WO2014038054A1 - 斜流タービン - Google Patents

斜流タービン Download PDF

Info

Publication number
WO2014038054A1
WO2014038054A1 PCT/JP2012/072817 JP2012072817W WO2014038054A1 WO 2014038054 A1 WO2014038054 A1 WO 2014038054A1 JP 2012072817 W JP2012072817 W JP 2012072817W WO 2014038054 A1 WO2014038054 A1 WO 2014038054A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hub
flow
leading edge
shroud
Prior art date
Application number
PCT/JP2012/072817
Other languages
English (en)
French (fr)
Inventor
東森 弘高
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2014534117A priority Critical patent/JP5762641B2/ja
Priority to US14/359,140 priority patent/US9657573B2/en
Priority to EP12884285.3A priority patent/EP2894296B1/en
Priority to PCT/JP2012/072817 priority patent/WO2014038054A1/ja
Priority to CN201280053347.1A priority patent/CN103906895B/zh
Publication of WO2014038054A1 publication Critical patent/WO2014038054A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/026Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/43Radial inlet and axial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • F05D2240/241Rotors for turbines of impulse type

Definitions

  • the present invention relates to a mixed flow turbine used in a small gas turbine, a supercharger, an expander, and the like.
  • Patent Document 1 The present applicant has proposed a mixed flow turbine technique shown in Patent Document 1 as a method for suppressing a decrease in efficiency of a turbine, particularly a method for suppressing a decrease in efficiency in a mixed flow turbine.
  • the mixed flow turbine disclosed in Patent Document 1 will be described with reference to FIG.
  • a hub 205 that rotates about a central axis K, a plurality of blades 207 erected on the outer peripheral surface 206 of the hub, and a leading edge 247 convex toward the upstream side, and an outer diameter side of the blade 207
  • a casing 213 having a shroud portion 227 that covers the end edge 225, and a scroll 223 that is formed on the upstream side of the moving blade 207 and supplies a working fluid toward the front edge 247 of the moving blade 207 are provided.
  • the scroll 223 is divided into a shroud side space 231 and a hub side space 233 by a scroll dividing wall 229.
  • shroud-side divided wall surface 237 and the hub-side divided wall surface 235 on the rear edge side of the scroll dividing wall 229 are respectively formed with a shroud side wall surface 243 and a hub side wall surface 239 that are formed substantially opposite to each other, respectively.
  • a shroud-side inflow passage 245 in which the working fluid flows in a substantially radial direction and a hub-side inflow passage 241 in a direction substantially equivalent to the inclination direction on the hub side of the blade inlet are formed between the wall surfaces.
  • the working fluid supplied through the shroud side inflow passage 245 flows in a substantially radial direction, the working fluid flows in parallel to the shroud side wall surface 243 and substantially perpendicular to the inlet side edge of the moving blade. . For this reason, the flow can be guided into the blade 207 at an appropriate flow angle at the leading edge of the shroud blade at the inlet of the mixed flow turbine blade. Further, since the working fluid supplied through the hub-side inflow passage 241 flows in a direction substantially equivalent to the inclination direction of the hub outer peripheral surface 206 of the mixed flow turbine rotor blade inlet, the working fluid is parallel to the hub outer peripheral surface 206 and , Flows so as to be substantially orthogonal to the leading edge of the rotor blade.
  • the flow can be guided to the inside of the moving blade 207 at an appropriate flow angle at the hub side blade leading edge of the mixed flow turbine moving blade inlet. Further, since the flow flowing into the moving blade 207 from the hub side inflow passage 241 flows into the moving blade 207 at an angle substantially equal to the inclination of the hub outer peripheral surface 206, the moving blade in the substantially radial direction from the shroud inflow passage 245. The flow of the shroud side inflow passage 245 that flows into the 207 and turns in the axial direction toward the moving blade outlet can be smoothly turned from the radial direction to the axial direction. As a result, an increase in the wall boundary layer generated in the shroud portion can be increased. It has the feature that it can be prevented.
  • the working fluid flows in a substantially radial direction in the shroud-side inflow passage 245, while in the hub-side inflow passage 241, the working fluid flows in a direction substantially equivalent to the inclination direction on the hub side of the mixed flow turbine blade inlet.
  • the working fluid that has passed through the passage flows into the inlet side edge of the mixed flow turbine rotor blade in an intersecting state. Therefore, the working fluid flowing through the shroud side inflow path 245 and the hub side inflow path 241 joins at the rear edge of the scroll dividing wall 229. Thereby, the development of the wake generated at the trailing edge of the scroll dividing wall 229 can be suppressed.
  • Patent Document 2 discloses a mixed flow turbine having a moving blade in which the leading edge of the turbine moving blade of Patent Document 1 is convex toward the upstream side.
  • JP 2009-281197 A Japanese Patent No. 4288051
  • FIG. 18 shows velocity triangles at the representative radii of the shroud-side inlet and the hub-side inlet of the moving blade 207 that flows in from the shroud-side inflow passage 245 and the hub-side inflow passage 241.
  • the flow flowing in from the shroud side inflow passage 245 flows into the moving blade 207 at a flow velocity A at a flow angle ⁇ of approximately 20 to 30 degrees.
  • the circumferential speed C is a speed that substantially matches the turning peripheral speed of the moving blade 207
  • the radial speed that is the relative flow velocity B is a speed that represents the flow rate.
  • the flow that flows in from the shroud side inflow passage 245 flows toward the discharge port while the circumferential velocity decreases and the pressure decreases as the flow works with respect to the blade 207 as the radius changes inside the blade 207. To do.
  • the hub-side inlet P2 is smaller than the radius of the shroud-side inlet P1
  • the flow flowing from the hub-side inlet channel 241 flows into the region having a smaller radius, and the pressure decreases. Since it flows into the position, it flows into the hub side inlet at a flow velocity A ′ larger than that of the shroud side inlet.
  • the radius of the hub side inlet is smaller than that of the shroud side inlet, the turning speed of the leading edge of the moving blade becomes smaller in proportion to the radius ratio and becomes the circumferential speed C ′. Therefore, the hub side inlet is the shroud side inlet. It flows into the moving blade 207 at a relative flow velocity B ′ larger than the relative flow velocity B.
  • the flow flowing in from the hub side inlet has a higher flow velocity than the flow flowing in from the shroud side inlet, and out of the energy released when the flow passes through the turbine,
  • the reaction degree which is the value shown, is smaller in the hub side flow.
  • the flow on the shroud side has a so-called reaction turbine characteristic in which the degree of reaction is large and the flow velocity inside the rotor blade can be lowered and the friction loss can be reduced, so that the flow becomes highly efficient.
  • the flow on the hub side has a small degree of reaction and rotates the moving blade 207 with the force by the change of momentum when turning the high speed flow with the moving blade 207, so the friction loss is large because the flow is accelerated to a high speed, although it is not as efficient as a reaction blade, it has the characteristics of a so-called impulse turbine that can generate power similar to that of a reaction blade having a large diameter with a small diameter blade.
  • the hub-side impulse blade and the shroud-side reaction blade have It can be said that it is composed.
  • the flow flowing in from the shroud side has a low flow velocity between the blades, so the friction loss is low, and the rotational power is converted by the release of angular momentum accompanying the radius change, so the efficiency of the blade 207 is high.
  • the turning speed is converted into rotational power by changing the pressure and turning the flow direction.
  • the impulse blade on the hub side flows into the blade 207 at a high speed, and the swirl speed of the flow is converted into rotational power by turning the flow while maintaining the high speed, so that the incidence is small and the high speed flow is reduced. There must be enough blades to turn.
  • the conventional mixed flow turbine has a problem that the number of blades is small and high-speed flow cannot be efficiently turned.
  • the present invention has a hub side impulse blade turbine characteristic of a mixed flow turbine composed of a hub side impulse blade portion and a shroud side reaction blade portion. It is an object of the present invention to provide a mixed flow turbine that is provided with an intermediate height intermediate blade to improve the impulse blade turbine characteristics and reduce the inertia moment of the entire moving blade, thereby improving efficiency and transient response.
  • the present invention provides a turbine motion in which the intermediate portion between the hub side and the shroud side is formed in a convex shape upstream from the line connecting the hub side and the shroud side with the leading edge into which the working fluid flows.
  • a turbine housing including a blade, a scroll housing formed to cover the turbine blade, and supplying a working fluid toward a leading edge of the blade, and the scroll portion into a shroud side space and a hub side space Formed between a scroll dividing wall to be divided, a shroud-side divided wall surface on the inner peripheral side of the scroll dividing wall, and a portion facing the shroud-side divided wall surface, and the working fluid is substantially radially directed on the shroud side of the blade
  • the working fluid is formed between the shroud-side inflow passage flowing to the inlet, the hub-side divided wall surface on the inner peripheral side of the scroll dividing wall, and the portion facing the hub-side divided wall surface, and the working fluid is inclined to the hub.
  • Comprising a hub-side inlet channel flows in the hub-side inlet of the moving blade in a direction substantially the same direction, and A plurality of the turbine rotor blades are erected in the circumferential direction on the outer peripheral surface of the hub, and a main wing formed with a height extending over the entire area between the outer peripheral surface of the hub and the inner peripheral surface of the shroud portion;
  • the intermediate wing is disposed between the main wings and disposed between the inlet portion and the intermediate portion of the main wing and having an intermediate height of the height of the main wing.
  • the working fluid from the hub side inflow passage is configured to flow into the front edge.
  • the intermediate portion between the hub side and the shroud side is upstream of the line (line m in FIG. 1) where the leading edge into which the working fluid flows flows connects the hub side and the shroud side.
  • a convex shape is formed on the side.
  • the mixed flow turbine having the shroud-side inflow passage and the hub-side inflow passage by the scroll dividing wall is constituted by the hub-side impulse blade portion and the shroud-side reaction blade portion.
  • An intermediate wing is disposed between the main wings in the circumferential direction, and the intermediate wing is configured to have an intermediate height from the inlet portion to the intermediate portion of the main wing and the height of the main wing.
  • the intermediate blade is provided at least in a region where an extension region of the flow width of the hub side inflow passage and an extension region of the shroud side inflow passage overlap. It should be done.
  • the flow path loss by the intermediate blade can be suppressed by setting the trailing edge of the intermediate blade 39 to the middle of the entire length from the leading edge of the main blade to the trailing edge that can receive the flow from the shroud side inflow passage. .
  • a plurality of intermediate blades be installed between the main wings in the circumferential direction.
  • the number of blades of the main blade can be reduced while maintaining the efficiency of the mixed flow turbine, so that the inertia moment of the turbine rotor blade can be further reduced.
  • the position of the trailing edge end of an intermediate wing may mutually differ.
  • the leading edge of the intermediate wing coincides with the leading edge of the main wing, and the wing height of the leading edge is set to the flow width of the shroud-side inflow passage and the flow width of the hub-side inflow passage.
  • the flow along the main wing is divided into the flow area of the shroud-side flow and the hub-side flow by the ratio to the height of the center line on the meridian plane, or at a position higher than the center line.
  • the blade height of the trailing edge may be provided at a position higher than the leading edge.
  • each wing (the main wing and the intermediate wing) can receive the load of the wing leading edge of the wing portion evenly.
  • the intermediate blade will reliably receive the increase in flow rate, and the impulse blade Therefore, the transient response can be improved (see FIG. 4).
  • the flow rate on the shroud side having the characteristics of the reaction blade is controlled so as to increase. In such a case, the flow on the shroud side is controlled by the intermediate blade. At the trailing edge portion, angular momentum can be received and converted into rotational power. Therefore, a highly efficient effect can be obtained (see FIG. 5).
  • the balance between the flow rate on the shroud side and the hub side is biased, and when the flow rate on the shroud side increases or the flow rate on the hub side increases, It acts as a reaction blade that converts the angular momentum of the flow on the shroud side into power, and when the flow rate on the hub side increases, it acts as an impulse blade. It acts as an efficient turbine, and in the latter case, it acts as a turbine having a large rotational acceleration. Therefore, both the effect of improving the transient response of the engine and the high-efficiency operation in the steady operation can be achieved.
  • the leading edge of the intermediate wing is provided at a position smaller than the leading edge radius of the main wing, and the blade height over the entire region from the upstream to the downstream of the intermediate wing is set to the shroud.
  • the height of the center line be kept constant at substantially the same height as the center line or higher than the center line.
  • the leading edge of the intermediate wing is provided at a position smaller than the leading edge radius of the main wing, and the height of the intermediate wing is substantially the same as the height of the center line from the upstream to the downstream of the intermediate wing.
  • the leading edge of the intermediate wing is provided at a position smaller than the leading edge radius of the main wing, and the blade height over the entire region from the upstream to the downstream of the intermediate wing is set to the shroud.
  • the blade height of the trailing edge is higher than the front edge.
  • the blade height of the trailing edge of the intermediate blade is provided at a position higher than the leading edge, as described above, the flow rate balance between the shroud side and the hub side is biased, and the flow rate on the shroud side is increased.
  • the intermediate blade acts as a reaction blade that converts the angular momentum of the flow on the shroud side into power when the flow rate on the shroud side increases.
  • the flow rate on the side acts as an impulse blade.
  • the leading edge of the intermediate blade is provided at a position smaller than the leading edge radius of the main blade, the size of the intermediate blade in the radial direction can be reduced, and the inertia moment of the turbine blade can be further reduced.
  • the radius of the leading edge of the intermediate blade is set to be substantially equal to the radius of attachment of the intermediate blade to the hub, and the moment of inertia of the turbine blade can be further reduced. Further, since the radius of the leading edge of the intermediate wing is set to a radius substantially equal to the radius of attachment of the intermediate wing to the hub, there is an effect that the fixing of the intermediate wing to the outer surface of the hub is stabilized.
  • the leading edge of the intermediate wing is coincident with the leading edge of the main wing, and the blade height of the intermediate wing is lowered toward the trailing edge.
  • the blade tip of the intermediate blade is formed in an arcuate cross section.
  • 11 is a cross-sectional view taken along the line II in FIG. 3.
  • the streamline R of the flow on the shroud side of the working fluid flowing into the main wing crosses the blade tip of the intermediate wing.
  • the blade tip of the intermediate wing needs to have a function as a blade leading edge, and by forming the blade tip of the intermediate wing with an arcuate cross-sectional shape, the flow crossing the tip of the intermediate wing causes It is possible to prevent peeling from occurring on the negative pressure surface and increasing loss.
  • the blade leading edge opening angle formed by the pressure surface and the suction surface of the leading edge of the main wing and the intermediate wing changes to the leading edge that changes with the pressure fluctuation of the working fluid.
  • the angle corresponding to the change of the fluid inflow angle is set, and when the pressure fluctuation rises to the high pressure side, the inflow direction to the leading edge substantially coincides with the tangential direction of the suction surface, or the pressure from the tangential direction It should be set to face the surface.
  • the opening angle of the leading edge of the leading edge portion of the main wing and the intermediate wing is set to an angle corresponding to the change of the inflow angle of the working fluid to the leading edge which varies with the pressure fluctuation of the working fluid.
  • the inflow direction to the leading edge when the pressure fluctuation rises to the high pressure side is set to substantially coincide with the tangential direction of the suction surface or to the pressure surface side from the tangential direction, the separation of the flow can be prevented, the flow loss at the impulse blade portion due to the pressure fluctuation of the working fluid can be prevented, and high efficiency can be achieved.
  • the leading edge portion of the main wing is curved in the rotation direction so as to have a convex shape opposite to the rotation direction.
  • the circumferential speed U decreases corresponding to the radius of rotation, and the swirl flow velocity Vc, which is the circumferential component of the absolute flow velocity V, flows inward while satisfying the free vortex relationship.
  • the swirling flow velocity increases, and as a result, the relative flow velocity W flows in the vicinity of the leading edge of the main wing so as to hit the wing from the rotation direction (see FIG. 15).
  • the relative flow velocity W changes its direction in the direction of rotation and moves toward the blade. For this reason, blade load increases.
  • the relative flow velocity W becomes the rotational direction when entering the inner side from the blade leading edge. Therefore, the flow toward the wing does not flow in so as to hit the wing, but follows the wing, so that the collision loss of the leading edge of the wing can be reduced and the blade load can be reduced. Thereby, it is possible to cope with the problem of increasing the load on the leading edge of the main wing caused by reducing the number of main wings.
  • a nozzle having a blade surface parallel to a central axis in the hub-side inflow passage, and a guide disposed downstream of the nozzle so that a trailing edge faces the leading edge of the moving blade. It is good to provide a board.
  • the intermediate portion between the hub side and the shroud side is formed in a convex shape upstream of the line connecting the hub side and the shroud side with the leading edge into which the working fluid flows, and the scroll dividing wall ,
  • a mixed flow turbine having a shroud-side inflow passage and a hub-side inflow passage, wherein intermediate blades of intermediate height are provided between the main wings of the portion of the turbine blade that exerts the impulse blade turbine characteristics on the hub side,
  • the efficiency and transient response can be improved by improving the impulse blade turbine characteristics and reducing the moment of inertia of the entire blade.
  • FIG. 10 is a cross-sectional view taken along the line II of FIG. 3, showing a mixed flow turbine according to a sixth embodiment. It is a cylindrical development figure of the moving blade shape which shows 7th Embodiment. It is explanatory drawing which shows the pressure fluctuation characteristic of a turbine inlet regarding 7th Embodiment. It is explanatory drawing which shows the blade front edge opening angle of the intermediate blade of 7th Embodiment.
  • the mixed flow turbine 1 of this invention demonstrates the example used for the supercharger (turbocharger) of a vehicle engine.
  • the mixed flow turbine 1 includes a turbine housing 3 and a turbine wheel 5 that is rotatably supported and accommodated in the turbine housing 3.
  • the turbine wheel 5 includes a rotating shaft 7, a hub 9 that is integrally formed or welded to the rotating shaft 7, and a turbine blade (roof blade) 11 that is erected on the outer peripheral surface of the hub 9.
  • a swirl flow having a speed around the central axis K of the rotating shaft 7 is created by the snail-shaped scroll chamber (scroll portion) 13 formed in the turbine housing 3, and swirls on the outer peripheral side of the turbine wheel 5.
  • the rotating shaft 7 is supported on the bearing housing by a bearing (not shown).
  • the turbine wheel 5 is attached to one end side of the rotating shaft 7, and the rotating shaft of the turbo compressor is connected to the other end side, and the rotation rotated through the turbine wheel 5 by exhaust gas (working fluid) from the engine.
  • the turbo compressor is rotated via the shaft 7 to compress the intake air and supply it to the engine.
  • a shroud portion 15 that covers the outer diameter side edge 14 of the rotor blade 11 is formed on the outer peripheral side of the turbine wheel 5 of the turbine housing 3.
  • a scroll dividing wall 17 is provided inside the turbine housing 3 so as to protrude in the radial direction from the outside toward the inside.
  • the scroll chamber 13 is divided into a shroud side space 19 and a hub side space 21 by a scroll dividing wall 17.
  • the hub side on the inner peripheral side of the scroll dividing wall 17 forms a hub side dividing wall surface 23 that is inclined so as to taper toward the shroud side.
  • the shroud side on the inner peripheral side of the scroll dividing wall 17 forms a shroud side dividing wall surface 25 extending in a substantially radial direction.
  • the hub side wall surface 27 of the hub side member facing the hub side divided wall surface 23 on the hub side of the turbine housing 3 is formed so as to be substantially parallel to the hub side divided wall surface 23.
  • a hub-side inflow passage 29 is formed in the front.
  • the hub-side inflow passage 29 has an inclination direction substantially equal to the inclination direction at the upstream end of the hub outer peripheral surface 31 of the hub 9.
  • a shroud side wall surface 33 facing the shroud side divided wall surface 25 on the shroud side of the turbine housing 3 is formed to be substantially parallel to the shroud side divided wall surface 25, and the shroud side inflow between the shroud side divided wall surface 25 is formed.
  • a path 35 is formed. Since the shroud side divided wall surface 25 extends in a substantially radial direction, the shroud side inflow passage 35 extends in a substantially radial direction.
  • the rotor blade 11 is a plate-like member and is erected on the hub outer peripheral surface 31 so that the surface portion extends in the axial direction.
  • the moving blades 11 are erected in the circumferential direction on the hub outer peripheral surface 31 so as to have a height over the entire area between the hub outer peripheral surface 31 and the inner peripheral surface of the shroud portion 15.
  • the main wing 37 is formed and disposed between the main wings 37 adjacent to each other in the circumferential direction.
  • the main wing 37 extends from the inlet portion to the intermediate portion and has an intermediate height of the main wing 37.
  • the intermediate wing 39 is formed and disposed between the main wings 37 adjacent to each other in the circumferential direction.
  • the main wing 37 extends from the inlet portion to the intermediate portion and has an intermediate height of the main wing 37.
  • the intermediate wing 39 is formed and disposed between the main wings 37 adjacent to each other in the circumferential direction.
  • the intersection of the front edge 41 of the main wing 37 and the outer diameter side end edge 14 is located on the outer side in the radial direction than the intersection of the hub 9 and the front edge 41. Further, the main wing 37 is provided with a front edge 41 located on the upstream side in the exhaust gas flow direction. As shown in FIG. 1, the front edge 41 is formed by a curve that swells smoothly in a convex shape in the entire region toward the upstream side. That is, the front edge 41 into which the working fluid flows has a shape in which an intermediate portion between the hub side and the shroud side is formed in a convex shape upstream from the line m connecting the hub side and the shroud side.
  • the shroud side portion of the front edge 41 has a shape along substantially the same radial position, in other words, substantially perpendicular to the radial direction.
  • a shroud side inlet 43 is formed at the shroud side portion of the front edge 41, and a hub side inlet 45 is formed at the hub side portion.
  • the shroud side inlet 43 has a center radius Ra, and the hub side inlet 45 has a center radius Rb.
  • the intermediate blade 39 is provided at least in a region where the extension region of the flow passage width of the hub-side inflow passage 29 overlaps the extension region of the shroud-side inflow passage 35 in the meridional shape. In this embodiment, it is formed in almost the entire overlapping region. That is, the front edge of the intermediate wing 39 matches the shape of the front edge of the main wing 37, and the intermediate wing height h 2 has the flow path width of the hub-side inflow passage 29. It has an intermediate height compared to The trailing edge of the intermediate wing 39 is formed so as to substantially coincide with the trailing edge portion in the extended region of the shroud inflow passage 35 or slightly longer.
  • the presence of the intermediate blade 39 in the extended region of the flow path width of the hub-side inflow path 29 allows the flow from the hub-side inflow path 29 to be efficiently received, and so-called impulse turbine characteristics can be exhibited.
  • the trailing edge of the intermediate blade 39 is installed too long on the downstream side, the flow velocity is locally increased and decreased, the flow path between the blades of the main wing 37 becomes narrower, and the flow path loss increases, so no loss occurs. Need to stay in range. For this reason, the flow path loss by the intermediate blade 39 is suppressed by setting the rear edge of the intermediate blade 39 to the middle of the entire length from the leading edge of the main blade to the rear edge that can receive the flow from the shroud-side inflow passage 35. .
  • the number of blades in the impulse turbine characteristic portion on the hub side can be increased without increasing the number of reaction blades having a large radius.
  • the hub side portion having so-called impulse turbine characteristics is effectively used. Therefore, in the conventional mixed flow turbine, the number of blades is small, so that the high-speed flow is not efficiently converted into rotational force, so that the number of main blades can be increased by increasing the number of intermediate blades without increasing the number of main blades.
  • the increase in the inertia moment of the turbine rotor blades can be suppressed, and the efficiency and transient response of the mixed flow turbine can be improved.
  • the flow flowing in from the shroud side inflow passage 35 flows into the moving blade 11 at a flow velocity A at a flow angle ⁇ of about 20 to 30 degrees in FIG.
  • the circumferential speed C is a speed substantially coincident with the rotational peripheral speed of the moving blade 11, and the radial speed, which is the relative flow velocity B, is a speed representing the flow rate.
  • the flow flowing in from the shroud side inflow passage 35 works toward the moving blade 11 as the radius changes inside the moving blade 11, and flows toward the discharge port while the circumferential speed decreases and the pressure decreases. To do.
  • the radius Rb of the hub-side inlet 45 is smaller than the radius Ra of the shroud-side inlet 43, the flow flowing from the hub-side inlet channel 29 flows into a region having a small radius, and the pressure is increased. Since it flows into the lowered position, it flows into the hub side inlet 45 at a flow velocity A ′ larger than the shroud side inlet 43. Further, since the radius Rb of the hub side inlet 45 is smaller than the radius Ra of the shroud side inlet 43, the turning speed of the moving blade leading edge decreases in proportion to the radius ratio and becomes the circumferential speed C ′. In 45, the flow flows into the blade 11 at a relative flow velocity B ′ that is larger than the relative flow velocity B of the shroud side inlet 43 of the turbine blade 11.
  • the flow that flows in from the hub side inlet 45 has a higher flow velocity than the flow that flows in from the shroud side inlet 43, and out of the energy that is released when the flow passes through the turbine,
  • the reaction degree which is a value indicating the ratio, becomes smaller in the flow on the hub side.
  • the flow on the shroud side has a so-called reaction turbine characteristic in which the degree of reaction is large and the flow velocity inside the rotor blade can be lowered and the friction loss can be reduced, so that the flow becomes highly efficient.
  • the flow on the hub side has a small degree of reaction and rotates the moving blade 11 with a force by changing the momentum when turning the high-speed flow with the moving blade 11, so that the flow is accelerated to a high speed and the friction loss is large.
  • it is not as efficient as a reaction blade, it has the characteristics of a so-called impulse turbine that can generate the same power as a large reaction blade with a small diameter blade.
  • the second embodiment is a modification of the meridional shape of the intermediate wing 39 of FIG. 1, and the intermediate wing 47 of the second embodiment is configured such that the height of the rear edge portion is higher than that of the front edge portion.
  • a line N in FIG. 3 indicates that the flow along the main wing 37 depends on the ratio of the flow path width of the shroud inflow path 35 and the flow path width of the hub side inflow path 29 and the flow of the shroud side flow path and the flow of the hub side flow path.
  • the center line on the meridian plane divided into the flow path areas is shown. Further, the line P indicates the center line of the flow of the shroud side flow path, and the line Q indicates the center line of the flow of the hub side flow path.
  • the leading edge of the intermediate wing 47 coincides with the leading edge 41 of the main wing 37, and the blade height E of the leading edge of the intermediate wing is substantially equal to the height N1 of the center line N or the center line N
  • the blade height F at the trailing edge of the intermediate blade 47 is set to a position higher than the leading edge (E ⁇ F).
  • the front edge of the intermediate wing 47 is made to coincide with the front edge of the main wing 37, and the blade height E of the front edge of the intermediate wing 47 is set to a position substantially equal to or slightly higher than the height N1 of the center line N.
  • the load on the blade leading edge portion that exhibits the impulse blade characteristics on the hub side can be equally received by each blade (the blades of the main blade 37 and the intermediate blade 47).
  • the blade height F at the trailing edge is provided at a position higher than the blade height E at the leading edge (E ⁇ F)
  • the flow rate on the hub side increases during acceleration, and the center of the flow in the shroud channel is increased.
  • the line P and the center line Q of the flow in the hub side flow path are both biased toward the shroud and become P1 and Q1, respectively, the center line Q1 of the flow in the hub side flow path is surely secured by the intermediate blade 47 Since it can be received (see FIG. 4), the intermediate blade 47 can be effectively operated as the characteristic of the impulse blade, and the transient response can be improved.
  • the flow rate on the shroud side having the characteristics of the reaction blade is controlled to increase.
  • the flow of the shroud side flow path is controlled.
  • Both the center line P and the center line Q of the flow in the hub side flow path are biased toward the hub side to become P2 and Q2, respectively.
  • the shroud side flow is received at the trailing edge portion of the intermediate blade 47 and the angular momentum is rotated. It can be converted into power (see FIG. 5). Therefore, it is possible to obtain a highly efficient effect by causing the intermediate blade 47 to act as a reaction blade characteristic.
  • the third embodiment is a modification of the meridional shape of the intermediate wing 39 of FIG. 1.
  • the front edge of the intermediate wing 49 of the third embodiment is provided at a position smaller than the front edge radius of the main wing 37, and the intermediate wing
  • the blade height G1 over the entire region from the upstream side to the downstream side of 49 is substantially the same as the center line height N1 indicated by the line N in FIG. Is maintained.
  • the leading edge of the intermediate blade 49 is set to a radius substantially equal to the radius Rc of the intermediate blade 49 attached to the hub 9, and the blade height G1 is a height N1 + d.
  • the height including the center line N is set.
  • the trailing edge of the intermediate blade 49 is formed to be substantially coincident with the trailing edge portion in the extended region of the shroud-side inflow passage 35 or slightly longer.
  • the leading edge of the intermediate wing 49 is provided at a position smaller than the leading edge radius of the main wing 37, and the height G1 of the intermediate wing 49 is further lowered from the upstream at a position slightly higher than the height of the center line N.
  • the radial size of the intermediate blade 49 is changed to the intermediate blade of the first and second embodiments. 39 and 47, and the moment of inertia of the moving blade 11 can be reduced.
  • the radius of the leading edge of the intermediate blade 49 is set to be substantially equal to the radius Rc of the intermediate blade 49 attached to the hub 9, the intermediate blade 49 is stably fixed to the hub outer peripheral surface 31.
  • the intermediate blade 51 of the fourth embodiment is configured such that the blade height of the intermediate blade 49 of the third embodiment is higher than the front edge.
  • the leading edge of the intermediate blade 51 is set to a radius substantially equal to the radius Rc of the intermediate blade 51 attached to the hub 9, and the blade height G2 is a height N1 + d and a center line.
  • the height is set to include N.
  • the trailing edge of the intermediate blade 51 is formed to be substantially coincident with the trailing edge portion in the extended region of the shroud-side inflow passage 35 or slightly longer.
  • the blade height G3 at the trailing edge is set higher than the leading edge.
  • FIGS. 8 and 9 are modifications of FIG. 7 and show a case where the leading edge of FIG. 7 extends with a radius Rc and coincides with the trailing edge. There is no intermediate portion between the leading edge and the trailing edge of the intermediate wing 53, and the leading edge and the trailing edge intersect each other, and are formed in a substantially triangular shape.
  • the blade height G3 at the trailing edge is provided at a position higher than the blade height G2 at the leading edge (G2 ⁇ G3).
  • the center line P of the flow of the flow path and the center line Q of the flow of the hub-side flow path are both biased toward the shroud and become P1 and Q1, respectively, the flow of the hub-side flow path is caused by the intermediate blades 51 and 53.
  • the center line Q1 can be reliably received (see FIG. 8), so that the intermediate blades 51 and 53 can be effectively operated as the characteristics of the impulse blade, and the transient response can be improved.
  • the flow rate on the shroud side having the characteristics of the reaction blade is controlled so as to increase.
  • the flow center of the shroud side flow path is controlled.
  • Both the line P and the center line Q of the flow in the hub side flow path are biased toward the hub side to become P2 and Q2, respectively, but the shroud side flow is received at the trailing edge portions of the intermediate blades 51 and 53, and the angular momentum is obtained. It can be converted into rotational power (see FIG. 9). Therefore, the intermediate blades 51 and 53 can be made to act as reaction blade characteristics to obtain a highly efficient effect.
  • the intermediate wing 55 of the fifth embodiment has a leading edge that coincides with the leading edge of the main wing 37, and the blade height decreases toward the trailing edge.
  • the leading edge of the intermediate wing 55 matches the shape of the leading edge of the main wing 37, and the leading edge height G2 of the intermediate wing 55 is the height N1 of the center line indicated by the line N in FIG.
  • the rear edge of the intermediate blade 55 is formed so as to substantially coincide with the rear edge portion in the extended region of the shroud-side inflow passage 35, and is from the front edge to the rear edge. It is formed so that the blade height decreases over time.
  • the action of the impulse blade on the hub side is borne mainly on the leading edge side of the intermediate blade, thereby reducing the flow resistance of the downstream portion of the intermediate blade and contributing to the reduction of the moment of inertia.
  • the leading edge of the main wing 37 and the blade tips of the intermediate wings 39 (47, 49, 51, 53, 55) have an arcuate cross-sectional shape.
  • FIG. 11 is a cross-sectional view taken along the line II of FIG. 3.
  • the leading edge of the main wing 37 and the tip of the intermediate wing 39 are formed in an arc shape.
  • the streamline S of the flow by the side of a shroud flows so that the blade tip of the intermediate blade 39 may cross
  • the blade tip of the intermediate blade 39 needs to have a function as a blade leading edge, and the tip of the intermediate blade 39 etc. intersects by forming the blade tip of the intermediate blade 39 etc. in an arcuate cross section. It is possible to prevent the flow from separating at the suction surface of the intermediate blade and increasing the loss.
  • the trailing edge of the intermediate blade 39 and the like has a shape in which a substantially straight line meaning the blade tip and a line facing the radial direction are connected by a curve, and the blade tip and the trailing edge are structurally
  • the arcuate radius of the blade tip In the vicinity of the trailing edge and the trailing edge of the blade tip, it is better to set the arcuate radius of the blade tip to be smaller in the downstream direction. The occurrence of wakes can be prevented, contributing to the prevention of efficiency reduction.
  • the seventh embodiment relates to the cross-sectional shape of the blade leading edge in which the blade leading edge opening angle formed by the pressure surface and the suction surface of the leading edge of the main blade 37 and the intermediate blade 39 of the first embodiment is set.
  • FIG. 12 shows a cross-sectional shape obtained by cutting the main blade 37 and the intermediate blade 39 of the moving blade 11 of the first embodiment along the hub outer peripheral surface 31 or the representative streamline of the hub-side flow, with a representative radius (for example, the moving blade 11 of the moving blade 11).
  • the development view of the shape projected on the cylinder of the hub mounting radius Rc) is shown.
  • FIG. 14 is an enlarged view of the blade leading edge portion of FIG. 12, and the blade leading edge opening angle ⁇ which is an angle formed by the pressure surface Z1 and the suction surface Z2 of the leading edge of the main blade 37 and the leading edge of the intermediate blade 39 is shown in FIG. Is set to an angle corresponding to a change in the inflow angle of the exhaust gas to the leading edge that changes with the pressure fluctuation of the exhaust gas of the working fluid. That is, as shown in the inlet velocity triangle of the moving blade 11, the change in the inflow angle of the relative flow velocity at that time when the turbine inlet pressure Ps increases and decreases as the exhaust gas pressure fluctuates. Is set as the blade leading edge opening angle ⁇ .
  • the turbine inlet pressure Ps when the turbocharger is mounted on the engine varies depending on the number of cylinders of the reciprocating engine and the degree of acceleration, and the pressure fluctuates even in a steady state. A pressure fluctuation of 15% occurs.
  • the portion having the impulse turbine characteristics on the hub side has a change in absolute flow velocity equivalent to the change in this pressure fluctuation.
  • the inflow angle of the relative flow flowing into the rotor blades ⁇ varies approximately between 30 ° and 40 °.
  • the angle corresponding to the change in the inflow angle of the relative flow velocity when the turbine inlet pressure Ps increases and decreases is set as the blade leading edge opening angle ⁇ .
  • the blade angle ⁇ which is the angle formed between the leading edge of the main wing 37 and the suction surface Z2 of the leading edge of the intermediate wing 39 and the circumferential direction, is an inflow when the turbine inlet pressure Ps increases. It is set equal to or smaller than the angle ⁇ .
  • the blade leading edge opening angle ⁇ is set to an angle corresponding to the fluctuation of the inflow angle of the relative flow velocity, and the suction surface Z2 is set to be substantially equal to or smaller than the flow angle when the pressure increases.
  • separation at the suction surface Z2 can be prevented, and loss of flow in the impulse blade portion due to pressure fluctuation can be reduced. Therefore, it is possible to prevent an increase in loss due to fluctuations in the inflow direction due to fluctuations in turbine inlet pressure in the impulse blade portion.
  • the front edge of the main wing 37 is curved in the direction of rotation in the cross-sectional shape taken along the line II in the direction perpendicular to the rotation axis of the main wing 37 of the second embodiment of FIG. It has a convex shape.
  • the circumferential speed U decreases corresponding to the radius of rotation, and the swirl flow velocity Vc, which is the circumferential component of the absolute flow velocity V, flows inward while satisfying the free vortex relationship.
  • the swirling flow velocity increases, and as a result, the relative flow velocity W flows in the vicinity of the leading edge of the main wing so as to hit the wing from the rotation direction (see FIG. 15).
  • the relative flow velocity W changes direction in the rotation direction toward the blade, and the blade load increases.
  • the center line of the blade leading edge is curved in the rotational direction to form a curved portion 61 that is convex in the direction opposite to the rotational direction, so that the relative position when entering the inner side from the blade leading edge.
  • the flow velocity W turns in the direction of rotation and the flow toward the wing does not flow into the wing, but flows along the wing, so that the collision loss of the wing leading edge can be reduced, and the wing load can be reduced. It is possible to prevent an increase in loss due to an increase in edge load.
  • the wing of the main wing 37 is increased by the amount of increase of the intermediate wing 39.
  • the number of blades of the main wing 37 is reduced as compared with the conventional one so that the blade area load can be made equal by reducing the number of blades, the moment of inertia can be reduced by reducing the number of main wings having a large radius.
  • FIGS. 16A and 16B Next, a ninth embodiment will be described with reference to FIGS. 16A and 16B.
  • a blade-type nozzle 63 and a guide plate 65 are installed in the hub-side inflow passage 29.
  • Other configurations are the same as those of the first embodiment.
  • the hub-side inflow passage 29 is provided with a blade-type nozzle 63 composed of a plurality of blades whose blade surfaces are formed substantially parallel to the central axis K.
  • the blades of the airfoil nozzle 63 are attached to be inclined so as to have a predetermined angle with respect to the circumference.
  • the airfoil nozzle 63 is arranged such that the nozzle inlet 63a and the nozzle outlet 63b are positioned on a certain circumference.
  • a guide plate 65 is attached to the downstream side of the airfoil nozzle 63 corresponding to each blade.
  • the guide plate 65 has a logarithmic spiral cross-sectional shape and is attached so as to be a substantially extended portion of the airfoil nozzle 63.
  • the downstream end 65 a of the guide plate 65 extends to near the front edges of the main wing 37 and the intermediate wing 39.
  • the blade-side nozzle 63 is provided in the hub-side inflow passage 29, the circumferential speed of the flow flowing through the hub-side inflow passage 29 can be increased. Further, the flow exiting the airfoil nozzle 63 flows according to the law of conservation of angular momentum and is guided by the guide plate 65 to the vicinity of the leading edge of the moving blade. In addition, since the guide plate 65 has a logarithmic spiral cross-sectional shape, the guide plate 65 can flow into the rotor blade 11 as an ideal spiral flow, so that the efficiency of the mixed flow turbine can be improved.
  • the sixth embodiment, the seventh embodiment, the eighth embodiment, and the ninth embodiment are applied to the main wing and the intermediate wing of other embodiments in addition to the main wing and the intermediate wing described in each embodiment. Of course, it is also good.
  • the intermediate portion between the hub side and the shroud side is formed in a convex shape upstream of the line connecting the hub side and the shroud side with the leading edge into which the working fluid flows, and the scroll dividing wall ,
  • a mixed flow turbine having a shroud-side inflow passage and a hub-side inflow passage, wherein intermediate blades of intermediate height are provided between the main wings of the portion of the turbine blade that exerts the impulse blade turbine characteristics on the hub side, Improve the efficiency of the impeller blade turbine and reduce the moment of inertia of the entire rotor blade, thereby improving the efficiency and transient response, so the mixed flow used in small gas turbines, turbochargers, expanders, etc. It is useful as a technology applied to turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

【課題】斜流タービンの主翼間に中間高さの中間翼を設けて、衝動翼タービン特性の改善および動翼全体としての慣性モーメントの低減を図って、効率向上および過渡応答性を向上する斜流タービンを提供することを目的とする。 【解決手段】タービン動翼11と、タービンハウジング3と、スクロール室13を分割するスクロール分割壁17と、シュラウド側分割壁面25側に形成されるシュラウド側流入路35と、ハブ側分割壁面23側に形成されハブ側流入路と29とを備え、前記動翼11は、ハブ外周面31とシュラウド部15の内周面との間の全域にわたる高さを有して形成される主翼37と、周方向において主翼37の間に配設されるとともに、主翼37の入口部から中間部にわたって、且つ主翼37の高さの中間高さを有して配置される中間翼39とによって構成され、中間翼39の前縁にハブ側流入路29からの作動流体が流入されるように構成したこと。

Description

斜流タービン
本発明は、小型ガスタービン、過給機、エキスパンダー等に用いられる斜流タービンに関するものである。 
過渡応答性が要求されるターボチャージャでは、排気エネルギーを吸気圧力の上昇へ変換する「効率の向上」と、ターボチャージャ付きエンジンの出力増加の遅れ「所謂ターボラグ」の低減のための「回転加速度の向上」が要望されている。
そのため、コンプレッサ、タービンの効率向上と、タービンホイールの小型軽量化によるロータの慣性モーメントの低減を行い、加速時のターボエンジンのレスポンスの向上が行われている。
一般に、「空力的な効率向上」のためには、例えば翼枚数を増加し翼負荷を低減することが有効な手段であるが、一方で、重量が増加、慣性質量が増加するため、「回転加速度の低下」が生じるという問題があり、このような背反する効果を両立させる手段が要望されている。
タービンの効率低下を抑制するもの、特に斜流タービンにおける効率低下を抑制するものとして、本出願人は、特許文献1で示す斜流タービンの技術を提案している。
図17を参照して、この特許文献1に開示されている斜流タービンについて説明する。
中心軸線Kを中心に回転するハブ205と、ハブ外周面206上に複数枚立設され、前縁247が上流側に向かって凸とされている動翼207と、動翼207の外径側端縁225を覆うシュラウド部227を有するケーシング213と、動翼207の上流側に形成され、動翼207の前縁247に向けて作動流体を供給する空間であるスクロール223と、を備えている斜流タービン201であって、スクロール223は、スクロール分割壁229によってシュラウド側空間231とハブ側空間233とに分割されている。
スクロール分割壁229の後縁側におけるシュラウド側分割壁面237およびハブ側分割壁面235は、それぞれそれらと略平行に対向して形成されるシュラウド側壁面243およびハブ側壁面239が形成されているので、それぞれの壁面間には、作動流体が略半径方向に流れるシュラウド側流入路245、および翼入口のハブ側の傾斜方向と略同等の方向に流れるハブ側流入路241が形成されている。
このシュラウド側流入路245を通って供給される作動流体は、略半径方向に流れているので、シュラウド側壁面243に平行に、且つ、動翼の入口側端縁に略直交するように流入する。このため、斜流タービン動翼入口のシュラウド側翼前縁にて適切な流れ角にて流れを動翼207の内部に導くことができる。
また、ハブ側流入路241を通って供給される作動流体は、斜流タービン動翼入口のハブ外周面206の傾斜方向と略同等の方向に流れているので、ハブ外周面206に平行に且つ、動翼の翼前縁に略直交するように流入する。このため、斜流タービン動翼入口のハブ側翼前縁にて適切な流れ角にて流れを動翼207の内部に導くことができる。
また、ハブ側流入路241から動翼207に流入する流れはハブ外周面206の傾斜と略同等の角度を持って動翼207に流入するので、シュラウド側流入路245から略半径方向に動翼207に流入し動翼出口に向かって軸方向に転向するシュラウド側流入路245の流れを半径方向から軸方向に滑らかに転向させることができ、その結果、シュラウド部に生じる壁面境界層の増加を防止できるという特長を有する。
一方、作動流体は、シュラウド側流入路245においては略半径方向に流れ、一方、ハブ側流入路241においては斜流タービン動翼入口のハブ側の傾斜方向と略同等の方向に流れ、両流入路を通過した作動流体は交差する状態で斜流タービン動翼の入口側端縁に流入する。
従って、シュラウド側流入路245およびハブ側流入路241を流れる作動流体は、スクロール分割壁229の後縁で合流することになる。これにより、スクロール分割壁229の後縁に発生するウエイクの発達を抑制することができる。
なお、特許文献1のタービン動翼の前縁が上流側に向かって凸とされている動翼を有する斜流タービンについては特許文献2においても開示されている。
特開2009-281197号公報 特許4288051号公報
図18に、シュラウド側流入路245、およびハブ側流入路241から流入する動翼207のシュラウド側入口およびハブ側入口の代表半径における速度三角形を示す。
シュラウド側流入路245から流入する流れは、流れ角αがおおよそ20~30度にて流速Aにて動翼207に流入する。周方向速度Cは動翼207の旋回周速にほぼ一致した速度であり、相対流速Bである半径速度は流量を代表する速度である。
シュラウド側流入路245から流入する流れは、動翼207の内部で半径変化に伴い流れが動翼207に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
一方、ハブ側流入路241から流入する流れは、ハブ側入口P2の半径はシュラウド側入口P1より半径が小さいので、シュラウド側入口からの流れは半径の小さい領域に流れてゆき、圧力が低下した位置に流入するため、シュラウド側入口より大きな流速A'でハブ側入口に流入する。
また、ハブ側入口の半径はシュラウド側入口より半径が小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口はシュラウド側入口の相対流速Bに比べて大きい相対流速B'で動翼207に流入する。
従って、ハブ側入口から流入する流れは、シュラウド側入口から流入する流れに比べて流速が高く、流れがタービンを通過する際に放出するエネルギーの内、動翼207内部での放出エネルギーの割合を示す値である反動度が、ハブ側の流れの方が小さくなる。
つまり、シュラウド側の流れは反動度が大きく動翼内部の流速が低くでき摩擦損失を低くできるので、高効率の流れとなる所謂反動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼207で転向させる際の運動量の方向転換による力で動翼207を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で直径の大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
言い換えると、図17に示すシュラウド側流入路245、およびハブ側流入路241から流入する動翼207のような形態を有した斜流タービンでは、ハブ側の衝動翼とシュラウド側の反動翼とで構成されているといえる。
このように、シュラウド側から流入する流れは、翼間の流速が低いので、摩擦損失が低く、半径変化に伴う角運動量の放出によって回転の動力に変換するので、動翼207の効率が高く、軸方向に転向した動翼出口では、圧力変化と流れの向きの転向により旋回速度を回転の動力に変換する。
一方、ハブ側の衝動翼は高速で動翼207に流入し、速度を高速に維持しながら流れの転向により流れの旋回速度を回転の動力に変換するので、インシデンスが小さいこと、高速の流れを転向できるだけの十分な翼枚数が必要である。
従って、従来の斜流タービンでは、翼枚数が少なく高速の流れを効率よく転向出来ないという問題を有していた。
本発明はかかる従来の斜流タービンの技術的課題に鑑み、ハブ側の衝動翼部分とシュラウド側の反動翼部分とで構成される斜流タービンのハブ側の衝動翼タービン特性を有する部分に、中間高さの中間翼を設けて、衝動翼タービン特性の改善および動翼全体の慣性モーメントの低減を図って、効率向上および過渡応答性を向上する斜流タービンを提供することを目的とする。
本発明はかかる目的を達成するため、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記タービン動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成されることを特徴とする。
かかる発明によれば、図1に示すように、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線(図1の線m)よりもハブ側とシュラウド側との中間部が上流側に凸状に形成される。
スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンは、前述したように、ハブ側の衝動翼部分とシュラウド側の反動翼部分とによって構成されているといえるので、周方向において主翼間に中間翼を配設し、この中間翼を主翼の入口部から中間部にわたって、且つ主翼の高さの中間高さを有するように構成することによって、さらに中間翼の前縁に前記ハブ側流入路からの作動流体を流入することによって、ハブ側の衝動タービン特性部分の翼枚数を、半径の大きい反動翼枚数を増やすことなく多くすることができる。
従って、従来の斜流タービンでは翼枚数が少ないために高速流を効率よく回転力に変換されていないという問題に対して、本発明では、小さな半径の衝動翼部分で大きな半径の反動翼部分と同等の単位流量あたりの動力を発生させ、所謂衝動タービンの特性を有効に利用することで、タービン動翼の慣性モーメントを増大することなく、斜流タービンの効率向上と過渡応答性の向上を両立できる。
また、本発明において好ましくは、前記タービン動翼の子午面形状において前記中間翼は、前記ハブ側流入路の流路幅の延長領域と前記シュラウド側流入路の延長領域との重なる領域に少なくとも設けられるとよい。
かかる構成によれば、前記タービン動翼の子午面形状において、前記ハブ側流入路の流路幅の延長領域に中間翼が存在すれば、前記ハブ側流入路からの流れを効率よく受け止めて所謂衝動タービンの特性を発揮できる。しかし、中間翼の後縁端を下流側に長く設置すると、主翼の翼間流路が狭くなり、流速が局所的に増減速を生じ流路損失が増大するため、損失が発生しない範囲に留める必要がある。このため、中間翼39の後縁端をシュラウド側流入路からの流れを受け止めることのできる主翼前縁端から後縁までの全長のほぼ中間までとして、中間翼による流路損失を抑えることができる。
また、本発明において好ましくは、前記中間翼を前記主翼の間に周方向において複数枚設置するとよい。
このように中間翼を主翼間に複数枚設置することによって、斜流タービンの効率を維持しつつ、主翼の翼枚数を少なくすることができるため、タービン動翼の慣性モーメントをさらに減少できる。
また、複数枚設置する場合は中間翼の後縁端の位置が相互に異なっていてもよい。
また、本発明において好ましくは、前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けるとよい。
このように、中間翼の前縁を主翼の前縁と一致させるとともに、前縁の翼高さを前記中心線の高さとほぼ同等もしくはその中心線より高い位置とすることによって、ハブ側の衝動翼部の翼前縁の負荷を各翼(主翼および中間翼の各翼)が均等に受けることができる。
また、後縁の翼高さを前縁の翼高さより高い位置に設けることによって、加速時においてハブ側の流量が増加した場合には、中間翼で流量の増加を確実に受け止めて、衝動翼の特性を有効に作用させるので過渡応性を改善できる(図4参照)。
また、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、シュラウド側の流れを中間翼の後縁部分において角運動量を受け止めて回転動力に変換できる。従って、高効率の効果を得ることができる(図5参照)。
従って、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも、中間翼はシュラウド側の流量が増加した場合には、シュラウド側の流れの角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
また、本発明において好ましくは、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同一高さ、もしくはその中心線より高い位置で一定に維持されるとよい。
このように、中間翼の前縁は主翼の前縁半径より小さい位置に設けられ、さらに中間翼の高さを、前記中間翼の上流から下流の全域に渡って、前記中心線の高とほぼ同一高さもしくは中心線より高い位置で一定に維持するので、すなわち、中間翼の前縁の位置、および全域にわたる翼高さを制限することによって、中間翼の半径方向の大きさを小さくすることができ、タービン動翼の慣性モーメントを減少できる。
また、本発明において好ましくは、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線より高い位置で、且つ後縁の翼高さを前縁より高い位置に設けられるとよい。
このように、中間翼の後縁の翼高さを前記前縁より高い位置に設けるので、前述したように、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも、中間翼はシュラウド側の流量が増加した場合には、シュラウド側の流れの角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
しかも、中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるので、中間翼の半径方向の大きさを小さくすることができ、タービン動翼の慣性モーメントの減少もさらに達成できる。
さらに、本発明において好ましくは、前記中間翼の前縁の半径を前記中間翼のハブへの取り付け半径とほぼ等しい半径に設定されるとよく、タービン動翼の慣性モーメントをさらに減少できる。
また、中間翼の前縁半径を中間翼のハブへの取り付け半径とほぼ等しい半径にするため、中間翼のハブ外表面への固定が安定化する効果も有している。
また、本発明のおいて好ましくは、前記中間翼の前縁を前記主翼の前縁に一致させ、該中間翼の翼高さを後縁に向かうにつれて低くするとよい。
このように構成することで、ハブ側の衝動翼の作用を、主に中間翼の前縁側で負担させて、中間翼の下流側の部分の流路抵抗を低減するとともに、慣性モーメントの低減に寄与することができ。
また、本発明において好ましくは、前記中間翼の翼先端を円弧状の断面に形成するとよい。
図11は、図3のI-I断面図であり、この図11で示すように、主翼に流入する作動流体のシュラウド側の流れの流線Rは、中間翼の翼先端を交差するように流れる。
従って、中間翼の翼先端は、翼前縁としての機能を有する必要があり、中間翼の翼先端を円弧状の断面形状に形成することによって、中間翼の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
また、本発明において好ましくは、前記主翼および中間翼の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を、作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定するとともに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定するとよい。
図13に示すように、ターボチャージャをエンジンに搭載した場合にはタービン入口に流入する排ガス圧力は、往復動エンジンの気筒数や加速の程度により変動する。この圧力変動が生じている場合には、ハブ側の衝動タービン部分には、この圧力変動の変化と同様の絶対流速の変化が生じ、その結果、動翼への流入角度に変化が生じる場合が多い。
従って、図14に示すように、主翼および中間翼の前縁部分の前縁開き角度を作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定することによって、中間翼および主翼の前縁部分において、作動流体の圧力変動に伴う流れ損失の増大を防止でき高効率化できる。
さらに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定するので、負圧面における流れの剥離を防止でき、作動流体の圧力変動に伴う衝動翼部分での流れ損失を防止でき、高効率化を図ることができる。
また、本発明において好ましくは、前記主翼の回転軸に直角方向の断面形状において、主翼の前縁部分を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすとよい。
図15に示すように、回転半径に対応して周速Uは低下し、絶対流速Vの周方向成分である旋回流速Vcは、自由渦の関係を満足しながら半径内向きに流れるので、半径が小さくなると旋回流速が大きくなり、その結果、相対流速Wが、主翼の翼前縁近傍において、回転方向から翼にぶつかるように流入するようになる(図15参照)。この翼前縁から内側に入るに従って相対流速Wが回転方向に向きを変えて翼に向かう。このため、翼負荷が増大する。
従って、翼前縁部において、翼前縁の中心線を回転方向に湾曲させて、回転方向とは逆方向に凸形状にさせることにより、翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かう流れが翼にぶつかるように流入せずに、翼に沿うようになるため、翼前縁の衝突損失を低減でき翼負荷を低減できる。
これにより、主翼の翼枚数を少なくすることによって生じる、主翼の翼前縁の負荷が増大する課題に対応できる。
また、本発明において好ましくは、前記ハブ側流入路に中心軸線と平行な翼面からなるノズルと、同ノズルの下流側に後縁が前記動翼の前縁に対向するように配置された案内板とを備えるとよい。
このように構成することによって、ハブ側流入路を流れて中間翼前縁に流入する作動流体の流れが加速または理想的な旋回流となるため、動翼の所謂衝動タービンの特性を有する部分への流入速度を高めて過渡応答性が向上される。
本発明によれば、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されるとともに、スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンであって、タービン動翼のハブ側の衝動翼タービン特性を発揮する部分の主翼間に、中間高さの中間翼を設けて、衝動翼タービン特性の改善を行うとともに、動翼全体としての慣性モーメントの低減を図ることによって、効率向上および過渡応答性を向上できる。
本発明の第1実施形態にかかる斜流タービンの要部断面図である。 第1実施形態にかかる斜流タービンのタービン動翼を示す斜視説明図である。 第2実施形態にかかる斜流タービンの子午面形状を示す。 第2実施形態においてハブ側流路の流量が増加した場合の説明図である。 第2実施形態においてシュラウド側流路の流量が増加した場合の説明図である。 第3実施形態にかかる斜流タービンの子午面形状を示す。 第4実施形態にかかる斜流タービンの子午面形状を示す。 第4実施形態の中間翼の変形例を示す。 第4実施形態におけるハブ側流路とシュラウド側流路の流量変化の説明図である。 第5実施形態にかかる斜流タービンの子午面形状を示す。 第6実施形態にかかる斜流タービンを示し、図3のI-I断面図である。 第7実施形態を示す動翼形状の円筒展開図である。 第7実施形態に関し、タービン入口の圧力変動特性を示す説明図である。 第7実施形態の中間翼の翼前縁開き角度を示す説明図である。 第8実施形態にかかる主翼前縁部の形状、および速度三角形を示す説明図である。 第9実施形態を示し、斜流タービンの要部断面図である。 第9実施形態の翼型ノズルおよび案内板の説明図である。 従来技術の斜流タービンの子午面形状を示す。 従来技術の斜流タービンのタービンホイールの斜視形状および速度三角形を示す。
 以下、本発明に係る実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。 
(第1実施形態)
本発明の第1実施形態について図1、2を参照して説明する。
本発明の斜流タービン1は、車両エンジンの過給機(ターホチャージャ)に用いられる例について説明する。
 図1において、斜流タービン1には、タービンハウジング3と、タービンハウジング3内に回転可能に支持されて収納されたタービンホイール5とが備えられている。このタービンホイール5は、回転軸7と、該回転軸7に一体成形または溶接で結合されたハブ9と、ハブ9の外周面に立設されたタービン動翼(動翼)11とを備え、タービンハウジング3内に形成されたカタツムリ状のスクロール室(スクロール部)13によって回転軸7の中心軸線K周りの速度を持った旋回流れが作られて、タービンホイール5の外周側を旋回する。
 また、回転軸7は、図示しない軸受けによって軸受けハウジングに支持されるようになっている。回転軸7の一端側には前記タービンホイール5が取り付けられ、他端側にはターボ圧縮機の回転軸が接続され、エンジンからの排ガス(作動流体)によってタービンホイール5を介して回転された回転軸7を介してターボ圧縮機を回転し、吸気を圧縮してエンジンに供給するようになっている。
 タービンハウジング3のタービンホイール5の外周側には、動翼11の外径側端縁14を覆うシュラウド部15が形成されている。
また、タービンハウジング3の内側には、外側から内側に向けて半径方向に突出するスクロール分割壁17が設けられている。スクロール室13はスクロール分割壁17によってシュラウド側空間19とハブ側空間21とに分割されている。
スクロール分割壁17の内周側のハブ側は、シュラウド側に向かい先細りとなるように傾斜したハブ側分割壁面23を形成している。スクロール分割壁17の内周側のシュラウド側は、略半径方向に延在するシュラウド側分割壁面25を形成している。
タービンハウジング3のハブ側におけるハブ側分割壁面23に対向するハブ側部材のハブ側壁面27は、ハブ側分割壁面23と略平行となるように形成されており、ハブ側分割壁面23との間にハブ側流入路29を形成している。
ハブ側流入路29は、ハブ9のハブ外周面31の上流端における傾斜方向と略同等の傾斜方向とされている。
タービンハウジング3のシュラウド側におけるシュラウド側分割壁面25に対向するシュラウド側壁面33は、シュラウド側分割壁面25と略平行となるように形成されており、シュラウド側分割壁面25との間にシュラウド側流入路35を形成している。
シュラウド側分割壁面25は略半径方向に延在するので、シュラウド側流入路35は略半径方向に沿って延在している。
動翼11は、板状部材であり、面部が軸線方向に延在するようにハブ外周面31に立設されている。また、図2に示すように、動翼11は、ハブ外周面31上に周方向に複数枚立設されてハブ外周面31とシュラウド部15の内周面との間の全域にわたる高さを有して形成される主翼37と、周方向において隣接する主翼37間に配設されるとともに、主翼37の入口部分から中間部分にわたって、且つ主翼37の高さの中間高さを有して配置される中間翼39とによって構成されている。
主翼37の前縁41と外径側端縁14との交点は、ハブ9と前縁41との交点よりも半径方向において外側に位置している。
また、主翼37には、排ガスの流れ方向上流側に位置する前縁41が備えられている。前縁41は、図1に示されるように上流側に向かってその全領域で凸状に滑らかに膨れている曲線で形成されている。
すなわち、作動流体が流入する前縁41は、ハブ側とシュラウド側とを結ぶ線mよりもハブ側とシュラウド側との中間部が、上流側に凸状に形成された形状をしている。
前縁41のシュラウド側部分は略同一半径位置に沿う、言い換えると、半径方向に略直交するような形状をしている。前縁41のシュラウド側部分でシュラウド側入口43を形成し、ハブ側部分でハブ側入口45を形成している。シュラウド側入口43は中心半径Ra、ハブ側入口45は中心半径Rbを有している。
中間翼39は、図1に示すように、子午面形状においてハブ側流入路29の流路幅の延長領域とシュラウド側流入路35の延長領域との重なる領域に少なくとも設けられている。本実施形態においては、重なる領域のほぼ全域に形成されている。
すなわち、中間翼39の前縁は、主翼37の前縁の形状に一致させ、中間翼高さh2は、ハブ側流入路29の流路幅を有しており、主翼37の翼高さh1に比べて中間高さを有している。中間翼39の後縁は、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
ハブ側流入路29の流路幅の延長領域に中間翼39が存在することで、ハブ側流入路29からの流れを効率よく受け止めて所謂衝動タービンの特性を発揮できる。しかし、中間翼39の後縁端を下流側にあまり長く設置すると、流速が局所的に増減速を生じ主翼37の翼間流路が狭くなり、流路損失が増大するため、損失が発生しない範囲に留める必要がある。このため、中間翼39の後縁をシュラウド側流入路35からの流れを受け止めることのできる主翼前縁端から後縁までの全長のほぼ中間までとして、中間翼39による流路損失を抑えている。
中間翼39の形状を以上のようにすることで、ハブ側の衝動タービン特性部分の翼枚数を、半径の大きい反動翼枚数を増やすことなく多くすることができる。所謂衝動タービン特性を有するハブ側の部分を有効に利用するものである。
従って、従来の斜流タービンでは翼枚数が少ないために高速流を効率よく回転力に変換されていないという問題に対して、主翼の枚数を増加することなく中間翼の増加によって、または主翼の枚数を減らし中間翼の枚数を増やす等によって、タービン動翼の慣性モーメントの増大を抑制して、斜流タービンの効率向上と過渡応答性を向上できる。
ハブ側の衝動タービン特性、およびシュラウド側の反動タービン特性ついては、既に、図17、図18を基に説明しているが、図18の速度三角形を参照して、図1の構成を基に再度説明する。
図1において、シュラウド側流入路35から流入する流れは、図18の流れ角αがおおよそ20~30度にて流速Aにて動翼11に流入する。周方向速度Cは動翼11の旋回周速にほぼ一致した速度であり、相対流速Bである半径速度は流量を代表する速度である。
シュラウド側流入路35から流入する流れは、動翼11の内部で半径変化に伴い流れが動翼11に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
一方、ハブ側流入路29から流入する流れは、ハブ側入口45の半径Rbはシュラウド側入口43の半径Raより小さいので、シュラウド側入口からの流れは半径の小さい領域に流れてゆき、圧力が低下した位置に流入するため、シュラウド側入口43より大きな流速A'でハブ側入口45に流入する。
また、ハブ側入口45の半径Rbはシュラウド側入口43の半径Raより小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口45ではタービン動翼11のシュラウド側入口43の相対流速Bに比べて大きい相対流速B'で流れが動翼11に流入する。
従って、ハブ側入口45から流入する流れは、シュラウド側入口43から流入する流れに比べて流速が高く、流れがタービンを通過する際に放出するエネルギーの内、動翼11内部での放出エネルギーの割合を示す値である反動度が、ハブ側の流れの方が小さくなる。
つまり、シュラウド側の流れは反動度が大きく動翼内部の流速が低くでき摩擦損失を低くできるので、高効率の流れとなる所謂反動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼11で転向させる際の運動量の方向転換による力で動翼11を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
なお、図2に示すように中間翼39を、主翼37、37間に1枚設置した例を示しているが、周方向に複数枚並べて設置してもよい。また、複数枚設置する場合は中間翼39の後縁端の位置が相互に異なっていてもよい。このように中間翼39を主翼37、37間に複数枚設置することで、斜流タービンの効率を維持しつつ、さらに、主翼37の翼枚数を少なくすることができ、タービン動翼11の慣性モーメントをさらに減少できる。
(第2実施形態)
次に、図3~図5を参照して、第2実施形態を説明する。
第2実施形態は、図1の中間翼39の子午面形状の変形例であり、第2実施形態の中間翼47は、後縁部分の高さを前縁部分より高くしたものである。
図3のラインNは、シュラウド側流入路35の流路幅とハブ側流入路29の流路幅との比によって主翼37に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線を示す。
また、ラインPは、シュラウド側流路の流れの中心線を示し、ラインQは、ハブ側流路の流れの中心線を示す。
そして、中間翼47の前縁は前記主翼37の前縁41に一致するとともに、中間翼の前縁の翼高さEを、前記中心線Nの高さN1とほぼ同等、もしくはその中心線Nより僅かに高い位置とし、前記中間翼47の後縁の翼高さFを前縁より高い位置(E<F)に設定されている。
このように、中間翼47の前縁を主翼37の前縁に一致させるとともに、中間翼47の前縁の翼高さEを中心線Nの高さN1とほぼ同等もしくは僅かに高い位置とすることによって、ハブ側の衝動翼特性を発揮する翼前縁部分の負荷を、各翼(主翼37および中間翼47の各翼)によって均等に受けることができる。
また、後縁の翼高さFを、前縁の翼高さEより高い位置(E<F)に設けるため、加速時においてハブ側の流量が増加して、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、シュラウド側に偏り、それぞれP1、Q1になった場合には、中間翼47でハブ側流路の流れの中心線Q1を確実に受け止めることができるため(図4参照)、中間翼47を衝動翼の特性として有効に作用させことができ、過渡応答性を改善できる。
さらに、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、すなわちシュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、ハブ側に偏りそれぞれP2、Q2になるが、シュラウド側の流れを中間翼47の後縁部分において受け止めて、角運動量を回転動力に変換できる(図5参照)。従って、中間翼47を反動翼の特性として作用させて高効率の効果を得ることもできる。
すなわち、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも中間翼47は、シュラウド側の流量が増加した場合には、シュラウド側の流れ角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
(第3実施形態)
次に、図6を参照して、第3実施形態を説明する。
第3実施形態は、図1の中間翼39の子午面形状の変形例であり、第3実施形態の中間翼49の前縁は主翼37の前縁半径より小さい位置に設けられるとともに、中間翼49の上流から下流への全域に渡っての翼高さG1を、図6のラインNで示す中心線の高さN1とほぼ同一高さ、もしくはその中心線Nより、僅かに高い位置で一定に維持されている。
また、図6に示すように、中間翼49の前縁は、中間翼49のハブ9への取り付け半径Rcとほぼ等しい半径に設定されており、翼高さG1は、高さN1+dで中心線Nが含まれる高さに設定されている。
中間翼49の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
本実施形態によれば、中間翼49の前縁は主翼37の前縁半径より小さい位置に設けられ、さらに中間翼49の高さG1を、中心線Nの高より若干高い位置で上流から下流にわたって一定に維持するので、すなわち、中間翼49の前縁の位置、および全域にわたる翼高さを制限することによって、中間翼49の半径方向の大きさを第1、第2実施形態の中間翼39、47より小さくすることができ、動翼11の慣性モーメントを減少できる。
また、中間翼49の前縁半径を中間翼49のハブ9への取り付け半径Rcとほぼ等しい半径にするため、中間翼49のハブ外周面31への固定が安定する。
(第4実施形態)
次に、図7~9を参照して、第4実施形態を説明する。
第4実施形態の中間翼51は、前記第3実施形態の中間翼49の翼高さを、前縁より後縁を高い位置に設けたものである。
図7に示すように、中間翼51の前縁は、中間翼51のハブ9への取り付け半径Rcとほぼ等しい半径に設定されており、翼高さG2は、高さN1+dで中心線Nが含まれる高さに設定されている。
中間翼51の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。後縁の翼高さG3は、前縁より高く設定されている。
なお、図8、9は、図7の変形例であり、図7の前縁が半径Rcで一定に延びて、後縁と一致した場合を示している。この中間翼53の前縁と後縁との間の中間部分が存在せず、前縁と後縁とが交差する形状を有ており、ほぼ三角形状に形成されている。
図7~9のように、後縁の翼高さG3は、前縁の翼高さG2より高い位置(G2<G3)に設けるため、加速時においてハブ側の流量が増加して、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、シュラウド側に偏り、それぞれP1、Q1になった場合でも、中間翼51、53でハブ側流路の流れの中心線Q1を確実に受け止めることができるため(図8参照)、中間翼51、53を衝動翼の特性として有効に作用させことができ、過渡応答性を改善できる。
さらに、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、ハブ側に偏りそれぞれP2、Q2になるが、シュラウド側の流れを中間翼51、53の後縁部分において受け止めて、角運動量を回転動力に変換できる(図9参照)。従って、中間翼51、53を反動翼の特性として作用させて高効率の効果を得ることもできる。
すなわち、第2実施形態と同様に、シュラウド側とハブ側との流量バランスの変化へ対応することができるとともに、第2実施形態に比べて、半径が小さいため、中間翼51、53の慣性モーメントを低減でき、動翼11の慣性モーメントをより減少できる。
(第5実施形態)
次に、図10を参照して、第5実施形態を説明する。
第5実施形態の中間翼55は、前縁を主翼37の前縁に一致させて翼高さを後縁に向かうにつれて低くしたものである。
図10に示すように、中間翼55の前縁は、主翼37の前縁の形状に一致させ、中間翼55の前縁高さG2は、図10のラインNで示す中心線の高さN1とほぼ同一高さ、もしくはその中心線Nより若干高い位置とし、中間翼55の後縁は、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて形成され、前縁から後縁にかけて翼高さが低下するように形成されている。
本実施形態によれば、ハブ側の衝動翼の作用を、主に中間翼の前縁側で負担させて、中間翼の下流側の部分の流路抵抗を低減するとともに、慣性モーメントの低減に寄与することができ。
(第6実施形態)
次に、図11を参照して、第6実施形態を説明する。
第6実施形態は、主翼37の前縁および中間翼39(47、49、51、53、55)の翼先端の形状を円弧状の断面形状とするものである。
図11は、図3のI-I線の断面図を示し、主翼37の前縁、および中間翼39の翼先端が円弧形状に形成されている。
このように、円弧形状に形成されるため、図11で示すように、シュラウド側の流れの流線Sは、中間翼39の翼先端を交差するように流れる。このため、中間翼39の翼先端は、翼前縁としての機能を有する必要があり、中間翼39等の翼先端を円弧状の断面に形成することによって、中間翼39等の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
また、中間翼39等の後縁は、翼先端を意味するほぼ直線状の線と、半径方向を向いた線を曲線で接続した形状を有しており、翼先端と後縁は構造的に明確な区別を持つことはなく、後縁および翼先端の後縁近傍では、下流ほど翼先端の円弧状の半径を小さくするように設定されるとよく、このように設定されると後縁でのウエイクの発生を防止でき、効率低下の防止に寄与できる。
(第7実施形態)
次に、図12~14を参照して、第7実施形態を説明する。
第7実施形態は、第1実施形態の主翼37および中間翼39の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を設定した翼前縁の断面形状に関するものである。
図12は、第1実施形態の動翼11の主翼37と中間翼39とを、ハブ外周面31またはハブ側流れの代表流線で切断した断面形状を、代表半径(例えば、動翼11のハブ取付半径Rc)の円筒上に投影した形状の展開図を示す。
図14は、図12の翼前縁部分の拡大図を示し、主翼37の前縁、および中間翼39の前縁の圧力面Z1と負圧面Z2とのなす角度である翼前縁開き角度θは、作動流体の排ガスの圧力変動に伴って変化する前縁への排ガスの流入角度の変化に相当する角度に設定されている。
すなわち、動翼11の入口速度三角形に示すように、作動流体の排ガスの圧力変動に伴って、タービン入口圧力Psが上昇した場合と、低下した場合とにおいて、その時の相対流速の流入角度の変化に相当する角度が、翼前縁開き角度θとして設定されている。
図13に示すように、エンジンにターボチャージャを搭載した場合のタービン入口圧力Psは、往復動エンジンの気筒数や加速の程度により変動し、定常時においても圧力変動が生じており、±10~15%の圧力変動が生じる。
この圧力変動が生じている場合には、ハブ側の衝動タービン特性を有する部分には、この圧力変動の変化同等の絶対流速の変化が生じ、その結果、動翼に流入する相対流れの流入角度βは、おおよそ30°~40°の変化をする。
そこで、タービン入口圧力Psが上昇した場合と、低下した場合との変化における相対流速の流入角度の変動相当角度が、翼前縁開き角度θとして設定される。
また、図14に示すように、主翼37の前縁、および中間翼39の前縁の負圧面Z2と周方向とのなす角度である翼角度ωは、タービン入口圧力Psが上昇した場合の流入角度βと同等、もしくは流入角度βより小さく設定される。
この翼前縁開き角度θを、相対流速の流入角度の変動相当角度に設定すること、および、負圧面Z2を、圧力が上昇した場合の流れ角に比べてほぼ同等かそれよりも小さく設定することによって、負圧面Z2における剥離を防止でき、圧力の変動に伴う衝動翼部分における流れの損失を低減できる。
従って、衝動翼部分におけるタービン入口圧力の変動による流入方向の変動に伴う損失増大を防止できる。
(第8実施形態)
次に、図15を参照して、第8実施形態を説明する。
第8実施形態は、図3の第2実施形態の主翼37の回転軸に直角方向のI-I線断面形状において、主翼37の前縁を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすものである。
図15に示すように、回転半径に対応して周速Uは低下し、絶対流速Vの周方向成分である旋回流速Vcは、自由渦の関係を満足しながら半径内向きに流れるので、半径が小さくなると旋回流速が大きくなり、その結果、相対流速Wが、主翼の翼前縁近傍において、回転方向から翼にぶつかるように流入するようになる(図15参照)。この翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かうため、翼負荷が増大する。
従って、翼前縁において、翼前縁の中心線を回転方向に湾曲させて、回転方向とは逆方向に凸形状にさせる湾曲部61を形成することにより、翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かう流れが翼にぶつかるように流入せずに、翼に沿うようになるため、翼前縁の衝突損失を低減でき翼負荷を低減し、翼前縁の負荷が増加することによる損失増加を防止できる。
主翼37の翼面積と、中間翼39との翼面積の和が、主翼37だけの従来の翼面積と同等であることを目安とした場合に、中間翼39が増加した分、主翼37の翼枚数を少なくすることで翼面積負荷を同等にできるように、主翼37の翼枚数を従来に比べて少なくした場合、半径の大きい主翼の枚数が少なくなることで慣性モーメントを小さくすることができる。
しかし、一方で主翼37の翼枚数が少なくなったことで、シュラウド側から流入する流れに対して主翼37の翼前縁の負荷が大きくなり翼前縁の損失が増加する問題があるが、本実施形態では、前述のように、翼前縁の負荷が増加することによる損失増加を防止できる。
従って、第2実施形態の中間翼47の後縁の翼高さが、前縁より高い形状の場合においては、シュラウド側の流れが増加する定常運転状態において、主翼の翼枚数が減少したために生じる翼前縁の衝突損失を低減できる。その結果、定常運転時においても、加速時においても、慣性モーメントの低減と高効率との両立を第2実施形態の場合より一層高効率化できる。
(第9実施形態)
次に、図16A、図16Bを参照して、第9実施形態を説明する。
第9実施形態は、ハブ側流入路29に翼型ノズル63、および案内板65を設置したものである。その他の構成は、第1実施形態と同様である。
図16A、図16Bに示すように、ハブ側流入路29には、翼面が中心軸線Kとほぼ平行に形成された複数の翼で構成された翼型ノズル63が設けられている。翼型ノズル63の翼は、図16Bに示すように、円周に対して所定の角度をもつように傾斜して取り付けられている。翼型ノズル63は、ノズル入口63aとノズル出口63bはそれぞれ一定の円周上に位置して配置されている。
さらに、翼型ノズル63の下流側には、案内板65が各翼に対応して取り付けられている。案内板65は、対数らせん状断面形状とされ、翼型ノズル63の略延長部分となるように取り付けられている。案内板65の下流端65aは、主翼37及び中間翼39の前縁近くまで延びている。
ハブ側流入路29に、翼型ノズル63を備えているので、ハブ側流入路29を流れる流れの周方向速度を大きくすることができる。さらに、翼型ノズル63を出た流れは、角運動量保存則に従って流れ、案内板65によって動翼の前縁近傍まで案内される。また案内板65が対数らせん状断面形状とされているので、理想的ならせん流となって動翼11に流入できるため、斜流タービンの効率を向上できる。特に、ハブ側流入路29に設けられるために、中間翼39前縁に流入する排ガスの流れが加速または理想的な旋回流となるため、動翼11の所謂衝動タービンの特性を有する部分への流入速度を高めて過渡応答性を向上できる。
なお、第6実施形態、第7実施形態、第8実施形態、第9実施形態については、各実施形態において説明した主翼および中間翼以外に、他の実施形態の主翼および中間翼に適用してもよいことは勿論である。
本発明によれば、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されるとともに、スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンであって、タービン動翼のハブ側の衝動翼タービン特性を発揮する部分の主翼間に、中間高さの中間翼を設けて、衝動翼タービン特性の改善を行うとともに、動翼全体としての慣性モーメントの低減を図ることによって、効率向上および過渡応答性を向上できるので、小型ガスタービン、過給機、エキスパンダー等に用いられる斜流タービンへの適用技術として有用である。
 1 斜流タービン
3 タービンハウジング
5 タービンホイール
7 回転軸
9 ハブ
11 動翼(タービン動翼)
13 スクロール室(スクロール部)
15 シュラウド部
17 スクロール分割壁
19 シュラウド側空間
21 ハブ側空間
23 ハブ側分割壁面
25 シュラウド側分割壁面
29 ハブ側流入路
31 ハブ外周面
35 シュラウド側流入路
37 主翼
39、47、49、51、53、55 中間翼
43 シュラウド側入口
45 ハブ側入口
h1 主翼の翼高さ
h2 中間翼の翼高さ
N シュラウド側流路とハブ側流路を分割する中心線
E、G2 中間翼の前縁の翼高さ
F、G3 中間翼の後縁の翼高さ
K 中心軸線
P シュラウド側流路の流れの中心線
Q ハブ側流路の流れの中心線
G1 中間翼の翼高さ

Claims (12)

  1. 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
    該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
    前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
    該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
    前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
    前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
    周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成されることを特徴とする斜流タービン。
  2. 前記タービン動翼の子午面形状において前記中間翼は、前記ハブ側流入路の流路幅の延長領域と前記シュラウド側流入路の延長領域との重なる領域に少なくとも設けられることを特徴とする請求項1記載の斜流タービン。
  3. 前記中間翼を前記主翼の間に周方向において複数枚設置したことを特徴とする請求項1記載の斜流タービン。
  4. 前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けたことを特徴とする請求項1記載の斜流タービン。
  5. 前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同一高さ、もしくはその中心線より高い位置で一定に維持されることを特徴とする請求項1記載の斜流タービン。
  6. 前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線より高い位置で、且つ後縁の翼高さを前縁より高い位置に設けられることを特徴とする請求項1記載の斜流タービン。
  7. 前記中間翼の前縁の半径を前記中間翼のハブへの取り付け半径とほぼ等しい半径に設定されることを特徴とする請求項5または6記載の斜流タービン。
  8. 前記中間翼の前縁を前記主翼の前縁に一致させ、該中間翼の翼高さを後縁に向かうにつれて低くしたことを特徴とする請求項1記載の斜流タービン。
  9. 前記中間翼の翼先端を円弧状の断面に形成したことを特徴とする請求項1記載の斜流タービン。
  10. 前記主翼および中間翼の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を、作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定するとともに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定することを特徴とする請求項1記載の斜流タービン。
  11. 前記主翼の回転軸に直角方向の断面形状において、主翼の前縁部分を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすことを特徴とする請求項1記載の斜流タービン。
  12. 前記ハブ側流入路に中心軸線と平行な翼面からなるノズルと、同ノズルの下流側に後縁が前記動翼の前縁に対向するように配置された案内板とを備えたことを特徴とする請求項1記載の斜流タービン。
PCT/JP2012/072817 2012-09-06 2012-09-06 斜流タービン WO2014038054A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014534117A JP5762641B2 (ja) 2012-09-06 2012-09-06 斜流タービン
US14/359,140 US9657573B2 (en) 2012-09-06 2012-09-06 Mixed flow turbine
EP12884285.3A EP2894296B1 (en) 2012-09-06 2012-09-06 Diagonal flow turbine
PCT/JP2012/072817 WO2014038054A1 (ja) 2012-09-06 2012-09-06 斜流タービン
CN201280053347.1A CN103906895B (zh) 2012-09-06 2012-09-06 斜流式涡轮

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072817 WO2014038054A1 (ja) 2012-09-06 2012-09-06 斜流タービン

Publications (1)

Publication Number Publication Date
WO2014038054A1 true WO2014038054A1 (ja) 2014-03-13

Family

ID=50236703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072817 WO2014038054A1 (ja) 2012-09-06 2012-09-06 斜流タービン

Country Status (5)

Country Link
US (1) US9657573B2 (ja)
EP (1) EP2894296B1 (ja)
JP (1) JP5762641B2 (ja)
CN (1) CN103906895B (ja)
WO (1) WO2014038054A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205998A1 (de) * 2015-04-02 2016-10-06 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern
US10563515B2 (en) 2015-03-26 2020-02-18 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine impeller and variable geometry turbine
DE112015001237B4 (de) * 2014-05-20 2021-06-24 Borgwarner Inc. Abgasturbolader
US11215057B2 (en) 2017-01-16 2022-01-04 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine wheel, turbine, and turbocharger
US11821339B2 (en) 2019-06-14 2023-11-21 Ihi Corporation Turbocharger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210990A1 (de) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Abgasturbolader mit einem Radial-Axial-Turbinenrad
US10072523B2 (en) * 2013-12-04 2018-09-11 Mitsubishi Heavy Industries, Ltd. Sheet-metal turbine housing
DE202015007926U1 (de) 2015-11-17 2017-02-20 Borgwarner Inc. Abgasturbolader
JP6710271B2 (ja) * 2016-03-31 2020-06-17 三菱重工エンジン&ターボチャージャ株式会社 回転機械翼
JP2017193985A (ja) * 2016-04-19 2017-10-26 本田技研工業株式会社 タービンインペラ
JP6651404B2 (ja) * 2016-04-19 2020-02-19 本田技研工業株式会社 ターボ機械
US10912693B2 (en) 2017-07-12 2021-02-09 Hill-Rom Services, Inc. Patient immersion and support surface life determination using RADAR and RFID
DE102019211515A1 (de) * 2019-08-01 2021-02-04 Vitesco Technologies GmbH Turbinenlaufrad einer Abgasturbine und Abgasturbolader für eine Brennkraftmaschine
US11835057B2 (en) * 2019-12-09 2023-12-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller of centrifugal compressor, centrifugal compressor, and turbocharger
CN111535872B (zh) * 2020-04-07 2022-01-11 东方电气集团东方汽轮机有限公司 一种无叶过渡混流透平结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549373A (en) * 1975-04-28 1979-08-08 Garrett Corp Turbo machines
JPS6392001U (ja) * 1986-12-05 1988-06-14
US4904158A (en) * 1988-08-18 1990-02-27 Union Carbide Corporation Method and apparatus for cryogenic liquid expansion
DE3908285C1 (en) * 1989-03-14 1990-06-07 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Turbine wheel of an exhaust turbocharger for an internal combustion engine with radial and/or mixed-flow gas feed
JPH08121184A (ja) * 1994-10-12 1996-05-14 Mercedes Benz Ag 内燃機関用排気ガスタービン過給機
JP2004510094A (ja) * 2000-09-29 2004-04-02 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガスターボチャージャ、スーパーチャージ型内燃機関およびこれらの動作方法
WO2006117072A1 (de) * 2005-04-29 2006-11-09 Daimlerchrysler Ag Turbine mit einem turbinenrad für einen abgasturbolader einer brennkraftmaschine und abgasturbolader für eine brennkraftmaschine
US20070231141A1 (en) * 2006-03-31 2007-10-04 Honeywell International, Inc. Radial turbine wheel with locally curved trailing edge tip
JP2008503685A (ja) * 2004-06-25 2008-02-07 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関
JP4288051B2 (ja) 2002-08-30 2009-07-01 三菱重工業株式会社 斜流タービン、及び、斜流タービン動翼
JP2009281197A (ja) 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd 斜流タービン

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152804B4 (de) 2001-10-25 2016-05-12 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
DE10228003A1 (de) 2002-06-22 2004-01-15 Daimlerchrysler Ag Turbine für einen Abgasturbolader
US20070134086A1 (en) * 2003-12-03 2007-06-14 Mitsubishi Heavy Indusries Ltd. Impeller for compressor
JP2008132403A (ja) 2006-11-27 2008-06-12 Calsonic Kansei Corp フィルタ装置
JP5427900B2 (ja) 2012-01-23 2014-02-26 三菱重工業株式会社 斜流タービン

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549373A (en) * 1975-04-28 1979-08-08 Garrett Corp Turbo machines
JPS6392001U (ja) * 1986-12-05 1988-06-14
US4904158A (en) * 1988-08-18 1990-02-27 Union Carbide Corporation Method and apparatus for cryogenic liquid expansion
DE3908285C1 (en) * 1989-03-14 1990-06-07 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Turbine wheel of an exhaust turbocharger for an internal combustion engine with radial and/or mixed-flow gas feed
JPH08121184A (ja) * 1994-10-12 1996-05-14 Mercedes Benz Ag 内燃機関用排気ガスタービン過給機
JP2004510094A (ja) * 2000-09-29 2004-04-02 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガスターボチャージャ、スーパーチャージ型内燃機関およびこれらの動作方法
JP4288051B2 (ja) 2002-08-30 2009-07-01 三菱重工業株式会社 斜流タービン、及び、斜流タービン動翼
JP2008503685A (ja) * 2004-06-25 2008-02-07 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関
WO2006117072A1 (de) * 2005-04-29 2006-11-09 Daimlerchrysler Ag Turbine mit einem turbinenrad für einen abgasturbolader einer brennkraftmaschine und abgasturbolader für eine brennkraftmaschine
US20070231141A1 (en) * 2006-03-31 2007-10-04 Honeywell International, Inc. Radial turbine wheel with locally curved trailing edge tip
JP2009281197A (ja) 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd 斜流タービン

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015001237B4 (de) * 2014-05-20 2021-06-24 Borgwarner Inc. Abgasturbolader
US10563515B2 (en) 2015-03-26 2020-02-18 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine impeller and variable geometry turbine
DE102015205998A1 (de) * 2015-04-02 2016-10-06 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern
US9896992B2 (en) 2015-04-02 2018-02-20 Ford Global Technologies, Llc Pressure-charged combustion engine having a double-flow turbine and grouped cylinders
US11215057B2 (en) 2017-01-16 2022-01-04 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine wheel, turbine, and turbocharger
US11821339B2 (en) 2019-06-14 2023-11-21 Ihi Corporation Turbocharger

Also Published As

Publication number Publication date
CN103906895A (zh) 2014-07-02
EP2894296B1 (en) 2020-04-22
JP5762641B2 (ja) 2015-08-12
US20150218949A1 (en) 2015-08-06
EP2894296A4 (en) 2016-07-27
CN103906895B (zh) 2015-11-25
EP2894296A1 (en) 2015-07-15
JPWO2014038054A1 (ja) 2016-08-08
US9657573B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
JP5762641B2 (ja) 斜流タービン
JP6109197B2 (ja) ラジアルタービン動翼
US7549839B2 (en) Variable geometry inlet guide vane
JP4691002B2 (ja) 斜流タービンまたはラジアルタービン
EP2994647B1 (en) Centrifugal compressor with inlet duct having swirl generators
US9745859B2 (en) Radial-inflow type axial flow turbine and turbocharger
JP6801009B2 (ja) タービンホイール、タービン及びターボチャージャ
JP5427900B2 (ja) 斜流タービン
WO2022054561A1 (ja) タービンホイール、タービン及びターボチャージャ
JP2020186649A (ja) 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ
JP2013015035A (ja) ラジアルタービンおよびラジアルタービンを備えたターボチャージャ
JP4402503B2 (ja) 風力機械のディフューザおよびディフューザ
CN114787490B (zh) 涡轮机及涡轮增压器
WO2023187913A1 (ja) 斜流タービン及びターボチャージャ
WO2021210164A1 (ja) スクロールケーシングおよび遠心圧縮機
US11421546B2 (en) Nozzle vane
JP4981857B2 (ja) 斜流圧縮機のディフューザ
JPH09100701A (ja) ラジアルタービンの動翼

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014534117

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012884285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14359140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE