WO2014040215A1 - 一种氩弧堆焊FeCrC铁基粉末合金配方及其制备工艺 - Google Patents

一种氩弧堆焊FeCrC铁基粉末合金配方及其制备工艺 Download PDF

Info

Publication number
WO2014040215A1
WO2014040215A1 PCT/CN2012/001634 CN2012001634W WO2014040215A1 WO 2014040215 A1 WO2014040215 A1 WO 2014040215A1 CN 2012001634 W CN2012001634 W CN 2012001634W WO 2014040215 A1 WO2014040215 A1 WO 2014040215A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
alloy
argon arc
iron
graphite
Prior art date
Application number
PCT/CN2012/001634
Other languages
English (en)
French (fr)
Inventor
罗辉
霍玉双
张元彬
杨凤琦
刘鹏
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2014040215A1 publication Critical patent/WO2014040215A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Definitions

  • the invention relates to the technical field of material surfaces, in particular to a argon arc surfacing iron-based alloy powder alloy formulation and a preparation process thereof and a argon arc surfacing technology.
  • thermal spraying technology can only prepare coatings that are mechanically bonded and cannot achieve metallurgical bonding;
  • the degree of automation of process repair is not high, the labor intensity is large, the plating layer is generally thin, and it is difficult to repair the damaged parts.
  • Laser intensification technology has been widely used in the preparation of surface cladding layers, but the equipment and maintenance costs are high, the primary investment is large, the energy utilization rate is low, the workplace is fixed, and it is not suitable for on-site operation.
  • the surfacing technology can achieve metallurgical bonding between the surfacing layer and the parent metal, and can select or design the surfacing alloy according to the material's performance. It has great flexibility in the process and can effectively improve the surface wear resistance and corrosion resistance of the material. , high temperature resistance, oxidation resistance and other properties, has been widely used in the strengthening and repair of mechanical equipment.
  • the argon arc surfacing technology has the advantages of convenient operation, low investment and operation cost, high energy utilization rate, and firm bonding. It has a good application prospect and good economic and environmental benefits in the manufacture and repair of small parts.
  • the selection of a suitable surfacing alloy during the surfacing process is decisive for the performance of the material.
  • Common stacking alloys are iron-based, cobalt-based, copper-based alloys, nickel-based and carbide. Iron-based alloys are low in cost and economical, and can be adjusted to a large extent to change the strength, toughness, wear resistance, corrosion resistance, heat resistance and impact resistance of the weld overlay layer. . Therefore, it has become the most widely used surfacing alloy. Therefore, the promotion of argon arc surfacing technology and the application of iron-based alloy cladding materials are of great significance. Summary of the invention
  • the invention provides a low-cost, high-performance iron-based powder alloy for argon arc stacking and a preparation method thereof, which are widely used for size repair of small parts and improve wear resistance and corrosion resistance of the surface.
  • the present invention is mainly prepared by orthogonal test method of ferrochrome, iron powder, graphite powder alloy composition, determining the alloy content of each alloy system, characterized in that the mass percentage of each component of the powder is complex iron (30. 75 ⁇ 61. 5) %, graphite (1 ⁇ 5) %, reducing iron powder (33. 5 ⁇ 64. 25 ) %.
  • the powder of the complex iron, graphite, and reducing iron powder raw material has a particle size of 60 to 200 mesh.
  • the main components (mass percentage) of each raw material are: ferrochrome: Cr>60%, C ⁇ O. 03%, graphite: C: 99.9%, reducing iron powder: Fe: 96%.
  • the iron-based alloy added by the invention is metallurgically bonded to the base material, wherein the Cr element and the graphite are synthesized by in-situ reaction to form a new phase of carbides such as Cr 7 C 3 and Cr 3 C 2 , and a new phase of the carbon compound. Easy to diffuse in the cladding layer,
  • the Cr element can also be dissolved in the cladding layer matrix to form a solid solution strengthening.
  • a certain amount of Cr is added to Fe to form a well-protected spinel-type composite oxide (FeO-Cr 2 0 3 ), and the Cr content is further increased to form a Cr 2 0 3 phase, which is better.
  • Protective Thereby improving the hardness, wear resistance, corrosion resistance, oxidation resistance and the like of the cladding layer.
  • the hardness of the surfacing layer is up to HRC55, which makes the equipment suitable for high working parameters, reducing energy consumption and reducing economic losses.
  • the iron-based powder configuration process is:
  • the length is 0. 8 ⁇ 1. 2 ⁇ , long It is an alloy flake of about 50mm; the binder can be used Glass with water.
  • the thickness of the alloy flakes should not be too thin.
  • the flow rate of the argon gas is too small, the flow rate of the argon gas is too small, and the melting speed is too fast.
  • the welding is too thick, the melting speed is too slow, and the unpenetrated particles are easily formed.
  • the amount of water glass should be moderate. Too little powder can not be agglomerated. Too many sheets are easy to form pores during the surfacing process, which affects the quality of welding.
  • the argon arc surfacing iron-based alloy was prepared into alloy flakes according to the above ratio and preparation process, and was deposited on the Q235 steel plate by argon arc surfacing welding, and three layers were deposited. It is tested for hardness and metallography, XRD, SEM, corrosion resistance, wear resistance, thermal stability and other structures and properties. It can be seen from Table 1 that as the content of graphite and Cr increases, the hardness of the material increases, and the compound of the hard phase phase Cr increases, and the morphology of the carbide gradually changes from M 3 C to M 7 C 3 , and M The hardness of the 7 C 3 type carbide is higher than that of the M 3 C type carbide, and the hardness increases.
  • the carbon content increases to a certain extent, and the hardness of the alloy cladding layer is not obvious. This is because the volume of small carbide formation in the weld pool is limited, and the unreacted graphite will be dispersed in the cladding layer, so the hardness is no longer The increase has a downward trend. As a result, when the mass fraction of Cr was 40% and the graphite was 2.5%, the hardness of the cladding layer was the highest.
  • the invention adopts the dry sliding friction wear type and tests the wear resistance of the load with 300N.
  • the weight loss method is used to evaluate the wear resistance of the cladding layer.
  • the grinding loss weight of each sample is shown in Table 2.
  • the morphology of the worn surface of the sample was analyzed by scanning electron microscopy.
  • the wear profile of each sample is shown in Fig. 2. It can be seen from Fig. 2 that the wear morphology of the sample is mainly the adhesion of the peeling and grinding debris and a small amount of furrows. It can be seen that a small amount of hard spots fall off; 2 3 ⁇ 4 samples have a large amount of wear but The wear profile only shows some spalling. The furrow is not seen.
  • the scanning wear surface may be smoother and less sticky.
  • the 3" and 4 styles have obvious furrow and hard point peeling, but The furrow is shallow; 5. The specimens are spalled but the furrows are not obvious.
  • the Fe-Cr-C hardfacing alloy surfacing layer consists of carbide and matrix.
  • the carbide plays a major role in anti-wear and acts as a wear-resistant effect with the matrix.
  • the hard phase M 7 C 3 , M 23 C 6 , M 3 C-type carbides formed in the cladding layer block the cutting and chiseling of the cladding layer by the friction pair to a certain extent, reducing the wear on the substrate. Therefore, the matrix has a good protective effect.
  • the high hardness carbide of M 7 C 3 plays a major role in improving the wear resistance of the material, but it is also prone to cracking during the friction process, thereby playing the opposite role. Some of the carbides are stripped from the matrix to reduce their abrasion resistance. Therefore, the higher the hardness of the material, the higher the wear resistance, but the hardness and wear resistance of the argon arc surfacing Fe-Cr-C alloy cladding layer are not proportional to each other.
  • the experiment of the present invention results in a mass fraction of 40%, C: 2.
  • the hardness of the deposited layer is higher at 5% and the wear resistance is better.
  • the invention adopts an electrochemical corrosion test method to measure the corrosion rate of the argon arc stacking cladding layer.
  • the polarization curve of the sample was measured by a three-electrode system, and the corrosion rate of the weakly polarized region of the cladding layer was analyzed as shown in Table 3.
  • the invention obtains the optimal ratio of the alloy by testing the wear resistance and corrosion resistance of the sample, and has the advantages of using an inexpensive iron-based alloy, which is not only economical, but also can be adjusted through composition and organization.
  • the strength, toughness, wear resistance, corrosion resistance, heat resistance and impact resistance of the stacking layer are changed in a wide range.
  • the weld prepared by the process has good shape and no defects such as cracks and pores, and solves the difficulty of removing slag by electrode welding.
  • the equipment used is inexpensive, can be used in large quantities in actual industrial production, and the process is simple and reliable. It can adapt to flexible field work, and is widely used in the field of welding reinforcement and repair of low carbon steel, low alloy steel and other materials.
  • Figure 2 is a metallographic diagram of the wear and shape of each sample
  • 2-1 is a pattern wear morphology
  • 2-2 is 2 ⁇ sample wear morphology
  • 2-3 is 3 # sample wear morphology
  • ⁇ ' 2_4 is 4 ⁇ sample wear morphology
  • 2-5 is 5 ⁇ specimen wear morphology
  • 2-6 is 6 style wear morphology
  • 2-7 is sample wear morphology
  • Example 1 Surfacing base material Q235 , Specification 200 X 50 X 10 Argon arc surfacing welding layer width 150 X 30 X 5 mm
  • the argon arc surfacing ferrochrome, graphite, and reducing iron powder raw material powder has a particle size of 60 200.
  • ferrochrome 46. 125%, graphite 5%, reducing iron powder 48. 875% The iron-based powder was uniformly mixed in a ball mill, stirred with a water glass binder, pressed into a sheet of 50 X 10 X (1.21.1.3.5 mm) in a mold, and air-dried for 10 hours. Place it in a drying oven and heat it to 200 ° C, keep it for 1.5 hours, and cool it to 50 ° C with the furnace. The surface of the surfacing base material was cleaned by an angle grinder and the 1.2 mm sheet was placed in the weld overlay position.
  • the argon arc stacking process parameters are: current 120A, electricity
  • the pressure is 15V
  • the argon flow rate is 6L/rain
  • the welding speed is 60mm/min.
  • the surfacing arc is a high-frequency argon arc arc-ignition method. After the arc is ignited, it is moved to the iron-based alloy flakes. During the surfacing, the alloy flakes are laterally oscillated and longitudinally moved to ensure that the alloy flakes are completely melted to form a well-formed weld layer. After the first layer of surfacing, the temperature of the test piece is reduced to 5 (TC-down, the surface is cleaned with an iron steel brush, and then 1.3 ⁇ alloy flakes are placed on the first layer.
  • the argon arc surfacing process parameters are: current 130A, voltage 18V, argon flow rate 6L/min, welding speed 50 awake/mi n.
  • argon arc surfacing process parameters are: current 140A, voltage 20V, argon flow rate 8L / min, splicing speed 65 hidden / min.
  • Three-layer argon arc surfacing welding layer can reach thickness 4 ⁇ 6 ⁇ The metallographic sample 15X10X15mm was prepared by wire cutting, and the corrosion sample was 10X10X 10 ⁇ , and the wear sample was 31X6.5X3mm.
  • the experimental results showed that the M 3 C, M 7 C 3 new phase appeared in the deposited layer, using HRC
  • the average hardness of the surface test layer of the hardness tester is HRC56.1.
  • the corrosion current on the surface of the weld layer is 0.1601, which is 500 times higher than that of the base material. There is no obvious furrow and a large number of hard spots falling off on the wear surface of the sample.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

一种氩弧堆焊铁基合金粉末,粉末由Fe-Cr、石墨、铁粉组成。一种氩弧堆焊铁基合金粉末制备工艺,将Fe-Cr、石墨、铁粉按照一定配比混合均匀,并用水玻璃作为粘结剂制备成薄片,自然晾干10小时后放置于烘干箱内在200°C烘干1.5h,随炉冷却。利用钨极氩弧作为热源使其堆焊在材料表面形成耐磨、耐蚀熔覆层。熔覆层组织均匀,能生成铬-碳化合物等新相,堆焊层硬度大于HRC55,能有效提高材料的耐磨、耐蚀、耐高温等性能,延长零部件的使用寿命,且制备简单,成本低,具有较高的使用价值。

Description

一种氩弧堆焊 FeOC铁基粉末合金配方及其制备工艺 技术领域
本发明涉及材料表面技术领域, 具体涉及到一种氩弧堆焊铁基合金粉末合金配方及 其制备工艺及其氩弧堆焊技术。
背景技术
随着能源、 化工、 交通等行业的迅速发展以及现代工程技术的发展, 对材料的性能 要求也相应提高, 尤其是石化、 电力、 水力、 冶金等行业中的设备多处于高温、 高压、 大载荷、 强腐蚀等复杂苛刻的工作环境, 材料的磨损、 疲劳、 腐蚀等失效现象更为严重。 据不完全统计, 能源的 1/3〜1/2消耗于磨损, 世界每年生产的钢铁中, 有近 30%因腐蚀 而报废, 材料的磨损、 腐蚀及其它失效形式大都从材料表面开始, 因此采用表面防护措 施, 提高材料表面的耐磨、 耐蚀及抗氧化性能至关重要。 故对材料的表面处理技术提出 了更高的要求, 成为科研工作者研究探索的热门问题, 从而也促进了表面工程技术的迅 速发展。
目前, 国内外普遍采用热喷涂、 电镀、 激光强化技术、 堆焊等表面处理技术提高机 械零部件的使用性能和寿命, 但热喷涂技术只能制备机械结合而不能达到冶金结合的涂 层; 电镀工艺修复自动化程度不高, 劳动强度大, 电镀层一般很薄, 对形状损坏部位难 于修复。 激光强化技术已广泛应用于表面熔覆层的制备, 但所需设备及维修费用高, 一 次性投资大, 能源利用率低, 工作场所固定, 不适于现场操作。 而堆焊技术可使堆焊层 与母材达到冶金结合, 并可以根据材料的使用性能选择或设计堆焊合金, 在工艺上具有 很大的灵活性, 能有效提高材料表面耐磨、 耐腐蚀、 耐高温、 抗氧化等性能, 目前己广 泛应用于机械设备的强化和修复。
其中氩弧堆焊技术具有操作方便、 投资和运行费用低、 能量利用率高、 结合牢固等 优点。 在小型零部件的制造和修复方面具有很好的应用前景及良好的经济效益和环境效 益。 在堆焊过程中选定合适的堆焊合金对材料的使用性能具有决定性作用, 常见的堆悍 合金有铁基、 钴基、 铜基合金、 镍基及碳化物等几种类型。 铁基合金因价格低廉, 经济 性好, 并且经过成分、 组织的调整, 可以在很大范围内改变堆焊层的强度、 韧性、 耐磨 性、 耐蚀性、 耐热性和抗冲击性等。 故成为应用最广泛的一种堆焊合金。 因此推广氩弧 堆焊技术及铁基合金熔覆材料的应用具有重要意义。 发明内容
本发明提供了一种用于氩弧堆悍的低成本、 高性能的铁基粉末合金及其制备方法, 广泛用于小型零部件的尺寸修复及提高其表面耐磨、 耐蚀等性能。
本发明主要通过正交试验法配制铬铁、 铁粉、 石墨粉末合金成分, 确定各合金体系 合金含量, 其特征在于粉末的各组成原材料的质量百分比为络铁 (30. 75〜61. 5 ) %, 石 墨 (1〜5 ) %, 还原性铁粉 (33. 5〜64. 25 ) %。 所述络铁、 石墨、 还原性铁粉原材料粉末 的颗粒度为 60〜200目。各原材料主要成分(质量百分比)为:铬铁: Cr〉60%, C^O. 03%, 石墨: C: 99. 9%, 还原性铁粉: Fe: 96%。 本发明加入的铁基合金与基体母材达到冶金结合,其中的 Cr元素与石墨通过原位合 成反应生成硬质相 Cr7C3、 Cr3C2等碳化物新相, 且碳化合物新相容易弥散分布于熔覆层,
Cr元素也可以固溶于熔覆层基体, 形成固溶强化。 同时在 Fe中加入一定量的 Cr后, 可 以形成保护性很好的尖晶石型复合氧化物 (FeO -Cr203) , Cr的含量进一步提高可生成 Cr203 相, 具有更好的保护性。 从而提高熔覆层的硬度、 耐磨性、 耐蚀性、 抗氧化等性能。 堆 焊层硬度高达 HRC55以上, 使设备适用于高工作参数的条件, 降低能耗减少经济损失。
氩弧堆焊铁基合金配方及平均洛氏硬度如表 1所示。
表 1 FeCrC铁基合金系粉末的配比 (质量分数, wt%) 及其熔敷层表面平均 HRC
Figure imgf000004_0001
铁基粉末配置过程为:
( 1 ) 按照一定配比称铬铁、 还原性铁粉、 石墨铁基合金粉末, 充分混合均匀。
( 2 ) 将混合均匀的合金粉末加入粘结剂, 搅拌均匀后, 放入模具中压制成型, 制成 厚度为 1. 2〜1. 5隱、 宽度为 0. 8〜1. 2誦、 长为 50mm左右的合金薄片; 粘结剂可采 用水玻璃。
( 3 ) 将合金薄片自然晾干 5〜10小时后, 放在烘干箱内在 200°C烘干 1. 5h, 随炉冷 却;
在制备合金薄片过程中合金薄片厚度不宜太薄, 太薄堆焊时氩气流量过小保护差, 且融化速度过快, 太厚堆焊时导致熔化速度过慢, 容易形成未熔透颗粒。 水玻璃的量要 适中, 太少则粉末无法团聚, 太多薄片在堆焊过程中容易形成气孔, 影响焊接质量。
氩弧堆焊铁基合金按照以上配比及制备过程制备成合金薄片, 利用氩弧堆焊使其堆 焊在 Q235钢板上, 堆焊三层。 并对其进行硬度、 金相、 XRD、 SEM、 耐蚀、 耐磨、 热稳定 性等组织及性能进行测试。 由表 1可知, 随着石墨及 Cr含量的升高, 材料的硬度升高, 由于硬质点相 Cr的化合物增多, 而且碳化物的形态从 M3C逐渐转变成 M7C3, 且 M7C3型碳 化物的硬度比 M3C型碳化物高, 硬度随之增加。但碳含量升高到一定程度, 合金熔覆层硬 度增高不明显, 是由于堆焊熔池体积小碳化物形成数量有限, 未反应的石墨将弥散分布 在熔覆层中, 故其硬度不再升高反而有下降趋势。 结果当 Cr质量分数为 40%, 石墨 2. 5% 时熔覆层的硬度最高。
本发明采用干滑动摩擦磨损类型, 载荷 300N对其进行耐磨性能测试。采用失重法来 评定熔覆层的耐磨损性能。 在磨损试验过程中, 每隔 5min 利用电子天平 (最小称重为 d=0. lmg) 称量一次熔覆层的质量, 总磨损时间为 25min。 各试样的磨损失重量如表 2所 示。
表 2 Fe-Cr-C合金系耐磨合金磨损数据
Figure imgf000005_0001
由表 2 Fe-Cr-C合金试样的磨损失重量数据可得出熔覆层的失重量的曲线图, 即图 1所示。 由图 1中失重曲线变化趋势可知, 6 式样失重量较小, 曲线趋势变化较稳定, 耐 磨性较好。 由 5"、 6 7"曲线可知, 即当 Cr质量分数为 40%时, 石墨分别为 1%、 2. 5%、 5%时, 由曲线图可以看出, 5"、 7"磨损量明显大于 6'试样, 且 6#试样磨损量趋于平缓, 即 随着石墨含量的增加硬质相增多磨损性能升高, 但石墨为 5%时硬质相数量增加减缓, 其 余的石墨弥散在基体中, 故硬度不再升高, 耐磨性也不再提高, 由图中 、 4#、 7β即石墨 为 5%时, Cr分别为 20%、 30%、 40%时, 石墨含量一定时, 随着 Cr含量的升高试样的硬质 点相增多, 由柱状晶逐渐向六角形及板条状组织转变, 从而提高熔覆层表面硬度, 提高 耐磨性。
利用扫描电镜对试样的磨损表面进行形貌分析, 各试样的磨损形貌如图 2所示。 从图 2中可以看出, 试样磨损形貌主要为剥落和磨屑的粘着以及少量的犁沟出现, 可以看出有少量的硬质点相脱落 ; 2¾试样的磨损量较大但是其磨损形貌只看出一些剥落出 现, 未看出犁沟, 可能选取的扫描磨损面较平滑, 粘着较少; 3"、 4 式样出现了明显的犁 沟及硬质点相的剥落, 但犁沟较浅; 5、 试样都出现了剥落但犁沟不明显, 6 "试样磨损 形貌中无明显犁沟, 只有少量的剥落, 其磨损量较低, 磨损性能较好。 Fe-Cr-C耐磨堆焊 合金堆焊层由碳化物和基体组成, 碳化物起到了主要抗磨的作用, 与基体一起发挥耐磨 作用。 在熔覆层中生成的硬质相 M7C3、 M23C6、 M3C型碳化物在一定程度上阻挡了摩擦副对 熔覆层的切削和凿削, 减轻了对基体的磨损, 从而对基体起到了良好的保护作用, M7C3 型高硬度碳化物对提高材料的耐磨性起到主要作用, 但也在摩擦过程中易发生裂纹, 则 起到相反作用, 从而使一些碳化物从基体中剥离, 降低其抗磨性能。 因此材料的硬度越 高耐磨性升高, 但氩弧堆焊 Fe-Cr-C合金熔覆层硬度与耐磨性不是正比关系, 本发明实 验得出当 Ο质量分数为 40%, C: 2. 5%时熔敷层硬度较高且耐磨性较好。
本发明采用电化学腐蚀试验方法, 测氩弧堆悍熔敷层腐蚀速率。 实验在 3%NaCl电化 学腐蚀液中, 通过三电极体系测定试样的极化曲线, 分析熔覆层的弱极化区腐蚀速率如 表 3所示。
表 3 氩弧堆焊 Fe- Cr- C铁基合金熔敷层弱极化区腐蚀数据
Figure imgf000006_0001
5s 103. 08 63. 78 0. 1428 1. 6750
6" 107. 24 62. 28 0. 1637 1. 9203
T 97. 2 66. 26 0. 1487 1. 7439 由表 3可知, 当 O质量分数为 30% C质量分数为 2. 5%时, 熔敷层腐蚀电流密度和 腐蚀速率最小; 当 Cr质量分数为 20%, C质量分数为 5%时, 腐蚀电流密度和腐蚀速率最 大。 当 Cr质量分数为 30%时, 即 2' 3 4#试样的腐蚀速率可知随着 C含量的增加腐蚀速 率先降低后增大但变化不明显, 当 O含量升高时腐蚀速率由上升趋势, 这是因为 Cr含 量升高熔敷层表面更易钝化, 更加耐蚀, 但是石墨升高, 与 Cr生成碳化物, 导致晶界局 部贫 Cr, 熔覆层表面的强度及硬度升高, 但耐腐蚀性下降。 故此实验中 1"由于具有较低 的 Cr含量, 较高的石墨含量因此最不耐腐蚀。
本发明通过对试样的耐磨性、 耐腐蚀性测试得出合金的最佳配比, 其优点是利用价 格低廉的铁基合金, 不仅经济性好, 并且经过成分、 组织的调整, 可以在很大范围内改 变堆悍层的强度、 韧性、 耐磨性、 耐蚀性、 耐热性和抗冲击性等。 此工艺制备的焊缝成 形良好, 无裂纹、 气孔等不良现象, 解决了利用焊条堆焊去除夹渣的困难。 釆用的设备 价格低廉, 能够在实际工业生产中大量使用、 工艺简单可靠。 能够适应灵活的现场工作 场合, 广泛的应用在低碳钢、 低合金钢等材料设备的焊接强化及修复领域。
附图说明
图 1 FeCrC合金试样磨损失重量曲线图;
图 2为各试样磨损形貌扫描电镜金相图;
2-1 为 1 式样磨损形貌 ; 2-2 为 2β试样磨损形貌 ; 2-3为 3#试样磨损形貌 ·' 2_4 为 4β试样磨损形貌 ; 2-5为 5β试样磨损形貌 ; 2-6为 6 式样磨损形貌 ; 2-7为 试样磨 损形貌 ;
具体实施例
实施例 1 : 堆焊母材 Q235 , 规格 200 X 50 X 10 氩弧堆焊熔敷层宽度 150 X 30 X 5 mm
氩弧堆焊铬铁、 石墨、 还原性铁粉原材料粉末的颗粒度为 60 200 目配比如下: 铬铁 46. 125%, 石墨 5%, 还原性铁粉 48. 875%。 铁基粉末在球磨机混合均匀, 用水玻璃粘结剂 搅拌, 在模具中压制成 50 X 10 X ( 1. 2 1. 3 1. 5mm) 的薄片, 自然晾干 10小时。 放置 在烘干箱加热至 200°C, 保温 1. 5小时, 随炉冷却至 50°C出炉冷却。 将堆焊母材用角磨 机清理表面油锈, 将 1. 2mm薄片放置在堆焊位置。 氩弧堆悍工艺参数为: 电流 120A, 电 压 15V, 氩气流量 6L/rain, 焊接速度 60mm/min。 堆焊引弧为高频氩弧引弧方法, 电弧引 燃后移至铁基合金薄片, 堆焊时沿合金薄片做横向摆动和纵向移动, 保证合金薄片完全 熔化形成成型良好的熔敷层。 第一层堆焊后, 待试件温度降至 5(TC—下, 用铁钢刷清理 表面, 然后在第一层上面放置 1.3誦合金薄片, 氩弧堆焊工艺参数为: 电流 130A, 电压 18V, 氩气流量 6L/min, 焊接速度 50醒 /mi n。 第二层堆焊后, 待试件温度降至 50°C—下, 用铁钢刷清理表面, 然后在第二层上面放置 1.5皿合金薄片, 氩弧堆焊工艺参数为: 电 流 140A, 电压 20V, 氩气流量 8L/min, 悍接速度 65隱 /min。 三层氩弧堆焊熔敷层可达厚 度 4〜6匪, 用线切割截取堆焊层分别制备金相试样 15X10X15mm, 腐蚀试样 10X10X 10匪, 磨损试样 31X6.5X3mm。 实验结果表明熔敷层出现 M3C、 M7C3新相, 用 HRC硬 度仪测试表面熔敷层平均硬度为 HRC56.1。 熔敷层表面腐蚀电流 0.1601, 比母材提 高 500倍。 试样磨损表面没有明显的犁沟和大量硬质点脱落现象。

Claims

权 利 要 求 书
1、 一种氩弧堆焊 FeCrC铁基粉末合金配方, 其特征在于: 所述粉末各组成原材料的质量 百分比为铬铁 30.75〜61.5%, 石墨广 5%, 还原性铁粉 33.5〜64.25%。
2、 如权利要求 1所述的一种氩弧堆焊 FeCrC铁基粉末合金配方, 其特征在于: 所述粉末 各组成原材料中, 各原材料主要成分的质量百分比为: 铬铁中, Cr〉60%, C^0.03%,; 石墨中, C: 99.9%; 还原性铁粉中, Fe: 96%。
3、 如权利要求 1或 2所述的一种氩弧堆焊 FeCrC铁基粉末合金配方, 其特征在于: 所述 铬铁、 石墨、 还原性铁粉原材料粉末的颗粒度为 60〜200目。
4、 如权利要求 1或 2所述的一种氩弧堆焊 FeCrC铁基粉末合金配方的制备工艺, 其特征 在于, 按照如下步骤:
(1) 按照配比称取铬铁、 还原性铁粉、 石墨铁基合金粉末, 充分混合均匀;
(2) 将混合均匀的合金粉末加入水玻璃粘结剂,混合均匀后,放入模具中压制成型, 制成厚度为 1.2〜1.5誦、 宽度为 0.8〜1.2醒、 长为 50画左右的合金薄片; (3) 将 合金薄片自然晾干 5〜10小时后, 放在烘干箱内在 200°C保温 1.5h, 随炉冷却; (4) 利用氩弧作为热源使合金薄片堆焊在材料表面形成耐磨、 耐蚀熔覆层。
PCT/CN2012/001634 2012-09-13 2012-12-06 一种氩弧堆焊FeCrC铁基粉末合金配方及其制备工艺 WO2014040215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210338726.7 2012-09-13
CN201210338726.7A CN103231182B (zh) 2012-09-13 2012-09-13 一种氩弧堆焊FeCrC铁基粉末合金及其制备工艺

Publications (1)

Publication Number Publication Date
WO2014040215A1 true WO2014040215A1 (zh) 2014-03-20

Family

ID=48879289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001634 WO2014040215A1 (zh) 2012-09-13 2012-12-06 一种氩弧堆焊FeCrC铁基粉末合金配方及其制备工艺

Country Status (2)

Country Link
CN (1) CN103231182B (zh)
WO (1) WO2014040215A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904167A (zh) * 2016-06-30 2016-08-31 哈尔滨工业大学 两级原位自生钛合金表面可控耐磨涂层的制备方法
EP3791978A1 (en) * 2019-09-13 2021-03-17 Rolls-Royce Corporation Additive manufactured ferrous components
CN114231970A (zh) * 2021-12-02 2022-03-25 中原工学院 一种宽温域自润滑复合涂层及其制备工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498155B (zh) * 2013-09-07 2015-12-09 山东建筑大学 用于制备自生陶瓷相增强铁基耐磨层的氩弧熔覆材料
CN103464928B (zh) * 2013-09-07 2015-07-15 山东建筑大学 基于铁基自熔合金粉末的氩弧熔覆材料
CN108788388A (zh) * 2017-05-03 2018-11-13 北京中煤大田耐磨材料有限公司 一种堆焊制作高性能耐磨板的工艺
CN116373408B (zh) * 2023-04-26 2023-09-19 秦皇岛崛腾耐磨材料有限公司 一种新型埋弧焊堆焊耐磨板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535146A1 (ru) * 1974-12-02 1976-11-15 Ждановский металлургический институт Керамический флюс
JPS60162594A (ja) * 1984-02-02 1985-08-24 Fuji Kogyosho:Kk 高硬度サブマ−ジド溶接材料
CN1557602A (zh) * 2004-01-14 2004-12-29 天津大学 一种可通过焊接形成石墨钢堆焊金属的焊条
CN101954549A (zh) * 2010-09-19 2011-01-26 山东建筑大学 一种氩弧熔覆铁基粉末
CN102126093A (zh) * 2011-01-06 2011-07-20 山东建筑大学 一种铁基粉末合金及应用该合金的氩弧堆焊技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277246A (ja) * 1998-03-27 1999-10-12 Kurimoto Ltd 耐摩耗性の溶接肉盛層および溶接肉盛用材料
KR101279840B1 (ko) * 2004-02-16 2013-06-28 케빈 프란시스 돌만 표면경화처리 합금철 물질
JP4412563B2 (ja) * 2008-07-02 2010-02-10 住友金属工業株式会社 高温材搬送用部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535146A1 (ru) * 1974-12-02 1976-11-15 Ждановский металлургический институт Керамический флюс
JPS60162594A (ja) * 1984-02-02 1985-08-24 Fuji Kogyosho:Kk 高硬度サブマ−ジド溶接材料
CN1557602A (zh) * 2004-01-14 2004-12-29 天津大学 一种可通过焊接形成石墨钢堆焊金属的焊条
CN101954549A (zh) * 2010-09-19 2011-01-26 山东建筑大学 一种氩弧熔覆铁基粉末
CN102126093A (zh) * 2011-01-06 2011-07-20 山东建筑大学 一种铁基粉末合金及应用该合金的氩弧堆焊技术

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904167A (zh) * 2016-06-30 2016-08-31 哈尔滨工业大学 两级原位自生钛合金表面可控耐磨涂层的制备方法
EP3791978A1 (en) * 2019-09-13 2021-03-17 Rolls-Royce Corporation Additive manufactured ferrous components
US11865642B2 (en) 2019-09-13 2024-01-09 Rolls-Royce Corporation Additive manufactured ferrous components
CN114231970A (zh) * 2021-12-02 2022-03-25 中原工学院 一种宽温域自润滑复合涂层及其制备工艺

Also Published As

Publication number Publication date
CN103231182A (zh) 2013-08-07
CN103231182B (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2014040215A1 (zh) 一种氩弧堆焊FeCrC铁基粉末合金配方及其制备工艺
CN104651828B (zh) 一种铁基合金表面制备高熵合金基复合材料改性层用粉料
CN103484810B (zh) 等离子熔覆原位自生TiB2-TiC-TiN增强高熵合金涂层材料及制备方法
CN101961821B (zh) 耐高温耐腐蚀堆焊耐磨焊条
CN102337536B (zh) 金属板表层原位合成碳化钨颗粒强化复合耐磨层制备工艺
CN105112909A (zh) 一种添加CeO2的铁基Cr3C2激光熔覆涂层及其制备方法
CN100467194C (zh) 高硬度耐磨堆焊电焊条
CN104493152B (zh) 一种激光熔覆耐锌蚀钴基合金所用粉料及改性层制备工艺
CN101444981B (zh) 铜合金表面激光诱导原位制备钴基合金梯度涂层及其方法
Cui et al. The abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with boron carbide
CN103276338B (zh) 采用等离子喷焊修复强化农业机械零部件表面的工艺
CN103805813A (zh) 一种连铸机结晶器铜板激光强化用梯度合金材料和方法
CN104646660A (zh) 一种铁单元素基合金表面激光高熵合金化用粉料
CN104195550A (zh) 一种WC-NiSiB激光熔覆材料的制备方法
Zhang et al. Microstructure and high-temperature properties of Fe-Ti-Cr-Mo-BC-Y2O3 laser cladding coating
CN103752818A (zh) 一种用于激光熔覆的含有高铬含量的铁基复合粉末
CN103866320B (zh) 一种改善镍基碳化钨激光熔覆涂层的方法
Zhang et al. Brazing temperature and time effects on the mechanical properties of TiC cermet/Ag–Cu–Zn/steel joints
Lv et al. Effects of WC addition on the erosion behavior of high-velocity oxygen fuel sprayed AlCoCrFeNi high-entropy alloy coatings
CN105132914A (zh) 一种添加纳米Ti的激光熔覆Fe基Cr3C2复合涂层及其制备方法
CN104894555A (zh) 一种铁基镍包碳化硼激光熔覆材料的制备方法
Wang et al. Effect of Y on interface characteristics and mechanical properties of brazed diamond with NiCr filler alloy
CN102352507B (zh) 一种铸铁板的合金碳化物表面强化工艺
CN106894015B (zh) 氩弧熔覆高熵合金涂层及其制备方法
CN106894014B (zh) 一种活性氩弧熔覆高熵合金涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884502

Country of ref document: EP

Kind code of ref document: A1