WO2014038012A1 - Solar cell inspecting apparatus - Google Patents

Solar cell inspecting apparatus Download PDF

Info

Publication number
WO2014038012A1
WO2014038012A1 PCT/JP2012/072601 JP2012072601W WO2014038012A1 WO 2014038012 A1 WO2014038012 A1 WO 2014038012A1 JP 2012072601 W JP2012072601 W JP 2012072601W WO 2014038012 A1 WO2014038012 A1 WO 2014038012A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
solar battery
battery cell
cell
solar
Prior art date
Application number
PCT/JP2012/072601
Other languages
French (fr)
Japanese (ja)
Inventor
高見 芳夫
豊之 橋本
北原 大
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2014534080A priority Critical patent/JP5900628B2/en
Priority to PCT/JP2012/072601 priority patent/WO2014038012A1/en
Publication of WO2014038012A1 publication Critical patent/WO2014038012A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/894Pinholes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell inspection apparatus for inspecting solar cells after the formation of an antireflection film, for example.
  • Patent Document 1 laser light is emitted to a semiconductor wafer by a laser light source, an optical image reflected on the surface of the semiconductor wafer is picked up by an image pickup device, and image data of the semiconductor wafer picked up by a defect detection unit A defect inspection apparatus that inspects defects existing on the surface of a semiconductor wafer by extracting defects is disclosed.
  • Patent Document 2 discloses an infrared inspection apparatus that irradiates a semiconductor wafer with infrared rays from an infrared light source and picks up infrared rays transmitted through the semiconductor wafer with an infrared camera.
  • This infrared inspection apparatus is configured to detect minute cracks inside a semiconductor wafer by utilizing the fact that infrared transmission states are different between an abnormal portion such as a crack and a polycrystalline silicon substrate portion.
  • the solar cell is inspected after the antireflection film is formed. And the printing and baking of an electrode are performed with respect to the photovoltaic cell judged to be non-defective by the test
  • the inspection of the solar battery cell the inspection of the shape for inspecting the crack or chip of the solar battery cell, the particles on the solar battery cell, the pinhole of the antireflection film, the uneven thickness of the antireflection film, the electrode after the generation of the electrode
  • photographing is performed by illuminating visible light from the back side of the solar battery cell. Moreover, at the time of the inspection of the surface state described above, photographing is performed by illuminating visible light from the surface side of the solar battery cell. Furthermore, at the time of the above-described microcrack inspection, infrared light that has been transmitted through the solar cell by irradiating infrared rays from the back side of the solar cell is photographed.
  • an inspection apparatus for inspecting a shape and a surface condition and an inspection apparatus for inspecting a microcrack are configured as separate apparatuses because the wavelengths of illumination light to be used are different. For this reason, in order to perform the inspection of the shape using visible light or the inspection of the surface condition, and the inspection of micro cracks using infrared light, a plurality of devices are required, so the inspection is costly. In addition, there is a problem that not only the area occupied by the apparatus increases, but also the inspection takes time.
  • the present invention has been made to solve the above problems, and provides a solar cell inspection device capable of executing inspection using visible light and inspection using infrared light by a single device.
  • the purpose is to do.
  • a second image measuring unit that measures a passing image by visible light that has been irradiated and passed without being blocked by the solar cell, and the light irradiating unit is arranged in a region facing the solar cell.
  • LED element and said A visible light shift mechanism that irradiates the peripheral portion of the solar cell with the visible light by shifting visible light emitted from the plurality of LED elements that emit light toward the outer peripheral portion of the solar cell. It is characterized by having.
  • the invention according to claim 2 is the invention according to claim 1, wherein the visible light shift mechanism is disposed in a region facing an outer peripheral portion of the solar battery cell and emits the visible light.
  • a reflective member that reflects visible light emitted from an element toward the outer peripheral portion of the solar battery cell, and a plurality of LED elements that are disposed in a region facing the solar battery cell and emit infrared light.
  • a synthetic member that radiates the visible light to the peripheral portion of the solar battery cell by transmitting the infrared light and reflecting the visible light reflected by the first reflecting member.
  • the composite member reflects a visible light and a wedge prism that deflects an irradiation direction of infrared light toward an edge of the solar battery cell. And a dielectric film that transmits infrared light.
  • an arrangement interval of the plurality of LED elements that emit infrared light is large in a region facing the vicinity of the center of the solar battery cell, and Small in the area facing the peripheral edge of the battery cell.
  • the invention according to claim 5 is the invention according to claim 2, wherein the reflecting member is a half mirror.
  • the invention according to claim 6 is the invention according to any one of claims 1 to 5, further comprising a visible light irradiator that irradiates the solar cell with visible light from a side opposite to the light irradiator.
  • the second image measurement unit measures a reflected image by visible light that is irradiated from the visible light irradiation unit and reflected by the solar battery cell.
  • the invention according to claim 7 is the invention according to claim 6, wherein the light irradiation unit irradiates infrared light to the entire area of the solar battery cell and the light irradiation part to the peripheral part of the solar battery cell.
  • the visible light and the irradiation of visible light to the solar cell from the opposite side of the light irradiation unit by the visible light irradiation unit and infrared light that has passed through the solar cell
  • visible light that has passed through the solar battery cell without being blocked and visible light reflected by the solar battery cell and guides infrared light that has passed through the solar battery cell to the first image measurement unit.
  • a beam splitter is provided that guides visible light that has passed through the solar battery cell without being blocked and visible light reflected by the solar battery cell to the second image measurement unit.
  • region facing a photovoltaic cell is arrange
  • the shape inspection, the surface state inspection, and the microcrack inspection can be performed by a single device, and the cost and time required for the inspection are minimized. Is possible.
  • the infrared light transmitted through the solar battery cell is guided to the first image measurement unit, and is reflected by the solar battery cell and visible light that has passed without being blocked by the solar battery cell. Since the beam splitter that guides visible light to the second image measurement unit is provided, it is possible to simultaneously perform shape inspection, surface state inspection, and microcrack inspection.
  • FIG. 1 is a schematic diagram of a solar cell inspection device 1.
  • FIG. FIG. 4 is a plan view showing the arrangement of a plurality of visible light sources 11 supported by a support portion 18. It is a schematic diagram of the light irradiation part.
  • FIG. 4 is a partially enlarged view showing a positional relationship between the half mirror 21 and the composite member 22 and the solar battery cell 100.
  • FIG. 3 is a plan view showing a positional relationship between the half mirror 21 and the synthesis member 22 and the solar battery cell 100. It is a block diagram which shows the main control systems of the test
  • FIG. 4 is a partially enlarged view showing the arrangement relationship between the mirror 25 and the composite member 22 and the solar battery cell 100.
  • FIG. 3 is a plan view showing a positional relationship between the mirror 25 and a composite member 22 and the solar battery cell 100.
  • FIG. 1 is a schematic diagram of a solar cell inspection apparatus 1 according to the present invention.
  • FIG. 2 is a plan view showing the arrangement of the plurality of visible light sources 11 supported by the support portion 18.
  • the opening 17 of the reflective diffuser 12 is shown by a solid line.
  • the solar cell inspection apparatus 1 includes a plurality of visible light sources 11 that emit visible light having a wavelength of about 640 nm supported by a support portion 18, and reflects visible light emitted from the visible light sources 11 to produce solar light.
  • a visible light irradiating unit including a dome-shaped reflective diffusion plate 12 connected to a support unit 18 for irradiating the upper surface of the battery cell 100 is provided. Visible light emitted from the visible light source 11 is reflected by the reflective diffusion plate 12 and irradiated on the surface of the solar battery cell 100.
  • the solar cell inspection apparatus 1 irradiates the entire solar cell 100 with infrared light from the back surface side of the solar cell 100 and irradiates visible light on the peripheral portion of the solar cell 100.
  • An irradiation unit 13 is provided.
  • the solar cell inspection apparatus 1 measures a flat beam splitter 14, a CCD camera 16 as a first image measuring unit for measuring an image by infrared light, and an image by visible light.
  • CCD camera 15 as a second image measuring unit.
  • the beam splitter 14 can receive infrared light that has passed through the solar battery cell 100, visible light that has passed without being blocked by the solar battery cell 100, and visible light that has been reflected by the solar battery cell 100. It is arranged in the position.
  • the beam splitter 14 has a configuration that reflects visible light and transmits infrared light.
  • Visible light emitted from the visible light irradiation unit including the visible light source 11 is reflected by the surface of the solar battery cell 100, then passes through the rectangular opening 17 in the reflective diffusion plate 12, and further in the beam splitter 14. The light is reflected and enters the CCD camera 15.
  • the infrared light emitted from the light irradiation unit 13 passes through the solar battery cell 100, passes through the beam splitter 14, and enters the CCD camera 16.
  • the visible light emitted from the light irradiation unit 13 is irradiated to the peripheral portion of the solar battery cell 100, and the visible light that has passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14, and the CCD camera 15. Is incident on.
  • FIG. 3 is a schematic diagram of the light irradiation unit 13.
  • FIG. 4 is a partially enlarged view showing the arrangement relationship between the half mirror 21 and the composite member 22 and the solar battery cell 100.
  • FIG. 5 is a plan view showing the positional relationship between the half mirror 21 and the synthesis member 22 and the solar battery cell 100.
  • the light irradiation unit 13 includes a plurality of LED elements 31 that emit infrared light arranged in a region facing the solar battery cell 100, and outside the plurality of LED elements 31 that emit these infrared lights. It comprises a plurality of LED elements 32 that emit visible light arranged in a region facing the outer periphery of the battery cell 100, a diffusion plate 26, a half mirror 21 as a reflecting member, and a composite member 22, and emits visible light. And a visible light shift mechanism that irradiates the peripheral portion of the solar battery cell 100 with the visible light by shifting the visible light emitted from the plurality of LED elements 32 toward the outer periphery of the solar battery cell 100.
  • the plurality of LED elements 31 that emit infrared light are arranged in a region facing the solar battery cell 100 while being arranged on the substrate 33.
  • the “region facing the solar battery cell 100” means that, for example, when the LED element 31 is disposed below the solar battery cell 100, the LED element 31 and the solar battery cell 100 overlap in plan view. Means state. That is, the “region facing the solar battery cell 100” is a state in which a surface region formed by the plurality of LED elements 31 arranged on the substrate 33 faces the surface region of the solar battery cell 100. means.
  • the arrangement interval of these LED elements 31 increases in a region facing the vicinity of the center of the solar battery cell 100, and the solar battery cell
  • the substrate 100 is disposed on the substrate 33 in a state of being small in a region facing the peripheral edge portion.
  • These LED elements 31 emit infrared light having a wavelength of about 940 nm. The wavelength of the infrared light is determined based on the material of the solar battery cell 100 so that the infrared light can be easily transmitted through the solar battery cell 100.
  • the plurality of LED elements 32 that emit visible light for example, emit visible light having a wavelength of about 640 nm
  • the plurality of LED elements 31 that emit infrared light while being arranged on the substrate 34.
  • the solar cells 100 are arranged in a region facing the outer peripheral portion.
  • the “region facing the outer peripheral portion of the solar battery cell 100” means, for example, the outer periphery of the LED element 32 and the solar battery cell 100 when the LED element 32 is disposed below the solar battery cell 100. This means that the region (region immediately outside the solar battery cell 100) overlaps in plan view. That is, the “region facing the outer peripheral portion of the solar battery cell 100” means that the surface region formed by the plurality of LED elements 32 arranged on the substrate 34 is the surface region immediately outside the solar battery cell 100. It means a state of facing each other.
  • the half mirror 21 functions as a reflecting member that reflects 50% of visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100. The remaining 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 passes through the half mirror 21 as it is.
  • the half mirror 21 is disposed in a region facing the outer peripheral portion of the solar battery cell 100.
  • the region facing the outer peripheral portion of the solar battery cell 100 is the same as the case of the LED element 32, for example, when the half mirror 21 is arranged below the solar battery cell 100, It means a state in which the region of the outer peripheral portion of the solar battery cell 100 (the region immediately outside the solar battery cell 100) overlaps in plan view. That is, the “region facing the outer peripheral portion of the solar battery cell 100” means a state in which the surface region formed by the half mirror 21 faces the surface region just outside the solar battery cell 100.
  • the composite member 22 is reflected by the half mirror 21 and the function of transmitting the infrared light emitted from the plurality of LED elements 31 that emit infrared light after being deflected in the direction of the edge of the solar battery cell 100.
  • the visible light is reflected to shift the visible light and irradiate the peripheral portion of the solar battery cell 100.
  • the composite member 22 is a cold mirror that reflects visible light and transmits infrared light on a wedge prism 24 that deflects the irradiation direction of infrared light toward the edge of the solar battery cell 100.
  • a dielectric film 23 called “etc.” is laminated.
  • the synthetic member 22 is disposed in a region facing the solar battery cell 100.
  • the “region facing the solar battery cell 100” is the same as in the case of the LED element 31, for example, when the composite member 22 is disposed below the solar battery cell 100, the composite member 22 and the solar battery cell. 100 means overlapping in plan view. That is, the “region facing the solar battery cell 100” means a state in which the surface region formed by the composite member 22 faces the surface region of the solar battery cell 100.
  • FIG. 6 is a block diagram showing a main control system of the solar cell inspection apparatus 1.
  • This solar cell inspection device 1 has a ROM in which an operation program necessary for controlling the device is stored, a RAM in which data and the like are temporarily stored at the time of control, and a CPU that executes logical operations, and controls the entire device.
  • the control part 7 is provided.
  • the control unit 7 is connected to the above-described visible light source 11, LED element 31, LED element 32, CCD camera 15, and CCD camera 16.
  • the control unit 7 controls lighting of the visible light source 11, the LED element 31, and the LED element 32, and also controls image capturing and measurement by the CCD camera 15 and the CCD camera 16.
  • the solar battery cell 100 is transported to the inspection position by a transport mechanism (not shown) as shown in FIG. To do.
  • the light irradiation unit 13 irradiates the entire lower surface of the solar battery cell 100 with infrared light, while the light irradiation unit 13 irradiates the lower peripheral edge of the solar battery cell 100 with visible light or the visible light irradiation unit.
  • the irradiation of visible light to the entire surface of the solar battery cell 100 is sequentially switched and executed.
  • the visible light emitted from the visible light source 11 is reflected by the reflective diffusion plate 12 and irradiated on the surface of the solar battery cell 100.
  • the visible light is reflected by the surface of the solar battery cell 100, then passes through the rectangular opening 17 in the reflective diffusion plate 12, is further reflected by the beam splitter 14, and enters the CCD camera 15. Then, based on the reflection image measured by the CCD camera 15, the surface state of the solar battery cell 100 is inspected.
  • the infrared light emitted from the plurality of LED elements 31 that emit infrared light passes through the diffusion plate 26 in the vicinity of the central portion of the solar battery cell 100.
  • the back surface of the solar battery cell 100 is irradiated.
  • a part of the infrared light emitted from the plurality of LED elements 31 that emit infrared light passes through the diffusion plate 26, and then the edge of the solar battery cell 100 by the action of the wedge prism 24 in the composite member 22.
  • the back surface of the solar battery cell 100 is irradiated.
  • these infrared lights pass through the beam splitter 14 and enter the CCD camera 16. Then, based on the transmission image measured by the CCD camera 16, the micro crack of the solar battery cell 100 is inspected.
  • the arrangement interval of these LED elements 31 increases in a region facing the vicinity of the center of the solar battery cell 100, and the solar battery. It is disposed on the substrate 33 so as to be small in a region facing the peripheral edge of the cell 100. A part of the infrared light emitted from the plurality of LED elements 31 that emit infrared light is slightly deflected toward the edge of the solar battery cell 100 by the action of the wedge prism 24.
  • 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer periphery of the solar battery cell 100 passes through the half mirror 21 as it is. Then, the outer peripheral portion of the back surface of the solar battery cell 100 is irradiated. Further, the remaining 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 is reflected by the half mirror 21, and the visible light reflected by the half mirror 21. Shifts by being further reflected by the dielectric film 23 and is irradiated to the peripheral edge portion of the back surface of the solar battery cell 100.
  • the visible light irradiated to the peripheral edge of the back surface of the solar battery cell 100 and passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14 and enters the CCD camera 15. Then, based on the passing image measured by the CCD camera 15, the shape of the solar battery cell 100 is inspected.
  • the CCD camera 15 passes through the reflected image emitted from the visible light source 11 and reflected from the surface of the solar battery cell 100 and the plurality of LED elements 32 that emit visible light without being blocked by the solar battery cell 100. Both of the passed images thus obtained will be measured.
  • the control unit 7 turns on the visible light source 11 and the plurality of LED elements 32 alternately, and synchronizes with the lighting of the visible light source 11 and the plurality of LED elements 32, thereby causing the CCD camera 15 to display an image. By controlling the capture, the reflection image data and the passing image data are identified and acquired.
  • the solar cell inspection apparatus 1 As described above, in the solar cell inspection apparatus 1 according to the present invention, a plurality of LEDs that emit infrared light to a region facing the solar cell 100 by the action of a visible light shift mechanism that shifts visible light. It becomes possible to install the element 31 and to install a plurality of LED elements 32 that emit visible light in a region outside the element 31. For this reason, it is possible to uniformly irradiate the entire area of the solar battery cell 100 with infrared rays, and it is possible to more accurately execute the microcrack inspection.
  • the shape inspection using visible light and infrared light are possible. Inspection of microcracks using can be performed by a single device, and the cost and time required for inspection can be reduced. Further, by irradiating the surface of the solar battery cell 100 with visible light, the surface state of the solar battery cell 100 can be inspected at the same time.
  • FIG. 7 is a partially enlarged view showing the positional relationship between the mirror 25 and the composite member 22 of the solar cell inspection apparatus 1 according to the second embodiment and the solar cell 100.
  • FIG. 8 is a plan view showing an arrangement relationship between the solar cell 100 and the mirror 25 and the composite member 22 of the solar cell inspection apparatus 1 according to the second embodiment.
  • a mirror 25 is used instead of the half mirror 21 according to the first embodiment.
  • the mirror 25 functions as a reflecting member that reflects 100% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100.
  • the mirror 25 is disposed in a region facing the outer peripheral portion of the solar battery cell 100.
  • combination member 22 similar to 1st Embodiment is used.
  • the composite member 22 is disposed in a region where a part thereof faces the solar battery cell 100 and the remaining part faces the outer peripheral part of the solar battery cell 100.
  • the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 is reflected by the mirror 25 and is further reflected by the dielectric film 23. It is shifted by being reflected and irradiated to the peripheral edge of the back surface of the solar battery cell 100. Then, the visible light irradiated to the peripheral edge of the back surface of the solar battery cell 100 and passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14 and enters the CCD camera 15. Then, based on the passing image measured by the CCD camera 15, the shape of the solar battery cell 100 is inspected.
  • the LED element 31 that emits infrared light is disposed in a region facing the solar battery cell 100, and visible light is emitted in a region facing the outer peripheral portion of the solar battery cell 100.
  • Only the LED element 32 to be arranged is arranged. However, only a part of the LED element 31 may be arranged in the area of the LED element 32, or only a part of the LED element 32 may be arranged in the area of the LED element 31.
  • the diffusion plate 26 diffuses the light transmitted through the LED elements 31 or 32 while illuminating the solar cells 100 uniformly. If the LED elements 31 and the LED elements 32 are arranged in a sufficiently large number and can be illuminated uniformly, the diffusion plate 26 may be omitted.

Abstract

Provided is a solar cell inspecting apparatus which can perform both the inspection using visible light and inspection using infrared light by means of a single apparatus. A light irradiation unit (13) is provided with: a plurality of LED elements (31), which are disposed in a row in a region facing a solar cell (100), and which emit infrared light; a plurality of LED elements (32), which emit visible light, and which are provided in a row in a region facing the outer circumferential portion of the solar cell (100), said region being on the outer side of the LED elements (31) that emit infrared light; a diffusing plate (26); and a visible light shift mechanism, which is configured from a half mirror (21) as a reflecting member, and a composite member (22), and which shifts the visible light emitted toward the outer circumferential portion of the solar cell (100) from the LED elements (32) that emit the visible light, thereby radiating the visible light to the circumferential end portion of the solar cell (100).

Description

太陽電池セルの検査装置Solar cell inspection equipment
 この発明は、例えば、反射防止膜成膜後の太陽電池セルを検査する太陽電池セルの検査装置に関する。 The present invention relates to a solar cell inspection apparatus for inspecting solar cells after the formation of an antireflection film, for example.
 太陽電池セルの生産工程においては、太陽電池セルの割れや欠け、あるいは、パターンや成膜の欠陥等を検査する外観検査と、太陽電池セルの内部に生じたクラックやボイド等を検査する内部検査とが実行される。 In the production process of solar cells, appearance inspection that inspects cracks and chips of solar cells, defects in patterns and film formation, and internal inspection that inspects cracks and voids generated inside the solar cells. Are executed.
 特許文献1には、レーザ光源により半導体ウエハに対してレーザ光を照射するとともに、半導体ウエハの表面において反射した光学像を撮像装置により撮像し、欠陥検出部により撮像された半導体ウエハの画像データから欠陥を抽出することにより、半導体ウエハの表面に存在する欠陥を検査する欠陥検査装置が開示されている。 In Patent Document 1, laser light is emitted to a semiconductor wafer by a laser light source, an optical image reflected on the surface of the semiconductor wafer is picked up by an image pickup device, and image data of the semiconductor wafer picked up by a defect detection unit A defect inspection apparatus that inspects defects existing on the surface of a semiconductor wafer by extracting defects is disclosed.
 また、特許文献2には、赤外線光源から半導体ウエハに対して赤外線を照射するとともに、半導体ウエハを透過した赤外線を赤外線カメラにより撮像する赤外線検査装置が開示されている。この赤外線検査装置においては、クラック等の異常部分と多結晶シリコン基板部分とで赤外線の透過状態が異なることを利用して、半導体ウエハ内部の微小クラックを検出する構成となっている。 Patent Document 2 discloses an infrared inspection apparatus that irradiates a semiconductor wafer with infrared rays from an infrared light source and picks up infrared rays transmitted through the semiconductor wafer with an infrared camera. This infrared inspection apparatus is configured to detect minute cracks inside a semiconductor wafer by utilizing the fact that infrared transmission states are different between an abnormal portion such as a crack and a polycrystalline silicon substrate portion.
特開2002-122552号公報JP 2002-122552 A 特開2006-351669号公報JP 2006-351669 A
 太陽電池セルの製造プロセスにおいて、反射防止膜の成膜後の太陽電池セルの検査が実行される。そして、検査で良品と判断された太陽電池セルに対して、電極の印刷と焼成が実行される。この太陽電池セルの検査としては、太陽電池セルの割れや欠けを検査する形状の検査、太陽電池セルに乗ったパーティクル、反射防止膜のピンホール、反射防止膜の膜厚むら、電極生成後のパターン等を検査する表面状態の検査、太陽電池セルの内部に生じた割れを検査するマイクロクラックの検査がある。 In the solar cell manufacturing process, the solar cell is inspected after the antireflection film is formed. And the printing and baking of an electrode are performed with respect to the photovoltaic cell judged to be non-defective by the test | inspection. As the inspection of the solar battery cell, the inspection of the shape for inspecting the crack or chip of the solar battery cell, the particles on the solar battery cell, the pinhole of the antireflection film, the uneven thickness of the antireflection film, the electrode after the generation of the electrode There are surface state inspections for inspecting patterns and the like, and microcrack inspections for inspecting cracks generated in solar cells.
 ここで、上述した形状の検査時には、太陽電池セルの裏面側から可視光を照明して撮影を行っている。また、上述した表面状態の検査時には、太陽電池セルの表面側から可視光を照明して撮影を行っている。さらに、上述したマイクロクラックの検査時には、太陽電池セルの裏面側から赤外線を照射して太陽電池セルを透過した赤外光を撮影している。 Here, at the time of the inspection of the above-described shape, photographing is performed by illuminating visible light from the back side of the solar battery cell. Moreover, at the time of the inspection of the surface state described above, photographing is performed by illuminating visible light from the surface side of the solar battery cell. Furthermore, at the time of the above-described microcrack inspection, infrared light that has been transmitted through the solar cell by irradiating infrared rays from the back side of the solar cell is photographed.
 従来、形状の検査および表面状態の検査を行う検査装置と、マイクロクラックの検査を行う検査装置は、使用する照明光の波長が異なることから、各々、別々の装置として構成されている。このため、可視光を使用した形状の検査または表面状態の検査と、赤外光を使用したマイクロクラックの検査とを実行するためには、複数の装置が必要となることから、検査にコストがかかり、また、装置の専有面積が大きくなるばかりではなく、検査に時間がかかるという問題が生ずる。 Conventionally, an inspection apparatus for inspecting a shape and a surface condition and an inspection apparatus for inspecting a microcrack are configured as separate apparatuses because the wavelengths of illumination light to be used are different. For this reason, in order to perform the inspection of the shape using visible light or the inspection of the surface condition, and the inspection of micro cracks using infrared light, a plurality of devices are required, so the inspection is costly. In addition, there is a problem that not only the area occupied by the apparatus increases, but also the inspection takes time.
 この発明は上記課題を解決するためになされたものであり、可視光を使用した検査と赤外光を使用した検査を単一の装置により実行することが可能な太陽電池セルの検査装置を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a solar cell inspection device capable of executing inspection using visible light and inspection using infrared light by a single device. The purpose is to do.
 請求項1に記載の発明は、太陽電池セルを検査する太陽電池セルの検査装置において、前記太陽電池セルの全域に赤外光を照射するとともに、前記太陽電池セルの周縁部に可視光を照射する光照射部と、前記光照射部から照射され、前記太陽電池セルを透過した赤外光による透過画像を測定する第1画像測定部と、前記光照射部から前記太陽電池セルの周縁部に照射され、前記太陽電池セルに遮断されずに通過した可視光による通過画像を測定する第2画像測定部とを備え、前記光照射部は、前記太陽電池セルと対向する領域に列設された赤外光を出射する複数のLED素子と、前記赤外光を出射する複数のLED素子の外側において、前記太陽電池セルの外周部と対向する領域に列設された可視光を出射する複数のLED素子と、前記可視光を出射する複数のLED素子から前記太陽電池セルの外周部に向けて出射された可視光をシフトさせることにより、この可視光を前記太陽電池セルの周縁部に照射する可視光シフト機構とを備えたことを特徴とする。 The invention according to claim 1, in the solar cell inspection apparatus for inspecting solar cells, irradiates the entire area of the solar cells with infrared light and irradiates a peripheral portion of the solar cells with visible light. A light irradiating unit, a first image measuring unit that measures a transmitted image by infrared light that is irradiated from the light irradiating unit and transmitted through the solar battery cell, and a peripheral part of the solar battery cell from the light irradiating unit. A second image measuring unit that measures a passing image by visible light that has been irradiated and passed without being blocked by the solar cell, and the light irradiating unit is arranged in a region facing the solar cell. A plurality of LED elements that emit infrared light, and a plurality of LED elements that emit visible light arranged in a region facing the outer peripheral portion of the solar cell outside the plurality of LED elements that emit infrared light. LED element and said A visible light shift mechanism that irradiates the peripheral portion of the solar cell with the visible light by shifting visible light emitted from the plurality of LED elements that emit light toward the outer peripheral portion of the solar cell. It is characterized by having.
 請求項2に記載の発明は、請求項1に記載の発明において、前記可視光シフト機構は、前記太陽電池セルの外周部と対向する領域に配設され、前記可視光を出射する複数のLED素子から前記太陽電池セルの外周部に向けて出射された可視光を反射する反射部材と、前記太陽電池セルと対向する領域に配設され、前記赤外光を出射する複数のLED素子から出射された赤外光を透過させるとともに、前記第1の反射部材により反射された可視光を反射することにより、この可視光を前記太陽電池セルの周縁部に照射する合成部材とを備える。 The invention according to claim 2 is the invention according to claim 1, wherein the visible light shift mechanism is disposed in a region facing an outer peripheral portion of the solar battery cell and emits the visible light. A reflective member that reflects visible light emitted from an element toward the outer peripheral portion of the solar battery cell, and a plurality of LED elements that are disposed in a region facing the solar battery cell and emit infrared light. And a synthetic member that radiates the visible light to the peripheral portion of the solar battery cell by transmitting the infrared light and reflecting the visible light reflected by the first reflecting member.
 請求項3に記載の発明は、請求項2に記載の発明において、前記合成部材は、赤外光の照射方向を前記太陽電池セルの端縁方向に偏向するウエッジプリズムと、可視光を反射し赤外光を透過させる誘電体膜とを備える。  According to a third aspect of the present invention, in the invention according to the second aspect, the composite member reflects a visible light and a wedge prism that deflects an irradiation direction of infrared light toward an edge of the solar battery cell. And a dielectric film that transmits infrared light. *
 請求項4に記載の発明は、請求項2に記載の発明において、前記赤外光を出射する複数のLED素子の配置間隔は、前記太陽電池セルの中央付近と対向する領域で大きく、前記太陽電池セルの周縁部と対向する領域で小さい。 According to a fourth aspect of the present invention, in the invention of the second aspect, an arrangement interval of the plurality of LED elements that emit infrared light is large in a region facing the vicinity of the center of the solar battery cell, and Small in the area facing the peripheral edge of the battery cell.
 請求項5に記載の発明は、請求項2に記載の発明において、前記反射部材はハーフミラーである。 The invention according to claim 5 is the invention according to claim 2, wherein the reflecting member is a half mirror.
 請求項6に記載の発明は、請求項1から請求項5のいずれかに記載の発明において、前記光照射部とは逆側から前記太陽電池セルに可視光を照射する可視光照射部をさらに備え、前記第2画像測定部は、前記可視光照射部から照射され、前記太陽電池セルで反射した可視光による反射画像を測定する。 The invention according to claim 6 is the invention according to any one of claims 1 to 5, further comprising a visible light irradiator that irradiates the solar cell with visible light from a side opposite to the light irradiator. The second image measurement unit measures a reflected image by visible light that is irradiated from the visible light irradiation unit and reflected by the solar battery cell.
 請求項7に記載の発明は、請求項6に記載の発明において、前記光照射部による前記太陽電池セル全域への赤外光の照射と、前記光照射部による前記太陽電池セルの周縁部への可視光の照射と、前記可視光照射部による前記光照射部とは逆側からの前記太陽電池セルへの可視光の照射とを同時に実行するとともに、前記太陽電池セルを通過した赤外光と、前記太陽電池セルに遮断されずに通過した可視光と、前記太陽電池セルで反射した可視光とを受光し、前記太陽電池セルを透過した赤外光を前記第1画像測定部に導くとともに、前記太陽電池セルに遮断されずに通過した可視光と、前記太陽電池セルで反射した可視光とを前記第2画像測定部に導くビームスプリッタを備える。 The invention according to claim 7 is the invention according to claim 6, wherein the light irradiation unit irradiates infrared light to the entire area of the solar battery cell and the light irradiation part to the peripheral part of the solar battery cell. Of the visible light and the irradiation of visible light to the solar cell from the opposite side of the light irradiation unit by the visible light irradiation unit and infrared light that has passed through the solar cell And visible light that has passed through the solar battery cell without being blocked and visible light reflected by the solar battery cell, and guides infrared light that has passed through the solar battery cell to the first image measurement unit. In addition, a beam splitter is provided that guides visible light that has passed through the solar battery cell without being blocked and visible light reflected by the solar battery cell to the second image measurement unit.
 請求項1および請求項2に記載の発明によれば、可視光をシフトさせる可視光シフト機構の作用により、太陽電池セルと対向する領域に赤外光を出射する複数のLED素子を配置し、その外側の領域に可視光を出射する複数のLED素子を設置することにより、太陽電池セルの全域に赤外線を均一に照射しながら、太陽電池セルの周縁部に可視光を照射することが可能となる。このため、可視光を使用した形状の検査と赤外光を使用したマイクロクラックの検査を単一の装置により実行することができ、検査のために必要なコストと時間を小さなものとすることが可能となる。 According to invention of Claim 1 and Claim 2, by the effect | action of the visible light shift mechanism which shifts visible light, the some LED element which radiate | emits infrared light in the area | region facing a photovoltaic cell is arrange | positioned, By installing a plurality of LED elements that emit visible light in the outer region, it is possible to irradiate the peripheral part of the solar cell with visible light while uniformly irradiating infrared rays over the entire area of the solar cell. Become. For this reason, the inspection of the shape using visible light and the inspection of the micro crack using infrared light can be executed by a single device, and the cost and time required for the inspection can be reduced. It becomes possible.
 請求項3および請求項4に記載の発明によれば、赤外光の照度が低下しがちな太陽電池セルの周縁部に対する赤外光の照射量を増加させることにより、太陽電池セルの全領域に赤外光をより均一に照射することが可能となる。 According to invention of Claim 3 and Claim 4, by increasing the irradiation amount of the infrared light with respect to the peripheral part of the photovoltaic cell in which the illumination intensity of infrared light tends to fall, the whole area | region of a photovoltaic cell It is possible to irradiate infrared light more uniformly.
 請求項5に記載の発明によれば、形状の検査、表面状態の検査およびマイクロクラックの検査を単一の装置により実行することができ、検査のために必要なコストと時間を最小とすることが可能となる。 According to the invention described in claim 5, the shape inspection, the surface state inspection, and the microcrack inspection can be performed by a single device, and the cost and time required for the inspection are minimized. Is possible.
 請求項6に記載の発明によれば、太陽電池セルを透過した赤外光を第1画像測定部に導くとともに、太陽電池セルに遮断されずに通過した可視光と、太陽電池セルで反射した可視光とを第2画像測定部に導くビームスプリッタを備えることから、形状の検査、表面状態の検査およびマイクロクラックの検査を同時に実行することが可能となる。 According to the invention described in claim 6, the infrared light transmitted through the solar battery cell is guided to the first image measurement unit, and is reflected by the solar battery cell and visible light that has passed without being blocked by the solar battery cell. Since the beam splitter that guides visible light to the second image measurement unit is provided, it is possible to simultaneously perform shape inspection, surface state inspection, and microcrack inspection.
太陽電池セルの検査装置1の概要図である。1 is a schematic diagram of a solar cell inspection device 1. FIG. 支持部18に支持された複数の可視光源11の配置を示す平面図である。FIG. 4 is a plan view showing the arrangement of a plurality of visible light sources 11 supported by a support portion 18. 光照射部13の概要図である。It is a schematic diagram of the light irradiation part. ハーフミラー21および合成部材22と太陽電池セル100との配置関係を示す部分拡大図である。FIG. 4 is a partially enlarged view showing a positional relationship between the half mirror 21 and the composite member 22 and the solar battery cell 100. ハーフミラー21および合成部材22と太陽電池セル100との配置関係を示す平面図である。FIG. 3 is a plan view showing a positional relationship between the half mirror 21 and the synthesis member 22 and the solar battery cell 100. 太陽電池セルの検査装置1の主要な制御系を示すブロック図である。It is a block diagram which shows the main control systems of the test | inspection apparatus 1 of a photovoltaic cell. ミラー25および合成部材22と太陽電池セル100との配置関係を示す部分拡大図である。FIG. 4 is a partially enlarged view showing the arrangement relationship between the mirror 25 and the composite member 22 and the solar battery cell 100. ミラー25および合成部材22と太陽電池セル100との配置関係を示す平面図である。FIG. 3 is a plan view showing a positional relationship between the mirror 25 and a composite member 22 and the solar battery cell 100.
 以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明に係る太陽電池セルの検査装置1の概要図である。また、図2は、支持部18に支持された複数の可視光源11の配置を示す平面図である。なお、図2においては、反射型拡散板12の開口部17を実線で示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a solar cell inspection apparatus 1 according to the present invention. FIG. 2 is a plan view showing the arrangement of the plurality of visible light sources 11 supported by the support portion 18. In FIG. 2, the opening 17 of the reflective diffuser 12 is shown by a solid line.
 この太陽電池セルの検査装置1は、支持部18により支持された640nm程度の波長の可視光を出射する複数個の可視光源11と、この可視光源11から照射された可視光を反射して太陽電池セル100の上面に照射するための支持部18に連結されたドーム型の反射型拡散板12と、から構成される可視光照射部を備える。可視光源11から出射された可視光は、反射型拡散板12により反射され、太陽電池セル100の表面に照射される。 The solar cell inspection apparatus 1 includes a plurality of visible light sources 11 that emit visible light having a wavelength of about 640 nm supported by a support portion 18, and reflects visible light emitted from the visible light sources 11 to produce solar light. A visible light irradiating unit including a dome-shaped reflective diffusion plate 12 connected to a support unit 18 for irradiating the upper surface of the battery cell 100 is provided. Visible light emitted from the visible light source 11 is reflected by the reflective diffusion plate 12 and irradiated on the surface of the solar battery cell 100.
 また、この太陽電池セルの検査装置1は、太陽電池セル100の裏面側から、太陽電池セル100の全域に赤外光を照射するとともに、太陽電池セル100の周縁部に可視光を照射する光照射部13を備える。 In addition, the solar cell inspection apparatus 1 irradiates the entire solar cell 100 with infrared light from the back surface side of the solar cell 100 and irradiates visible light on the peripheral portion of the solar cell 100. An irradiation unit 13 is provided.
 さらに、この太陽電池セルの検査装置1は、平板形状のビームスプリッタ14と、赤外光による画像を測定するための第1画像測定部としてのCCDカメラ16と、可視光による画像を測定するための第2画像測定部としてのCCDカメラ15とを備える。ビームスプリッタ14は、後述するように、太陽電池セル100を通過した赤外光と、太陽電池セル100に遮断されずに通過した可視光と、太陽電池セル100で反射した可視光とを受光可能な位置に配置されている。また、このビームスプリッタ14は、可視光を反射するとともに、赤外光を透過する構成を有する。 Further, the solar cell inspection apparatus 1 measures a flat beam splitter 14, a CCD camera 16 as a first image measuring unit for measuring an image by infrared light, and an image by visible light. CCD camera 15 as a second image measuring unit. As will be described later, the beam splitter 14 can receive infrared light that has passed through the solar battery cell 100, visible light that has passed without being blocked by the solar battery cell 100, and visible light that has been reflected by the solar battery cell 100. It is arranged in the position. The beam splitter 14 has a configuration that reflects visible light and transmits infrared light.
 可視光源11を含む可視光照射部から出射された可視光は、太陽電池セル100の表面で反射された後、反射型拡散板12における矩形状の開口部17を通過し、ビームスプリッタ14においてさらに反射され、CCDカメラ15に入射する。一方、光照射部13から出射された赤外光は、太陽電池セル100を透過した後、ビームスプリッタ14を通過して、CCDカメラ16に入射する。また、光照射部13から出射された可視光は、太陽電池セル100の周縁部に照射され、太陽電池セル100に遮断されずに通過した可視光は、ビームスプリッタ14において反射され、CCDカメラ15に入射する。 Visible light emitted from the visible light irradiation unit including the visible light source 11 is reflected by the surface of the solar battery cell 100, then passes through the rectangular opening 17 in the reflective diffusion plate 12, and further in the beam splitter 14. The light is reflected and enters the CCD camera 15. On the other hand, the infrared light emitted from the light irradiation unit 13 passes through the solar battery cell 100, passes through the beam splitter 14, and enters the CCD camera 16. The visible light emitted from the light irradiation unit 13 is irradiated to the peripheral portion of the solar battery cell 100, and the visible light that has passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14, and the CCD camera 15. Is incident on.
 図3は、光照射部13の概要図である。また、図4は、ハーフミラー21および合成部材22と太陽電池セル100との配置関係を示す部分拡大図である。さらに、図5は、ハーフミラー21および合成部材22と太陽電池セル100との配置関係を示す平面図である。 FIG. 3 is a schematic diagram of the light irradiation unit 13. FIG. 4 is a partially enlarged view showing the arrangement relationship between the half mirror 21 and the composite member 22 and the solar battery cell 100. Further, FIG. 5 is a plan view showing the positional relationship between the half mirror 21 and the synthesis member 22 and the solar battery cell 100.
 光照射部13は、太陽電池セル100と対向する領域に列設された赤外光を出射する複数のLED素子31と、これらの赤外光を出射する複数のLED素子31の外側において、太陽電池セル100の外周部と対向する領域に列設された可視光を出射する複数のLED素子32と、拡散板26と、反射部材としてのハーフミラー21および合成部材22から成り、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光をシフトさせることにより、この可視光を太陽電池セル100の周縁部に照射する可視光シフト機構とを備える。 The light irradiation unit 13 includes a plurality of LED elements 31 that emit infrared light arranged in a region facing the solar battery cell 100, and outside the plurality of LED elements 31 that emit these infrared lights. It comprises a plurality of LED elements 32 that emit visible light arranged in a region facing the outer periphery of the battery cell 100, a diffusion plate 26, a half mirror 21 as a reflecting member, and a composite member 22, and emits visible light. And a visible light shift mechanism that irradiates the peripheral portion of the solar battery cell 100 with the visible light by shifting the visible light emitted from the plurality of LED elements 32 toward the outer periphery of the solar battery cell 100.
 赤外光を出射する複数のLED素子31は、基板33上に列設された状態で、太陽電池セル100と対向する領域に配置されている。ここで、「太陽電池セル100と対向する領域」とは、例えば、LED素子31を太陽電池セル100の下方に配置した場合には、LED素子31と太陽電池セル100とが平面視において重複する状態を意味する。すなわち、「太陽電池セル100と対向する領域」とは、基板33上に列設された複数のLED素子31により形成される面領域が、太陽電池セル100の面領域と対向している状態を意味する。 The plurality of LED elements 31 that emit infrared light are arranged in a region facing the solar battery cell 100 while being arranged on the substrate 33. Here, the “region facing the solar battery cell 100” means that, for example, when the LED element 31 is disposed below the solar battery cell 100, the LED element 31 and the solar battery cell 100 overlap in plan view. Means state. That is, the “region facing the solar battery cell 100” is a state in which a surface region formed by the plurality of LED elements 31 arranged on the substrate 33 faces the surface region of the solar battery cell 100. means.
 なお、図3に示すように、赤外光を出射する複数のLED素子31は、これらのLED素子31の配置間隔が、太陽電池セル100の中央付近と対向する領域で大きくなり、太陽電池セル100の周縁部と対向する領域で小さくなる状態で基板33上に配設されている。これらのLED素子31は、940nm程度の波長の赤外光を出射する。この赤外光の波長は、赤外光が太陽電池セル100を容易に透過可能となるように、太陽電池セル100の材質等に基づいて決定される。 As shown in FIG. 3, in the plurality of LED elements 31 that emit infrared light, the arrangement interval of these LED elements 31 increases in a region facing the vicinity of the center of the solar battery cell 100, and the solar battery cell The substrate 100 is disposed on the substrate 33 in a state of being small in a region facing the peripheral edge portion. These LED elements 31 emit infrared light having a wavelength of about 940 nm. The wavelength of the infrared light is determined based on the material of the solar battery cell 100 so that the infrared light can be easily transmitted through the solar battery cell 100.
 可視光を出射する複数のLED素子32は、例えば、640nm程度の波長の可視光を出射するものであり、基板34上に列設された状態で、赤外光を出射する複数のLED素子31の外側において、太陽電池セル100の外周部と対向する領域に列設されている。ここで、「太陽電池セル100の外周部と対向する領域」とは、例えば、LED素子32を太陽電池セル100の下方に配置した場合には、LED素子32と太陽電池セル100の外周部の領域(太陽電池セル100のすぐ外側の領域)とが平面視において重複する状態を意味する。すなわち、「太陽電池セル100の外周部と対向する領域」とは、基板34上に列設された複数のLED素子32により形成される面領域が、太陽電池セル100のすぐ外側の面領域と対向している状態を意味する。 The plurality of LED elements 32 that emit visible light, for example, emit visible light having a wavelength of about 640 nm, and the plurality of LED elements 31 that emit infrared light while being arranged on the substrate 34. Outside, the solar cells 100 are arranged in a region facing the outer peripheral portion. Here, the “region facing the outer peripheral portion of the solar battery cell 100” means, for example, the outer periphery of the LED element 32 and the solar battery cell 100 when the LED element 32 is disposed below the solar battery cell 100. This means that the region (region immediately outside the solar battery cell 100) overlaps in plan view. That is, the “region facing the outer peripheral portion of the solar battery cell 100” means that the surface region formed by the plurality of LED elements 32 arranged on the substrate 34 is the surface region immediately outside the solar battery cell 100. It means a state of facing each other.
 ハーフミラー21は、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光の50%を反射する反射部材として機能するものである。なお、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光の残りの50%は、ハーフミラー21をそのまま通過する。このハーフミラー21は、太陽電池セル100の外周部と対向する領域に配設されている。ここで、「太陽電池セル100の外周部と対向する領域」とは、LED素子32の場合と同様、例えば、ハーフミラー21を太陽電池セル100の下方に配置した場合には、ハーフミラー21と太陽電池セル100の外周部の領域(太陽電池セル100のすぐ外側の領域)とが平面視において重複する状態を意味する。すなわち、「太陽電池セル100の外周部と対向する領域」とは、ハーフミラー21により形成される面領域が、太陽電池セル100のすぐ外側の面領域と対向している状態を意味する。 The half mirror 21 functions as a reflecting member that reflects 50% of visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100. The remaining 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 passes through the half mirror 21 as it is. The half mirror 21 is disposed in a region facing the outer peripheral portion of the solar battery cell 100. Here, “the region facing the outer peripheral portion of the solar battery cell 100” is the same as the case of the LED element 32, for example, when the half mirror 21 is arranged below the solar battery cell 100, It means a state in which the region of the outer peripheral portion of the solar battery cell 100 (the region immediately outside the solar battery cell 100) overlaps in plan view. That is, the “region facing the outer peripheral portion of the solar battery cell 100” means a state in which the surface region formed by the half mirror 21 faces the surface region just outside the solar battery cell 100.
 合成部材22は、赤外光を出射する複数のLED素子31から出射された赤外光を、太陽電池セル100の端縁方向に偏向した上で透過させる機能と、ハーフミラー21により反射された可視光を反射することにより、この可視光をシフトさせ、太陽電池セル100の周縁部に照射する機能とを備える。この合成部材22は、図4に示すように、赤外光の照射方向を太陽電池セル100の端縁方向に偏向するウエッジプリズム24上に、可視光を反射し赤外光を透過させるコールドミラー等と呼称される誘電体膜23を積層した構成を有する。この合成部材22は、太陽電池セル100と対向する領域に配設されている。ここで、「太陽電池セル100と対向する領域」とは、LED素子31の場合と同様、例えば、合成部材22を太陽電池セル100の下方に配置した場合には、合成部材22と太陽電池セル100とが平面視において重複する状態を意味する。すなわち、「太陽電池セル100と対向する領域」とは、合成部材22により形成される面領域が、太陽電池セル100の面領域と対向している状態を意味する。 The composite member 22 is reflected by the half mirror 21 and the function of transmitting the infrared light emitted from the plurality of LED elements 31 that emit infrared light after being deflected in the direction of the edge of the solar battery cell 100. The visible light is reflected to shift the visible light and irradiate the peripheral portion of the solar battery cell 100. As shown in FIG. 4, the composite member 22 is a cold mirror that reflects visible light and transmits infrared light on a wedge prism 24 that deflects the irradiation direction of infrared light toward the edge of the solar battery cell 100. A dielectric film 23 called “etc.” is laminated. The synthetic member 22 is disposed in a region facing the solar battery cell 100. Here, the “region facing the solar battery cell 100” is the same as in the case of the LED element 31, for example, when the composite member 22 is disposed below the solar battery cell 100, the composite member 22 and the solar battery cell. 100 means overlapping in plan view. That is, the “region facing the solar battery cell 100” means a state in which the surface region formed by the composite member 22 faces the surface region of the solar battery cell 100.
 図6は、太陽電池セルの検査装置1の主要な制御系を示すブロック図である。 FIG. 6 is a block diagram showing a main control system of the solar cell inspection apparatus 1.
 この太陽電池セルの検査装置1は、装置の制御に必要な動作プログラムが格納されたROM、制御時にデータ等が一時的にストアされるRAMおよび論理演算を実行するCPUを有し装置全体を制御する制御部7を備える。この制御部7は、上述した可視光源11、LED素子31、LED素子32、CCDカメラ15およびCCDカメラ16と接続されている。この制御部7は、可視光源11、LED素子31およびLED素子32の点灯を制御するとともに、CCDカメラ15およびCCDカメラ16による画像の取り込みと測定とを制御する。 This solar cell inspection device 1 has a ROM in which an operation program necessary for controlling the device is stored, a RAM in which data and the like are temporarily stored at the time of control, and a CPU that executes logical operations, and controls the entire device. The control part 7 is provided. The control unit 7 is connected to the above-described visible light source 11, LED element 31, LED element 32, CCD camera 15, and CCD camera 16. The control unit 7 controls lighting of the visible light source 11, the LED element 31, and the LED element 32, and also controls image capturing and measurement by the CCD camera 15 and the CCD camera 16.
 以上のような構成を有する太陽電池セルの検査装置1において太陽電池セル100の検査を実行する場合においては、図示しない搬送機構により、図1に示すように、太陽電池セル100を検査位置に搬送する。この状態において、光照射部13による太陽電池セル100の下面全域への赤外光を照射しつつ、光照射部13による太陽電池セル100の下面周縁部への可視光の照射もしくは可視光照射部による太陽電池セル100の表面全域への可視光の照射を順次切り替えて実行する。 When the inspection of the solar battery cell 100 is performed in the solar cell inspection apparatus 1 having the above-described configuration, the solar battery cell 100 is transported to the inspection position by a transport mechanism (not shown) as shown in FIG. To do. In this state, the light irradiation unit 13 irradiates the entire lower surface of the solar battery cell 100 with infrared light, while the light irradiation unit 13 irradiates the lower peripheral edge of the solar battery cell 100 with visible light or the visible light irradiation unit. The irradiation of visible light to the entire surface of the solar battery cell 100 is sequentially switched and executed.
 この状態においては、図1に示すように、可視光源11から出射された可視光は、反射型拡散板12により反射され、太陽電池セル100の表面に照射される。この可視光は、太陽電池セル100の表面で反射された後、反射型拡散板12における矩形状の開口部17を通過し、ビームスプリッタ14においてさらに反射され、CCDカメラ15に入射する。そして、CCDカメラ15により測定された反射画像に基づいて、太陽電池セル100の表面状態の検査が実行される。 In this state, as shown in FIG. 1, the visible light emitted from the visible light source 11 is reflected by the reflective diffusion plate 12 and irradiated on the surface of the solar battery cell 100. The visible light is reflected by the surface of the solar battery cell 100, then passes through the rectangular opening 17 in the reflective diffusion plate 12, is further reflected by the beam splitter 14, and enters the CCD camera 15. Then, based on the reflection image measured by the CCD camera 15, the surface state of the solar battery cell 100 is inspected.
 また、図3および図4に示すように、赤外光を出射する複数のLED素子31から出射された赤外光は、太陽電池セル100の中央部分付近においては、拡散板26を通過した後に、太陽電池セル100の裏面に照射される。また、赤外光を出射する複数のLED素子31から出射された赤外光の一部は、拡散板26を通過した後に、合成部材22におけるウエッジプリズム24の作用により、太陽電池セル100の端縁方向にわずかに偏向され、合成部材22における誘電体膜23を通過した後、太陽電池セル100の裏面に照射される。これらの赤外光は、太陽電池セル100を透過した後、ビームスプリッタ14を通過して、CCDカメラ16に入射する。そして、CCDカメラ16により測定された透過画像に基づいて、太陽電池セル100のマイクロクラックの検査が実行される。 As shown in FIGS. 3 and 4, the infrared light emitted from the plurality of LED elements 31 that emit infrared light passes through the diffusion plate 26 in the vicinity of the central portion of the solar battery cell 100. The back surface of the solar battery cell 100 is irradiated. In addition, a part of the infrared light emitted from the plurality of LED elements 31 that emit infrared light passes through the diffusion plate 26, and then the edge of the solar battery cell 100 by the action of the wedge prism 24 in the composite member 22. After being slightly deflected in the edge direction and passing through the dielectric film 23 in the composite member 22, the back surface of the solar battery cell 100 is irradiated. After passing through the solar battery cell 100, these infrared lights pass through the beam splitter 14 and enter the CCD camera 16. Then, based on the transmission image measured by the CCD camera 16, the micro crack of the solar battery cell 100 is inspected.
 なお、この時、上述したように、赤外光を出射する複数のLED素子31は、これらのLED素子31の配置間隔が、太陽電池セル100の中央付近と対向する領域で大きくなり、太陽電池セル100の周縁部と対向する領域で小さくなる状態で基板33上に配設されている。また、赤外光を出射する複数のLED素子31から出射された赤外光の一部は、ウエッジプリズム24の作用により太陽電池セル100の端縁方向にわずかに偏向される。これらの構成を採用することにより、赤外光の照度が低下しがちな太陽電池セルの周縁部に対する赤外光の照射量を増加させることができる。このため、太陽電池セル100の全領域に赤外光をより均一に照射することが可能となる。 At this time, as described above, in the plurality of LED elements 31 that emit infrared light, the arrangement interval of these LED elements 31 increases in a region facing the vicinity of the center of the solar battery cell 100, and the solar battery. It is disposed on the substrate 33 so as to be small in a region facing the peripheral edge of the cell 100. A part of the infrared light emitted from the plurality of LED elements 31 that emit infrared light is slightly deflected toward the edge of the solar battery cell 100 by the action of the wedge prism 24. By adopting these configurations, it is possible to increase the irradiation amount of the infrared light to the peripheral portion of the solar battery cell in which the illuminance of the infrared light tends to decrease. For this reason, it becomes possible to irradiate infrared light more uniformly to the whole area | region of the photovoltaic cell 100. FIG.
 さらに、図3および図4に示すように、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光の50%は、ハーフミラー21をそのまま通過して、太陽電池セル100の裏面の外周部に照射される。また、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光の残りの50%はハーフミラー21において反射され、ハーフミラー21により反射された可視光は、誘電体膜23によりさらに反射されることによりシフトし、太陽電池セル100の裏面の周縁部に照射される。そして、太陽電池セル100の裏面の周縁部に照射され、太陽電池セル100に遮断されずに通過した可視光は、ビームスプリッタ14において反射され、CCDカメラ15に入射する。そして、CCDカメラ15により測定された通過画像に基づいて、太陽電池セル100の形状の検査が実行される。 Further, as shown in FIGS. 3 and 4, 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer periphery of the solar battery cell 100 passes through the half mirror 21 as it is. Then, the outer peripheral portion of the back surface of the solar battery cell 100 is irradiated. Further, the remaining 50% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 is reflected by the half mirror 21, and the visible light reflected by the half mirror 21. Shifts by being further reflected by the dielectric film 23 and is irradiated to the peripheral edge portion of the back surface of the solar battery cell 100. Then, the visible light irradiated to the peripheral edge of the back surface of the solar battery cell 100 and passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14 and enters the CCD camera 15. Then, based on the passing image measured by the CCD camera 15, the shape of the solar battery cell 100 is inspected.
 なお、CCDカメラ15は、可視光源11から出射され太陽電池セル100の表面で反射された反射画像と、可視光を出射する複数のLED素子32から出射され太陽電池セル100に遮断されずに通過した通過画像の両方を測定することになる。この場合においては、制御部7により、可視光源11と複数のLED素子32とを交互に点灯させるとともに、これらの可視光源11と複数のLED素子32の点灯と同期させてCCDカメラ15による画像の取り込みを制御することにより、反射画像のデータと通過画像のデータとを識別して取得する構成となっている。 The CCD camera 15 passes through the reflected image emitted from the visible light source 11 and reflected from the surface of the solar battery cell 100 and the plurality of LED elements 32 that emit visible light without being blocked by the solar battery cell 100. Both of the passed images thus obtained will be measured. In this case, the control unit 7 turns on the visible light source 11 and the plurality of LED elements 32 alternately, and synchronizes with the lighting of the visible light source 11 and the plurality of LED elements 32, thereby causing the CCD camera 15 to display an image. By controlling the capture, the reflection image data and the passing image data are identified and acquired.
 以上のように、この発明に係る太陽電池セルの検査装置1においては、可視光をシフトさせる可視光シフト機構の作用により、太陽電池セル100と対向する領域に赤外光を出射する複数のLED素子31を配置し、その外側の領域に可視光を出射する複数のLED素子32を設置することが可能となる。このため、太陽電池セル100の全域に対して赤外線を均一に照射することができ、マイクロクラックの検査をより正確に実行することが可能となる。また、太陽電池セル100の全域に赤外線を均一に照射しながら、太陽電池セル100の周縁部に可視光を照射することが可能となることから、可視光を使用した形状の検査と赤外光を使用したマイクロクラックの検査を単一の装置により実行することができ、検査のために必要なコストと時間を小さなものとすることが可能となる。そして、さらに、太陽電池セル100の表面に可視光をも照射することにより、太陽電池セル100の表面状態の検査をも同時に実行することが可能となる。 As described above, in the solar cell inspection apparatus 1 according to the present invention, a plurality of LEDs that emit infrared light to a region facing the solar cell 100 by the action of a visible light shift mechanism that shifts visible light. It becomes possible to install the element 31 and to install a plurality of LED elements 32 that emit visible light in a region outside the element 31. For this reason, it is possible to uniformly irradiate the entire area of the solar battery cell 100 with infrared rays, and it is possible to more accurately execute the microcrack inspection. Moreover, since it becomes possible to irradiate visible light to the peripheral part of the photovoltaic cell 100, irradiating infrared rays uniformly to the whole area of the photovoltaic cell 100, the shape inspection using visible light and infrared light are possible. Inspection of microcracks using can be performed by a single device, and the cost and time required for inspection can be reduced. Further, by irradiating the surface of the solar battery cell 100 with visible light, the surface state of the solar battery cell 100 can be inspected at the same time.
 次に、この発明に係る太陽電池セルの検査装置1の他の実施形態について説明する。図7は、第2実施形態に係る太陽電池セルの検査装置1のミラー25および合成部材22と太陽電池セル100との配置関係を示す部分拡大図である。また、図8は、第2実施形態に係る太陽電池セルの検査装置1のミラー25および合成部材22と太陽電池セル100との配置関係を示す平面図である。 Next, another embodiment of the solar cell inspection apparatus 1 according to the present invention will be described. FIG. 7 is a partially enlarged view showing the positional relationship between the mirror 25 and the composite member 22 of the solar cell inspection apparatus 1 according to the second embodiment and the solar cell 100. FIG. 8 is a plan view showing an arrangement relationship between the solar cell 100 and the mirror 25 and the composite member 22 of the solar cell inspection apparatus 1 according to the second embodiment.
 この第2実施形態に係る太陽電池セルの検査装置1においては、第1実施形態に係るハーフミラー21に替えて、ミラー25を使用している。このミラー25は、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光を100%反射する反射部材として機能するものである。このミラー25は、太陽電池セル100の外周部と対向する領域に配設されている。一方、この第2実施形態においては、第1実施形態と同様の合成部材22が使用される。但し、この合成部材22は、その一部が太陽電池セル100と対向し、その残部が太陽電池セル100の外周部と対向する領域に配設されている。 In the solar cell inspection apparatus 1 according to the second embodiment, a mirror 25 is used instead of the half mirror 21 according to the first embodiment. The mirror 25 functions as a reflecting member that reflects 100% of the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100. The mirror 25 is disposed in a region facing the outer peripheral portion of the solar battery cell 100. On the other hand, in this 2nd Embodiment, the synthetic | combination member 22 similar to 1st Embodiment is used. However, the composite member 22 is disposed in a region where a part thereof faces the solar battery cell 100 and the remaining part faces the outer peripheral part of the solar battery cell 100.
 図7および図8に示すように、可視光を出射する複数のLED素子32から太陽電池セル100の外周部に向けて出射された可視光は、ミラー25において反射され、誘電体膜23によりさらに反射されることによりシフトされ、太陽電池セル100の裏面の周縁部に照射される。そして、太陽電池セル100の裏面の周縁部に照射され、太陽電池セル100に遮断されずに通過した可視光は、ビームスプリッタ14において反射され、CCDカメラ15に入射する。そして、CCDカメラ15により測定された通過画像に基づいて、太陽電池セル100の形状の検査が実行される。 As shown in FIGS. 7 and 8, the visible light emitted from the plurality of LED elements 32 that emit visible light toward the outer peripheral portion of the solar battery cell 100 is reflected by the mirror 25 and is further reflected by the dielectric film 23. It is shifted by being reflected and irradiated to the peripheral edge of the back surface of the solar battery cell 100. Then, the visible light irradiated to the peripheral edge of the back surface of the solar battery cell 100 and passed without being blocked by the solar battery cell 100 is reflected by the beam splitter 14 and enters the CCD camera 15. Then, based on the passing image measured by the CCD camera 15, the shape of the solar battery cell 100 is inspected.
 なお、上述した実施形態においては、太陽電池セル100と対向する領域には赤外光を出射するLED素子31のみを配置し、太陽電池セル100の外周部と対向する領域には可視光を出射するLED素子32のみを配置している。しかしながら、LED素子31の一部のみをLED素子32の領域に配置してもよく、LED素子32の一部のみをLED素子31の領域に配置してもよい。 In the above-described embodiment, only the LED element 31 that emits infrared light is disposed in a region facing the solar battery cell 100, and visible light is emitted in a region facing the outer peripheral portion of the solar battery cell 100. Only the LED element 32 to be arranged is arranged. However, only a part of the LED element 31 may be arranged in the area of the LED element 32, or only a part of the LED element 32 may be arranged in the area of the LED element 31.
 また、拡散板26は、LED素子31あるいはLED素子32の光を透過しつつ拡散させ、均一に太陽電池セル100を照明する。LED素子31およびLED素子32の素子数が十分に多く配設され、均一に照明できる場合は、拡散板26は省いてもよい。 Further, the diffusion plate 26 diffuses the light transmitted through the LED elements 31 or 32 while illuminating the solar cells 100 uniformly. If the LED elements 31 and the LED elements 32 are arranged in a sufficiently large number and can be illuminated uniformly, the diffusion plate 26 may be omitted.
 1   太陽電池セルの検査装置
 7   制御部
 11  可視光源
 12  反射型拡散板
 13  光照射部
 14  ビームスプリッタ
 15  CCDカメラ
 16  CCDカメラ
 17  開口部
 18  支持部
 21  ハーフミラー
 22  合成部材
 23  誘電体膜
 24  ウエッジプリズム
 25  ミラー
 26  拡散板
 31  LED素子
 32  LED素子
 100 太陽電池セル
 
DESCRIPTION OF SYMBOLS 1 Solar cell inspection apparatus 7 Control part 11 Visible light source 12 Reflection type diffuser 13 Light irradiation part 14 Beam splitter 15 CCD camera 16 CCD camera 17 Opening part 18 Support part 21 Half mirror 22 Composite member 23 Dielectric film 24 Wedge prism 25 Mirror 26 Diffusion Plate 31 LED Element 32 LED Element 100 Solar Cell

Claims (7)

  1.  太陽電池セルを検査する太陽電池セルの検査装置において、
     前記太陽電池セルの全域に赤外光を照射するとともに、前記太陽電池セルの周縁部に可視光を照射する光照射部と、
     前記光照射部から照射され、前記太陽電池セルを透過した赤外光による透過画像を測定する第1画像測定部と、
     前記光照射部から前記太陽電池セルの周縁部に照射され、前記太陽電池セルに遮断されずに通過した可視光による通過画像を測定する第2画像測定部とを備え、
     前記光照射部は、
     前記太陽電池セルと対向する領域に列設された赤外光を出射する複数のLED素子と、
     前記赤外光を出射する複数のLED素子の外側において、前記太陽電池セルの外周部と対向する領域に列設された可視光を出射する複数のLED素子と、
     前記可視光を出射する複数のLED素子から前記太陽電池セルの外周部に向けて出射された可視光をシフトさせることにより、この可視光を前記太陽電池セルの周縁部に照射する可視光シフト機構と、
     を備えたことを特徴とする太陽電池セルの検査装置。
    In a solar cell inspection device for inspecting solar cells,
    While irradiating infrared light to the whole area of the solar battery cell, and a light irradiation part for irradiating visible light to the peripheral part of the solar battery cell,
    A first image measurement unit that measures a transmission image by infrared light that is irradiated from the light irradiation unit and transmitted through the solar battery cell;
    A second image measurement unit that measures a passing image by visible light that is irradiated from the light irradiation unit to a peripheral portion of the solar battery cell and passed without being blocked by the solar battery cell;
    The light irradiator is
    A plurality of LED elements emitting infrared light arranged in a region facing the solar battery cells;
    Outside the plurality of LED elements that emit infrared light, a plurality of LED elements that emit visible light arranged in a region facing the outer peripheral portion of the solar battery cells;
    A visible light shift mechanism that irradiates the peripheral portion of the solar battery cell with the visible light by shifting the visible light emitted from the plurality of LED elements that emit visible light toward the outer peripheral portion of the solar battery cell. When,
    A solar cell inspection apparatus comprising:
  2.  請求項1に記載の太陽電池セルの検査装置において、
     前記可視光シフト機構は、
     前記太陽電池セルの外周部と対向する領域に配設され、前記可視光を出射する複数のLED素子から前記太陽電池セルの外周部に向けて出射された可視光を反射する反射部材と、
     前記太陽電池セルと対向する領域に配設され、前記赤外光を出射する複数のLED素子から出射された赤外光を透過させるとともに、前記反射部材により反射された可視光を反射することにより、この可視光を前記太陽電池セルの周縁部に照射する合成部材と、
     を備える太陽電池セルの検査装置。
    In the inspection apparatus of the photovoltaic cell according to claim 1,
    The visible light shift mechanism is
    A reflective member that is disposed in a region facing the outer peripheral portion of the solar battery cell and reflects visible light emitted from the plurality of LED elements that emit visible light toward the outer peripheral portion of the solar battery cell;
    The infrared light emitted from the plurality of LED elements that are arranged in a region facing the solar battery cell and emits the infrared light is transmitted, and the visible light reflected by the reflecting member is reflected. , A synthetic member that irradiates the peripheral portion of the solar battery with this visible light; and
    A solar cell inspection apparatus comprising:
  3.  請求項2に記載の太陽電池セルの検査装置において、
     前記合成部材は、赤外光の照射方向を前記太陽電池セルの端縁方向に偏向するウエッジプリズムと、可視光を反射し赤外光を透過させる誘電体膜とを備える太陽電池セルの検査装置。 
    In the inspection apparatus of the photovoltaic cell according to claim 2,
    The synthetic member includes a wedge prism that deflects the irradiation direction of infrared light toward the edge of the solar battery cell, and a dielectric cell film that reflects visible light and transmits infrared light. .
  4.  請求項2に記載の太陽電池セルの検査装置において、
     前記赤外光を出射する複数のLED素子の配置間隔は、前記太陽電池セルの中央付近と対向する領域で大きく、前記太陽電池セルの周縁部と対向する領域で小さい太陽電池セルの検査装置。 
    In the inspection apparatus of the photovoltaic cell according to claim 2,
    The arrangement | positioning space | interval of the some LED element which radiate | emits the infrared light is large in the area | region facing the center vicinity of the said photovoltaic cell, and is an inspection apparatus of a photovoltaic cell small in the area | region facing the peripheral part of the said photovoltaic cell.
  5.  請求項2に記載の太陽電池セルの検査装置において、
     前記反射部材はハーフミラーである太陽電池セルの検査装置。
    In the inspection apparatus of the photovoltaic cell according to claim 2,
    The solar cell inspection apparatus, wherein the reflecting member is a half mirror.
  6.  請求項1から請求項5のいずれかに記載の太陽電池セルの検査装置において、
     前記光照射部とは逆側から前記太陽電池セルに可視光を照射する可視光照射部をさらに備え、
     前記第2画像測定部は、前記可視光照射部から照射され、前記太陽電池セルで反射した可視光による反射画像を測定する太陽電池セルの検査装置。
    In the solar cell inspection apparatus according to any one of claims 1 to 5,
    Further comprising a visible light irradiator that irradiates the solar cells with visible light from the opposite side of the light irradiator,
    The second image measurement unit is a solar cell inspection apparatus that measures a reflected image of visible light that is irradiated from the visible light irradiation unit and reflected by the solar cell.
  7.  請求項6に記載の太陽電池セルの検査装置において、
     前記光照射部による前記太陽電池セル全域への赤外光の照射と、前記光照射部による前記太陽電池セルの周縁部への可視光の照射と、前記可視光照射部による前記光照射部とは逆側からの前記太陽電池セルへの可視光の照射とを同時に実行するとともに、
     前記太陽電池セルを通過した赤外光と、前記太陽電池セルに遮断されずに通過した可視光と、前記太陽電池セルで反射した可視光とを受光し、前記太陽電池セルを透過した赤外光を前記第1画像測定部に導くとともに、前記太陽電池セルに遮断されずに通過した可視光と、前記太陽電池セルで反射した可視光とを前記第2画像測定部に導くビームスプリッタを備える太陽電池セルの検査装置。
    In the inspection apparatus of the photovoltaic cell according to claim 6,
    Irradiation of infrared light to the entire solar cell by the light irradiation unit, irradiation of visible light to the peripheral portion of the solar cell by the light irradiation unit, and the light irradiation unit by the visible light irradiation unit And simultaneously performing visible light irradiation on the solar cells from the opposite side,
    Infrared light that has passed through the solar battery cell, visible light that has passed without being blocked by the solar battery cell, and visible light that has been reflected by the solar battery cell, and has passed through the solar battery cell A beam splitter that guides light to the first image measurement unit and guides visible light that has passed through the solar battery cell without being blocked and visible light reflected by the solar battery cell to the second image measurement unit. Solar cell inspection device.
PCT/JP2012/072601 2012-09-05 2012-09-05 Solar cell inspecting apparatus WO2014038012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014534080A JP5900628B2 (en) 2012-09-05 2012-09-05 Solar cell inspection equipment
PCT/JP2012/072601 WO2014038012A1 (en) 2012-09-05 2012-09-05 Solar cell inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072601 WO2014038012A1 (en) 2012-09-05 2012-09-05 Solar cell inspecting apparatus

Publications (1)

Publication Number Publication Date
WO2014038012A1 true WO2014038012A1 (en) 2014-03-13

Family

ID=50236664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072601 WO2014038012A1 (en) 2012-09-05 2012-09-05 Solar cell inspecting apparatus

Country Status (2)

Country Link
JP (1) JP5900628B2 (en)
WO (1) WO2014038012A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060703A (en) * 2017-09-26 2019-04-18 シーシーエス株式会社 Light irradiation device
WO2019117228A1 (en) * 2017-12-13 2019-06-20 パナソニックIpマネジメント株式会社 Image processing system, inspection system, image processing method, and program
JP2019529914A (en) * 2016-09-19 2019-10-17 ティアマ Equipment for optical inspection of glass containers exiting molding machines
CN111397596A (en) * 2020-04-02 2020-07-10 西安因诺航空科技有限公司 Unmanned aerial vehicle inspection target positioning method for fixed shaft photovoltaic scene
CN111397595A (en) * 2020-04-02 2020-07-10 西安因诺航空科技有限公司 Method for positioning inspection target of flat single-axis photovoltaic scene unmanned aerial vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292419A (en) * 2005-04-06 2006-10-26 Ckd Corp Defect inspection device and ptp packaging machine
JP2007294604A (en) * 2006-04-24 2007-11-08 Tokyo Seimitsu Co Ltd Device and method for inspecting external appearance
JP2007303829A (en) * 2006-05-08 2007-11-22 Mitsubishi Electric Corp Image inspection device, and image inspection method using the image inspection device
JP2010054377A (en) * 2008-08-28 2010-03-11 Ccs Inc Infrared inspection device
JP2010256053A (en) * 2009-04-22 2010-11-11 Visco Technologies Corp Shape defect inspection device, shape modeling device, and shape defect inspection program
JP2010537217A (en) * 2007-08-31 2010-12-02 イコス・ビジョン・システムズ・エヌブイ Apparatus and method for detecting defects in a semiconductor substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009591A (en) * 1998-06-25 2000-01-14 Omron Corp Inspection equipment
JP2006133052A (en) * 2004-11-05 2006-05-25 Ishizuka Glass Co Ltd Foreign matter inspection method and device
JP2006351669A (en) * 2005-06-14 2006-12-28 Mitsubishi Electric Corp Infrared inspection device and infrared inspection method, and method of manufacturing semiconductor wafer
JP2010181249A (en) * 2009-02-05 2010-08-19 Kobelco Kaken:Kk Shape measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292419A (en) * 2005-04-06 2006-10-26 Ckd Corp Defect inspection device and ptp packaging machine
JP2007294604A (en) * 2006-04-24 2007-11-08 Tokyo Seimitsu Co Ltd Device and method for inspecting external appearance
JP2007303829A (en) * 2006-05-08 2007-11-22 Mitsubishi Electric Corp Image inspection device, and image inspection method using the image inspection device
JP2010537217A (en) * 2007-08-31 2010-12-02 イコス・ビジョン・システムズ・エヌブイ Apparatus and method for detecting defects in a semiconductor substrate
JP2010054377A (en) * 2008-08-28 2010-03-11 Ccs Inc Infrared inspection device
JP2010256053A (en) * 2009-04-22 2010-11-11 Visco Technologies Corp Shape defect inspection device, shape modeling device, and shape defect inspection program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529914A (en) * 2016-09-19 2019-10-17 ティアマ Equipment for optical inspection of glass containers exiting molding machines
JP2019060703A (en) * 2017-09-26 2019-04-18 シーシーエス株式会社 Light irradiation device
JP7015132B2 (en) 2017-09-26 2022-02-02 シーシーエス株式会社 Light irradiation device
WO2019117228A1 (en) * 2017-12-13 2019-06-20 パナソニックIpマネジメント株式会社 Image processing system, inspection system, image processing method, and program
CN111397596A (en) * 2020-04-02 2020-07-10 西安因诺航空科技有限公司 Unmanned aerial vehicle inspection target positioning method for fixed shaft photovoltaic scene
CN111397595A (en) * 2020-04-02 2020-07-10 西安因诺航空科技有限公司 Method for positioning inspection target of flat single-axis photovoltaic scene unmanned aerial vehicle
CN111397595B (en) * 2020-04-02 2022-04-01 西安因诺航空科技有限公司 Method for positioning inspection target of flat single-axis photovoltaic scene unmanned aerial vehicle
CN111397596B (en) * 2020-04-02 2022-04-01 西安因诺航空科技有限公司 Unmanned aerial vehicle inspection target positioning method for fixed shaft photovoltaic scene

Also Published As

Publication number Publication date
JPWO2014038012A1 (en) 2016-08-08
JP5900628B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6042402B2 (en) Illumination module and visual inspection system using the same
JP2007078404A (en) Inspection device of solar cell panel
JP5900628B2 (en) Solar cell inspection equipment
US9885671B2 (en) Miniaturized imaging apparatus for wafer edge
JP5824984B2 (en) Solar cell inspection equipment
TWI476400B (en) Substrate testing device and transparent illuminating device for the same
TWI442016B (en) A light source for illumination and a pattern inspection device using it
WO2008004555A1 (en) Surface inspection device
WO1999002977A1 (en) Device and method for inspecting surface
JP5831425B2 (en) Solar cell inspection equipment
JP5830229B2 (en) Wafer defect inspection system
US20120262566A1 (en) Apparatus for illuminating substrates in order to image micro cracks, pinholes and inclusions in monocrystalline and polycrystalline substrates and method therefore
JP2012234081A (en) Illumination device and optical device
WO2012143165A1 (en) An inspection device
KR101001113B1 (en) Apparatus for Detecting Wafer Crack and Method for Detecting Wafer Defect
KR101124567B1 (en) Wafer inspecting apparatus having hybrid illumination
JP2014232079A (en) Solar battery cell inspection device, and image position correction method of solar battery cell inspection device
KR101564287B1 (en) Apparatus and method for inspecting wafer using light
JP2004125644A (en) Dome shape indirect illumination apparatus and pattern image pickup method
KR100965418B1 (en) Equipment for Surface Defect Detection Glass
KR20130053239A (en) Noncontact inspection apparatus for light emitting diode
KR101746416B1 (en) Chip led inspection apparatus
JP5708385B2 (en) Surface inspection method and surface inspection apparatus
KR20190027045A (en) Surface inspection device of multilayer panel having transparent PID as an insulator between layers
KR101180833B1 (en) IR Illuminating Tester Using LED

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884128

Country of ref document: EP

Kind code of ref document: A1