermediate frequency signal exceeding a preset frequency range, according to Adjusting a relationship between a frequency of the optical signal and a frequency of the local oscillator signal, adjusting a frequency of the local oscillator signal; performing mixing and photoelectric conversion on the received optical signal and the adjusted local oscillator signal Afterwards, the intermediate frequency signal is output such that the value of the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the receiver and greater than or equal to twice the rate of the received optical signal, avoiding a large adjustment at one time, and subsequently attempting The way of adjustment makes the receiver fast and accurate
  • the IF signal is adjusted to improve the receiver sensitivity of the receiver.
  • the processor is configured to perform the following method for adjusting the signal frequency:
  • Determining a frequency of the received optical signal if a frequency of the adjusted intermediate frequency signal is less than twice a rate of the received optical signal or a frequency of the adjusted intermediate frequency signal is greater than a bandwidth of the receiver Less than the frequency of the local oscillator signal; otherwise, determining that the frequency of the received optical signal is greater than the frequency of the local oscillator signal.
  • Determining the received optical signal if the frequency of the adjusted intermediate frequency signal is less than twice the rate of the received optical signal, or the frequency of the adjusted intermediate frequency signal is greater than the bandwidth of the receiver The frequency is less than the frequency of the local oscillator signal; otherwise, the frequency of the optical signal is determined to be greater than the frequency of the local oscillator signal.
  • Determining a frequency of the received optical signal if a frequency of the adjusted intermediate frequency signal is less than twice a rate of the received optical signal or a frequency of the adjusted intermediate frequency signal is greater than a bandwidth of the receiver Less than the frequency of the local oscillator signal; otherwise, determining that the frequency of the received optical signal is greater than the frequency of the local oscillator signal.
  • the lower limit of the preset frequency range is the first frequency
  • the upper limit of the preset frequency range is the second frequency
  • the value of the first frequency is two of the values of the rate of the received optical signal
  • the value obtained by multiplying the fourth increment; the value of the second frequency is a value obtained by subtracting the preset fifth increment from the bandwidth of the receiver.
  • adjusting the frequency of the local oscillator signal according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillator signal comprises:
  • the frequency of the local oscillator signal is obtained by reducing the seventh increment at the frequency of the local oscillator signal to obtain an adjusted local oscillator signal.
  • adjusting the frequency of the local oscillator signal according to the determined relationship between the frequency of the optical signal and the frequency of the local oscillator signal includes:
  • the adjusted increment is obtained by reducing the seventh increment on the frequency of the local oscillator signal Local oscillator signal
  • the adjusted increment is obtained by adding a sixth increment to the local oscillator signal. Local oscillator signal.
  • the optical signal and the local oscillator signal are received by the receiver; after the mixed optical signal and the local oscillator signal are mixed and photoelectrically converted, the intermediate frequency signal is output; according to the frequency of the intermediate frequency signal Determining a relationship between a frequency of the received optical signal and a frequency of the local oscillator signal, and a frequency of the intermediate frequency signal exceeding a preset frequency range, according to Adjusting a relationship between a frequency of the optical signal and a frequency of the local oscillator signal, adjusting a frequency of the local oscillator signal; performing mixing and photoelectric conversion on the received optical signal and the adjusted local oscillator signal Afterwards, the intermediate frequency signal is output such that the value of the frequency of the intermediate frequency signal is less than or equal to the bandwidth of the receiver and greater than or equal to twice the rate of the received optical signal, avoiding a large adjustment at one time, and subsequently attempting
  • the adjustment method enables the receiver to quickly and accurately adjust the IF signal, improving the receiver's receiving sensitivity.A person skilled
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种信号频率的调节方法及装置,涉及通信领域,所述方法包括:接收光信号以及本振信号;对所述接收的光信号以及所述本振信号进行混频、光电转化后,输出中频信号;当所述中频信号的频率超过预先设置的频率范围,则根据所述光信号的频率和所述本振信号的频率的关系,调整所述中频信号,使得调整后的中频信号的频率小于或等于相干接收机的带宽且大于或等于所述接收的光信号的速率的两倍。所述装置包括:接收模块、输出模块和调节模块。本发明能够减少本振光源的功率波动以及产生的噪声,提高接收端的接收灵敏度,避免数据丟失。

Description

一种信号频率的调节方法及装置 技术领域
本发明涉及通信领域, 特别涉及一种信号频率的调节方法及装置。 背景技术
随着宽带技术的发展, 无源光网络( Passive Optical Network, PON )技术 是目前应用最广泛的光纤到户( Fiber To The Home, FTTH )技术之一。随着 PON 网络的使用越来越频繁,相干检测技术能够显著的改善无源光网络系统的接收 灵敏度并提高该系统对色散的容忍度。 因此, 相干检测技术也越来越重要。
相干检测技术的基本原理是: 来自各光网络单元的光信号通过偏振分束 器, 分解成偏振正交的两路光信号。 同样地, 本振光也通过偏振分束器分解成 偏振正交的两路本振光。所述光信号与本振光经过 180。混频器得到两路相位相 差 180°的混合光信号,再经过光电探测器的光电转换后,输出中频(Intermediate Frequency, IF )信号。 该中频电信号经过包络检波后恢复出基带信号, 最后经 过判决恢复出数据。
现有相干检测技术中, 必须保证所述 IF信号的频率要远大于所述光信号 速率, 至少所述 IF信号的频率为所述光信号速率的 2倍, 否则包络检波将失 效, 造成数据丟失。 在实际系统中, 当 IF信号的频率小于信号速率的 2倍时, 需要通过调整本振光的频率来改变 IF 的频率。 目前, 通过给本振光一次性调 整一个足够大的频率偏移量, 使得 IF信号的频率大于或等于输入光信号的速 率的两倍, 然后逐步减少调节的偏移量, 直到 IF信号的频率在适当的范围内, 即 IF信号的频率的值小于接收机的带宽且大于输入光信号的速率的两倍。 但 是这种调节的方法由于给本振光的频率偏移量较大, 会引入较大的偏置电流, 导致本振光的功率波动变化较大, 进而产生较大的噪声, 使得相干接收机的接 收灵敏度降低, 造成数据丟失。 发明内容 为了能够减少本振光源的功率波动以及产生的噪声,提高接收端的接收灵 敏度, 避免数据丟失, 本发明提供了一种信号频率的调节方法及设备。 所述技 术方案如下:
本发明一方面提供了一种信号频率的调节方法, 所述方法包括: 接收光信号以及本振信号;
对所述接收的光信号以及所述本振信号进行混频、 光电转化后, 输出中频 信号;
根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系;
当所述中频信号的频率超过预先设置的频率范围,根据所述确定的所述光 信号的频率和所述本振信号的频率的关系, 调整本振信号的频率;
对所述接收的光信号以及所述调整后的本振信号进行混频、 光电转化后, 输出中频信号,使得所述中频信号的频率的值小于或等于接收机的带宽且大于 或等于所述接收的光信号的速率的两倍。
本发明另一方面还提供一种信号频率的调节装置, 所述装置包括: 接收模块, 用于接收光信号以及本振信号;
输出模块, 用于对所述接收的光信号以及所述本振信号进行混频、 光电转 化后, 输出中频信号; 以及对所述接收的光信号以及调整后的本振信号进行混 频、 光电转化后, 输出调整后的中频信号;
处理模块, 用于根据所述中频信号的频率、 所述接收的光信号的速率以及 接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系; 调节模块, 用于当所述中频信号的频率超过预先设置的频率范围, 根据所 述确定的所述光信号的频率和所述本振信号的频率的关系,调整本振信号的频 率。
本发明另一方面还提供了另一种信号频率的调节装置, 所述装置包括处理 器, 所述处理用于执行如下方法:
接收光信号以及本振信号;
对所述接收的光信号以及所述本振信号进行混频、 光电转化后, 输出中频 信号;
根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系;
当所述中频信号的频率超过预先设置的频率范围,根据所述确定的所述光 信号的频率和所述本振信号的频率的关系, 调整本振信号的频率;
对所述接收的光信号以及所述调整后的本振信号进行混频、 光电转化后, 输出中频信号,使得所述中频信号的频率的值小于或等于接收机的带宽且大于 或等于所述接收的光信号的速率的两倍。
在本发明实施例中, 通过接收机接收光信号以及本振信号; 对所述接收的 光信号以及所述本振信号进行混频、 光电转化后, 输出中频信号; 根据所述中 频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的 光信号的频率和所述本振信号的频率的关系; 当所述中频信号的频率超过预先 设置的频率范围,根据所述确定的所述光信号的频率和所述本振信号的频率的 关系, 调整本振信号的频率; 对所述接收的光信号以及所述调整后的本振信号 进行混频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或 等于接收机的带宽且大于或等于所述接收的光信号的速率的两倍避免了一次 性进行较大的调节, 后续在尝试调节的方式, 使得接收机中能够快速、 准确对 中频信号进行调节, 提高了接收机的接收灵敏度。 附图说明
图 1是本发明实施例提供的信号频率的调节方法流程图;
图 2是本发明实施例提供的一种确定当前阶段的方法流程图;
图 3是本发明实施例提供的一种确定光信号的频率与本振信号的频率的关 系的方法流程图;
图 4是本发明实施例提供的第一种判断中频信号的频率大小流程图; 图 5是本发明实施例提供的第二种判断中频信号的频率大小流程图; 图 6是本发明实施例提供的第三种判断中频信号的频率大小流程图; 图 7是本发明实施例提供的第四种判断中频信号的频率大小流程图; 图 8是本发明实施例提供的一种恢复中频信号的方法流程图;
图 9是本发明实施例提供的另一种恢复中频信号的方法流程图; 图 10本发明实施例提供的另一种信号频率的调节方法流程图;
图 11是本发明实施例提供的第五种判断中频信号的频率大小流程图; 图 12是本发明实施例提供的第六种判断中频信号的频率大小流程图; 图 13是本发明实施例提供的第七种判断中频信号的频率大小流程图; 图 14是本发明实施例提供的第八种判断中频信号的频率大小流程图; 图 15是本发明实施例提供的一种光信号的频率与本振信号的频率的大小 示意图;
图 16是本发明实施例提供的一种调节本振信号的频率的示意图; 图 17是本发明实施例提供的另一种光信号的频率与本振信号的频率的大 小示意图;
图 18是本发明实施例提供的另一种调节本振信号的频率的示意图; 图 19是本发明实施例提供的另一种调节本振信号的频率的示意图; 图 20是本发明实施例提供的另一种调节本振信号的频率的示意图; 图 21是本发明实施例提供的一种信号频率的调节装置结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 图 1是信号频率的调节方法流图, 参见图 1 , 本发明实施例提供了一种信 号频率的调节方法, 可以包括:
步骤 101 : 接收机接收光信号以及本振信号;
步骤 102: 接收机对接收的光信号以及本振信号进行混频、 光电转化后, 输出中频信号;
步骤 103: 接收机根据所述中频信号的频率、 所述接收的光信号的速率以 及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关 系;
步骤 104: 当所述中频信号的频率超过预先设置的频率范围, 根据所述确 定的所述光信号的频率和所述本振信号的频率的关系, 调整本振信号的频率; 步骤 105: 接收机对所述接收的光信号以及所述调整后的本振信号进行混 频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或等于接 收机的带宽且大于或等于所述接收的光信号的速率的两倍。 进一步地, 所述步骤 103具体包括如下三种情况:
可选地, 第一种情况: 所述根据所述中频信号的频率、 所述接收的光信号 的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频 率的关系具体包括:
当所述中频信号的频率大于所述接收机的带宽, 则通过在所述本振信号的 频率上增加第一增量, 获得调整后的本振信号; 其中, 所述第一增量大于 0且 小于所述相干接收机的带宽与所述接收的光信号的速率的两倍之间的差值; 对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大 于所述本振信号的频率。
可选地, 第二种情况: 当所述中频信号的频率大于或等于所述接收的光信 号的速率的两倍且小于或等于所述接收机的带宽, 则通过在所述本振信号的频 率上增加第二增量, 获得调整后的本振信号; 其中, 所述第二增量大于或等于 所述接收机的带宽与所述接收的光信号的速率的两倍之间的差值且小于或等 于所述接收机的带宽与所述接收的光信号的速率的两倍之和;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍, 或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述光信号的频率大于所述 本振信号的频率。
可选地, 第三种情况: 所述根据所述中频信号的频率、 所述接收的光信号 的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频 率的关系具体包括:
当所述中频信号的频率小于所述接收的光信号的速率的两倍, 则通过在所 述本振信号的频率上增加第三增量, 获得调整后的本振信号; 其中, 所述第三 增量大于零且小于或等于所述接收的光信号的速率的两倍; 对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大 于所述本振信号的频率。
进一步地 ,所述步骤 104中的所述预先设置的频率范围的下限为第一频率, 所述预先设置的频率范围的上限为第二频率; 其中, 所述第一频率的值为所述 接收的光信号的速率的值的两倍加上第四增量所得到的值; 所述第二频率的值 为所述接收机的带宽减去预设的第五增量所得到的值。
进一步地, 所述步骤 104可以包括如下两种情况:
可选地, 第一种情况:
所述当所述中频信号的频率超过预先设置的频率范围,根据所述确定的所 述光信号的频率和所述本振信号的频率的关系, 调整本振信号的频率具体包 括:
当所述中频信号的频率小于所述第一频率, 且所述光信号的频率小于所述 本振信号的频率, 则通过在所述本振信号的频率上增加第六增量, 获得调整后 的本振信号;
当所述中频信号的频率小于所述第一频率且所述光信号的频率大于所述 本振信号的频率, 则通过在所述本振信号的频率上减少所述第七增量, 获得调 整后的本振信号。
可选地, 第二种情况:
所述当所述中频信号的频率超过预先设置的第二频率范围,根据所述确定 的所述光信号的频率和所述本振信号的频率的关系,调整本振信号的频率具体 包括:
当所述中频信号的频率大于所述第二频率且所述光信号的频率小于所述 本振信号的频率, 则通过在所述本振信号的频率上减少第七增量, 获得调整后 的本振信号;
当所述中频信号的频率大于所述第二频率且所述光信号的频率大于所述 本振信号的频率, 则通过在所述本振信号的基础上增加第六增量, 获得调整后 的本振信号。
进一步地, 所述方法还包括:
将所述中频信号分成两路, 其中一路通过数据和时钟恢复等处理, 封装成 数据报文并发送出去, 其中, 所述封装后的数据报文中设置特定标志位, 所述 特定标志位用于标识该数据报文为数据发送阶段 (也可以称为跟踪阶段 )还是 注册阶段(也可以称为训练阶段)。
当接收机接收到携带有特定标志位的数据报文, 通过提取所述报文中的特 定标志位, 可以确定该数报文处于数据发送阶段还是注册阶段。
所述注册阶段, 用于根据所述中频信号的频率、 所述接收的光信号的速率 以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关 系, 目的是: 在数据发送阶段, 当所述中频信号的频率超过预先设置的频率范 围时, 根据注册阶段确定的关系, 调整本振信号的频率, 进而调整中频信号的 频率,使得所述中频信号的值小于或等于相干接收机的带宽且大于或等于所述 接收的光信号的速率的两倍。
所述数据发送阶段, 用于根据上述注册阶段确定的所述光信号的频率和所 述本振信号的频率的关系, 调整本振信号的频率, 进而调整所述中频信号的频 率,使得调整后的中频信号的频率值小于或等于接收机的带宽且大于或等于所 述接收的光信号的速率的两倍
进一步地, 所述中频信号的频率范围需要^^据一定频率的高通滤波器和一 定频率的低通滤波器的串联或者并联组合来获取, 具体获取的过程在如下图 4 至 7以及图 11至 14以及相应的实施例有详细的介绍。 图 4至 7为在注册阶段 (训练阶段)确定所述中频信号的频率范围的流程图, 以及, 图 11至 14为在 数据发送阶段(跟踪阶段)确定所述中步信号的频率范围的流程图。
进一步地, 在上述注册阶段, 确定完所述接收的光信号的频率和所述本振 信号的频率的关系之后, 由于该本振信号在上述注册过程中进行了调整, 进而 所述中频信号也进行了相应的调整, 因此, 还需要恢复该中频信号的频率, 具 体恢复过程, 请参见如下图 8和 9以及相应的实施例有详细的介绍。
其中, 在注册阶段, 在根据所述中频信号的频率、 所述接收的光信号的速 率以及接收机的带宽,确定所述接收的光信号的频率和所述本振信号的频率的 关系, 执行确定中频信号的频率大小的步骤。 其中, 可以通过滤波频率为接收的光信号的速率的两倍的滤波器和滤波频 率为相干接收机带宽滤波器, 来确定中频信号的大小, 具体可以包括如下四种 方式, 分别为:
第一、通过滤波频率为接收的光信号的速率的两倍的低通滤波器和滤波频 率为相干接收机的带宽的高通滤波器, 来确定中频信号的大小, 且低通滤波器 和高通滤波器的连接方式为串联, 可以具体为:
1061a: 采用滤波频率为接收的光信号的速率的两倍的低通滤波器对该中 频信号进行滤波得到第三滤波信号,如果第三滤波信号的功率大于预设第三功 率, 则判断出该中频信号的频率小于接收的光信号的速率的两倍;
1062a: 如果第三滤波信号的功率小于或等于第三功率, 则采用滤波频率 为相干接收机的带宽的高通滤波器对该中频信号进行滤波得到第四滤波信号, 如果第四滤波信号的功率小于或等于预设第四功率, 则判断出该中频信号的频 率大于或等于接收的光信号的速率的两倍且小于或等于相干接收机的带宽, 如 果第四滤波信号的功率大于第四功率, 则判断出该中频信号的频率大于相干接 收机的带宽。
第二、通过滤波频率为接收的光信号的速率的两倍的高通滤波器和滤波频 率为相干接收机的带宽的低通滤波器, 来确定中频信号的大小, 且低通滤波器 和高通滤波器的连接方式为串联, 可以具体为:
1061b: 采用滤波频率为接收的光信号的速率的两倍的高通滤波器对该中 频信号进行滤波得到第三滤波信号, 如果第三滤波信号的功率小于第三功率, 则判断出该中频信号的频率小于接收的光信号的速率的两倍;
1062b: 如果第三滤波信号的功率大于或等于第三功率, 则采用滤波频率 为相干接收机的带宽的低通滤波器对该中频信号进行滤波得到第四滤波信号, 如果第四滤波信号的功率大于或等于预设第四功率, 则判断出该中频信号的频 率大于或等于接收的光信号的速率的两倍且小于或等于相干接收机的带宽, 如 果第四滤波信号的功率小于所述第四功率, 则判断出该中频信号的频率大于相 干接收机的带宽。
第三、通过滤波频率为接收的光信号的速率的两倍的低通滤波器和滤波频 率为相干接收机的带宽的高通滤波器, 来确定中频信号的大小, 且低通滤波器 和高通滤波器的连接方式为并联, 可以具体为: 1061c: 将该中频信号划分为第三中频信号和第四中频信号; 1062c: 采用滤波频率为接收的光信号的速率的两倍的低通滤波器对第三 中频信号进行滤波得到第三滤波信号,如果第三滤波信号的功率大于预设第三 功率, 则判断出该中频信号的频率小于接收的光信号的速率的两倍, 如果第三 滤波信号的功率小于或等于第三功率, 则判断出该中频信号的频率大于或等于 接收的光信号的速率的两倍;
1063c: 采用滤波频率为相干接收机的带宽的高通滤波器对第四中频信号 进行滤波得到第四滤波信号,如果第四滤波信号的功率小于或等于预设第四功 率, 则判断出该中频信号的频率小于或等于相干接收机的带宽, 如果第四滤波 信号的功率大于所述第四功率, 则判断出该中频信号的频率大于相干接收机的 带宽;
1064c: 根据通过低通滤波器判断出该中频信号的频率大于或等于接收的 光信号的速率的两倍, 以及通过高通滤波器判断出该中频信号的频率小于或等 于相干接收机的带宽,确定出该中频信号的频率大于或等于接收的光信号的速 率的两倍且小于或等于相干接收机的带宽。
第四、通过滤波频率为接收的光信号的速率的两倍的高通滤波器和滤波频 率为相干接收机的带宽的低通滤波器, 来确定中频信号的大小, 且低通滤波器 和高通滤波器的连接方式为并联, 可以具体为:
1061d: 将该中频信号划分为第三中频信号和第四中频信号;
1062d: 采用滤波频率为接收的光信号的速率的两倍的高通滤波器对第三 中频信号进行滤波得到第三滤波信号,如果第三滤波信号的功率小于预设第三 功率, 则判断出该中频信号的频率小于接收的光信号的速率的两倍, 如果第三 滤波信号的功率大于或等于第三功率, 则判断出该中频信号的频率大于或等于 接收的光信号的速率的两倍;
1063d: 采用滤波频率为相干接收机的带宽的低通滤波器对第四中频信号 进行滤波得到第四滤波信号,如果第四滤波信号的功率大于或等于预设第四功 率, 则判断出该中频信号的频率小于或等于相干接收机的带宽, 如果第四滤波 信号的功率小于预设第四功率, 则判断出该中频信号的频率大于相干接收机的 带宽;
1064d: 根据通过高通滤波器判断出该中频信号的频率大于或等于接收的 光信号的速率的两倍, 以及通过低通滤波器判断出该中频信号的频率小于或等 于相干接收机的带宽,确定出该中频信号的频率大于或等于接收的光信号的速 率的两倍且小于或等于相干接收机的带宽。
其中, 在数据发送阶段, 在执行步骤 104之前, 执行确定中频信号的频率 是否超出预设的频率范围的步骤。
其中, 可以通过滤波频率为第一频率的滤波器和滤波频率为第二频率的滤 波器, 确定中频信号的频率是否超出预设的频率范围, 具体可以包括如下四种 方式, 分别为:
第一、通过滤波频率为第一频率的低通滤波器和滤波频率为第二频率的高 通滤波器, 来确定中频信号的频率是否超出预设的频率范围, 且低通滤波器和 高通滤波器的连接方式为串联, 可以具体为:
1041a: 采用滤波频率为第一频率的低通滤波器对该中频信号进行滤波得 到第一滤波信号, 如果第一滤波信号的功率大于预设第一功率, 则判断出该中 频信号的频率小于第一频率;
1042a: 如果第一滤波信号的功率大于或等于第一功率, 则采用滤波频率 为第一频率的高通滤波器对该中频信号进行滤波得到第二滤波信号, 如果第二 滤波信号的功率小于或等于预设第二功率, 则判断出该中频信号的频率在预先 设置的频率范围之内, 如果第二滤波信号的功率大于预设第二功率, 则判断出 该中频信号的频率大于第二频率。
第二、通过滤波频率为第一频率的高通滤波器和滤波频率为第二频率的低 通滤波器, 来确定中频信号的频率是否超出预设的频率范围, 且低通滤波器和 高通滤波器的连接方式为串联, 可以具体为:
1041b: 采用滤波频率为第一频率的高通滤波器对该中频信号进行滤波得 到第一滤波信号, 如果第一滤波信号的功率小于第一功率, 则判断出该中频信 号的频率小于第一频率;
1042b: 如果第一滤波信号的功率大于或等于第一功率, 则采用滤波频率 为第一频率的低通滤波器对该中频信号进行滤波得到第二滤波信号, 如果第二 滤波信号的功率大于或等于第二功率, 则判断出该中频信号的频率在预先设置 的频率范围之内, 如果第二滤波信号的功率小于第二功率, 则判断出该中频信 号的频率大于第二频率。 第三、通过滤波频率为第一频率的低通滤波器和滤波频率为第二频率的高 通滤波器, 来确定中频信号的频率是否超出预设的频率范围, 且低通滤波器和 高通滤波器的连接方式为并联, 可以具体为:
1041c: 将该中频信号划分为第一中频信号和第二中频信号;
1042c: 采用滤波频率为第一频率的低通滤波器对第一中频信号进行滤波 得到第一滤波信号, 如果第一滤波信号的功率大于预设第一功率, 则判断出该 中频信号的频率小于第一频率, 如果第一滤波信号的功率大于或等于第一功 率, 则判断出该中频信号的频率大于或等于第一频率;
1043c: 采用滤波频率为第二频率的高通滤波器对第二中频信号进行滤波 得到第二滤波信号, 如果第二滤波信号的功率小于或等于预设第二功率, 则判 断出该中频信号的频率小于或等于第二频率, 如果第二滤波信号的功率大于预 设第二功率, 则判断出该中频信号的频率大于第二频率;
1044c: 根据通过低通滤波器判断出该中频信号的频率大于或等于第一频 率, 以及通过高通滤波器判断出小于或等于第二频率, 确定出该中频信号的频 率在预设设置的频率范围之内。
第四、通过滤波频率为第一频率的高通滤波器和滤波频率为第二频率的低 通滤波器, 来确定中频信号的频率是否超出预设的频率范围, 且低通滤波器和 高通滤波器的连接方式为并联, 可以具体为:
1041d: 将该中频信号划分为第一中频信号和第二中频信号;
1042d: 采用滤波频率为第一频率的高通滤波器对第一中频信号进行滤波 得到第一滤波信号, 如果第一滤波信号的功率小于预设第一功率, 则判断出该 中频信号的频率小于第一频率, 如果第一滤波信号的功率大于或等于第一功 率, 则判断出该中频信号的频率大于或等于第一频率;
1043d: 采用滤波频率为第二频率的低通滤波器对第二中频信号进行滤波 得到第二滤波信号, 如果第二滤波信号的功率大于或等于预设第二功率, 则判 断出该中频信号的频率小于或等于第二频率, 如果第二滤波信号的功率小于预 设第二功率, 则判断出该中频信号的频率大于第二频率;
1044d: 根据通过高通滤波器判断出该中频信号的频率大于或等于第一频 率, 以及通过低通滤波器判断出该中频信号小于或等于第二频率, 确定出该中 频信号的频率在预设设置的频率范围之内。 在本发明实施例中, 通过接收机接收光信号以及本振信号; 对所述接收的 光信号以及所述本振信号进行混频、 光电转化后, 输出中频信号; 根据所述中 频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的 光信号的频率和所述本振信号的频率的关系; 当所述中频信号的频率超过预先 设置的频率范围,根据所述确定的所述光信号的频率和所述本振信号的频率的 关系, 调整本振信号的频率; 对所述接收的光信号以及所述调整后的本振信号 进行混频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或 等于接收机的带宽且大于或等于所述接收的光信号的速率的两倍避免了一次 性进行较大的调节, 后续在尝试调节的方式, 使得接收机中能够快速、 准确对 中频信号进行调节, 提高了接收机的接收灵敏度。 图 2为确定出当前阶段为注册阶段还是数据发送阶段的流程图, 首先按图 2所示的流程, 确定出当前阶段为注册阶段还是数据发送阶段, 包括:
步骤 201 : 接收光信号和本振光源产生的本振信号, 对接收的光信号和本 振信号进行混频、 光电转化后输出中频信号;
具体地, 接收光信号和本振光源产生的本振信号, 对接收的本振信号和光 信号进行混频处理得到混合光信号,对该混合光信号进行光电转换得到中频信 号。
其中, 接收端接收光信号和本振光源产生的本振信号; 中频信号的频率等 于本振信号的频率与光信号的频率的差值的绝对值。
步骤 202: 将该中频信号划分成两路中频信号, 从其中一路中频信号中获 取报文;
其中, 获取的报文中包括特定标志位, 所述特定标志位用于标识该数据报 文为数据发送阶段(也可以称为跟踪阶段)还是注册阶段(也可以称为训练阶 段)。
其中, 两路中频信号的频率相同; 两路中频信号的频率都等于本振信号的 频率与光信号的频率的差值的绝对值。
其中, 如果中频信号的频率大于或等于接收的光信号的速率的两倍, 则能 够成功地对该中频信号进行包络检测, 并成功地获取到该中频信号对应的基带 信号; 如果该中频信号的频率小于接收的光信号的速率的两倍, 则不能成功地 对该中频信号进行包络检测, 并不能成功地获取到该中频信号对应的基带信 号。
其中, 如果该中频信号的频率小于或等于接收的相干接收机的带宽, 则能 够成功地对该中频信号对应的基带信号进行判决处理得到该中频信号对应的 比特流; 如果该中频信号的频率大于相干接收机的带宽, 则不能成功地对该中 频信号对应的基带信号进行判决处理得到该中频信号对应的比特流。
步骤 203: 根据获取的报文对发送端的当前阶段进行判断, 如果为注册阶 段(训练阶段), 则执行步骤 301 , 如果为数据发送阶段(跟踪阶段), 则执行 步骤 401 ;
其中, 发送端当需要发送数据时, 首先在注册阶段注册连接到网络中, 且 在注册阶段发送给接收端的报文为注册报文; 然后在数据发送阶段发送数据给 接收端, 且在数据发送阶段发送给接收端的报文为数据报文。 其中, 图 3是注册阶段确定光信号的频率与本振信号的频率的关系的流程 图, 当判断出当前阶段为注册阶段时, 可以按图 3所示的流程, 在注册阶段中 确定光信号的频率与本振信号的频率的关系, 包括:
步骤 301 : 对于另一路中频信号, 对该中频信号的频率大小进行判断, 如 果该中频信号的频率大于相干接收机的带宽, 则执行步骤 302, 如果该中频信 号的频率大于或等于接收的光信号的速率的两倍且小于或等于相干接收机的 带宽, 则执行步骤 306; 如果该中频信号的频率小于接收的光信号的速率的两 倍, 则执行步骤 310;
具体地,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的 光信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断。
其中, 图 4至 7为在注册阶段(训练阶段)确定所述中频信号的频率范围 的流程图, 下面分别单独对图 4至 7确定所述中频信号的频率范围的流程进行 详细说明。
其中, 图 4为确定所述中频信号的频率范围的流程图, 且在图 4所示的流 程中可以通过滤波频率为相干接收机的带宽的高通滤波器和滤波频率为接收 的光信号的速率的两倍的低通滤波器, 对该中频信号的频率大小进行判断, 且 高通滤波器与低通滤波器采用串联方式相连, 包括: 30a: 采用滤波频率为接收的光信号的速率的两倍的低通滤波器对该中频 信号进行滤波得到第三滤波信号;
31a: 检测第三滤波信号的功率, 对第三滤波信号的功率进行判断;
32a: 如果第三滤波信号的功率大于预设第三功率, 则判断出该中频信号 的频率小于接收的光信号速率的两倍, 结束返回;
33a: 如果第三滤波信号的功率小于或等于预设第三功率, 则采用滤波频 率为相干接收机的带宽的高通滤波器对该中频信号进行滤波得到第四滤波信 号;
34a: 检测第四滤波信号的功率, 对第四滤波信号的功率进行判断;
35a: 如果第四滤波信号的功率小于或等于预设第四功率, 则判断出该中 频信号的频率大于或等于接收的光信号的速率的两倍且小于或等于相干接收 机的带宽, 结束返回;
36a: 如果第四滤波信号的功率大于预设第四功率, 则判断出该中频信号 的频率大于相干接收机的带宽, 结束返回。
其中, 图 5为确定所述中频信号的频率范围的流程图, 且在图 5所示的流 程中可以通过滤波频率为相干接收机的带宽的低通滤波器和滤波频率为接收 的光信号的速率的两倍的高通滤波器, 对该中频信号的频率大小进行判断, 且 高通滤波器与低通滤波器采用串联方式相连, 包括:
30b: 采用滤波频率为接收的光信号的速率的两倍的高通滤波器对该中频 信号进行滤波得到第三滤波信号;
31b: 检测第三滤波信号的功率, 对第三滤波信号的功率进行判断;
32b: 如果第三滤波信号的功率小于预设第三功率, 则判断出该中频信号 的频率小于接收的光信号的速率的两倍, 结束返回;
33b: 如果第三滤波信号的功率大于或等于预设第三功率, 则采用滤波频 率为相干接收机的带宽的低通滤波器对该中频信号进行滤波得到第四滤波信 号;
34b: 检测第四滤波信号的功率, 对第四滤波信号的功率进行判断;
35b: 如果第四滤波信号的功率大于或等于预设第四功率, 则判断出该中 频信号的频率大于或等于接收的光信号的速率的两倍且小于或等于相干接收 机的带宽, 结束返回; 36b: 如果第四滤波信号的功率小于预设第四功率, 则判断出该中频信号 的频率大于相干接收机的带宽, 结束返回。
其中, 图 6为确定所述中频信号的频率范围的流程图, 且在图 6所示的流 程中可以通过滤波频率为相干接收机的带宽的高通滤波器和滤波频率为接收 的光信号的速率的两倍的低通滤波器, 对该中频信号的频率大小进行判断, 且 高通滤波器与低通滤波器采用并联方式相连, 包括:
30c: 将该中频信号划分为第三中频信号和第四中频信号;
31c: 采用滤波频率为接收的光信号的速率的两倍的低通滤波器对第三中 频信号进行滤波得到第三滤波信号;
32c: 检测第三滤波信号的功率, 对第三滤波信号的功率进行判断;
33c: 如果第三滤波信号的功率大于预设第三功率, 则判断出该中频信号 的频率小于接收的光信号的速率的两倍, 结束返回;
34c: 如果第三滤波信号的功率大于或等于第三功率, 则判断出该中频信 号的频率大于或等于接收的光信号的速率的两倍, 执行 39c;
35c: 采用滤波频率为相干接收机的带宽的高通滤波器对第四中频信号进 行滤波得到第四滤波信号;
36c: 检测第四滤波信号的功率, 对第四滤波信号的功率进行判断;
37c: 如果第四滤波信号的功率小于或等于预设第四功率, 则判断出该中 频信号的频率小于或等于相干接收机的带宽, 执行 39c;
38c: 如果第四滤波信号的功率大于预设第四功率, 则判断出该中频信号 的频率大于相干接收机的带宽, 结束返回;
39c: 根据通过低通滤波器判断出该中频信号的频率大于或等于接收的光 信号的速率的两倍, 以及通过高通滤波器判断出该中频信号小于或等于相干接 收机的带宽, 确定出该中频信号的频率大于或等于接收的光信号的速率的两倍 且小于或等于相干接收机的带宽, 结束返回。
其中, 图 7为确定所述中频信号的频率范围的流程图, 且在图 7所示的流 程中可以通过滤波频率为相干接收机的带宽的低通滤波器和滤波频率为接收 的光信号的速率的两倍的高通滤波器, 对该中频信号的频率大小进行判断, 且 高通滤波器与低通滤波器采用并联方式相连, 包括:
30d: 将该中频信号划分为第三中频信号和第四中频信号; 31d: 采用滤波频率为接收的光信号的速率的两倍的高通滤波器对第三中 频信号进行滤波得到第三滤波信号;
32d: 检测出第三滤波信号的功率, 并对第三滤波信号的功率进行判断;
33d: 如果第三滤波信号的功率小于预设第三功率, 则判断出该中频信号 的频率小于接收的光信号的速率的两倍, 返回结束;
34d: 如果第三滤波信号的功率大于或等于第三功率, 则判断出该中频信 号的频率大于或等于接收的光信号的速率的两倍, 执行 39d;
35d: 采用滤波频率为相干接收机的带宽的低通滤波器对第四中频信号进 行滤波得到第四滤波信号;
36d: 检测第四滤波信号的功率, 对第四滤波信号的功率进行判断;
37d: 如果第四滤波信号的功率大于或等于预设第四功率, 则判断出该中 频信号的频率小于或等于相干接收机的带宽, 执行 39d;
38d: 如果第四滤波信号的功率小于第四功率, 则判断出该中频信号的频 率大于相干接收机的带宽, 结束返回;
39d: 根据通过高通滤波器判断出该中频信号的频率大于或等于接收的光 信号的速率的两倍以及通过低通滤波器判断该中频信号的频率小于或等于相 干接收机的带宽, 确定出该中频信号的频率大于或等于接收的光信号的速率的 两倍且小于或等于相干接收机的带宽。
步骤 302: 通过在本振信号的频率上增加第一增量, 获取得调整后的本振 信号, 第一增量大于 0且小于相干接收机的带宽与接收的光信号的速率的两倍 之间的差值;
具体地, 调节本振光源产生频率增加第一增量的本振信号, 接收本振光源 产生的频率增加的本振信号。
其中, 第一增量 1 满足: 0<Af l<B-2*b, B为相干接收机的带宽, b 为光信号的速率。
步骤 303:接收光信号,对接收的光信号和频率增加的本振信号进行混频、 光电转化后输出中频信号;
具体地, 接收光信号和本振光源产生的频率增加第一增量的本振信号, 对 接收的频率增加第一增量的本振信号和接收的光信号进行混频处理得到混合 光信号, 对该混合光信号进行光电转换得到中频信号。 步骤 304: 如果该中频信号的频率小于接收的光信号的速率的两倍或者该 中频信号的频率大于相干接收机的带宽, 则确定出光信号的频率小于本振信号 的频率, 否则, 确定出光信号的频率大于本振信号的频率;
具体地,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的 光信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断, 如果该中 频信号的频率小于接收的光信号的速率的两倍或者该中频信号的频率大于相 干接收机的带宽, 则确定出光信号的频率小于本振信号的频率, 否则, 确定出 光信号的频率大于本振信号的频率。
其中, 通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的光 信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断的详细操作, 请参见步骤 301的相应内容, 在此不再详细说明。
步骤 305: 根据光信号的频率和本振信号的频率的关系, 调节本振信号的 频率, 使得根据调节后本振信号恢复中频信号的频率, 结束操作;
具体地, 参见图 8, 图 8是恢复中频信号的频率的流程图, 本步骤可以具 体包括 3051-3054, 分别为:
3051 : 如果光信号的频率大于本振信号的频率, 则 ^据第一增量 Afl、 光 信号的速率 b和相干接收机的带宽 B, 按如下公式( 1 )计算第一数值 Δίΐ';
Afl,=Afl+B/2-b ( 1 ) ;
3052: 通过在本振信号的频率上减少第一数值 Δίΐ' , 从而使得中频信号的 频率值恢复到以前的值, 以前的值根据接收的光信号与本振信号得到的中频信 号的频率范围;
其中, 调节本振光源产生频率减少第一数值 ΔίΓ的本振信号, 接收本振光 源产生的频率减少的本振信号和光信号, 对接收的本振信息和光信号进行混频 和光电转换后输出中频信号。
3053: 如果光信号的频率小于本振信号的频率, 则 ^据第一增量 Afl、 光 信号的速率 b和相干接收机的带宽 B, 按如下公式(2 )计算第二数值 Δί2,;
Af2,=Afl-B/2+b ( 2 ) 。
3054: 通过在本振信号的频率上减少第二数值 Δίΐ' , 从而使得中频信号的 频率值恢复到以前的值, 以前的值根据接收的光信号与本振信号得到的中频信 号的频率范围。 步骤 306: 通过在本振信号的频率上增加第二增量, 获得调整后的本振信 号, 第二增量大于或等于相干接收机的带宽与接收的光信号的速率的两倍之间 的差值且小于或等于相干接收机的带宽与接收的光信号的速率的两倍之和; 其中, 调节本振光源产生频率增加第二增量的本振信号, 接收本振光源产 生的频率减少的本振信号和光信号,对接收的本振信息和光信号进行混频和光 电转换后输出频率大于或等于接收的光信号的速率的两倍且小于或等于相干 接收机的带宽的中频信号。
其中, 第二增量 Af2满足: B-2*b≤Af2≤B+2*b, B为相干接收机的带宽, b为光信号的速率。
步骤 307:接收光信号,对频率增加的本振信号和接收的光信号进行混频、 光电转化后输出中频信号;
具体地, 接收光信号, 对本振光源产生的频率增加的本振信号和接收的光 信号进行混频处理得到混合光信号,对该混合光信号进行光电转换得到中频信 号。
步骤 308: 如果该中频信号的频率小于接收的光信号的速率的两倍或者该 中频信号的频率大于相干接收机的带宽, 则确定出光信号的频率小于本振信号 的频率, 否则, 确定出光信号的频率大于本振信号的频率;
具体地,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的 光信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断, 如果该中 频信号的频率小于接收的光信号的速率的两倍或该中频信号的频率大于相干 接收机的带宽, 则确定出光信号的频率小于本振信号的频率, 否则, 确定出光 信号的频率大于本振信号的频率。
其中,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的光 信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断的详细操作, 请参见步骤 301的相应内容, 在此不再详细说明。
步骤 309: 通过在本振信号的频率上减少第二增量的本振信号, 使根据频 率减少的本振信号恢复中频信号的频率, 结束操作;
步骤 310: 通过在本振信号的频率上增加第三增量, 获得调节后的本振信 号, 第三增量大于零且小于或等于接收的光信号的速率的两倍; 具体地, 调节本振光源产生频率增加预设第三增量的本振信号, 接收本振 光源产生的频率增加的本振信号, 第三增量大于零且小于或等于接收的光信号 的速率的两倍。
其中, 第三增量 Af3满足: 0<Af 3≤2*b, b为光信号的速率。
步骤 311 : 接收光信号, 对本振光源产生的频率增加的本振信号和接收的 光信号进行混频、 光电转化后输出中频信号;
具体地, 接收光信号, 对本振光源产生的频率增加第三增量的本振信号和 接收的光信号进行混频处理得到混合光信号, 对该混合光信号进行光电转换得 到中频信号。
步骤 312: 如果该中频信号的频率小于接收的光信号的速率的两倍或者该 中频信号的频率大于相干接收机的带宽, 则确定出光信号的频率小于本振信号 的频率, 否则, 确定出光信号的频率大于本振信号的频率;
具体地,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的 光信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断, 如果中频 信号的频率小于接收的光信号的速率的两倍或者中频信号的频率大于相干接 收机的带宽, 则确定出光信号的频率小于本振信号的频率, 否则, 确定出光信 号的频率大于本振信号的频率。
其中,通过滤波频率为相干接收机的带宽的滤波器和滤波频率为接收的光 信号的速率的两倍的滤波器, 对该中频信号的频率大小进行判断的详细操作, 请参见步骤 301的相应内容, 在此不再详细说明。
步骤 313: 根据光信号的频率和本振信号的频率的关系, 调节本振光源产 生本振信号的频率,使得根据调节后本振信号恢复中频信号的频率,结束操作; 具体地, 参见图 9, 图 9是恢复中频信号的频率的流程图, 本步骤可以具 体包括 3131-3134, 分别为:
3131 : 如果光信号的频率小于本振信号的频率, 则 ^据第三增量 Δβ、 光 信号的速率 b和相干接收机的带宽 Β, 按如下公式(3 )计算第三数值 Δβ,;
Af3'=Af3+B/2+3b ( 3 ) ;
3132: 通过在本振信号的频率上减少第三数值 Δβ,, 从而使得中频信号 的频率值恢复到以前的值, 以前的值根据接收的光信号与本振信号得到的中频 信号的频率范围; 其中, 调节本振光源产生频率减少第三数值 Δβ,的本振信号, 接收本振光 源产生的频率减少的本振信号和光信号, 对接收的本振信息和光信号进行混频 和光电转换后输出中频信号。
3133: 如果光信号的频率大于本振信号的频率, 则 ^据第三增量 Δβ、 光 信号的速率 b和相干接收机的带宽 Β, 按如下公式(4 )计算第四数值 Af4,;
Af4'=Af3+B/2+b ( 4 ) 。
3134: 通过在本振光信号的频率上减少第四数值 Af4,, 从而使得中频信 号的频率值恢复到以前的值, 以前的值根据接收的光信号与本振信号得到的中 频信号的频率范围。 其中, 图 10是在数据发送阶段中调节信号频率的流程图, 参见图 10, 当 判断出当前阶段为数据发送阶段时, 可以按图 10所示的流程, 在数据发送阶 段根据光信号的频率和本振信号的频率的关系调整中频信号,使得调整后的中 频信号的频率大于或等接收的光信号的速率的两倍且小于或等于相干接收机 的带宽, 包括:
步骤 401 : 对该中频信号的频率大小进行判断, 如果该中频信号的频率小 于或等于预设第一频率, 则执行步骤 402, 如果中频信号的频率大于或等于预 设第二频率, 则执行步骤 407;
其中, 通过滤波频率为第一频率的滤波器和滤波频率为第二频率的滤波器 对该中频信号的频率大小进行判断, 判断该中频信号的频率是否超过预先设置 的频率范围, 预先设置的频率范围的下限为第一频率, 预先设置的频率范围的 上限为第二频率。
其中, 图 11至 14为在数据发送阶段(跟踪阶段)确定所述中频信号的频 率范围的流程图, 下面分别单独对图 11至 14确定所述中频信号的频率范围的 流程进行详细说明。
其中 , 事先将接收的光信号的速率的两倍增加预设的第四增量得到第一频 率, 以及, 将相干接收机的带宽减去预设的第五增量得到第二频率。
优先地, 第一频率与接收的光信号的速率的两倍之间的相差的第四增量可 以等于 1 , 以及, 第二频率与相干接收机的带宽之间的相差的第五增量可以等 于 1。 其中, 图 11为确定所述中频信号的频率范围的流程图, 且在图 11所示的 流程中可以通过滤波频率为第一频率的低通滤波器和滤波频率为第二频率的 高通滤波器对该中频信号的频率大小进行判断, 高通滤波器与低通滤波器之间 的连接方式为串联方式, 包括:
41a: 采用滤波频率为第一频率的低通滤波器对该中频信号进行滤波得到 第一滤波信号;
42a: 检测第一滤波信号的功率, 并对第一滤波信号的功率大小进行判断;
43a: 如果第一滤波信号的功率大于预设第一功率, 则判断出该中频信号 的频率小于预设第一频率, 结束返回;
44a: 如果第一滤波信号的功率小于或等于预设第一功率, 则采用滤波频 率为预设第二频率的高通滤波器对该中频信号进行滤波得到第二滤波信号;
45a: 检测第二滤波信号的功率, 对第二滤波信号的功率进行判断;
46a: 如果第二滤波信号的功率小于或等于预设第二功率, 则判断出该中 频信号的频率大于或等于第一频率且小于或等于第二频率, 结束返回;
47a: 如果第二滤波信号的功率大于预设第二功率, 则判断出该中频信号 的频率大于预设第二频率, 结束返回。
其中, 图 12为确定所述中频信号的频率范围的流程图, 且在图 12所示的 流程中可以通过滤波频率为第一频率的高通滤波器和滤波频率为第二频率的 低通滤波器对该中频信号的频率大小进行判断, 高通滤波器与低通滤波器之间 的连接方式为串联方式, 包括:
41b: 采用滤波频率为第一频率的高通滤波器对该中频信号进行滤波得到 第一滤波信号;
42b: 检测第一滤波信号的功率, 对第一滤波信号的功率进行判断;
43b: 如果第一滤波信号的功率小于预设第一功率, 则判断出该中频信号 的频率小于预设第一频率, 结束返回;
44b: 如果第一滤波信号的功率大于或等于预设第一功率, 则采用滤波频 率为第二频率的低通滤波器对该中频信号进行滤波得到第二滤波信号;
45b: 检测第二滤波信号的功率, 对第二滤波信号的功率大小进行判断; 46b: 如果第二滤波信号的功率大于或等于预设第二功率, 则判断出该中 频信号的频率大于或等于预设第一频率且小于或等于预设第二频率, 结束返 回;
47b: 如果第二滤滤信号的功率小于预设第二功率, 则判断出该中频信号 的频率大于预设第二频率, 结束返回。
其中, 图 13为确定所述中频信号的频率范围的流程图, 且在图 13所示的 流程中可以通过滤波频率为第一频率的低通滤波器和滤波频率为第二速率的 高通滤波器, 对该中频信号的频率大小进行判断, 且高通滤波器与低通滤波器 采用并联方式相连, 包括:
40c: 将该中频信号划分为第一中频信号和第二中频信号;
41c: 采用滤波频率第一频率的低通滤波器对第一中频信号进行滤波得到 第一滤波信号;
42c: 检测第一滤波信号的功率, 对第一滤波信号的功率进行判断;
43c: 如果第一滤波信号的功率大于预设第一功率, 则判断出该中频信号 的频率小于第一频率, 结束返回;
44c: 如果第一滤波信号的功率大于或等于第一功率, 则判断出该中频信 号的频率大于或等于第一频率, 执行 49c;
45c: 采用滤波频率为第二频率的高通滤波器对第二中频信号进行滤波得 到第二滤波信号;
46c: 检测第二滤波信号的功率进行检测, 对第二滤波信号的功率进行判 断;
47c: 如果第二滤波信号的功率小于或等于预设第二功率, 则判断出该中 频信号的频率小于或等于第二频率, 执行 49c;
48c: 如果第二滤波信号的功率大于预设第二功率, 则判断出该中频信号 的频率大于第二频率, 结束返回;
49c: 根据通过低通滤波器判断出该中频信号的频率大于或等于第一频率, 以及通过高通滤波器判断出该中频信号小于或等于第二频率, 确定出该中频信 号的频率没有超过预先设置的频率范围, 结束返回。
其中, 图 14为确定所述中频信号的频率范围的流程图, 且在图 14所示的 流程中可以通过滤波频率为第一频率的高通滤波器和滤波频率为第二频率的 低通滤波器, 对该中频信号的频率大小进行判断, 且高通滤波器与低通滤波器 采用并联方式相连, 包括: 40d: 将该中频信号划分为第一中频信号和第二中频信号;
41d: 采用滤波频率为第一频率的高通滤波器对第一中频信号进行滤波得 到第一滤波信号;
42d: 检测出第一滤波信号的功率, 并对第一滤波信号的功率进行判断;
43d: 如果第一滤波信号的功率小于预设第一功率, 则判断出该中频信号 的频率小于第一频率, 返回结束;
44d: 如果第一滤波信号的功率大于或等于第一功率, 则判断出该中频信 号的频率大于或等于第一频率, 执行 49d;
45d: 采用滤波频率为第二频率的低通滤波器对第二中频信号进行滤波得 到第二滤波信号;
46d: 检测第二滤波信号的功率, 对第二滤波信号的功率进行判断;
47d: 如果第二滤波信号的功率大于或等于预设第二功率, 则判断出该中 频信号的频率小于或等于第二频率;
48d: 如果第二滤波信号的功率小于第二功率, 则判断出该中频信号的频 率大于第二频率, 结束返回;
49d: 根据通过高通滤波器判断出该中频信号的频率大于或等于第一频率 以及通过低通滤波器判断该中频信号的频率小于或等于第二频率,确定出该中 频信号的频率没有超过预先设置的频率范围。
步骤 402: 对接收的光信号的频率和本振信号的频率的关系进行判断, 如 果光信号的频率小于本振信号的频率, 则执行步骤 403 , 如果光信号的频率大 于本振信号的频率, 执行步骤 405;
步骤 403: 通过在本振信号的频率上增加第六增量, 获得调整后的本振信 号;
具体地, 调节本振光源产生的频率增加第六增量的本振信号, 接收本振光 源产生频率增加的光信号。
步骤 404: 接收光信号, 对获得的本振信号和接收的光信号进行混频、 光 电转换后输出中频信号,使得中频信号的频率大于或等于接收的光信号的速率 的两倍且小于或等于相干接收机的带宽, 结束操作;
具体地, 接收光信号, 对接收的光信号和频率增加的本振信号进行混频处 理得到混合光信号, 对该混合光信号进行光电转换后输出频率增加第六增量的 中频信号,得到中频信号的频率大于或等于接收的光信号的速率的两倍且小于 或等于相干接收机的带宽。
例如, 假设, 光信号的速率为 2.5Gbs, 相干接收机的带宽为 25GHz, 则中 频信号的频率必须大于或等于 5GHz且小于或等于 25GHz, 另外, 预设的第一 频率为 6GHz, 预设的第二频率为 24GHz, 以及判断出中频信号的频率小于或 等于第一频率 6GHz, 所以此时中频信号的频率大于或等于 5GHz且小于或等 于第一频率 6GHz。
图 15为本实施例提供一个具体实例且光信号 L0的频率 fD小于本振信号 L1的频率 fl , 参见图 15, 如果光信号 L0的频率 fO小于本振信号 L1的频率 fl ,则光信号 L0的频率 fO与本振信号 L1的频率 fl之间的差值的绝对值 |fl-f0| 小于或等于第一频率 6GHz, 即中频信号的频率小于或等于第一频率 6GHz,此 时参见图 16, 图 16是调节后的信号频率的关系示意图, 调节本振光源产生的 频率增加预设第六增量 ci 的本振信号 L1 , 调节后的本振信号 L1 的频率为 fl+cl , 以及中频信号的频率为 |fl+cl-f0|, 使中频信号的频率增加第六增量 cl , 第六增量 cl值可以设置的较小。
步骤 405: 在本振信号的频率上减少第七增量, 获得调节后的本振信号; 具体地, 调节本振光源产生的频率减少第七增量的本振信号, 接收本振光 源产生的本振信号。
步骤 406:接收光信号,对接收的光信号和频率减少的本振信号进行混频、 光电转换后输出中频信号,使得中频信号的频率大于或等于接收的光信号的速 率的两倍且小于或等于相干接收机的带宽, 结束操作;
具体地, 接收光信号, 对接收的光信号和频率减少的本振信号进行混频处 理得到混合光信号, 对该混合光信号进行光电转换后输出频率减少第七增量的 中频信号,得到中频信号的频率大于或等于接收的光信号的速率的两倍且小于 或等于相干接收机的带宽。
参见图 17为本实施例提供一个具体实例且光信号 L0的频率 fO大于本振 信号 L1的频率 fl , 如果光信号 L0的频率 fO大于本振信号 L1的频率 fl , 则 光信号 L0的频率 fO与本振信号 L1的频率 fl之间的差值的绝对值 |fD-fl|小于或 等于第一频率 6GHz, 即中频信号的频率小于或等于第一频率 6GHz,此时参见 图 18, 图 18是调节后的信号频率的关系示意图, 调节本振光源产生的频率减 少预设第七增量 c2的本振信号 L1 , 调节后的本振信号 L1的频率为 fl-c2, 以 及中频信号的频率为 |fD-fl+c2| , 使中频信号的频率增加第七增量 c2, 第七增量 c2值可以设置的较小。
其中, 对本振光源产生本振信号的频率调节需要一段时间, 即给本振光源 增加预设第六增量或减少预设第七增量, 以及经过一段时间后本振光源才产生 频率增加第六增量的本振信号或产生频率减少第七增量的本振信号; 因此, 在 本实施例中, 设置第一频率大于接收的光信号的速率的两倍, 可以保证得到的 中频信号始终大于或等于接收的光信号的速率的两倍。
步骤 407: 对接收的光信号的频率和本振信号的频率的关系进行判断, 如 果光信号的频率大于本振信号的频率, 则执行 408; 如果光信号的频率小于本 振信号的频率, 则执行 410;
步骤 408: 在本振信号的频率上增加第六增量, 获得调节后的本振信号; 具体地, 调节本振光源产生的频率增加第六增量的本振信号, 接收本振光 源产生的频率增加的本振信号。
步骤 409:接收光信号,对接收的光信号和频率增加的本振信号进行混频、 光电转换后输出中频信号,使得中频信号的频率大于或等于接收的光信号的速 率的两倍且小于或等于相干接收机的带宽, 结束操作;
具体地, 接收光信号, 对接收的光信号和频率增加的本振信号进行混频处 理得到混合光信号, 对该混合光信号进行光电转换后输出频率增加第六增量的 中频信号,得到中频信号的频率大于或等于接收的光信号的速率的两倍且小于 或等于相干接收机的带宽。
例如, 假设, 光信号的速率为 2.5Gbs, 相干接收机的带宽为 25GHz, 则 IF信号的频率必须大于或等于 5GHz且小于或等于 25GHz, 另外,预设的第一 频率为 6GHz,预设的第二频率为 24GHz, 以及判断出 IF信号的频率大于或等 于第二频率 24GHz, 所以此时 IF信号的频率大于或等于 24GHz且小于或等于 第二频率 25GHz。
参见图 15, 如果光信号 L0的频率 fD小于本振信号 L1的频率 fl , 则光信 号 L0的频率 fD与本振信号 L1的频率 fl之间的差值的绝对值 |fl-f0|大于或等于 第二频率 24GHz, 即中频信号的频率大于或等于第二频率 24GHz,此时参见图 19, 图 19是调节后的信号频率的关系示意图, 调节本振光源产生的频率减少 预设第七增量 c2的本振信号 LI , 调节后的本振信号 L1的频率为 fl-c2, 以及 IF信号的频率为 |fl-c2-fD| ,使得中频信号的频率减少第七增量 c2, 第七增量 c2 值可以设置的较小。
步骤 410: 在本振信号的频率上减少第七增量, 获得调节后的本振信号; 具体地, 调节本振光源产生的频率减少第七增量的本振信号, 接收本振光 源产生的频率减少第七增量的本振信号。
步骤 411 : 接收光信号,对接收的光信号和频率减少的本振信号进行混频、 光电转换后输出中频信号,使得中频信号的频率大于或等于接收的光信号的速 率的两倍且小于或等于相干接收机的带宽, 结束操作。
具体地, 接收光信号, 对接收的光信号和频率减少的本振信号进行混频处 理得到混合光信号, 对该混合光信号进行光电转换后输出频率减少第七增量的 中频信号,得到中频信号的频率大于或等于接收的光信号的速率的两倍且小于 或等于相干接收机的带宽。
参见图 17, 如果光信号 L0的频率 fD大于本振信号 L1的频率 fl , 则光信 号 L0的频率 fD与本振信号 L1的频率 fl之间的差值的绝对值 |f0-fl|大于或等于 第二频率 24GHz, 即中频信号的频率大于或等于第二频率 24GHz,此时参见图 20, 图 20是调节后的信号频率的关系示意图, 调节本振光源产生的频率增加 预设第六增量 cl的本振信号 L1 , 调节后的本振信号 L1的频率为 fl+cl , 以及 中频信号的频率为 |f0-fl-cl |, 使中频信号的频率减少第六增量 cl , 第六增量 cl 值可以设置的较小。
其中, 对本振光源产生本振信号的频率调节需要一段时间, 即给本振光源 增加预设第六增量或减少预设第七增量, 以及经过一段时间后本振光源才产生 频率增加第六增量的本振信号或产生频率减少第七增量的本振信号; 因此, 在 本实施例中, 设置第二频率小于相干接收机的带宽, 可以保证得到的中频信号 始终小于或等于相干接收机的带宽。
在本发明实施例中, 接收光信号, 根据本振光源产生的本振信号和接收的 光信号获取中频信号, 将该中频信号划分成两路中频信号, 根据其中一路中频 信号确定发送端当前的阶段, 如果为注册阶段, 则确定出光信号的频率与本振 信号的频率的关系; 如果当前阶段为数据发送阶段, 则根据光信号的频率真与 本振信号的频率的关系调节中频信号,使调节后的中频信号的频率大于或等于 接收的光信号的速率的两倍且小于或等于相干接收机的带宽。 其中, 在本实施 例中, 在调节信号的频率时依据本振信号的频率与光信号的频率的大小来调 节, 即如果本振信号的频率小于光信号的频率, 则可以减少本振光源产生频率 减少预设偏移量的本振光信号, 如果本振信号的频率大小于光信号的频率, 则 可以增加本振光源产生频率增加预设偏移量的光信号, 如此可以使预设的偏移 量值设置的较小, 使调节供给本振光源的偏置电流也随之较小, 减小本振光源 的功率波动以及产生的噪声, 提高接收端的接收灵敏度, 避免数据丟失。 图 21是信号频率的调节装置结构示意图, 参见图 21 , 本发明实施例提供 了一种信号频率的调节装置, 包括:
接收模块 501 , 用于接收光信号以及本振信号;
输出模块 502, 用于对所述接收的光信号以及所述本振信号进行混频、 光 电转化后, 输出中频信号; 以及对所述接收的光信号以及调整后的本振信号进 行混频、 光电转化后, 输出调整后的中频信号;
处理模块 503 , 用于根据所述中频信号的频率、 所述接收的光信号的速率 以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关 系;
调节模块 504, 用于当所述中频信号的频率超过预先设置的频率范围, 根 据所述确定的所述光信号的频率和所述本振信号的频率的关系,调整本振信号 的频率。
所述处理模块 503 具体用于当所述中频信号的频率大于所述接收机的带 宽, 则通过在所述本振信号的频率上增加第一增量, 获得调整后的本振信号; 其中, 所述第一增量大于 0且小于所述相干接收机的带宽与所述接收的光信号 的速率的两倍之间的差值; 对所述接收的光信号和所述调整后的本振信号进行 混频、 光电转化后输出调整后的中频信号; 若所述调整后的中频信号的频率小 于所述接收的光信号的速率的两倍或者所述调整后的中频信号的频率大于所 述接收机的带宽, 则确定所述接收的光信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大于所述本振信号的频率。
其中, 当确定出所述接收的光信号的频率与所述本振信号的频率的关系 后, 还需要恢复所述中频信号, 相应地, 所述装置还包括: 第一恢复模块, 用于如果所述光信号的频率大于所述本振信号的频率, 则 根据所述第一增量 Afl、 所述光信号的速率 b和所述相干接收机的带宽 B, 按 如下公式(1 )计算第一数值 Δίΐ' , 调节本振光源产生频率减少所述第一数值 Afl'的本振信号;
Afl,=Afl+B/2-b ( 1 ) ;
第三计算模块, 用于如果所述光信号的频率小于所述本振信号的频率, 则 根据所述第一增量 Afl、 所述光信号的速率 b和所述相干接收机的带宽 B, 按 如下公式(2 )计算第二数值 Δί2,, 调节本振光源产生频率减少所述第一数值 Δί2'的本振信号;
Af2,=Afl-B/2+b ( 1 ) 。
所述处理模块 503具体用于当所述中频信号的频率大于或等于所述接收的 光信号的速率的两倍且小于或等于所述接收机的带宽, 则通过在所述本振信号 的频率上增加第二增量, 获得调整后的本振信号; 其中, 所述第二增量大于或 等于所述接收机的带宽与所述接收的光信号的速率的两倍之间的差值且小于 或等于所述接收机的带宽与所述接收的光信号的速率的两倍之和;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍, 或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述光信号的频率大于所述 本振信号的频率。
其中, 当确定出所述接收的光信号的频率与所述本振信号的频率的关系 后, 还需要恢复所述中频信号, 相应地, 所述装置还包括:
第二恢复模块, 用于调节本振光源产生频率减少所述第二增量的本振信 号。
所述处理模块 503具体用于当所述中频信号的频率小于所述接收的光信号 的速率的两倍, 则通过在所述本振信号的频率上增加第三增量, 获得调整后的 本振信号; 其中, 所述第三增量大于零且小于或等于所述接收的光信号的速率 的两倍;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大 于所述本振信号的频率。
其中, 当确定出所述接收的光信号的频率与所述本振信号的频率的关系 后, 还需要恢复所述中频信号, 相应地, 所述装置还包括:
第三恢复模块, 用于如果所述光信号的频率小于所述本振信号的频率, 则 根据所述第三增量 Δβ、 所述光信号的速率 b和所述相干接收机的带宽 Β, 按 如下公式(3 )计算第三数值 Δβ,, 调节本振光源产生频率减少所述第三数值 Δβ'的本振信号;
Af3'=Af3+B/2+3b ( 3 ) ;
如果所述光信号的频率大于所述本振信号的频率, 则根据所述第三增量 Δβ、 所述光信号的速率 b和所述相干接收机的带宽 Β, 按如下公式(4 )计算 第四数值 Af4,, 调节本振光源产生频率减少所述第四数值 Af4,的本振信号;
Af4'=Af3+B/2+b ( 4 ) 。
进一步地, 所述处理模块 503获取所述接收的光信号的频率与本振信号的 频率的关系之前, 还需要确定中频信号的频率大小。
相应地, 所述装置还包括实现确定中频信号的频率大小的第一确定模块: 所述第一确定模块, 具体用于采用滤波频率为所述接收的光信号的速率的 两倍的低通滤波器对所述中频信号进行滤波得到第三滤波信号, 如果所述第三 滤波信号的功率大于预设第三功率, 则判断出所述中频信号的频率小于所述接 收的光信号的速率的两倍;
如果所述第三滤波信号的功率小于或等于所述第三功率, 则采用滤波频率 为所述相干接收机的带宽的高通滤波器对所述中频信号进行滤波得到第四滤 波信号, 如果所述第四滤波信号的功率小于或等于预设第四功率, 则判断出所 述中频信号的频率大于或等于所述接收的光信号的速率的两倍且小于或等于 相干接收机的带宽, 如果所述第四滤波信号的功率大于所述第四功率, 则判断 出所述中频信号的频率大于所述相干接收机的带宽。
或者, 所述第一确定模块, 具体用于采用滤波频率为所述接收的光信号的速率的 两倍的高通滤波器对所述中频信号进行滤波得到第三滤波信号, 如果所述第三 滤波信号的功率小于所述第三功率, 则判断出所述中频信号的频率小于所述接 收的光信号的速率的两倍;
如果所述第三滤波信号的功率大于或等于所述第三功率, 则采用滤波频率 为所述相干接收机的带宽的低通滤波器对所述中频信号进行滤波得到第四滤 波信号, 如果所述第四滤波信号的功率大于或等于预设第四功率, 则判断出所 述中频信号的频率大于或等于所述接收的光信号的速率的两倍且小于或等于 所述相干接收机的带宽, 如果所述第四滤波信号的功率小于所述第四功率, 则 判断出所述中频信号的频率大于所述相干接收机的带宽。
或者,
所述第一确定模块, 具体用于将所述中频信号划分为第三中频信号和第四 中频信号;
采用滤波频率为所述接收的光信号的速率的两倍的低通滤波器对所述第 三中频信号进行滤波得到第三滤波信号, 如果所述第三滤波信号的功率大于预 设第三功率, 则判断出所述中频信号的频率小于所述接收的光信号的速率的两 倍, 如果所述第三滤波信号的功率小于或等于所述第三功率, 则判断出所述中 频信号的频率大于或等于所述接收的光信号的速率的两倍;
采用滤波频率为所述相干接收机的带宽的高通滤波器对所述第四中频信 号进行滤波得到第四滤波信号,如果所述第四滤波信号的功率小于或等于预设 第四功率, 则判断出所述中频信号的频率小于或等于所述相干接收机的带宽, 如果所述第四滤波信号的功率大于所述第四功率, 则判断出所述中频信号的频 率大于所述相干接收机的带宽;
根据通过所述低通滤波器判断出所述中频信号的频率大于或等于所述接 收的光信号的速率的两倍, 以及通过所述高通滤波器判断出所述中频信号的频 率小于或等于所述相干接收机的带宽,确定出所述中频信号的频率大于或等于 所述接收的光信号的速率的两倍且小于或等于所述相干接收机的带宽。
或者,
所述第一确定模块, 具体用于将所述中频信号划分为第三中频信号和第四 中频信号; 采用滤波频率为所述接收的光信号的速率的两倍的高通滤波器对所述第 三中频信号进行滤波得到第三滤波信号, 如果所述第三滤波信号的功率小于预 设第三功率, 则判断出所述中频信号的频率小于所述接收的光信号的速率的两 倍, 如果所述第三滤波信号的功率大于或等于所述第三功率, 则判断出所述中 频信号的频率大于或等于所述接收的光信号的速率的两倍;
采用滤波频率为所述相干接收机的带宽的低通滤波器对所述第四中频信 号进行滤波得到第四滤波信号,如果所述第四滤波信号的功率大于或等于预设 第四功率, 则判断出所述中频信号的频率小于或等于所述相干接收机的带宽, 如果所述第四滤波信号的功率小于预设第四功率, 则判断出所述中频信号的频 率大于所述相干接收机的带宽;
根据通过所述高通滤波器判断出所述中频信号的频率大于或等于所述接 收的光信号的速率的两倍, 以及通过所述低通滤波器判断出所述中频信号的频 率小于或等于所述相干接收机的带宽,确定出所述中频信号的频率大于或等于 所述接收的光信号的速率的两倍且小于或等于所述相干接收机的带宽。
所述预先设置的频率范围的下限为第一频率, 所述预先设置的频率范围的 上限为第二频率; 其中, 所述第一频率的值为所述接收的光信号的速率的值的 两倍加上第四增量所得到的值; 所述第二频率的值为所述接收机的带宽减去预 设的第五增量所得到的值。
所述调节模块 504具体用于当所述中频信号的频率小于所述第一频率, 且 所述光信号的频率小于所述本振信号的频率, 则通过在所述本振信号的频率上 增加第六增量, 获得调整后的本振信号; 当所述中频信号的频率小于所述第一 频率且所述光信号的频率大于所述本振信号的频率, 则通过在所述本振信号的 频率上减少所述第七增量, 获得调整后的本振信号。
所述调节模块 504具体用于当所述中频信号的频率大于所述第二频率且所 述光信号的频率小于所述本振信号的频率, 则通过在所述本振信号的频率上减 少第七增量, 获得调整后的本振信号;
当所述中频信号的频率大于所述第二频率且所述光信号的频率大于所述 本振信号的频率, 则通过在所述本振信号的基础上增加第六增量, 获得调整后 的本振信号。
进一步地, 所述调节模块 504的光信号的频率与本振信号的频率的关系之 前, 还需要确定中频信号的频率大小。
相应地, 所述装置还包括实现确定中频信号的频率大小的第二确定模块: 所述第二确定模块, 具体用于采用滤波频率为所述第一频率的低通滤波器 对所述中频信号进行滤波得到第一滤波信号, 如果所述第一滤波信号的功率大 于预设第一功率, 则判断出所述中频信号的频率小于所述第一频率;
如果所述第一滤波信号的功率大于或等于所述第一功率, 则采用滤波频率 为所述第一频率的高通滤波器对所述中频信号进行滤波得到第二滤波信号, 如 果所述第二滤波信号的功率小于或等于预设第二功率, 则判断出所述中频信号 的频率在所述预先设置的频率范围之内, 如果所述第二滤波信号的功率大于预 设第二功率, 则判断出所述中频信号的频率大于所述第二频率。
或者,
所述第二确定模块, 具体用于采用滤波频率为所述第一频率的高通滤波器 对所述中频信号进行滤波得到第一滤波信号, 如果所述第一滤波信号的功率小 于所述第一功率, 则判断出所述中频信号的频率小于所述第一频率;
如果所述第一滤波信号的功率大于或等于所述第一功率, 则采用滤波频率 为所述第一频率的低通滤波器对所述中频信号进行滤波得到第二滤波信号, 如 果所述第二滤波信号的功率大于或等于所述第二功率, 则判断出所述中频信号 的频率在所述预先设置的频率范围之内, 如果所述第二滤波信号的功率小于所 述第二功率, 则判断出所述中频信号的频率大于所述第二频率。
或者,
所述第二确定模块, 具体用于将所述中频信号划分为第一中频信号和第二 中频信号;
采用滤波频率为所述第一频率的低通滤波器对所述第一中频信号进行滤 波得到第一滤波信号, 如果所述第一滤波信号的功率大于预设第一功率, 则判 断出所述中频信号的频率小于所述第一频率, 如果所述第一滤波信号的功率大 于或等于所述第一功率, 则判断出所述中频信号的频率大于或等于所述第一频 率;
采用滤波频率为所述第二频率的高通滤波器对所述第二中频信号进行滤 波得到第二滤波信号, 如果所述第二滤波信号的功率小于或等于预设第二功 率, 则判断出所述中频信号的频率小于或等于所述第二频率, 如果所述第二滤 波信号的功率大于预设第二功率, 则判断出所述中频信号的频率大于所述第二 频率;
根据通过所述低通滤波器判断出所述中频信号的频率大于或等于所述第 一频率, 以及通过所述高通滤波器判断出小于或等于所述第二频率, 确定出所 述中频信号的频率在所述预设设置的频率范围之内。
或者,
所述第二确定模块, 具体用于将所述中频信号划分为第一中频信号和第二 中频信号;
采用滤波频率为所述第一频率的高通滤波器对所述第一中频信号进行滤 波得到第一滤波信号, 如果所述第一滤波信号的功率小于预设第一功率, 则判 断出所述中频信号的频率小于所述第一频率, 如果所述第一滤波信号的功率大 于或等于所述第一功率, 则判断出所述中频信号的频率大于或等于所述第一频 率;
采用滤波频率为所述第二频率的低通滤波器对所述第二中频信号进行滤 波得到第二滤波信号, 如果所述第二滤波信号的功率大于或等于预设第二功 率, 则判断出所述中频信号的频率小于或等于所述第二频率, 如果所述第二滤 波信号的功率小于预设第二功率, 则判断出所述中频信号的频率大于所述第二 频率;
根据通过所述高通滤波器判断出所述中频信号的频率大于或等于所述第 一频率, 以及通过所述低通滤波器判断出所述中频信号小于或等于所述第二频 率, 确定出所述中频信号的频率在所述预设设置的频率范围之内。
在本发明实施例中, 通过接收机接收光信号以及本振信号; 对所述接收的 光信号以及所述本振信号进行混频、 光电转化后, 输出中频信号; 根据所述中 频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的 光信号的频率和所述本振信号的频率的关系; 当所述中频信号的频率超过预先 设置的频率范围,根据所述确定的所述光信号的频率和所述本振信号的频率的 关系, 调整本振信号的频率; 对所述接收的光信号以及所述调整后的本振信号 进行混频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或 等于接收机的带宽且大于或等于所述接收的光信号的速率的两倍避免了一次 性进行较大的调节, 后续在尝试调节的方式, 使得接收机中能够快速、 准确对 中频信号进行调节, 提高了接收机的接收灵敏度。 本发明实施例提供了一种信号频率的调节装置, 包括
处理器, 用于执行如下一种信号频率的调节方法:
接收光信号以及本振信号;
对所述接收的光信号以及所述本振信号进行混频、 光电转化后, 输出中频 信号;
根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系;
当所述中频信号的频率超过预先设置的频率范围,根据所述确定的所述光 信号的频率和所述本振信号的频率的关系, 调整本振信号的频率;
对所述接收的光信号以及所述调整后的本振信号进行混频、 光电转化后, 输出中频信号,使得所述中频信号的频率的值小于或等于接收机的带宽且大于 或等于所述接收的光信号的速率的两倍。
所述根据所述中频信号的频率、所述接收的光信号的速率以及接收机的带 宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系具体包括: 当所述中频信号的频率大于所述接收机的带宽, 则通过在所述本振信号的 频率上增加第一增量, 获得调整后的本振信号; 其中, 所述第一增量大于 0且 小于所述相干接收机的带宽与所述接收的光信号的速率的两倍之间的差值; 对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大 于所述本振信号的频率。
所述根据所述中频信号的频率、所述接收的光信号的速率以及接收机的带 宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系具体包括: 当所述中频信号的频率大于或等于所述接收的光信号的速率的两倍且小 于或等于所述接收机的带宽, 则通过在所述本振信号的频率上增加第二增量, 获得调整后的本振信号; 其中, 所述第二增量大于或等于所述接收机的带宽与 所述接收的光信号的速率的两倍之间的差值且小于或等于所述接收机的带宽 与所述接收的光信号的速率的两倍之和;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍, 或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述光信号的频率大于所述 本振信号的频率。
所述根据所述中频信号的频率、所述接收的光信号的速率以及接收机的带 宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系具体包括: 当所述中频信号的频率小于所述接收的光信号的速率的两倍, 则通过在所 述本振信号的频率上增加第三增量, 获得调整后的本振信号; 其中, 所述第三 增量大于零且小于或等于所述接收的光信号的速率的两倍;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大 于所述本振信号的频率。
所述预先设置的频率范围的下限为第一频率, 所述预先设置的频率范围的 上限为第二频率; 其中, 所述第一频率的值为所述接收的光信号的速率的值的 两倍加上第四增量所得到的值; 所述第二频率的值为所述接收机的带宽减去预 设的第五增量所得到的值。
所述当所述中频信号的频率超过预先设置的频率范围,根据所述确定的所 述光信号的频率和所述本振信号的频率的关系, 调整本振信号的频率具体包 括:
当所述中频信号的频率小于所述第一频率, 且所述光信号的频率小于所述 本振信号的频率, 则通过在所述本振信号的频率上增加第六增量, 获得调整后 的本振信号;
当所述中频信号的频率小于所述第一频率且所述光信号的频率大于所述 本振信号的频率, 则通过在所述本振信号的频率上减少所述第七增量, 获得调 整后的本振信号。
所述当所述中频信号的频率超过预先设置的第二频率范围,根据所述确定 的所述光信号的频率和所述本振信号的频率的关系,调整本振信号的频率具体 包括:
当所述中频信号的频率大于所述第二频率且所述光信号的频率小于所述 本振信号的频率, 则通过在所述本振信号的频率上减少第七增量, 获得调整后 的本振信号;
当所述中频信号的频率大于所述第二频率且所述光信号的频率大于所述 本振信号的频率, 则通过在所述本振信号的基础上增加第六增量, 获得调整后 的本振信号。
在本发明实施例中, 通过接收机接收光信号以及本振信号; 对所述接收的 光信号以及所述本振信号进行混频、 光电转化后, 输出中频信号; 根据所述中 频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的 光信号的频率和所述本振信号的频率的关系; 当所述中频信号的频率超过预先 设置的频率范围,根据所述确定的所述光信号的频率和所述本振信号的频率的 关系, 调整本振信号的频率; 对所述接收的光信号以及所述调整后的本振信号 进行混频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或 等于接收机的带宽且大于或等于所述接收的光信号的速率的两倍避免了一次 性进行较大的调节, 后续在尝试调节的方式, 使得接收机中能够快速、 准确对 中频信号进行调节, 提高了接收机的接收灵敏度。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种信号频率的调节方法, 其特征在于, 所述方法包括:
接收光信号以及本振信号;
对所述接收的光信号以及所述本振信号进行混频、 光电转化后, 输出中频 信号;
根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系;
当所述中频信号的频率超过预先设置的频率范围, 根据所述确定的所述光 信号的频率和所述本振信号的频率的关系, 调整本振信号的频率;
对所述接收的光信号以及所述调整后的本振信号进行混频、 光电转化后, 输出中频信号, 使得所述中频信号的频率的值小于或等于接收机的带宽且大于 或等于所述接收的光信号的速率的两倍。
2、如权利要求 1所述的方法, 其特征在于,所述根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和 所述本振信号的频率的关系具体包括:
当所述中频信号的频率大于所述接收机的带宽, 则通过在所述本振信号的 频率上增加第一增量, 获得调整后的本振信号; 其中, 所述第一增量大于 0且 小于所述相干接收机的带宽与所述接收的光信号的速率的两倍之间的差值; 对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或者 所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光信 号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大于 所述本振信号的频率。
3、如权利要求 1所述的方法, 其特征在于,所述根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和 所述本振信号的频率的关系具体包括: 当所述中频信号的频率大于或等于所述接收的光信号的速率的两倍且小于 或等于所述接收机的带宽, 则通过在所述本振信号的频率上增加第二增量, 获 得调整后的本振信号; 其中, 所述第二增量大于或等于所述接收机的带宽与所 述接收的光信号的速率的两倍之间的差值且小于或等于所述接收机的带宽与所 述接收的光信号的速率的两倍之和;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍, 或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述光信号的频率大于所述 本振信号的频率。
4、如权利要求 1所述的方法, 其特征在于,所述根据所述中频信号的频率、 所述接收的光信号的速率以及接收机的带宽, 确定所述接收的光信号的频率和 所述本振信号的频率的关系具体包括:
当所述中频信号的频率小于所述接收的光信号的速率的两倍, 则通过在所 述本振信号的频率上增加第三增量, 获得调整后的本振信号; 其中, 所述第三 增量大于零且小于或等于所述接收的光信号的速率的两倍;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或者 所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光信 号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大于 所述本振信号的频率。
5、 如权利要求 1-4所述的任意一方法, 其特征在于, 所述预先设置的频率 范围的下限为第一频率, 所述预先设置的频率范围的上限为第二频率; 其中, 所述第一频率的值为所述接收的光信号的速率的值的两倍加上第四增量所得到 的值; 所述第二频率的值为所述接收机的带宽减去预设的第五增量所得到的值。
6、 如权利要求 5所述的方法, 其特征在于, 所述当所述中频信号的频率超 过预先设置的频率范围, 根据所述确定的所述光信号的频率和所述本振信号的 频率的关系, 调整本振信号的频率具体包括:
当所述中频信号的频率小于所述第一频率, 且所述光信号的频率小于所述 本振信号的频率, 则通过在所述本振信号的频率上增加第六增量, 获得调整后 的本振信号;
当所述中频信号的频率小于所述第一频率且所述光信号的频率大于所述本 振信号的频率, 则通过在所述本振信号的频率上减少所述第七增量, 获得调整 后的本振信号。
7、 如权利要求 5所述的方法, 其特征在于, 所述当所述中频信号的频率超 过预先设置的第二频率范围, 根据所述确定的所述光信号的频率和所述本振信 号的频率的关系, 调整本振信号的频率具体包括:
当所述中频信号的频率大于所述第二频率且所述光信号的频率小于所述本 振信号的频率, 则通过在所述本振信号的频率上减少第七增量, 获得调整后的 本振信号;
当所述中频信号的频率大于所述第二频率且所述光信号的频率大于所述本 振信号的频率, 则通过在所述本振信号的基础上增加第六增量, 获得调整后的 本振信号。
8、 一种信号频率的调节装置, 其特征在于, 所述装置包括:
接收模块, 用于接收光信号以及本振信号;
输出模块, 用于对所述接收的光信号以及所述本振信号进行混频、 光电转 化后, 输出中频信号; 以及对所述接收的光信号以及调整后的本振信号进行混 频、 光电转化后, 输出调整后的中频信号;
处理模块, 用于根据所述中频信号的频率、 所述接收的光信号的速率以及 接收机的带宽, 确定所述接收的光信号的频率和所述本振信号的频率的关系; 调节模块, 用于当所述中频信号的频率超过预先设置的频率范围, 根据所 述确定的所述光信号的频率和所述本振信号的频率的关系, 调整本振信号的频 率。
9、 如权利要求 8所述的装置, 其特征在于, 所述处理模块具体用于当所述 中频信号的频率大于所述接收机的带宽, 则通过在所述本振信号的频率上增加 第一增量, 获得调整后的本振信号; 其中, 所述第一增量大于 0且小于所述相 干接收机的带宽与所述接收的光信号的速率的两倍之间的差值; 对所述接收的 光信号和所述调整后的本振信号进行混频、 光电转化后输出调整后的中频信号; 若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或者所述 调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光信号的 频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大于所述 本振信号的频率。
10、 如权利要求 8所述的装置, 其特征在于, 所述处理模块具体用于当所 述中频信号的频率大于或等于所述接收的光信号的速率的两倍且小于或等于所 述接收机的带宽, 则通过在所述本振信号的频率上增加第二增量, 获得调整后 的本振信号; 其中, 所述第二增量大于或等于所述接收机的带宽与所述接收的 光信号的速率的两倍之间的差值且小于或等于所述接收机的带宽与所述接收的 光信号的速率的两倍之和;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号;
若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍, 或 者所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光 信号的频率小于所述本振信号的频率; 否则, 确定所述光信号的频率大于所述 本振信号的频率。
11、 如权利要求 8 所述的装置, 其特征在于, 所述处理模块具体用于当所 述中频信号的频率小于所述接收的光信号的速率的两倍, 则通过在所述本振信 号的频率上增加第三增量, 获得调整后的本振信号; 其中, 所述第三增量大于 零且小于或等于所述接收的光信号的速率的两倍;
对所述接收的光信号和所述调整后的本振信号进行混频、 光电转化后输出 调整后的中频信号; 若所述调整后的中频信号的频率小于所述接收的光信号的速率的两倍或者 所述调整后的中频信号的频率大于所述接收机的带宽, 则确定所述接收的光信 号的频率小于所述本振信号的频率; 否则, 确定所述接收的光信号的频率大于 所述本振信号的频率。
12、 如权利要求 8-11所述的任意一装置, 其特征在于, 所述预先设置的频 率范围的下限为第一频率, 所述预先设置的频率范围的上限为第二频率; 其中, 所述第一频率的值为所述接收的光信号的速率的值的两倍加上第四增量所得到 的值; 所述第二频率的值为所述接收机的带宽减去预设的第五增量所得到的值。
13、 如权利要求 12所述的装置, 其特征在于, 所述调节模块具体用于当所 述中频信号的频率小于所述第一频率, 且所述光信号的频率小于所述本振信号 的频率, 则通过在所述本振信号的频率上增加第六增量, 获得调整后的本振信 号; 当所述中频信号的频率小于所述第一频率且所述光信号的频率大于所述本 振信号的频率, 则通过在所述本振信号的频率上减少所述第七增量, 获得调整 后的本振信号。
14、 如权利要求 12所述的装置, 其特征在于, 所述调节模块具体用于当所 述中频信号的频率大于所述第二频率且所述光信号的频率小于所述本振信号的 频率, 则通过在所述本振信号的频率上减少第七增量, 获得调整后的本振信号; 当所述中频信号的频率大于所述第二频率且所述光信号的频率大于所述本 振信号的频率, 则通过在所述本振信号的基础上增加第六增量, 获得调整后的 本振信号。
15、 一种信号频率的调节装置, 其特征在于, 所述装置包括处理器, 所述 处理用于执行如权利要求 1至 7任一项权利要求所述的一种信号频率的调节方 法。
PCT/CN2012/081223 2012-09-11 2012-09-11 一种信号频率的调节方法及装置 WO2014040216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280001547.2A CN103004112B (zh) 2012-09-11 2012-09-11 一种信号频率的调节方法及装置
PCT/CN2012/081223 WO2014040216A1 (zh) 2012-09-11 2012-09-11 一种信号频率的调节方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/081223 WO2014040216A1 (zh) 2012-09-11 2012-09-11 一种信号频率的调节方法及装置

Publications (1)

Publication Number Publication Date
WO2014040216A1 true WO2014040216A1 (zh) 2014-03-20

Family

ID=47930697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081223 WO2014040216A1 (zh) 2012-09-11 2012-09-11 一种信号频率的调节方法及装置

Country Status (2)

Country Link
CN (1) CN103004112B (zh)
WO (1) WO2014040216A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568060B (zh) * 2014-12-31 2018-01-16 重庆川仪自动化股份有限公司 一种脉冲雷达物位计及其本振功率的调节方法和控制器
CN109782076B (zh) * 2018-12-28 2021-04-20 北京航天测控技术有限公司 一种用于微波通讯装备的中频信号频率测试方法
CN113132282B (zh) * 2020-01-14 2022-08-16 中国科学院深圳先进技术研究院 信号跟踪解调装置及方法
CN114640907B (zh) * 2020-12-16 2023-07-07 华为技术有限公司 一种光通信装置和光通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539624A (zh) * 2008-05-06 2009-09-23 南京恒电电子有限公司 宽带载波提取本振方法及装置
US20110217918A1 (en) * 2010-03-05 2011-09-08 Nxp B.V. Device and method for jammer resistance in broadband receivers
CN102404839A (zh) * 2010-09-08 2012-04-04 鼎桥通信技术有限公司 同步锁定方法及无线通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539624A (zh) * 2008-05-06 2009-09-23 南京恒电电子有限公司 宽带载波提取本振方法及装置
US20110217918A1 (en) * 2010-03-05 2011-09-08 Nxp B.V. Device and method for jammer resistance in broadband receivers
CN102404839A (zh) * 2010-09-08 2012-04-04 鼎桥通信技术有限公司 同步锁定方法及无线通信设备

Also Published As

Publication number Publication date
CN103004112B (zh) 2016-05-25
CN103004112A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2014040216A1 (zh) 一种信号频率的调节方法及装置
KR102307246B1 (ko) 연속 변수 퀀텀 암호화를 위한 위상 참조 공유 방식들
US8433022B2 (en) Clock data recovery circuit and clock data recovery method
EP2518914A1 (en) Coherent receiver device and chromatic dispersion compensation method
JP2010004245A (ja) 光受信装置およびデジタル受信回路
JP5475882B2 (ja) 光電子モジュール及びそのリンク品質の数値化方法
JPH11275030A (ja) 光受信装置
US9520989B2 (en) Phase detector and retimer for clock and data recovery circuits
KR20230018469A (ko) 타임 스탬프 정보 전송 방법, 장치, 기기 및 저장 매체
US10122484B1 (en) Technologies for internal time syncrhonization
JP2007067987A (ja) マルチレートクロック信号抽出方法及びマルチレートクロック信号抽出装置
CN107733525B (zh) 光电混合振荡锁相环
CN101897163A (zh) 无线电通信设备和dc偏移调整方法
WO2019117761A1 (en) A coherent optical receiver, a control arrangement and method therein for controlling the frequency of a local oscillator
EP2617134A1 (en) Method and system for clock recovery with adaptive loop gain control
US7532695B2 (en) Clock signal extraction device and method for extracting a clock signal from data signal
WO2015074067A1 (en) Data serializer
US8155215B2 (en) Transmission system, transmitter, receiver, and transmission method
JP2004208300A (ja) フィードフォーワード型トラッキング誤差補償を用いた位相ロックループ復調器及び復調方法
JP2009060203A (ja) 光受信信号断検出回路及び光受信信号断検出方法
US20240007110A1 (en) Clock and data recovery circuit using neural network circuit to obtain frequency difference information
CN113169801A (zh) 用于10g-pon的改进的突发模式时钟数据恢复
CN113595548B (zh) 自适应调节带宽的锁相装置及系统
JPWO2018117149A1 (ja) 光検波装置、光特性解析装置、光検波方法
CN109302275B (zh) 数据的输出方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001547.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884639

Country of ref document: EP

Kind code of ref document: A1