WO2014037297A1 - Procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique pourvue d'un onduleur, installation électrique et unité de commande pour une installation électrique - Google Patents

Procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique pourvue d'un onduleur, installation électrique et unité de commande pour une installation électrique Download PDF

Info

Publication number
WO2014037297A1
WO2014037297A1 PCT/EP2013/068070 EP2013068070W WO2014037297A1 WO 2014037297 A1 WO2014037297 A1 WO 2014037297A1 EP 2013068070 W EP2013068070 W EP 2013068070W WO 2014037297 A1 WO2014037297 A1 WO 2014037297A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate circuit
phase shift
electrical system
capacitor
components
Prior art date
Application number
PCT/EP2013/068070
Other languages
German (de)
English (en)
Inventor
Martin Neuburger
Konstantin Spanos
Thomas Plum
Hartmut STEINBUCH
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2014037297A1 publication Critical patent/WO2014037297A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the invention relates to a method for increasing the life of the DC link capacitor of an inverter having electrical system, an electrical system and a control unit for an electrical system.
  • Inverters have the task of converting energy taken from a DC voltage source into an AC voltage.
  • the stabilization unit is often realized by one or more interconnected boost converter.
  • boost converters one or more buck converters or a combination of the two aforementioned units is used as the stabilization unit.
  • a DC link is provided between the stabilization unit and the inverter, which has a DC link capacitor, which serves as an energy store.
  • This DC link capacitor is electrically connected both to the output of the stabilization unit and to the input of the inverter so that it can be used by both the stabilizer unit and the inverter.
  • this DC link capacitor is a cost-intensive component with up to 20 percent of the total cost of the photovoltaic system.
  • a converter which is connected to a charge storage having voltage intermediate circuit.
  • This converter contains a half-bridge circuit or a bridge circuit, which is a component of a module arranged in a housing.
  • the charge storage device has a plurality of DC link capacitors, one of which, several or all are also an integral part of the module. This is intended to reduce the occurrence of overvoltages, improve the electromagnetic compatibility, increase switching speeds with low switching losses in the semiconductor switches, and reduce or eliminate a busbar.
  • the electrical device described therein comprises at least one input with a positive input terminal and a negative input terminal and at least one inverter with at least one positive input and at least one negative input.
  • a positive voltage is built up at the positive input of the inverter in comparison with the earth potential.
  • a negative voltage is established at the negative input of the inverter during operation in relation to the earth potential.
  • the electrical device comprises at least one boost converter, which is arranged between the negative input terminal and the negative input of the inverter, and a DC link. Disclosure of the invention
  • a method with the features specified in claim 1 allows an increase in the life of the DC link capacitor of an inverter having electrical system.
  • an adaptive load reduction routine is carried out individually for each specific electric system.
  • a phase shift of the output signals of the components of the voltage stabilizer arranged parallel to one another is carried out and it is determined at which phase shift the load of the intermediate circuit capacitor is minimized with regard to its service life. This phase shift is used in the subsequent operation of the electrical system.
  • the optimization described above takes place in an advantageous manner exclusively in the modulation and is independent of the controller of the electrical system feasible. It is preferably carried out as part of the initial commissioning of the electrical system, so that each installed electrical system can already be operated from this time with optimized load spectrum for the DC link capacitor.
  • the above-mentioned optimization additionally causes a minimization of the DC link voltage ripple.
  • the efficiency of the electrical system is increased and improves the electromagnetic compatibility of the electrical system.
  • the electrical system is for example a
  • Photovoltaic system a wind turbine, a Meeresenergie portlä- ge, a voltage converter, a charger or an electric drive system.
  • the following exemplary explanation of the invention is based on a photovoltaic system and with reference to the drawing. It is understood that the features, properties and advantages of the method according to the invention corresponding to the control unit according to the invention and vice versa or apply to the electrical system or are applicable.
  • FIG. 1 shows a block diagram for illustrating a
  • Figure 2 is a block diagram illustrating the interconnection of two boost converter with a DC link capacitor and an inverter
  • Figure 4 is a diagram illustrating RMS currents in the DC link capacitor as a function of the number of boost converters used
  • Figure 5 is a diagram illustrating two current-voltage characteristics for different temperatures of the photovoltaic generator.
  • the invention relates, according to the embodiment described below, a method for increasing the life of the DC link capacitor of an electrical system, for example a photovoltaic system.
  • a photovoltaic generator which is the input side connected to the electrical system.
  • This photovoltaic system has an inverter, an inverter, an Circuit capacitor having DC link and a multi-component voltage stabilizer.
  • an adaptive load reduction routine controlled by a control unit is carried out individually for the photovoltaic system. In this case, the output currents of the several components of the
  • Voltage stabilizer phase shifted relative to each other With regard to each phase shift, the DC link current is determined. For the operation of the photovoltaic system that phase shift is selected in which the load of the DC link capacitor is minimized.
  • FIG. 1 shows a block diagram for illustrating a
  • Photovoltaic system in which a method according to the invention can be used.
  • this photovoltaic system 1 is an input side
  • Photovoltaic generator 2 connectable, which is a solar panel having a plurality of solar panels.
  • the photovoltaic generator 2 provides a DC voltage at its output.
  • This DC voltage is subject to undesirable fluctuations in operation of the photovoltaic system.
  • a voltage stabilizer 3 at the output of a stabilized DC voltage is provided.
  • This is supplied to an inverter 5 via a DC link 4, which has a DC link capacitor 4a.
  • This is provided for converting the DC voltage provided to it into an AC voltage. He provides this AC voltage at its output. From there, the AC voltage is fed into an unillustrated AC mains.
  • the voltage stabilizer 3 shown in FIG. 1 has a plurality of components. For example, it contains two or more output side parallel boost converter. Alternatively, it may also have two or more output side connected in parallel buck converter. A further alternative consists in that the voltage stabilizer has one or more boost converters and one or more buck converters whose outputs are connected in parallel are. The common goal of these components is always to stabilize the DC voltage provided by the photovoltaic generator.
  • the boost converter 3a is the
  • Photovoltaic generator on the input side a DC voltage DC1 provided, the boost converter 3b, a DC voltage DC2.
  • the outputs of the boost converters 3a and 3b are connected to one another in each case, so that a stabilized DC voltage is applied to the terminals of the DC link capacitor 4a of the DC link 4.
  • This is provided to the inverter 5, which converts this stabilized DC voltage into an AC voltage AC output at the output of the inverter 5.
  • the DC link capacitor 4a is charged by means of the stabilized DC voltage supplied by the photovoltaic generator 2 and discharged again via the inverter 5, which converts the DC voltage into an AC voltage.
  • This charging and discharging of the intermediate circuit capacitor 4a can be simplified by a Rippeistrom represent. This will be illustrated below with reference to FIG.
  • FIG. 3 shows diagrams for explaining a phase shift between the output currents of two boost converters connected in parallel on the output side and their effects on the current in the intermediate circuit capacitor.
  • the boost converter 3a shown in FIG. 3 has a choke L1 whose one terminal is connected to a positive input + and whose other terminal is connected via a diode D1 to the upper terminal of the DC link capacitor 4a in FIG.
  • the negative input - of the boost converter 3a is connected to the lower terminal of the DC link capacitor 4a.
  • the boost converter 3a has a switch S1 provided between the connection point between the reactor L1 and the diode D1 and the lower terminal of the intermediate circuit capacitor 4a.
  • the boost converter 3b has a throttle L2, whose one terminal is connected to a positive input + and whose other terminal is connected via a diode D2 to the upper terminal of the intermediate circuit capacitor 4a in FIG.
  • the negative input - of the boost converter 3b is connected to the lower terminal of the DC link capacitor 4a. Furthermore, the boost converter 3b has a switch S2 provided between the connection point between the reactor L2 and the diode D2 and the lower terminal of the intermediate circuit capacitor 4a.
  • the switches S1 and S2 are controlled by the control unit 6 shown in FIG. 1 and have the task of carrying out a phase shift of the output currents of the two boost converters relative to each other in the sense of modifying the modulation.
  • FIG. 3b shows on its left side that the switches S1 and S2 are clocked out of phase by 180 °.
  • the current ⁇ flowing through the intermediate circuit capacitor behaves as a function of time, with .lambda the intermediate circuit current caused by the first step-up converter 3a, I2 the DC link current produced by the second step-up converter 3b, and I3 the resulting capacitor current.
  • a comparison of the right diagram of Figure 3a with the right diagram of Figure 3b shows that the resulting current at a phase shift of 180 ° is substantially smaller than in a common timing of S1 and S2.
  • FIG. 4 shows a diagram for illustrating effective currents in the DC link capacitor as a function of the number of boost converters of a voltage stabilizer used and as a function of the input voltage of the inverter. From Figure 4 it can be seen that a use of several boost converter leads to reduced RMS currents in the DC link capacitor.
  • the presented cases are generalized in order to determine a procedure for an optimized modulation with a resulting minimum current in the DC link capacitor.
  • the parameters to be considered include the number of components of the voltage stabilizer, the interconnection of the components of the voltage stabilizer, the design of the components of the voltage stabilizer, the input voltage of the components of the voltage stabilizer, the ambient temperature and the output voltage of the components of the voltage stabilizer.
  • FIG. 5 shows a diagram for illustrating two current-voltage characteristics for different temperatures. These curves describe the typical current-voltage behavior of
  • Photovoltaic generators The maximum power can be any power.
  • Photovoltaic generator at the inflection point KN of the characteristic curve, represented by the operating points of the maximum power, are removed.
  • Investigations of the photovoltaic generator including its influence on a voltage stabilizer connected to it have shown that the influence of the temperature of the photovoltaic generator has a negligible influence on the voltage stabilizer connected to it.
  • This allows the simplification of the input voltage of the voltage stabilizer, i. H. the input voltages of its components, with unchanged installation for the respective site as quasi-constant. Therefore, for an installed concrete photovoltaic system, a power variation can be interpreted as a current variation.
  • the operating point of the boost converter of a voltage stabilizer can change such that the current in the chokes of the boost converter expires periodically, so that there is a gaping operation. Since this happens in the range of low power, these operating points for the dimensioning of the DC link capacitor are only of minor importance. Rather, a linear correlation of the DC link ripple current with the power output by the photovoltaic generator can be used for the dimensioning of the DC link capacitor. This linear dependence makes it possible, with a constant modulation, to achieve optimum control over the entire operating range with respect to the DC link capacitor, provided that the installation of the photovoltaic system remains unchanged.
  • the current profile is determined at which the lowest load of the intermediate circuit capacitor occurs in terms of its life.
  • a simplification of the method described above is to determine the effective DC link current for the different phase shifts, to compare the determined effective currents with one another and to use the phase shift corresponding to the lowest effective current for the subsequent operation of the photovoltaic system.
  • the most suitable phase shift between the output currents of the boost converter is stored and used for the subsequent operation of the photovoltaic system.
  • the control unit controlled load reduction routine in which the output currents of the plurality of components of the voltage stabilizer are relatively phase-shifted with respect to each phase shift of DC link current is determined and the phase shift is selected for the subsequent operation of the photovoltaic system, in which the load of the DC link capacitor is minimized in terms of its life.
  • a Fourier transformation of the detected intermediate circuit currents preferably takes place. Given that the clock frequency is kept constant, the modulation type associated with the minimum amplitude of the Fourier transform may be used for the present clock frequency as the most suitable modulation pattern associated with a particular phase shift between the output currents of the components of the voltage stabilizer.
  • an optimization according to the invention can also be made via a determination of the effective DC link currents using an already existing current measurement and using a relative comparison.
  • the MPP efficiency i. the measure with which the of
  • Photovoltaic generator offered power is reduced, and on the other hand also a reduced conducted emissions and a concomitant reduced filter effort for compliance with the electromagnetic compatibility requirements.

Abstract

L'invention concerne un procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique laquelle est pourvue d'un onduleur et laquelle comporte une source de tension continue, un onduleur, un circuit intermédiaire pourvu d'un condensateur de circuit intermédiaire et un stabilisateur de tension comportant plusieurs composants. Pour réduire la sollicitation du condensateur de circuit intermédiaire, l'installation électrique est individuellement soumise à une routine de réduction de sollicitation consistant à déphaser les uns par rapport aux autres les courants de départ desdites plusieurs composants du stabilisateur de tension, à déterminer pour chaque déphasage le courant de circuit intermédiaire et à sélectionner, en vue de faire fonctionner l'installation électrique, le déphasage permettant de réduire au minimum la sollicitation du condensateur de circuit intermédiaire. En outre, l'invention concerne une installation électrique et une unité de commande pour une installation électrique.
PCT/EP2013/068070 2012-09-10 2013-09-02 Procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique pourvue d'un onduleur, installation électrique et unité de commande pour une installation électrique WO2014037297A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012215975.4A DE102012215975A1 (de) 2012-09-10 2012-09-10 Verfahren zur Erhöhung der Lebensdauer des Zwischenkreiskondensators einer einen Wechselrichter aufweisenden elektrischen Anlage, elektrische Anlage und Steuereinheit für eine elektrische Anlage
DE102012215975.4 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014037297A1 true WO2014037297A1 (fr) 2014-03-13

Family

ID=49123829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/068070 WO2014037297A1 (fr) 2012-09-10 2013-09-02 Procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique pourvue d'un onduleur, installation électrique et unité de commande pour une installation électrique

Country Status (2)

Country Link
DE (1) DE102012215975A1 (fr)
WO (1) WO2014037297A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157989A1 (fr) * 2020-02-07 2021-08-12 Hanon Systems Procédé de préchauffage d'une capacité de circuit intermédiaire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924209B (zh) * 2015-05-22 2020-09-04 迭戈能源有限公司 用于从功率逆变器的输入电容器快速耗散所存储的能量的系统和方法
FR3043284B1 (fr) * 2015-10-29 2023-06-23 Ifp Energies Now Systeme de conversion d'une puissance electrique continue en puissance electrique alternative avec module recuperateur d'energie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120069614A1 (en) * 2010-09-20 2012-03-22 Jung-Wook Park Power supply system and method including power generator and storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062075A1 (de) 2000-12-13 2002-06-27 Bosch Gmbh Robert Umrichter mit integrierten Zwischenkreiskondensatoren
WO2008154918A1 (fr) 2007-06-20 2008-12-24 Powerlynx A/S Unité de redresseur sans transformateur pour panneaux solaires à couche mince

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120069614A1 (en) * 2010-09-20 2012-03-22 Jung-Wook Park Power supply system and method including power generator and storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157989A1 (fr) * 2020-02-07 2021-08-12 Hanon Systems Procédé de préchauffage d'une capacité de circuit intermédiaire

Also Published As

Publication number Publication date
DE102012215975A1 (de) 2014-03-13

Similar Documents

Publication Publication Date Title
DE102006010694B4 (de) Wechselrichterschaltung für erweiterten Eingangsspannungsbereich
EP1971019B1 (fr) Circuit destiné à la transformation sans transformateur d'une tension continue électrique en une tension alternative avec deux convertisseurs de courant continu et un onduleur
DE102018106305B4 (de) Wechselstromladung einer intelligenten Batterie
EP3022835B1 (fr) Onduleur comprenant au moins deux entrées de courant continu, installation photovoltaïque comprenant un tel onduleur et procédé de commande d'un onduleur
EP2614573B1 (fr) Procédé de stabilisation d'un réseau d'alimentation électrique
DE102010060633B3 (de) Verfahren zum Verbinden einer Photovoltaikanlage mit einem Stromversorgungsnetz und Photovoltaikanlage zur Durchführung des Verfahrens
EP2053732B1 (fr) Agencement de commutation et procédé de commande pour un onduleur doté d'un transformateur élévateur de tension
EP2795783B1 (fr) Système et procédé de commande d'un dispositif de stockage d'énergie
WO2013143805A2 (fr) Système de batterie, véhicule automobile comprenant un système de batterie et procédé pour mettre en service un système de batterie
WO2013000522A1 (fr) Ensemble condensateur conçu pour un circuit intermédiaire d'un transformateur de tension
DE102010060957A1 (de) Verfahren zum Betreiben eines Gleichspannungswandlers
DE102010064325A1 (de) System mit einer elektrischen Maschine
DE102012222337A1 (de) Photovoltaiksystem und Verfahren zum Betreiben eines Photovoltaiksystems
WO2014063876A1 (fr) Agencement de circuit et procédé de précharge d'un composant capacitif
WO2014037297A1 (fr) Procédé permettant d'augmenter la durée de vie du condensateur de circuit intermédiaire d'une installation électrique pourvue d'un onduleur, installation électrique et unité de commande pour une installation électrique
WO2012107077A1 (fr) Système de distribution d'énergie avec convertisseur matriciel multiphase et procédé permettant de le faire fonctionner
EP3027462A1 (fr) Ensemble d'accumulation d'énergie, système d'accumulation d'énergie et procédé permettant de faire fonctionner un ensemble d'accumulation d'énergie
WO2013135578A1 (fr) Ensemble circuit et procédé pour convertir et adapter une tension continue, installation photovoltaïque
DE102013201909A1 (de) Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung bei einem Kommunikationsausfall
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
EP1398867A1 (fr) Stabilisateur de tension d'un réseau à tension alternatif électrique et procédé pour conduire le stabilisateur
DE102015111804B3 (de) Verfahren zum betrieb eines wechselrichters und wechselrichter, sowie photovoltaikanlage
DE102010042718A1 (de) Verfahren zur Steuerung einer Batterie mit variabler Ausgangsspannung
DE102020115445A1 (de) Elektrisches Energieversorgungsnetz zur Blindleistungskompensation sowie Verfahren zur Blindleistungskompensation in einem solchen Energieversorgungsnetz
WO2020224700A1 (fr) Convertisseur de tension à plusieurs phases pour un réseau d'alimentation et procédé de réduction d'une tension de circuit intermédiaire de ce réseau d'alimentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13759472

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13759472

Country of ref document: EP

Kind code of ref document: A1