WO2014038026A1 - 画像処理装置および画像処理方法 - Google Patents
画像処理装置および画像処理方法 Download PDFInfo
- Publication number
- WO2014038026A1 WO2014038026A1 PCT/JP2012/072658 JP2012072658W WO2014038026A1 WO 2014038026 A1 WO2014038026 A1 WO 2014038026A1 JP 2012072658 W JP2012072658 W JP 2012072658W WO 2014038026 A1 WO2014038026 A1 WO 2014038026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reachable
- information
- identification information
- image processing
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3469—Fuel consumption; Energy use; Emission aspects
Definitions
- the present invention relates to an image processing apparatus and an image processing method for generating a reachable range of a moving body based on a residual energy amount of the moving body.
- the use of the present invention is not limited to the image processing apparatus and the image processing method.
- Patent Document 1 a processing device that generates a reachable range of a mobile object based on the current location of the mobile object is known (for example, see Patent Document 1 below).
- Patent Document 1 all directions on the map are radially divided around the current location of the moving object, and the reachable intersection that is farthest from the current location of the moving object is obtained as a map information node for each divided region.
- a beige curve obtained by connecting a plurality of acquired nodes is displayed as the reachable range of the moving object.
- a processing device that generates a reachable range from the current location of the moving body on each road based on the remaining battery capacity and power consumption of the moving body is known (for example, see Patent Document 2 below).
- the power consumption of the mobile body is calculated on a plurality of roads connected to the current location of the mobile body, and the travelable distance of the mobile body on each road based on the remaining battery capacity and the power consumption of the mobile body Is calculated.
- a set of line segments obtained by acquiring the current location of the mobile body and a plurality of reachable locations of the mobile body that are separated from the current location by a travelable distance as nodes of map information and connecting the plurality of nodes Is displayed as the reachable range of the moving object.
- Patent Document 3 a device for displaying a travelable range of an electric vehicle is known (for example, see Patent Document 3 below).
- the map is divided into meshes, and the range that can be traveled is displayed in units of meshes.
- an image processing apparatus for processing information relating to a reachable range of a mobile object, and relates to a current point of the mobile object.
- Acquisition means for acquiring information and information on an initial amount of energy held by the mobile object at the current location, and estimated energy that is energy consumed when the mobile object travels in a predetermined section
- Calculation means for calculating consumption
- search means for searching for a plurality of reachable points that are reachable from the current point by the mobile body based on map information, the initial stored energy amount, and the estimated energy consumption amount
- And dividing means for dividing the map information into a plurality of areas, and a plurality of reachable points searched by the searching means
- Identification means for identifying whether or not each of the moving objects can reach each of the plurality of areas divided by the dividing means, and the reachability of the moving object from the map information based on an identification result by the identification means
- the contour of the range is extracted, and the vertex component included in the
- An image processing method is an image processing method in an image processing apparatus for processing information relating to a reachable range of a mobile object, wherein the information relating to the current location of the mobile object, and the current location
- the dividing step is based on the dividing step of dividing the region into a plurality of reachable points searched by the searching step.
- Identification step for identifying whether or not each of the mobile objects can reach each of the plurality of divided areas, and based on the identification result of the identification step, the reachable range of the mobile object from the map information.
- the movement which becomes the contour from which the frequency component is removed by extracting a contour and removing the frequency component of a predetermined frequency or higher after performing the process of increasing the vertex group with respect to the vertex group included in the extracted contour
- a display control step of displaying the reachable range of the body on the display means.
- FIG. 1 is an explanatory diagram illustrating a display example of the outline of the reachable range of the moving object.
- FIG. 2 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment.
- FIG. 3 is a block diagram illustrating a detailed functional configuration example of the display control unit 206 illustrated in FIG. 2.
- FIG. 4 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus.
- FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus.
- FIG. 6 is an explanatory diagram (part 1) schematically showing an example of reachable point search by the navigation device 500.
- FIG. FIG. 7 is an explanatory diagram (part 2) schematically showing an example of reachable point search by the navigation device 500.
- FIG. FIG. 1 is an explanatory diagram illustrating a display example of the outline of the reachable range of the moving object.
- FIG. 2 is a block diagram of an example of a functional configuration of the image processing apparatus according to
- FIG. 8 is an explanatory diagram (part 3) schematically illustrating an example of a reachable point search by the navigation device 500.
- FIG. 9 is an explanatory diagram (part 4) schematically illustrating an example of reachable point search by the navigation device 500.
- FIG. 10 is an explanatory diagram showing an example of reachable point search by the navigation device 500.
- FIG. 11 is an explanatory diagram showing another example of reachable point search by the navigation device 500.
- FIG. 12 is an explanatory diagram of an example in which a reachable point by the navigation device 500 is indicated by longitude-latitude.
- FIG. 13 is an explanatory diagram of an example in which the reachable points by the navigation device 500 are indicated by meshes.
- FIG. 14 is an explanatory diagram illustrating an example of a closing process performed by the navigation device 500.
- FIG. 15 is an explanatory diagram schematically illustrating an example of a closing process performed by the navigation device 500.
- FIG. 16 is an explanatory diagram illustrating an example of an opening process performed by the navigation device 500.
- FIG. 17 is an explanatory diagram schematically showing an example of vehicle reachable range extraction by the navigation device 500.
- FIG. 18 is an explanatory diagram schematically showing an example of a mesh after the reachable range of the vehicle is extracted by the navigation device 500.
- FIG. 19 is an explanatory diagram schematically showing another example of vehicle reachable range extraction by the navigation device 500.
- FIG. 20 is an explanatory diagram of an example of contour data complementing processing.
- FIG. 21 is a graph showing the filter characteristics of the IIR filter.
- FIG. 22 is an explanatory diagram of an example of thinning out contour data.
- FIG. 23 is a flowchart illustrating an example of an image processing procedure performed by the navigation device 500.
- FIG. 24 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device 500.
- FIG. 25 is a flowchart (part 1) illustrating a procedure of reachable point search processing by the navigation device 500.
- FIG. 26 is a flowchart (part 2) illustrating a procedure of reachable point search processing by the navigation device 500.
- FIG. 27 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device 500.
- FIG. 28 is a flowchart illustrating an example of a procedure of identification information provision processing by the navigation device 500.
- FIG. 29 is a flowchart illustrating an example of a procedure of first identification information change processing by the navigation device 500.
- FIG. 30 is a flowchart (part 1) illustrating an example of a procedure of reachable range contour extraction processing by the navigation device 500.
- FIG. 31 is a flowchart (part 2) illustrating an example of the procedure of the reachable range contour extraction process by the navigation device 500.
- FIG. 32 is a flowchart illustrating an example of a smoothing process performed by the navigation device 500.
- FIG. 33 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient.
- FIG. 34 is an explanatory diagram showing an example of a display example after the reachable point search process by the navigation device 500.
- FIG. 35 is an explanatory diagram illustrating an example of a display example after the identification information providing process by the navigation device 500.
- FIG. 36 is an explanatory diagram illustrating an example of a display example after the first identification information change process by the navigation device.
- FIG. 37 is an explanatory diagram illustrating an example of a display example after the closing process (expansion) by the navigation device 500.
- FIG. 38 is an explanatory diagram illustrating an example of a display example after the closing process (reduction) by the navigation device 500.
- FIG. 39 is an explanatory diagram illustrating an example of a display example after the smoothing process by the navigation device 500.
- FIG. 39 is an explanatory diagram illustrating an example of a display example after the smoothing process by the navigation device 500.
- FIG. 40 is a block diagram of an example of a functional configuration of the image processing system according to the second embodiment.
- FIG. 41 is a block diagram of an example of a functional configuration of the image processing system according to the third embodiment.
- FIG. 42 is an explanatory diagram illustrating an example of a system configuration of the image processing apparatus.
- FIG. 1 is an explanatory diagram illustrating a display example of the outline of the reachable range of the moving object.
- A shows some outline data of the reachable range of the moving body before the smoothing process.
- B is the next state of (A) and shows a state in which the contour shown in (A) is complemented. Specifically, (B) shows a state in which the number of outer peripheral points on the contour data shown in (A) is approximately doubled.
- C shows the next state of (B), and shows contour data obtained by removing high-frequency components from the contour data of (B).
- the contour data of (C) is a smooth curve compared to (A).
- (D) shows the next state of (C) and shows a state where a part of the outer peripheral points on the contour data is thinned out. Thereby, the contour data of (D) becomes a smooth curve compared with (C).
- the image processing apparatus increases the number of vertices on the contour by about 2 times by upsampling, and then decomposes each increased vertex into an x component and a y component, and smoothly uses a low-pass filter. To do. Then, the image processing apparatus according to the present embodiment calculates inflection points of straight lines connecting the vertices and leaves a point having a large angle at which the curve bends as a final vertex group. By doing in this way, since there are few vertices and an outer periphery becomes smooth, the improvement of the visibility of the reachable range of a mobile body can be aimed at. In addition, since the image processing apparatus according to the first embodiment does not perform frequency conversion such as Fourier transform, no inverse conversion is required, and the smoothing process can be speeded up.
- frequency conversion such as Fourier transform
- FIG. 2 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment.
- the image processing apparatus 200 according to the first embodiment generates a reachable range of the moving object based on the reachable point of the moving object searched based on the remaining energy amount of the moving object and causes the display unit 210 to display the reachable range.
- the image processing apparatus 200 includes an acquisition unit 201, a calculation unit 202, a search unit 203, a division unit 204, an identification unit 205a, a grant unit 205, and a display control unit 206.
- the identification unit 205 a includes a grant unit 205.
- the energy is energy based on electricity in the case of an EV (Electric Vehicle) vehicle, for example, and in the case of HV (Hybrid Vehicle) vehicle, PHV (Plug-in Hybrid Vehicle) vehicle, etc.
- energy is energy based on electricity and the like, for example, hydrogen or a fossil fuel that becomes a hydrogen raw material (hereinafter, EV vehicle, HV vehicle, PHV vehicle, and fuel cell vehicle are simply “ EV car ").
- the energy is energy based on, for example, gasoline, light oil, gas, etc., for example, in the case of a gasoline vehicle, a diesel vehicle or the like (hereinafter simply referred to as “gasoline vehicle”).
- the residual energy is, for example, energy remaining in a fuel tank, a battery, a high-pressure tank, or the like of the moving body, and is energy that can be used for the subsequent traveling of the moving body.
- the acquisition unit 201 acquires information on the current location of the moving object on which the image processing apparatus 200 is mounted and information on the initial stored energy amount that is the amount of energy held by the moving object at the current location of the moving object. Specifically, the acquisition unit 201 acquires information (position information) related to the current location by calculating the current position of the device itself using, for example, GPS information received from a GPS satellite.
- the acquisition unit 201 determines the remaining energy amount of the moving body managed by an electronic control unit (ECU: Electronic Control Unit) via an in-vehicle communication network that operates according to a communication protocol such as CAN (Controller Area Network). , Get the initial amount of energy.
- ECU Electronic Control Unit
- CAN Controller Area Network
- the acquisition unit 201 may acquire information on the speed of the moving body, traffic jam information, and moving body information.
- the information regarding the speed of the moving body is the speed and acceleration of the moving body.
- the acquisition part 201 may acquire the information regarding a road from the map information memorize
- the information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.
- the calculating unit 202 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section.
- the predetermined section is, for example, a section (hereinafter referred to as “link”) connecting one predetermined point on the road (hereinafter referred to as “node”) and another node adjacent to the one node.
- the node may be, for example, an intersection or a stand, or a connection point between links separated by a predetermined distance.
- the nodes and links constitute map information stored in the storage unit.
- the map information includes, for example, vector data in which intersections (points), roads (lines and curves), regions (surfaces), colors for displaying these, and the like are digitized.
- the calculation unit 202 estimates an estimated energy consumption amount in a predetermined section based on a consumption energy estimation formula including first information, second information, and third information. More specifically, the calculation unit 202 estimates an estimated energy consumption amount in a predetermined section based on information related to the speed of the moving object and the moving object information.
- the moving body information is information that causes a change in the amount of energy consumed or recovered during traveling of the moving body, such as the weight of the moving body (including the number of passengers and the weight of the loaded luggage) and the weight of the rotating body.
- the calculation unit 202 may estimate the estimated energy consumption amount in the predetermined section based on the consumption energy estimation formula further including the fourth information.
- the energy consumption estimation formula is an estimation formula for estimating the energy consumption of the moving body in a predetermined section.
- the energy consumption estimation formula is a polynomial composed of first information, second information, and third information, which are different factors that increase or decrease energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Detailed description of the energy consumption estimation formula will be described later.
- the first information is information about energy consumed when the moving body is stopped in a state where the drive source mounted on the moving body is in operation.
- the engine is idled at a low speed to such an extent that no load is applied to the engine of the moving body. That is, when the moving body is stopped in a state where the drive source is movable, the idling is performed.
- the moving body is stopped in a state where the driving source is movable, the moving body is in a stopped state, and when the accelerator is stepped on, the motor as the driving source starts to move.
- the first information is, for example, energy consumption consumed when the vehicle is stopped with the engine running or when it is stopped by a signal or the like. That is, the first information is an energy consumption amount consumed due to factors not related to the traveling of the moving body, and is an energy consumption amount due to an air conditioner or an audio provided in the moving body.
- the first information may be substantially zero in the case of an EV vehicle.
- the second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body.
- the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time.
- the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time.
- the predetermined time is a time interval at regular intervals, for example, per unit time.
- the recovered energy is, for example, electric power charged in a battery when the mobile body is traveling.
- the recovered energy is, for example, fuel that can be saved by reducing (fuel cut) the consumed fuel.
- the third information is information related to energy consumed by the resistance generated when the mobile object is traveling.
- the traveling time of the moving body is a traveling state where the speed of the moving body is constant, accelerated or decelerated within a predetermined time.
- the resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is various resistances generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.
- the resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind.
- the resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like.
- the resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.
- the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.
- the fourth information is information related to energy consumed and recovered by a change in altitude where the moving object is located.
- the change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time.
- the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.
- the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the estimation accuracy of energy consumption.
- the search unit 203 is based on the map information stored in the storage unit, the current location and initial stored energy amount of the mobile body acquired by the acquisition unit 201, and the estimated energy consumption calculated by the calculation unit 202. Search for a plurality of reachable points that can be reached from the current point.
- the search unit 203 in all routes that can move from the current location of the moving object, in a predetermined section that connects the predetermined points on the route from the moving object, starting from the current location of the moving object. A predetermined point and a predetermined section are searched so that the total of the estimated energy consumption is minimized. Then, the search unit 203 moves the mobile unit to a predetermined point where the total estimated energy consumption amount is within the range of the initial stored energy amount of the mobile unit in all the routes that can move from the current point of the mobile unit.
- the search unit 203 starts from the current location of the mobile object as a starting point, all links that can be moved from the current location of the mobile object, nodes that are connected to these links, and all that can be moved from these nodes. , And all the nodes and links that can be reached by the moving object.
- the search unit 203 each time the search unit 203 searches for a new link, the search unit 203 accumulates the estimated energy consumption of the route to which the one link is connected, and the accumulated energy consumption is minimized. Search for a node connected to the link and a plurality of links connected to this node.
- the search unit 203 estimates the estimated energy consumption from the current location of the moving object to the node among the plurality of links connected to the node.
- the estimated energy consumption of the relevant node is calculated using the estimated energy consumption of the link with a small amount of accumulation.
- the search unit 203 in each of the plurality of routes including the searched nodes and links, searches all nodes whose accumulated energy consumption amount is within the range of the initial stored energy amount of the mobile object. Search as a reachable point.
- the search unit 203 may search for a reachable point by excluding a predetermined section in which the movement of the mobile object is prohibited from candidates for searching for the reachable point of the mobile object.
- the predetermined section in which the movement of the moving body is prohibited is, for example, a link that is one-way reverse running, or a link that is a passage-prohibited section due to time restrictions or seasonal restrictions.
- the time restriction is, for example, that traffic is prohibited in a certain time zone by being set as a school road or an event.
- the seasonal restriction is, for example, that traffic is prohibited due to heavy rain or heavy snow.
- the search unit 203 selects another predetermined section as a mobile object.
- the reachable point may be searched for by removing it from the candidates for searching for the reachable point.
- the importance of the predetermined section is, for example, a road type.
- the road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals.
- the road type is a narrow street that passes through a general national road, a highway, a general road, an urban area, or the like.
- a narrow street is, for example, a road defined in the Building Standard Law with a width of less than 4 meters in an urban area.
- the search unit 203 moves all the areas constituting one bridge or one tunnel of the map information divided by the dividing unit 204. It is preferable to search for a reachable point of the moving body so as to be included in the reachable range of the body. Specifically, for example, when the entrance of one bridge or one tunnel is a reachable point of the moving body, the search unit 203 moves on the one bridge or one tunnel from the entrance of the one bridge or one tunnel toward the exit. You may search the said reachable point so that several reachable points may be searched.
- the entrance of one bridge or one tunnel is the starting point of one bridge or one tunnel on the side close to the current position of the moving object.
- the dividing unit 204 divides the map information into a plurality of areas. Specifically, the dividing unit 204 converts the map information into a plurality of rectangles based on the reachable point farthest from the current point of the mobile object among the plurality of reachable points of the mobile object searched by the search unit 203. Divided into shape regions, for example, converted into a mesh of m ⁇ m dots. An m ⁇ m dot mesh is handled as raster data (image data) to which identification information is added by an adding unit 205 described later. Note that each m of m ⁇ m dots may be the same numerical value or a different numerical value.
- the dividing unit 204 extracts the maximum longitude, the minimum longitude, the maximum latitude, and the minimum latitude, and calculates the distance from the current position of the moving object. Then, the dividing unit 204 divides the map information into a plurality of areas, for example, by dividing the size of one area when the reachable point farthest from the current position of the moving object and the current position of the moving object are equally divided into n.
- the identifying unit 205a identifies whether or not the mobile body can reach each of the plurality of areas divided by the dividing unit 204 based on the plurality of reachable points searched by the searching unit 203. More specifically, the assigning unit 205 provided in the identification unit 205a reaches each of the plurality of areas divided by the dividing unit 204 based on the plurality of reachable points searched by the searching unit 203. Identification information for identifying whether or not it is possible is given. Specifically, when the reachable point of the moving object is included in one area divided by the dividing unit 204, the granting unit 205 can reach the one area to identify that the moving object is reachable. The identification information is assigned. After that, when the reachable point of the moving object is not included in the one area divided by the dividing unit 204, the granting unit 205 identifies that the moving object cannot reach the one area. The identification information is assigned.
- the assigning unit 205 assigns reachable identification information “1” or unreachable identification information “0” to each area of the mesh divided into m ⁇ m. Convert to a 2D matrix data mesh of m columns.
- the dividing unit 204 and the assigning unit 205 divide the map information in this way, convert it into a mesh of two-dimensional matrix data of m rows and m columns, and handle it as binarized raster data.
- the assigning unit 205 includes a first changing unit 251 and a second changing unit 252 that perform identification information changing processing on a plurality of areas divided by the dividing unit 204. Specifically, the assigning unit 205 treats the mesh obtained by dividing the map information as binarized raster data by the first changing unit 251 and the second changing unit 252, and performs a closing process (a reduction process after the expansion process). Process). Further, the assigning unit 205 may perform an opening process (a process of performing an expansion process after the reduction process) by the first change unit 251 and the second change unit 252.
- the first change unit 251 can reach the identification information of the one area when the identification information that can reach another area adjacent to the one area to which the identification information is given is given.
- the identification information is changed (expansion process). More specifically, the first changing unit 251 includes any one of the other regions adjacent to each other in the eight directions of the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular region. If “1”, which is identification information that can reach that area, is assigned, the identification information of the one area is changed to “1”.
- the second changing unit 252 receives the identification information that cannot be reached in another area adjacent to the one area to which the identification information is assigned.
- the identification information of the area is changed to unreachable identification information (reduction process). More specifically, the second changing unit 252 may be any one of the other regions adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular region. If “0”, which is identification information that cannot be reached, is assigned to the area, the identification information of the one area is changed to “0”.
- the expansion process by the first change unit 251 and the reduction process by the second change unit 252 are performed the same number of times.
- the granting unit 205 can reach the area including the reachable point, which is a point where the moving body can reach from the current point, among the plurality of areas divided by the dividing unit 204. Reachable identification information for identifying this is given to make the movable body reachable. Thereafter, the assigning unit 205 assigns reachable identification information to an area adjacent to the area to which the reachable identification information is assigned, and the identification information of each area so that no missing point is generated in the reachable range of the moving object. To change.
- the reachable identification information for identifying that the reachable unit 205 is reachable is assigned to the divided map information corresponding to the entrance and exit of one bridge or one tunnel of the map information
- Reachable identification means is assigned to the divided map information corresponding to all areas constituting one bridge or one tunnel.
- the granting unit 205 corresponds to the entrance of one bridge or one tunnel, for example, when the reachable identification information is given to each area corresponding to the entrance and exit of one bridge or one tunnel, respectively. Identification information that can reach all areas where the moving body can move from the area to the area corresponding to the exit is given.
- the assigning unit 205 is identification information “1” that can reach each region corresponding to an entrance and an exit of one bridge or one tunnel before the expansion processing by the first changing unit 251, for example.
- identification information “1” that can reach each region corresponding to an entrance and an exit of one bridge or one tunnel before the expansion processing by the first changing unit 251, for example.
- the area identification information is changed to “1”.
- the section connecting the area corresponding to the entrance of one bridge or tunnel and the area corresponding to the exit may be a section corresponding to a road including a plurality of curves, or a single straight road. It may be a section.
- the display control unit 206 causes the display unit 210 to display the reachable range of the mobile object together with the map information based on the identification information of the area to which the identification information is given by the granting unit 205. Specifically, the display control unit 206 converts a mesh, which is a plurality of image data to which identification information is added by the adding unit 205, into vector data, and displays the mesh on the display unit 210 together with the map information stored in the storage unit. .
- FIG. 3 is a block diagram showing a detailed functional configuration example of the display control unit 206 shown in FIG.
- the display control unit 206 includes a contour extraction unit 261, a complementing unit 262, a removing unit 263, and a thinning unit 264.
- the contour extraction unit 261 can reach the moving object based on the positional relationship between one area to which reachable identification information is assigned and another area to which reachable identification information is adjacent that is adjacent to the one area.
- the outline of the range is extracted and displayed on the display unit 210. More specifically, for example, the contour extraction unit 261 extracts contour data indicating the contour of the reachable range of the moving object using a Freeman chain code, and causes the display unit 210 to display the reachable range of the moving object. .
- the line segment data parallel to either the X axis or the Y axis perpendicular to each other on the display screen has the same length.
- the contour extracting unit 261 may extract the reachable range of the moving object based on the longitude / latitude information of the region to which the reachable identification information is given, and display the reachable range on the display unit 210. Specifically, for example, the contour extraction unit 261 searches for identification information “1” that is reachable from the first column of two-dimensional matrix data of m rows and m columns for each row. Then, the display control unit 206 searches a continuous area including the reachable identification information “1” in each row of the two-dimensional matrix data, and first detects the minimum longitude and minimum latitude (area of the area where “1” is detected. A rectangular area having a line segment connecting the maximum longitude and the maximum latitude (lower right coordinates of the area) of the area where “1” is detected last as a diagonal line is displayed as the reachable range of the moving object.
- the complementing unit 262 supplements the line segment data connecting the outer peripheral points on the contour data. Specifically, for example, when the line segment data is not parallel to either the X axis or the Y axis, the complement unit 262 uses the line segment data as the X direction component line segment data. , Decomposed into Y-direction component line segment data. Thereby, each line segment data constituting the contour data has the same length.
- the removal unit 263 removes the high frequency component from the conversion result converted by the complementing unit. Specifically, for example, the removal unit 263 removes frequency components that are equal to or higher than a preset cutoff frequency from the complement result. More specifically, the removal unit 263 removes the high frequency component by passing the low frequency filter through the frequency component of the declination obtained by the conversion unit. Further, the user can adjust the smoothness of the contour data by changing the cutoff frequency.
- the thinning unit 264 extracts the adjacent line segment data. Thin out connected vertices. Thereafter, the thinning unit 264 corrects the contour data by connecting the opposite vertices of the adjacent line segment data. Thereby, smoother contour data can be obtained by simple processing.
- FIG. 4 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus.
- the image processing apparatus 200 first uses the acquisition unit 201 to obtain information on the current location of the moving body and information on the initial amount of energy held by the moving body at the current location of the moving body. Are acquired (steps S401 and S402). At this time, the image processing apparatus 200 may also acquire moving body information.
- the image processing apparatus 200 uses the calculation unit 202 to calculate an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section (step S403). At this time, the image processing apparatus 200 calculates estimated energy consumption amounts in a plurality of predetermined sections connecting predetermined points on the path of the moving body. Next, the image processing apparatus 200 uses the search unit 203 based on the map information stored in the storage unit and the initial stored energy amount and the estimated energy consumption amount acquired in steps S402 and S403. A reachable point is searched (step S404).
- the image processing apparatus 200 divides the map information made up of vector data into a plurality of regions by the dividing unit 204 and converts it into a mesh made up of raster data (step S405).
- the image processing apparatus 200 assigns reachable or unreachable identification information by the assigning unit 205 to the plurality of regions divided in step S405 based on the plurality of reachable points searched in step S404. (Step S406).
- the image processing apparatus 200 causes the display control unit 206 to display the reachable range of the moving object on the display unit 210 based on the identification information of the plurality of areas to which the identification information is assigned in step S406 (step S407).
- the process according to the flowchart ends.
- the image processing apparatus 200 divides the map information into a plurality of areas, searches for each area to determine whether or not the moving body can be reached, and moves the moving body to each area. Reachable or unreachable identification information that identifies whether the object is reachable or unreachable is assigned. Then, the image processing apparatus 200 generates a reachable range of the moving object based on the region to which reachable identification information is assigned. For this reason, the image processing apparatus 200 can generate the reachable range of the moving object in a state excluding areas where the moving object cannot travel, such as the sea, lakes, and mountain ranges. Therefore, the image processing apparatus 200 can accurately display the reachable range of the moving object.
- the image processing apparatus 200 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs a closing expansion process. For this reason, the image processing apparatus 200 can remove the missing points within the reachable range of the moving object.
- the image processing apparatus 200 converts the plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating reachability or unreachability to the plurality of areas, and then performs an opening reduction process. Therefore, the image processing apparatus 200 can remove isolated points in the reachable range of the moving object.
- the image processing apparatus 200 can remove missing points and isolated points in the reachable range of the moving body, and thus the travelable range of the moving body can be displayed on a two-dimensional smooth surface in an easy-to-read manner. it can. Further, the image processing apparatus 200 extracts the outline of the mesh generated by dividing the map information into a plurality of regions. For this reason, the image processing apparatus 200 can smoothly display the outline of the reachable range of the moving object.
- the image processing apparatus 200 searches for reachable points of the mobile object by narrowing down roads for searching for reachable points of the mobile object. For this reason, the image processing apparatus 200 can reduce the processing amount at the time of searching the reachable point of a mobile body. Even if the number of reachable reachable points is reduced by narrowing down the roads to search for the reachable points of the mobile object, the expansion process of closing is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the image processing device 200 can reduce the amount of processing for generating the reachable range of the moving object. In addition, the image processing apparatus 200 can display the travelable range of the moving object in a two-dimensional smooth surface in an easy-to-see manner.
- Example 1 of the present invention will be described.
- the navigation apparatus 500 mounted on a vehicle as the image processing apparatus 200 will be described using the navigation apparatus 500 mounted on a vehicle as the image processing apparatus 200.
- FIG. 5 is a block diagram illustrating a hardware configuration of the navigation apparatus.
- a navigation device 500 includes a CPU 501, ROM 502, RAM 503, magnetic disk drive 504, magnetic disk 505, optical disk drive 506, optical disk 507, audio I / F (interface) 508, microphone 509, speaker 510, input device 511, A video I / F 512, a display 513, a camera 514, a communication I / F 515, a GPS unit 516, and various sensors 517 are provided.
- the components 501 to 517 are connected by a bus 520, respectively.
- the CPU 501 governs overall control of the navigation device 500.
- the ROM 502 stores programs such as a boot program, an estimated energy consumption calculation program, a reachable point search program, an identification information addition program, and a map data display program.
- the RAM 503 is used as a work area for the CPU 501. That is, the CPU 501 controls the entire navigation device 500 by executing various programs recorded in the ROM 502 while using the RAM 503 as a work area.
- an estimated energy consumption in a link connecting one node and an adjacent node is calculated based on an energy consumption estimation formula for calculating an estimated energy consumption of the vehicle.
- the reachable point search program a plurality of points (nodes) that can be reached with the remaining energy amount at the current point of the vehicle are searched based on the estimated energy consumption calculated in the estimation program.
- identification information addition program identification information for identifying whether the vehicle is reachable or unreachable is assigned to a plurality of areas obtained by dividing the map information based on a plurality of reachable points searched in the search program.
- the In the map data display program the reachable range of the vehicle is displayed on the display 513 based on the plurality of areas to which the identification information is given by the identification information giving program.
- the magnetic disk drive 504 controls the reading / writing of the data with respect to the magnetic disk 505 according to control of CPU501.
- the magnetic disk 505 records data written under the control of the magnetic disk drive 504.
- an HD hard disk
- FD flexible disk
- the optical disk drive 506 controls reading / writing of data with respect to the optical disk 507 according to the control of the CPU 501.
- the optical disk 507 is a detachable recording medium from which data is read according to the control of the optical disk drive 506.
- a writable recording medium can be used as the optical disc 507.
- an MO, a memory card, or the like can be used as a detachable recording medium.
- Examples of information recorded on the magnetic disk 505 and the optical disk 507 include map data, vehicle information, road information, travel history, and the like.
- Map data is used to search for a reachable point of a vehicle in a car navigation system or to display a reachable range of a vehicle.
- Background data representing features (features) such as buildings, rivers, and the ground surface, This is vector data including road shape data that expresses the shape of the road with links and nodes.
- the voice I / F 508 is connected to a microphone 509 for voice input and a speaker 510 for voice output.
- the sound received by the microphone 509 is A / D converted in the sound I / F 508.
- the microphone 509 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 510, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 508 is output.
- Examples of the input device 511 include a remote controller, a keyboard, and a touch panel that are provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
- the input device 511 may be realized by any one form of a remote control, a keyboard, and a touch panel, but may be realized by a plurality of forms.
- the video I / F 512 is connected to the display 513.
- the video I / F 512 is output from, for example, a graphic controller that controls the entire display 513, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
- a control IC for controlling the display 513 based on the image data to be processed.
- the display 513 displays icons, cursors, menus, windows, or various data such as characters and images.
- a TFT liquid crystal display, an organic EL display, or the like can be used as the display 513.
- the camera 514 captures images inside or outside the vehicle.
- the image may be either a still image or a moving image.
- the outside of the vehicle is photographed by the camera 514 and the photographed image is analyzed by the CPU 501 or a recording medium such as the magnetic disk 505 or the optical disk 507 via the image I / F 512.
- the communication I / F 515 is connected to the network via wireless and functions as an interface between the navigation device 500 and the CPU 501.
- Communication networks that function as networks include in-vehicle communication networks such as CAN and LIN (Local Interconnect Network), public line networks and mobile phone networks, DSRC (Dedicated Short Range Communication), LAN, and WAN.
- the communication I / F 515 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, or the like.
- the GPS unit 516 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
- the output information of the GPS unit 516 is used when the current position of the vehicle is calculated by the CPU 501 together with output values of various sensors 517 described later.
- the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
- Various sensors 517 output information for judging the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor.
- the output values of the various sensors 517 are used by the CPU 501 to calculate the current position of the vehicle and to calculate the amount of change in speed and direction.
- the acquisition unit 201, the calculation unit 202, the search unit 203, the division unit 204, the assigning unit 205, and the display control unit 206 of the image processing apparatus 200 illustrated in FIG. 2 are the ROM 502, the RAM 503, the magnetic disk 505, and the navigation device 500 described above.
- the CPU 501 executes a predetermined program using a program or data recorded on the optical disc 507 or the like, and realizes its function by controlling each unit in the navigation device 500.
- the navigation apparatus 500 of the present embodiment calculates the estimated energy consumption of the vehicle on which the own apparatus is mounted.
- the navigation device 500 is one or more of energy consumption estimation formulas including first information, second information, and third information based on, for example, speed, acceleration, and vehicle gradient. Is used to calculate the estimated energy consumption of the vehicle in a predetermined section.
- the predetermined section is a link connecting one node (for example, an intersection) on the road and another node adjacent to the one node.
- the navigation device 500 determines whether the vehicle is linked based on traffic jam information provided by the probe, traffic jam prediction data acquired via a server, link length or road type stored in the storage device, and the like. The travel time required to finish driving is calculated. Then, navigation device 500 calculates an estimated energy consumption amount per unit time using any one of the following energy consumption estimation formulas (1) to (4), and the vehicle travels on the link for the travel time. Calculate the estimated energy consumption when finishing.
- the energy consumption estimation formula shown in the above equation (1) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling.
- ⁇ is the net thermal efficiency and ⁇ is the total transmission efficiency.
- is negative is expressed by the above equation (2).
- the energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during deceleration.
- the energy consumption estimation formula per unit time during acceleration / deceleration and travel is expressed by the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency.
- the first term on the right side is the energy consumption (first information) during idling.
- the second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component.
- the third term on the right side is energy consumption (third information) due to the air resistance component.
- the fourth term on the right side of the equation (1) is the energy consumption (second information) by the acceleration component.
- the fourth term on the right side of equation (2) is the energy consumption (second information) due to the deceleration component.
- is positive, that is, the empirical formula for calculating the estimated energy consumption per unit time during acceleration and traveling is (3) It is expressed by a formula.
- is negative, that is, the empirical formula for calculating the estimated energy consumption per unit time during deceleration is the following formula (4): It is represented by
- the coefficients a 1 and a 2 are constants set according to the vehicle situation and the like.
- the coefficients k 1 , k 2 , and k 3 are variables based on energy consumption during acceleration. Further, the speed V is set, and other variables are the same as the above formulas (1) and (2).
- the first term on the right side corresponds to the first term on the right side of the above equations (1) and (2).
- the second term on the right side is the energy of the gradient resistance component in the second term on the right side and the acceleration in the fourth term on the right side in the formulas (1) and (2). It corresponds to the energy of the resistance component.
- the third term on the right side corresponds to the energy of the rolling resistance component in the second term on the right side and the energy of the air resistance component in the third term on the right side in the above equations (1) and (2).
- ⁇ in the second term on the right side of the equation (4) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).
- the navigation device 500 calculates the travel time required for the vehicle to travel the link as described above, and calculates the average speed and average acceleration when the vehicle travels the link. Then, the navigation device 500 uses the average speed and average acceleration of the vehicle at the link, and the vehicle travels the link in the travel time based on the energy consumption estimation formula shown in the following formula (5) or formula (6). You may calculate the estimated energy consumption at the time of finishing.
- the energy consumption estimation formula shown in the above equation (5) is a theoretical formula for calculating the estimated energy consumption at the link when the altitude difference ⁇ h of the link on which the vehicle travels is positive.
- the case where the altitude difference ⁇ h is positive is a case where the vehicle is traveling uphill.
- the consumption energy estimation formula shown in the above equation (6) is a theoretical formula for calculating the estimated energy consumption amount in the link when the altitude difference ⁇ h of the link on which the vehicle travels is negative.
- the case where the altitude difference ⁇ h is negative is a case where the vehicle is traveling downhill.
- the first term on the right side is the energy consumption (first information) during idling.
- the second term on the right side is the energy consumption (second information) by the acceleration resistance.
- the third term on the right side is energy consumption consumed as potential energy (fourth information).
- the fourth term on the right side is the energy consumption (third information) due to the air resistance and rolling resistance (running resistance) received per unit area.
- the recovery rate ⁇ used in the above equations (1) to (6) will be described.
- the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) of the link from the energy at idling. This is a value obtained by subtracting the consumption (first term on the right side) and the energy consumption (fourth term on the right side) due to running resistance, and is expressed by the following equation (7).
- the recovery rate ⁇ is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles.
- the recovery rate of the gasoline vehicle is a ratio of energy required for acceleration and energy recovered for deceleration.
- the navigation device 500 searches for a plurality of nodes that can be reached from the current location of the vehicle on which the device is mounted as reachable locations of the vehicle. Specifically, the navigation apparatus 500 calculates the estimated energy consumption in the link using any one or more of the energy consumption estimation formulas shown in the above formulas (1) to (6). Then, the navigation device 500 searches for a reachable node of the vehicle and sets it as a reachable point so that the total of the estimated energy consumption in the link is minimized. Below, an example of the reachable point search by the navigation apparatus 500 is demonstrated.
- FIG. 6 to 9 are explanatory views schematically showing an example of reachable point search by the navigation device 500.
- FIG. 6-9 the nodes of the map data (for example, intersections) are indicated by circles, and the links (predetermined sections on the road) connecting adjacent nodes are indicated by line segments (the same applies to FIGS. 10 and 11). And links shown).
- the navigation apparatus 500 first searches for the link L1_1 that is closest to the current location 600 of the vehicle. Then, navigation device 500 searches for node N1_1 connected to link L1_1, and adds it to a node candidate for searching for a reachable point (hereinafter simply referred to as “node candidate”).
- the navigation apparatus 500 calculates the estimated energy consumption in the link L1_1 that connects the current location 600 of the vehicle and the node N1_1 that is the node candidate using the consumption energy estimation formula. Then, the navigation device 500 writes the estimated energy consumption 3wh in the link L1_1 to the storage device (magnetic disk 505 or optical disk 507) in association with the node N1_1, for example.
- the navigation apparatus 500 searches for all links L2_1, L2_2, and L2_3 connected to the node N1_1 and searches for reachable points (hereinafter simply “link candidates”). Said).
- the navigation apparatus 500 calculates the estimated energy consumption amount in the link L2_1 using the energy consumption estimation formula.
- the navigation device 500 associates the accumulated energy amount 7wh obtained by accumulating the estimated energy consumption amount 4wh in the link L2_1 and the estimated energy consumption amount 3wh in the link L1_1 with the node N2_1 connected to the link L2_1, and stores the storage device (magnetic disk 505). Or the optical disc 507) (hereinafter referred to as “set cumulative energy amount to node”).
- the navigation apparatus 500 calculates the estimated energy consumption in the links L2_2 and L2_3, respectively, using the energy consumption estimation formula as in the case of the link L2_1. Then, the navigation apparatus 500 sets the accumulated energy amount 8wh obtained by accumulating the estimated energy consumption amount 5wh in the link L2_2 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_2 connected to the link L2_2.
- the navigation apparatus 500 sets the accumulated energy amount 6wh obtained by accumulating the estimated energy consumption amount 3wh in the link L2_3 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_3 connected to the link L2_3. At this time, if the node for which the cumulative energy amount is set is not a node candidate, navigation device 500 adds the node to the node candidate.
- the navigation apparatus 500 includes all links L3_1 and L3_2_1 connected to the node N2_1, all links L3_2_2, L3_3 and L3_4 connected to the node N2_2, and a link L3_5 connected to the node N2_3. Search for link candidates. Next, the navigation apparatus 500 calculates the estimated energy consumption in the links L3_1 to L3_5 using the consumption energy estimation formula.
- the navigation apparatus 500 accumulates the estimated energy consumption 4wh in the link L3_1 to the accumulated energy amount 7wh set in the node N2_1, and sets the accumulated energy amount 11wh in the node N3_1 connected to the link L3_1.
- the navigation apparatus 500 sets the cumulative energy amounts 13wh, 12wh, and 10wh in the nodes N3_3 to N3_5 connected to the links L3_3 to L3_5, respectively, in the links L3_3 to L3_5 as in the case of the link L3_1.
- the navigation apparatus 500 accumulates the estimated energy consumption 5wh in the link L3_3 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 13wh in the node N3_3.
- the navigation device 500 accumulates the estimated energy consumption 4wh in the link L3_4 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 12wh in the node N3_4.
- the navigation device 500 accumulates the estimated energy consumption 4wh in the link L3_5 to the accumulated energy amount 6wh set in the node N2_3, and sets the accumulated energy amount 10wh in the node N3_5.
- the navigation device 500 includes the cumulative energy amount in a plurality of routes from the vehicle current point 600 to the one node N3_2.
- the minimum accumulated energy amount 10wh is set in the one node N3_2.
- the navigation device 500 When there are a plurality of nodes of the same hierarchy from the current location 600 of the vehicle, such as the above-described nodes N2_1 to N2_3, the navigation device 500, for example, from a link connected to a node having a low cumulative energy amount among the nodes at the same level.
- the estimated energy consumption and the cumulative energy amount are calculated in order.
- the navigation device 500 calculates the estimated energy consumption in the links connected to each node in the order of the node N2_3, the node N2_1, and the node N2_2, and accumulates the accumulated energy amount in each node.
- the navigation apparatus 500 continues to accumulate the accumulated energy amount as described above from the nodes N3_1 to N3_5 to the deeper level nodes. Then, the navigation device 500 extracts all nodes set with a cumulative energy amount equal to or less than a preset designated energy amount as reachable points of the vehicle, and obtains longitude / latitude information of the nodes extracted as reachable points. Write to the storage device in association with each node.
- the navigation device 500 has nodes N ⁇ b> 1 ⁇ / b> _ ⁇ b> 1, N ⁇ b> 2 ⁇ / b> _ ⁇ b> 1 to which a cumulative energy amount of 10 wh or less is set, as indicated by the circles shaded in FIG. N2_2, N2_3, N3_2, and N3_5 are extracted as reachable points of the vehicle.
- the designated energy amount set in advance is, for example, the remaining energy amount (initial stored energy amount) at the current point 600 of the vehicle.
- FIG. 9 is an example for explaining the reachable point search, and the navigation device 500 is actually as shown in FIG. 10. Further, more nodes and links are searched in a wider range than the map data 900 shown in FIG.
- FIG. 10 is an explanatory diagram showing an example of reachable point search by the navigation device 500.
- the accumulated energy amount is continuously calculated for all roads (excluding narrow streets), as shown in FIG. 10, the accumulated energy amount in all nodes of each road is searched in detail without omission. Can do.
- the estimated energy consumption of about 2 million links is calculated and accumulated throughout Japan, and the information processing amount of the navigation device 500 becomes enormous. For this reason, the navigation apparatus 500 may narrow down the road which searches for the reachable point of a mobile body based on the importance of a link etc., for example.
- FIG. 11 is an explanatory diagram showing another example of the reachable point search by the navigation device 500.
- the navigation device 500 calculates the cumulative energy amount on all roads (excluding narrow streets) around the current point 600 of the vehicle, and only high-importance roads are within a certain distance away. To calculate the total energy.
- the number of nodes and the number of links searched by the navigation device 500 can be reduced, and the information processing amount of the navigation device 500 can be reduced. Therefore, the processing speed of the navigation device 500 can be improved.
- the navigation device 500 divides the map data stored in the storage device based on the reachable point searched as described above. Specifically, the navigation device 500 converts map data composed of vector data into, for example, a 64 ⁇ 64 dot mesh (X, Y), and converts the map data into raster data (image data).
- FIG. 12 is an explanatory diagram of an example in which a reachable point by the navigation device 500 is indicated by longitude-latitude.
- FIG. 13 is an explanatory diagram of an example in which the reachable points by the navigation device 500 are indicated by meshes.
- FIG. 12 shows, for example, longitude and latitude information (x, y) of reachable points searched as shown in FIGS. 10 and 11 in absolute coordinates.
- a 64 ⁇ 64 dot mesh (X, Y) to which identification information is given based on the reachable point is illustrated in screen coordinates.
- the navigation device 500 first generates longitude / latitude information (x, y) having a point group 1200 in absolute coordinates based on the longitude x and latitude y of each of a plurality of reachable points. .
- the origin (0, 0) of the longitude / latitude information (x, y) is at the lower left of FIG.
- the navigation device 500 calculates the distances w1 and w2 from the longitude ofx of the current point 600 of the vehicle to the maximum longitude x_max and the minimum longitude x_min of the reachable point farthest in the longitude x direction.
- the navigation device 500 calculates the distances w3 and w4 from the latitude of the current point 600 of the vehicle to the maximum latitude y_max and the minimum latitude y_min of the reachable point farthest in the latitude y direction.
- w5 max (w1, w2) from the vehicle current point 600 to the minimum longitude x_min, which is the longest of the distances w1 to w4 from the vehicle current point 600. , W3, w4)
- map data including a plurality of reachable points such that the length of 1 / n becomes the length of one side of one element of the rectangular shape of the mesh (X,
- the current location 600 of the vehicle is configured with a mesh (X, Y) of m ⁇ m dots.
- the navigation device 500 converts the longitude / latitude information (x, y) into the mesh (X, Y), the navigation device 500 assigns identification information to each area of the mesh (X, Y), and the m rows and m columns. Convert to a two-dimensional matrix data (Y, X) mesh.
- the navigation apparatus 500 identifies reachability that identifies that the vehicle can reach the one area. For example, “1” is given as information (in FIG. 13, one dot is drawn in black, for example).
- the navigation device 500 identifies that the vehicle cannot reach the one area. For example, “0” is given as the identification information (in FIG. 19, one dot is drawn in white, for example).
- the navigation apparatus 500 converts the map data into a mesh of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each area obtained by dividing the map data, and the map data is binarized. Treated as raster data.
- Each area of the mesh is represented by a rectangular area within a certain range. Specifically, as shown in FIG. 13, for example, a mesh (X, Y) of mxm dots in which a point group 1300 of a plurality of reachable points is drawn in black is generated. The origin (0, 0) of the mesh (X, Y) is at the upper left.
- the navigation apparatus 500 of the present embodiment changes the identification information given to each area of the m ⁇ m dot mesh (X, Y) divided as described above. Specifically, the navigation apparatus 500 performs a closing process (a process of performing a reduction process after the expansion process) on a mesh of two-dimensional matrix data (Y, X) of m rows and m columns.
- FIG. 14 is an explanatory diagram illustrating an example of a closing process performed by the navigation device 500.
- FIGS. 14A to 14C are meshes of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region.
- FIG. 14A shows a mesh 1400 to which identification information is given for the first time after map data division processing. That is, the mesh 1400 shown in FIG. 14A is the same as the mesh shown in FIG.
- FIG. 14B shows the mesh 1410 after the closing process (expansion) is performed on the mesh 1400 shown in FIG.
- FIG. 14C shows a mesh 1420 after the closing process (reduction) is performed on the mesh 1410 shown in FIG.
- the vehicle reachable ranges 1401, 1411, and 1421 generated by a plurality of regions to which reachable identification information is assigned are blacked out. It shows in the state.
- the missing point 1402 (the hatched reachable range 1401 in the reachable range 1401 that is included in the reachable range 1401 of the vehicle). A white background) has occurred.
- the missing point 1402 has the number of nodes that are reachable points when narrowing down roads for searching for nodes and links in order to reduce the load of the reachable point search process by the navigation device 500. It is caused by being reduced.
- the navigation device 500 performs a closing expansion process on the mesh 1400 after the identification information is given.
- the closing expansion process the identification information of one area adjacent to the area to which the reachable identification information is assigned in the mesh 1400 after the identification information is given is changed to the reachable identification information.
- the identification information of all the areas adjacent to the outermost area of the reachable range 1401 of the vehicle before the expansion process is changed to the reachable identification information.
- the outer periphery of the reachable range 1411 of the vehicle after the expansion process is one dot at a time so as to surround the outer periphery of each outermost region of the reachable range 1401 of the vehicle before the expansion process every time the expansion process is performed. spread.
- the navigation apparatus 500 performs a closing reduction process on the mesh 1410.
- the closing reduction process the identification information of one area adjacent to the area to which the unreachable identification information of the mesh 1410 after the expansion process is assigned is changed to the unreachable identification information.
- each area on the outermost periphery of the reachable range 1411 of the vehicle after the expansion process becomes an area that cannot be reached by one dot every time the reduction process is performed, and the reachable range 1411 of the vehicle after the expansion process is reached.
- the outer circumference shrinks.
- the outer periphery of the reachable range 1421 of the vehicle after the reduction process is substantially the same as the outer periphery of the reachable range 1401 of the vehicle before the expansion process.
- Navigation device 500 performs the above-described expansion processing and reduction processing the same number of times. Specifically, when the expansion process is performed twice, the subsequent reduction process is also performed twice. By equalizing the number of times of the expansion process and the reduction process, the identification information of almost all areas in the outer periphery of the reachable range of the vehicle that has been changed to the identification information that can be reached by the expansion process is restored to the original information by the reduction process. It can be changed to unreachable identification information. In this way, the navigation device 500 can remove the missing point 1402 within the reachable range of the vehicle and generate the reachable range 1421 of the vehicle that can clearly display the outer periphery.
- FIG. 15 is an explanatory diagram schematically illustrating an example of a closing process performed by the navigation device 500.
- 15A to 15C show an example of a mesh of two-dimensional matrix data (Y, X) of h rows and h columns in which identification information is given to each region.
- FIG. 15A shows a mesh 1500 after identification information is given.
- FIG. 15B shows a mesh 1510 after closing processing (expansion) with respect to FIG.
- FIG. 15C shows a mesh 1520 after the closing process (reduction) with respect to FIG.
- areas 1501 and 1502 to which reachable identification information is assigned are illustrated by different hatchings.
- identification information that can reach the region 1501 of c rows and f columns, f rows and c columns, and g rows and f columns is assigned to the mesh 1500 after the identification information is given.
- the regions 1501 to which the reachable identification information is assigned are arranged in a separated state so that the change in the identification information after the expansion process and the reduction process becomes clear.
- the navigation device 500 performs a closing expansion process on the mesh 1500 after such identification information is applied.
- the navigation device 500 includes eight areas adjacent to the lower left, lower, lower right, right, upper right, upper, upper left, and left of the area 1501 in the c row and the f column. (B row e column to b row g column, c row e column, c row g column and d row e column to d row g column) 1502 is changed from unreachable identification information to reachable identification information. change.
- the navigation device 500 can reach the identification information of the eight adjacent regions 1502 in the region 1501 of the f row c column and the g row f column similarly to the processing performed for the region 1501 of the c row f column. Change to the identification information. For this reason, the reachable range 1511 of the vehicle is wider than the reachable range of the vehicle in the mesh 1500 after giving the identification information by the amount that the identification information of the region 1502 is changed to the reachable identification information.
- the navigation device 500 performs a closing reduction process on the mesh 1510 after the expansion process.
- the navigation device 500 includes the b rows and e columns adjacent to the region to which the unreachable identification information is given (the white background portion of the mesh 1510 after the expansion process).
- the identification information of the eight areas 1502 of b row g column, c row e column, c row g column, and d row e column to d row g column is changed to unreachable identification information.
- the navigation device 500 is similar to the processing performed for the eight areas 1502 of b row e column to b row g column, c row e column, c row g column, and d row e column to d row g column.
- G row g column, h row e column and h row g column 15 area 1502 identification information is changed to unreachable identification information.
- the mesh 1520 after the reduction process is similar to the mesh 1500 after the identification information is added, and the three areas 1501 to which reachable identification information is assigned, and after the reduction process.
- the reachable range 1521 of the vehicle consisting of one region 1502 that remains with the reachable identification information still attached is generated.
- the region 1502 to which the identification information that can be reached at the time of the expansion process is given and the identification information that can be reached after the reduction process is left is generated in the reachable range of the mesh 1500 after the identification information is given. The missing point disappears.
- the navigation device 500 performs an opening process (a process of performing an expansion process after the reduction process) on the mesh of the two-dimensional matrix data (Y, X) to generate a reachable range of the vehicle that can clearly display the outer periphery. Also good. Specifically, the navigation apparatus 500 performs an opening process as follows.
- FIG. 16 is an explanatory diagram illustrating an example of an opening process performed by the navigation device 500.
- FIGS. 16A to 16C are meshes of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region.
- FIG. 16A shows a mesh 1600 after identification information is given.
- FIG. 16B shows a mesh 1610 after the opening process (reduction) with respect to FIG.
- FIG. 16C shows a mesh 1620 after the opening process (expansion) with respect to FIG.
- the vehicle reachable ranges 1601, 1611, and 1621 generated by a plurality of regions to which reachable identification information is assigned are blacked out. It shows in the state.
- the opening process is performed on the mesh 1600 after the identification information is given.
- the isolated point 1602 can be removed.
- the navigation device 500 performs an opening reduction process on the mesh 1600 after the identification information is given.
- the identification information of one area adjacent to the area to which the unreachable identification information of the mesh 1600 after the identification information is added is changed to the unreachable identification information.
- the isolated point 1602 generated in the reachable range 1601 of the vehicle before the reduction process (after the identification information is given) is removed.
- each outermost area of the reachable range 1601 of the vehicle after the identification information is added becomes an area that cannot be reached by one dot every time the reduction process is performed, and the reachable range of the vehicle after the identification information is given
- the outer periphery of 1601 shrinks. Further, the isolated point 1602 generated in the reachable range 1601 of the vehicle after the identification information is given is removed.
- the navigation device 500 performs an opening expansion process on the mesh 1610.
- the identification information of one area adjacent to the area to which the unreachable identification information of the mesh 1610 after the reduction process is assigned is changed to the reachable identification information.
- the outer periphery of the reachable range 1621 of the vehicle after the expansion process is one dot at a time so as to surround the outer periphery of each outermost region of the reachable range 1611 of the vehicle after the reduction process every time the expansion process is performed. spread.
- Navigation device 500 performs the same number of expansions and reductions in the opening process as in the closing process.
- the outer periphery of the reachable range 1611 of the vehicle shrunk by the reduction processing is expanded, and the outer periphery of the vehicle reachable range 1611 after the reduction processing is expanded before the reduction processing. Can be returned to the outer periphery of the reachable range 1601 of the vehicle.
- the navigation apparatus 500 can generate the vehicle reachable range 1621 in which the isolated point 1602 does not occur and the outer periphery can be clearly displayed.
- the navigation device 500 of this embodiment extracts the contour of the reachable range of the vehicle based on the identification information given to the mesh of the two-dimensional matrix data (Y, X) of m rows and m columns. Specifically, the navigation apparatus 500 extracts the outline of the reachable range of the vehicle using, for example, a Freeman chain code. More specifically, the navigation apparatus 500 extracts the outline of the reachable range of the vehicle as follows.
- FIG. 17 is an explanatory view schematically showing an example of vehicle reachable range extraction by the navigation device 500.
- FIG. 18 is an explanatory diagram schematically showing an example of a mesh after the reachable range of the vehicle is extracted by the navigation device 500.
- FIG. 17A shows numbers indicating the adjacent directions of the regions 1710 to 1717 adjacent to the region 1700 (hereinafter referred to as “direction index (chain code)”) and eight-direction arrows corresponding to the direction index.
- FIG. 17B shows a mesh 1720 of two-dimensional matrix data (Y, X) of h rows and h columns as an example.
- the areas 1721 to 1734 to which reachable identification information is assigned and the areas to which reachable identification information is provided surrounded by the areas 1721 to 1734 are illustrated by hatching.
- the direction index indicates the direction in which the line segment of the unit length is facing.
- the coordinates corresponding to the direction index are (X + dx, Y + dy).
- the direction index in the direction from the region 1700 toward the region 1710 adjacent to the lower left is “0”.
- the direction index in the direction from the region 1700 toward the region 1711 adjacent to the bottom is “1”.
- the direction index in the direction from the region 1700 toward the region 1712 adjacent to the lower right is “2”.
- the direction index in the direction from the region 1700 toward the region 1713 adjacent to the right is “3”.
- the direction index in the direction from the region 1700 toward the region 1714 adjacent to the upper right is “4”.
- the direction index in the direction from the region 1700 toward the adjacent region 1715 is “5”.
- the direction index in the direction from the region 1700 toward the region 1716 adjacent to the upper left is “6”.
- the direction index in the direction from the region 1700 toward the region 1717 adjacent to the left is “7”.
- the navigation device 500 searches the region 1700 adjacent to the region 1700 to which the reachable identification information “1” is assigned in the counterclockwise direction. In addition, the navigation device 500 determines the search start point of the area to which the reachable identification information adjacent to the area 1700 is assigned based on the previous direction index. Specifically, when the direction index from another area toward area 1700 is “0”, navigation device 500 is adjacent to the lower left area of area 1700, that is, adjacent to the direction of direction index “7”. The search starts from 1717.
- the navigation device 500 is adjacent to the lower left, lower, lower right, right, upper right, upper left of the region 1700.
- the search is started from the matching regions, that is, the regions 1710 to 1716 adjacent in the directions of the direction indices “0”, “1”, “2”, “3”, “4”, “5”, “6”, respectively.
- the navigation apparatus 500 detects the reachable identification information “1” from any one of the areas 1710 to 1717 from the area 1700, the areas 1710 to 1717 that have detected the reachable identification information “1”.
- the direction indices “0” to “7” corresponding to are written in the storage device in association with the area 1700.
- the navigation device 500 extracts the outline of the reachable range of the vehicle as follows. As shown in FIG. 17 (B), the navigation device 500 first identifies identification information that can be reached in units of rows from the region of the a row and the a column of the mesh 1720 of the two-dimensional matrix data (Y, X) of the h row and the h column. Search the area to which is assigned.
- the navigation apparatus 500 Since the unreachable identification information is assigned to all the regions in the a-th row of the mesh 1120, the navigation apparatus 500 next moves the region from the b-th row to the b-th row in the mesh 1720. Search for identification information that can be reached.
- the navigation device 500 detects the reachable identification information in the b row and e column region 1721 of the mesh 1720, and then counterclockwise from the b row and e column region 1721 of the mesh 1720, the contour of the reachable range of the vehicle A region having reachable identification information is searched.
- the navigation apparatus 500 since the navigation apparatus 500 has already searched for the area of b rows and d columns adjacent to the left of the area 1721, first, the identification is made counterclockwise from the area 1722 adjacent to the lower left of the area 1721. Search whether there is an area having information.
- the navigation apparatus 500 detects the reachable identification information of the area 1722 and stores the direction index “0” in the direction from the area 1721 toward the area 1722 in association with the area 1721 in the storage device.
- the navigation apparatus 500 detects the reachable identification information of the area 1723 adjacent to the lower left of the area 1722, and stores the direction index “0” in the direction from the area 1722 to the area 1723 in association with the previous direction index. Store in the device.
- the navigation device 500 determines a search start point based on the previous direction index, and searches for whether there is an area having identification information that can be reached counterclockwise from the search start point. Repeat until the corresponding arrow returns to region 1721. Specifically, navigation device 500 searches for a region having reachable identification information counterclockwise from a region adjacent to the left of region 1722, and searches for region 1724 adjacent to region 1723. The reachable identification information is detected, and the direction index “1” is stored in the storage device in association with the previous direction index.
- navigation device 500 searches for an area having identification information that can be reached counterclockwise from the search start point, and has an area that has reachable identification information. 1724 to 1734 are sequentially detected. Then, every time the navigation device 500 acquires the direction index, the navigation device 500 associates it with the previous direction index and stores it in the storage device.
- navigation apparatus 500 searches whether there is an area having identification information that can be reached counterclockwise from the area of b rows and f columns adjacent to the upper right of area 1734, and the adjacent area on area 1734
- the reachable identification information 1721 is detected, and the direction index “5” is stored in the storage device in association with the previous direction index.
- the direction index “0” ⁇ “0” ⁇ “1” ⁇ “0” ⁇ “2” ⁇ “3” ⁇ “4” ⁇ “3” ⁇ “2” ⁇ “5” ⁇ “5” ⁇ “6” ⁇ “6” ⁇ “5” is stored in this order.
- the navigation apparatus 500 sequentially searches counterclockwise the areas 1722 to 1734 having reachable identification information adjacent to the area 1721 from the first detected area 1721 to obtain the direction index. Then, the navigation apparatus 500 fills one region in the direction corresponding to the direction index from the region 1721, thereby, as shown in FIG. 18, the contour 1801 of the reachable range of the vehicle and the portion 1802 surrounded by the contour 1801. A mesh having a vehicle reachable range 1800 is generated.
- the navigation device 500 may extract the outline of the reachable range of the vehicle based on the longitude and latitude information of the mesh of the two-dimensional matrix data (Y, X) to which reachable identification information is assigned.
- the navigation apparatus 500 extracts the outline of the reachable range of the vehicle as follows.
- FIG. 19 is an explanatory view schematically showing another example of vehicle reachable range extraction by the navigation device 500.
- FIG. A mesh 1900 of two-dimensional matrix data (Y, X) of d rows and h columns as shown in FIG. 19 will be described as an example.
- the navigation device 500 searches the mesh 1900 for the area to which the reachable identification information “1” is assigned. Specifically, the navigation apparatus 500 first searches for the identification information “1” that can be reached from the area of a row and a column toward the area of a row and h column.
- the navigation apparatus 500 Since the unreachable identification information “0” is assigned to all the regions in the a-th row of the mesh 1900, the navigation apparatus 500 next changes the region from the b-th row to the b-th column. An area having identification information “1” that can be reached is searched. Then, the navigation apparatus 500 acquires the minimum longitude px1 and the minimum latitude py1 (upper left coordinates of the area 1901) of the area 1901 in the b row and c column having the reachable identification information “1”.
- the navigation apparatus 500 searches for an area having identification information “1” that can be reached from the area of b rows and d columns toward the area of b rows and h columns.
- the navigation apparatus 500 searches for a boundary between the area having the reachable identification information “1” and the area having the reachable identification information “0”, and b rows having the reachable identification information “1”.
- the maximum longitude px2 and the maximum latitude py2 (lower right coordinates of the region 1902) of the region 1902 of the f column are acquired.
- the navigation device 500 has a rectangular area whose apex is the upper left coordinates (px1, py1) of the area 1901 of b row and c column and the lower right coordinates (px2, py2) of the area 1902 of b row and f column. Fill.
- the navigation apparatus 500 searches the mesh 1900 for the identification information “1” that can be reached from the b row and g column to the b row and h column region and further from the c row and the a column to the c row and h column.
- the navigation apparatus 500 acquires the minimum longitude px3 and the minimum latitude py3 (the upper left coordinates of the area 1903) of the area 1903 of the c row and d column having the reachable identification information “1”.
- the navigation apparatus 500 searches for an area having identification information “1” that can be reached from the area of the c row and the e column toward the area of the c row and the h column. Then, navigation device 500 searches for a boundary between an area having reachable identification information “1” and an area having reachable identification information “0”, and row c has reachable identification information “1”.
- the maximum longitude px4 and the maximum latitude py4 (lower right coordinates of the region 1904) of the region 1904 in the f column are acquired.
- the navigation device 500 has a rectangular area whose apexes are the upper left coordinates (px3, py3) of the area 1903 in the c row and d column and the lower right coordinates (px4, py4) of the area 1904 in the c row and f column. Fill.
- the navigation apparatus 500 searches for an area having identification information “1” that can be reached from the area of the c row and the g column to the area of the c row and the h column and further from the d row and the a column to the d row and the h column. .
- the navigation device 500 ends the process because the unreachable identification information “0” is assigned to all areas from the area of the c row and the g column to the d row and the h column.
- the vehicle reachable range and the vehicle reachable range outline are filled. Can be obtained.
- FIG. 20 is an explanatory diagram of an example of contour data complementing processing.
- (A) shows the contour data before complementation.
- the contour data (A) is contour data composed of vertices a0 to d0.
- (B) shows an example of the contour data after complementation.
- (B) shows a state in which vertices a1 to c1 are newly added.
- the vertex a1 is a midpoint between the vertices a0 and b0
- the vertex b1 is a midpoint between the vertices b0 and c0
- the vertex c1 is a midpoint between the vertices c0 and d0.
- the coordinate value of the vertex a1 in the Y-axis direction is the same as the coordinate value of the vertex a0 in the Y-axis direction
- the coordinate value of the vertex b1 in the Y-axis direction is the same as the coordinate value of the vertex b0 in the Y-axis direction
- the coordinate value of the vertex c1 in the Y-axis direction is the same as the coordinate value of the vertex c0 in the Y-axis direction.
- the vertex a1 is a point translated from the vertex a0 in the X-axis direction
- the vertex b1 is a point translated from the vertex b0 in the X-axis direction
- the vertex c1 is parallel to the vertex c0 in the X-axis direction. It is a point that has moved. In this way, resampling that increases the number of vertices by a factor of about 2 can be performed simply by changing only the coordinate values in the X-axis direction for existing vertices.
- (C) shows another example of the contour data after complementation.
- (C) shows a state where vertices a2 to c2 are newly added.
- the vertex a2 is the midpoint of the vertices a0 and b0
- the vertex b2 is the midpoint of the vertices b0 and c0
- the vertex c2 is the midpoint of the vertices c0 and d0. That is, in (C), linear interpolation is performed. In this way, resampling that increases the number of vertices by a factor of two can be easily performed by simply performing line interpolation on existing vertices.
- the removal unit 263 removes high frequency components by an IIR (Infinite Impulse Response) filter as shown in FIG.
- the IIR filter is a second-order Butterworth filter, and the cutoff frequency is 1/10 of the sampling frequency.
- the input data series that is the interval between the vertices of the contour data is represented by x (1), x (2),..., X (n ⁇ 2), x (n ⁇ 1), x (n), x ( n + 1),...
- the input data series can be obtained by sampling the vertices one by one.
- the output signal data series from the IIR filter after the cut of the high frequency component is expressed as y (1), y (2),..., Y (n-2), y (n-1), y (n), Let y (n + 1),...
- the filter coefficients of the IIR filter are a (1), a (2), a (3),..., B (1), b (2), b (3),.
- an output data series is calculated by the following difference equation.
- ⁇ y (n) b (1) ⁇ x (n) + b (2) ⁇ x (n ⁇ 1) +... + b (nb + 1) ⁇ x (n ⁇ nb) ⁇ a (2) ⁇ y (N-1) -...- a (na + 1) ⁇ y (n-na)
- FIG. 21 is a graph showing the filter characteristics of the IIR filter.
- A shows the relationship between frequency and amplitude in the filter characteristics of the IIR filter. “1” on the horizontal axis corresponds to half the sample rate.
- the graph of (A) shows filter characteristics in which the amplitude is attenuated by 100 dB or more at half of one sampling.
- B is a graph showing the relationship between frequency and phase. The phase rotates 180 degrees in half of one sampling. When an IIR filter is mounted, the cut-off frequency is determined by appropriately setting the filter coefficient.
- FIG. 22 is an explanatory diagram of an example of thinning out contour data.
- (A) shows the contour data before thinning.
- the contour data (A) is contour data composed of vertices P1 to P3.
- the coordinate values of the vertices P1 to P3 are (x1, y1) to (x3, y3).
- the thinning unit 264 obtains a difference between two adjacent vertices.
- the sum ⁇ 2y y3 ⁇ 2 ⁇ y2 ⁇ y1 of the differences ⁇ y1 and ⁇ y2 is obtained.
- the thinning unit 264 obtains difd which is a parallel root of the square sum of ⁇ 2x and ⁇ 2y.
- (B) shows difd. difd indicates the amount of change in the angle from the vertex P1 to the vertex P3, and coincides with the length of the line segment connecting the vertex P1 and the vertex P3.
- the thinning unit 264 calculates difd for each of the three consecutive vertices on the contour data, and calculates the average value of the calculated difd. Then, the thinning-out unit 264 deletes the vertex P2, which is the middle vertex of the three vertices for which difd that is equal to or less than the average value is obtained. As a result, the number of vertices is reduced to about 1/4. Further, instead of the angle change amount difd, the angle change rate may be obtained by an inverse trigonometric function. However, since the angle change amount difd simplifies the calculation, the decimation process is speeded up. be able to.
- the navigation apparatus 500 generates the reachable range of the moving body based on the reachable node of the moving body searched based on the remaining energy amount of the vehicle and causes the display 513 to display the reachable range.
- the navigation apparatus 500 is mounted on an EV car will be described as an example.
- FIG. 23 is a flowchart illustrating an example of an image processing procedure performed by the navigation device 500.
- the navigation apparatus 500 first acquires the current location (ofx, ofy) of the vehicle on which the apparatus is mounted, for example, via the communication I / F 515 (step S2301).
- the navigation apparatus 500 acquires the initial stored energy amount of the vehicle at the current location (ofx, ofy) of the vehicle, for example, via the communication I / F 515 (step S2302).
- the navigation device 500 performs a reachable node search process (step S2303).
- the navigation apparatus 500 performs mesh generation and identification information provision processing (step S2304).
- the navigation apparatus 500 extracts the outline of the reachable range of the vehicle (step S2305).
- the navigation apparatus 500 performs smoothing processing including interpolation processing, fast Fourier transform processing, high-frequency component removal processing, inverse fast Fourier transform processing, and thinning processing on the contour data indicating the extracted contour (step). S2306).
- the navigation device 500 displays the reachable range of the vehicle on the display 513 based on the smoothed contour data (step S2307), and ends the processing according to this flowchart.
- FIG. 24 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device 500.
- the process is performed in the reachable node search process in step S2303 described above.
- the navigation apparatus 500 first acquires traffic jam information such as probe data and traffic jam prediction data via the communication I / F 515 (step S2401). Next, the navigation device 500 acquires the length of the link and the road type of the link (step S2402).
- the navigation device 500 calculates the travel time of the link based on the information acquired in steps S2401 and S2402 (step S2403).
- the travel time of the link is the time required for the vehicle to finish traveling on the link.
- the navigation apparatus 500 calculates the average link speed based on the information acquired in steps S2401 to S2403 (step S2404).
- the average speed of the link is an average speed when the vehicle travels on the link.
- the navigation device 500 acquires the altitude data of the link (step S2405).
- the navigation apparatus 500 acquires vehicle setting information (step S2406).
- the navigation apparatus 500 uses the energy consumption estimation formula of any one of the above-described formulas (1) to (6) based on the information acquired in steps S2401 to S2406 to estimate the consumption at the link.
- the amount of electric power is calculated (step S2407), and the processing according to this flowchart ends.
- FIGS. 25 and 26 are flowcharts showing the procedure of reachable point search processing by the navigation device 500.
- the navigation device 500 adds the node N (i) _j connected to the link L (i) _j closest to the search start point to the node candidates (step S2501).
- the search start point is the current point (ofx, ofy) of the vehicle acquired in step S2301 described above.
- the variables i and j are arbitrary numerical values.
- a link and a node closest to the search start point are a link L (1) _j and a node N (1) _j, respectively, and are further connected to the node N (1) _j.
- the variable j1 is an arbitrary numerical value and means that a plurality of links or nodes exist in the same hierarchy.
- the navigation apparatus 500 determines whether or not there are one or more node candidates (step S2502).
- step S2502 Yes
- the navigation apparatus 500 selects a node candidate with the minimum cumulative power consumption from the current point of the vehicle to the node candidate (step S2503). For example, the following processing will be described assuming that the navigation device 500 selects the node N (i) _j as a node candidate.
- the navigation apparatus 500 determines whether or not the cumulative power consumption from the current point of the vehicle to the node N (i) _j is smaller than the specified energy amount (step S2504).
- the designated energy amount is, for example, the remaining energy amount of the vehicle at the current location of the vehicle. If smaller than the specified energy amount (step S2504: Yes), the navigation apparatus 500 extracts all the links L (i + 1) _j connected to the node N (i) _j (step S2505).
- the navigation apparatus 500 selects one link L (i + 1) _j among the links L (i + 1) _j extracted in step S2505 (step S2506).
- the navigation apparatus 500 performs candidate determination processing for determining whether or not the one link L (i + 1) _j selected in step S2506 is a link candidate (steps S2507 and S2508).
- the navigation apparatus 500 performs the power consumption calculation process for the one link L (i + 1) _j (step S2509). Next, the navigation apparatus 500 calculates the cumulative power consumption W (i + 1) _j up to the node N (i + 1) _j connected to the one link L (i + 1) _j (step S2510). Next, the navigation apparatus 500 determines whether there is another processed route connected to the node N (i + 1) _j (step S2511).
- the navigation apparatus 500 determines that the cumulative power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is the cumulative amount of the other route. It is determined whether or not the power consumption is smaller (step S2512). If the accumulated power consumption is smaller than the other route (step S2512: Yes), the navigation device 500 causes the node N (i + 1) _j to accumulate the accumulated power consumption W from the current point of the vehicle to the node N (i + 1) _j. (I + 1) _j is set (step S2513).
- step S2511 if there is no other route that has been processed (step S2511: NO), the navigation apparatus 500 proceeds to step S2513.
- the navigation apparatus 500 determines whether or not the node N (i + 1) _j is a node candidate (step S2514). If not a node candidate (step S2514: No), the navigation device 500 adds the node N (i + 1) _j to the node candidate (step S2515).
- step S2508 when one link L (i + 1) _j is not a link candidate (step S2508: No), the cumulative power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is another route. If the node N (i + 1) _j is a node candidate (step S2514: Yes), the navigation device 500 proceeds to step S2516.
- the navigation apparatus 500 determines whether or not the candidate determination process for all links L (i + 1) _j has been completed (step S2516).
- the candidate determination process for all links L (i + 1) _j is completed (step S2516: Yes)
- the node N (i) _j is excluded from the node candidates (step S2517), and the process returns to step S2502.
- the navigation apparatus 500 selects a node candidate having the minimum cumulative power consumption from the current location of the vehicle from the node candidates (step S2503).
- the node candidate selected in step S2503 is set as the next node N (i) _j, and the processes in and after step S2504 are performed.
- step S2516: NO if the candidate determination process for all links L (i + 1) _j has not been completed (step S2516: NO), the process returns to step S2506.
- the navigation device 500 again selects another link L (i + 1) _j connected to the node N (i) _j, and the candidate determination process for all the links L (i + 1) _j connected to the same node candidate is performed. Until the process ends (step S2516: YES), the processes from step S2507 to step S2515 are repeated.
- step S2502 when there is no one or more node candidates (step S2502: No), when the cumulative power consumption from the current point of the vehicle to the node N (i) _j is greater than or equal to the specified energy amount (step S2504: No), navigation The apparatus 500 ends the process according to this flowchart.
- FIG. 27 is a flowchart illustrating an example of a procedure of link candidate determination processing by the navigation device 500.
- the flowchart in FIG. 27 is an example of the process performed in step S2507 described above.
- the navigation device 500 first determines whether or not the one link L (i + 1) _j selected in step S2506 is prohibited from passing (step S2701). If the passage is not prohibited (step S2701: NO), the navigation device 500 determines whether one link L (i + 1) _j is one-way reverse running (step S2702). When it is not one-way reverse running (step S2702: No), the navigation apparatus 500 determines whether one link L (i + 1) _j is time-regulated or seasonally regulated (step S2703).
- step S2703: No the navigation apparatus 500 uses the node N (i + 1) on the current point side of the vehicle where one link L (i + 1) _j is one link L (i + 1) _j. It is determined whether or not the importance level is lower than the link L (i) _j connected to (step S2704). When the importance level is higher than that of the link L (i) _j (step S2704: No), the navigation device 500 determines one link L (i + 1) _j as a link candidate (step S2705), and ends the processing according to this flowchart. To do.
- step S2701 when traffic is prohibited (step S2701: Yes), when one-way reverse running (step S2702: Yes), when time regulation or season regulation (step S2703: Yes), link L ( i) When the importance level is lower than _j (step S2704: Yes), the navigation apparatus 500 ends the process according to this flowchart.
- FIG. 28 is a flowchart illustrating an example of a procedure of identification information provision processing by the navigation device 500.
- the flowchart in FIG. 28 is the processing performed in step S2304 described above.
- the navigation apparatus 500 first acquires longitude / latitude information (x, y) of a reachable node (searchable point) (step S2801). Next, the navigation apparatus 500 acquires maximum longitude x_max, minimum longitude x_min, maximum latitude y_max, and minimum latitude y_min (step S2802).
- the navigation apparatus 500 determines the distance w1 from the current vehicle location (ofx, ofy) acquired in step S2501 to the maximum longitude x_max, the distance w2 to the minimum longitude x_min, the distance w3 to the maximum latitude y_max, and the minimum latitude.
- a distance w4 to y_min is calculated (step S2803).
- the navigation apparatus 500 converts the map data from the absolute coordinate system to the screen coordinate system using the magnification mag calculated in step S2805, and generates a mesh (X, Y) of m ⁇ m dots (step S2806). .
- step S2806 the navigation apparatus 500 gives reachable identification information to the mesh (X, Y) including the reachable node, and identifies that the mesh (X, Y) not including the reachable node is unreachable. Give information. Then, the navigation device 500 performs the first identification information changing process to remove the missing point of the mesh (X, Y) corresponding to the bridge or the tunnel (step S2807).
- the navigation device 500 performs a second identification information change process (step S2808).
- the navigation apparatus 500 performs a third identification information change process (step S2809), and ends the process according to this flowchart.
- the second identification information changing process is a closing expansion process.
- the third identification information change process is a closing reduction process.
- the second identification information change process (step S2808) and the third identification information change process (step S2809) are performed after the first identification information change process (step S2807).
- the first identification information change process (step S2807) may be performed.
- FIG. 29 is a flowchart illustrating an example of a procedure of first identification information change processing by the navigation device 500.
- the flowchart in FIG. 29 is an example of the process performed in step S2807 described above. Specifically, when the identification information of each area corresponding to the entrance and exit of the bridge or tunnel is reachable identification information, the navigation device 500 detects the missing point generated in the area corresponding to the bridge or tunnel. Remove.
- the navigation device 500 first acquires a mesh of two-dimensional matrix data (Y, X) of my rows and mx columns (step S2911). Next, the navigation device 500 assigns 1 to variables i and j in order to search for identification information of the area of the i-th row and j-th column of the mesh (steps S2912, S2913). Next, the navigation apparatus 500 determines whether or not the region in the i row and j column of the mesh is a bridge or a tunnel entrance (step S2914).
- the navigation apparatus 500 determines whether the identification information of the i-th row and j-th column region of the mesh is “1”. (Step S2915). When the identification information of the area of i row and j column is “1” (step S2915: Yes), the navigation device 500 corresponds to the area of the other doorway of the bridge or tunnel corresponding to the area of i row and j column of the mesh. The position information (i1, j1) is acquired (step S2916).
- the navigation apparatus 500 determines whether or not the identification information of the area in the i1 row j1 column of the mesh is “1” (step S2917).
- the identification information of the area of i1 row j1 column is “1” (step S2917: Yes)
- the navigation apparatus 500 determines that all the areas on the section connecting the i row j column area and the i1 row j1 column area are all connected.
- the area identification information is acquired (step S2918).
- the navigation apparatus 500 changes the identification information of each area acquired in step S2918 to “1” (step S2919). As a result, the missing point generated in the region corresponding to the bridge or tunnel connecting the region of i row and j column and the region of i1 row and j1 column is removed.
- the navigation apparatus 500 may advance to step S2920 without performing the process of step S2919, when the identification information of each area
- step S2914 when the area of i row and j column is not the entrance of the bridge or tunnel (step S2914: No), when the identification information of the area of i row and j column is not “1” (step S2915: No), and i1 row j1 If the identification information of the row area is not “1” (step S2917: No), the navigation apparatus 500 proceeds to step S2920.
- the navigation apparatus 500 adds 1 to the variable j (step S2920), and determines whether or not the variable j exceeds the mx column (step S2921). If the variable j does not exceed the mx column (step S2921: NO), the navigation device 500 returns to step S2914 and repeats the subsequent processing. On the other hand, when the variable j exceeds the mx column (step S2921: Yes), the navigation apparatus 500 adds 1 to the variable i (step S2922), and determines whether the variable i exceeds the my row. (Step S2923).
- step S2923: No If the variable i does not exceed the my line (step S2923: No), the navigation device 500 returns to step S2913, and after substituting 1 for the variable j, the subsequent processing is repeated. On the other hand, when the variable i exceeds the my line (step S2923: Yes), the navigation apparatus 500 ends the process according to this flowchart. Thereby, the navigation apparatus 500 can remove all missing points on the bridge or tunnel included in the mesh of the two-dimensional matrix data of my rows and mx columns.
- the navigation apparatus 500 determines again whether or not the region of column i1 and j1 acquired as the other entrance of the bridge or tunnel in step S2916 is the other entrance of the bridge or tunnel (processing of step S2914). ) Is not necessary. Thereby, the navigation apparatus 500 can reduce the processing amount of a 1st identification information change process.
- FIGS. 30 and 31 are flowcharts showing an example of the procedure of the reachable range contour extraction process by the navigation device 500.
- FIG. The flowcharts of FIGS. 30 and 31 are an example of the process performed in step S2305 described above, and are the reachable range outline extraction process shown in outline 2 of outline extraction of reachable range in the navigation apparatus 500 described above.
- the navigation apparatus 500 first acquires a mesh of two-dimensional matrix data (Y, X) of my rows and mx columns (step S3001). Next, the navigation apparatus 500 acquires the longitude / latitude information of each area
- the navigation device 500 initializes the variable i and adds 1 to the variable i in order to search the identification information of the region of the i row and j column of the mesh (steps S3003 and S3004).
- the navigation apparatus 500 determines whether or not the variable i exceeds the my line (step S3005).
- step S3005 When the variable i does not exceed the my line (step S3005: No), the navigation device 500 initializes the variable j and adds 1 to the variable j (steps S3006 and S3007). Next, the navigation apparatus 500 determines whether or not the variable j exceeds the mx column (step S3008).
- the navigation apparatus 500 determines whether or not the identification information of the area in the i-th row and j-th column of the mesh is “1” (step S3009). If the identification information of the i-th row and j-th column region is “1” (step S3009: Yes), the navigation device 500 acquires the upper left coordinates (px1, py1) of the i-th row and j-th column region of the mesh (step S3010). ).
- the upper left coordinates (px1, py1) of the region of i row and j column are the minimum longitude px1 and the minimum latitude py1 of the region of i row and j column.
- the navigation apparatus 500 determines whether or not the variable j is smaller than the mx column (step S3011). If the variable j is greater than or equal to mx columns (step S3011: No), the navigation apparatus 500 acquires the lower right coordinates (px2, py2) of the region of i rows and j columns of the mesh (step S3012).
- the lower right coordinates (px2, py2) of the area of i row and j column are the maximum longitude px2 and the maximum latitude py2 of the area of i row and j column.
- the navigation device 500 sets the upper left coordinates (px1, py1) acquired in step S3010 and the lower right coordinates (px2, py2) acquired in step S3012 as map data (step S3016). Then, the navigation device 500 fills a rectangular area having the upper left coordinates (px1, py1) and the lower right coordinates (px2, py2) as opposed vertices (step S3017), returns to step S3004, and repeats the subsequent processing. Do it.
- step S3011 when the variable j is smaller than the mx column (step S3011: Yes), the navigation apparatus 500 adds 1 to the variable j (step S3013), and the identification information of the region in the i-th row and j-th column of the mesh is “1”. It is determined whether or not there is (step S3014). If the identification information of the i-th row and j-th column area is not “1” (step S3014: No), the navigation apparatus 500 acquires the lower right coordinates (px2, py2) of the i-th row and j-1th column region of the mesh ( Steps S3015) and S3016 and subsequent steps are performed.
- step S3014: Yes If the identification information of the area of i row and j column is “1” (step S3014: Yes), the process returns to step S3011, and the subsequent processing is repeated. If the variable i exceeds the my line (step S3005: Yes), the navigation device 500 ends the process according to the flowchart. When the variable j exceeds the mx column (step S3008: Yes), the process returns to step S3004 and the subsequent processing is repeated.
- FIG. 32 is a flowchart illustrating an example of a smoothing process performed by the navigation device 500.
- the flowchart in FIG. 32 is an example of the process performed in step S2306 described above.
- the navigation apparatus 500 uses the complementing unit 262 to perform contour data complementing processing indicating the contour of the reachable range of the moving object (step S3201).
- the navigation apparatus 500 removes high frequency components by passing the IIR filter through the removing unit 263 (step S3202).
- the navigation apparatus 500 performs the thinning process which thins out a vertex by the thinning part 264 (step S3203). Thereby, the contour data is smoothed.
- FIG. 33 is an explanatory diagram schematically illustrating an example of acceleration applied to a vehicle traveling on a road having a gradient.
- the second term on the right side of the above equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g. Yes.
- the distance of the section in which the vehicle travels is D
- the travel time is T
- the travel speed is V.
- the navigation apparatus 500 estimation accuracy improves by estimating a fuel consumption in consideration of a road gradient, that is, the fourth information.
- the slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 500. Further, when the inclinometer is not mounted on the navigation device 500, for example, road gradient information included in the map data can be used.
- traveling resistance generated in the vehicle will be described.
- the navigation device 500 calculates the running resistance by the following equation (11), for example.
- traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.
- FIG. 34 is an explanatory diagram showing an example of a display example after the reachable point search process by the navigation device 500.
- FIG. 35 is an explanatory diagram illustrating an example of a display example after the identification information providing process by the navigation device 500.
- FIG. 36 is an explanatory diagram illustrating an example of a display example after the first identification information change process by the navigation device.
- FIG. 37 is an explanatory diagram showing an example of a display example after the closing process (expansion) by the navigation device 500.
- FIG. 38 is an explanatory diagram illustrating an example of a display example after the closing process (reduction) by the navigation device 500.
- the display 513 displays reachable points of a plurality of vehicles searched by the navigation device 500 together with map data.
- the state of the display 513 illustrated in FIG. 34 is an example of information displayed on the display when the reachable point search process is performed by the navigation device 500. Specifically, this is a state in which the process of step S2303 in FIG. 23 has been performed.
- the map data is divided into a plurality of areas by the navigation device 500, and identification information indicating that each area is reachable or unreachable is given based on the reachable point, thereby displaying the display as shown in FIG.
- the reachable range 3500 of the vehicle based on the reachable identification information is displayed.
- the reachable range 3500 of the vehicle includes, for example, an area corresponding to both entrances and exits of the Tokyo Bay Crossing Road (Tokyo Bay Aqua Line: registered trademark) 3510 that crosses Tokyo Bay.
- the vehicle reachable range 3500 includes only one region 3511 out of all the regions on the Tokyo Bay crossing road 3510.
- the first identification information changing process is performed by the navigation device 500, so that the missing points on the Tokyo Bay crossing road are removed as shown in FIG.
- a reachable range 3620 including an area 3621 is displayed.
- a reachable range 3700 of the vehicle from which the missing points are removed is generated.
- the entire area 3621 on the Tokyo Bay crossing road has already been included in the reachable range 3620 by the first identification information change process, the entire area 3710 on the Tokyo Bay crossing road is The vehicle reachable range 3700 is obtained.
- closing processing is performed by the navigation device 500, so that the outer periphery of the vehicle reachable range 3800 is substantially the same as the outer periphery of the vehicle reachable range 3500 before closing is performed, as shown in FIG. It becomes the size of.
- the boundary of the entire region 3810 on the Tokyo Bay crossing road in FIG. 38 and the boundary of the entire region 3810 on the Tokyo Bay crossing road in FIG. 38 are displayed as boundaries depending on the mesh, but are easy to understand here. As shown by the boundary of the diagonal line.
- the outline of the reachable range 3800 of the vehicle can be displayed smoothly. Further, since the missing point is removed by closing, the reachable range 3800 of the vehicle is displayed with a two-dimensional smooth surface 3802. Even after the closing reduction process, the entire area 3810 on the Tokyo Bay crossing road is displayed as the vehicle reachable range 3800 or its outline 3801.
- FIG. 39 is an explanatory diagram showing an example of a display example after the smoothing process by the navigation device 500. Since the contour 3901 of the vehicle reachable range 3900 is smoothed from the state of FIG. 38 (contour 3801) by the navigation device 500, the vehicle reachable range 3900 is displayed with a two-dimensional smooth surface 3902. .
- the map information is divided into a plurality of areas, and it is searched whether or not each mobile area can reach each area, and each mobile area can reach or reach each area. Reachable or unreachable identification information for identifying the impossibility is given. And the navigation apparatus 500 produces
- the navigation device 500 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs a closing expansion process. For this reason, the navigation apparatus 500 can remove the missing point within the reachable range of the moving body.
- the navigation device 500 converts the plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an opening reduction process. For this reason, the navigation apparatus 500 can remove the isolated points in the reachable range of the moving object.
- the navigation device 500 can remove missing points and isolated points from the reachable range of the moving body, and thus can display the travelable range of the moving body on a two-dimensional smooth surface in an easy-to-read manner. .
- the navigation apparatus 500 extracts the mesh outline generated by dividing the map information into a plurality of regions. For this reason, the navigation apparatus 500 can display the outline of the reachable range of a moving body smoothly.
- the navigation device 500 searches for reachable points of the mobile object by narrowing down roads that search for reachable points of the mobile object. For this reason, the navigation apparatus 500 can reduce the processing amount at the time of searching the reachable point of a mobile body. Even if the number of reachable reachable points is reduced by narrowing down the roads to search for the reachable points of the mobile object, the expansion process of closing is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the navigation apparatus 500 can reduce the processing amount for detecting the reachable range of a mobile body. In addition, the navigation device 500 can display the travelable range of the moving body in a two-dimensional smooth surface in an easy-to-see manner.
- the navigation device 500 decomposes the line segment data constituting the contour data into an X-axis component and a Y-axis component as preprocessing of the fast Fourier transform, and uniformizes the length of each line segment data.
- the fast Fourier transform it is only necessary to perform the fast Fourier transform on the declination and the length of each vertex obtained from the contour data, so that the smoothing process can be speeded up.
- the line segment data is decomposed so as to be included in the reachable range in the complementing process, a sense of incongruity is suppressed and visibility is improved as compared with the case where the line segment data is divided so as not to be included in the reachable range. be able to.
- the smoothing process can be speeded up by a simple thinning process.
- FIG. 40 is a block diagram of an example of a functional configuration of the image processing system according to the second embodiment.
- a functional configuration of the image processing system 4000 according to the second embodiment will be described.
- the image processing system 4000 according to the second embodiment includes a server 4010 and a terminal 4020.
- the image processing system 4000 according to the second embodiment includes the function of the image processing apparatus 200 according to the first embodiment in the server 4010 and the terminal 4020.
- the server 4010 generates information to be displayed on the display unit 210 by the terminal 4020 mounted on the mobile object. Specifically, the server 4010 detects information related to the reachable range of the mobile object and transmits it to the terminal 4020.
- the terminal 4020 may be mounted on a mobile body, may be used in the mobile body as a mobile terminal, or may be used outside the mobile body as a mobile terminal. Terminal 4020 receives information about the reachable range of the moving object from server 4010.
- the server 4010 includes a calculation unit 202, a search unit 203, a division unit 204, a grant unit 205, a server reception unit 4011, and a server transmission unit 4012.
- the terminal 4020 includes an acquisition unit 201, a display control unit 206, a terminal reception unit 4021, and a terminal transmission unit 4022.
- the server reception unit 4011 receives information transmitted from the terminal 4020. Specifically, for example, the server reception unit 4011 receives information about a mobile unit from a terminal 4020 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc. via wireless.
- the information regarding the moving body is information regarding the current position of the moving body and information regarding the initial amount of energy that is the amount of energy held by the moving body at the current position of the moving body.
- Information received by the server reception unit 4011 is information referred to by the calculation unit 202.
- the server transmission unit 4012 uses the plurality of areas obtained by dividing the map information to which the reachable identification information for identifying that the moving body is reachable by the assigning unit 205 as the reachable range of the moving body as a terminal 4020. Specifically, for example, the server transmission unit 4012 transmits information to a terminal 4020 connected to a communication network such as a public network, a mobile phone network, a DSRC, a LAN, or a WAN via a radio.
- a communication network such as a public network, a mobile phone network, a DSRC, a LAN, or a WAN via a radio.
- Terminal 4020 is connected to server 4010 in a communicable state via, for example, an information communication network of a mobile terminal or a communication unit (not shown) provided in its own device.
- the terminal receiving unit 4021 receives information from the server 4010. Specifically, the terminal reception unit 4021 divides map information that is divided into a plurality of regions and each region is provided with identification information that is reachable or unreachable based on the reachable point of the mobile object. Receive. More specifically, for example, the terminal receiving unit 4021 receives information from a server 4010 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN via a wireless connection.
- a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN via a wireless connection.
- the terminal transmission unit 4022 transmits information regarding the moving object acquired by the acquisition unit 201 to the server 4010. Specifically, for example, the terminal transmission unit 4022 transmits information about the mobile unit to a server 4010 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, or the like via wireless communication.
- a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, or the like via wireless communication.
- the server 4010 performs estimated energy consumption calculation processing, reachable point search processing, and identification information addition processing among the image processing by the image processing apparatus 200 according to the first embodiment. Specifically, in the flowchart of FIG. 4, the terminal 4020 performs the process of step S ⁇ b> 401 and transmits the information acquired in step S ⁇ b> 401 to the server 4010.
- the server 4010 receives information from the terminal 4020.
- the server 4010 performs the processes in steps S402 to S406 based on the information received from the terminal 4020, and transmits the information acquired in step S406 to the terminal 4020.
- the terminal 4020 receives information from the server 4010. Then, the terminal 4020 performs step S407 based on the information received from the server 4010, and ends the process according to this flowchart.
- the image processing system 4000 and the image processing method according to the second embodiment can obtain the same effects as the image processing apparatus 200 and the image processing method according to the first embodiment.
- FIG. 41 is a block diagram of an example of a functional configuration of the image processing system according to the third embodiment.
- An image processing system 4100 according to the third exemplary embodiment includes a first server 4110, a second server 4120, a third server 4130, and a terminal 4140.
- the first server 4110 has the function of the calculation unit 202 of the image processing apparatus 200 of the first embodiment
- the second server 4120 has the function of the search unit 203 of the image processing apparatus 200 of the first embodiment.
- the third server 4130 includes the functions of the dividing unit 204, the identifying unit 205a, and the assigning unit 205 of the image processing apparatus 200 according to the first embodiment.
- the terminal 4140 has 206 functions.
- terminal 4140 has the same configuration as terminal 4020 of the second embodiment.
- the terminal 4140 includes an acquisition unit 201, a display control unit 206, a terminal reception unit 4141, and a terminal transmission unit 4142.
- Terminal reception unit 4141 has the same configuration as terminal reception unit 4021 of the second embodiment.
- Terminal transmission unit 4142 has the same configuration as terminal transmission unit 4022 of Embodiment 2.
- the first server 4110 includes a calculation unit 202, a first server reception unit 4111, and a first server transmission unit 4112.
- the second server 4120 includes a search unit 203, a second server reception unit 4121, and a second server transmission unit 4122.
- the third server 4130 includes a dividing unit 204, an identifying unit 205a and a granting unit 205, a third server receiving unit 4131, and a third server transmitting unit 4132.
- the first server reception unit 4111 receives information transmitted from the terminal 4140. Specifically, for example, the first server reception unit 4111 receives information from the terminal transmission unit 4142 of the terminal 4140 that is connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc. by radio. Receive. Information received by the first server reception unit 4111 is information referred to by the calculation unit 202.
- the first server transmission unit 4112 transmits the information calculated by the calculation unit 202 to the second server reception unit 4121. Specifically, the first server transmission unit 4112 transmits information to the second server reception unit 4121 that is wirelessly connected to a communication network such as a public network, a mobile phone network, DSRC, LAN, or WAN. Alternatively, the information may be transmitted to the second server reception unit 4121 connected by wire.
- a communication network such as a public network, a mobile phone network, DSRC, LAN, or WAN.
- the information may be transmitted to the second server reception unit 4121 connected by wire.
- the second server reception unit 4121 receives the information transmitted by the terminal transmission unit 4142 and the first server transmission unit 4112.
- the second server reception unit 4121 includes a first server transmission unit 4112 and a terminal transmission unit that are connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc. via radio.
- Information from 4142 is received.
- the second server reception unit 4121 may receive information from the first server transmission unit 4112 connected by wire.
- Information received by the second server reception unit 4121 is information referred to by the search unit 203.
- the second server transmission unit 4122 transmits the information searched by the search unit 203 to the third server reception unit 4131. Specifically, for example, the second server transmission unit 4122 transmits information to a third server reception unit 4131 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc. by radio. Alternatively, the information may be transmitted to the third server reception unit 4131 connected by wire.
- a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc.
- the information may be transmitted to the third server reception unit 4131 connected by wire.
- the third server reception unit 4131 receives the information transmitted by the terminal transmission unit 4142 and the second server transmission unit 4122.
- the third server reception unit 4131 includes a second server transmission unit 4122 and a terminal transmission unit that are wirelessly connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, or WAN.
- Information from 4142 may be received.
- the third server reception unit 4131 may receive information from the second server transmission unit 4122 connected by wire.
- Information received by the second server reception unit 4121 is information referred to by the division unit 204.
- the third server transmission unit 4132 transmits the information generated by the provision unit 205 to the terminal reception unit 4141. Specifically, for example, the third server transmission unit 4132 transmits information to a terminal reception unit 4141 connected to a communication network such as a public line network, a mobile phone network, a DSRC, a LAN, and a WAN via a radio.
- a communication network such as a public line network, a mobile phone network, a DSRC, a LAN, and a WAN via a radio.
- the first server 4110 performs estimated energy consumption calculation processing
- the second server 4120 performs reachable point search processing.
- the third server 4130 performs the identification information adding process.
- the terminal 4140 performs the process of step S401 and transmits the information acquired in step S401 to the first server 4110.
- the first server 4110 receives information from the terminal 4140.
- the first server 4110 performs steps S402 and S403 based on the information received from the terminal 4140, and transmits the information calculated in step S403 to the second server 4120.
- the second server 4120 receives information from the first server 4110.
- the second server 4120 performs the process of step S404 based on the information received from the first server 4110, and transmits the information searched in step S204 to the third server 4130.
- the third server 4130 receives information from the second server 4120.
- the third server 4130 performs the processes of steps S405 and S406 based on the information from the second server 4120, and transmits the information generated in step S406 to the terminal 4140.
- the terminal 4140 receives information from the third server 4130. Then, the terminal 4140 performs step S407 based on the information received from the third server 4130, and ends the processing according to this flowchart.
- the image processing system 4100 and the image processing method according to the third embodiment can obtain the same effects as the image processing device 200 and the image processing method according to the first embodiment.
- FIG. 42 is an explanatory diagram showing an example of the system configuration of the image processing apparatus.
- FIG. 42 illustrates an example in which the present invention is applied to an acquisition system 4200 in which a navigation device 4210 mounted on a vehicle is the terminal 4020 and the server 4220 is the server 4010.
- the image processing system 4200 includes a navigation device 4210, a server 4220, and a network 4240 mounted on the vehicle 4230.
- Navigation device 4210 is mounted on vehicle 4230.
- the navigation device 4210 transmits information on the current location of the vehicle and information on the initial stored energy amount to the server 4220.
- the navigation device 4210 displays the information received from the server 4220 on a display to notify the user.
- Server 4220 receives information on the current location of the vehicle and information on the initial stored energy amount from navigation device 4210.
- Server 4220 generates information regarding the reachable range of vehicle 4230 based on the received vehicle information.
- the hardware configuration of the server 4220 and the navigation device 4210 is the same as the hardware configuration of the navigation device 500 of the first embodiment.
- the navigation device 4210 only needs to have a hardware configuration corresponding to a function of transmitting vehicle information to the server 4220 and a function of receiving information from the server 4220 and notifying the user.
- the acquisition system 4200 is configured such that the navigation device 4210 mounted on the vehicle is the terminal 4140 of the third embodiment, and the functional configuration of the server 4220 is distributed to the first to third servers 4110 to 4130 of the third embodiment. Also good.
- the image processing method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
- This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
- the program may be a transmission medium that can be distributed via a network such as the Internet.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
- Instructional Devices (AREA)
Abstract
画像処理装置(200)は、移動体の残存エネルギー量に基づいて移動体の到達可能範囲を生成して表示部(210)に表示させる。取得部(201)は、移動体の現在地点に関する情報や、移動体の現在地点における初期保有エネルギー量に関する情報を取得する。算出部(202)は、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する。探索部(203)は、移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する。分割部(204)は、地図情報を複数の領域に分割する。識別部(205a)は、分割部(204)によって分割された複数の領域にそれぞれ移動体が到達可能であるか否かを識別する。表示制御部(206)は、移動体の到達可能範囲を地図情報とともに表示部(210)に表示させる。
Description
この発明は、移動体の残存エネルギー量に基づいて移動体の到達可能範囲を生成する画像処理装置および画像処理方法に関する。ただし、この発明の利用は、画像処理装置および画像処理方法に限らない。
従来、移動体の現在地点に基づいて、移動体の到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献1参照。)。下記特許文献1では、移動体の現在地点を中心に地図上の全方位を放射状に分割し、分割領域ごとに移動体の現在地点から最も遠い到達可能な交差点を地図情報のノードとして取得する。そして、取得した複数のノードを結んで得られるベジュ曲線を移動体の到達可能範囲として表示している。
また、移動体のバッテリー残容量および電力消費量に基づいて、各道路における移動体の現在地点からの到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献2参照。)。下記特許文献2では、移動体の現在地点に接続する複数の道路において移動体の電力消費量を算出し、移動体のバッテリー残容量および電力消費量に基づいて各道路における移動体の走行可能距離を算出する。そして、移動体の現在地点と、当該現在地点から走行可能距離だけ離れた移動体の複数の到達可能地点とを地図情報のノードとして取得し、複数のノードを結んで得られる線分の集合体を移動体の到達可能範囲として表示している。
また、電気自動車の走行可能範囲を表示する装置が知られている(たとえば、下記特許文献3参照。)。下記特許文献3では、地図がメッシュ状に分割され、走行可能な範囲をメッシュ単位で表示される。
しかしながら、上述した特許文献1の技術では、移動体の現在地点を中心に各方位における移動体から最も遠い到達地点のみを取得しているので、移動体の到達可能範囲の輪郭しか得られない。このため、移動体の現在地点と移動体から最も遠い到達地点との間に、海や湖など移動体が走行することのできない領域が含まれていたとしても、この移動体が走行することのできない領域を除外して移動体の到達可能範囲を取得することができないという問題点が一例として挙げられる。
また、上述した特許文献2の技術では、移動体の到達可能範囲として道路のみを取得しているので、道路以外の範囲を移動体の到達可能範囲に含めることができない。また、移動体の到達可能範囲が移動体の走行可能な道路に沿った線分の集合体で表示されるので、到達可能範囲の輪郭を取得することができない。このため、移動体の到達可能範囲を見やすく、かつ漏れなく表示することが困難であるという問題点が一例として挙げられる。
また、上述した特許文献3の技術において走行可能範囲をメッシュ単位で表示すると、外周を滑らかに表示することができず、視認性に欠けるという問題点が一例として挙げられる。また、他の走行可能範囲を表示する方法として、走行可能範囲を知るには、地図上をメッシュの区間に切り分け、主要な道路につき各メッシュに到達可能交差点があるか調べることが考えられる。しかしながら、演算量を減らす目的で全ての交差点で走行可能範囲を計算するのではなく、主要道路だけで計算するため、多くの欠落点が生じるという問題点が一例として挙げられる。このような欠落点を消去するために、画像処理の近傍処理をおこなうと、孤立点と孤立点を結ぶ外周が直線の組み合わせになり、滑らかに表示できず、視認性に欠けることになる。また、外周を直線で結んで描画する際に、外周点の数が多すぎると描画処理に時間がかかるという問題点が一例として挙げられる。
上述した課題を解決し、目的を達成するため、請求項1の発明にかかる画像処理装置は、移動体の到達可能範囲に関する情報を処理する画像処理装置であって、前記移動体の現在地点に関する情報、および、前記現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する取得手段と、前記移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する算出手段と、地図情報、前記初期保有エネルギー量および前記推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する探索手段と、前記地図情報を複数の領域に分割する分割手段と、前記探索手段によって探索された複数の到達可能地点に基づいて、前記分割手段によって分割された複数の領域にそれぞれ前記移動体が到達可能であるか否かを識別する識別手段と、前記識別手段による識別結果に基づいて、前記地図情報から前記移動体の到達可能範囲の輪郭を抽出し、抽出した輪郭に含まれる頂点群に対し前記頂点群を増加させる処理をおこなってから所定周波数以上の周波数成分を除去することにより、前記周波数成分が除去された輪郭となる前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、を備えることを特徴とする。
また、請求項8の発明にかかる画像処理方法は、移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、前記移動体の現在地点に関する情報、および、前記現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する取得工程と、前記移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する算出工程と、地図情報、前記初期保有エネルギー量および前記推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する探索工程と、前記地図情報を複数の領域に分割する分割工程と、前記探索工程によって探索された複数の到達可能地点に基づいて、前記分割工程によって分割された複数の領域にそれぞれ前記移動体が到達可能であるか否かを識別する識別工程と、前記識別工程による識別結果に基づいて、前記地図情報から前記移動体の到達可能範囲の輪郭を抽出し、抽出した輪郭に含まれる頂点群に対し前記頂点群を増加させる処理をおこなってから所定周波数以上の周波数成分を除去することにより、前記周波数成分が除去された輪郭となる前記移動体の到達可能範囲を表示手段に表示させる表示制御工程と、を含むことを特徴とする。
以下に添付図面を参照して、この発明にかかる画像処理装置および画像処理方法の好適な実施の形態を詳細に説明する。
(実施の形態1)
実施の形態1にかかる画像処理装置では、表示される移動体の到達可能範囲の輪郭を平滑化して、視認性の向上を図る。図1は、移動体の到達可能範囲の輪郭の表示例を示す説明図である。(A)は、平滑化処理前における移動体の到達可能範囲の一部の輪郭データを示す。(B)は、(A)の次状態であり、(A)で示した輪郭を補完した状態を示す。具体的には、(B)は、(A)に示した輪郭データ上の外周点の数を約2倍にした状態を示す。(C)は、(B)の次状態を示し、(B)の輪郭データから高周波成分が除去した輪郭データを示す。(C)の輪郭データは、(A)に比べて滑らかな曲線となる。(D)は、(C)の次状態を示し、輪郭データ上の外周点の一部を間引いた状態を示す。これにより、(D)の輪郭データは、(C)に比べて滑らかな曲線となる。
実施の形態1にかかる画像処理装置では、表示される移動体の到達可能範囲の輪郭を平滑化して、視認性の向上を図る。図1は、移動体の到達可能範囲の輪郭の表示例を示す説明図である。(A)は、平滑化処理前における移動体の到達可能範囲の一部の輪郭データを示す。(B)は、(A)の次状態であり、(A)で示した輪郭を補完した状態を示す。具体的には、(B)は、(A)に示した輪郭データ上の外周点の数を約2倍にした状態を示す。(C)は、(B)の次状態を示し、(B)の輪郭データから高周波成分が除去した輪郭データを示す。(C)の輪郭データは、(A)に比べて滑らかな曲線となる。(D)は、(C)の次状態を示し、輪郭データ上の外周点の一部を間引いた状態を示す。これにより、(D)の輪郭データは、(C)に比べて滑らかな曲線となる。
このように、本実施の形態の画像処理装置は、輪郭上の頂点をアップサンプリングにより2倍程度増やした後に、増加した各頂点をx成分、y成分に分解し、ローパスフィルタを用いて滑らかにする。そして、本実施の形態の画像処理装置は、頂点を結ぶ直線の変曲点を計算し、曲線が曲がる角度が大きい点を残して最終的な頂点群とする。このようにすることで、頂点が少なく、外周が滑らかになるため、移動体の到達可能範囲の視認性の向上を図ることができる。また、実施の形態1にかかる画像処理装置は、フーリエ変換のような周波数変換をおこなわないため、逆変換が不要であり、平滑化処理の高速化を図ることができる。
図2は、実施の形態1にかかる画像処理装置の機能的構成の一例を示すブロック図である。実施の形態1にかかる画像処理装置200は、移動体の残存エネルギー量に基づいて探索された移動体の到達可能地点に基づいて移動体の到達可能範囲を生成し表示部210に表示させる。また、画像処理装置200は、取得部201、算出部202、探索部203、分割部204、識別部205a、付与部205、表示制御部206によって構成される。識別部205aは付与部205を含む。
ここで、エネルギーとは、たとえば、EV(Electric Vehicle)車などの場合、電気などに基づくエネルギーであり、HV(Hybrid Vehicle)車、PHV(Plug-in Hybrid Vehicle)車などの場合は電気などに基づくエネルギーおよび、たとえばガソリンや軽油、ガスなどに基づくエネルギーである。また、エネルギーとは、たとえば燃料電池車の場合、電気などに基づくエネルギーおよび、たとえば水素や水素原料になる化石燃料などである(以下、EV車、HV車、PHV車、燃料電池車は単に「EV車」という)。また、エネルギーとは、たとえば、ガソリン車、ディーゼル車など(以下、単に「ガソリン車」という)の場合、たとえば、ガソリンや軽油、ガスなどに基づくエネルギーである。たとえば残存エネルギーとは、たとえば、移動体の燃料タンクやバッテリー内、高圧タンクなどに残っているエネルギーであり、後の移動体の走行に用いることのできるエネルギーである。
取得部201は、画像処理装置200を搭載した移動体の現在地点に関する情報や、移動体の現在地点において当該移動体が保有するエネルギー量である初期保有エネルギー量に関する情報を取得する。具体的には、取得部201は、たとえば、GPS衛星から受信したGPS情報などを用いて、自装置の現在位置を算出することによって現在地点に関する情報(位置情報)を取得する。
また、取得部201は、たとえば、CAN(Controller Area Network)など通信プロトコルによって動作する車内通信網を介して、エレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている移動体の残存エネルギー量を、初期保有エネルギー量として取得する。
取得部201は、移動体の速度に関する情報や、渋滞情報、移動体情報を取得してもよい。移動体の速度に関する情報とは、移動体の速度、加速度である。また、取得部201は、たとえば、記憶部(不図示)に記憶された地図情報から道路に関する情報を取得してもよいし、傾斜センサなどから道路勾配などを取得してもよい。道路に関する情報とは、たとえば、道路種別や、道路勾配、路面状況などにより移動体に生じる走行抵抗である。
算出部202は、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する。所定区間とは、たとえば、道路上の一の所定地点(以下、「ノード」とする)と当該一のノードに隣り合う他のノードとを結ぶ区間(以下、「リンク」とする)である。ノードとは、たとえば、交差点やスタンドであってもよいし、所定の距離で区切られたリンク間の接続地点であってもよい。ノードおよびリンクは、記憶部に記憶された地図情報を構成する。地図情報は、たとえば、交差点(点)、道路(線や曲線)、領域(面)やこれらを表示する色などを数値化したベクタデータで構成される。
具体的には、算出部202は、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定する。より具体的には、算出部202は、移動体の速度に関する情報や移動体情報に基づいて、所定区間における推定エネルギー消費量を推定する。移動体情報とは、移動体の重量(乗車人数や積載荷物による重量も含む)、回転体の重量など、移動体走行時に消費または回収されるエネルギー量を変化させる要因となる情報である。なお、道路勾配が明らかな場合、算出部202は、さらに第四情報を加えた消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定してもよい。
消費エネルギー推定式とは、所定区間における移動体のエネルギー消費量を推定する推定式である。具体的には、消費エネルギー推定式は、エネルギー消費量を増減させる異なる要因である第一情報、第二情報および第三情報からなる多項式である。また、道路勾配が明らかな場合、消費エネルギー推定式には、さらに第四情報が加えられる。消費エネルギー推定式についての詳細な説明は後述する。
第一情報は、移動体に搭載された駆動源が稼動した状態における移動体の停止時に消費されるエネルギーに関する情報である。駆動源が稼動した状態における移動体の停止時とは、移動体のエンジンに負荷がかからない程度に、エンジンを低速で空回りさせた状態である。すなわち、駆動源が可動した状態における移動体の停止時とは、アイドリング時である。EV車の場合、駆動源が可動した状態における移動体の停止時とは、移動体の停止状態であり、アクセルを踏めば、駆動源であるモータが可動し始める状態である。
具体的には、第一情報は、たとえば、エンジンをかけたまま停車しているときや、信号などで停止しているときに消費されるエネルギー消費量である。すなわち、第一情報は、移動体の走行に関係しない要因で消費されるエネルギー消費量であり、移動体に備えられたエアコンやオーディオなどによるエネルギー消費量である。第一情報は、EV車の場合、ほぼゼロとしてもよい。
第二情報は、移動体の加減速時に消費および回収されるエネルギーに関する情報である。移動体の加減速時とは、移動体の速度が時間的に変化している走行状態である。具体的には、移動体の加減速時とは、所定時間内において、移動体の速度が変化する走行状態である。所定時間とは、一定間隔の時間の区切りであり、たとえば、単位時間あたりなどである。回収されるエネルギーとは、EV車の場合、たとえば、移動体の走行時にバッテリーに充電される電力である。また、回収されるエネルギーとは、ガソリン車の場合、たとえば、消費される燃料を低減(燃料カット)し節約することのできる燃料である。
第三情報は、移動体の走行時に生じる抵抗により消費されるエネルギーに関する情報である。移動体の走行時とは、所定時間内において、移動体の速度が一定、加速もしくは減速している走行状態である。移動体の走行時に生じる抵抗とは、移動体の走行時に移動体の走行状態を変化させる要因である。具体的には、移動体の走行時に生じる抵抗とは、気象状況、道路状況、車両状況などにより移動体に生じる各種抵抗である。
気象状況により移動体に生じる抵抗とは、たとえば、雨、風などの気象変化による空気抵抗である。道路状況により移動体に生じる抵抗とは、道路勾配、路面の舗装状態、路面上の水などによる路面抵抗である。車両状況により移動体に生じる抵抗とは、タイヤの空気圧、乗車人数、積載重量などにより移動体にかかる負荷抵抗である。
具体的には、第三情報は、空気抵抗や路面抵抗、負荷抵抗を受けた状態で、移動体を一定速度、加速もしくは減速で走行させたときのエネルギー消費量である。より具体的には、第三情報は、たとえば、向かい風により移動体に生じる空気抵抗や、舗装されていない道路から受ける路面抵抗などを、移動体が一定速度、加速もしくは減速で走行するときに消費されるエネルギー消費量である。
第四情報は、移動体が位置する高度の変化により消費および回収されるエネルギーに関する情報である。移動体が位置する高度の変化とは、移動体の位置する高度が時間的に変化している状態である。具体的には、移動体が位置する高度の変化とは、所定時間内において、移動体が勾配のある道路を走行することにより高度が変化する走行状態である。
また、第四情報は、所定区間内における道路勾配が明らかな場合に求めることができる付加的な情報であり、これによりエネルギー消費量の推定精度を向上することができる。なお、道路の傾斜が不明な場合、または計算を簡略化する場合、移動体が位置する高度の変化はないものとして、後述する消費エネルギー推定式における道路勾配θ=0としてエネルギー消費量を推定することができる。
探索部203は、記憶部に記憶された地図情報、取得部201によって取得された移動体の現在地点および初期保有エネルギー量、並びに算出部202によって算出された推定エネルギー消費量に基づいて、移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する。
具体的には、探索部203は、移動体の現在地点から移動可能なすべての経路において、それぞれ、移動体の現在地点を始点とし、移動体からの経路上の所定地点どうしを結ぶ所定区間における推定エネルギー消費量の累計が最小となるように所定地点および所定区間を探索する。そして、探索部203は、移動体の現在地点から移動可能なすべての経路において、それぞれ、推定エネルギー消費量の累計が移動体の現時点での初期保有エネルギー量の範囲内にある所定地点を移動体の到達可能地点とする。
より具体的には、探索部203は、移動体の現在地点を始点として、移動体の現在地点から移動可能なすべてのリンク、これらのリンクにそれぞれ接続するノード、これらのノードから移動可能なすべてのリンクと、移動体の到達可能なすべてのノードおよびリンクを順に探索する。このとき、探索部203は、新たな一のリンクを探索するごとに、一のリンクが接続する経路の推定エネルギー消費量を累計し、推定エネルギー消費量の累計が最小となるように当該一のリンクに接続するノードおよびこのノードに接続する複数のリンクを探索する。
例えば、探索部203は、当該一のリンクおよび他のリンクが同一のノードに接続されている場合、このノードに接続する複数のリンクのうち、移動体の現在地点から当該ノードまでの推定エネルギー消費量の累計の少ないリンクの推定エネルギー消費量を使って当該ノードの推定エネルギー消費量の累計を算出する。そして、探索部203は、探索されたノードおよびリンクで構成される複数の経路において、それぞれ、推定エネルギー消費量の累計が移動体の初期保有エネルギー量の範囲内にあるすべてのノードを移動体の到達可能地点として探索する。このように推定エネルギー消費量の少ないリンクの推定エネルギー消費量を使うことにより、当該ノードの推定エネルギー消費量の正しい累計を算出することができる。
また、探索部203は、移動体の移動が禁止された所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。移動体の移動が禁止された所定区間とは、たとえば、一方通行の逆走となるリンク、時間規制や季節規制により通行禁止区間となるリンクである。時間規制とは、たとえば、通学路や行事などに設定されることにより、ある時間帯で通行が禁止されることである。季節規制とは、たとえば、大雨や大雪などにより通行が禁止されることである。
探索部203は、複数の所定区間のうち、一の所定区間の次に選択する他の所定区間の重要度が当該一の所定区間の重要度よりも低い場合、他の所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。所定区間の重要度とは、たとえば、道路種別などである。道路種別とは、法定速度や、道路の勾配、道路幅、信号の有無などの道路状態の違いにより区別することのできる道路の種類である。具体的には、道路種別とは、一般国道、高速道路、一般道路、市街地などを通る細街路などである。細街路とは、たとえば、市街地内にある幅員4メートル未満の建築基準法に規定された道路である。
さらに、探索部203は、一の橋または一のトンネルの入口および出口が移動体の到達可能地点となる場合、分割部204によって分割される地図情報の一の橋または一のトンネルを構成するすべての領域が移動体の到達可能範囲に含まれるように移動体の到達可能地点を探索するのが好ましい。具体的には、探索部203は、たとえば、一の橋または一のトンネルの入口が移動体の到達可能地点となる場合、一の橋または一のトンネルの入口から出口に向かって、一の橋または一のトンネル上に複数の到達可能地点が探索されるように当該到達可能地点を探索してもよい。一の橋または一のトンネルの入口とは、一の橋または一のトンネルの、移動体の現在地点に近い側の始点である。
分割部204は、地図情報を複数の領域に分割する。具体的には、分割部204は、探索部203によって探索された移動体の複数の到達可能地点のうち、移動体の現在地点から最も離れた到達可能地点に基づいて、地図情報を複数の矩形状の領域に分割し、たとえばm×mドットのメッシュに変換する。m×mドットのメッシュは、後述する付与部205によって識別情報が付与されたラスタデータ(画像データ)として扱われる。なお、m×mドットのそれぞれのmは同じ数値でも構わないし、異なる数値でも構わない。
より具体的には、分割部204は、最大経度、最小経度、最大緯度、最小緯度を抽出し移動体の現在地点からの距離を算出する。そして、分割部204は、たとえば、移動体の現在地点から最も遠い到達可能地点と移動体の現在地点とをn等分したときの一の領域の大きさを、地図情報を複数の領域に分割したときの一の領域の大きさとし、地図情報をm×mドットのメッシュに分割する。このとき、メッシュの周辺のたとえば4ドット分を空白にするために、n=(m/2)-4とする。
識別部205aは、探索部203によって探索された複数の到達可能地点に基づいて、分割部204によって分割された複数の領域にそれぞれ移動体が到達可能であるか否かを識別する。より具体的には、この識別部205aに設けられる付与部205は、探索部203によって探索された複数の到達可能地点に基づいて、分割部204によって分割された複数の領域にそれぞれ移動体が到達可能であるか否かを識別する識別情報を付与する。具体的には、付与部205は、分割部204によって分割された一の領域に移動体の到達可能地点が含まれる場合、その一の領域に移動体が到達可能であることを識別する到達可能の識別情報を付与する。その後、付与部205は、分割部204によって分割された一の領域に移動体の到達可能地点が含まれない場合、その一の領域に移動体が到達不可能であることを識別する到達不可能の識別情報を付与する。
より具体的には、付与部205は、m×mに分割されたメッシュの各領域に、到達可能の識別情報「1」または到達不可能の識別情報「0」を付与することで、m行m列の2次元行列データのメッシュに変換する。分割部204および付与部205は、このように地図情報を分割してm行m列の2次元行列データのメッシュに変換し、2値化されたラスタデータとして扱う。
付与部205は、分割部204によって分割された複数の領域に対して識別情報の変更処理をおこなう第1変更部251および第2変更部252を備える。具体的には、付与部205は、第1変更部251および第2変更部252によって、地図情報が分割されてなるメッシュを2値化されたラスタデータとして扱い、クロージング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。また、付与部205は、第1変更部251および第2変更部252によって、オープニング処理(縮小処理後に膨張処理をおこなう処理)をおこなってもよい。
具体的には、第1変更部251は、識別情報が付与された一の領域に隣り合う他の領域に到達可能の識別情報が付与されている場合、当該一の領域の識別情報を到達可能の識別情報に変更する(膨張処理)。より具体的には、第1変更部251は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達可能の識別情報である「1」が付与されている場合、当該一の領域の識別情報を「1」に変更する。
第2変更部252は、第1変更部251による識別情報の変更後、識別情報が付与された一の領域に隣り合う他の領域に到達不可能の識別情報が付与されている場合、当該一の領域の識別情報を到達不可能の識別情報に変更する(縮小処理)。より具体的には、第2変更部252は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達不可能の識別情報である「0」が付与されている場合、当該一の領域の識別情報を「0」に変更する。第1変更部251による膨張処理と、第2変更部252による縮小処理は、同じ回数ずつおこなう。
このように、付与部205は、分割部204によって分割された複数の領域のうち、移動体が現在地点から到達可能な地点である到達可能地点を含む領域に、当該移動体が到達可能であることを識別する到達可能の識別情報を付与して当該移動体の到達可能範囲とする。その後、付与部205は、到達可能の識別情報を付与した領域に隣り合う領域にも到達可能の識別情報を付与し、移動体の到達可能範囲に欠損点が生じないように各領域の識別情報を変更する。
また、付与部205は、地図情報の一の橋または一のトンネルの入口および出口に相当する分割された地図情報に、到達可能であることを識別する到達可能の識別情報が付与されている場合、当該一の橋または当該一のトンネルを構成するすべての領域に相当する分割された地図情報に、到達可能の識別手段を付与する。具体的には、付与部205は、たとえば、一の橋または一のトンネルの入口および出口に相当する各領域にそれぞれ到達可能の識別情報が付与されている場合、一の橋または一のトンネルの入口に相当する領域から出口に相当する領域に至るまでに移動体が移動可能な全領域に到達可能の識別情報を付与する。
より具体的には、付与部205は、たとえば、第1変更部251による膨張処理前に、一の橋または一のトンネルの入口および出口に相当する各領域にそれぞれ到達可能の識別情報である「1」が付与されている場合で、一の橋または一のトンネル上に欠損点が生じているときに、一の橋または一のトンネルの入口に相当する領域と出口に相当する領域とを結ぶ区間上に位置する全領域の識別情報を「1」に変更する。一の橋または一のトンネルの入口に相当する領域と出口に相当する領域とを結ぶ区間とは、複数のカーブを含む道路に相当する区間であってもよいし、一本の直線状の道路に相当する区間であってもよい。
表示制御部206は、付与部205によって識別情報が付与された領域の識別情報に基づいて、移動体の到達可能範囲を地図情報とともに表示部210に表示させる。具体的には、表示制御部206は、付与部205によって識別情報が付与された複数の画像データであるメッシュをベクタデータに変換し、記憶部に記憶された地図情報とともに表示部210に表示させる。
図3は、図2に示した表示制御部206の詳細な機能的構成例を示すブロック図である。表示制御部206は、輪郭抽出部261と、補完部262と、除去部263と、間引き部264と、を有する。
輪郭抽出部261は、到達可能の識別情報が付与された一の領域と当該一の領域と隣り合う到達可能の識別情報が付与された他の領域との位置関係に基づいて移動体の到達可能範囲の輪郭を抽出し表示部210に表示させる。より具体的には、輪郭抽出部261は、たとえば、フリーマンのチェインコードを用いて移動体の到達可能範囲の輪郭を示す輪郭データを抽出し、移動体の到達可能範囲を表示部210に表示させる。輪郭データ上の外周点を結ぶ線分データのうち、表示画面において直交しあうX軸とY軸のいずれかに平行な線分データは、同一長さである。
また、輪郭抽出部261は、到達可能の識別情報が付与された領域の経度緯度情報に基づいて移動体の到達可能範囲を抽出し、表示部210に表示させてもよい。具体的には、輪郭抽出部261は、たとえば、m行m列の2次元行列データを1行ごとに1列目から到達可能の識別情報「1」を検索する。そして、表示制御部206は、2次元行列データの各行においてそれぞれ到達可能の識別情報「1」を含む連続する領域を検索し、最初に「1」を検出した領域の最小経度、最小緯度(領域の左上座標)と、最後に「1」を検出した領域の最大経度、最大緯度(領域の右下座標)とを結ぶ線分を対角線とする矩形領域を移動体の到達可能範囲として表示する。
補完部262は、輪郭データ上の外周点を結ぶ線分データを補完する。具体的には、たとえば、補完部262は、線分データが、X軸とY軸のいずれにもに平行でない場合、補完部262は、当該線分データを、X方向成分の線分データと、Y方向成分の線分データに分解する。これにより、輪郭データを構成する各線分データは、同一長さとなる。
除去部263は、補完部によって変換された変換結果から、高周波成分を除去する。具体的には、たとえば、除去部263は、あらかじめ設定されたカットオフ周波数以上の周波数成分を、補完結果から除去する。より具体的には、除去部263は、変換部により得られた偏角の周波数成分にローパスフィルタを通すことにより高周波成分を除去する。また、ユーザは、カットオフ周波数を変更することにより、輪郭データの滑らかさを調節することができる。
間引き部264は、除去部263により得られた輪郭データを構成する線分データ群のうち、隣り合う線分データのなす角度の絶対値が所定値よりも小さい場合、隣り合う線分データ同士を接続する頂点を間引く。その後、間引き部264は、隣り合う線分データの反対側の頂点同士を結ぶことにより、輪郭データを修正する。これにより、簡単な処理により、より滑らかな輪郭データを得ることができる。
つぎに、画像処理装置200による画像処理について説明する。図4は、画像処理装置による画像処理の手順の一例を示すフローチャートである。図4のフローチャートにおいて、画像処理装置200は、まず、取得部201によって、移動体の現在地点に関する情報、および、移動体の現在地点において移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する(ステップS401,S402)。このとき、画像処理装置200は、移動体情報も取得してもよい。
そして、画像処理装置200は、算出部202によって、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する(ステップS403)。このとき、画像処理装置200は、移動体の経路上の所定地点どうしを結ぶ複数の所定区間における推定エネルギー消費量をそれぞれ算出する。つぎに、画像処理装置200は、探索部203によって、記憶部に記憶された地図情報と、ステップS402,S403において取得した初期保有エネルギー量および推定エネルギー消費量とに基づいて、移動体の複数の到達可能地点を探索する(ステップS404)。
つぎに、画像処理装置200は、分割部204によって、ベクタデータからなる地図情報を複数の領域に分割し、ラスタデータからなるメッシュに変換する(ステップS405)。つぎに、画像処理装置200は、ステップS404において探索した複数の到達可能地点に基づいて、ステップS405において分割した複数の領域にそれぞれ、付与部205によって到達可能または到達不可能の識別情報を付与する(ステップS406)。その後、画像処理装置200は、ステップS406において識別情報を付与した複数の領域の識別情報に基づいて、表示制御部206によって移動体の到達可能範囲を表示部210に表示させ(ステップS407)、本フローチャートによる処理を終了する。
以上説明したように、実施の形態1にかかる画像処理装置200は、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、画像処理装置200は、到達可能の識別情報が付与された領域に基づいて移動体の到達可能範囲を生成する。このため、画像処理装置200は、海や湖、山脈など移動体の走行不可能な領域を除いた状態で移動体の到達可能範囲を生成することができる。したがって、画像処理装置200は、移動体の到達可能範囲を正確に表示することができる。
また、画像処理装置200は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クロージングの膨張処理をおこなう。このため、画像処理装置200は、移動体の到達可能範囲内の欠損点を除去することができる。
また、画像処理装置200は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、画像処理装置200は、移動体の到達可能範囲の孤立点を除去することができる。
このように、画像処理装置200は、移動体の到達可能範囲の欠損点や孤立点を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、画像処理装置200は、地図情報を複数の領域に分割して生成したメッシュの輪郭を抽出する。このため、画像処理装置200は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。
また、画像処理装置200は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、画像処理装置200は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクロージングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損点を除去することができる。したがって、画像処理装置200は、移動体の到達可能範囲を生成するための処理量を低減することができる。また、画像処理装置200は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。
以下に、本発明の実施例1について説明する。本実施例では、車両に搭載されるナビゲーション装置500を画像処理装置200として、本発明を適用した場合の一例について説明する。
(ナビゲーション装置500のハードウェア構成)
つぎに、ナビゲーション装置500のハードウェア構成について説明する。図5は、ナビゲーション装置のハードウェア構成を示すブロック図である。図5において、ナビゲーション装置500は、CPU501、ROM502、RAM503、磁気ディスクドライブ504、磁気ディスク505、光ディスクドライブ506、光ディスク507、音声I/F(インターフェース)508、マイク509、スピーカ510、入力デバイス511、映像I/F512、ディスプレイ513、カメラ514、通信I/F515、GPSユニット516、各種センサ517を備えている。各構成部501~517は、バス520によってそれぞれ接続されている。
つぎに、ナビゲーション装置500のハードウェア構成について説明する。図5は、ナビゲーション装置のハードウェア構成を示すブロック図である。図5において、ナビゲーション装置500は、CPU501、ROM502、RAM503、磁気ディスクドライブ504、磁気ディスク505、光ディスクドライブ506、光ディスク507、音声I/F(インターフェース)508、マイク509、スピーカ510、入力デバイス511、映像I/F512、ディスプレイ513、カメラ514、通信I/F515、GPSユニット516、各種センサ517を備えている。各構成部501~517は、バス520によってそれぞれ接続されている。
CPU501は、ナビゲーション装置500の全体の制御を司る。ROM502は、ブートプログラム、推定エネルギー消費量算出プログラム、到達可能地点探索プログラム、識別情報付与プログラム、地図データ表示プログラムなどのプログラムを記録している。RAM503は、CPU501のワークエリアとして使用される。すなわち、CPU501は、RAM503をワークエリアとして使用しながら、ROM502に記録された各種プログラムを実行することによって、ナビゲーション装置500の全体の制御を司る。
推定エネルギー消費量算出プログラムでは、車両の推定エネルギー消費量を算出する消費エネルギー推定式に基づいて、一のノードと隣り合うノードとを結ぶリンクにおける推定エネルギー消費量を算出する。到達可能地点探索プログラムでは、推定プログラムにおいて算出された推定エネルギー消費量に基づいて、車両の現在地点での残存エネルギー量で到達可能な複数の地点(ノード)が探索される。識別情報付与プログラムでは、探索プログラムにおいて探索された複数の到達可能地点に基づいて、地図情報を分割した複数の領域に、車両が到達可能または到達不可能であることを識別する識別情報が付与される。地図データ表示プログラムでは、識別情報付与プログラムによって識別情報が付与された複数の領域に基づいて、車両の到達可能範囲をディスプレイ513に表示させる。
磁気ディスクドライブ504は、CPU501の制御にしたがって磁気ディスク505に対するデータの読み取り/書き込みを制御する。磁気ディスク505は、磁気ディスクドライブ504の制御で書き込まれたデータを記録する。磁気ディスク505としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。
また、光ディスクドライブ506は、CPU501の制御にしたがって光ディスク507に対するデータの読み取り/書き込みを制御する。光ディスク507は、光ディスクドライブ506の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク507は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク507のほか、MO、メモリカードなどを用いることができる。
磁気ディスク505および光ディスク507に記録される情報の一例としては、地図データ、車両情報、道路情報、走行履歴などが挙げられる。地図データは、カーナビゲーションシステムにおいて車両の到達可能地点を探索するときや、車両の到達可能範囲を表示するときに用いられ、建物、河川、地表面などの地物(フィーチャ)をあらわす背景データ、道路の形状をリンクやノードなどであらわす道路形状データなどを含むベクタデータである。
音声I/F508は、音声入力用のマイク509および音声出力用のスピーカ510に接続される。マイク509に受音された音声は、音声I/F508内でA/D変換される。マイク509は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ510からは、所定の音声信号を音声I/F508内でD/A変換した音声が出力される。
入力デバイス511は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス511は、リモコン、キーボード、タッチパネルのうちいずれか1つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。
映像I/F512は、ディスプレイ513に接続される。映像I/F512は、具体的には、たとえば、ディスプレイ513全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ513を制御する制御ICなどによって構成される。
ディスプレイ513には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ513としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。
カメラ514は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ514によって車両外部を撮影し、撮影した画像をCPU501において画像解析したり、映像I/F512を介して磁気ディスク505や光ディスク507などの記録媒体に出力したりする。
通信I/F515は、無線を介してネットワークに接続され、ナビゲーション装置500およびCPU501のインターフェースとして機能する。ネットワークとして機能する通信網には、CANやLIN(Local Interconnect Network)などの車内通信網や、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F515は、たとえば、公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System:登録商標)/ビーコンレシーバなどである。
GPSユニット516は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット516の出力情報は、後述する各種センサ517の出力値とともに、CPU501による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。
各種センサ517は、車速センサ、加速度センサ、角速度センサ、傾斜センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ517の出力値は、CPU501による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。
図2に示した画像処理装置200の取得部201、算出部202、探索部203、分割部204、付与部205、表示制御部206は、上述したナビゲーション装置500におけるROM502、RAM503、磁気ディスク505、光ディスク507などに記録されたプログラムやデータを用いて、CPU501が所定のプログラムを実行し、ナビゲーション装置500における各部を制御することによってその機能を実現する。
(ナビゲーション装置500による推定エネルギー消費量算出の概要)
本実施例のナビゲーション装置500は、自装置が搭載された車両の推定エネルギー消費量を算出する。具体的には、ナビゲーション装置500は、たとえば、速度、加速度、車両の勾配に基づいて、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式のいずれか一つ以上の式を用いて、所定区間における車両の推定エネルギー消費量を算出する。所定区間とは、道路上の一のノード(たとえば交差点)と当該一のノードに隣り合う他のノードとを結ぶリンクである。
本実施例のナビゲーション装置500は、自装置が搭載された車両の推定エネルギー消費量を算出する。具体的には、ナビゲーション装置500は、たとえば、速度、加速度、車両の勾配に基づいて、第一情報と、第二情報と、第三情報と、からなる消費エネルギー推定式のいずれか一つ以上の式を用いて、所定区間における車両の推定エネルギー消費量を算出する。所定区間とは、道路上の一のノード(たとえば交差点)と当該一のノードに隣り合う他のノードとを結ぶリンクである。
より具体的には、ナビゲーション装置500は、プローブで提供される渋滞情報や、サーバを介して取得した渋滞予測データ、記憶装置に記憶されたリンクの長さや道路種別などに基づいて、車両がリンクを走行し終わるのに要する旅行時間を算出する。そして、ナビゲーション装置500は、次の(1)式~(4)式に示す消費エネルギー推定式のいずれかを用いて単位時間当たりの推定エネルギー消費量を算出し、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出する。
上記(1)式に示す消費エネルギー推定式は、加速時および走行時における単位時間当たりの消費エネルギーを推定する理論式である。ここで、εは正味熱効率、ηは総伝達効率である。移動体の加速度αと道路勾配θから重力の加速度gとの合計を合成加速度|α|とすると、合成加速度|α|が負の場合の消費エネルギー推定式は、上記(2)式で表される。すなわち、上記(2)式に示す消費エネルギー推定式は、減速時における単位時間当たりの消費エネルギーを推定する理論式である。このように、加減速時および走行時における単位時間当たりの消費エネルギー推定式は、走行抵抗と走行距離と正味モータ効率と伝達効率との積であらわされる。
上記(1)式および(2)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(1)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(2)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。
上記(1)式および(2)式では、モータ効率と駆動効率は一定と見なしている。しかし、実際には、モータ効率および駆動効率はモータ回転数やトルクの影響により変動する。そこで、次の(3)式および(4)式に単位時間当たりの消費エネルギーを推定する実証式を示す。
合成加速度|α+g・sinθ|が正の場合の推定エネルギー消費量を算出する実証式、すなわち、加速時および走行時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(3)式であらわされる。また、合成加速度|α+g・sinθ|が負の場合の推定エネルギー消費量を算出する実証式、すなわち、減速時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(4)式で表される。
上記(3)式および(4)式において、係数a1,a2は、車両状況などに応じて設定される常数である。係数k1,k2,k3は、加速時におけるエネルギー消費量に基づく変数である。また、速度Vとしており、その他の変数は、上記(1)式および(2)式と同様である。右辺第1項は、上記(1)式および(2)式の右辺第1項に相当する。
また、上記(3)式および(4)式において、右辺第2項は、上記(1)式および(2)式の、右辺第2項の勾配抵抗成分のエネルギーと、右辺第4項の加速度抵抗成分のエネルギーとに相当する。右辺第3項は、上記(1)式および(2)式の、右辺第2項の転がり抵抗成分のエネルギーと、右辺第3項の空気抵抗成分のエネルギーに相当する。(4)式の右辺第2項のβは、位置エネルギーと運動エネルギーの回収分(以下、「回収率」とする)である。
また、ナビゲーション装置500は、上述したように車両がリンクを走行するのに要する旅行時間を算出し、車両がリンクを走行するときの平均速度および平均加速度を算出する。そして、ナビゲーション装置500は、リンクにおける車両の平均速度および平均加速度を用いて、次の(5)式または(6)式に示す消費エネルギー推定式に基づいて、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出してもよい。
上記(5)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが正の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが正の場合とは、車両が上り坂を走行している場合である。上記(6)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが負の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが負の場合とは、車両が下り坂を走行している場合である。高度差がない場合は、上記(5)式に示す消費エネルギー推定式を用いるのが好ましい。
上記(5)式および(6)式において、右辺第1項は、アイドリング時のエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積当たりに受ける空気抵抗および転がり抵抗(走行抵抗)によるエネルギー消費量(第三情報)である。
ナビゲーション装置500は、道路勾配が明らかでない場合、上記(1)式~(6)式に示す消費エネルギー推定式の道路勾配θ=0として車両の推定エネルギー消費量を算出してもよい。
つぎに、上記(1)式~(6)式で用いる回収率βについて説明する。上記(5)式において、右辺第2項をリンクにおける加速成分のエネルギー消費量Paccとすると、加速成分のエネルギー消費量Paccは、リンクにおける全エネルギー消費量(左辺)から、アイドリング時のエネルギー消費量(右辺第1項)と走行抵抗によるエネルギー消費量(右辺第4項)を減じたものであり、次の(7)式で表される。
なお、上記(7)式では、車両は道路勾配θの影響を受けていないこととする(θ=0)。すなわち、上記(5)式の右辺第3項をゼロとする。そして、上記(7)式を上記(5)式に代入することで、次の(8)式に示す回収率βの算出式を得ることができる。
回収率βは、EV車では0.7~0.9程度であり、HV車では0.6~0.8程度であり、ガソリン車では0.2~0.3程度である。なお、ガソリン車の回収率とは、加速時に要するエネルギーと減速時に回収するエネルギーとの割合である。
(ナビゲーション装置500における到達可能地点探索の概要)
本実施例のナビゲーション装置500は、自装置が搭載された車両の現在地点から到達可能な複数のノードを車両の到達可能地点として探索する。具体的には、ナビゲーション装置500は、上記(1)~(6)式に示す消費エネルギー推定式のいずれか1つ以上を用いてリンクにおける推定エネルギー消費量を算出する。そして、ナビゲーション装置500は、リンクにおける推定エネルギー消費量の累計が最小となるように車両の到達可能なノードを探索し到達可能地点とする。以下に、ナビゲーション装置500による到達可能地点探索の一例について説明する。
本実施例のナビゲーション装置500は、自装置が搭載された車両の現在地点から到達可能な複数のノードを車両の到達可能地点として探索する。具体的には、ナビゲーション装置500は、上記(1)~(6)式に示す消費エネルギー推定式のいずれか1つ以上を用いてリンクにおける推定エネルギー消費量を算出する。そして、ナビゲーション装置500は、リンクにおける推定エネルギー消費量の累計が最小となるように車両の到達可能なノードを探索し到達可能地点とする。以下に、ナビゲーション装置500による到達可能地点探索の一例について説明する。
図6~図9は、ナビゲーション装置500による到達可能地点探索の一例について模式的に示す説明図である。図6~図9では、地図データのノード(たとえば交差点)を丸印とし、隣り合うノードどうしを結ぶリンク(道路上の所定区間)を線分で示す(図10,図11についても同様にノードおよびリンクを図示)。
図6に示すように、ナビゲーション装置500は、まず、車両の現在地点600から最も近いリンクL1_1を探索する。そして、ナビゲーション装置500は、リンクL1_1に接続するノードN1_1を探索し、到達可能地点を探索するためのノード候補(以下、単に「ノード候補」という)に追加する。
つぎに、ナビゲーション装置500は、消費エネルギー推定式を用いて、車両の現在地点600とノード候補としたノードN1_1とを結ぶリンクL1_1における推定エネルギー消費量を算出する。そして、ナビゲーション装置500は、リンクL1_1における推定エネルギー消費量3whを、たとえばノードN1_1に関連付けて記憶装置(磁気ディスク505や光ディスク507)に書き出す。
つぎに、図7に示すように、ナビゲーション装置500は、ノードN1_1に接続するすべてのリンクL2_1,L2_2,L2_3を探索し、到達可能地点を探索するためのリンク候補(以下、単に「リンク候補」という)とする。つぎに、ナビゲーション装置500は、消費エネルギー推定式を用いて、リンクL2_1における推定エネルギー消費量を算出する。
そして、ナビゲーション装置500は、リンクL2_1における推定エネルギー消費量4whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量7whを、リンクL2_1に接続するノードN2_1に関連付けて記憶装置(磁気ディスク505や光ディスク507)に書き出す(以下、「累計エネルギー量をノードに設定」とする)。
さらに、ナビゲーション装置500は、リンクL2_1の場合と同様に、消費エネルギー推定式を用いて、リンクL2_2,L2_3における推定エネルギー消費量をそれぞれ算出する。そして、ナビゲーション装置500は、リンクL2_2における推定エネルギー消費量5whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量8whを、リンクL2_2に接続するノードN2_2に設定する。
また、ナビゲーション装置500は、リンクL2_3における推定エネルギー消費量3whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量6whを、リンクL2_3に接続するノードN2_3に設定する。このとき、ナビゲーション装置500は、累計エネルギー量を設定したノードがノード候補でない場合には、そのノードをノード候補に追加する。
つぎに、図8に示すように、ナビゲーション装置500は、ノードN2_1に接続するすべてのリンクL3_1,L3_2_1、ノードN2_2に接続するすべてのリンクL3_2_2,L3_3,L3_4、およびノードN2_3に接続するリンクL3_5を探索し、リンク候補とする。つぎに、ナビゲーション装置500は、消費エネルギー推定式を用いて、リンクL3_1~リンクL3_5における推定エネルギー消費量を算出する。
そして、ナビゲーション装置500は、リンクL3_1における推定エネルギー消費量4whをノードN2_1に設定した累計エネルギー量7whに累計し、リンクL3_1に接続するノードN3_1に累計エネルギー量11whを設定する。また、ナビゲーション装置500は、リンクL3_3~L3_5においてもリンクL3_1の場合と同様に、各リンクL3_3~L3_5にそれぞれ接続するノードN3_3~N3_5に累計エネルギー量13wh,12wh,10whを設定する。
具体的には、ナビゲーション装置500は、リンクL3_3における推定エネルギー消費量5whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_3に累計エネルギー量13whを設定する。ナビゲーション装置500は、リンクL3_4における推定エネルギー消費量4whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_4に累計エネルギー量12whを設定する。ナビゲーション装置500は、リンクL3_5における推定エネルギー消費量4whをノードN2_3に設定した累計エネルギー量6whに累計し、ノードN3_5に累計エネルギー量10whを設定する。
一方、ナビゲーション装置500は、ノードN3_2のように一のノードに複数のリンクL3_2_1,L3_2_2が接続する場合には、車両の現在地点600から一のノードN3_2までの複数の経路における累計エネルギー量のうち、最小の累計エネルギー量10whを当該一のノードN3_2に設定する。
具体的には、ナビゲーション装置500は、リンクL3_2_1における推定エネルギー消費量4whをノードN2_1に設定した累計エネルギー量7whに累計し(=累計エネルギー量11wh)、リンクL3_2_2における推定エネルギー消費量2whをノードN2_2に設定した累計エネルギー量8whに累計する(=累計エネルギー量10wh)。そして、ナビゲーション装置500は、車両の現在地点600からリンクL3_2_1までの経路の累計エネルギー量11whと、車両の現在地点600からリンクL3_2_2までの経路の累計エネルギー量10whとを比較し、最小の累計エネルギー量となるリンクL3_2_2側の経路の累計エネルギー量10whをノードN3_2に設定する。
ナビゲーション装置500は、上述したノードN2_1~N2_3のように車両の現在地点600から同一階層のノードが複数存在する場合、たとえば、同一レベルのノードのうち、累計エネルギー量が少ないノードに接続するリンクから順に推定エネルギー消費量および累計エネルギー量を算出する。具体的には、ナビゲーション装置500は、ノードN2_3、ノードN2_1、ノードN2_2の順に、各ノードに接続するリンクにおける推定エネルギー消費量をそれぞれ算出し、各ノードにおける累計エネルギー量に累計する。このように、推定エネルギー消費量および累計エネルギー量を算出するノードの順番を特定することにより、残存エネルギー量で到達可能な範囲を効率的に算出することができる。
その後、ナビゲーション装置500は、ノードN3_1~N3_5からさらに深い階層のノードへと、上述したような累計エネルギー量の累計を続けていく。そして、ナビゲーション装置500は、予め設定された指定エネルギー量以下の累計エネルギー量が設定されたすべてのノードを、車両の到達可能地点として抽出し、到達可能地点として抽出されたノードの経度緯度情報をそれぞれのノードに関連付けて記憶装置に書き出す。
具体的には、たとえば指定エネルギー量を10whとした場合、図9に斜線で塗りつぶされた丸印で示すように、ナビゲーション装置500は、10wh以下の累計エネルギー量が設定されたノードN1_1,N2_1,N2_2,N2_3,N3_2,N3_5を車両の到達可能地点として抽出する。予め設定された指定エネルギー量とは、たとえば、車両の現在地点600での残存エネルギー量(初期保有エネルギー量)である。
図9に示す車両の現在地点600と複数のノードおよびリンクとで構成された地図データ900は到達可能地点探索を説明するための一例であり、ナビゲーション装置500は、実際には図10に示すように図9に示す地図データ900よりも広い範囲でさらに多くのノードおよびリンクを探索する。
図10は、ナビゲーション装置500による到達可能地点探索の一例について示す説明図である。上述したようにすべての道路(細街路を除く)について累計エネルギー量を算出し続けていく場合、図10に示すように、各道路のすべてのノードにおける累計エネルギー量を漏れなく詳細に探索することができる。しかし、日本全国で約200万個のリンクにおける推定エネルギー消費量を算出し累計することとなり、ナビゲーション装置500の情報処理量が膨大となる。このため、ナビゲーション装置500は、たとえばリンクの重要度などに基づいて、移動体の到達可能地点を探索する道路を絞り込んでもよい。
図11は、ナビゲーション装置500による到達可能地点探索の別の一例について示す説明図である。具体的には、ナビゲーション装置500は、たとえば、車両の現在地点600周辺ではすべての道路(細街路を除く)において累計エネルギー量を算出し、ある一定距離以上離れた範囲では重要度の高い道路のみで累計エネルギー量を算出する。これにより、図11に示すように、ナビゲーション装置500によって探索されるノード数およびリンク数を減少させることができ、ナビゲーション装置500の情報処理量を低減させることができる。したがって、ナビゲーション装置500の処理速度を向上することができる。
(ナビゲーション装置500における地図データ分割の概要)
本実施例のナビゲーション装置500は、上述したように探索された到達可能地点に基づいて、記憶装置に記憶された地図データを分割する。具体的には、ナビゲーション装置500は、ベクタデータで構成される地図データを、たとえば64×64ドットのメッシュ(X,Y)に変換し、地図データをラスタデータ(画像データ)にする。
本実施例のナビゲーション装置500は、上述したように探索された到達可能地点に基づいて、記憶装置に記憶された地図データを分割する。具体的には、ナビゲーション装置500は、ベクタデータで構成される地図データを、たとえば64×64ドットのメッシュ(X,Y)に変換し、地図データをラスタデータ(画像データ)にする。
図12は、ナビゲーション装置500による到達可能地点を経度-緯度で示す一例の説明図である。また、図13は、ナビゲーション装置500による到達可能地点をメッシュで示す一例の説明図である。図12には、たとえば図10,図11に示すように探索された到達可能地点の経度緯度情報(x,y)を絶対座標で図示している。図13には、到達可能地点に基づいて識別情報が付与された64×64ドットのメッシュ(X,Y)をスクリーン座標で図示している。
図12に示すように、ナビゲーション装置500は、まず、複数の到達可能地点のそれぞれの経度x、緯度yに基づいて、絶対座標で点群1200を有する経度緯度情報(x,y)を生成する。経度緯度情報(x,y)の原点(0,0)は図12の左下である。そして、ナビゲーション装置500は、車両の現在地点600の経度ofxから経度x方向に最も離れた到達可能地点の最大経度x_max、最小経度x_minまで距離w1,w2を算出する。また、ナビゲーション装置500は、車両の現在地点600の緯度ofyから緯度y方向に最も離れた到達可能地点の最大緯度y_max、最小緯度y_minまで距離w3,w4を算出する。
つぎに、ナビゲーション装置500は、車両の現在地点600からの距離w1~w4のうち、最も距離のある、車両の現在地点600から最小経度x_minまでの距離w2(以下、w5=max(w1,w2,w3,w4)とする)のn分の1の長さがメッシュ(X,Y)の矩形状の一要素の1辺の長さとなるように、複数の到達可能地点を含む地図データを、たとえばm×mドット(たとえば64×64ドット)のメッシュ(X,Y)に変換する。
具体的には、ナビゲーション装置500は、1メッシュと経度緯度の大きさとの比を倍率mag=w5/nとし、経度緯度情報(x,y)とメッシュ(X,Y)とが次の(9)式,(10)式を満たすように、経度緯度情報(x,y)をメッシュ(X,Y)に変換する。
X=(x-ofx)/mag ・・・(9)
Y=(y-ofy)/mag ・・・(10)
経度緯度情報(x,y)をメッシュ(X,Y)に変換することにより、図13に示すように、車両の現在地点600は、m×mドットのメッシュ(X,Y)で構成される矩形状の画像データの中心となり、車両の現在地点600のメッシュ(X,Y)はX軸方向、Y軸方向ともに等しく、X=Y=m/2=n+4となる。また、メッシュ(X,Y)の周辺のたとえば4ドット分を空白にするためにn=(m/2)-4とする。そして、ナビゲーション装置500は、経度緯度情報(x,y)をメッシュ(X,Y)に変換するときに、メッシュ(X,Y)の各領域にそれぞれ識別情報を付与し、m行m列の2次元行列データ(Y,X)のメッシュに変換する。
具体的には、ナビゲーション装置500は、メッシュ(X,Y)の一の領域に車両の到達可能地点が含まれる場合、当該一の領域に車両が到達可能であることを識別する到達可能の識別情報として、たとえば「1」を付与する(図13では1ドットをたとえば黒色で描画)。一方、ナビゲーション装置500は、メッシュ(X,Y)の一の領域に車両の到達可能地点が含まれない場合、当該の一の領域に車両が到達不可能であることを識別する到達不可能の識別情報として、たとえば「0」を付与する(図19では1ドットをたとえば白色で描画)。
このように、ナビゲーション装置500は、地図データを分割した各領域にそれぞれ識別情報を付与したm行m列の2次元行列データ(Y,X)のメッシュに変換し、地図データを2値化されたラスタデータとして扱う。メッシュの各領域は、それぞれ一定範囲の矩形状の領域であらわされる。具体的には、図13に示すように、たとえば、複数の到達可能地点の点群1300が黒色で描画されたm×mドットのメッシュ(X,Y)が生成される。メッシュ(X,Y)の原点(0,0)は左上である。
(ナビゲーション装置500における識別情報付与の概要・その1)
本実施例のナビゲーション装置500は、上述したように分割されたm×mドットのメッシュ(X,Y)のそれぞれの領域に付与された識別情報を変更する。具体的には、ナビゲーション装置500は、m行m列の2次元行列データ(Y,X)のメッシュに対してクロージング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。
本実施例のナビゲーション装置500は、上述したように分割されたm×mドットのメッシュ(X,Y)のそれぞれの領域に付与された識別情報を変更する。具体的には、ナビゲーション装置500は、m行m列の2次元行列データ(Y,X)のメッシュに対してクロージング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。
図14は、ナビゲーション装置500によるクロージング処理の一例を示す説明図である。図14(A)~図14(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュである。図14(A)には、地図データの分割処理後、はじめて識別情報が付与されたメッシュ1400を示す。すなわち、図14(A)に示すメッシュ1400は、図13に示すメッシュと同一である。
また、図14(B)には、図14(A)に示すメッシュ1400に対してクロージング処理(膨張)をおこなった後のメッシュ1410を示す。図14(C)には、図14(B)に示すメッシュ1410に対してクロージング処理(縮小)をおこなった後のメッシュ1420を示す。図14(A)~図14(C)に示すメッシュ1400,1410,1420において、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲1401,1411,1421を黒く塗りつぶした状態で示す。
図14(A)に示すように、識別情報付与後のメッシュ1400には、車両の到達可能範囲1401内に含まれる到達不可能な領域からなる欠損点1402(ハッチングされた到達可能範囲1401内の白地部分)が生じている。欠損点1402は、たとえば、図11に示すようにナビゲーション装置500による到達可能地点探索処理の負荷を低減させるためにノードおよびリンクを探索する道路を絞り込んだ場合に、到達可能地点となるノード数が少なくなることにより生じる。
つぎに、図14(B)に示すように、ナビゲーション装置500は、識別情報付与後のメッシュ1400に対してクロージングの膨張処理をおこなう。クロージングの膨張処理では、識別情報付与後のメッシュ1400の、到達可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。これにより、膨張処理前(識別情報付与後)の車両の到達可能範囲1401内に生じていた欠損部1402が消滅する。
また、膨張処理前の車両の到達可能範囲1401の最外周の領域に隣り合うすべての領域の識別情報が、到達可能な識別情報に変更される。このため、膨張処理後の車両の到達可能範囲1411の外周は、膨張処理をおこなうごとに、膨張処理前の車両の到達可能範囲1401の最外周の各領域の外周を囲むように1ドット分ずつ広がる。
その後、図14(C)に示すように、ナビゲーション装置500は、メッシュ1410に対してクロージングの縮小処理をおこなう。クロージングの縮小処理では、膨張処理後のメッシュ1410の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。
このため、膨張処理後の車両の到達可能範囲1411の最外周の各領域が、縮小処理がおこなわれるごとに1ドット分ずつ到達不可能な領域となり、膨張処理後の車両の到達可能範囲1411の外周が縮まる。これにより、縮小処理後の車両の到達可能範囲1421の外周は、膨張処理前の車両の到達可能範囲1401の外周とほぼ同様となる。
ナビゲーション装置500は、上述した膨張処理および縮小処理は同じ回数ずつおこなう。具体的には、膨張処理が2回おこなわれた場合、その後の縮小処理も2回おこなわれる。膨張処理と縮小処理との処理回数を等しくすることで、膨張処理によって到達可能の識別情報に変更された車両の到達可能範囲の外周部分のほぼすべての領域の識別情報を、縮小処理によって元の到達不可能の識別情報に変更することができる。このようにして、ナビゲーション装置500は、車両の到達可能範囲内の欠損点1402を除去し、かつ外周を明瞭に表示可能な車両の到達可能範囲1421を生成することができる。
より具体的には、ナビゲーション装置500は、次のようにクロージング処理をおこなう。図15は、ナビゲーション装置500によるクロージング処理の一例を模式的に示す説明図である。図15(A)~図15(C)には、各領域にそれぞれ識別情報が付与されたh行h列の2次元行列データ(Y,X)のメッシュを一例として示す。
図15(A)は、識別情報付与後のメッシュ1500である。図15(B)は、図15(A)に対するクロージング処理(膨張)後のメッシュ1510である。図15(C)は、図15(B)に対するクロージング処理(縮小)後のメッシュ1520である。図15(A)~図15(C)のメッシュ1500,1510,1520には、到達可能の識別情報が付与された領域1501,1502をそれぞれ異なるハッチングで図示する。
図15(A)に示すように、識別情報付与後のメッシュ1500には、c行f列、f行c列およびg行f列の領域1501に到達可能の識別情報が付与されている。図15(A)では、膨張処理後および縮小処理後における識別情報の変化が明確となるように、到達可能の識別情報が付与された各領域1501を離れた状態で配置している。
ナビゲーション装置500は、このような識別情報付与後のメッシュ1500に対して、クロージングの膨張処理をおこなう。具体的には、図15(B)に示すように、ナビゲーション装置500は、c行f列の領域1501の左下、下、右下、右、右上、上、左上、左に隣り合う8つの領域(b行e列~b行g列、c行e列、c行g列およびd行e列~d行g列)1502の識別情報を、到達不可能の識別情報から到達可能の識別情報に変更する。
また、ナビゲーション装置500は、c行f列の領域1501に対しておこなった処理と同様に、f行c列およびg行f列の領域1501においても隣り合う8つの領域1502の識別情報を到達可能の識別情報に変更する。このため、車両の到達可能範囲1511は、領域1502の識別情報が到達可能の識別情報に変更された分だけ、識別情報付与後のメッシュ1500における車両の到達可能範囲よりも広がる。
つぎに、ナビゲーション装置500は、膨張処理後のメッシュ1510に対して、クロージングの縮小処理をおこなう。具体的には、図15(C)に示すように、ナビゲーション装置500は、到達不可能の識別情報が付与された領域(膨張処理後のメッシュ1510の白地部分)に隣り合うb行e列~b行g列、c行e列、c行g列およびd行e列~d行g列の8つの領域1502の識別情報を到達不可能の識別情報に変更する。
また、ナビゲーション装置500は、b行e列~b行g列、c行e列、c行g列およびd行e列~d行g列の8個の領域1502に対しておこなった処理と同様に、到達不可能の識別情報が付与された領域に隣り合うe行b列~e行d列、f行b列、f行d列~f行g列、g行b列~g行e列、g行g列、h行e列およびh行g列の15個の領域1502の識別情報を到達不可能の識別情報に変更する。
これにより、図15(C)に示すように、縮小処理後のメッシュ1520は、識別情報付与後のメッシュ1500と同様に、到達可能の識別情報が付与された3つの領域1501と、縮小処理後においても到達可能の識別情報が付与されたままの状態で残る1つの領域1502からなる車両の到達可能範囲1521が生成される。このように、膨張処理時に到達可能の識別情報が付与され、かつ縮小処理後に到達可能の識別情報が付与された状態で残る領域1502によって、識別情報付与後のメッシュ1500の到達可能範囲内に生じていた欠損点が消滅する。
(ナビゲーション装置500における識別情報付与の概要・その2)
ナビゲーション装置500は、2次元行列データ(Y,X)のメッシュに対してオープニング処理(縮小処理後に膨張処理をおこなう処理)をおこない、外周を明瞭に表示可能な車両の到達可能範囲を生成してもよい。具体的には、ナビゲーション装置500は、次のようにオープニング処理をおこなう。
ナビゲーション装置500は、2次元行列データ(Y,X)のメッシュに対してオープニング処理(縮小処理後に膨張処理をおこなう処理)をおこない、外周を明瞭に表示可能な車両の到達可能範囲を生成してもよい。具体的には、ナビゲーション装置500は、次のようにオープニング処理をおこなう。
図16は、ナビゲーション装置500によるオープニング処理の一例を示す説明図である。図16(A)~図16(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュである。図16(A)には、識別情報付与後のメッシュ1600を示す。図16(B)には、図16(A)に対するオープニング処理(縮小)後のメッシュ1610を示す。また、図16(C)には、図16(B)に対するオープニング処理(膨張)後のメッシュ1620を示す。図16(A)~図16(C)に示すメッシュ1600,1610,1620において、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲1601,1611,1621を黒く塗りつぶした状態で示す。
図16(A)に示すように、識別情報付与後のメッシュ1600における車両の到達可能範囲1601の外周に孤立点1602が多く生じている場合、識別情報付与後のメッシュ1600に対してオープニング処理をおこなうことで、孤立点1602を除去することができる。具体的には、図16(B)に示すように、ナビゲーション装置500は、識別情報付与後のメッシュ1600に対してオープニングの縮小処理をおこなう。
オープニングの縮小処理では、識別情報付与後のメッシュ1600の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。これにより、縮小処理前(識別情報付与後)の車両の到達可能範囲1601内に生じていた孤立点1602が除去される。
このため、識別情報付与後の車両の到達可能範囲1601の最外周の各領域が、縮小処理がおこなわれるごとに1ドット分ずつ到達不可能な領域となり、識別情報付与後の車両の到達可能範囲1601の外周が縮まる。また、識別情報付与後の車両の到達可能範囲1601に生じていた孤立点1602が除去される。
その後、図16(C)に示すように、ナビゲーション装置500は、メッシュ1610に対してオープニングの膨張処理をおこなう。オープニングの膨張処理では、縮小処理後のメッシュ1610の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。このため、膨張処理後の車両の到達可能範囲1621の外周は、膨張処理をおこなうごとに、縮小処理後の車両の到達可能範囲1611の最外周の各領域の外周を囲むように1ドット分ずつ広がる。
ナビゲーション装置500は、オープニング処理においても、クロージング処理と同様に膨張処理および縮小処理を同じ回数ずつおこなう。このように膨張処理と縮小処理との処理回数を等しくすることで、縮小処理によって縮まった車両の到達可能範囲1611の外周を広げ、縮小処理後の車両の到達可能範囲1611の外周を縮小処理前の車両の到達可能範囲1601の外周に戻すことができる。このようにして、ナビゲーション装置500は、孤立点1602が生じず、かつ外周を明瞭に表示可能な車両の到達可能範囲1621を生成することができる。
(ナビゲーション装置500における到達可能範囲の輪郭抽出の概要・その1)
本実施例のナビゲーション装置500は、m行m列の2次元行列データ(Y,X)のメッシュに付与された識別情報に基づいて、車両の到達可能範囲の輪郭を抽出する。具体的には、ナビゲーション装置500は、たとえば、フリーマンのチェインコードを用いて車両の到達可能範囲の輪郭を抽出する。より具体的には、ナビゲーション装置500は、次のように車両の到達可能範囲の輪郭を抽出する。
本実施例のナビゲーション装置500は、m行m列の2次元行列データ(Y,X)のメッシュに付与された識別情報に基づいて、車両の到達可能範囲の輪郭を抽出する。具体的には、ナビゲーション装置500は、たとえば、フリーマンのチェインコードを用いて車両の到達可能範囲の輪郭を抽出する。より具体的には、ナビゲーション装置500は、次のように車両の到達可能範囲の輪郭を抽出する。
図17は、ナビゲーション装置500による車両の到達可能範囲抽出の一例を模式的に示す説明図である。また、図18は、ナビゲーション装置500による車両の到達可能範囲抽出後のメッシュの一例を模式的に示す説明図である。図17(A)には、領域1700に隣り合う領域1710~1717の隣接方向を示す数字(以下、「方向指数(チェインコード)」という)と、方向指数に対応する8方向の矢印とを示す。図17(B)には、h行h列の2次元行列データ(Y,X)のメッシュ1720を一例として示す。また、図17(B)には、到達可能の識別情報が付与された領域1721~1734および当該領域1721~1734に囲まれた到達可能の識別情報が付与された領域をハッチングで図示する。
方向指数は、単位長さの線分の向いている方向を示す。メッシュ(X,Y)において、方向指数に対応する座標は、(X+dx,Y+dy)となる。具体的には、図17(A)に示すように、領域1700から左下に隣り合う領域1710へ向かう方向の方向指数は「0」である。領域1700から下に隣り合う領域1711へ向かう方向の方向指数は「1」である。領域1700から右下に隣り合う領域1712へ向かう方向の方向指数は「2」である。
また、領域1700から右に隣り合う領域1713へ向かう方向の方向指数は「3」である。領域1700から右上に隣り合う領域1714へ向かう方向の方向指数は「4」である。領域1700から上に隣り合う領域1715へ向かう方向の方向指数は「5」である。領域1700から左上に隣り合う領域1716へ向かう方向の方向指数は「6」である。領域1700から左に隣り合う領域1717へ向かう方向の方向指数は「7」である。
ナビゲーション装置500は、領域1700に隣り合う到達可能の識別情報「1」が付与された領域を左回りに検索する。また、ナビゲーション装置500は、領域1700に隣り合う到達可能の識別情報が付与された領域の検索開始点を、前回の方向指数に基づいて決定する。具体的には、ナビゲーション装置500は、他の領域から領域1700へ向かう方向指数が「0」であった場合、領域1700の左下に隣り合う領域、すなわち方向指数「7」の方向に隣り合う領域1717から検索を開始する。
同様に、ナビゲーション装置500は、他の領域から領域1700へ向かう方向指数が「1」~「7」であった場合、領域1700の左下、下、右下、右、右上、上、左上に隣り合う領域、すなわちそれぞれ方向指数「0」、「1」、「2」、「3」、「4」、「5」、「6」の方向に隣り合う領域1710~1716から検索を開始する。そして、ナビゲーション装置500は、領域1700から各領域1710~1717のいずれか一の領域から到達可能の識別情報「1」を検出した場合、到達可能の識別情報「1」を検出した領域1710~1717に対応する方向指数「0」~「7」を、領域1700に関連付けて記憶装置に書き込む。
具体的には、ナビゲーション装置500は、次のように車両の到達可能範囲の輪郭を抽出する。図17(B)に示すように、ナビゲーション装置500は、まず、h行h列の2次元行列データ(Y,X)のメッシュ1720のa行a列の領域から行単位で到達可能の識別情報が付与された領域を検索する。
メッシュ1120のa行目のすべての領域には到達不可能の識別情報が付与されているので、つぎに、ナビゲーション装置500は、メッシュ1720のb行a列の領域からb行h列の領域に向かって到達可能の識別情報を検索する。そして、ナビゲーション装置500は、メッシュ1720のb行e列の領域1721において到達可能の識別情報を検出した後、メッシュ1720のb行e列の領域1721から左回りに、車両の到達可能範囲の輪郭となる到達可能の識別情報を有する領域を検索する。
具体的には、ナビゲーション装置500は、領域1721の左に隣り合うb行d列の領域はすでに検索済みのため、まず、領域1721の左下に隣り合う領域1722から左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置500は、領域1722の到達可能の識別情報を検出し、領域1721から領域1722へ向かう方向の方向指数「0」を、領域1721に関連付けて記憶装置に記憶する。
つぎに、ナビゲーション装置500は、前回の方向指数「0」であるため、領域1722の左に隣り合うc行c列の領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置500は、領域1722の左下に隣り合う領域1723の到達可能の識別情報を検出し、領域1722から領域1723へ向かう方向の方向指数「0」を、前回の方向指数に関連付けて記憶装置に記憶する。
以降、ナビゲーション装置500は、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かを検索する処理を、方向指数に対応する矢印が領域1721に戻ってくるまで繰り返しおこなう。具体的には、ナビゲーション装置500は、領域1722の左に隣り合う領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1723の下に隣り合う領域1724の到達可能の識別情報を検出して、方向指数「1」を前回の方向指数に関連付けて記憶装置に記憶する。
同様に、ナビゲーション装置500は、前回の方向指数に基づいて検索開始点を決定した後、検索開始点から左回りに到達可能の識別情報を有する領域を検索し、到達可能の識別情報を有する領域1724~1734を順次検出する。そして、ナビゲーション装置500は、方向指数を取得するごとに前回の方向指数に関連付けて記憶装置に記憶する。
その後、ナビゲーション装置500は、領域1734の右上に隣り合うb行f列の領域から左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1734の上に隣り合う領域1721の到達可能の識別情報を検出して、方向指数「5」を前回の方向指数に関連付けて記憶装置に記憶する。これにより、記憶装置には、方向指数「0」→「0」→「1」→「0」→「2」→「3」→「4」→「3」→「2」→「5」→「5」→「6」→「6」→「5」がこの順で記憶される。
このようにナビゲーション装置500は、最初に検出した領域1721から、当該領域1721に隣り合う到達可能の識別情報を有する領域1722~1734を左回りに順次検索し方向指数を取得する。そして、ナビゲーション装置500は、領域1721から方向指数に対応する方向の一の領域を塗りつぶすことで、図18に示すように、車両の到達可能範囲の輪郭1801および当該輪郭1801に囲まれた部分1802からなる車両の到達可能範囲1800を有するメッシュを生成する。
(ナビゲーション装置500における到達可能範囲の輪郭抽出の概要・その2)
本実施例のナビゲーション装置500による車両の到達可能範囲抽出の別の一例について説明する。ナビゲーション装置500は、たとえば、到達可能の識別情報が付与された2次元行列データ(Y,X)のメッシュの経度緯度情報に基づいて、車両の到達可能範囲の輪郭を抽出してもよい。具体的には、ナビゲーション装置500は、次のように車両の到達可能範囲の輪郭を抽出する。
本実施例のナビゲーション装置500による車両の到達可能範囲抽出の別の一例について説明する。ナビゲーション装置500は、たとえば、到達可能の識別情報が付与された2次元行列データ(Y,X)のメッシュの経度緯度情報に基づいて、車両の到達可能範囲の輪郭を抽出してもよい。具体的には、ナビゲーション装置500は、次のように車両の到達可能範囲の輪郭を抽出する。
図19は、ナビゲーション装置500による車両の到達可能範囲抽出の別の一例について模式的に示す説明図である。図19に示すようなd行h列の2次元行列データ(Y,X)のメッシュ1900を例に説明する。ナビゲーション装置500は、メッシュ1900の、到達可能の識別情報「1」が付与された領域を検索する。具体的には、ナビゲーション装置500は、まず、a行a列の領域からa行h列の領域に向かって到達可能の識別情報「1」を検索する。
メッシュ1900のa行目のすべての領域には到達不可能の識別情報「0」が付与されているので、つぎに、ナビゲーション装置500は、b行a列の領域からb行h列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置500は、到達可能の識別情報「1」を有するb行c列の領域1901の最小経度px1、最小緯度py1(領域1901の左上座標)を取得する。
つぎに、ナビゲーション装置500は、b行d列の領域からb行h列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置500は、到達可能の識別情報「1」を有する領域と、到達可能の識別情報「0」を有する領域との境界を検索し、到達可能の識別情報「1」を有するb行f列の領域1902の最大経度px2、最大緯度py2(領域1902の右下座標)を取得する。
つぎに、ナビゲーション装置500は、b行c列の領域1901の左上座標(px1,py1)と、b行f列の領域1902の右下座標(px2,py2)とを対向する頂点とする矩形領域を塗りつぶす。
つぎに、ナビゲーション装置500は、メッシュ1900のb行g列からb行h列の領域へ、さらにc行a列からc行h列に向かって到達可能の識別情報「1」を検索する。そして、ナビゲーション装置500は、到達可能の識別情報「1」を有するc行d列の領域1903の最小経度px3、最小緯度py3(領域1903の左上座標)を取得する。
つぎに、ナビゲーション装置500は、c行e列の領域からc行h列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置500は、到達可能の識別情報「1」を有する領域と、到達可能の識別情報「0」を有する領域との境界を検索し、到達可能の識別情報「1」を有するc行f列の領域1904の最大経度px4、最大緯度py4(領域1904の右下座標)を取得する。
つぎに、ナビゲーション装置500は、c行d列の領域1903の左上座標(px3,py3)と、c行f列の領域1904の右下座標(px4,py4)とを対向する頂点とする矩形領域を塗りつぶす。
その後、ナビゲーション装置500は、c行g列の領域からc行h列の領域へ、さらにさらにd行a列からd行h列に向かって到達可能の識別情報「1」を有する領域を検索する。ナビゲーション装置500は、c行g列の領域からd行h列までのすべての領域には到達不可能の識別情報「0」が付与されているので、処理を終了する。
このように、2次元行列データ(Y,X)のメッシュ1900の各行ごとに、到達可能の識別情報「1」を有する領域を塗りつぶすことにより、車両の到達可能範囲および車両の到達可能範囲の輪郭を取得することができる。
(輪郭データの補完処理例)
図20は、輪郭データの補完処理例を示す説明図である。(A)は、補完前の輪郭データを示す。(A)の輪郭データは、頂点a0~d0により構成された輪郭データである。
図20は、輪郭データの補完処理例を示す説明図である。(A)は、補完前の輪郭データを示す。(A)の輪郭データは、頂点a0~d0により構成された輪郭データである。
(B)は、補完後の輪郭データの一例を示す。(B)は、あらたに頂点a1~c1が付加された状態を示す。頂点a1は頂点a0,b0の中点であり、頂点b1は頂点b0,c0の中点であり、頂点c1は頂点c0,d0の中点である。ここで、頂点a1のY軸方向の座標値は、頂点a0のY軸方向の座標値と同一であり、頂点b1のY軸方向の座標値は、頂点b0のY軸方向の座標値と同一であり、頂点c1のY軸方向の座標値は、頂点c0のY軸方向の座標値と同一である。すなわち、頂点a1は、頂点a0をX軸方向に平行移動した点であり、頂点b1は、頂点b0をX軸方向に平行移動した点であり、頂点c1は、頂点c0をX軸方向に平行移動した点である。このように、既存の頂点についてX軸方向の座標値のみを変更するだけで、頂点数を約2倍に増加するリサンプリングを簡単におこなうことができる。
(C)は、補完後の輪郭データの他の例を示す。(C)は、あらたに頂点a2~c2が付加された状態を示す。頂点a2は頂点a0,b0の中点であり、頂点b2は頂点b0,c0の中点であり、頂点c2は頂点c0,d0の中点である。すなわち、(C)では、直線補完が実行される。このように、既存の頂点について直線補完を実行するだけで、頂点数を2倍に増加するリサンプリングを簡単におこなうことができる。
図20に示したように増加された頂点群については、除去部263により、図1の(C)に示したように、IIR(infinite impulse response)フィルタで高周波成分が除去される。IIRフィルタは、2次のバタワースフィルタであり、カットオフ周波数はサンプリング周波数の1/10である。
ここで、輪郭データの各頂点の間隔となる入力データ系列を、x(1),x(2),…,x(n-2),x(n-1),x(n),x(n+1),…とする。例えば、頂点が100個(n=100)ある場合は、頂点を1つずつサンプリングすることにより、入力データ系列が得られる。また、高周波成分のカット後であるIIRフィルタからの出力信号データ系列を、y(1),y(2),…,y(n-2),y(n-1),y(n),y(n+1),…とする。また、IIRフィルタのフィルタ係数を、a(1),a(2),a(3),…,b(1),b(2),b(3),…とする。この場合、以下の差分方程式により出力データ系列が計算される。
a(1)×y(n)=b(1)×x(n)+b(2)×x(n-1)+…+b(nb+1)×x(n-nb)-a(2)×y(n-1)-…-a(na+1)×y(n-na)
ここで、a(1)=1,a(2)=-1.561,a(3)=0.6414,b(1)=0.0201,b(2)=0.0402,b(3)=0.0201とする。
すなわち、y(n)=0.0201×x(n-1)+0.0402×x(n-2)+0.0201×x(n-3)+1.561×y(n-1)-0.6414×y(n-2)として計算する。
すなわち、y(n)=0.0201×x(n-1)+0.0402×x(n-2)+0.0201×x(n-3)+1.561×y(n-1)-0.6414×y(n-2)として計算する。
図21は、IIRフィルタのフィルタ特性を示すグラフである。(A)は、IIRフィルタのフィルタ特性で周波数と振幅の関係を示している。横軸の周波数で「1」はサンプルレートの半分の周波数に対応する。(A)のグラフは、1サンプリングの半分で、振幅が100dB以上減衰するフィルタ特性である。(B)は、周波数と位相の関係を示すグラフである。1サンプリングの半分で位相は180度回転する。IIRフィルタを実装する場合、上記のフィルタ係数を適宜設定することにより、カットオフ周波数が決まる。
(輪郭データの間引き例)
図22は、輪郭データの間引き例を示す説明図である。(A)は、間引き前の輪郭データを示す。(A)の輪郭データは、頂点P1~P3により構成された輪郭データである。頂点P1~P3の各座標値は、(x1,y1)~(x3,y3)とする。間引き部264は、隣接する2頂点間の差分を求める。たとえば、間引き部264は、頂点P1,P2のx座標値の差分Δx1=(x2-x1)と、頂点P2,P3のx座標値の差分Δx2=(x3-x2)を求め、差分Δx1,Δx2の和Δ2x=x3-2×x2-x1を求める。y座標値についても同様に、間引き部264は、頂点P1,P2のy座標値の差分Δy1=(y2-y1)と、頂点P2,P3のy座標値の差分Δy2=(y3-y2)を求め、差分Δy1,Δy2の和Δ2y=y3-2×y2-y1を求める。そして、間引き部264は、Δ2xとΔ2yの2乗和の平行根となるdifdを求める。(B)は、difdを示す。difdは、頂点P1から頂点P3への角度の変化量を示し、頂点P1と頂点P3とを結ぶ線分の長さと一致する。
図22は、輪郭データの間引き例を示す説明図である。(A)は、間引き前の輪郭データを示す。(A)の輪郭データは、頂点P1~P3により構成された輪郭データである。頂点P1~P3の各座標値は、(x1,y1)~(x3,y3)とする。間引き部264は、隣接する2頂点間の差分を求める。たとえば、間引き部264は、頂点P1,P2のx座標値の差分Δx1=(x2-x1)と、頂点P2,P3のx座標値の差分Δx2=(x3-x2)を求め、差分Δx1,Δx2の和Δ2x=x3-2×x2-x1を求める。y座標値についても同様に、間引き部264は、頂点P1,P2のy座標値の差分Δy1=(y2-y1)と、頂点P2,P3のy座標値の差分Δy2=(y3-y2)を求め、差分Δy1,Δy2の和Δ2y=y3-2×y2-y1を求める。そして、間引き部264は、Δ2xとΔ2yの2乗和の平行根となるdifdを求める。(B)は、difdを示す。difdは、頂点P1から頂点P3への角度の変化量を示し、頂点P1と頂点P3とを結ぶ線分の長さと一致する。
間引き部264では、輪郭データ上の連続する3頂点についてそれぞれdifdを求め、求められたdifdの平均値を算出する。そして、間引き部264は、平均値以下となるdifdが求められた3頂点の真ん中の頂点である頂点P2を削除する。これにより、頂点数は、1/4程度に削減されることになる。また、角度の変化量difdに代えて、逆三角関数により角度の変化率を求めることとしてもよいが、角度の変化量difdの方が計算が簡略化されるため、間引き処理の高速化を図ることができる。
(ナビゲーション装置500における画像処理)
上述のように、ナビゲーション装置500は、車両の残存エネルギー量に基づいて探索された移動体の到達可能なノードに基づいて移動体の到達可能範囲を生成しディスプレイ513に表示させる。以下、たとえば、ナビゲーション装置500がEV車に搭載されている場合を例に説明する。
上述のように、ナビゲーション装置500は、車両の残存エネルギー量に基づいて探索された移動体の到達可能なノードに基づいて移動体の到達可能範囲を生成しディスプレイ513に表示させる。以下、たとえば、ナビゲーション装置500がEV車に搭載されている場合を例に説明する。
図23は、ナビゲーション装置500による画像処理の手順の一例を示すフローチャートである。図23のフローチャートにおいて、ナビゲーション装置500は、まず、たとえば、通信I/F515を介して、自装置が搭載された車両の現在地点(ofx,ofy)を取得する(ステップS2301)。つぎに、ナビゲーション装置500は、たとえば、通信I/F515を介して、車両の現在地点(ofx,ofy)における車両の初期保有エネルギー量を取得する(ステップS2302)。
つぎに、ナビゲーション装置500は、到達可能ノード探索処理をおこなう(ステップS2303)。つぎに、ナビゲーション装置500は、メッシュ生成および識別情報付与処理をおこなう(ステップS2304)。つぎに、ナビゲーション装置500は、車両の到達可能範囲の輪郭を抽出する(ステップS2305)。そして、ナビゲーション装置500は、抽出した輪郭を示す輪郭データに対して、補完処理、高速フーリエ変換処理、高周波成分除去処理、逆高速フーリエ変換処理、および間引き処理を含む平滑化処理を実行する(ステップS2306)。その後、ナビゲーション装置500は、平滑化処理された輪郭データに基づいて、ディスプレイ513に車両の到達可能範囲を表示し(ステップS2307)、本フローチャートによる処理を終了する。
(ナビゲーション装置500における推定消費電力量算出処理)
つぎに、ナビゲーション装置500による推定消費電力量算出処理について説明する。図24は、ナビゲーション装置500による推定消費電力量算出処理の手順の一例を示すフローチャートである。図24に示すフローチャートでは、上述したステップS2303の到達可能ノード探索処理でおこなう処理である。
つぎに、ナビゲーション装置500による推定消費電力量算出処理について説明する。図24は、ナビゲーション装置500による推定消費電力量算出処理の手順の一例を示すフローチャートである。図24に示すフローチャートでは、上述したステップS2303の到達可能ノード探索処理でおこなう処理である。
図24のフローチャートにおいて、ナビゲーション装置500は、まず、通信I/F515を介して、プルーブデータなどの渋滞情報や渋滞予測データを取得する(ステップS2401)。つぎに、ナビゲーション装置500は、リンクの長さや、リンクの道路種別を取得する(ステップS2402)。
つぎに、ナビゲーション装置500は、ステップS2401,S2402で取得した情報に基づいて、リンクの旅行時間を算出する(ステップS2403)。リンクの旅行時間とは、車両がリンクを走行し終わるのに要する時間である。つぎに、ナビゲーション装置500は、ステップS2401~S2403で取得した情報に基づいて、リンクの平均速度を算出する(ステップS2404)。リンクの平均速度とは、車両がリンクを走行する際の平均速度である。
つぎに、ナビゲーション装置500は、リンクの標高データを取得する(ステップS2405)。つぎに、ナビゲーション装置500は、車両の設定情報を取得する(ステップS2406)。つぎに、ナビゲーション装置500は、ステップS2401~S2406で取得した情報に基づいて、上述した(1)式~(6)式のいずれか1つ以上の消費エネルギー推定式を用いて、リンクにおける推定消費電力量を算出し(ステップS2407)、本フローチャートによる処理を終了する。
(ナビゲーション装置500における到達可能地点探索処理)
つぎに、ナビゲーション装置500による到達可能地点探索処理について説明する。図25,図26は、ナビゲーション装置500による到達可能地点探索処理の手順を示すフローチャートである。図25,図26のフローチャートにおいて、ナビゲーション装置500は、探索始点に最も近いリンクL(i)_jに接続するノードN(i)_jをノード候補に追加する(ステップS2501)。探索始点とは、上述したステップS2301で取得した車両の現在地点(ofx,ofy)である。
つぎに、ナビゲーション装置500による到達可能地点探索処理について説明する。図25,図26は、ナビゲーション装置500による到達可能地点探索処理の手順を示すフローチャートである。図25,図26のフローチャートにおいて、ナビゲーション装置500は、探索始点に最も近いリンクL(i)_jに接続するノードN(i)_jをノード候補に追加する(ステップS2501)。探索始点とは、上述したステップS2301で取得した車両の現在地点(ofx,ofy)である。
変数i,jは、任意の数値であり、たとえば、探索始点に最も近いリンクおよびノードをそれぞれリンクL(1)_jおよびノードN(1)_jとし、さらに、ノードN(1)_jに接続するリンクをリンクL(2)_j、リンクL(2)_jに接続するノードをノードN(2)_jとしていけばよい(j=1,2、・・・,j1)。変数j1は、任意の数値であり、同一の階層に複数のリンクまたはノードが存在することを意味する。
つぎに、ナビゲーション装置500は、ノード候補が1つ以上あるか否かを判断する(ステップS2502)。ノード候補が1つ以上ある場合(ステップS2502:Yes)、ナビゲーション装置500は、車両の現在地点からノード候補までの累計消費電力量が最小なノード候補を選択する(ステップS2503)。たとえば、ナビゲーション装置500がノード候補としてノードN(i)_jを選択したとして以降の処理を説明する。
つぎに、ナビゲーション装置500は、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量より小さいか否かを判断する(ステップS2504)。指定エネルギー量とは、たとえば、車両の現在地点における車両の残存エネルギー量である。指定エネルギー量より小さい場合(ステップS2504:Yes)、ナビゲーション装置500は、ノードN(i)_jに接続するすべてのリンクL(i+1)_jを抽出する(ステップS2505)。
つぎに、ナビゲーション装置500は、ステップS2505において抽出したリンクL(i+1)_jのうち、一のリンクL(i+1)_jを選択する(ステップS2506)。つぎに、ナビゲーション装置500は、ステップS2506において選択した一のリンクL(i+1)_jをリンク候補とするか否かを判断する候補判断処理をおこなう(ステップS2507,S2508)。
一のリンクL(i+1)_jをリンク候補とする場合(ステップS2508:Yes)、ナビゲーション装置500は、一のリンクL(i+1)_jでの消費電力量算出処理をおこなう(ステップS2509)。つぎに、ナビゲーション装置500は、一のリンクL(i+1)_jに接続するノードN(i+1)_jまでの累計消費電力量W(i+1)_jを算出する(ステップS2510)。つぎに、ナビゲーション装置500は、ノードN(i+1)_jに接続する処理済みの他の経路があるか否かを判断する(ステップS2511)。
処理済みの他の経路がある場合(ステップS2511:Yes)、ナビゲーション装置500は、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量よりも小さいか否かを判断する(ステップS2512)。他の経路での累計消費電力量よりも小さい場合(ステップS2512:Yes)、ナビゲーション装置500は、ノードN(i+1)_jに車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jを設定する(ステップS2513)。
一方、処理済みの他の経路がない場合(ステップS2511:No)、ナビゲーション装置500は、ステップS2513に進む。つぎに、ナビゲーション装置500は、ノードN(i+1)_jがノード候補であるか否かを判断する(ステップS2514)。ノード候補でない場合(ステップS2514:No)、ナビゲーション装置500は、ノードN(i+1)_jをノード候補に追加する(ステップS2515)。
また、一のリンクL(i+1)_jをリンク候補としない場合(ステップS2508:No)、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量以上である場合(ステップS2512:No)、ノードN(i+1)_jがノード候補である場合(ステップS2514:Yes)、ナビゲーション装置500は、ステップS2516へ進む。
つぎに、ナビゲーション装置500は、すべてのリンクL(i+1)_jの候補判断処理が終了したか否かを判断する(ステップS2516)。すべてのリンクL(i+1)_jの候補判断処理が終了した場合(ステップS2516:Yes)、ノードN(i)_jをノード候補から外した後(ステップS2517)、ステップS2502へ戻る。そして、ナビゲーション装置500は、ノード候補が1つ以上ある場合(ステップS2502:Yes)、ノード候補の中から、車両の現在地点からの累計消費電力量が最小なノード候補を選択し(ステップS2503)、ステップS2503において選択したノード候補を次のノードN(i)_jとしてステップS2504以降の処理をおこなう。
一方、すべてのリンクL(i+1)_jの候補判断処理が終了していない場合(ステップS2516:No)、ステップS2506へ戻る。そして、ナビゲーション装置500は、再度、ノードN(i)_jに接続する他のリンクL(i+1)_jを選択し、同一のノード候補に接続するすべてのリンクL(i+1)_jの候補判断処理が終了するまで(ステップS2516:Yes)、ステップS2507からステップS2515までの処理を繰り返しおこなう。また、ノード候補が1つ以上ない場合(ステップS2502:No)、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量以上である場合(ステップS2504:No)、ナビゲーション装置500は、本フローチャートによる処理を終了する。
(ナビゲーション装置500におけるリンク候補判断処理)
つぎに、ナビゲーション装置500によるリンク候補判断処理について説明する。図27は、ナビゲーション装置500によるリンク候補判断処理の手順の一例を示すフローチャートである。図27のフローチャートは、上述したステップS2507でおこなう処理の一例である。
つぎに、ナビゲーション装置500によるリンク候補判断処理について説明する。図27は、ナビゲーション装置500によるリンク候補判断処理の手順の一例を示すフローチャートである。図27のフローチャートは、上述したステップS2507でおこなう処理の一例である。
図27のフローチャートにおいて、ナビゲーション装置500は、まず、ステップS2506において選択した一のリンクL(i+1)_jが通行禁止であるか否かを判断する(ステップS2701)。通行禁止でない場合(ステップS2701:No)、ナビゲーション装置500は、一のリンクL(i+1)_jが一方通行の逆走であるか否かを判断する(ステップS2702)。一方通行の逆走でない場合(ステップS2702:No)、ナビゲーション装置500は、一のリンクL(i+1)_jが時間規制や季節規制されているか否かを判断する(ステップS2703)。
時間規制や季節規制されていない場合(ステップS2703:No)、ナビゲーション装置500は、一のリンクL(i+1)_jが一のリンクL(i+1)_jの車両の現在地点側のノードN(i+1)に接続するリンクL(i)_jよりも重要度が低いか否かを判断する(ステップS2704)。リンクL(i)_jよりも重要度が高い場合(ステップS2704:No)、ナビゲーション装置500は、一のリンクL(i+1)_jをリンク候補に決定し(ステップS2705)、本フローチャートによる処理を終了する。
一方、通行禁止である場合(ステップS2701:Yes)、一方通行の逆走である場合(ステップS2702:Yes)、時間規制や季節規制されている場合(ステップS2703:Yes)、接続するリンクL(i)_jよりも重要度が低い場合(ステップS2704:Yes)、ナビゲーション装置500は、本フローチャートによる処理を終了する。
(ナビゲーション装置500における識別情報付与処理)
つぎに、ナビゲーション装置500による識別情報付与処理について説明する。図28は、ナビゲーション装置500による識別情報付与処理の手順の一例を示すフローチャートである。図28のフローチャートは、上述したステップS2304でおこなう処理である。
つぎに、ナビゲーション装置500による識別情報付与処理について説明する。図28は、ナビゲーション装置500による識別情報付与処理の手順の一例を示すフローチャートである。図28のフローチャートは、上述したステップS2304でおこなう処理である。
図28のフローチャートにおいて、ナビゲーション装置500は、まず、到達可能なノード(探索可能地点)の経度緯度情報(x,y)を取得する(ステップS2801)。つぎに、ナビゲーション装置500は、最大経度x_max、最小経度x_min、最大緯度y_max、最小緯度y_minを取得する(ステップS2802)。
つぎに、ナビゲーション装置500は、ステップS2501で取得した車両の現在地点(ofx,ofy)から、最大経度x_maxまでの距離w1、最小経度x_minまでの距離w2、最大緯度y_maxまでの距離w3、最小緯度y_minまでの距離w4をそれぞれ算出する(ステップS2803)。つぎに、ナビゲーション装置500は、距離w1~w4のうちの最も長い距離w5=max(w1,w2,w3,w4)を取得する(ステップS2804)。
つぎに、ナビゲーション装置500は、記憶装置に記憶された地図データを絶対座標系からスクリーン座標系へ変換するための倍率mag=w5/nを算出する(ステップS2805)。つぎに、ナビゲーション装置500は、ステップS2805において算出した倍率magを用いて地図データを絶対座標系からスクリーン座標系へ変換し、m×mドットのメッシュ(X,Y)を生成する(ステップS2806)。
ナビゲーション装置500は、ステップS2806において、到達可能なノードを含むメッシュ(X,Y)に到達可能の識別情報を付与し、到達可能なノードを含まないメッシュ(X,Y)に到達不可能の識別情報を付与する。そして、ナビゲーション装置500は、第1識別情報変更処理をおこなうことで、橋またはトンネルに相当するメッシュ(X,Y)の欠損点を除去する(ステップS2807)。
つぎに、ナビゲーション装置500は、第2識別情報変更処理をおこなう(ステップS2808)。つぎに、ナビゲーション装置500は、第3識別情報変更処理をおこない(ステップS2809)、本フローチャートによる処理を終了する。第2識別情報変更処理は、クロージングの膨張処理である。第3識別情報変更処理は、クロージングの縮小処理である。なお、本フローチャートでは、第1識別情報変更処理(ステップS2807)の後で第2識別情報変更処理(ステップS2808)と第3識別情報変更処理(ステップS2809)をおこなっているが、第2識別情報変更処理(ステップS2808)と第3識別情報変更処理(ステップS2809)の後で、第1識別情報変更処理(ステップS2807)をおこなってもよい。
(ナビゲーション装置500における第1識別情報変更処理)
つぎに、ナビゲーション装置500による第1識別情報変更処理について説明する。図29は、ナビゲーション装置500による第1識別情報変更処理の手順の一例を示すフローチャートである。図29のフローチャートは、上述したステップS2807でおこなう処理の一例である。具体的には、ナビゲーション装置500は、橋またはトンネルの入口および出口に相当する各領域の識別情報が到達可能の識別情報である場合に、橋またはトンネルに相当する領域に生じている欠損点を除去する。
つぎに、ナビゲーション装置500による第1識別情報変更処理について説明する。図29は、ナビゲーション装置500による第1識別情報変更処理の手順の一例を示すフローチャートである。図29のフローチャートは、上述したステップS2807でおこなう処理の一例である。具体的には、ナビゲーション装置500は、橋またはトンネルの入口および出口に相当する各領域の識別情報が到達可能の識別情報である場合に、橋またはトンネルに相当する領域に生じている欠損点を除去する。
図29のフローチャートにおいて、ナビゲーション装置500は、まず、my行mx列の2次元行列データ(Y,X)のメッシュを取得する(ステップS2911)。つぎに、ナビゲーション装置500は、メッシュのi行j列の領域の識別情報を検索するために、変数i,jに1を代入する(ステップS2912,S2913)。つぎに、ナビゲーション装置500は、メッシュのi行j列の領域が橋またはトンネルの出入り口であるか否かを判断する(ステップS2914)。
i行j列の領域が橋またはトンネルの出入り口である場合(ステップS2914:Yes)、ナビゲーション装置500は、メッシュのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS2915)。i行j列の領域の識別情報が「1」である場合(ステップS2915:Yes)、ナビゲーション装置500は、メッシュのi行j列の領域に対応する、橋またはトンネルの他方の出入り口の領域の位置情報(i1,j1)を取得する(ステップS2916)。
つぎに、ナビゲーション装置500は、メッシュのi1行j1列の領域の識別情報が「1」であるか否かを判断する(ステップS2917)。i1行j1列の領域の識別情報が「1」である場合(ステップS2917:Yes)、ナビゲーション装置500は、i行j列の領域とi1行j1列の領域とを結ぶ区間上にあるすべての領域の識別情報を取得する(ステップS2918)。
つぎに、ナビゲーション装置500は、ステップS2918において取得した各領域の識別情報を「1」に変更する(ステップS2919)。これにより、i行j列の領域とi1行j1列の領域とを結ぶ橋またはトンネルに相当する領域に生じている欠損点が除去される。ナビゲーション装置500は、ステップS2918において取得した各領域の識別情報がすべて「1」であった場合に、ステップS2919の処理をおこなわずにステップS2920へ進んでもよい。
また、i行j列の領域が橋またはトンネルの出入り口でない場合(ステップS2914:No)、i行j列の領域の識別情報が「1」でない場合(ステップS2915:No)、および、i1行j1列の領域の識別情報が「1」でない場合(ステップS2917:No)、ナビゲーション装置500は、ステップS2920に進む。
つぎに、ナビゲーション装置500は、変数jに1を加算し(ステップS2920)、変数jがmx列を超えているか否かを判断する(ステップS2921)。変数jがmx列を超えていない場合(ステップS2921:No)、ナビゲーション装置500は、ステップS2914に戻り、以降の処理を繰り返しおこなう。一方、変数jがmx列を超えている場合(ステップS2921:Yes)、ナビゲーション装置500は、変数iに1を加算し(ステップS2922)、変数iがmy行を超えているか否かを判断する(ステップS2923)。
変数iがmy行を超えていない場合(ステップS2923:No)、ナビゲーション装置500は、ステップS2913に戻り、変数jに1を代入した後、以降の処理を繰り返しおこなう。一方、変数iがmy行を超えている場合(ステップS2923:Yes)、ナビゲーション装置500は、本フローチャートによる処理を終了する。これにより、ナビゲーション装置500は、my行mx列の2次元行列データのメッシュに含まれる橋またはトンネル上のすべての欠損点を除去することができる。
また、ナビゲーション装置500は、ステップS2916において橋またはトンネルの他方の出入り口として取得されたi1行j1列の領域について、再度、橋またはトンネルの他方の出入り口であるか否かの判断(ステップS2914の処理)をおこなわなくてもよい。これにより、ナビゲーション装置500は、第1識別情報変更処理の処理量を低減させることができる。
(ナビゲーション装置500における到達可能範囲輪郭抽出処理)
つぎに、ナビゲーション装置500による到達可能範囲輪郭抽出処理について説明する。図30,図31は、ナビゲーション装置500による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである。図30,図31のフローチャートは、上述したステップS2305でおこなう処理の一例であり、上述したナビゲーション装置500における到達可能範囲の輪郭抽出の概要・その2に示す到達可能範囲輪郭抽出処理である。
つぎに、ナビゲーション装置500による到達可能範囲輪郭抽出処理について説明する。図30,図31は、ナビゲーション装置500による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである。図30,図31のフローチャートは、上述したステップS2305でおこなう処理の一例であり、上述したナビゲーション装置500における到達可能範囲の輪郭抽出の概要・その2に示す到達可能範囲輪郭抽出処理である。
図30,図31のフローチャートにおいて、ナビゲーション装置500は、まず、my行mx列の2次元行列データ(Y,X)のメッシュを取得する(ステップS3001)。つぎに、ナビゲーション装置500は、ステップS3001で取得したメッシュの各領域の経度緯度情報を取得する(ステップS3002)。
つぎに、ナビゲーション装置500は、メッシュのi行j列の領域の識別情報を検索するために、変数iを初期化し、変数iに1を加算する(ステップS3003,S3004)。つぎに、ナビゲーション装置500は、変数iがmy行を超えているか否かを判断する(ステップS3005)。
変数iがmy行を超えていない場合(ステップS3005:No)、ナビゲーション装置500は、変数jを初期化し、変数jに1を加算する(ステップS3006,S3007)。つぎに、ナビゲーション装置500は、変数jがmx列を超えているか否かを判断する(ステップS3008)。
変数jがmx列を超えていない場合(ステップS3008:No)、ナビゲーション装置500は、メッシュのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS3009)。i行j列の領域の識別情報が「1」である場合(ステップS3009:Yes)、ナビゲーション装置500は、メッシュのi行j列の領域の左上座標(px1,py1)を取得する(ステップS3010)。i行j列の領域の左上座標(px1,py1)とは、i行j列の領域の最小経度px1、最小緯度py1である。
つぎに、ナビゲーション装置500は、変数jがmx列より小さいか否かを判断する(ステップS3011)。変数jがmx列以上の場合(ステップS3011:No)、ナビゲーション装置500は、メッシュのi行j列の領域の右下座標(px2,py2)を取得する(ステップS3012)。i行j列の領域の右下座標(px2,py2)とは、i行j列の領域の最大経度px2、最大緯度py2である。
つぎに、ナビゲーション装置500は、ステップS3010において取得した左上座標(px1,py1)と、ステップS3012において取得した右下座標(px2,py2)とを地図データに設定する(ステップS3016)。そして、ナビゲーション装置500は、左上座標(px1,py1)と、右下座標(px2,py2)とを対向する頂点とする矩形領域を塗りつぶし(ステップS3017)、ステップS3004に戻り、以降の処理を繰り返しおこなう。
一方、変数jがmx列より小さい場合(ステップS3011:Yes)、ナビゲーション装置500は、変数jに1を加算し(ステップS3013)、メッシュのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS3014)。i行j列の領域の識別情報が「1」でない場合(ステップS3014:No)、ナビゲーション装置500は、メッシュのi行j-1列の領域の右下座標(px2,py2)を取得し(ステップS3015)、ステップS3016以降の処理をおこなう。
また、i行j列の領域の識別情報が「1」である場合(ステップS3014:Yes)、ステップS3011に戻り、以降の処理を繰り返しおこなう。そして、変数iがmy行を超えている場合(ステップS3005:Yes)、ナビゲーション装置500は、本フローチャートによる処理を終了する。変数jがmx列を超えている場合(ステップS3008:Yes)、ステップS3004に戻り、以降の処理を繰り返しおこなう。
(ナビゲーション装置500における平滑化処理)
つぎに、ナビゲーション装置500による平滑化処理について説明する。図32は、ナビゲーション装置500による平滑化処理の手順の一例を示すフローチャートである。図32のフローチャートは、上述したステップS2306でおこなう処理の一例である。
つぎに、ナビゲーション装置500による平滑化処理について説明する。図32は、ナビゲーション装置500による平滑化処理の手順の一例を示すフローチャートである。図32のフローチャートは、上述したステップS2306でおこなう処理の一例である。
まず、ナビゲーション装置500は、補完部262により、移動体の到達可能範囲の輪郭を示す輪郭データの補完処理を実行する(ステップS3201)。つぎに、ナビゲーション装置500は、除去部263により、IIRフィルタを通すことにより高周波成分を除去する(ステップS3202)。そして、ナビゲーション装置500は、間引き部264により、頂点を間引く間引き処理を実行する(ステップS3203)。これにより、輪郭データが平滑化される。
(道路勾配について)
つぎに、上記(1)式~(6)式の右辺に変数として用いられる道路勾配θについて説明する。図33は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。図33に示すように、道路勾配がθの坂道を走行する車両には、車両の走行に伴う加速度A(=dx/dt)と、重力加速度gの進行方向成分B(=g・sinθ)がかかる。たとえば、上記(1)式を例に説明すると、上記(1)式の右辺第2項は、この車両の走行に伴う加速度Aと、重力加速度gの進行方向成分Bの合成加速度Cを示している。また、車両が走行する区間の距離をDとし、走行時間をTとし、走行速度をVとする。
つぎに、上記(1)式~(6)式の右辺に変数として用いられる道路勾配θについて説明する。図33は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。図33に示すように、道路勾配がθの坂道を走行する車両には、車両の走行に伴う加速度A(=dx/dt)と、重力加速度gの進行方向成分B(=g・sinθ)がかかる。たとえば、上記(1)式を例に説明すると、上記(1)式の右辺第2項は、この車両の走行に伴う加速度Aと、重力加速度gの進行方向成分Bの合成加速度Cを示している。また、車両が走行する区間の距離をDとし、走行時間をTとし、走行速度をVとする。
道路勾配θを考慮せずに電力消費量の推定をおこなった場合、道路勾配θが小さい領域では推定消費電力量と実際の消費電力量との誤差が小さいが、道路勾配θが大きい領域では推定した推定消費電力量と実際の消費電力量との誤差が大きくなってしまう。このため、ナビゲーション装置500では、道路勾配、すなわち第四情報を考慮して燃費の推定をおこなうことで推定精度が向上する。
車両が走行する道路の勾配は、たとえば、ナビゲーション装置500に搭載された傾斜計を用いて知ることができる。また、ナビゲーション装置500に傾斜計が搭載されていない場合は、たとえば、地図データに含まれる道路の勾配情報を用いることができる。
(走行抵抗について)
つぎに、車両に生じる走行抵抗について説明する。ナビゲーション装置500は、たとえば、次の(11)式により走行抵抗を算出する。一般的に、走行抵抗は、道路種別や、道路勾配、路面状況などにより、加速時や走行時に移動体に生じる。
つぎに、車両に生じる走行抵抗について説明する。ナビゲーション装置500は、たとえば、次の(11)式により走行抵抗を算出する。一般的に、走行抵抗は、道路種別や、道路勾配、路面状況などにより、加速時や走行時に移動体に生じる。
(ナビゲーション装置によるクロージング処理後の表示例)
つぎに、ナビゲーション装置500によるクロージング処理後の表示例について説明する。図34は、ナビゲーション装置500による到達可能地点探索処理後の表示例の一例について示す説明図である。図35は、ナビゲーション装置500による識別情報付与処理後の表示例の一例について示す説明図である。図36は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。また、図37は、ナビゲーション装置500によるクロージング処理(膨張)後の表示例の一例について示す説明図である。図38は、ナビゲーション装置500によるクロージング処理(縮小)後の表示例の一例について示す説明図である。
つぎに、ナビゲーション装置500によるクロージング処理後の表示例について説明する。図34は、ナビゲーション装置500による到達可能地点探索処理後の表示例の一例について示す説明図である。図35は、ナビゲーション装置500による識別情報付与処理後の表示例の一例について示す説明図である。図36は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。また、図37は、ナビゲーション装置500によるクロージング処理(膨張)後の表示例の一例について示す説明図である。図38は、ナビゲーション装置500によるクロージング処理(縮小)後の表示例の一例について示す説明図である。
図34に示すように、たとえば、ディスプレイ513には、地図データとともに、ナビゲーション装置500によって探索された複数の車両の到達可能地点が表示される。図34に示すディスプレイ513の状態は、ナビゲーション装置500によって到達可能地点探索処理がおこなわれたときの、ディスプレイに表示される情報の一例である。具体的には、図23のステップS2303の処理がおこなわれた状態である。
つぎに、ナビゲーション装置500によって地図データが複数の領域に分割され、到達可能地点に基づいて各領域に到達可能または到達不可能の識別情報が付与されることで、図35に示すように、ディスプレイ513には、到達可能の識別情報に基づく車両の到達可能範囲3500が表示される。この段階では、車両の到達可能範囲3500内に、到達不可能な領域からなる欠損点が生じている。
また、車両の到達可能範囲3500内には、たとえば、東京湾を横断する東京湾横断道路(東京湾アクアライン:登録商標)3510の両出入り口に相当する領域が含まれる。しかし、車両の到達可能範囲3500内には、東京湾横断道路3510上の全領域のうち、一の領域3511しか含まれていない。つぎに、ナビゲーション装置500によって第1識別情報変更処理がおこなわれることにより、図36に示すように東京湾横断道路上の欠損点が除去され、ディスプレイ513には、東京湾横断道路3510上の全領域3621が含まれた到達可能範囲3620が表示される。
つぎに、ナビゲーション装置500によってクロージングの膨張処理がおこなわれることにより、図37に示すように、欠損点の除去された車両の到達可能範囲3700が生成される。また、すでに、第1識別情報変更処理によって東京湾横断道路上の全領域3621が到達可能範囲3620に含まれているため、クロージングの膨張処理後においても、東京湾横断道路上の全領域3710は、車両の到達可能範囲3700となる。その後、ナビゲーション装置500によってクロージングの縮小処理がおこなわれることにより、図38に示すように、車両の到達可能範囲3800の外周は、クロージングがおこなわれる前の車両の到達可能範囲3500の外周とほぼ同様の大きさとなる。なお、図38の東京湾横断道路上の全領域3810の境界および図38の東京湾横断道路上の全領域3810の夫々の境界は、メッシュに依存した境界の表示となるが、ここでは分かりやすいように斜め線の境界で表示している。
そして、ナビゲーション装置500によって車両の到達可能範囲3800の輪郭3801を抽出することで、車両の到達可能範囲3800の輪郭をなめらかに表示することができる。また、クロージングによって欠損点を除去しているため、車両の到達可能範囲3800は、2次元のなめらかな面3802で表示される。また、クロージング縮小処理後においても、東京湾横断道路上の全領域3810は、車両の到達可能範囲3800またはその輪郭3801として表示される。
図39は、ナビゲーション装置500による平滑化処理後の表示例の一例について示す説明図である。ナビゲーション装置500によって車両の到達可能範囲3900の輪郭3901が、図38の状態(輪郭3801)から平滑化されるため、車両の到達可能範囲3900は、2次元のよりなめらかな面3902で表示される。
以上説明したように、ナビゲーション装置500によれば、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、ナビゲーション装置500は、到達可能の識別情報が付与された領域に基づいて、移動体の到達可能範囲を生成する。このため、ナビゲーション装置500は、海や湖、山脈など移動体の走行不可能な領域を除いた状態で移動体の到達可能範囲を生成することができる。したがって、画像処理装置200は、移動体の到達可能範囲を正確に表示することができる。
また、ナビゲーション装置500は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クロージングの膨張処理をおこなう。このため、ナビゲーション装置500は、移動体の到達可能範囲内の欠損点を除去することができる。
また、ナビゲーション装置500は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、ナビゲーション装置500は、移動体の到達可能範囲の孤立点を除去することができる。
このように、ナビゲーション装置500は、移動体の到達可能範囲の欠損点や孤立点を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、ナビゲーション装置500は、地図情報を複数の領域に分割して生成したメッシュの輪郭を抽出する。このため、ナビゲーション装置500は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。
また、ナビゲーション装置500は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、ナビゲーション装置500は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクロージングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損点を除去することができる。したがって、ナビゲーション装置500は、移動体の到達可能範囲を検出するための処理量を低減することができる。また、ナビゲーション装置500は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。
また、ナビゲーション装置500は、高速フーリエ変換の前処理として、輪郭データを構成する線分データをX軸成分とY軸成分とに分解して、各線分データの長さを均一にした。これにより、輪郭データから得られた頂点ごとの偏角および長さのうち、偏角についてのみ高速フーリエ変換をおこなえばよいため、平滑化処理の高速化を図ることができる。また、補完処理では、線分データを、到達可能範囲に包含されるように分解するため、到達可能範囲に包含されないように分割される場合に比べて違和感が抑制され、視認性の向上を図ることができる。また、輪郭データの不要な頂点を間引く場合、偏角の大きさにより判断するため、簡単な間引き処理により平滑化処理の高速化を実現することができる。このように、実施の形態1にかかる画像処理装置では、表示される移動体の到達可能範囲の輪郭の平滑化を高速に実行して、視認性の向上を図ることができる。
(実施の形態2)
図40は、実施の形態2にかかる画像処理システムの機能的構成の一例を示すブロック図である。実施の形態2にかかる画像処理システム4000の機能的構成について説明する。実施の形態2にかかる画像処理システム4000は、サーバ4010、端末4020によって構成される。実施の形態2にかかる画像処理システム4000は、実施の形態1の画像処理装置200の機能をサーバ4010および端末4020に備える。
図40は、実施の形態2にかかる画像処理システムの機能的構成の一例を示すブロック図である。実施の形態2にかかる画像処理システム4000の機能的構成について説明する。実施の形態2にかかる画像処理システム4000は、サーバ4010、端末4020によって構成される。実施の形態2にかかる画像処理システム4000は、実施の形態1の画像処理装置200の機能をサーバ4010および端末4020に備える。
サーバ4010は、移動体に搭載された端末4020によって表示部210に表示させる情報を生成する。具体的には、サーバ4010は、移動体の到達可能範囲に関する情報を検出し端末4020に送信する。端末4020は、移動体に搭載されても構わないし、携帯端末として移動体の中で利用されても構わないし、携帯端末として移動体の外で利用されても構わない。そして、端末4020は、サーバ4010から移動体の到達可能範囲に関する情報を受信する。
図40において、サーバ4010は、算出部202、探索部203、分割部204、付与部205、サーバ受信部4011、サーバ送信部4012によって構成される。端末4020は、取得部201、表示制御部206、端末受信部4021、端末送信部4022によって構成される。なお、図40に示す画像処理システム4000においては、図2に示した画像処理装置200と同一の構成部に同一の符号を付し、説明を省略する。
サーバ4010において、サーバ受信部4011は、端末4020から送信された情報を受信する。具体的には、たとえば、サーバ受信部4011は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末4020からの移動体に関する情報を受信する。移動体に関する情報とは、移動体の現在地点に関する情報、および、移動体の現在地点において移動体が保有するエネルギー量である初期保有エネルギー量に関する情報である。サーバ受信部4011によって受信された情報は、算出部202で参照される情報である。
サーバ送信部4012は、付与部205によって移動体が到達可能であることを識別する到達可能の識別情報が付与された地図情報が分割されてなる複数の領域を移動体の到達可能範囲として、端末4020に送信する。具体的には、たとえば、サーバ送信部4012は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末4020に情報を送信する。
端末4020は、たとえば、携帯端末の情報通信網や自装置に備えられた通信部(不図示)を介して通信可能な状態で、サーバ4010と接続されている。
端末4020において、端末受信部4021は、サーバ4010からの情報を受信する。具体的には、端末受信部4021は、複数の領域に分割され、かつ当該領域のそれぞれに、移動体の到達可能地点に基づいて到達可能または到達不可能の識別情報が付与された地図情報を受信する。より具体的には、たとえば、端末受信部4021は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続されたサーバ4010から情報を受信する。
端末送信部4022は、取得部201に取得された移動体に関する情報をサーバ4010に送信する。具体的には、たとえば、端末送信部4022は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続されたサーバ4010に移動体に関する情報を送信する。
つぎに、実施の形態2にかかる画像処理システム4000による画像処理について説明する。画像処理システム4000による画像処理は、実施の形態1にかかる画像処理装置200とほぼ同一であるため、図4のフローチャートを利用して実施の形態1との差異について説明する。
画像処理システム4000による画像処理は、実施の形態1にかかる画像処理装置200による画像処理のうち、推定エネルギー消費量算出処理、到達可能地点探索処理、識別情報付与処理、をサーバ4010がおこなう。具体的には、図4のフローチャートにおいて、端末4020は、ステップS401の処理をおこない、ステップS401で取得した情報をサーバ4010に送信する。
つぎに、サーバ4010は、端末4020からの情報を受信する。つぎに、サーバ4010は、端末4020から受信した情報に基づいてステップS402~S406の処理をおこない、ステップS406で取得した情報を端末4020に送信する。つぎに、端末4020は、サーバ4010からの情報を受信する。そして、端末4020は、サーバ4010から受信した情報に基づいてステップS407をおこない、本フローチャートによる処理を終了する。
以上説明したように、実施の形態2にかかる画像処理システム4000および画像処理方法は、実施の形態1にかかる画像処理装置200および画像処理方法と同様の効果を得ることができる。
(実施の形態3)
図41は、実施の形態3にかかる画像処理システムの機能的構成の一例を示すブロック図である。実施の形態3にかかる画像処理システム4100の機能的構成について説明する。実施の形態3にかかる画像処理システム4100は、第1サーバ4110、第2サーバ4120、第3サーバ4130、端末4140によって構成される。画像処理システム4100は、実施の形態1の画像処理装置200の算出部202の機能を第1サーバ4110が備え、実施の形態1の画像処理装置200の探索部203の機能を第2サーバ4120が備え、実施の形態1の画像処理装置200の分割部204、識別部205aおよび付与部205の機能を第3サーバ4130が備え、実施の形態1の画像処理装置200の取得部201および表示制御部206の機能を端末4140が備える。
図41は、実施の形態3にかかる画像処理システムの機能的構成の一例を示すブロック図である。実施の形態3にかかる画像処理システム4100の機能的構成について説明する。実施の形態3にかかる画像処理システム4100は、第1サーバ4110、第2サーバ4120、第3サーバ4130、端末4140によって構成される。画像処理システム4100は、実施の形態1の画像処理装置200の算出部202の機能を第1サーバ4110が備え、実施の形態1の画像処理装置200の探索部203の機能を第2サーバ4120が備え、実施の形態1の画像処理装置200の分割部204、識別部205aおよび付与部205の機能を第3サーバ4130が備え、実施の形態1の画像処理装置200の取得部201および表示制御部206の機能を端末4140が備える。
図41において、端末4140は、実施の形態2の端末4020と同様の構成を有する。具体的には、端末4140は、取得部201、表示制御部206、端末受信部4141、端末送信部4142によって構成される。端末受信部4141は、実施の形態2の端末受信部4021と同様の構成を有する。端末送信部4142は、実施の形態2の端末送信部4022と同様の構成を有する。第1サーバ4110は、算出部202、第1サーバ受信部4111、第1サーバ送信部4112、によって構成される。
第2サーバ4120は、探索部203、第2サーバ受信部4121、第2サーバ送信部4122、によって構成される。第3サーバ4130は、分割部204、識別部205aおよび付与部205、第3サーバ受信部4131、第3サーバ送信部4132、によって構成される。図41に示す画像処理システム4100においては、図2に示した画像処理装置200および図40に示した画像処理システム4000と同一の構成部に同一の符号を付し、説明を省略する。
第1サーバ4110において、第1サーバ受信部4111は、端末4140から送信された情報を受信する。具体的には、たとえば、第1サーバ受信部4111は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末4140の端末送信部4142からの情報を受信する。第1サーバ受信部4111によって受信された情報は、算出部202で参照される情報である。
第1サーバ送信部4112は、算出部202によって算出された情報を第2サーバ受信部4121に送信する。具体的には、第1サーバ送信部4112は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第2サーバ受信部4121に情報を送信してもよいし、有線で接続された第2サーバ受信部4121に情報を送信してもよい。
第2サーバ4120において、第2サーバ受信部4121は、端末送信部4142および第1サーバ送信部4112によって送信された情報を受信する。具体的には、たとえば、第2サーバ受信部4121は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第1サーバ送信部4112および端末送信部4142からの情報を受信する。第2サーバ受信部4121は、有線で接続された第1サーバ送信部4112からの情報を受信してもよい。第2サーバ受信部4121によって受信された情報は、探索部203で参照される情報である。
第2サーバ送信部4122は、探索部203によって探索された情報を第3サーバ受信部4131に送信する。具体的には、たとえば、第2サーバ送信部4122は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第3サーバ受信部4131に情報を送信してもよいし、有線で接続された第3サーバ受信部4131に情報を送信してもよい。
第3サーバ4130において、第3サーバ受信部4131は、端末送信部4142および第2サーバ送信部4122によって送信された情報を受信する。具体的には、たとえば、第3サーバ受信部4131は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第2サーバ送信部4122および端末送信部4142からの情報を受信してもよい。第3サーバ受信部4131は、有線で接続された第2サーバ送信部4122からの情報を受信してもよい。第2サーバ受信部4121によって受信された情報は、分割部204で参照される情報である。
第3サーバ送信部4132は、付与部205によって生成された情報を端末受信部4141に送信する。具体的には、たとえば、第3サーバ送信部4132は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末受信部4141に情報を送信する。
つぎに、実施の形態3にかかる画像処理システム4100による画像処理について説明する。画像処理システム4100による画像処理は、実施の形態1にかかる画像処理装置200とほぼ同一であるため、図4のフローチャートを利用して実施の形態1との差異について説明する。
画像処理システム4100による画像処理は、実施の形態1にかかる画像処理装置200による画像処理のうち、推定エネルギー消費量算出処理を第1サーバ4110がおこない、到達可能地点探索処理を第2サーバ4120がおこない、識別情報付与処理を第3サーバ4130がおこなう。図4のフローチャートにおいて、端末4140は、ステップS401の処理をおこない、ステップS401で取得した情報を第1サーバ4110に送信する。
つぎに、第1サーバ4110は、端末4140からの情報を受信する。つぎに、第1サーバ4110は、端末4140から受信した情報に基づいてステップS402,S403の処理をおこない、ステップS403で算出した情報を第2サーバ4120に送信する。つぎに、第2サーバ4120は、第1サーバ4110からの情報を受信する。つぎに、第2サーバ4120は、第1サーバ4110から受信した情報に基づいてステップS404の処理をおこない、ステップS204で探索した情報を第3サーバ4130に送信する。
つぎに、第3サーバ4130は、第2サーバ4120からの情報を受信する。つぎに、第3サーバ4130は、第2サーバ4120からの情報に基づいてステップS405,S406の処理をおこない、ステップS406で生成した情報を端末4140に送信する。つぎに、端末4140は、第3サーバ4130からの情報を受信する。そして、端末4140は、第3サーバ4130から受信した情報に基づいてステップS407をおこない、本フローチャートによる処理を終了する。
以上説明したように、実施の形態3にかかる画像処理システム4100および画像処理方法は、実施の形態1にかかる画像処理装置200および画像処理方法と同様の効果を得ることができる。
図42は、画像処理装置のシステム構成の一例を示す説明図である。図42では、車両に搭載されたナビゲーション装置4210を端末4020とし、サーバ4220をサーバ4010とする取得システム4200において、本発明を適用した場合の一例について説明する。画像処理システム4200は、車両4230に搭載されたナビゲーション装置4210、サーバ4220、ネットワーク4240によって構成される。
ナビゲーション装置4210は、車両4230に搭載されている。ナビゲーション装置4210は、サーバ4220に車両の現在地点の情報および初期保有エネルギー量に関する情報を送信する。また、ナビゲーション装置4210は、サーバ4220から受信した情報をディスプレイに表示してユーザに報知する。サーバ4220は、ナビゲーション装置4210から車両の現在地点の情報および初期保有エネルギー量に関する情報を受信する。サーバ4220は、受信した車両情報に基づいて、車両4230の到達可能範囲に関する情報を生成する。
サーバ4220およびナビゲーション装置4210のハードウェア構成は、実施例1のナビゲーション装置500のハードウェア構成と同一である。また、ナビゲーション装置4210は、車両情報をサーバ4220に送信する機能と、サーバ4220からの情報を受信してユーザに報知する機能に該当するハードウェア構成のみを備えていればよい。
また、取得システム4200は、車両に搭載されたナビゲーション装置4210を実施の形態3の端末4140とし、サーバ4220の機能構成を実施の形態3の第1~3サーバ4110~4130に分散させた構成としてもよい。
なお、本実施の形態で説明した画像処理方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。
200 画像処理装置
201 取得部
202 算出部
203 探索部
204 分割部
205 付与部
205a 識別部
206 表示制御部
210 表示部
251 第1変更部
252 第2変更部
261 輪郭抽出部
262 補完部
263 除去部
264 間引き部
500 ナビゲーション装置
201 取得部
202 算出部
203 探索部
204 分割部
205 付与部
205a 識別部
206 表示制御部
210 表示部
251 第1変更部
252 第2変更部
261 輪郭抽出部
262 補完部
263 除去部
264 間引き部
500 ナビゲーション装置
Claims (8)
- 移動体の到達可能範囲に関する情報を処理する画像処理装置であって、
前記移動体の現在地点に関する情報、および、前記移動体の現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する取得手段と、
前記移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する算出手段と、
地図情報、前記初期保有エネルギー量および前記推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する探索手段と、
前記地図情報を複数の領域に分割する分割手段と、
前記探索手段によって探索された複数の到達可能地点に基づいて、前記分割手段によって分割された複数の領域にそれぞれ前記移動体が到達可能であるか否かを識別する識別手段と、
前記識別手段による識別結果に基づいて、前記地図情報から前記移動体の到達可能範囲の輪郭を抽出し、
抽出した輪郭に含まれる頂点群に対し前記頂点群を増加させる処理をおこなってから所定周波数以上の周波数成分を除去することにより、前記周波数成分が除去された輪郭となる前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、
を備えることを特徴とする画像処理装置。 - 前記表示制御手段は、
前記周波数成分が除去された輪郭に含まれる増加後の頂点群の一部を間引く間引き処理を実行し、間引き処理後の輪郭となる前記移動体の到達可能範囲を前記表示手段に表示させることを特徴とする請求項1に記載の画像処理装置。 - 前記算出手段は、
前記移動体に備えられた装備品により消費されるエネルギーに関する第一情報と、
前記移動体の加減速時に消費および回収されるエネルギーに関する第二情報と、
前記移動体の走行時に生じる抵抗により消費されるエネルギーに関する第三情報と、
を含む消費エネルギー推定式に基づいて、前記移動体が前記所定区間を走行する際の前記推定エネルギー消費量を算出することを特徴とする請求項1に記載の画像処理装置。 - 前記識別手段は、
識別情報が付与された一の領域に隣り合う他の領域に前記移動体が到達可能であることを識別する到達可能の識別情報が付与されている場合、当該一の領域の識別情報を到達可能の識別情報に変更する第1変更手段と、
前記第1変更手段による識別情報の変更後、前記識別情報が付与された一の領域に隣り合う他の領域に、前記移動体が到達不可能であることを識別する到達不可能の識別情報が付与されている場合、当該一の領域の識別情報を到達不可能の識別情報に変更する第2変更手段と、
を備えることを特徴とする請求項1に記載の画像処理装置。 - 前記探索手段は、前記移動体の現在地点から移動可能なすべての経路において、それぞれ、当該経路上の所定地点どうしを結ぶ前記所定区間における前記推定エネルギー消費量の累計が最小となるように前記移動体の到達可能地点を探索することを特徴とする請求項1に記載の画像処理装置。
- 前記探索手段は、複数の前記所定区間のうち、一の所定区間の次に選択する他の所定区間の重要度が当該一の所定区間の重要度よりも低い場合、当該他の所定区間を、前記移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索することを特徴とする請求項1に記載の画像処理装置。
- 前記識別手段は、前記地図情報の一の橋または一のトンネルの入口および出口に相当する分割された前記地図情報に、前記移動体が到達可能であることを識別する到達可能の識別情報が付与されている場合、当該一の橋または当該一のトンネルを構成するすべての領域に相当する分割された前記地図情報に、到達可能の識別情報を付与することを特徴とする請求項1に記載の画像処理装置。
- 移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、
前記移動体の現在地点に関する情報、および、前記現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する取得工程と、
前記移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する算出工程と、
地図情報、前記初期保有エネルギー量および前記推定エネルギー消費量に基づいて、前記移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する探索工程と、
前記地図情報を複数の領域に分割する分割工程と、
前記探索工程によって探索された複数の到達可能地点に基づいて、前記分割工程によって分割された複数の領域にそれぞれ前記移動体が到達可能であるか否かを識別する識別工程と、
前記識別工程による識別結果に基づいて、前記地図情報から前記移動体の到達可能範囲の輪郭を抽出し、抽出した輪郭に含まれる頂点群に対し前記頂点群を増加させる処理をおこなってから所定周波数以上の周波数成分を除去することにより、前記周波数成分が除去された輪郭となる前記移動体の到達可能範囲を表示手段に表示させる表示制御工程と、
を含むことを特徴とする画像処理方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014534092A JPWO2014038026A1 (ja) | 2012-09-05 | 2012-09-05 | 画像処理装置および画像処理方法 |
CN201280071976.7A CN104204728B (zh) | 2012-09-05 | 图像处理装置以及图像处理方法 | |
PCT/JP2012/072658 WO2014038026A1 (ja) | 2012-09-05 | 2012-09-05 | 画像処理装置および画像処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072658 WO2014038026A1 (ja) | 2012-09-05 | 2012-09-05 | 画像処理装置および画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038026A1 true WO2014038026A1 (ja) | 2014-03-13 |
Family
ID=50236677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072658 WO2014038026A1 (ja) | 2012-09-05 | 2012-09-05 | 画像処理装置および画像処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014038026A1 (ja) |
WO (1) | WO2014038026A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0755484A (ja) * | 1993-08-10 | 1995-03-03 | Toyota Motor Corp | 車載用ナビゲーション装置 |
JPH08171643A (ja) * | 1994-12-16 | 1996-07-02 | Nec Corp | メッシュ状図形の輪郭抽出方式 |
JPH09102026A (ja) * | 1995-10-04 | 1997-04-15 | Hitachi Ltd | ディジタル地図における予測範囲表示方法 |
JPH1116094A (ja) * | 1997-06-20 | 1999-01-22 | Matsushita Electric Ind Co Ltd | 到達可能範囲表示装置 |
JP2007298744A (ja) * | 2006-04-28 | 2007-11-15 | Matsushita Electric Ind Co Ltd | 地図表示装置および地図表示方法 |
JP2008096209A (ja) * | 2006-10-10 | 2008-04-24 | Matsushita Electric Ind Co Ltd | 到達可能範囲表示装置および到達可能範囲表示方法ならびにそのプログラム |
JP2010127678A (ja) * | 2008-11-26 | 2010-06-10 | Aisin Aw Co Ltd | 走行案内装置、走行案内方法及びコンピュータプログラム |
JP2011217509A (ja) * | 2010-03-31 | 2011-10-27 | Nissan Motor Co Ltd | 電気自動車用表示装置及び表示方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003111075A (ja) * | 2001-09-27 | 2003-04-11 | Masahiro Sugimoto | 障害物検知方法および装置 |
-
2012
- 2012-09-05 WO PCT/JP2012/072658 patent/WO2014038026A1/ja active Application Filing
- 2012-09-05 JP JP2014534092A patent/JPWO2014038026A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0755484A (ja) * | 1993-08-10 | 1995-03-03 | Toyota Motor Corp | 車載用ナビゲーション装置 |
JPH08171643A (ja) * | 1994-12-16 | 1996-07-02 | Nec Corp | メッシュ状図形の輪郭抽出方式 |
JPH09102026A (ja) * | 1995-10-04 | 1997-04-15 | Hitachi Ltd | ディジタル地図における予測範囲表示方法 |
JPH1116094A (ja) * | 1997-06-20 | 1999-01-22 | Matsushita Electric Ind Co Ltd | 到達可能範囲表示装置 |
JP2007298744A (ja) * | 2006-04-28 | 2007-11-15 | Matsushita Electric Ind Co Ltd | 地図表示装置および地図表示方法 |
JP2008096209A (ja) * | 2006-10-10 | 2008-04-24 | Matsushita Electric Ind Co Ltd | 到達可能範囲表示装置および到達可能範囲表示方法ならびにそのプログラム |
JP2010127678A (ja) * | 2008-11-26 | 2010-06-10 | Aisin Aw Co Ltd | 走行案内装置、走行案内方法及びコンピュータプログラム |
JP2011217509A (ja) * | 2010-03-31 | 2011-10-27 | Nissan Motor Co Ltd | 電気自動車用表示装置及び表示方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104204728A (zh) | 2014-12-10 |
JPWO2014038026A1 (ja) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krumm | Where will they turn: predicting turn proportions at intersections | |
JP6047651B2 (ja) | 画像処理装置および画像処理方法 | |
WO2014045432A1 (ja) | 画像処理装置および画像処理方法 | |
CN103748432B (zh) | 图像处理装置、图像处理管理装置、终端、处理装置以及图像处理方法 | |
JP2019049569A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
WO2014103080A1 (ja) | 表示制御装置、表示制御方法、表示制御プログラム、表示制御システム、表示制御サーバおよび端末 | |
JP2017187498A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
WO2014038026A1 (ja) | 画像処理装置および画像処理方法 | |
WO2014016948A1 (ja) | 画像処理装置および画像処理方法 | |
CN104204728B (zh) | 图像处理装置以及图像处理方法 | |
JP2017227652A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP6058756B2 (ja) | 画像処理装置および画像処理方法 | |
JP2023133418A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP2022070882A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
WO2013125019A1 (ja) | 画像処理装置および画像処理方法 | |
JP2018200319A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP2016006695A (ja) | 補充設備検索装置、補充設備検索方法および補充設備検索プログラム | |
WO2013114579A1 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
WO2013111342A1 (ja) | 画像処理装置、画像処理管理装置、端末および画像処理方法 | |
JP5816705B2 (ja) | 画像処理装置、画像処理管理装置、端末、画像処理方法およびデータ構造 | |
JP5619288B2 (ja) | 画像処理装置、画像処理管理装置、端末、処理装置および画像処理方法 | |
WO2014080506A1 (ja) | 表示制御装置、表示制御方法、表示制御プログラム、表示制御システム、表示制御サーバおよび端末 | |
WO2014080535A1 (ja) | 表示制御装置、表示制御方法、表示制御プログラム、表示制御システム、表示制御サーバおよび端末 | |
WO2013105271A1 (ja) | 画像処理装置、画像処理管理装置、端末および画像処理方法 | |
WO2014068685A1 (ja) | 表示制御装置、サーバ装置、表示制御方法、表示制御プログラムおよび記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12884174 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014534092 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12884174 Country of ref document: EP Kind code of ref document: A1 |