WO2014036856A1 - 无线传输资源管理设备和方法 - Google Patents

无线传输资源管理设备和方法 Download PDF

Info

Publication number
WO2014036856A1
WO2014036856A1 PCT/CN2013/079218 CN2013079218W WO2014036856A1 WO 2014036856 A1 WO2014036856 A1 WO 2014036856A1 CN 2013079218 W CN2013079218 W CN 2013079218W WO 2014036856 A1 WO2014036856 A1 WO 2014036856A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary system
primary
communication quality
transmission resource
information
Prior art date
Application number
PCT/CN2013/079218
Other languages
English (en)
French (fr)
Inventor
孙晨
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to KR1020157008492A priority Critical patent/KR20150052231A/ko
Priority to BR112015004485A priority patent/BR112015004485A8/pt
Priority to US14/422,533 priority patent/US10631274B2/en
Priority to CA2884100A priority patent/CA2884100C/en
Priority to JP2015530273A priority patent/JP2015531554A/ja
Priority to EP13834753.9A priority patent/EP2894910B1/en
Priority to RU2015112617/07A priority patent/RU2598530C1/ru
Priority to AU2013312639A priority patent/AU2013312639B2/en
Priority to KR1020197024816A priority patent/KR102134111B1/ko
Priority to KR1020177015042A priority patent/KR20170065679A/ko
Publication of WO2014036856A1 publication Critical patent/WO2014036856A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular to a wireless communication system in which a primary system and a secondary system coexist, and a wireless transmission resource management method and apparatus therein.
  • the transmission resources may be frequency-transmitted resources such as carriers, sub-carriers, or time-frequency resources such as time slots, and may use time, frequency, bandwidth, and/or maximum transmit power that can be tolerated, etc. Parameters are quantified to support new services and meet high-speed communication needs. Limited transmission resources are usually already allocated to fixed carriers and services. New available transmission resources (such as spectrum resources) are either very rare or very expensive. In this case, the concept of dynamic frequency utilization is proposed, that is, to dynamically utilize spectrum resources that have been allocated to certain services but are not fully utilized.
  • Such application scenarios typically include a primary system (PS) and a secondary system (SS).
  • PS primary system
  • SS secondary system
  • the primary system described herein may refer to those systems that have the right to use the frequency, such as a television broadcasting system or a mobile communication system to which a frequency resource is allocated; and the secondary system has no right to use the frequency, and can only A system in which the primary system does not use the spectrum it owns to properly use the spectrum.
  • the primary system and the secondary system described herein may also be systems with spectrum usage rights, but have different priority levels in frequency transmission. For example, when an operator deploys a new base station to provide new services, the existing base station and the services provided have priority.
  • the base station of the primary system is called a primary base station (PBS), and the user of the primary system is called a primary user (PU).
  • the base station of the secondary system is called a secondary base station (SBS).
  • the users in the secondary system are called secondary users (SU).
  • the secondary system can dynamically utilize the frequency spectrum of some channels on the digital television broadcast that do not play the program or the spectrum of the adjacent channels without disturbing the reception of the television signal. Next, perform wireless mobile communication.
  • Some embodiments of the present disclosure provide a wireless transmission resource management apparatus and method, which are capable of effectively serving a secondary system in a wireless communication application scenario in which a primary system and a secondary system coexist. Allocate transmission resources.
  • a wireless transmission resource management apparatus for a wireless communication scenario including a primary system and a secondary system.
  • the apparatus may include: information obtaining means configured to obtain primary system resource information and secondary system resource information, the primary system resource information including information indicating an interference rejection threshold that reflects a maximum interference power level that the primary system can tolerate; An estimating device configured to estimate a primary system hazardous area according to the primary system resource information and the secondary system resource information, where the primary system hazardous area includes a coverage of the primary system due to interference of a secondary system An area having a low noise ratio; and a resource allocation device configured to determine an available transmission resource that can be used by the secondary system in the transmission resource of the primary system according to the primary system hazardous area and the anti-interference threshold.
  • the primary system resource information may further include information about a transmit power of a primary base station in the primary system, a coverage of the primary base station, and a channel model of the primary system.
  • the secondary system resource information may include information about the transmit power of the secondary base station in the secondary system, the channel model of the secondary system, and the coverage and location of the secondary base station.
  • another wireless transmission resource management apparatus for a wireless communication scenario including a primary system and a secondary system, and may include: information obtaining means configured to: Obtaining information about a desired communication quality of the secondary system; and resource allocation means configured to allocate transmission resources of the primary system to the secondary system according to a desired communication quality of the secondary system.
  • the resource allocation apparatus is configured to estimate, by the secondary user in the secondary system, the communication quality of the transmission resource in the primary system, and determine whether the estimated communication quality meets the expected communication quality, according to the result of the determination.
  • a transmission resource in the primary system is assigned to the secondary system.
  • the resource allocation device allocates transmission resources in the primary system to the secondary system.
  • the resource allocation device may reduce transmission resources allocated to the secondary system or reduce transmission power of the secondary system on the transmission resource instead of Available transmission resources are divided Distribution to the secondary system.
  • the resource allocation device allocates only part of the available transmission resources that can satisfy the expected communication shield of the secondary system to the secondary system.
  • the resource allocation device is configured not to allocate the transmission resource to the secondary system, optionally, to the resource allocation device Configuring to issue an indication to the secondary system, the indication including information to reconfigure the secondary system.
  • the RRC resource management device further includes sending means configured to send information about the transmission resource allocation to the secondary system.
  • a secondary system device for providing information about a desired communication quality to the wireless transmission resource management device and managing from the wireless transmission resource
  • the device receives information about the allocation of transmission resources.
  • the transmission resource allocation related information described therein is determined based on whether the estimated secondary system device utilizes the communication quality of the transmission resource in the primary system to satisfy the desired communication quality.
  • the transmission resource allocation related information includes a transmission resource of the primary system allocated by the secondary system device.
  • the transmission resource of the primary system allocated by the secondary system device is a partial transmission resource of the available transmission resources capable of satisfying the desired communication quality of the secondary system device.
  • the transmission resource allocation related information includes an indication of the secondary system device, where the indication includes re-repairing the secondary system device Configuration information.
  • a method for managing a secondary system device comprising: providing information about a desired communication quality to the wireless transmission resource management device; and from the wireless transmission resource The management device receives information about the allocation of transmission resources.
  • the information about the transmission resource allocation is determined according to whether the estimated secondary system device utilizes the communication quality of the transmission resource in the primary system to satisfy the expected communication quality.
  • the transmission resource allocation related information includes a transmission resource of the primary system allocated by the secondary system device.
  • the transmission resource of the primary system allocated by the secondary system device is a partial transmission resource of the available transmission resources capable of satisfying the desired communication quality of the secondary system device.
  • the transmission resource allocation related information includes an indication of the secondary system device, where the indication includes performing the secondary system device Reconfigured information.
  • the method may include: obtaining primary system resource information and obtaining secondary system resource information, the primary system resource information including information reflecting an anti-interference threshold of a maximum interference power level that the primary system can tolerate;
  • the secondary system resource information to estimate a primary system hazardous area, the primary system hazardous area including an area of the primary system that has a lower signal to noise ratio due to secondary system interference; and the primary system hazardous area and The anti-interference threshold determines an available transmission resource that can be used by the secondary system in the transmission resource of the primary system.
  • the primary system resource information may further include information about a transmit power of a primary base station in the primary system, a coverage of the primary base station, and a channel model of the primary system.
  • the secondary system resource information may include information about a transmit power of a secondary base station in the secondary system, a channel model of the secondary system, and a coverage and location of the secondary base station.
  • determining available transmission resources that can be used by the secondary system in the transmission resources of the primary system may further include: estimating interference caused by the secondary system in the dangerous area of the primary system when the secondary system uses the transmission resources to communicate, and The transmission resource whose interference value does not exceed the anti-interference threshold of the primary system is determined to be an available transmission resource that can be used by the secondary system.
  • the method for managing a wireless transmission resource may further include: obtaining information about a desired communication quality of the secondary system; estimating the secondary system risk according to the primary system resource information and the secondary system resource information. a region, the secondary system hazardous area including an area of the coverage of the secondary system that has a low signal-to-noise ratio due to primary system interference; and an assessment of the most achievable by the secondary system in the secondary system hazardous area using the available transmission resources Excellent communication quality; and determining whether the result of the evaluation satisfies the expected communication quality of the secondary system, and if not, the available transmission resources are not allocated to the secondary system.
  • the transmission resources allocated to the secondary system may be reduced or the transmission power of the secondary system on the transmission resources may be reduced.
  • the secondary system may also be instructed to be reconfigured.
  • the method for managing a wireless transmission resource may further include: monitoring a communication quality of a primary user in a dangerous area of the primary system (optionally, and a surrounding area thereof) and a secondary system dangerous area (optionally, and The communication area of the secondary user in the peripheral area thereof; and updating the primary system resource information and/or the secondary system resource information according to the result of the monitoring.
  • the method for managing a wireless transmission resource may further include: receiving a bit in the primary system when a communication quality of the primary user in the dangerous area of the primary system is lower than a predetermined communication quality threshold The primary user in the dangerous area of the primary system switches to the request in the secondary system.
  • the method for managing a wireless transmission resource may further include: when the communication quality of the secondary user in the secondary system dangerous area is lower than a preset communication quality threshold, sending the secondary system in the secondary system to the primary system The secondary user in the zone switches to the request in the primary system.
  • the method for managing a radio transmission resource may further include: optimizing an antenna beam shape of the secondary base station according to the result of the monitoring.
  • the method for managing a radio transmission resource may further include: obtaining, in a different antenna beam shape of the secondary base station, a communication quality of the primary user in the dangerous area of the primary system and a communication quality of the secondary user in the dangerous area of the secondary system. And selecting the antenna beam shape of the secondary base station based on the communication quality in the two dangerous areas.
  • selecting an antenna beam shape of the secondary base station may include: calculating a sum and/or a product of communication quality in a primary system hazardous area and a secondary system dangerous area in a different antenna beam shape of the secondary base station; and selecting The shape of the antenna beam corresponding to the largest sum or product value is taken as the antenna beam shape of the secondary base station.
  • the method for managing a radio transmission resource may further include: obtaining communication quality in a next system dangerous region of a different antenna beam shape of the secondary base station; and selecting an antenna beam shape corresponding to the optimal communication quality. , as the antenna beam shape of the secondary base station.
  • estimating the secondary system danger zone may include: calculating a transmission path gain of a location in the coverage of the primary base station to the secondary system according to a channel model of the primary system; calculating the time according to the channel model of the secondary system a transmission path gain from the base station to the location; estimating a signal to noise ratio of the location based on the two transmission path gains; and determining a secondary system hazardous area based on a signal to noise ratio at each location within the coverage of the secondary system.
  • estimating the secondary system hazardous area may include: obtaining an instantaneous path fading gain at a position in the coverage of the primary base station to the secondary system, and obtaining an instantaneous path fading gain of the position in the coverage of the secondary base station to the secondary system.
  • the stop rate at the location is estimated based on the two instantaneous path fading gains; and the secondary system hazardous area is determined based on the downtime at various locations within the coverage of the secondary system.
  • estimating the subsystem risk zone may include: calculating, according to the transmit power of the secondary base station, an instantaneous channel capacity at a location within the coverage of the secondary system that is interfered by the primary system; estimating the said channel based on the instantaneous channel capacity The shutdown channel capacity at the location; and the secondary system hazardous area is determined based on the shutdown channel capacity at each location within the coverage of the secondary system.
  • estimating the primary system hazardous area may include: according to a channel model of the primary system Calculating a transmission path gain of a location in a coverage range from the primary base station to the primary system; calculating a transmission path gain of the location in the coverage of the secondary base station to the primary system according to a channel model of the secondary system; according to the two transmission paths Gain to estimate the signal to noise ratio of the location; and determine the primary system hazardous area based on the signal to noise ratio at various locations within the coverage of the primary system.
  • estimating the primary system danger zone may include: obtaining an instantaneous path fading gain of a location in the coverage of the primary base station to the primary system, and obtaining an instantaneous path fading gain of the location in the coverage of the secondary base station to the primary system Determining the downtime at the location based on the two instantaneous path fading gains; and determining the primary system hazardous area based on the downtime at various locations within the coverage of the primary system.
  • estimating the primary system danger zone may include: calculating, according to a transmit power of the primary base station, an instantaneous channel capacity at a location within the coverage of the primary system that is interfered by the secondary system; estimating the location according to the instantaneous channel capacity The shutdown channel capacity; and determining the primary system hazardous area based on the shutdown channel capacity at various locations within the coverage of the primary system.
  • the secondary systems may be clustered to form a plurality of secondary system clusters.
  • determining the available transmission resources that can be used by the secondary system can include determining available transmission resources that can be used for each system cluster in the transmission resources of the primary system.
  • the wireless transmission resource management method may further include: re-clustering the secondary system according to a change of system information.
  • a wireless transmission resource management method for a wireless communication scenario including a primary system and a secondary system is provided.
  • the method can include: obtaining information about a desired communication quality of the secondary system, and allocating transmission resources of the primary system to the secondary system based on a desired communication quality of the secondary system.
  • the method for managing a radio transmission resource further includes: estimating, by a secondary user in a secondary system, a communication quality of a transmission resource in a primary system, and determining whether the estimated communication quality meets the expected communication quality. And allocating transmission resources in the primary system to the secondary system according to the result of the judgment. Wherein, when the estimated communication quality satisfies the expected communication quality, transmission resources in the primary system are allocated to the secondary system.
  • the method for managing a radio transmission resource further includes: when the estimated communication quality is higher than the expected communication quality, reducing transmission resources allocated to the secondary system or reducing the secondary system in the The transmit power on the transmission resource. Among them, only part of the transmission resources of the available transmission resources that can satisfy the desired communication quality of the secondary system are allocated to the secondary system.
  • the method for managing a radio transmission resource further includes: when the estimated communication quality is lower than the expected communication quality, not allocating the transmission resource to the secondary system System.
  • the method for managing a radio transmission resource further includes: when the estimated communication quality is lower than the expected communication quality, sending an indication to the secondary system.
  • the indication includes information for reconfiguring the secondary system.
  • the method for managing a wireless transmission resource further includes: transmitting, by the transmission resource allocation, information to the secondary system.
  • a communication system including the above-described wireless transmission resource management device is provided.
  • the present disclosure also provides a computer program product in the form of at least a computer readable medium having computer program code for implementing the above method.
  • FIG. 1 is a schematic flowchart showing a wireless transmission resource management method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart showing a wireless transmission resource management method according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart showing an example of a method of allocating transmission resources for a secondary system based on a desired communication shield amount of a secondary system;
  • FIG. 4 is a schematic flow chart showing one example of a method of updating system resource information
  • FIG. 5 is a schematic flowchart showing one example of a method of switching a primary user to a secondary system
  • FIG. 6 is a schematic flow chart showing one example of a method of switching a secondary user to a primary system
  • FIG. 7 is an illustration showing one example of a method of selecting an antenna beam shape of a secondary base station. Intentional flow chart
  • FIG. 8 is a schematic flow chart showing one example of a method of estimating a sub-system hazardous area
  • FIG. 9 is a schematic flow chart showing one example of a method of estimating a dangerous area of a main system
  • FIG. 10 is a schematic flow chart showing another example of a method of estimating a sub-system hazardous area
  • FIG. 11 is a schematic flow chart showing another example of a method of estimating a dangerous area of a primary system
  • FIG. 12 is a schematic flow chart showing another example of a method of estimating a sub-system hazardous area
  • FIG. 13 is a schematic flow chart showing another example of a method of estimating a dangerous area of a main system
  • FIG. 14 is a schematic flowchart showing a wireless transmission resource management method according to another embodiment of the present invention.
  • Figure 15 is a schematic diagram showing a radio system scenario in which an embodiment that can be applied is shown;
  • Figure 16 is a schematic block diagram showing a wireless transmission resource management device according to an embodiment of the present invention.
  • FIG. 17 is a schematic block diagram showing a wireless transmission resource management device according to another embodiment of the present invention.
  • FIG. 18 is a schematic block diagram showing a wireless transmission resource management device according to another embodiment of the present invention.
  • FIG. 19 is a schematic block diagram showing an additional structure of the wireless transmission resource management device shown in FIG. 17;
  • 20 is a schematic flowchart showing one example of a method of updating a dangerous area
  • 21 is a schematic flowchart showing one example of a method of monitoring a dangerous area or a peripheral area thereof;
  • FIG. 22 is a schematic block diagram showing a communication device that performs the method shown in FIG. 21;
  • FIG. 23 is a schematic diagram showing one example of a method in which a secondary base station adjusts an antenna beam shape. Sexual 3 ⁇ 41 ⁇ 2 diagram; and
  • FIG. 24 is a schematic block diagram showing a processing device that performs the method shown in FIG. 23 in a secondary base station.
  • Some embodiments provide an apparatus and method for allocating wireless transmission resources to a secondary system in a wireless communication application scenario in which a primary system and a secondary system coexist.
  • a primary system and a secondary system coexist.
  • one or more secondary systems may be included.
  • the secondary system shares the wireless transmission resources of the primary system.
  • the radio transmission resources mentioned herein may be any frequency resources, such as carriers, subcarriers or time slots, used for information transmission in a communication system.
  • the transmission resource may be a subcarrier.
  • the transmission resource can be a time slot.
  • the communication system referred to in the present disclosure is not limited to the above-described OFDMA or TDMA system, and may be other types of communication systems, and is not enumerated here.
  • the primary system described herein may be any wireless communication system to which wireless transmission resources have been allocated, such as a television broadcast system or a wireless communication system of an existing wireless carrier, etc., not enumerated here.
  • FIG. 1 is a schematic flow chart showing a wireless transmission resource management method according to an embodiment of the present invention.
  • the radio transmission resource management method shown in Fig. 1 can be implemented by a radio transmission resource management device in a secondary system (e.g., a spectrum manager associated with a secondary system or a secondary base station in a secondary system, etc.).
  • a secondary system e.g., a spectrum manager associated with a secondary system or a secondary base station in a secondary system, etc.
  • the RRC resource management method may include steps 102, 104, 106, and 108.
  • primary system resource information is obtained.
  • the primary system resource information described herein includes information reflecting the interference rejection threshold of the maximum interference power level that the primary system can tolerate.
  • the primary system resource information may further include other information about resource utilization of the primary system, for example, may also include related to the transmit power of the primary base station in the primary system, the coverage of the primary base station, and the primary system. Information about the channel model.
  • the primary system resource information can be obtained from the primary base station of the primary system by the wireless transmission resource management device in the secondary system.
  • the information may be pre-stored in the wireless transmission resource management device of the secondary system (e.g., in a storage device (not shown) stored therein), and taken out when the information needs to be used. It will not be detailed here.
  • secondary system resource information is obtained.
  • the secondary system resource information described herein may be information about resource utilization of the secondary system.
  • the information may include information about the transmit power of the secondary base station in the secondary system, the channel model of the secondary system, and the coverage and location of the secondary base station.
  • the secondary system resource information may be obtained from the secondary base station and/or the secondary user of the secondary system by the wireless transmission resource management device in the secondary system.
  • the information may be pre-stored in the wireless transmission resource management device of the secondary system (e.g., in a storage device (not shown) stored therein), and taken out when the information needs to be used. It is not detailed here.
  • a dangerous area (also referred to as a primary system dangerous area) that may exist in the coverage of the primary system is estimated based on the primary system resource information and the secondary system resource information.
  • the primary system hazardous area described herein may include one or more areas of the coverage of the primary system that have relatively low communication quality (ie, the signal to noise ratio is relatively low due to secondary system interference), eg, signal to noise.
  • An area that is lower than a predetermined threshold (which may be determined according to actual needs in actual applications, and its specific value is not limited herein).
  • the signal-to-noise ratio in each of the coverage areas of the primary system can be estimated using primary system resource information and secondary system resource information using any suitable method to determine the primary system hazardous area.
  • any of the method examples described below with reference to Figs. 8, 10, 12 can be employed.
  • the present disclosure is not limited to these embodiments or examples.
  • step 108 the available transmission resources that can be used by the secondary system in the transmission resources of the primary system can be determined according to the primary system hazardous area and the anti-interference threshold of the primary base station.
  • the determined available transmission resources may include wireless transmission resources (available time slots, available frequency bands, and/or maximum transmission bandwidth and transmit power thereon, etc.) that can be used by the secondary system.
  • wireless transmission resources available time slots, available frequency bands, and/or maximum transmission bandwidth and transmit power thereon, etc.
  • step 108 may include: estimating, when the secondary system uses the transmission resource to communicate, causing interference to the primary system in the dangerous area of the primary system, and transmitting the interference resource whose interference value does not exceed the anti-interference threshold of the primary system. Determined to be available transmission resources that can be used by the secondary system.
  • any suitable method can be used to estimate the interference of the secondary system to the primary system in the dangerous area of the primary system when the secondary system communicates with a certain transmission resource, which is not limited herein and will not be described in detail.
  • a dangerous area in the coverage of the primary system is estimated, and the dangerous area is utilized to determine an available transmission resource that can be used by the secondary system. This effectively determines the transmission resources that can be allocated to the secondary system while ensuring the normal operation of the primary system.
  • FIG. 2 is a schematic flow chart showing a wireless transmission resource management method according to another embodiment of the present invention.
  • the hazardous area of the secondary system is also estimated.
  • the RRC resource management method may include steps 202, 204, 206, 208-1, 208-2, and 208-3.
  • Steps 202, 204, and 206 may be similar to steps 102, 104, and 106 described above, respectively, and are not repeated here.
  • the dangerous area (also referred to as the secondary system dangerous area) that may exist in the coverage of the secondary system may be estimated based on the primary system resource information and the secondary system resource information.
  • the secondary system hazardous area described herein may include one or more areas of lower coverage (ie, a relatively lower signal to noise ratio due to interference from the primary system) in the coverage of the secondary system, eg, signal to noise An area that is lower than a preset threshold (which may be determined in actual applications based on actual demand, and whose specific value is not limited herein).
  • the signal-to-noise ratio in each of the coverage areas of the secondary system can be estimated using the primary system resource information and the secondary system resource information using any suitable method to determine the secondary system hazardous area.
  • any of the method examples described below with reference to Figs. 9, 11, and 13 can be employed.
  • the present disclosure is not limited to these embodiments or examples.
  • step 208-2 the optimal communication quality that the secondary system can achieve using the available transmission resources in the secondary system hazardous area is evaluated.
  • the signal-to-noise ratio can be used as a parameter reflecting the quality of communication.
  • Any suitable method may be employed to estimate the signal to noise ratio of the secondary system having transmission resources for communication within the hazardous area of the secondary system, for example, using the method examples described below with reference to equations (1) - (8).
  • the present disclosure is not limited to these embodiments or examples.
  • step 208-3 the available transmission resources are allocated to the secondary system based on the results of the evaluation in step 208-2.
  • the estimated optimal communication quality may be determined whether the estimated optimal communication quality reaches a predetermined quality threshold (the threshold may be determined according to actual needs in an actual application, and its specific value is not limited herein), and if so, Transmission resources are allocated to the secondary system. Otherwise, the transmission resources are not assigned to the secondary system.
  • a predetermined quality threshold the threshold may be determined according to actual needs in an actual application, and its specific value is not limited herein
  • Fig. 3 is a schematic flow chart showing a method of allocating transmission resources for secondary users based on the expected communication quality of the secondary system according to this specific example.
  • information about the desired communication quality of the secondary system can be obtained.
  • Information about the desired communication quality of the secondary system can be obtained from the secondary base station of the secondary system by the wireless transmission resource management device in the secondary system.
  • the information may be pre-stored in the wireless transmission resource management device of the secondary system (e.g., in a storage device (not shown) stored therein) and taken out when the information needs to be used. It will not be detailed here.
  • step 312 based on the evaluated optimal communication quality achievable by the secondary system utilizing the available transmission resources in the secondary system hazardous area, the desired communication quality of the secondary system is met.
  • the available transmission resources are allocated to the secondary system (step 314), and if not, the available transmission resources are not allocated to the secondary system (step 316).
  • the waste of transmission resources can be reduced, thereby improving the efficiency of use of transmission resources.
  • the secondary system may also be instructed to be reconstructed (or reconfigured) to reselect the transmission resources of the primary system that can be used by the secondary system.
  • Available transmission resources may include one or more of the following: optimizing or reselecting the antenna beam shape of the secondary base station, re-clustering the multiple secondary systems, and the like.
  • the available transmission resources are allocated to the secondary system; and if it is determined that the evaluated optimal communication quality is greater than the secondary system
  • the desired communication quality can reduce the transmission resources allocated to the secondary system, rather than all of the available transmission resources to the secondary system. If it is judged that the estimated optimal communication quality is greater than the expected communication quality of the secondary system, only part of the transmission resources of the available transmission resources capable of satisfying the desired communication quality of the secondary system may be allocated to the secondary system.
  • the maximum transmission power of a certain bandwidth of a certain frequency band is 20 dBm according to the interference threshold of the primary user and the secondary user's interference with the primary user in the dangerous area.
  • the transmission path of the secondary user transmitter to the secondary user's hazardous area is fading to 5 dB.
  • the primary user transmission power is 30 dBm
  • the transmission path of the primary user transmitter to the secondary user's dangerous area is fading to 15 dB.
  • the wireless transmission resource management device in the secondary system may send the allocation result to the secondary base station or the secondary user in the secondary system, or may The allocation result is sent to the secondary base station, and the secondary base station further distributes the result to the secondary user. In this way, each secondary user can communicate using the allocated transmission resources.
  • Figure 4 shows an example of a method of monitoring the use of transmission resources after allocation of transmission resources.
  • the method includes steps 422 and 424.
  • step 422 the communication status of the primary user in the dangerous area of the primary system is monitored, and the communication status of the secondary user in the dangerous area of the secondary system is monitored.
  • information about the communication quality of the primary user in the dangerous area of the primary system can be obtained from the primary base station in the primary system by the wireless transmission resource management device in the secondary system, which will not be described in detail herein.
  • Information about the communication status of the secondary user in the secondary system hazardous area may be obtained by the secondary transmission base station or secondary user in the secondary system by the wireless transmission resource management device in the secondary system.
  • the RRC resource management device may send information about the secondary system dangerous area to the secondary base station or the secondary user (or first to the secondary base station, and then to the secondary base station to the secondary user), by the associated secondary base station and/or secondary User (if at risk)
  • the secondary base station and/or the secondary user in the dangerous area transmits information of the communication situation obtained by itself using the allocated transmission resource to the wireless transmission resource management apparatus. It will not be detailed here.
  • the primary system resource information and/or the secondary system resource information are updated based on the results of the monitoring. For example, update the channel model in it, and so on.
  • These updated information can be stored in a wireless transmission resource management device (such as its storage device) for later use when the transmission resource needs to be allocated again.
  • the information about the communication situation described herein may include one or more of the following information: signal strength and spectrum utilization information of the primary user, signal strength and spectrum utilization information of the secondary user, primary user signal energy change statistics, and times User signal strength statistics, etc.
  • the communication status of the primary user in the peripheral area of the dangerous area of the primary system may also be monitored, and the communication status of the primary user in the peripheral area of the dangerous area of the secondary system may also be monitored.
  • the peripheral area described herein refers to an area located around the dangerous area (the area around the dangerous area can be selected according to the actual application, and is not limited herein).
  • FIG. 20 shows an example of a method of updating (correcting) a dangerous area based on information obtained by monitoring a peripheral area of a dangerous area.
  • step 2002 channel quality information and the like obtained by monitoring a dangerous area and one or more peripheral areas thereof are received. This information can be collected by PU, SU, PBS or SBS.
  • step 2004 the channel quality of each dangerous area is compared with the channel quality of the surrounding area, and in step 2006, it is determined whether there is a dangerous area whose channel quality is worse than the dangerous area, and if so, in step 2008, the update is performed. Dangerous zone.
  • the method shown in Figure 20 applies to both the update of the hazardous area of the primary system and the update of the hazardous area of the secondary system.
  • the channel quality can be based on the control mode of the base station transmit power, the transmit power, the channel model, the location of the base station and the user, the transmit template of the transmitter, and/or the receiver characteristics, etc. The method to estimate is not detailed here.
  • the primary system resource information and/or the secondary system resource information are updated according to changes in the system state in the communication system. Since the updated information reflects the actual state of the system, subsequent resource allocations can be made more accurate and more efficient.
  • the secondary system can be re-used using the monitoring results shown in FIG. Construct.
  • the primary and secondary users in the primary and secondary systems can be switched.
  • the secondary system such as the wireless transmission resource management device
  • the secondary system can receive the primary user in the primary system in the dangerous area of the primary system to switch to the secondary system. Requests in the system.
  • the communication quality of the secondary user in the secondary system dangerous area is lower than the preset communication quality threshold
  • the request of the secondary user in the secondary system dangerous area in the secondary system to switch to the primary system is sent to the primary system.
  • FIG. 5 shows a specific example of a process in which a primary user requests a handover to a secondary system.
  • a handover request of the primary user from the primary system to the secondary system is received.
  • the handover request may include location information and identification (ID) information of the primary user, and transmission resource utilization information of the primary user.
  • the transmission resource utilization information may include a transmission rate of the primary user, a used bandwidth, a transmission template, and the like.
  • a secondary user service area covering the primary user is sought in the coverage of the secondary system according to the location information of the primary user.
  • step 534 a handover request is sent to the found secondary base station.
  • the feedback information may include information about whether the secondary base station accepts the primary user's handover request and the secondary base station's transmission settings (e.g., bandwidth and rate, etc.) so that the primary user can make corresponding transmission settings adjustments prior to accessing the secondary system.
  • step 538 feedback information from the secondary base station and suggestions for spectrum occupancy of the primary user (including recommended bandwidth and rate, etc.) are sent to the primary user so as not to cause an existing secondary user system after the primary user accesses the secondary user system.
  • the secondary base station accepts the handover request and assumes that the secondary base station is an open subscriber group (OSG) microcell base station (femtocell) or a hybrid subscriber group microcell base station.
  • OSG open subscriber group
  • Femtocell microcell base station
  • hybrid subscriber group microcell base station The primary user can enter the handover process, which is not described in detail here. If the secondary base station does not support the primary user's handover request (e.g., assuming the secondary base station is a closed subscriber group microcell base station), the primary user cannot switch to the secondary system.
  • FIG. 6 shows a specific example of a process in which a secondary user requests to switch to the primary system.
  • a handover request of the secondary user to the primary system is received, and the handover request may include location information and identity (ID) of the secondary user, transmission resource utilization information, and the like.
  • the transmission resource utilization information may include a transmission rate of the secondary user, a usage bandwidth, a transmission template, and the like.
  • the primary system coverage is sought. The primary user J ⁇ service area of the secondary user is covered. If it is determined that the secondary user is located in a certain primary user service area, then step 634 is entered. Otherwise the process ends.
  • a handover request is sent to the found secondary base station.
  • feedback information for the handover request from the primary base station is received.
  • the feedback information may include information about whether the primary base station accepts the secondary user's handover request and the secondary base station's transmission settings (eg, bandwidth and rate, etc.) so that the primary user can make corresponding transmission settings adjustments prior to accessing the secondary system.
  • the feedback information of the autonomous base station and the recommendation for the secondary user spectrum occupancy are sent to the secondary user or the corresponding secondary base station, so that the secondary user does not have an existing access to the primary user system.
  • the primary user system has an adverse effect. If the primary base station accepts the handover request, the secondary user enters the handover procedure, which is not described in detail herein. If the primary base station does not support the secondary user's handover request, the secondary user cannot switch to the primary system.
  • the antenna beam shape of the secondary base station can also be optimized according to the monitoring result shown in FIG.
  • the antenna beam shape of the primary base station and the secondary base station can be three-dimensionally adjusted based on the information.
  • the antenna beam energy of the antenna beam of the primary base station in the dangerous area of the primary system is enhanced, and the antenna beam energy of the antenna beam of the primary base station in the dangerous area of the secondary system is reduced.
  • the method can also be used for antenna beam shape optimization of the secondary base station. Specifically, according to the information obtained by monitoring the dangerous area of the primary system and the dangerous area of the secondary system, the energy of the antenna beam of the secondary base station in the dangerous area of the secondary user is increased, and the antenna beam of the secondary base station is reduced in the dangerous area of the primary system. Antenna beam energy.
  • information about the primary system hazardous area and the secondary system hazardous area may also be utilized to select the antenna beam shape of the base station.
  • the communication quality of the primary user in the dangerous area of the primary system and the communication quality of the secondary user in the secondary system dangerous area in the different antenna beam shapes of the secondary base station can be obtained. Similar to the above, for example, a signal to noise ratio can be employed as a parameter reflecting the quality of the communication. As mentioned above, any suitable The method is to obtain the signal-to-noise ratio of a certain area, which will not be described in detail here.
  • the antenna beam shape of the secondary base station is selected according to the communication quality of the secondary user in the next system dangerous area in the different antenna beam shape of the secondary base station (optionally, and the communication quality of the primary user in the dangerous area of the primary system).
  • the communication quality in the next system dangerous region of the different antenna beam shape of the secondary base station can be obtained, and the antenna beam shape corresponding to the optimal communication quality is selected as the antenna beam shape of the secondary base station.
  • the antenna beam shape of the secondary base station can be selected by using the measurement result of the communication situation in the dangerous area of the secondary system, and the communication quality of the secondary system can be further improved.
  • Fig. 7 shows another method of selecting an antenna beam shape of a base station.
  • step 742 the communication quality of the primary user in the dangerous area of the primary system and the communication quality of the secondary user in the secondary system dangerous area in the different antenna beam shapes of the secondary base station are obtained.
  • the above method can be used to obtain the information of the communication quality, which will not be repeated here.
  • step 744 a sum product of the communication quality in the primary system hazardous area and the communication quality in the secondary system hazardous area at different antenna beam shapes of the secondary base station is calculated.
  • step 746 the antenna beam shape corresponding to the largest sum or product value is selected as the antenna beam shape of the secondary base station. In the method shown in Fig.
  • the antenna beam selection or determination method described above may be performed by a secondary base station or by a spectrum manager associated with the secondary base station.
  • the associated spectrum manager described herein may be a secondary spectrum manager of a secondary system cluster in which the primary spectrum manager or secondary base station is located as described below.
  • the frequency manager can transmit information about the determined or selected antenna beam shape to the secondary base station.
  • 23 is a schematic flow chart showing one example of a method in which a secondary base station adjusts its antenna beam shape using the information. As shown in FIG. 23, in step 2302, the secondary base station receives information about the shape of the antenna beam from the spectrum manager, and then, in step 2306, adjusts the antenna beam shape based on the information.
  • the processing device 2400 includes a receiving device 2401 and an antenna adjusting device 2403.
  • the receiving device 2401 is configured to receive information about the shape of the antenna beam from the spectrum manager.
  • the antenna adjusting device 2403 is configured to adjust the antenna beam shape of the secondary base station according to the information of the technology. [98]
  • the above antenna beam shape selection method is also applicable to the selection of the antenna beam shape of the primary base station, and will not be repeated here.
  • each system cluster can include one or more secondary systems.
  • the clustering of the secondary system can be performed by any suitable method, which will not be described in detail herein.
  • clustering can be performed according to the location distribution of the secondary base station and the secondary user in the secondary system.
  • clustering may be performed according to transmission resource utilization characteristics (e.g., characteristics such as the same or adjacent frequency and/or the same communication method) and controllability. The utilization of a cluster's transmission resources depends on the communication method of each subsystem in the cluster.
  • determining the available transmission resources (steps 108, etc.) that can be used by the secondary system can include: determining available transmission resources for the primary system's transmission resources that can be used for each system cluster. And so on, here is not - repeat.
  • a plurality of spectrum managers may be provided for the secondary system.
  • Fig. 15 shows such a system configuration.
  • one master spectrum manager and one or more secondary frequency managers can be set up.
  • the primary frequency manager manages one or more secondary user clusters and can receive information from secondary user clusters of multiple secondary frequency talk managers.
  • Each secondary transmission manager can manage a single secondary system cluster and secondary users in the cluster.
  • each sub-spectrum manager can model the aggregate interference of the secondary user to the primary user in clusters, transmit the information of the secondary user cluster to the primary spectrum manager, accept the information from the primary spectrum manager, and receive the information from the primary spectrum manager.
  • the secondary user manages and so on.
  • the primary spectrum manager may collectively perform the methods in the various embodiments or examples described above with reference to FIGS. 1-7 and hereinafter with reference to FIGS. 8-14, and may perform various related processing results (
  • the transmission resource allocation result is transmitted to the secondary spectrum manager, and receives information from the secondary spectrum manager (such as system resource information of the secondary system and/or measurement results of the secondary system to the secondary system dangerous area, etc.).
  • the methods in the various embodiments or examples described above with reference to FIGS. 1-5 and 20 and hereinafter with reference to FIGS. 8-14 may be distributed to the respective sub-spectral managers for execution to mitigate The processing load of the main frequency.
  • the methods described in the above FIGS. 1-5 and 20 and hereinafter with reference to FIGS. 8-14 may be separately performed by each secondary frequency talk manager to allocate transmission resources for the secondary systems within each secondary system cluster, and by each The secondary spectrum manager sends its assignment results to the primary frequency manager.
  • the primary spectrum manager coordinates to allocate available resources.
  • the secondary spectrum managers can also coordinate their own resources to allocate available resources. This coordination can be achieved through methods such as game theory, distributed decision making, etc., which are not described in detail here.
  • a plurality of secondary systems may be re-clustered according to changes in system information (such as the monitoring result according to step 422 in FIG. 4) to form a new secondary system cluster.
  • system information such as the monitoring result according to step 422 in FIG. 4
  • the allocation of transmission resources can be performed in units of new sub-system clusters, thereby making more efficient use of transmission resources.
  • FIG. 8 shows an example of a method of estimating a sub-system hazardous area.
  • a transmission path gain of a position in the coverage of the primary base station to the secondary system is calculated according to a channel model of the primary system; and in step 852, according to the secondary system
  • the channel model is used to calculate the transmission path gain of the secondary base station to the location.
  • the signal to noise ratio at the location is estimated based on the values of the gains of the two transmission paths.
  • the location described herein can be a certain area or point within the coverage of the secondary system.
  • the coverage of the secondary system can be partitioned into multiple regions and the signal to noise ratio at a certain point in each region or region can be calculated according to the processing in steps 850, 852, and 854.
  • the secondary system hazardous area is determined based on the signal to noise ratio at each location within the coverage of the secondary system. Specifically, an area where the signal to noise ratio is relatively low (e.g., an area where the signal to noise ratio is lower than a predetermined threshold) can be determined as the sub system dangerous area.
  • the threshold value can be determined according to actual needs in practical applications, and its specific value is not limited herein.
  • FIG. 9 shows an example of a method of calculating a dangerous area of a main system similar to that of FIG.
  • step 950 the transmission path gain of a certain position in the coverage of the primary base station to the primary system is calculated according to the channel model of the primary system, and in step 952, the calculation is performed according to the channel model of the secondary system.
  • the transmission path gain of the location in the coverage of the base station to the primary system is estimated based on the gains of the two transmission paths.
  • the location described here can be within the coverage of the main system a certain area or a certain point.
  • the coverage of the primary system can be partitioned into multiple regions and the signal to noise ratio at a certain point in each region or region can be calculated according to the processing in steps 950, 952, and 954. Then, in step 956, the primary system hazardous area is determined based on the signal to noise ratio at various locations within the coverage of the primary system. Specifically, an area with a low signal-to-noise ratio (such as an area where the signal-to-noise ratio is lower than a predetermined threshold) may be determined as a dangerous area of the main system.
  • the threshold value can be determined according to actual needs in practical applications, and specific numerical values thereof are not limited herein.
  • the signal-to-noise ratio in the assumption that the channel fading in this small area is constant. Based on the methods of Figures 8 and 9, the indicated danger zone is calculated based on channel fading. These dangerous areas are areas where the user's long-term signal-to-interference ratio (or signal-to-noise ratio) is low.
  • the transmission path gain s of the primary base station to s (you can select different channel models according to the settings of the primary system (such as antenna height or application environment, etc.) (for example, a free space model, given by the ITU) Transmission path model or Hata model, etc., and any suitable method can be used to calculate the transmission path gain, which will not be described in detail herein).
  • the transmission path gain of the secondary user base station to s is calculated.
  • the signal-to-interference ratio at any point in s can be used as follows: Factory p
  • SIR su (s) su - s p(pU) , 3s e [111]
  • the above-mentioned signal can be made smaller in the secondary user service area (for example, less than a predetermined threshold, which can be determined according to actual needs in practical applications)
  • the area where the specific value is not limited here is used as the secondary system danger zone.
  • the value s is used to determine the secondary system hazard area.
  • User is about twice the service area G « ⁇ is small (e.g., less than a predetermined threshold value, the threshold may be determined according to the actual needs in practical applications, it is not limited to this particular value) is determined as a region a user views the danger zone.
  • a predetermined threshold value e.g., the threshold may be determined according to the actual needs in practical applications, it is not limited to this particular value
  • an area in which the ratio s is smaller than the average value of G « ⁇ of each small area in the entire service area S may be defined as a peripheral area of the sub-system dangerous area.
  • the transmission path gain of the primary base station to q is calculated according to the channel model of the primary system.
  • the signal-to-interference ratio at any point in the transmission path gain g of the secondary base station can be calculated as follows:
  • « ⁇ can be calculated to determine the hazardous area of the main system.
  • G -small if less than a predetermined threshold, the threshold can be determined according to actual needs in actual applications, and is not limited thereto.
  • a small area of the volume value is used as the main system danger zone.
  • an area where the value of G « ⁇ is smaller than ⁇ 3 ⁇ 4 in the entire service area Q can be defined as a peripheral area of the dangerous area of the main system.
  • FIG. 10 shows another example of a method of estimating a secondary system danger zone
  • FIG. 11 shows an example of a corresponding method of estimating a primary system danger zone.
  • the instantaneous small scale fading gain of a certain position in the coverage of the primary base station to the secondary system is selected according to the application scenario of the primary and secondary user systems.
  • the distribution, and at step 1052, obtains a distribution of instantaneous small-scale path fading gains for said locations in the coverage of the secondary base station to the secondary system.
  • These small-scale fading channel gains may be from Rayleigh distribution, Gamma distribution, Ricean distribution, or Nakagami distribution. Models of small-scale fading may differ at different locations. For example, some locations are close to homes, and some places are relatively empty. In addition, the channel model may be different depending on the height of the user's receiver antenna.
  • the method obtains the distribution of the fading gain of the instantaneous small-scale path, which is not described in detail herein.
  • the downtime at the location is estimated based on the distribution of the two instantaneous path fading gains.
  • the location may be a certain area or a point within the coverage of the secondary system.
  • the coverage of the secondary system can be partitioned into multiple regions and the downtime at a certain point in each region or region can be calculated according to the processing in steps 1050, 1052, and 1054.
  • the secondary system hazardous area is determined based on the rate of downtime at various locations within the coverage of the secondary system.
  • step 1150 a distribution of instantaneous small-scale path fading gains from a location in the coverage of the primary base station to the primary system is obtained, and in step 1152, coverage of the secondary base station to the primary system is obtained.
  • step 1154 the rate of downtime at the location is estimated based on the distribution of the two instantaneous path fading gains.
  • the location may be a certain area or a point within the coverage of the primary system.
  • the coverage of the primary system can be partitioned into multiple regions and the rate of downtime at each point in each region or region can be calculated according to the processing in steps 1150, 1152, and 1154.
  • the primary system hazardous area is determined based on the rate of downtime at various locations within the coverage of the primary system.
  • the stop rate is calculated based on the ratio of the small-scale fading gain.
  • the dangerous area means an area where the user's outage rate is relatively high.
  • the outage rate indicates the probability that the user's communication quality is less than a certain minimum threshold (which may be determined according to actual needs in actual applications, and its specific value is not limited herein).
  • the instantaneous path fading gain of the primary base station to a certain location or small area s in the secondary user service area S is g ⁇ -s
  • the short-term path fading gain of the secondary user base station to the location S of the secondary user service area is g s"- s.
  • the ratio is a random variable that obeys a certain distribution and will not be described in detail here.
  • a threshold r of a given outage rate is obtained from the distribution of the ratio of the small scale fading gains.
  • ' a that is, the probability that the ratio of the small-scale fading gain is less than this threshold is ", which is expressed by the following formula:
  • Pr ⁇ x ⁇ represents the probability of an x event. Calculating the threshold of the given outage rate of all areas S within the coverage of the secondary system, after which, will be the minimum or the small (if less than a predetermined threshold, the threshold can be determined according to the actual demand in the actual application, here is not The area defining its specific value is determined as the sub-system hazardous area. As a specific example,
  • ⁇ and ⁇ represent the short-term path fading of the primary base station and the secondary base station to a certain location or small area q in the service area of the primary system, respectively.
  • a value indicating the downtime rate of the primary system user For each region q in the service area of the primary system, a threshold g of a given outage rate is obtained according to the distribution of the ratio of the small-scale fading gain, ie
  • the threshold of the given outage rate is calculated for all the regions Q, ⁇ will be the smallest or smaller (if less than a predetermined threshold, the threshold can be determined according to the actual demand in practical applications, and is not limited thereto)
  • the area of the specific value is used as the main system danger zone.
  • a value whose value is smaller than the average value in the entire region Q, is a peripheral region of the sub-system dangerous region.
  • FIG. 12 Another example of a method of estimating a secondary system hazardous area is shown in Fig. 12, and Fig. 13 shows an example of a corresponding method of estimating a primary system dangerous area.
  • step 1250 the distribution of instantaneous channel capacity at a location affected by the primary system within the coverage of the secondary system is calculated based on the transmit power of the secondary base station; and in step 1252, The instantaneous channel capacity distribution is used to estimate the shutdown channel capacity at the location.
  • the location may be a certain area or a point that is interfered by the primary system within the coverage of the secondary system. Can divide the coverage of the secondary system into multiple The area, and the shutdown channel capacity at a certain point in each zone or zone is calculated according to the processing in steps 1250 and 1252.
  • step 1254 the secondary system hazardous area is determined based on the shutdown channel capacity at various locations within the coverage of the secondary system.
  • the distribution of instantaneous channel capacity at a location subject to secondary system interference within the coverage of the primary system is calculated based on the transmit power of the primary base station.
  • the downtime channel capacity at the location is estimated based on the instantaneous channel capacity distribution.
  • the location may be a certain area or point within the coverage of the primary system that is interfered by the secondary system.
  • the coverage of the primary system can be partitioned into multiple regions and the shutdown channel capacity at a certain point in each region or region can be calculated according to the processing in steps 1350 and 1352.
  • the primary system hazardous area is determined based on the shutdown channel capacity at various locations within the coverage of the primary system.
  • the communication quality is measured in accordance with the channel capacity.
  • the instantaneous channel capacity c ⁇ w at a certain location or region s of the secondary system service area S in the secondary user service area S can be calculated by: (bits/second)
  • ⁇ ⁇ represents the bandwidth of the secondary system and ⁇ ⁇ represents the white noise energy of the secondary user receiver.
  • These parameters may be obtained by the secondary user base station and the secondary user terminal according to the application before the system communication, or may be system default settings.
  • represents the transmission power of the primary base station.
  • denotes the transmission power of the secondary base station.
  • These parameters can be system default settings (because the trend of channel capacity as a function of geography is not significantly affected by the specific values of these parameters).
  • the instantaneous path fading gain indicating the location of the primary base station to a location or small area s in the secondary user service area s, indicating the short-path path fading gain of the secondary user base station to the location s of the secondary user service area.
  • ⁇ ⁇ is the main system bandwidth, the white noise energy of the main user receiver. This These parameters may be obtained by the secondary user base station and the secondary user terminal according to the application before the system communication, or may be system default settings. Indicates the transmit power of the primary base station.
  • P ' SU represents the transmission power of the secondary base station.
  • short-term path fading indicating a location or region q in the service area of the primary system from the primary base station and the secondary base station, respectively.
  • ⁇ ⁇ and ⁇ ⁇ can be the smallest or smaller (such as less than a predetermined threshold, the threshold can be determined in actual applications according to actual needs, where the specific value is not limited here) as the secondary system hazardous area And the danger zone of the main system. Those c « ⁇ ,") and
  • FIG. 14 illustrates a method of wireless transmission resource management in accordance with one embodiment.
  • the wireless transmission resource management method is also applied to the above-described wireless communication scenario including the primary system and the secondary system. Among them, resource allocation is performed using information of a desired communication quality of the secondary system.
  • the wireless transmission resource management method may include steps 1462, 1464, and 1466.
  • step 1462 information regarding the desired communication quality of the secondary system is obtained.
  • This information can be obtained from the secondary base station and/or secondary user of the secondary system by the wireless transmission resource management device in the secondary system.
  • the information may be pre-stored in the wireless transmission resource management device of the secondary system (e.g., in a storage device (not shown) stored therein), and taken out when the information needs to be used. It is not detailed here.
  • the communication quality of the secondary user in the secondary system to communicate using the transmission resources in the primary system is estimated.
  • the quality of the communication can be estimated using the methods described above (as described with reference to Figures 8-13 or (1) - (8)) or any other suitable method, and will not be repeated here.
  • step 1464 determining whether the estimated communication quality satisfies the expected communication quality the amount. As a specific example, if the desired communication quality is met, the transmission resource is allocated to the secondary system (similar to step 314), and if not, the transmission resource is not assigned to the secondary system (similar to step 316).
  • the available transmission resources are allocated to the secondary system; and if it is determined that the evaluated optimal communication quality is greater than the secondary system
  • the desired communication quality can reduce the transmission resources allocated to the secondary system, rather than all of the available transmission resources to the secondary system. If it is judged that the estimated optimal communication quality is greater than the expected communication quality of the secondary system, only part of the transmission resources of the available transmission resources capable of satisfying the desired communication quality of the secondary system may be allocated to the secondary system.
  • the communication quality expected by the secondary system is a signal-to-noise ratio of -5 dB
  • the secondary user can satisfy the application requirement with a transmission power of 15 dBm
  • the transmission power allocated to the secondary system can be reduced, that is, the transmission power allocated to its 15dBm frequency can be reduced.
  • the available transmission resources can be further saved, so that the saved available transmission resources can be allocated to other subsystems. In this way, the use efficiency of the transmission resources can be further improved.
  • a wireless transmission resource management device in accordance with some embodiments is described below.
  • FIG. 16 is a schematic block diagram showing a wireless transmission resource management device according to an embodiment of the present disclosure.
  • the wireless transmission resource management device 1600 shown in Fig. 16 may be provided as a part of the frequency talk manager associated with the secondary system or the secondary base station or the like in the secondary system.
  • the RRC resource management device may include an information obtaining device 1601, a danger area estimating device 1603, and a resource allocating device 1605.
  • the wireless transmission resource management device 1600 can perform the resource management method illustrated in FIG. 1. Specifically, the information obtaining means 1601 can obtain the main system resource information. As described above, the primary system resource information includes information reflecting the interference rejection threshold of the maximum interference power level that the primary system can tolerate. In addition, as described above, the primary system resource information may further include other information about resource utilization of the primary system, for example, may include related to the primary in the primary system. The transmission power of the base station, the coverage of the primary base station, the information of the channel model of the primary system, and the like.
  • the primary system resource information can be obtained from the primary base station of the primary system.
  • the information may be pre-stored in the wireless transmission resource management device 1600 of the secondary system (such as in a storage device (not shown) stored therein), and the information obtaining device 1601 needs to use the information from This information is read out in the storage device. It will not be described in detail here.
  • the information obtaining device 1601 can also obtain secondary system resource information.
  • the secondary system resource information may include information about resource utilization of the secondary system, for example, may include information about the transmission power of the secondary base station in the secondary system, the channel model of the secondary system, and the coverage and location of the secondary base station.
  • Secondary system resource information can be obtained from secondary base stations and/or secondary users of the secondary system.
  • the information may be pre-stored in a wireless transmission resource management device of the secondary system (such as in a storage device (not shown) stored therein), and the information obtaining device 1601 may use the information when it is needed. This information is read from the storage device. It will not be described in detail here.
  • the information obtaining means 1601 supplies the obtained information to the dangerous area estimating means 1603 and the resource allocating means 105.
  • the hazardous area estimating device 1603 can estimate the dangerous areas (also referred to as the main system hazardous areas) that may exist in the coverage of the primary system based on the primary system resource information and the secondary system resource information.
  • the primary system hazardous area may include one or more areas of the coverage of the primary system that have relatively low communication quality (ie, the signal to noise ratio is relatively low due to secondary system interference), eg, signal to noise ratio An area below a certain predetermined threshold (which may be determined in actual applications based on actual demand, and whose specific value is not limited herein).
  • the danger zone estimation device 1603 may utilize the primary system resource information and the secondary system resource information, using any suitable method to estimate the signal to noise ratio in each of the coverage areas of the primary system, thereby determining the primary system hazardous area.
  • any of the method examples described above with reference to Figures 11-13 can be employed. It is not repeated here.
  • the dangerous area estimating means 1603 can provide the estimated result to the resource allocating means 1605.
  • the resource allocating means 1605 can determine the available transmission resources that can be used by the secondary system in the transmission resources of the primary system according to the primary system dangerous area and the anti-interference threshold of the primary base station.
  • the determined available transmission resources may include wireless transmission resources (available time slots, available frequency bands, and/or maximum transmission bandwidths) that are available to the secondary system and thereon. Transmit power, etc.).
  • the resource allocation device 1605 can follow the following criteria when determining the available transmission resources according to the primary system dangerous area and the anti-interference threshold:
  • the secondary system utilizes the available transmission resources for communication to the primary system in the primary system hazardous area.
  • the interference caused should not exceed the main system anti-interference threshold.
  • the resource allocating device 1605 can estimate the interference caused to the primary system in the dangerous area of the primary system when the secondary system uses the transmission resource to communicate, and determine the transmission resource whose interference value does not exceed the anti-interference threshold of the primary system as capable of The available transmission resources used by the system.
  • the resource allocation device 1605 can employ any suitable method to estimate the interference caused by the secondary system to the primary system in a certain area of the primary system when communicating with a certain transmission resource, which is not limited herein and will not be described in detail.
  • a dangerous area in the coverage of the primary system is estimated, and the dangerous area is utilized to determine an available transmission resource that can be used by the secondary system. This effectively determines the transmission resources that can be allocated to the secondary system while ensuring the normal operation of the primary system.
  • the wireless transmission resource management device 1600 can also perform the method described in FIG.
  • the hazardous area estimating device 1603 may also estimate a dangerous area (also referred to as a secondary system dangerous area) that may exist in the coverage of the secondary system based on the primary system resource information and the secondary system resource information.
  • the secondary system hazardous area may include one or more areas in which the communication system has a lower communication shield (ie, the signal to noise ratio is relatively low due to interference of the primary system), for example, signal to noise.
  • An area that is lower than a preset threshold (which may be determined according to actual needs in actual applications, and its specific value is not limited herein).
  • the hazardous area estimating means 1603 may use the primary system resource information and the secondary system resource information to estimate the signal to noise ratio in each of the coverage areas of the secondary system using any suitable method to determine the secondary system hazardous area. For example, any of the method examples described above with reference to Figs. 8, 10, 12 can be employed. It is not repeated here.
  • the resource allocation device 1605 can also evaluate the optimal communication quality that the secondary system can achieve using the available transmission resources in the secondary system hazardous area and allocate the available transmission resources to the secondary system based on the results of the evaluation. Similar to the above, the signal-to-noise ratio can be used as a parameter reflecting the quality of communication.
  • any suitable method may be employed to estimate the signal to noise ratio of the secondary system having transmission resources for communication within the hazardous area of the secondary system, for example, using the method examples described above with reference to equations (1) - (8). It is not repeated here.
  • the resource allocation device 1605 can determine whether the estimated optimal communication quality has reached a predetermined quality threshold (the threshold can be based on actual applications in actual applications). The requirement is determined, the specific value is not limited here, and if so, the transmission resource is allocated to the secondary system. Otherwise, the transmission resources are not allocated to the secondary system.
  • a predetermined quality threshold the threshold can be based on actual applications in actual applications. The requirement is determined, the specific value is not limited here, and if so, the transmission resource is allocated to the secondary system. Otherwise, the transmission resources are not allocated to the secondary system.
  • the resource allocation device 1605 can also allocate transmission resources for secondary users based on the desired communication quality of the secondary system using the method illustrated in FIG.
  • the information obtaining means 1601 can also obtain information on the desired communication quality of the secondary system and supply the information to the resource allocating means 1605.
  • the resource allocating means 1605 satisfies the expected communication quality of the secondary system based on the evaluated optimal communication quality that can be achieved by the secondary system in the secondary system hazardous area using the available transmission resources.
  • the resource allocating means 1605 allocates available transport resources to the secondary system if it is determined that the optimal communication quality meets the desired communication quality, and if not, allocates the available transmission resources to the secondary system.
  • the waste of transmission resources can be reduced, thereby improving the efficiency of use of transmission resources.
  • the resource allocation device 1605 determines that the evaluated optimal communication quality exactly meets the expected communication quality of the secondary system, the available transmission resources are allocated to the secondary system; and if it is determined that the evaluated optimal communication quality is greater than The expected communication quality of the system can reduce the transmission resources allocated to the secondary system, rather than all of the available transmission resources to the secondary system. In this way, the available transmission resources can be further saved, so that the saved available transmission resources can be allocated to other subsystems. In this way, the efficiency of use of transmission resources can be further improved.
  • the wireless transmission resource management device 1600 may further include a transmitting device (not shown) for transmitting the allocation result to the secondary system after allocating the available transmission resources in the transmission resources of the primary system to the secondary system.
  • the base station or the secondary user, or the transmitting device may transmit the allocation result to the secondary base station, and the secondary base station further distributes the assigned result to the secondary user. In this way, each secondary user can communicate using the allocated transmission resources.
  • FIG. 17 shows a wireless transmission resource management device 1700 in accordance with another embodiment.
  • the wireless transmission resource management device 1700 further includes an information updating device 1707.
  • the information obtaining means 1701, the dangerous area estimating means 1703 and the resource allocating means 1705 respectively have functions similar to those of the information obtaining means 1601, the dangerous area estimating means 1603 and the resource allocating means 1605, and are not repeated here.
  • the wireless transmission resource management device 1700 can utilize the method illustrated in FIG. 4 to monitor the use of transmission resources.
  • the information obtaining apparatus 1701 can also obtain the main monitor by monitoring The communication quality information in the dangerous area of the primary system and the communication quality information in the dangerous area of the secondary system obtained by monitoring the communication status of the primary user in the dangerous area of the system and monitoring the communication status of the secondary user in the dangerous area of the secondary system.
  • the information obtaining means 1701 can obtain the information by the method described above, and will not be repeated here.
  • the information updating means 1707 can update the primary system resource information and/or the secondary system resource information based on the result of the monitoring. For example, update the channel model in it, and so on.
  • the peripheral area described herein refers to an area located around the dangerous area (the area around the dangerous area can be selected according to the actual application, and is not limited herein). Information is obtained by device 1. 1. Further, to obtain communication quality information in a peripheral area of the main system dangerous area obtained by monitoring the main system, the surrounding area of the dangerous area, and communication shield information in the peripheral area of the sub-system dangerous area.
  • the information updating means 1707 can also use the information to update the primary system resource information and/or the secondary system resource information. By monitoring the peripheral area of the estimated dangerous area, not only the system resource information can be updated, but the information updating apparatus 1707 can also correct the previously estimated dangerous area, thereby making the subsequent resource allocation processing more accurate and effective. For example, the information obtaining means 1701 and the information updating means 1707 can execute the dangerous area updating method shown in FIG. 20, and will not be repeated here.
  • the main system resource information and/or the secondary system resource information are updated in accordance with changes in the system state in the communication system. Since the updated information reflects the actual state of the system, subsequent resource allocations can be made more accurate and more efficient.
  • the RRC resource management device 1700 may further include a receiving device 1709, a searching device 1711, and a transmitting device 1713.
  • the wireless transmission resource management device 1700 can perform the handover process described above with reference to FIG. 5 or FIG.
  • the receiving device 1709 may receive a handover request in the primary system that the primary user located in the dangerous region of the primary system switches to the secondary system.
  • the search device 1711 can search for a secondary base station whose coverage covers the location of the primary user.
  • the transmitting device 1713 can transmit the handover request to the searched secondary base station.
  • the receiving device 1709 and the transmitting device 1713 can also perform other receiving and transmitting processes shown in FIG. 5, and are not repeated here.
  • the receiving device 1709 receives a handover request from the secondary system in the secondary system in the secondary system to the primary system to switch to the primary system.
  • the search device 1711 can search for a primary base station whose coverage covers the location of the secondary user.
  • the transmitting device 1713 can transmit the handover request to the searched primary base station.
  • the receiving device 1709 and the transmitting device 1713 can also perform other receiving and transmitting processes shown in FIG. 6, which are not repeated here.
  • the resource management device 1700 may further include an antenna beam optimizing device 1715 for performing optimization, selection, and the like of the antenna beam shape of the secondary base station.
  • the antenna beam optimization device 1715 can transmit the optimized or selected result (e.g., via the transmitting device 1713) to the corresponding secondary system base station.
  • the antenna beam optimization apparatus 1700 is configured to be within a main system hazardous area obtained by monitoring communication conditions of a primary user in a dangerous area of a primary system and monitoring communication conditions of secondary users in a dangerous area of the secondary system.
  • the communication quality information and the communication quality information in the sub-system dangerous area are used to optimize the antenna beam shape of the secondary base station, which will not be repeated here.
  • the information obtaining apparatus 1701 is further configured to obtain a communication quality of a primary user and a communication quality of a secondary user in a secondary system dangerous area in a dangerous area of the primary system in a different antenna beam shape of the secondary base station
  • the antenna beam optimization means 1715 is configured to select the antenna beam shape of the secondary base station based on the communication quality in the two dangerous areas.
  • the antenna beam optimization means 1715 may calculate a sum and/or product of the communication quality in the primary system hazardous area and the communication quality in the secondary system hazardous area under different antenna beam shapes of the secondary base station; and select the maximum sum or The shape of the antenna beam corresponding to the product value is taken as the antenna beam shape of the secondary base station.
  • the information obtaining device 1701 is further configured to obtain communication quality in a next system dangerous region of a different antenna beam shape of the secondary base station, and the antenna beam optimizing device 1715 may select and optimize communication quality.
  • the antenna beam optimizing device 1715 may select and optimize communication quality.
  • Corresponding antenna beam shape as the antenna beam shape of the secondary base station.
  • the antenna beam optimizing device 1715 can perform optimization, selection, and the like of the antenna beam shape of the secondary base station according to the methods described above, and is not repeated here.
  • these secondary systems can be clustered to form multiple secondary system clusters. You can treat each cluster as one Overall.
  • resource allocation device 1605 or 1705 can determine available transmission resources that can be used by each system cluster in the transmission resources of the primary system. By analogy, it is not repeated here.
  • the secondary system may be configured with a plurality of spectrum managers, including a primary frequency transmission manager and one or more secondary frequency transmission managers.
  • the primary frequency manager manages one or more secondary user clusters and can receive information from secondary user clusters of multiple secondary transmission managers.
  • Each secondary transmission manager can manage a single secondary system cluster and secondary users in the cluster.
  • the primary spectrum manager can centrally perform the methods in the various embodiments or examples described above with reference to Figures 1-7 and hereinafter with reference to Figures 8-14, and can perform various related processing results (e.g., The transmission resource allocation result is sent to the secondary spectrum management right, and receives information from the secondary spectrum manager (such as system resource information of the secondary system and/or measurement results of the secondary system to the secondary system dangerous area, etc.).
  • the resource management device 1600 or 1700 described above can be placed on the primary frequency manager side as part of the primary frequency management manager.
  • the resource management device 1600 or 1700 is described in the case where each of the secondary frequency managers performs a distributed management method using the methods in the various embodiments or examples described above with reference to FIGS. 1-5 and hereinafter with reference to FIGS. 8-14. It can be set up in every spectrum manager as part of every spectrum manager.
  • the resource management device 1600 or 1700 may further include a clustering device (not shown) for re-clustering the plurality of secondary systems according to changes in system information to form a new time. System cluster.
  • a clustering device for re-clustering the plurality of secondary systems according to changes in system information to form a new time. System cluster.
  • the allocation of transmission resources can be performed in units of new sub-system clusters, thereby making more efficient use of transmission resources.
  • FIG. 18 shows a wireless transmission resource management device according to another embodiment.
  • the wireless transmission management device 1800 can perform the wireless transmission resource management method described above with reference to FIG.
  • the wireless transmission management device 1800 can include an information obtaining device 1801 and a resource allocating device 1805.
  • the information obtaining device 1801 can obtain information on the desired communication quality of the secondary system. As described above, this information can be obtained from the secondary base station and/or secondary user of the secondary system. Alternatively, the information may be pre-stored in the wireless transmission resource management device of the secondary system (e.g., in a storage device (not shown) stored therein), and taken out when the information needs to be used. It is not detailed here.
  • the resource allocating means 1805 can estimate the communication quality of the secondary users in the secondary system to communicate using the transmission resources in the primary system.
  • the method described above (as described with reference to Figures 8-13 or (1) - (8)) or any other suitable method can be used to estimate Communication quality, no longer repeated here.
  • the resource allocation device 1805 can also determine whether the estimated communication quality satisfies the desired communication quality. As a specific example, if it is determined that the desired communication quality is satisfied, the resource allocation device 1805 allocates the transmission resource to the secondary system, and if not, the resource allocation device 1805 does not allocate the transmission resource to the secondary system. In this way, the waste of transmission resources can be reduced, thereby improving the use efficiency of the transmission resources.
  • the resource allocation device 1805 determines that the evaluated optimal communication quality exactly meets the expected communication quality of the secondary system, the available transmission resources are allocated to the secondary system; and if it is determined that the estimated optimal communication shield is greater than The expected communication shield of the secondary system can reduce the transmission resources allocated to the secondary system, rather than all of the available transmission resources to the secondary system.
  • the available transmission resources can be further saved, so that the saved available transmission resources can be allocated to other subsystems. In this way, the use efficiency of the transmission resources can be further improved.
  • the information obtaining apparatus 1801 and the resource allocating apparatus 1805 may have functions similar to those of the information obtaining apparatus 1601 and the resource allocating apparatus 1605, respectively, and are not repeated here.
  • the resource management device 1800 may also include other devices included in the resource management device 1600 or 1700, and will not be repeated here.
  • FIG. 21 shows an example of a method of monitoring a dangerous area by a system node such as SU or PU or SBS or PBS in a communication system.
  • the system node transmits its own location information to the associated spectrum manager (the primary spectrum manager or the secondary frequency manager of the cluster in which the node is located).
  • the spectrum manager the primary spectrum manager or the secondary frequency manager of the cluster in which the node is located.
  • information from the spectrum manager is received indicating whether the system node is located in the hazardous area (or is located in a peripheral area of the hazardous area).
  • the system node determines whether it is in the danger zone (or its surrounding area) based on the received information, and if so, collects information about the communication situation while communicating (step 2108).
  • the information about the communication situation described herein may include one or more of the following information: user signal strength, user frequency utilization information, user signal energy change statistics, and the like.
  • the system node can feed back the collected information to the spectrum manager.
  • the spectrum manager can use this information to update system resource information and/or hazardous areas as described above.
  • FIG. 22 provides a communication device in accordance with this example.
  • the communication device 2200 can perform the method shown in FIG. As shown in FIG. 22, the communication device 2200 may include a receiving device 2201, a transmitting device 2203, a processing device 2205, and a collecting device 2207.
  • the transmitting device 2203 can transmit the location information of the communication device to the relevant spectrum manager (the main spectrum manager) Or the secondary frequency manager of the cluster in which the node is located).
  • the receiving device 2201 can receive information from the spectrum manager indicating whether the system node is located in a hazardous area (or whether it is located in a peripheral area of the hazardous area).
  • the processing device 2205 can determine whether the communication device is in the danger zone (or its surrounding area) based on the received information, and if so, instruct the collection device 2207 to collect information about the communication situation.
  • the acquisition device 2207 can transmit the collected information to the transmitting device 2203 for feedback by the transmitting device to the spectrum manager.
  • the communication device 2200 can be disposed as part of the primary user device or the secondary user device or the primary or secondary base station.
  • resource management methods and devices in the above embodiments or examples are exemplary. In practical applications, these resource management methods and devices may also include the steps, elements or components omitted above.
  • a radio communication system including the above resource management device.
  • the resource management device can be located at the spectrum manager or the secondary base station and can be configured as part of the secondary base station or the frequency transfer manager.
  • the various steps of the above method, as well as the various constituent modules and/or devices of the above-described devices, may be implemented as software, firmware, hardware, or a combination thereof.
  • the various components, units and subunits of the above devices may be configured by software, hardware or a combination thereof.
  • the specific means or manner in which the configuration can be used is well known to those skilled in the art and will not be described again.
  • a program product for storing an instruction code readable by a machine is also proposed.
  • the instruction code is read and executed by a machine, the above-described resource management method according to an embodiment of the present disclosure can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present disclosure.
  • the storage barrier includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • the methods of the present disclosure are not limited to being performed in the chronological order described in the specification, and may be performed in other chronological order, in parallel, or independently.
  • the order of steps 102 and 104 described above may be interchanged with one another. Therefore, the order of execution of the methods described in the specification does not limit the technical scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了无线传输资源管理设备和方法。该设备可包括:信息获得装置,用于获得主系统资源信息和次系统资源信息,主系统资源信息包括反映主系统能够容忍的最大干扰功率水平的抗干扰阈值的信息;危险区域估计装置,用于根据主系统资源信息和次系统资源信息来估计主系统危险区域,主系统危险区域包括所述主系统的覆盖范围中由于次系统的干扰而信噪比低的区域;以及资源分配装置,用于根据主系统危险区域和抗干扰阈值,确定主系统的传输资源中能够为次系统所用的可用传输资源。

Description

无线传输资源管理设备和方法
技术领域
[01] 本公开涉及无线通信领域, 具体而言, 涉及主系统和次系统共存 的无线通信系统以及其中的无线传输资源管理方法和设备。
背景技术
[02] 随无线通信系统的进化, 用户对高品质、 高速度、 新服务的服务 需求越来越高。无线通信运营商与设备商要不断改进系统已达到用户 的要求。 这需要大量的传输资源(所述传输资源可以是诸如载波、 子 载波等频傳资源或者是诸如时隙等时频资源, 并可以用时间、 频率、 带宽和 /或可容许的最大发射功率等参数来量化) 以支持新服务和满 足高速通信需求。有限的传输资源通常已经分配给固定的运营商和服 务。 新的可用传输资源(如频谱资源)或是非常稀少或是价格非常昂 贵。 在这种情况下, 提出了动态频傳利用的概念, 即动态地利用那些 已经分配给某些服务但是却没有被充分利用的频谱资源。这样的应用 场景通常包括主系统 ( primary system , PS )和次系统 ( secondary system, SS )。 这里所述的主系统可以是指那些有频 ^吏用权的系统, 例如电视广播系统或被分配有频傳资源的移动通信系统等; 而次系统 则是没有频语使用权、只能在主系统不使用其所拥有频谱时候才能适 当地使用该频谱的系统。 另外, 这里所述的主系统和次系统也可以都 是具有频谱使用权的系统, 但是在频傳使用上有不同的优先级别。 例 如运营商在部署新的基站以提供新服务的时候, 已有基站以及提供的 服务具有频 吏用优先权。 主系统的基站称为主基站 ( primary base station , PBS ), 主系统的用户称为主用户(primary user , PU)。 次 系统的基站称为次基站 (secondary base station, SBS)。 次系统中的用 户称为次用户 (secondary user , SU )。 例如, 在主系统为数字电视 广播系统的情况下,次系统可以动态地利用数字电视广播频傳上某些 没有播放节目的频道的频谱或者相邻频道的频谱,在不干扰电视信号 接收的情况下, 进行无线移动通信。
发明内容 [03] 本公开的一些实施例提供了一种无线传输资源管理设备和方法, 所提供的无线传输资源管理设备和方法能够在主系统和次系统共存 的无线通信应用场景下有效地为次系统分配传输资源。
[04] 在下文中给出关于本公开的简要概述,以便提供关于本公开的某 些方面的基本理解。应当理解, 这个概述并不是关于本公开的穷举性 概述。 它并不是意图确定本公开的关键或重要部分, 也不是意图限定 开的范围。 其目的仅仅是以筒化的形式给出某些概念, 以此作为 稍后论述的更详细描述的前序。
[05] 才艮据本公开的一个方面, 提供了一种无线传输资源管理设备, 用 于包括主系统和次系统的无线通信场景。 该设备可以包括: 信息获得 装置, 被配置用于获得主系统资源信息和次系统资源信息, 该主系统 资源信息包括有反映主系统能够容忍的最大干扰功率水平的抗干扰 阈值的信息; 危险区域估计装置, 被配置用于根据所述主系统资源信 息和所述次系统资源信息来估计主系统危险区域,所述主系统危险区 域包括所述主系统的覆盖范围中由于次系统的干扰而信噪比低的区 域; 以及资源分配装置, 被配置用于根据所述主系统危险区域和所述 抗干扰阈值,确定主系统的传输资源中能够为次系统所用的可用传输 资源。作为一具体实施例, 所述主系统资源信息还可以包括有关主系 统中的主基站的发射功率、 主基站的覆盖范围、 主系统的信道模型的 信息。所述次系统资源信息可以包括有关次系统中的次基站的发射功 率、 次系统的信道模型以及次基站的覆盖范围和位置的信息。
[06] 才艮据本公开的另一方面, 提供了另一种无线传输资源管理设备, 该设备用于包括主系统和次系统的无线通信场景且可以包括:信息获 得装置, 被配置用于获得有关次系统的期望通信质量的信息; 以及资 源分配装置,被配置用于根据次系统的期望通信质量将主系统的传输 资源分配给次系统。 可选地, 所述资源分配装置被配置用于估计次系 统中的次用户利用主系统中的传输资源的通信质量,并判断所估计的 通信质量是否满足所述期望通信质量,根据判断的结果将主系统中的 传输资源分配给所述次系统。 可选地, 当所述估计的通信质量满足所 述期望通信质量时,所述资源分配装置将主系统中的传输资源分配给 所述次系统。 可选地, 如果判断所估计的通信质量高于所述期望通信 质量,则资源分配装置可以减少分配给次系统的传输资源或降低次系 统在所述传输资源上的发射功率, 而不是将所有的可用传输资源都分 配给次系统。 其中, 所述资源分配装置仅将可用传输资源中能够满足 次系统的期望通信盾量的部分传输资源分配给次系统。 可选地, 当所 估计的通信质量低于所述期望通信质量时,所述资源分配装置被配置 为不将所述传输资源分配给所述次系统, 可选地, 向所述资源分配装 置被配置为向所述次系统发出指示,所述指示包括对所述次系统进行 重新配置的信息。 可选地, 所述的无线传输资源管理设备还包括发送 装置, 被配置用于将传输资源分配有关的信息发送至次系统。
[07] 才艮据 开的另一个方面, 提供了一种次系统设备, 该次系统设 备用于向上述无线传输资源管理设备提供有关期望通信质量的信息, 并从所述的无线传输资源管理设备接收传输资源分配有关的信息。其 中所述的传输资源分配有关的信息是根据估计的次系统设备利用主 系统中的传输资源的通信质量是否满足所述期望通信质量而确定的。 可选地, 当所估计的通信质量满足所述期望通信质量时, 所述传输资 源分配有关的信息包括所述次系统设备分配得到的主系统的传输资 源。 其中, 当所估计的通信盾量高于所述期望通信盾量时, 所述次系 统设备分配得到的主系统的传输资源是可用传输资源中能够满足次 系统设备的期望通信质量的部分传输资源。 可选地, 当所估计的通信 质量低于所述期望通信质量时,所述传输资源分配有关的信息包括对 所述次系统设备的指示,其中所述的指示包括对所述次系统设备进行 重新配置的信息。
[08] 才艮据 开的另一个方面, 公开了一种次系统设备的管理方法, 该管理方法包括向上述无线传输资源管理设备提供有关期望通信质 量的信息; 以及从所述的无线传输资源管理设备接收传输资源分配有 关的信息。其中所述的传输资源分配有关的信息是根据估计的次系统 设备利用主系统中的传输资源的通信质量是否满足所述期望通信质 量而确定的。可选地,当所估计的通信质量满足所述期望通信质量时, 所述传输资源分配有关的信息包括所述次系统设备分配得到的主系 统的传输资源。其中,当所估计的通信质量高于所述期望通信质量时, 所述次系统设备分配得到的主系统的传输资源是可用传输资源中能 够满足次系统设备的期望通信质量的部分传输资源。 可选地, 当所估 计的通信质量低于所述期望通信质量时,所述传输资源分配有关的信 息包括对所述次系统设备的指示, 其中, 所述的指示包括对所述次系 统设备进行重新配置的信息。 [09] 才艮据本公开的另一方面, 提供了一种无线传输资源管理方法, 该 方法用于包括主系统和次系统的无线通信场景。 该方法可以包括: 获 得主系统资源信息并获得次系统资源信息,该主系统资源信息包括反 映主系统能够容忍的最大干扰功率水平的抗干扰阈值的信息; 4艮据所 述主系统资源信息和所述次系统资源信息来估计主系统危险区域,所 述主系统危险区域包括所述主系统的覆盖范围中由于次系统的干扰 而信噪比低的区域; 以及根据所述主系统危险区域和所述抗干扰阈 值, 确定主系统的传输资源中能够为次系统所用的可用传输资源。作 为一具体实施例,所述主系统资源信息还可包括有关主系统中的主基 站的发射功率、 主基站的覆盖范围、 主系统的信道模型的信息。 所述 次系统资源信息可以包括有关次系统中的次基站的发射功率、次系统 的信道模型以及次基站的覆盖范围和位置的信息。
[10] 可选地,确定主系统的传输资源中能够为次系统所用的可用传输 资源还可包括:估计次系统利用传输资源进行通信时在主系统危险区 域中对主系统造成的干扰,并将干扰值不超过主系统的抗干扰阈值的 传输资源确定为能够为次系统所用的可用传输资源。
[11] 可选地, 所述无线传输资源管理方法还可包括: 获得有关次系统 的期望通信质量的信息;才艮据所述主系统资源信息和所述次系统资源 信息来估计次系统危险区域,所述次系统危险区域包括所述次系统的 覆盖范围中由于主系统干扰而信噪比低的区域;评估在所述次系统危 险区域内次系统利用所述可用传输资源能够达到的最优通信质量; 以 及判断所述评估的结果是否满足次系统的期望通信质量, 若否, 则不 将所述可用传输资源分配给次系统。作为一个优选实施例, 若判断所 述评估的结果高于次系统的期望通信盾量,则可减少分配给次系统的 传输资源或降低次系统在所述传输资源上的发射功率。作为另一优选 实施例, 在判断所述评估的结果不满足次系统的期望通信质量时, 还 可指示对次系统进行重新配置。
[12] 可选地, 所述无线传输资源管理方法还可包括: 监视主系统危险 区域(可选地, 及其周边区域)中主用户的通信质量以及次系统危险 区域(可选地, 及其周边区域)中次用户的通信质量; 并根据所述监 视的结果来更新所述主系统资源信息和 /或所述次系统资源信息。
[13] 可选地, 所述无线传输资源管理方法还可包括: 当主系统危险区 域中主用户的通信质量低于预定通信质量阈值时,接收主系统中的位 于主系统危险区域中的主用户切换到次系统中的请求。
[14] 可选地, 所述无线传输资源管理方法还可包括: 当次系统危险区 域中次用户的通信质量低于预设通信质量阈值时,向主系统发送次系 统中的位于次系统危险区域中的次用户切换到主系统中的请求。
[15] 可选地, 所述无线传输资源管理方法还可包括: 根据所述监视的 结果来优化次基站的天线波束形状。
[16] 可选地, 所述无线传输资源管理方法还可包括: 获得在次基站的 不同的天线波束形状下主系统危险区域中主用户的通信质量和次系 统危险区域中次用户的通信质量; 以及根据这两种危险区域中的通信 质量来选择次基站的天线波束形状。 可选地, 选择次基站的天线波束 形状可以包括:计算在次基站的不同的天线波束形状下主系统危险区 域中的通信质量和次系统危险区域中的通信质量的和 /或乘积; 以及 选择与最大的和值或乘积值对应的天线波束形状,作为次基站的天线 波束形状。
[17] 可选地, 所述无线传输资源管理方法还可包括: 获得在次基站的 不同的天线波束形状下次系统危险区域中的通信质量; 以及选择与最 优通信质量对应的天线波束形状, 作为次基站的天线波束形状。
[18] 可选地, 估计次系统危险区域可包括: 根据主系统的信道模型来 计算主基站到次系统的覆盖范围中的某一位置的传输路径增益;根据 次系统的信道模型来计算次基站到所述位置的传输路径增益;根据这 两个传输路径增益来估计所述位置的信噪比; 以及根据次系统的覆盖 范围内的各个位置处的信噪比来确定次系统危险区域。 或者, 估计次 系统危险区域可包括:获得主基站到次系统的覆盖范围中的某一位置 的瞬时路径衰落增益,并获得次基站到次系统的覆盖范围中的所述位 置的瞬时路径衰落增益;才艮据这两个瞬时路径衰落增益来估计所述位 置处的停机率; 以及根据次系统的覆盖范围内的各个位置处的停机率 来确定次系统危险区域。 或者, 估计次系统危险区域可包括: 根据次 基站的发射功率来计算次系统的覆盖范围内受到主系统干扰的某一 位置处的瞬时信道容量;才艮据所述瞬时信道容量来估计所述位置处的 停机信道容量; 以及根据次系统的覆盖范围内的各个位置处的停机信 道容量来确定次系统危险区域。
[19] 可选地, 估计主系统危险区域可包括: 根据主系统的信道模型来 计算主基站到主系统的覆盖范围中的某一位置的传输路径增益;根据 次系统的信道模型来计算次基站到主系统的覆盖范围中所述位置的 传输路径增益; 根据这两个传输路径增益来估计所述位置的信噪比; 以及根据主系统的覆盖范围内的各个位置处的信噪比来确定主系统 危险区域。 或者, 估计主系统危险区域可包括: 获得主基站到主系统 的覆盖范围中的某一位置的瞬时路径衰落增益,并获得次基站到主系 统的覆盖范围中的所述位置的瞬时路径衰落增益;根据这两个瞬时路 径衰落增益来估计所述位置处的停机率; 以及根据主系统的覆盖范围 内的各个位置处的停机率来确定主系统危险区域。 或者, 估计主系统 危险区域可包括:根据主基站的发射功率来计算主系统的覆盖范围内 受到次系统干扰的某一位置处的瞬时信道容量;根据所述瞬时信道容 量来估计所述位置处的停机信道容量; 以及根据主系统的覆盖范围内 的各个位置处的停机信道容量来确定主系统危险区域。
[20] 可选地, 次系统可以被簇化, 以形成多个次系统簇。 其中, 确定 能够为次系统所用的可用传输资源可包括:确定主系统的传输资源中 能够为每一次系统簇所用的可用传输资源。 可选地, 所述无线传输资 源管理方法还可包括: 根据系统信息的变化, 重新簇化所述次系统。
[21] 才艮据本公开的另一个方面, 提供了一种无线传输资源管理方法, 该方法用于包括主系统和次系统的无线通信场景。 该方法可以包括: 获得有关次系统的期望通信质量的信息,以及根据次系统的期望通信 质量将主系统的传输资源分配给次系统。
[22] 可选地, 所述的无线传输资源管理方法还包括: 估计次系统中的 次用户利用主系统中的传输资源的通信质量,以及判断所估计的通信 质量是否满足所述期望通信质量,并根据判断的结果将主系统中的传 输资源分配给所述次系统。 其中, 当所述估计的通信质量满足所述期 望通信质量时, 将主系统中的传输资源分配给所述次系统。
[23] 可选地, 所述的无线传输资源管理方法还包括: 当所估计的通信 质量高于所述期望通信质量时,减少分配给所述次系统的传输资源或 降低所述次系统在所述传输资源上的发射功率。 其中, 仅将可用传输 资源中能够满足次系统的期望通信质量的部分传输资源分配给次系 统。
[24] 可选地, 所述的无线传输资源管理方法还包括: 当所估计的通信 质量低于所述期望通信质量时, 不将所述传输资源分配给所述次系 统。
[25] 可选地, 所述的无线传输资源管理方法还包括: 当所估计的通信 质量低于所述期望通信质量时, 向所述次系统发出指示。 其中, 所述 指示包括对所述次系统进行重新配置的信息。
[26] 可选地, 所述的无线传输资源管理方法还包括: 将传输资源分配 有关的信息发送至次系统。
[27] 才艮据^^开的另一方面,提供了包括上述无线传输资源管理设备 的通信系统。
[28] 另外, 开还提供用于实现上述方法的计算才 ^序。
[29] 此外, 本公开也提供至少计算机可读介盾形式的计算机程序产 品, 其上记录有用于实现上述方法的计算机程序代码。
附图说明
[30] 参照下面结合附图对本公开实施例的说明,会更加容易地理解本 公开的以上和其它目的、 特点和优点。 附图中的部件不是成比例绘制 的, 而只是为了示出^开的原理。 在附图中, 相同的或类似的技术 特征或部件将采用相同或类似的附图标记来表示。
[31] 图 1 是示出根据本公开的一个实施例的无线传输资源管理方法 的示意性流程图;
[32] 图 2是示出根据本公开的另一实施例的无线传输资源管理方法 的示意性流程图;
[33] 图 3 是示出基于次系统的期望通信盾量为次系统分配传输资源 的方法的一个示例的示意性流程图;
[34] 图 4是示出更新系统资源信息的方法的一个示例的示意性流程 图;
[35] 图 5 是示出将主用户切换至次系统的方法的一个示例的示意性 流程图;
[36] 图 6是示出将次用户切换至主系统的方法的一个示例的示意性 流程图;
[37] 图 7是示出选择次基站的天线波束形状的方法的一个示例的示 意性流程图;
[38] 图 8是示出估计次系统危险区域的方法的一个示例的示意性流 程图;
[39] 图 9是示出估计主系统危险区域的方法的一个示例的示意性流 程图;
[40] 图 10是示出估计次系统危险区域的方法的另一示例的示意性流 程图;
[41] 图 11是示出估计主系统危险区域的方法的另一示例的示意性流 程图;
[42] 图 12是示出估计次系统危险区域的方法的另一示例的示意性流 程图;
[43] 图 13是示出估计主系统危险区域的方法的另一示例的示意性流 程图;
[44] 图 14是示出根据 开的另一实施例的无线传输资源管理方法 的示意性流程图;
[45] 图 15是示出可以应用^开的实施例的一种无线电系统场景的 示意图;
[46] 图 16是示出根据 开的一个实施例的无线传输资源管理设备 的示意性框图;
[47] 图 17是示出根据 开的另一实施例的无线传输资源管理设备 的示意性框图;
[48] 图 18是示出根据 开的另一实施例的无线传输资源管理设备 的示意性框图;
[49] 图 19是示出图 17所示的无线传输资源管理设备的附加结构的示 意性框图;
[50] 图 20是示出更新危险区域的方法的一个示例的示意性流程图;
[51] 图 21是示出监视危险区域或其周边区域的方法的一个示例的示 意性流程图;
[52] 图 22是示出执行图 21所示的方法的通信设备的示意性框图; [53] 图 23是示出次基站调整天线波束形状的方法的一个示例的示意 性¾½图; 以及
[54] 图 24是示出次基站中执行图 23所示的方法的处理设备的示意性 框图。
具体实施方式
[55] 下面参照附图来说明本公开的实施例。在本公开的一个附图或一 种实施方式中描述的元素和特征可以与一个或更多个其它附图或实 施方式中示出的元素和特征相结合。 应当注意, 为了清楚的目的, 附 图和说明中省略了与本公开无关的、本领域普通技术人员已知的部件 和处理的表示和描述。
[56] 开的一些实施例提供了在主系统和次系统共存的无线通信 应用场景下为次系统分配无线传输资源的设备和方法。在所述无线通 信场景下, 可以包括一个或更多个次系统。 次系统分享主系统的无线 传输资源。
[57] 这里提及的无线传输资源可以是通信系统中用于信息传输的任 何时频资源, 如载波、 子载波或时隙等。 例如, 在正交频分多址 ( OFDMA ) 系统中, 所述传输资源可以是子载波。 又如, 在时分多 址(TDMA ) 系统中, 所述传输资源可以是时隙。 此外, 本公开中提 及的通信系统并不局限于上述 OFDMA或 TDMA系统, 还可以是其 他类型的通信系统, 这里不——列举。
[58] 另外,这里所述的主系统可以是已经分配有无线传输资源的任何 无线通信系统,如电视广播系统或现有的无线运营商的无线通信系统 等, 这里不——列举。
[59] 图 1 是示出了根据 开的一个实施例的无线传输资源管理方 法的示意性流程图。图 1所示的无线传输资源管理方法可以由次系统 中的无线传输资源管理设备(如与次系统关联的频谱管理器或者次系 统中的次基站等等)来实施。
[60] 如图 1所示, 该无线传输资源管理方法可以包括步骤 102、 104、 106和 108。
[61] 在步骤 102, 获得主系统资源信息。 这里所述的主系统资源信息 包括反映主系统能够容忍的最大干扰功率水平的抗干扰阈值的信息。 在具体实施例中,所述主系统资源信息还可以包括有关主系统的资源 利用的其他信息, 例如, 还可以包括有关主系统中的主基站的发射功 率、 主基站的覆盖范围、 主系统的信道模型的信息。
[62] 主系统资源信息可以由次系统中的无线传输资源管理设备从主 系统的主基站中获得。 或者, 这些信息可以是预先存储在次系统的无 线传输资源管理设备中(如存储在其中的存储设备(图中未示出)中) 的, 并且在需 ^吏用这些信息时取出。 这里不作详述。
[63] 在步骤 104, 获得次系统资源信息。 这里所述的次系统资源信息 可以是有关次系统的资源利用的信息。 例如, 所述信息可以包括有关 次系统中的次基站的发射功率、次系统的信道模型以及次基站的覆盖 范围和位置等信息。
[64] 次系统资源信息可以由次系统中的无线传输资源管理设备从次 系统的次基站和 /或次用户获得。 或者, 这些信息可以是预先存储在 次系统的无线传输资源管理设备中(如存储在其中的存储设备 (图中 未示出)中)的, 并且在需 ^吏用这些信息时取出。这里也不作详述。
[65] 然后, 在步骤 106, 根据主系统资源信息和次系统资源信息来估 计主系统的覆盖范围中可能存在的危险区域(也称为主系统危险区 域)。 这里所述的主系统危险区域可以包括所述主系统的覆盖范围中 通信质量比较低 (即由于次系统的干扰而造成信噪比相对较低)的一 个或更多个区域, 例如, 信噪比低于某个预定阈值(该阈值可以在实 际应用中根据实际需求来确定, 这里不限定其具体数值) 的区域。
[66] 主系统的覆盖范围中的各区域中的信噪比可以利用主系统资源 信息和次系统资源信息、 采用任何适当的方法来估计, 从而确定所述 主系统危险区域。 例如, 可以采用下文中参考图 8、 10、 12中描述的 方法示例中的任何一个。当然,本公开并不局限于这些实施例或示例。
[67] 然后, 在步骤 108, 可以根据主系统危险区域和主基站的抗干扰 阈值, 来确定主系统的传输资源中能够为次系统所用的可用传输资 源。
[68] 所确定的可用传输资源可以包括能够为次系统所用的无线传输 资源 (可用时隙、 可用频带和 /或最大传输带宽及在其上的发射功率 等)。
[69] 根据所述主系统危险区域和抗干扰阈值来确定可用传输资源时, 可以遵循以下准则:次系统利用可用传输资源进行通信时对主系统在 主系统危险区域内所造成的干扰应不超过主系统的抗干扰阈值。作为 一个具体实施例, 步骤 108的处理可包括: 估计次系统利用传输资源 进行通信时在主系统危险区域中对主系统造成的干扰,并将干扰值不 超过主系统的抗干扰阈值的传输资源确定为能够为次系统所用的可 用传输资源。 本领域的技术人员可以理解, 可以采用任何适当的方法 来估计次系统利用某个传输资源进行通信时在主系统危险区域中对 主系统的干扰, 这里不作限定, 也不作详述。
[70] 在上述无线传输资源管理方法中,估计主系统的覆盖范围中的危 险区域, 并利用该危险区域来确定能够为次系统所用的可用传输资 源。这样能够在保证主系统的正常运行的前提下有效地为确定可以分 配给次系统的传输资源。
[71] 图 2是示出了根据^开的另一实施例的无线传输资源管理方 法的示意性流程图。 在图 2所示的实施例中, 还估计次系统的危险区 域。
[72] 如图 2所示, 该无线传输资源管理方法可以包括步骤 202、 204、 206、 208-1、 208-2和 208-3。
[73] 步骤 202、204和 206可以分别与上文所述的步骤 102、 104和 106 相似, 这里不再重复。
[74] 在步骤 208-1, 可以才艮据主系统资源信息和次系统资源信息来估 计次系统的覆盖范围中可能存在的危险区域(也称为次系统危险区 域)。 这里所述的次系统危险区域可以包括所述次系统的覆盖范围中 通信质量较低 (即由于主系统的干扰而造成信噪比相对较低)的一个 或更多个区域, 例如, 信噪比低于预设阈值(该阈值可以在实际应用 中才艮据实际需求来确定, 这里不限定其具体数值)的区域。
[75] 次系统的覆盖范围中的各区域中的信噪比可以利用主系统资源 信息和次系统资源信息、 采用任何适当的方法来估计, 从而确定所述 次系统危险区域。 例如, 可以采用下文中参考图 9、 11、 13描述的方 法示例中的任何一个。 当然, 本公开并不局限于这些实施例或示例。
[76] 然后, 在步骤 208-2中, 评估在次系统危险区域内次系统利用所 述可用传输资源能够达到的最优通信质量。
[77] 与上文类似, 可以采用信噪比作为反映通信质量的参数。 另外, 可以采用任何适当的方法来估计次系统在次系统危险区域内里有传 输资源进行通信的信噪比, 例如, 采用下文中参考式(1 ) - ( 8 )描 述的方法示例。 当然, 本公开并不局限于这些实施例或示例。
[78] 然后, 在步骤 208-3中, 根据步骤 208-2中的评估的结果为次系 统分配所述可用传输资源。
[79] 作为一个示例,可以判断所估计的最优通信质量是否达到了预定 的质量阈值(该阈值可以在实际应用中根据实际需求来确定, 这里不 限定其具体数值), 如果是, 则将传输资源分配给次系统。 否则, 则 不将传输资源分配给次系统。
[80] 作为另一示例,还可以判断所估计的最优通信盾量是否达到了次 系统的期望通信质量。图 3示出了根据该具体示例的基于次系统的期 望通信质量为次用户分配传输资源的方法的示意性流程图。如图 3所 示, 在步骤 310中, 可以获得有关次系统的期望通信质量的信息。 有 关次系统的期望通信质量的信息可以由次系统中的无线传输资源管 理设备从次系统的次基站获得。 或者, 这些信息可以是预先存储在次 系统的无线传输资源管理设备中(如存储在其中的存储设备(图中未 示出)中)的, 并且在需要使用这些信息时取出。 这里不作详述。 然 后, 在步骤 312中, 根据所评估的在次系统危险区域内次系统利用所 述可用传输资源能够达到的最优通信质量是否满足次系统的期望通 信质量。
[81] 作为一个具体示例,若满足,则将可用传输资源分配给次系统(步 骤 314 ), 若否, 则不将可用传输资源分配给次系统(步骤 316 )。 采 用这样的方法, 可以减少传输资源的浪费, 从而提高传输资源的使用 效率。 可选地, 在判断所估计的最优通信质量不能达到期望通信质量 时, 还可以指示对次系统进行重构 (或重新配置), 以重新选择主系 统的传输资源中能够为次系统所用的可用传输资源。这里所述的重构 或重新配置可以包括下列处理中的一个或更多个:对次基站的天线波 束形状进行优化或重新选择、对多个次系统进行重新簇化等等。 下文 中将对这些处理进行描述, 此处不作详述。
[82] 作为另一具体示例,若判断所评估的最优通信质量恰好满足次系 统的期望通信质量, 则将可用传输资源分配给次系统; 而如果判断所 评估的最优通信质量大于次系统的期望通信质量,则可以减少分配给 次系统的传输资源, 而不是将所有的可用传输资源都分配给次系统。 如果判断所评估的最优通信质量大于次系统的期望通信质量,可仅将 可用传输资源中能够满足次系统的期望通信质量的部分传输资源分 配给次系统即可。 例如, 才艮据主用户的干扰阈值以及次用户对主用户 在危险区域干扰计算出次用户可利用的频谱资源为某一频段某一带 宽的最大传输功率是 20dBm。 假设次用户发射机到次用户危险区域 的传输路径衰落为 5dB。 假设主用户传输功率为 30dBm, 主用户发 射机到次用户危险区域的传输路径衰落为 15dB。 那么对于分给次用 户的频傳, 次用户危险区域的信噪比为 20-5- ( 30-15 ) =0dB。 如果次 系统期望的通信质量是信噪比仅为 -5dB。这时所评估的最优通信质量
(信噪比 OdB ) 高于次系统希望的通信质量(信噪比 -5dB ), 则可以 减低分配给次系统的传输功率。 根据上述模型, 次用户只要用 -5+
( 30-15 ) +5=15dBm的传输功率就能满足其应用需求,于是可以减低 分配给次系统的传输功率, 即将分配给其 15dBm的传输功率即可。 采用该具体示例的方法, 可以进一步节省可用的传输资源, 从而能把 节省的可用传输资源分配给其他次系统。 这样, 能够进一步提高传输 资源的使用效率。
[83] 在将主系统的传输资源中的可用传输资源分配给次系统之后,次 系统中的无线传输资源管理设备可以将分配结果发送给次系统中的 次基站或次用户, 或者, 可以将分配结果发送给次基站, 而由次基站 将分配给结果进一步分发到次用户。 这样, 各个次用户可以利用分配 得到的传输资源进行通信。
[84] 在完成上述传输资源分配之后,还可以进一步监视传输资源的使 用情况。 图 4示出了在分配了传输资源之后监视传输资源的使用的方 法的一个示例。
[85] 如图 4所示,该方法包括步骤 422和 424。 具体地,在步骤 422, 监视主系统危险区域中主用户的通信情况,并监视次系统危险区域中 次用户的通信情况。 与上文描述相似, 有关主系统危险区域中主用户 的通信质量的信息可以由次系统中的无线传输资源管理设备从主系 统中的主基站获得, 这里不作详述。有关次系统危险区域中次用户的 通信情况的信息可以由次系统中的无线传输资源管理设备从次系统 中的次基站或次用户获得。 例如, 无线传输资源管理设备可以将有关 次系统危险区域的信息发送给次基站或次用户 (或先发送给次基站, 再由次基站分发给次用户), 由相关的次基站和 /或次用户 (如位于危 险区域中的次基站和 /或次用户)将自身利用所分配的传输资源得到 的通信情况的信息发送到无线传输资源管理设备。 这里不作详述。 然 后, 在步骤 424 中, 根据监视的结果来更新主系统资源信息和 /或次 系统资源信息。 例如, 更新其中的信道模型, 等等。 这些更新的信息 可以保存在无线传输资源管理设备(如其存储设备中)中, 以备后续 再次需要分配传输资源时使用。这里所述的有关通信情况的信息可以 包括下列信息中的一个或更多个: 主用户的信号强度和频谱利用信 息、 次用户的信号强度和频谱利用信息、 主用户信号能量变化统计信 息以及次用户信号强度统计信息等。 可选地, 还可监视主系统危险区 域的周边区域中主用户的通信情况,并且还可监视次系统危险区域的 周边区域中主用户的通信情况。这里所述的周边区域是指位于危险区 域的周围的区域(可以根据实际应用来选择位于危险区域周围的区 域, 作为周边区域, 这里不作限定)。 由于所述主系统危险区域和次 系统危险区域均是基于信道模型和覆盖范围等信息来估计的, 而信道 模型是假设的统计模型, 因此, 所估计的主系统危险区域和次系统危 险区域可能与实际的危险区域有偏差,通过对所估计的危险区域的周 边区域进行监视, 不仅可以更新系统资源信息, 还可以对之前估计的 危险区域进行修正, 从而使得后续的资源分配处理更加准确和有效。 图 20示出了根据通过监视危险区域的周边区域而得到的信息来更新 (修正)危险区域的方法的一个示例。如图 20所示,在步骤 2002中, 接收通过监视危险区域及其一个或更多个周边区域而得到的信道质 量信息等。 这些信息可以是由 PU、 SU、 PBS或 SBS来采集得到的。 在步骤 2004中, 将各危险区域的信道质量与其周边区域的信道质量 相比较, 并在步骤 2006中, 判断是否存在信道质量比危险区域差的 危险区域, 如果是, 则在步骤 2008中, 更新危险区域。 图 20所示的 方法既适用于主系统危险区域的更新,也适用于次系统危险区域的更 新。 另外, 本领域的技术人员可以理解, 信道质量可以根据基站发射 功率的控制方式、 发射功率、 信道模型、 基站和用户的位置、 发射机 的发射模板和 /或接收机特性等信息、 采用任何适当的方法来估计, 这里不作详述。
[86] 在上述方法中,根据通信系统中的系统状态的变化来更新主系统 资源信息和 /或次系统资源信息。 由于更新后的信息反映了系统的实 际状态, 因此, 能够使得后续的资源分配更加准确且更加有效。
[87] 在一些实施例中,可以利用图 4所示的监视结果对次系统进行再 构建。
[88] 作为一个实施例, 可以对主次系统中的主用户和次用户进行切 换。 例如, 当主系统危险区域中主用户的通信盾量低于预定通信盾量 阈值时, 次系统(如无线传输资源管理设备)可以接收主系统中的位 于主系统危险区域中的主用户切换到次系统中的请求。 又如, 当次系 统危险区域中次用户的通信质量低于预设通信质量阈值时,向主系统 发送次系统中的位于次系统危险区域中的次用户切换到主系统中的 请求。
[89] 图 5示出了主用户请求切换到次系统中的处理的一个具体示例。 如图 5所示,在步骤 530,接收主用户从主系统到次系统的切换请求, 切换请求中可以包括主用户的位置信息和标识( ID )信息以及主用户 的传输资源利用信息等。该传输资源利用信息可以包括主用户的传输 速率、使用带宽、发射模板等。 在步骤 532, 根据主用户的位置信息, 在次系统的覆盖范围中寻找覆盖主用户的次用户服务区域。即判断主 用户是否位于某一个次用户服务区域内,若是,则进入下一步骤 534, 否则结束处理。在步骤 532中寻找到提供次用户服务区域的次用户基 站后, 在步骤 534, 发送切换请求到已找到的次基站。 在步骤 536, 接收来自次基站对切换请求的反馈信息。该反馈信息可以包括有关次 基站是否接受主用户的切换请求的信息以及次基站的传输设置(例如 带宽和速率等), 以便主用户能在接入次系统之前进行相应的传输设 置调整。 在步骤 538, 将来自次基站的反馈信息以及对主用户频谱占 用的建议 (包括建议带宽和速率等)发送给主用户, 以便在主用户接 入到次用户系统后不对现有次用户系统造成不良影响。 例如, 假设次 基站接受切换请求, 且假设次基站是一个开放用户群 ( open subscriber group , OSG )微小区基站( femtocell )或者是混合用户 群微小区基站。 则主用户可以进入切换过程, 这里不作详述。 如果次 基站不支持主用户的切换请求(例如, 假设次基站是一个封闭用户群 微小区基站), 则主用户不能切换到次系统。
[90] 图 6示出了次用户请求切换到主系统中的处理的一个具体示例。 如图 6所示, 在步骤 630, 接收次用户切换到主系统的切换请求, 切 换清求可以包括次用户的位置信息和标识( ID )以及传输资源利用信 息等。 该传输资源利用信息可以包括次用户的传输速率、使用带宽和 发射模板等。 在步骤 632, 根据此用户的位置, 寻找主系统覆盖范围 中覆盖次用户的主用户 J ^务区域。如果判断次用户位于某一个主用户 服务区内, 则进入步骤 634。 否则结束处理。 在步骤 634中, 发送切 换请求到所找到的次基站。 在步骤 636, 接收来主基站的对切换请求 的反馈信息。该反馈信息可以包括有关主基站是否接受次用户的切换 请求的信息以及次基站的传输设置(例如带宽和速率等), 以便主用 户能在接入次系统之前进行相应的传输设置调整。 在步骤 638, 将来 自主基站的反馈信息以及对次用户频谱占用的建议(包括建议带宽和 速率等)发送给次用户或相应的次基站, 以便在次用户接入到主用户 系统后不对现有主用户系统造成不良影响。 如果主基站接受切换请 求, 则次用户进入切换过程, 这里不作详述。 如果主基站不支持次用 户的切换请求, 则次用户不能切换到主系统。
[91] 应理解,上述主次用户的切换处理仅适用于主次系统的通信机制 彼此兼容的应用场景, 这里不作详述。
[92] 作为另一实施例,还可以根据图 4所示的监视结果来优化次基站 的天线波束形状。
[93] 例如, 传统的二维天线波束形成(例如应用扇区天线、 线性天线 阵列或圆形天线阵列等), 只能在水平面上对不同角度的天线发射能 量进行控制。主系统危险区域和次系统危险区域很有可能位于水平面 上从主基站出发的同一个水平角度但不同仰角的位置。 此时, 需要对 天线波束形状在垂直平面上的不同仰角的能量进行优化。 具体地, 由 于提供了主系统危险区域与次系统危险区域的信息, 因此, 可以根据 这些信息来对主基站和次基站的天线波束形状进行三维天线调整。具 体地, 加强主基站的天线波束在主系统危险区域内的天线波束能量, 同时减小主基站的天线波束在次系统危险区域中的天线波束能量。该 方法也可以用于次基站的天线波束形状优化。 具体地, 可以根据对主 系统危险区域和次系统危险区域进行监视而得到的信息,增加次基站 的天线波束在次用户危险区域内的能量, 同时减少次基站的天线波束 在主系统危险区域内的天线波束能量。
[94] 作为另一实施例,还可以利用有关主系统危险区域和次系统危险 区域的信息来选择基站的天线波束形状。 具体地, 可以获得在次基站 的不同的天线波束形状下主系统危险区域中主用户的通信质量和次 系统危险区域中次用户的通信质量。 与上文相似, 可以采用例如信噪 比作为反映所述通信质量的参数。 如上文所述, 可以采用任何适当的 方法来获得某个区域的信噪比, 这里不作详述。 然后, 根据在次基站 的不同的天线波束形状下次系统危险区域中次用户的通信质量(可选 地, 以及主系统危险区域中主用户的通信质量)来选择次基站的天线 波束形状。
[95] 作为一个示例,可以获得在次基站的不同的天线波束形状下次系 统危险区域中的通信质量,并选择与最优通信质量对应的天线波束形 状, 作为次基站的天线波束形状。 在该示例中, 利用次系统危险区域 中的通信情况的测量结果来选择次基站的天线波束形状,可以进一步 改善次系统的通信质量。
[96] 作为另一示例, 图 7 示出了选择基站的天线波束形状的另一方 法。 具体地, 在步骤 742, 获得在次基站的不同的天线波束形状下主 系统危险区域中主用户的通信质量和次系统危险区域中次用户的通 信质量。 可以采用上文的方法来获得所述通信质量的信息, 这里不再 重复。 然后, 在步骤 744, 计算在次基站的不同的天线波束形状下主 系统危险区域中的通信质量和次系统危险区域中的通信质量的和 /或 乘积。 最后, 在步骤 746, 选择与最大的和值或乘积值对应的天线波 束形状, 作为次基站的天线波束形状。 在图 7所示的方法中, 不但考 虑了次系统危险区域中的通信情况的测量结果,还考虑了主系统危险 区域中的通信情况的测量结果。利用这样选择的次基站的天线波束形 状, 可以进一步改善次系统的通信质量, 同时抑制对主系统的干扰。
[97] 上文所述的天线波束选择或确定方法可以由次基站来执行,也可 以由与该次基站相关的频谱管理器来执行。这里所述的相关的频谱管 理器可以是如下文所述的主频谱管理器或次基站所位于的次系统簇 的次频谱管理器。在由频谱管理器来确定或选择天线波束形状的情况 下,频傳管理器可以将有关所确定或选择的天线波束形状的信息发送 给次基站。 图 23是示出了次基站利用所述信息调整其天线波束形状 的方法的一个示例的示意性流程图。 如图 23所示, 在步骤 2302中, 次基站接收来自频谱管理器的有关天线波束形状的信息, 然后, 在步 骤 2306中, 根据所述信息来调整天线波束形状。 图 24是示出了次基 站中执行图 23的方法的处理设备 2400的示意性框图。如图 24所示, 该处理设备 2400包括接收装置 2401和天线调整装置 2403。接收装置 2401用于接收来自频谱管理器的有关天线波束形状的信息。天线调整 装置 2403用于根据所技术的信息来调整次基站的天线波束形状。 [98] 上述天线波束形状的选择方法也适用于主基站的天线波束形状 的选择, 这里不再重复。
[99] 在一些实施例中, 在包括多个次系统的情况下, 这些次系统可以 化, 以形成多个次系统簇。每一次系统簇可以包括一个或更多个 次系统。 可以采用任何适当的方法来进行次系统的簇化, 这里不作详 述。 例如, 可以根据次系统中次基站和次用户的位置分布进行簇化。 又如, 可相据次系统的传输资源利用特性(例如, 相同或相邻频讲和 /或相同通信方式等特性)和可控制性进行簇化。 一个簇的传输资源 利用取决于簇内各个次系统的通信方式。
[100] 在对次系统进行了簇化的情况下, 可以将每一个簇作为一个整 体,来应用上文已经描述了或下文中将要描述的各个方法的实施例或 示例。 例如, 上文确定能够为次系统所用的可用传输资源 (步骤 108 等)可以包括: 确定主系统的传输资源中能够为每一次系统簇所用的 可用传输资源。 以此类推, 这里不——重复。
[101] 作为一个实施例, 针对次系统, 可以设置多个频谱管理器。 图 15示出了这样的一种系统配置。 如图 15所示, 可以设置一个主频谱 管理器和一个或更多个次频傳管理器。主频傳管理器对一个或更多个 次用户簇进行管理,可以接收来自多个次频讲管理器的次用户簇的信 息。每个次频傳管理器可以对单个次系统簇以及簇中的次用户进行管 理。 例如, 每个次频谱管理器可以将次用户对主用户的聚合干扰以簇 为单位模型化, 将次用户簇的信息传送给主频谱管理器, 接受来自主 频谱管理器的信息并对簇里的次用户进行管理等。
[102] 作为一个具体示例, 主频谱管理器可以集中执行上文参考图 1-7 和下文中参考图 8-14描述的各个实施例或示例中的方法, 并可以将 各种相关处理结果(如传输资源分配结果)发送到次频谱管理器, 并 接收来自次频谱管理器的信息 (如次系统的系统资源信息和 /或次系 统对次系统危险区域的测量结果等等)。
[103] 作为另一具体示例, 上文参考图 1-5和 20和下文中参考图 8-14 描述的各个实施例或示例中的方法可以分布到各个次频谱管理器中 来执行, 以减轻主频 i普管理器的处理负担。 例如, 可以由每个次频讲 管理器分别执行上述图 1-5和 20和下文中参考图 8-14中描述的方法, 为每个次系统簇内的次系统分配传输资源,并由每个次频谱管理器将 其分配结果发送到主频傳管理器。 当对应于多个次用户簇的多个次频 傳管理器同时访问主频谱管理器时,主频谱管理器就要协调来分配可 利用资源。 次频谱管理器之间也可以自行协调来分配可利用资源。 这 种协调可以通过博弈论(game theory) , 分布式决策 ( distributed decision making )等方法;^实现, 这里不作详述。
[104] 在为每一个次系统簇设置一个次频谱管理器并设置一个主频谱 管理器的情形下, 上文中参考图 1-6和 20描述的方法可以由主频谱 管理器来执行,但是主频傳管理器与各个次系统簇之间的信息交互通 过各个次频谱管理器来进行, 这里不再重复。
[105] 作为一个具体实施例, 还可以根据系统信息的变化(如根据图 4 中步骤 422的监视结果), 重新簇化多个次系统, 以形成新的次系统 簇。 这样, 可以用新的次系统簇为单位, 进行传输资源的分配, 从而 更有效地利用传输资源。
[106] 下面描述计算主系统危险区域和次系统危险区域的一些示例。
[107] 图 8示出了估计次系统危险区域的方法的一个示例。
[108] 如图 8所示, 在步骤 850中, 根据主系统的信道模型来计算主基 站到次系统的覆盖范围中的某一位置的传输路径增益; 并在步骤 852 中, 根据次系统的信道模型来计算次基站到所述位置的传输路径增 益。 然后, 在步骤 854中, 才艮据这两个传输路径增益的值来估计在所 述位置的信噪比。这里所述的位置可以是次系统的覆盖范围内的某一 区域或某一点。 可以将次系统的覆盖范围分割成多个区域, 并根据步 骤 850、 852和 854中的处理来计算在每一区域或每一区域中的某个 点处的信噪比。 然后, 在步骤 856中, 根据次系统的覆盖范围内的各 个位置处的信噪比来确定次系统危险区域。 具体地, 可以将信噪比较 低的区域(如信噪比低于某一预定阈值的区域)确定为次系统危险区 域。 该阈值可以在实际应用中根据实际需求来确定, 这里不限定其具 体数值。
[109] 图 9示出了与图 8相似的计算主系统危险区域的方法的一个示 例。 如图 9所示, 在步骤 950, 根据主系统的信道模型来计算主基站 到主系统的覆盖范围中的某一位置的传输路径增益, 并在步骤 952, 根据次系统的信道模型来计算次基站到主系统的覆盖范围中所述位 置的传输路径增益。 然后, 在步骤 954, 根据这两个传输路径增益来 估计所述位置的信噪比。这里所述的位置可以是主系统的覆盖范围内 的某一区域或某一点。 可以将主系统的覆盖范围分割成多个区域, 并 根据步骤 950、 952和 954中的处理来计算在每一区域或每一区域中 的某个点处的信噪比。 然后, 在步骤 956中, 才艮据主系统的覆盖范围 内的各个位置处的信噪比来确定主系统危险区域。 具体地, 可以将信 噪比较低的区域(如信噪比低于某一预定阈值的区域)确定为主系统 危险区域。 该阈值可以在实际应用中根据实际需求来确定, 这里不限 定其具体数值。
[110] 下面给出按照图 8和图 9的方法来估计中系统危险区域和次系统 危险区域的一个具体示例。 假定主基站的发射功率为 ; 次基站的 发射功率为 p st/), 并假定要计算次系统服务区 S内的某一个小区域 s
(假设此小区域内的信道衰落不变)中的信噪比。基于图 8和 9的方 法, 根据信道衰落(pathloss )来计算所示危险区域。 这些危险区域 是用户的长时平均信干比( signal-to-interference ratio ) (或称为信噪 比)较低的区域。 首先, 根据主系统的信道模型, 计算主基站到 s的 传输路径增益 s (可以根据主系统的设置(如天线高度或应用环境 等)选择不同的信道模型(例如自由空间模型、 ITU给出的传输路径 模型或 Hata模型等),并可以采用任何适当的方法来计算所述传输路 径增益, 这里不作详述)。 并根据次系统的信道模型, 计算次用户基 站到 s的传输路径增益 ^。 s中的任一点的信干比可以用下式来: 厂 p
SIRsu (s) = su-s p(pU) , 3s e [111] 可以将次用户服务区内上述信干比较小(如小于一预定阈值, 该 阈值可以在实际应用中根据实际需求来确定, 这里不限定其具体数 值)的区域, 作为次系统危险区域。
[112] 作为式(1 )的示例的一个变型, 由于信干比的变化趋势与 ^、 P 没关, 而只是与位置有关, 因此, 可以通过计算 G« ^和 的比
^su-s Gsu
值 s ,来确定次系统危险区域。即将次用户服务区内 G« ^较小(如 小于一预定阈值, 该阈值可以在实际应用中根据实际需求来确定, 这 里不限定其具体数值)的区域确定为次用户危险区域。作为一具体示 例, 可以将比值 s小于整个服务区 S中的各个小区域的 G« ^的平 均值的区域可以定义为次系统危险区域的周边区域。
[113] 同样地,对于主用户 良务区域 Q内的小区域 (假设此小区域内 的信道衰落不变), 根据主系统的信道模型, 计算主基站到 q的传输 路径增益^" 。 并根据次系统的信道模型, 计算次基站到 的传输路 径增益 g中的任一点的信干比可以用下式来:
Figure imgf000023_0001
[114] 作为式(2 )的一个变型, 可以计算 « ^来确定主系统危险区域.
Figure imgf000023_0002
在主用户服务区内的所有小区域中,选取 G—较小(如小于一预定阈 值, 该阈值可以在实际应用中根据实际需求来确定, 这里不限定其具
Figure imgf000023_0003
体数值)的小区域作为主系统危险区域。作为具体示例, G« ^的值小 于^ ¾在整个服务区 Q 中的平均值的区域可以定义为主系统危险区 域的周边区域。
[115] 图 10示出了估计次系统危险区域的方法的另一示例, 图 11示出 了相应的估计主系统危险区域的方法的示例。
[116] 如图 10所示, 在步骤 1050, 才艮据主次用户系统的应用场景选择 主基站到次系统的覆盖范围中的某一位置的瞬时小尺度路径衰落 ( small scale fading )增益的分布, 并在步骤 1052获得次基站到次系 统的覆盖范围中的所述位置的瞬时小尺度路径衰落增益的分布。这些 小尺度衰落信道增益可能 U艮从瑞利分布( Rayleigh distribution )、 ι马分布 ( Gamma distribution )、 莱斯分布 ( Ricean distribution )、 或 Nakagami分布等。在不同的位置,小尺度衰落的模型有可能不同。 例如, 某些位置靠近房屋, 某些地方比较空旷。 此外, 信道模型还有 可能因用户接受机天线高低的不同而有所区别。可以采用任何适当的 方法来获得所述瞬时小尺度路径衰落增益的分布, 这里不作详述。 然 后,在步骤 1054,根据这两个瞬时路径衰落增益的分布来估计所述位 置处的停机率。 与上文相似, 所述的位置可以是次系统的覆盖范围内 的某一区域或某一点。 可以将次系统的覆盖范围分割成多个区域, 并 根据步骤 1050、 1052和 1054中的处理来计算在每一区域或每一区域 中的某个点处的停机率。 然后, 在步骤 1056,根据次系统的覆盖范围 内的各个位置处的停机率来确定次系统危险区域。
[117] 如图 11所示, 在步骤 1150, 获得主基站到主系统的覆盖范围中 的某一位置的瞬时小尺度路径衰落增益的分布,并在步骤 1152,获得 次基站到主系统的覆盖范围中的所述位置的瞬时小尺度路径衰落增 益的分布。 在步骤 1154, 根据这两个瞬时路径衰落增益的分布来估 计所述位置处的停机率。 与上文相似, 所述的位置可以是主系统的覆 盖范围内的某一区域或某一点。可以将主系统的覆盖范围分割成多个 区域, 并根据步骤 1150、 1152和 1154中的处理来计算在每一区域或 每一区域中的某个点处的停机率。 然后, 在步骤 1156,根据主系统的 覆盖范围内的各个位置处的停机率来确定主系统危险区域。
[118] 下面给出按照图 10和图 11的方法来估计主系统危险区域和次系 统危险区域的一个具体示例。 在图 10和图 11的示例中, 根据小尺度 衰落增益的比值来计算停机率。 此时, 危险区域意味着用户停机率 ( outage rate )相对较高的区域。 停机率表示用户的通信质量小于某 一最低限度阈值(该阈值可以在实际应用中根据实际需求来确定, 这 里不限定其具体数值)的概率。假设主基站到达次用户服务区 S内某 一位置或小区域 s的瞬时路径衰落增益为 g^-s, 次用户基站到次用户 服务区内位置 S的短时路径衰落增益为 gs"-s。
[119] 计算次用户服务区内任意位置 s 处的小尺度衰落增益的比值
Ssu
。 该比值是一个随机变量, 服从一定的分布, 这里不作详述。 假 设"表示次系统用户的停机率, 其数值例如可以是 5%。 对于次用户 服务区内的每一个区域 s, 根据小尺度衰落增益的比值的分布得到一 个给定停机率的阈值 r(s' a、, 即小尺度衰落增益的比值小于此阈值 的概率为", 采用下式来表示:
Figure imgf000025_0001
[120] Pr {x}代表 x事件的概率。 在计算得到次系统的覆盖范围内所有 区域 S的给定停机率的阈值 , 之后, 将 , 最小或较小 (如小于 一预定阈值, 该阈值可以在实际应用中根据实际需求来确定, 这里不 限定其具体数值)的区域确定为次系统危险区域。 作为具体示例, 对
Φ, a)在整个区域内求平均值 那么 Φ,《)值小于 的区域可 以作为次系统危险区域的周边区域。
[121] 同样地, 对于主系统, 假设 与^ 分别表示主基站和次基站 到主系统服务区域内某一位置或小区域 q的短时路径衰落。 另外,假 设 表示主系统用户的停机率的值。 对于主系统服务区内的每一个区 域 q,根据小尺度衰落增益的比值 的分布得到一个给定的停机率 的阈值 g, , 即
Figure imgf000025_0002
[122] 那么, 针对所有区域 Q计算得到给定停机率的阈值 , ^之后, 将 最小或较小 (如小于一预定阈值, 该阈值可以在实际应用中 根据实际需求来确定, 这里不限定其具体数值)的区域作为主系统危 险区域。作为具体示例, ^, 值小于 在整个区域 Q内的平均值 的区域, 作为次系统危险区域的周边区域。
[123] 图 12示出了估计次系统危险区域的方法的另一示例, 图 13示出 了相应的估计主系统危险区域的方法的示例。
[124] 如图 12所示, 在步骤 1250, 根据次基站的发射功率来计算次系 统的覆盖范围内受到主系统干扰的某一位置处瞬时信道容量的分布; 并在步骤 1252,才艮据所述瞬时信道容量分布来估计所述位置处的停机 信道容量。 与上文相似, 所述的位置可以是次系统的覆盖范围内受到 主系统干扰的某一区域或某一点。可以将次系统的覆盖范围分割成多 个区域,并根据步骤 1250和 1252中的处理来计算在每一区域或每一 区域中的某个点处的停机信道容量。 然后, 在步骤 1254,根据次系统 的覆盖范围内的各个位置处的停机信道容量来确定次系统危险区域。
[125] 如图 13所示, 在步骤 1350, 根据主基站的发射功率来计算主系 统的覆盖范围内受到次系统干扰的某一位置处瞬时信道容量的分布。 在步骤 1352,根据所述瞬时信道容量分布来估计所述位置处的停机信 道容量。 与上文相似, 所述的位置可以是主系统的覆盖范围内受到次 系统干扰的某一区域或某一点。可以将主系统的覆盖范围分割成多个 区域,并根据步骤 1350和 1352中的处理来计算在每一区域或每一区 域中的某个点处的停机信道容量。 然后, 在步骤 1354, 根据主系统 的覆盖范围内的各个位置处的停机信道容量来确定主系统危险区域。
[126] 下面给出按照图 12和图 13的方法来估计主系统危险区域和次系 统危险区域的一个具体示例。
[127] 在图 12和图 13的示例中,根据信道容量来衡量通信质量。 次系 统终端在次用户服务区 S 内某一位置或区域 s 处的瞬时信道容量 c^ w可以通过下式来计算:
Figure imgf000026_0001
(比特 /秒 )
[128] 其中, ^ ^表示次系统的带宽, ^ ^表示次用户接收机的白噪声能 量。这些参数可以通过在系统通信之前由次用户基站与次用户终端根 据应用来获得, 或者可以为系统缺省设置。 ρ 表示主基站的发射功 率。 ρ 表示次基站的发射功率。 这些参数可以是系统缺省设置(因 为信道容量随地理变化的趋势受这些参数具体数值的影响不大)。
表示主基站到达次用户服务区 s内某一位置或小区域 s的瞬时路 径衰落增益, 表示次用户基站到次用户服务区内位置 s的短时路 径衰落增益。
[129] 可以采用下式来计算主系统终端在主用户服务区 Q 内某一位置 或区域 q 处的瞬时信道容量 CPt/ ( :
Figure imgf000026_0002
(比特 /秒 ) ( 6 )
[130] 此处, ^ ^是主系统带宽, 为主用户接收机的白噪声能量。 这 些参数可以通过在系统通信之前由次用户基站与次用户终端根据应 用来获得, 或者可以为系统缺省设置。 表示主基站的发射功率。
P' SU)表示次基站的发射功率。 与 分别表示主基站和次基站到 主系统服务区域内某一位置或区域 q的短时路径衰落。
[131] 由于小尺度衰落增益为随机变量, 因此, 主次系统的瞬时信道容 量也是随机变量。 假设 " ^和 ^, 分别表示次系统、 主系统在 位置 s、 处的停机信道容量 ( outage capacity )。 即:
Figure imgf000027_0001
[132] 可以将 ^ ^和^^, 最小或较小 (如小于一预定阈值, 该阈 值可以在实际应用中根据实际需求来确定, 这里不限定其具体数值 ) 的区域分别作为次系统危险区域和主系统危险区域。 那些 c«^,")和
C- ^, 值小于 <^ 和 CP' U (q, β)分别在次用户服务区 S和主用户服务 区 Q 内平均值的区域分别作为次系统危险区域和主系统危险区域的 周边区域。
[133] 图 14示出了根据一个实施例的无线传输资源管理方法。 该无线 传输资源管理方法也用于上述包括主系统和次系统的无线通信场景。 其中, 利用次系统的期望通信质量的信息来进行资源分配。
[134] 如图 14所示,该无线传输资源管理方法可以包括步骤 1462、 1464 和 1466。
[135] 在步骤 1462, 获得有关次系统的期望通信质量的信息。 该信息 可以由次系统中的无线传输资源管理设备从次系统的次基站和 /或次 用户获得。 或者, 这些信息可以是预先存储在次系统的无线传输资源 管理设备中 (如存储在其中的存储设备(图中未示出)中)的, 并且 在需 ^吏用这些信息时取出。 这里也不作详述。
[136] 在步骤 1464, 估计次系统中的次用户利用主系统中的传输资源 进行通信的通信质量。 可以采用上文中描述的方法(如参考图 8-13 或式( 1 ) - ( 8 )描述的方法)或其他任何适当的方法来估计通信质 量, 这里不再重复。
[137] 在步骤 1464, 判断所估计的通信质量是否满足所述期望通信质 量。 作为一个具体示例, 若满足所述期望通信质量, 则将传输资源分 配给次系统(与步骤 314相似), 若否, 则不将传输资源分配给次系 统(与步骤 316相似)。
[138] 采用图 14的方法, 可以减少传输资源的浪费, 从而提高传输资 源的使用效率。
[139] 作为另一具体示例,若判断所评估的最优通信质量恰好满足次系 统的期望通信质量, 则将可用传输资源分配给次系统; 而如果判断所 评估的最优通信质量大于次系统的期望通信质量,则可以减少分配给 次系统的传输资源, 而不是将所有的可用传输资源都分配给次系统。 如果判断所评估的最优通信质量大于次系统的期望通信质量,可仅将 可用传输资源中能够满足次系统的期望通信质量的部分传输资源分 配给次系统即可。例如,如果次系统期望的通信质量是信噪比为 -5dB, 且次用户只要用 15dBm的传输功率就能满足其应用需求, 那么如果 给予次用户 20dBm的传输功率的传输资源, 其所达到的通信质量高 于 15dB,则可以减低分配给次系统的传输功率,即将分配给其 15dBm 的传输功率频 i普即可。 采用该具体示例的方法, 可以进一步节省可用 的传输资源,从而能把节省的可用传输资源分配给其他次系统。这样, 能够进一步提高传输资源的使用效率。
[140] 可以理解, 参考图 14描述的方法可以与上文参考图 1-13描述的 方法结合使用 (如图 3所示), 这里不作重复。
[141] 下面描述根据一些实施例的无线传输资源管理设备。
[142] 图 16是示出了根据本公开的一个实施例的无线传输资源管理设 备的示意性框图。 图 16所示的无线传输资源管理设备 1600可以设置 在与次系统关联的频讲管理器或者次系统中的次基站等等中,作为其 一部分。
[143] 如图 16所示, 该无线传输资源管理设备可以包括信息获得装置 1601、 危险区域估计装置 1603和资源分配装置 1605。
[144] 该无线传输资源管理设备 1600可以执行图 1所示的资源管理方 法。 具体地, 信息获得装置 1601可以获得主系统资源信息。 如上所 述,主系统资源信息包括反映主系统能够容忍的最大干扰功率水平的 抗干扰阈值的信息。 另外, 如上所述, 主系统资源信息还可以包括有 关主系统的资源利用的其他信息, 例如, 可以包括有关主系统中的主 基站的发射功率、 主基站的覆盖范围、 主系统的信道模型的信息等。
[145] 主系统资源信息可以从主系统的主基站中获得。 或者, 这些信息 可以是预先存储在次系统的无线传输资源管理设备 1600中 (如存储 在其中的存储设备(图中未示出) 中) 的, 并且信息获得装置 1601 在需要使用这些信息时从该存储设备中读出这些信息。 这里不作详 述。
[146] 信息获得装置 1601还可以获得次系统资源信息。 如上所述, 次 系统资源信息可以包括有关次系统的资源利用的信息, 例如, 可以包 括有关次系统中的次基站的发射功率、次系统的信道模型以及次基站 的覆盖范围和位置等信息。
[147] 次系统资源信息可以从次系统的次基站和 /或次用户获得。 或者, 这些信息可以是预先存储在次系统的无线传输资源管理设备中(如存 储在其中的存储设备(图中未示出)中)的, 并且信息获得装置 1601 在需要使用这些信息时从该存储设备中读出这些信息。这里也不作详 述。
[148] 信息获得装置 1601 将所获得的信息提供给危险区域估计装置 1603和资源分配装置 105。
[149] 危险区域估计装置 1603可以才艮据主系统资源信息和次系统资源 信息来估计主系统的覆盖范围中可能存在的危险区域(也称为主系统 危险区域)。 如上所述, 主系统危险区域可以包括所述主系统的覆盖 范围中通信质量比较低 (即由于次系统的干扰而信噪比相对较低)的 一个或更多个区域, 例如, 信噪比低于某个预定阈值(该阈值可以在 实际应用中才艮据实际需求来确定, 这里不限定其具体数值)的区域。
[150] 危险区域估计装置 1603可以利用主系统资源信息和次系统资源 信息、采用任何适当的方法来估计主系统的覆盖范围中的各区域中的 信噪比, 从而确定所述主系统危险区域。 例如, 可以采用上文中参考 图 11-13中描述的方法示例中的任何一个。 这里不再重复。
[151] 危险区域估计装置 1603可以将估计的结果提供给资源分配装置 1605。 资源分配装置 1605可以根据主系统危险区域和主基站的抗干 扰阈值,来确定主系统的传输资源中能够为次系统所用的可用传输资 源。 如上所述, 所确定的可用传输资源可以包括能够为次系统所用的 无线传输资源 (可用时隙、 可用频带和 /或最大传输带宽及在其上的 发射功率等)。
[152] 资源分配装置 1605才艮据所述主系统危险区域和抗干扰阈值来确 定可用传输资源时, 可以遵循以下准则: 次系统利用可用传输资源进 行通信时对主系统在主系统危险区域中造成的干扰应不超过主系统 抗干扰阈值。 具体地, 资源分配装置 1605可以估计次系统利用传输 资源进行通信时在主系统危险区域中对主系统造成的干扰,并将干扰 值不超过主系统的抗干扰阈值的传输资源确定为能够为次系统所用 的可用传输资源。 资源分配装置 1605可以采用任何适当的方法来估 计次系统利用某个传输资源进行通信时在主系统的某个区域中对主 系统造成的干扰, 这里不作限定, 也不作详述。
[153] 在上述无线传输资源管理设备中,估计主系统的覆盖范围中的危 险区域, 并利用该危险区域来确定能够为次系统所用的可用传输资 源。这样能够在保证主系统的正常运行的前提下有效地为确定可以分 配给次系统的传输资源。
[154] 作为另一实施例, 无线传输资源管理设备 1600还可以执行图 2 所述的方法。 例如, 危险区域估计装置 1603还可以根据主系统资源 信息和次系统资源信息来估计次系统的覆盖范围中可能存在的危险 区域(也称为次系统危险区域)。 如上所述, 次系统危险区域可以包 括所述次系统的覆盖范围中通信盾量较低(即由于主系统的干扰而信 噪比相对较低 )的一个或更多个区域,例如,信噪比低于预设阈值(该 阈值可以在实际应用中根据实际需求来确定, 这里不限定其具体数 值)的区域。 危险区域估计装置 1603可以利用主系统资源信息和次 系统资源信息、采用任何适当的方法来估计次系统的覆盖范围中的各 区域中的信噪比, 从而确定所述次系统危险区域。 例如, 可以采用上 文中参考图 8、 10、 12描述的方法示例中的任何一个。这里不再重复。 此外, 资源分配装置 1605还可以评估在次系统危险区域内次系统利 用所述可用传输资源能够达到的最优通信质量,并根据评估的结果为 次系统分配所述可用传输资源。 与上文类似, 可以采用信噪比作为反 映通信质量的参数。 另外, 可以采用任何适当的方法来估计次系统在 次系统危险区域内里有传输资源进行通信的信噪比, 例如, 采用上文 中参考式(1 ) - ( 8 )描述的方法示例。 这里不再重复。
[155] 作为一个示例, 资源分配装置 1605可以判断所估计的最优通信 质量是否达到了预定的质量阈值(该阈值可以在实际应用中根据实际 需求来确定, 这里不限定其具体数值), 如果是, 则将传输资源分配 给次系统。 否则, 则不将传输资源分配给次系统。
[156] 作为另一示例,资源分配装置 1605还可以采用图 3示出的方法、 基于次系统的期望通信质量为次用户分配传输资源。 例如, 信息获得 装置 1601还可以获得有关次系统的期望通信质量的信息, 并将信息 提供给资源分配装置 1605。 然后, 资源分配装置 1605根据所评估的 在次系统危险区域内次系统利用所述可用传输资源能够达到的最优 通信质量是否满足次系统的期望通信质量。作为一个具体示例, 资源 分配装置 1605若判断最优通信质量满足期望通信质量, 则将可用传 输资源分配给次系统, 若否, 则不将可用传输资源分配给次系统。 这 样, 可以减少传输资源的浪费, 从而提高传输资源的使用效率。 作为 另一具体示例, 资源分配装置 1605若判断所评估的最优通信质量恰 好满足次系统的期望通信质量, 则将可用传输资源分配给次系统; 而 如果判断所评估的最优通信质量大于次系统的期望通信质量,则可以 减少分配给次系统的传输资源,而不是将所有的可用传输资源都分配 给次系统。 这样, 可以进一步节省可用的传输资源, 从而能把节省的 可用传输资源分配给其他次系统。 这样, 能够进一步提高传输资源的 使用效率。
[157] 无线传输资源管理设备 1600还可以包括发送装置(未示出), 用 于在将主系统的传输资源中的可用传输资源分配给次系统之后,将分 配结果发送给次系统中的次基站或次用户, 或者, 该发送装置可以将 分配结果发送给次基站, 而由次基站将分配给结果进一步分发到次用 户。 这样, 各个次用户可以利用分配得到的传输资源进行通信。
[158] 图 17示出了根据另一实施例的无线传输资源管理设备 1700。
[159] 与图 16的实施例不同之处在于, 除了信息获得装置 1701、 危险 区域估计装置 1703和资源分配装置 1705之外,无线传输资源管理设 备 1700还包括信息更新装置 1707。
[160] 信息获得装置 1701、 危险区域估计装置 1703 和资源分配装置 1705分别具有与信息获得装置 1601、危险区域估计装置 1603和资源 分配装置 1605相似的功能, 这里不再重复。
[161] 无线传输资源管理设备 1700可以利用图 4所示的方法来监视传 输资源的使用。 具体地, 信息获得装置 1701还可以获得通过监视主 系统危险区域中主用户的通信情况并监视次系统危险区域中次用户 的通信情况而获得的主系统危险区域内的通信质量信息和次系统危 险区域内的通信质量信息。 信息获得装置 1701可以采用上文描述的 方法来获得这些信息, 这里不再重复。 信息更新装置 1707可以根据 监视的结果来更新主系统资源信息和 /或次系统资源信息。 例如, 更 新其中的信道模型, 等等。 这些更新的信息可以保存在无线传输资源 管理设备(如其存储设备中)中, 以备后续再次需要分配传输资源时 使用。 可选地, 还可监视主系统危险区域的周边区域中主用户的通信 情况以及次系统危险区域的周边区域中主用户的通信情况。这里所述 的周边区域是指位于危险区域的周围的区域(可以根据实际应用来选 择位于危险区域周围的区域, 作为周边区域, 这里不作限定)。 信息 获^装置 1 。 1、还 、以获得通过监视主系统,险区域的周边 域中 情况而获得的主系统危险区域的周边区域内的通信质量信息和次系 统危险区域的周边区域内的通信盾量信息。 信息更新装置 1707还可 以利用这些信息来更新主系统资源信息和 /或次系统资源信息。 通过 对所估计的危险区域的周边区域进行监视,不仅可以更新系统资源信 息, 信息更新装置 1707还可以对之前估计的危险区域进行修正, 从 而使得后续的资源分配处理更加准确和有效。 例如, 信息获得装置 1701和信息更新装置 1707可以执行图 20所示的危险区域更新方法, 这里不再重复。
[162] 在上述实施例中,根据通信系统中的系统状态的变化来更新主系 统资源信息和 /或次系统资源信息。 由于更新后的信息反映了系统的 实际状态, 因此, 能够使得后续的资源分配更加准确且更加有效。
[163] 可选地, 如图 19所示, 无线传输资源管理设备 1700还可以包括 接收装置 1709、 搜索装置 1711和发送装置 1713。 无线传输资源管理 设备 1700可以执行上文参考图 5或图 6描述的切换处理。 作为一个 示例, 当主系统危险区域中主用户的通信质量低于预定通信质量阈值 时, 接收装置 1709可以接收主系统中的位于主系统危险区域中的主 用户切换到次系统中的切换请求。 搜索装置 1711可以搜索覆盖范围 涵盖所述主用户的位置的次基站。 发送装置 1713可以将所述切换请 求发送到搜索到的次基站。 在该示例中, 接收装置 1709和发送装置 1713还可以执行图 5所示的其他接收和发送处理,这里不再重复。作 为另一示例, 当次系统危险区域中次用户的通信质量低于预设通信质 量阈值时, 接收装置 1709接收次系统中的位于次系统危险区域中的 次用户切换到主系统中的切换请求。 搜索装置 1711可以搜索覆盖范 围涵盖所述次用户的位置的主基站。 发送装置 1713可以将所述切换 请求发送到搜索到的主基站。 在该示例中, 接收装置 1709和发送装 置 1713还可以执行图 6所示的其他接收和发送处理,这里不再重复。
[164] 应理解, 资源管理设备 1700 次系统的通信机制彼此兼容的 应用场景下才进行上述主次用户的切换处理, 这里不作详述。
[165] 作为另一具体实施例, 资源管理设备 1700还可以包括天线波束 优化装置 1715, 用于进行次基站的天线波束形状的优化、选择等。天 线波束优化装置 1715可以将优化或选择的结果(例如通过发送装置 1713 )发送到相应的次系统基站。
[166] 作为一个示例, 天线波束优化装置 1700被配置用于根据通过监 视主系统危险区域中主用户的通信情况并监视次系统危险区域中次 用户的通信情况而获得的主系统危险区域内的通信质量信息和次系 统危险区域内的通信质量信息, 来优化次基站的天线波束形状, 这里 不再重复。
[167] 作为另一示例, 信息获得装置 1701还被配置用于获得在次基站 的不同的天线波束形状下主系统危险区域中主用户的通信质量和次 系统危险区域中次用户的通信质量, 并且天线波束优化装置 1715被 配置用于根据这两种危险区域中的通信质量来选择次基站的天线波 束形状。 例如, 天线波束优化装置 1715可以计算在次基站的不同的 天线波束形状下主系统危险区域中的通信质量和次系统危险区域中 的通信质量的和 /或乘积; 并选择与最大的和值或乘积值对应的天线 波束形状, 作为次基站的天线波束形状。
[168] 作为另一示例, 信息获得装置 1701还被配置用于获得在次基站 的不同的天线波束形状下次系统危险区域中的通信质量,而天线波束 优化装置 1715可以选择与最优通信质量对应的天线波束形状, 作为 次基站的天线波束形状。
[169] 天线波束优化装置 1715可以根据上文描述的各方法进行次基站 的天线波束形状的优化、 选择等, 这里不再重复。
[170] 如上所述, 在一些实施例中, 在包括多个次系统的情况下, 这些 次系统可以被簇化, 以形成多个次系统簇。 可以将每一个簇作为一个 整体。 例如, 资源分配装置 1605或 1705可以确定主系统的传输资源 中能够为每一次系统簇所用的可用传输资源。 以此类推, 这里不一一 重复。
[171] 在一些实施例中, 次系统可以设置多个频谱管理器, 包括一个主 频傳管理器和一个或更多个次频傳管理器。 如上所述, 主频傳管理器 对一个或更多个次用户簇进行管理,可以接收来自多个次频傳管理器 的次用户簇的信息。每个次频傳管理器可以对单个次系统簇以及簇中 的次用户进行管理。 在这种应用场景下, 主频谱管理器可以集中执行 上文参考图 1-7和下文中参考图 8-14描述的各个实施例或示例中的方 法, 并可以将各种相关处理结果(如传输资源分配结果)发送到次频 谱管理权, 并接收来自次频谱管理器的信息(如次系统的系统资源信 息和 /或次系统对次系统危险区域的测量结果等等)。 换言之, 上述资 源管理设备 1600或 1700可以设置在主频傳管理器侧,作为主频傳管 理器的一部分。在各个次频 i普管理器采用分布式管理方法执行上文参 考图 1-5和下文中参考图 8-14描述的各个实施例或示例中的方法的情 况下, 述资源管理设备 1600或 1700可以设置在每一次频谱管理器, 作为每一次频谱管理器的一部分。
[172] 可选地, 资源管理设备 1600或 1700还可以包括簇化装置(未示 出), 该簇化装置用于根据系统信息的变化, 重新簇化多个次系统, 以形成新的次系统簇。 这样, 可以用新的次系统簇为单位, 进行传输 资源的分配, 从而更有效地利用传输资源。
[173] 图 18示出了根据另一实施例的无线传输资源管理设备。 该无线 传输管理设备 1800可以执行上文参考图 14描述的无线传输资源管理 方法。该无线传输管理设备 1800可以包括信息获得装置 1801和资源 分配装置 1805。
[174] 信息获得装置 1801 可以获得有关次系统的期望通信质量的信 息。 如上所述, 该信息可以从次系统的次基站和 /或次用户获得。 或 者, 这些信息可以是预先存储在次系统的无线传输资源管理设备中 (如存储在其中的存储设备(图中未示出)中)的, 并且在需 ^吏用 这些信息时取出。 这里也不作详述。
[175] 资源分配装置 1805可以估计次系统中的次用户利用主系统中的 传输资源进行通信的通信质量。 可以采用上文中描述的方法(如参考 图 8-13或式( 1 ) - ( 8 )描述的方法)或其他任何适当的方法来估计 通信质量, 这里不再重复。 资源分配装置 1805还可以判断所估计的 通信质量是否满足所述期望通信质量。作为一个具体示例, 若判断满 足所述期望通信质量,资源分配装置 1805将传输资源分配给次系统, 若否, 资源分配装置 1805不将传输资源分配给次系统。 这样, 可以 减少传输资源的浪费, 从而提高传输资源的使用效率。作为另一具体 示例, 资源分配装置 1805若判断所评估的最优通信质量恰好满足次 系统的期望通信质量, 则将可用传输资源分配给次系统; 而如果判断 所评估的最优通信盾量大于次系统的期望通信盾量,则可以减少分配 给次系统的传输资源, 而不是将所有的可用传输资源都分配给次系 统。 采用该具体示例的设备, 可以进一步节省可用的传输资源, 从而 能把节省的可用传输资源分配给其他次系统。 这样, 能够进一步提高 传输资源的使用效率。
[176] 可选地,信息获得装置 1801和资源分配装置 1805还可以分别具 有与信息获得装置 1601和资源分配装置 1605相似的功能,这里不再 重复。
[177] 可选地, 资源管理设备 1800还可以包括资源管理设备 1600或 1700中所包括的其他装置, 这里也不再重复。
[178] 图 21示出了通信系统中的系统节点(如 SU或 PU或 SBS或 PBS ) 对危险区域进行监视的方法的一个示例。如图 21所述,在步骤 2102, 系统节点将自身的位置信息发送到相关的频谱管理器(主频谱管理器 或者该节点所位于的簇的次频傳管理器)。 然后, 在步骤 2104, 接收 来自频谱管理器的信息,该信息指示该系统节点是否位于危险区域中 (或是否位于危险区域的周边区域中)。 在步骤 2106, 系统节点根据 接收到的信息来判断自己是否处于危险区域(或其周边区域), 若是, 则在进行通信的同时采集有关通信情况的信息(步骤 2108 )。 这里所 述的有关通信情况的信息可以包括下列信息中的一个或更多个:用户 信号强度、 用户频傳利用信息、 用户信号能量变化统计信息等。 系统 节点可以将所采集的信息反馈到频谱管理器。频谱管理器可以如上文 所述的那样利用这些信息对系统资源信息和 /或危险区域进行更新。
[179] 图 22提供了根据该示例的通信设备。该通信设备 2200可以执行 图 21所示的方法。 如图 22所示, 通信设备 2200可以包括接收装置 2201、发送装置 2203、处理装置 2205和采集装置 2207。发送装置 2203 可以将通信设备的位置信息发送到相关的频谱管理器(主频谱管理器 或者该节点所位于的簇的次频傳管理器)。接收装置 2201可以接收来 自频谱管理器的信息, 该信息指示该系统节点是否位于危险区域中 (或是否位于危险区域的周边区域中)。处理装置 2205可以根据接收 到的信息来判断通信设备是否处于危险区域(或其周边区域), 若是, 则指示采集装置 2207采集有关通信情况的信息。采集装置 2207可以 将采集的信息发送到发送装置 2203以便由发送装置将其反馈到频谱 管理器。 通信设备 2200可以设置在主用户设备或次用户设备或主基 站或次基站内, 作为其一部分。
[180] 另外, 应理解, 上述实施例或示例中的资源管理方法和设备都是 示例性的。 在实际应用中, 这些资源管理方法和设备还可以包括上文 中省略的步骤、 元素或部件。
[181] 根据本公开的一些实施例,还提供了包括上述资源管理设备的无 线电通信系统。 所述资源管理设备可以设置在频谱管理器或次基站 处, 并可以被设置作为次基站或频傳管理器的一部分。
[182] 应理解, 上述实施例和示例是示例性的, 而不是穷举性的, 本公 开不应被视为局限于任何具体的实施例或示例。 另夕卜, 在上述实施例 和示例中, 采用数字标记来表示方法的步骤或设备的模块。 本领域的 普通技术人员应理解,这些数字标记只是为了对这些步骤或模块作文 字上的区分, 而并非表示其顺序或任何其他限定。
[183] 作为一个示例,上述方法的各个步骤以及上述设备的各个组成模 块和 /或装置可以实施为软件、 固件、 硬件或其组合。 上述设备中各 个组成部件、单元和子单元可通过软件、硬件或其组合的方式进行配 置。 配置可使用的具体手段或方式为本领域技术人员所熟知, 在此不 再赘述。
[184] 开还提出一种存储有机器可读取的指令代码的程序产品。所 述指令代码由机器读取并执行时,可执行上述根据本公开实施例的资 源管理方法。
[185] 相应地,用于承载上述存储有机器可读取的指令代码的程序产品 的存储介质也包括在本公开的公开中。所述存储介盾包括但不限于软 盘、 光盘、 磁光盘、 存储卡、 存储棒等等。
[186] 在上面对本公开具体实施例的描述中,针对一种实施方式描述和 /或示出的特征可以用相同或类似的方式在一个或更多个其它实施方 式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中 的特征。
[187] 应该强调, 术语"包括 /包含"在本文使用时指特征、 要素、 步骤 或组件的存在, 但并不排除一个或更多个其它特征、 要素、 步骤或组 件的存在或附加。
[188] 此外, 本公开的方法不限于按照说明书中描述的时间顺序来执 行, 也可以按照其他的时间顺序地、 并行地或独立地执行。 例如上文 描述的步骤 102和 104的顺序(或者步骤 202和 204的顺序)可以彼 此互换。 因此, 本说明书中描述的方法的执行顺序不对本公开的技术 范围构成限制。
[189] 尽管上面已经通过对本公开的具体实施例的描述对本公开进行 了披露, 但是, 应该理解, 本领域的技术人员可在所附权利要求的精 神和范围内设计对 开的各种修改、 改进或者等同物。 这些修改、 改进或者等同物也应当被认为包括在 开的保护范围内。

Claims

权利 要求 书
1. 一种无线传输资源管理设备, 用于包括主系统和次系统的无 线通信场景, 且包括:
信息获得装置,被配置用于获得主系统资源信息和次系统资源信 息,该主系统资源信息包括反映主系统能够容忍的最大干扰功率水平 的抗干扰阈值的信息;
危险区域估计装置,被配置用于根据所述主系统资源信息和所述 次系统资源信息来估计主系统危险区域,所述主系统危险区域包括所 述主系统的覆盖范围中由于所述次系统干扰而信噪比低的区域; 以及 资源分配装置,被配置用于根据所述主系统危险区域和所述抗干 扰阈值, 确定主系统的传输资源中能够为次系统所用的可用传输资 源。
2. 根据权利要求 1所述的无线传输资源管理设备, 其中, 所述 资源分配装置被进一步配置为估计次系统利用传输资源进行通信时 在主系统危险区域中对主系统造成的干扰,并将干扰值不超过主系统 的抗干扰阈值的传输资源确定为能够为次系统所用的可用传输资源。
3. 根据权利要求 1所述的无线传输资源管理设备, 其中, 所述信息获得装置还被配置用于获得有关次系统的期望通信质 量的信息; 并且
所述危险区域估计装置还被配置用于根据所述主系统资源信息 和所述次系统资源信息来估计次系统危险区域,所述次系统危险区域 包括所述次系统的覆盖范围中由于所述主系统干扰而信噪比低的区 域, 并且
所述资源分配装置被配置用于评估在所述次系统危险区域内次 系统利用所述可用传输资源能够达到的最优通信质量,判断所评估的 最优通信质量是否满足次系统的期望通信质量,根据判断的结果将主 系统中的传输资源分配给所述次系统。
4. 根据权利要求 3所述的无线传输资源管理设备, 其中, 所述 资源分配装置还被配置用于:判断所评估的最优通信质量是否大于次 系统的期望通信质量, 若是, 则减少分配给次系统的传输资源。
5. 根据权利要求 3所述的无线传输资源管理设备, 其中, 当所 述资源分配装置判断所评估的最优通信质量不能满足次系统的期望 通信质量时, 对次系统进行重新配置。
6. 根据权利要求 3-5 中任一项所述的无线传输资源管理设备, 其中,
所述信息获得设备还被配置用于获得通过监视主系统危险区域 和次系统危险区域而获得主系统危险区域内主用户的通信质量以及 次系统危险区域中次用户的通信质量, 并且所述设备还包括:
信息更新设备,被配置用于根据所述监视的结果来更新所述主系 统资源信息和 /或所述次系统资源信息。
7. 根据权利要求 6所述的无线传输资源管理设备, 其中, 所述 信息获得设备还被配置用于获得通过监视主系统危险区域的周边区 内主用户的通信质量以及次系统危险区域的周边区域中次用户的通 信质量。
8. 根据权利要求 6所述的无线传输资源管理设备, 还包括: 接收装置, 被配置用于: 当主系统危险区域中主用户的通信质量 低于预定通信质量阈值时,接收主系统中的位于主系统危险区域中的 主用户切换到次系统中的切换请求;
搜索装置,被配置用于搜索覆盖范围涵盖所述主用户的位置的次 基站; 以及
发送装置, 被配置用于将所述切换请求发送到搜索到的次基站。
9. 根据权利要求 6所述的无线传输资源管理设备, 还包括: 接收装置, 被配置用于: 当次系统危险区域中次用户的通信质量 低于预设通信质量阈值时 ,接收次系统中的位于次系统危险区域中的 次用户切换到主系统中的切换请求;
搜索装置,被配置用于搜索覆盖范围涵盖所述次用户的位置的主 基站; 以及 发送装置, 被配置用于将所述切换请求发送到搜索到的主基站。
10. 根据权利要求 6所述的无线传输资源管理设备, 还包括: 天线波束优化装置,被配置用于根据所述监视的结果来优化次基 站的天线波束形状。
11. 根据权利要求 3-5中任一项所述的无线传输资源管理设备, 其中,所述信息获得装置还被配置用于获得在次基站的不同的天线波 束形状下主系统危险区域中主用户的通信质量和次系统危险区域中 次用户的通信质量, 并且所述设备还包括:
天线波束优化装置,被配置用于根据这两种危险区域中的通信质 量来选择次基站的天线波束形状。
12. 根据权利要求 11所述的无线传输资源管理设备, 其中, 所 述天线波束优化装置被配置用于根据以下来选择次基站的天线波束 形状包括:
计算在次基站的不同的天线波束形状下主系统危险区域中的通 信质量和次系统危险区域中的通信质量的和 /或乘积; 以及
选择与最大的和值或乘积值对应的天线波束形状,作为次基站的 天线波束形状。
13. 根据权利要求 3-5中任一项所述的无线传输资源管理设备, 其中,所述危险区域估计装置被配置用于通过以下来估计次系统危险 区域:
根据主系统的信道模型来计算主基站到次系统的覆盖范围中的 某一位置的传输路径增益;
根据次系统的信道模型来计算次基站到所述位置的传输路径增 益;
才艮据这两个传输路径增益来估计所述位置的信噪比; 以及
根据次系统的覆盖范围内的各个位置处的信噪比来确定次系统 危险区域。
14. 根据权利要求 3-5中任一项所述的无线传输资源管理设备, 其中,所述危险区域估计装置被配置用于通过以下来估计次系统危险 区域:
获得主基站到次系统的覆盖范围中的某一位置的瞬时路径衰落 增益,并获得次基站到次系统的覆盖范围中的所述位置的瞬时路径衰 落增益;
根据这两个瞬时路径衰落增益来估计所述位置处的停机率; 以及 根据次系统的覆盖范围内的各个位置处的停机率来确定次系统 危险区域。
15. 根据权利要求 3-5中任一项所述的无线传输资源管理设备, 其中,所述危险区域估计装置被配置用于通过以下来估计次系统危险 区域:
根据次基站的发射功率来计算次系统的覆盖范围内受到所述主 系统干扰的某一位置处的瞬时信道容量;
才艮据所述瞬时信道容量来估计所述位置处的停机信道容量; 以及 根据次系统的覆盖范围内的各个位置处的停机信道容量来确定 次系统危险区域。
16. 根据权利要求 1-5中任一项所述的无线传输资源管理设备, 其中 ,所述危险区域估计装置被配置用于通过以下来估计主系统危险 区域:
根据主系统的信道模型来计算主基站到主系统的覆盖范围中的 某一位置的传输路径增益; 根据次系统的信道模型来计算次基站到主系统的覆盖范围中所 述位置的传输路径增益;
才艮据这两个传输路径增益来估计所述位置的信噪比; 以及
根据主系统的覆盖范围内的各个位置处的信噪比来确定主系统 危险区域。
17. 根据权利要求 1-5中任一项所述的无线传输资源管理设备, 其中,所述危险区域估计装置被配置用于通过以下来估计主系统危险 区域:
获得主基站到主系统的覆盖范围中的某一位置的瞬时路径衰落 增益,并获得次基站到主系统的覆盖范围中的所述位置的瞬时路径衰 落增益;
根据这两个瞬时路径衰落增益来估计所述位置处的停机率; 以及 根据主系统的覆盖范围内的各个位置处的停机率来确定主系统 危险区域。
18. 根据权利要求 1-5中任一项所述的无线传输资源管理设备, 其中,所述危险区域估计装置被配置用于通过以下来估计主系统危险 区域:
根据主基站的发射功率来计算主系统的覆盖范围内受到所述次 系统干扰的某一位置处的瞬时信道容量;
才艮据所述瞬时信道容量来估计所述位置处的停机信道容量; 以及 根据主系统的覆盖范围内的各个位置处的停机信道容量来确定 主系统危险区域。
19. 根据权利要求 1-5中任一项所述的无线传输资源管理设备, 其中, 次系统 ^化, 以形成多个次系统簇, 并且 其中,所述资源分配装置被配置用于确定主系统的传输资源中能 够为每一次系统簇所用的可用传输资源。
20. 根据权利要求 19所述的无线传输资源管理设备, 还包括: 簇化装置, 被配置用于根据系统信息的变化, 重新簇化所述次系 统。
21. 一种无线传输资源管理设备, 用于包括主系统和次系统的无 线通信场景, 且包括:
信息获得装置,被配置用于获得有关次系统的期望通信质量的信 息;
资源分配装置,被配置用于根据次系统的期望通信质量将主系统 的传输资源分配给次系统。
22. 根据权利要求 21所述的无线传输资源管理设备, 其中, 所 述资源分配装置被配置用于估计次系统中的次用户利用主系统中的 传输资源的通信质量,并判断所估计的通信质量是否满足所述期望通 信质量, 根据判断的结果将主系统中的传输资源分配给所述次系统。
23. 根据权利要求 22所述的无线传输资源管理设备, 其中, 当 所述估计的通信质量满足所述期望通信质量时,所述资源分配装置将 主系统中的传输资源分配给所述次系统。
24. 根据权利要求 22所述的无线传输资源管理设备, 其中, 当 所估计的通信质量高于所述期望通信质量时,所述资源分配装置减少 的发射功率。
25. 根据权利要求 24所述的无线传输资源管理设备, 其中, 所 述资源分配装置仅将可用传输资源中能够满足次系统的期望通信质 量的部分传输资源分配给次系统。
26. 根据权利要求 22所述的无线传输资源管理设备, 其中, 当 所估计的通信质量低于所述期望通信质量时,所述资源分配装置被配 置为不将所述传输资源分配给所述次系统。
27. 根据权利要求 22所述的无线传输资源管理设备, 其中, 当 所估计的通信质量低于所述期望通信质量时,所述资源分配装置被配 置为向所述次系统发出指示。
28. 根据权利要求 27所述的无线传输资源管理设备, 其中, 所 述指示包括对所述次系统进行重新配置的信息。
29. 根据权利要求 21所述的无线传输资源管理设备, 其中, 还 包括发送装置, 被配置用于将传输资源分配有关的信息发送至次系 统。
30. 一种次系统设备, 用于向如权利要求 21所述的无线传输资 源管理设备提供有关期望通信质量的信息,并从所述的无线传输资源 管理设备接收传输资源分配有关的信息。
31. 根据权利要求 30所述的次系统设备, 其中, 所述传输资源 分配有关的信息是根据估计的次系统设备利用主系统中的传输资源 的通信质量是否满足所述期望通信质量而确定的。
32. 根据权利要求 31所述的次系统设备, 其中, 当所估计的通 信质量满足所述期望通信质量时,所述传输资源分配有关的信息包括 所述次系统设备分配得到的主系统的传输资源。
33. 根据权利要求 32所述的次系统设备, 其中, 当所估计的通 信质量高于所述期望通信质量时,所述次系统设备分配得到的主系统 的传输资源是可用传输资源中能够满足次系统设备的期望通信质量 的部分传输资源。
34. 根据权利要求 32所述的次系统设备, 其中, 当所估计的通 信质量低于所述期望通信质量时,所述传输资源分配有关的信息包括 对所述次系统设备的指示。
35. 根据权利要求 34所述的次系统设备, 其中, 所述指示包括 对所述次系统设备进行重新配置的信息。
36. 一种次系统设备管理方法, 包括:
向如权利要求 21所述的无线传输资源管理设备提供有关期望通 信质量的信息; 以及
从所述的无线传输资源管理设备接收传输资源分配有关的信息。
37. 根据权利要求 36所述的次系统设备管理方法, 其中, 所述 传输资源分配有关的信息是根据估计的次系统设备利用主系统中的 传输资源的通信质量是否满足所述期望通信质量而确定的。
38. 根据权利要求 37所述的次系统设备管理方法, 其中, 当所 估计的通信质量满足所述期望通信质量时,所述传输资源分配有关的 信息包括所述次系统设备分配得到的主系统的传输资源。
39. 根据权利要求 38所述的次系统设备管理方法, 其中, 当所 估计的通信质量高于所述期望通信质量时,所述次系统设备分配得到 的主系统的传输资源是可用传输资源中能够满足次系统设备的期望 通信质量的部分传输资源。
40. 根据权利要求 38所述的次系统设备管理方法, 其中, 当所 估计的通信质量低于所述期望通信质量时,所述传输资源分配有关的 信息包括对所述次系统设备的指示。
41. 根据权利要求 40所述的次系统设备管理方法, 其中, 所述 指示包括对所述次系统设备进行重新配置的信息。
42. 一种无线传输资源管理方法, 用于包括主系统和次系统的 无线通信场景, 且包括:
获得主系统资源信息,该主系统资源信息包括反映主系统能够容 忍的最大干扰功率水平的抗干扰阈值的信息;
获得次系统资源信息;
根据所述主系统资源信息和所述次系统资源信息来估计主系统 危险区域,所述主系统危险区域包括所述主系统的覆盖范围中由于所 述次系统干扰而信噪比低的区域; 以及
根据所述主系统危险区域和所述抗干扰阈值,确定主系统的传输 资源中能够为次系统所用的可用传输资源。
43. 一种无线传输资源管理方法, 用于包括主系统和次系统的无 线通信场景, 且包括:
获得有关次系统的期望通信质量的信息; 以及
根据次系统的期望通信质量将主系统的传输资源分配给次系统。
44. 根据权利要求 43所述的无线传输资源管理方法, 其中进一 步包括:
估计次系统中的次用户利用主系统中的传输资源的通信质量; 以 及
判断所估计的通信质量是否满足所述期望通信质量,并根据判断 的结果将主系统中的传输资源分配给所述次系统。
45. 根据权利要求 44所述的无线传输资源管理方法, 其中, 当 所述估计的通信质量满足所述期望通信质量时,将主系统中的传输资 源分配给所述次系统。
46. 根据权利要求 44所述的无线传输资源管理方法, 其中, 当 所估计的通信质量高于所述期望通信质量时,减少分配给所述次系统 的传输资源或降低所述次系统在所述传输资源上的发射功率。
47. 根据权利要求 46所述的无线传输资源管理方法, 其中, 仅 将可用传输资源中能够满足次系统的期望通信质量的部分传输资源 分配给次系统。
48. 根据权利要求 44所述的无线传输资源管理方法, 其中, 当 所估计的通信质量低于所述期望通信质量时,不将所述传输资源分配 给所述次系统。
49. 根据权利要求 44所述的无线传输资源管理方法, 其中, 当 所估计的通信质量低于所述期望通信质量时, 向所述次系统发出指 示。
50. 根据权利要求 49所述的无线传输资源管理方法, 其中, 所 述指示包括对所述次系统进行重新配置的信息。
51. 根据权利要求 43所述的无线传输资源管理方法, 其中进一 步包括:
将传输资源分配有关的信息发送至次系统。
PCT/CN2013/079218 2012-09-07 2013-07-11 无线传输资源管理设备和方法 WO2014036856A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020157008492A KR20150052231A (ko) 2012-09-07 2013-07-11 무선 전송 자원들을 관리하기 위한 장치 및 방법
BR112015004485A BR112015004485A8 (pt) 2012-09-07 2013-07-11 sistema e método de gerenciamento do espectro, e, mídia legível por computador não transitória
US14/422,533 US10631274B2 (en) 2012-09-07 2013-07-11 Apparatus and method for managing wireless transmission resources
CA2884100A CA2884100C (en) 2012-09-07 2013-07-11 Apparatus and method for managing wireless transmission resources
JP2015530273A JP2015531554A (ja) 2012-09-07 2013-07-11 周波数スペクトル管理システム、周波数スペクトル管理方法、及び非揮発コンピュータ読取可能媒体
EP13834753.9A EP2894910B1 (en) 2012-09-07 2013-07-11 Spectrum management system
RU2015112617/07A RU2598530C1 (ru) 2012-09-07 2013-07-11 Устройство и способ управления беспроводными ресурсами передачи данных
AU2013312639A AU2013312639B2 (en) 2012-09-07 2013-07-11 Apparatus and Method for Managing Wireless Transmission Resources
KR1020197024816A KR102134111B1 (ko) 2012-09-07 2013-07-11 스펙트럼 관리 시스템, 방법 및 컴퓨터 판독가능 기록매체
KR1020177015042A KR20170065679A (ko) 2012-09-07 2013-07-11 무선 전송 자원들을 관리하기 위한 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210330823.1A CN103687030B (zh) 2012-09-07 2012-09-07 无线传输资源管理设备和方法
CN201210330823.1 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014036856A1 true WO2014036856A1 (zh) 2014-03-13

Family

ID=50236509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079218 WO2014036856A1 (zh) 2012-09-07 2013-07-11 无线传输资源管理设备和方法

Country Status (12)

Country Link
US (1) US10631274B2 (zh)
EP (1) EP2894910B1 (zh)
JP (1) JP2015531554A (zh)
KR (3) KR20150052231A (zh)
CN (2) CN103687030B (zh)
AR (1) AR092267A1 (zh)
AU (1) AU2013312639B2 (zh)
BR (1) BR112015004485A8 (zh)
CA (1) CA2884100C (zh)
RU (1) RU2598530C1 (zh)
TW (1) TWI559799B (zh)
WO (1) WO2014036856A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156010A (zh) * 2016-07-29 2019-01-04 索尼公司 电子设备和用于电子设备的方法
CN111263302A (zh) * 2020-01-07 2020-06-09 北京佰才邦技术有限公司 一种基于5g边缘计算网络的危险区域审计方法和系统
EP2958357B1 (en) * 2014-06-20 2020-10-14 Sony Corporation Radio resource management systems
US11832288B2 (en) 2019-03-29 2023-11-28 Sony Group Corporation Communication control device, communication device, and communication control method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090502A1 (en) 2014-01-15 2016-11-09 Sony Corporation Mobile communications network, communications device and methods with nested carrier aggregation
CN104202747A (zh) * 2014-04-17 2014-12-10 中兴通讯股份有限公司 一种频谱管理的方法、设备和系统
CN105657718B (zh) * 2014-11-14 2021-02-02 索尼公司 无线电资源管理系统和无线电资源管理方法
CN107666720A (zh) * 2016-07-29 2018-02-06 索尼公司 电子设备和用于电子设备的方法
US10231132B2 (en) * 2017-02-10 2019-03-12 Qualcomm Incorporated Reservation signal design for spectrum sharing
EP3603154A1 (en) * 2017-03-21 2020-02-05 Corning Optical Communications LLC Systems and methods for dynamically allocating spectrum among cross-interfering radio nodes of wireless communications systems
US10410133B2 (en) 2017-03-22 2019-09-10 At&T Intellectual Property I, L.P. Methods, devices and systems for managing network video traffic
US11049005B2 (en) 2017-03-22 2021-06-29 At&T Intellectual Property I, L.P. Methods, devices and systems for managing network video traffic
CN109921835B (zh) * 2017-12-12 2021-08-03 华为技术有限公司 一种用户配对方法和接入点
CN109951851A (zh) * 2017-12-20 2019-06-28 索尼公司 无线通信方法和无线通信设备
CN111385802A (zh) * 2018-12-29 2020-07-07 索尼公司 频谱装置、无线通信系统、无线通信方法和存储介质
JP2020123784A (ja) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 共用周波数管理システムおよび共用周波数管理方法
CN111526570A (zh) 2019-02-01 2020-08-11 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN111313991B (zh) * 2020-02-24 2022-05-17 全球能源互联网研究院有限公司 一种通信主系统信噪比的确定方法、装置及系统
CN113411889A (zh) * 2020-03-17 2021-09-17 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US20220086820A1 (en) * 2020-09-16 2022-03-17 Qualcomm Incorporated Real time control of an electronically configurable deflector
US11979892B2 (en) * 2021-04-30 2024-05-07 T-Mobile Usa, Inc. Systems and methods for optimizing cellular spectrum utilization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527915A (zh) * 2009-03-20 2009-09-09 南京邮电大学 异构网络中的频带动态选择和时间调度方法
CN102238549A (zh) * 2010-04-30 2011-11-09 索尼公司 在异构网络中管理资源的系统和方法
WO2011158502A1 (ja) * 2010-06-18 2011-12-22 日本電気株式会社 無線制御装置、第二送信局送信電力決定方法およびプログラム

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521227C2 (sv) * 1999-02-22 2003-10-14 Ericsson Telefon Ab L M Mobilradiosystem och ett förfarande för kanallokering i ett mobilradiosystem
US6591382B1 (en) * 1999-08-17 2003-07-08 Skyworks Solutions, Inc. Performance improvement of internet protocols over wireless connections
FI20021094A0 (fi) * 2002-06-07 2002-06-07 Nokia Corp Yhteyden varmistaminen radiojärjestelmässä
AUPS339102A0 (en) * 2002-07-04 2002-08-01 Three Happy Guys Pty Ltd Method of monitoring volumes of data between multiple terminals and an external communication network
CN1930899B (zh) * 2004-03-05 2012-05-16 株式会社Ntt都科摩 频道分配系统、基站、控制站、不同系统间公共控制装置、频道分配方法及控制方法
US8571132B2 (en) * 2004-12-22 2013-10-29 Qualcomm Incorporated Constrained hopping in wireless communication systems
US8839362B2 (en) * 2006-07-31 2014-09-16 Motorola Mobility Llc Method and apparatus for managing transmit power for device-to-device communication
US8433319B2 (en) * 2007-01-12 2013-04-30 Industrial Technology Research Institute Systems and methods for channel selection management in a wireless communication network
CN101335539B (zh) * 2008-01-08 2011-11-16 上海交通大学 用户间同信道干扰抑制的方法及其基站
US8670773B2 (en) * 2008-04-02 2014-03-11 Nec Corporation Control device, communication system, resource allocation method, and recording medium containing program
JP2010050935A (ja) * 2008-08-25 2010-03-04 Ntt Docomo Inc 無線通信システム及び方法
JP5288469B2 (ja) * 2009-02-24 2013-09-11 株式会社国際電気通信基礎技術研究所 無線ネットワークシステムとその制御方法
JP5526803B2 (ja) * 2009-05-29 2014-06-18 ソニー株式会社 通信装置、通信制御方法、及びプログラム
US8660498B2 (en) * 2009-06-29 2014-02-25 Motorola Solutions, Inc. Method for database driven channel quality estimation in a cognitive radio network
JP5353812B2 (ja) * 2009-08-12 2013-11-27 ソニー株式会社 通信制御方法、通信装置、及びプログラム
US8098591B2 (en) * 2009-08-26 2012-01-17 Adc Telecommunications, Inc. Selectively assigning mobile stations to segmented zones
WO2011032317A1 (zh) * 2009-09-18 2011-03-24 上海贝尔股份有限公司 频谱共享系统的资源调度方法和基站
GB2476488A (en) * 2009-12-23 2011-06-29 Nec Corp Allocating physical resource blocks to a user device for transmitting uplink data
CN102726088B (zh) * 2010-01-12 2016-06-08 夏普株式会社 无线通信系统、基站装置、移动站装置以及通信控制方法
US8737255B2 (en) * 2010-03-08 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for redistributing resources for use in a radio communication system
CN102202314B (zh) * 2010-03-26 2014-11-05 北京邮电大学 频谱租赁实现方法和系统
EP2556692B1 (en) * 2010-04-06 2019-11-06 The Board of Trustees of the Leland Stanford Junior University Spectrum sharing and management of cognitive transmission
JP2011258502A (ja) * 2010-06-11 2011-12-22 Univ Of Tokyo パターン状電子源の製造方法、パターン状電子源
EP2586141A4 (en) * 2010-06-23 2017-03-15 Nokia Technologies Oy Avoiding interference in cognitive radio communications
US8711721B2 (en) * 2010-07-15 2014-04-29 Rivada Networks Llc Methods and systems for dynamic spectrum arbitrage
US8385286B2 (en) * 2010-09-03 2013-02-26 Nokia Corporation Resource sharing between secondary networks
JP5821208B2 (ja) 2010-10-29 2015-11-24 ソニー株式会社 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム
JP2012124585A (ja) * 2010-12-06 2012-06-28 Kddi Corp 通信品質推定装置、基地局装置、通信品質推定方法、及び通信品質推定プログラム
US8879411B2 (en) * 2010-12-16 2014-11-04 Htc Corporation Method of handling interference mitigation in heterogeneous network by channel measurement and related communication device
US8615263B2 (en) * 2011-05-02 2013-12-24 Telcordia Technologies, Inc. Systems and methods for efficient radio frequency spectrum management in a scenario involving multiple mobile vehicles
KR20130074028A (ko) * 2011-12-26 2013-07-04 삼성전자주식회사 무선통신 시스템에서 기지국의 자원 할당 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527915A (zh) * 2009-03-20 2009-09-09 南京邮电大学 异构网络中的频带动态选择和时间调度方法
CN102238549A (zh) * 2010-04-30 2011-11-09 索尼公司 在异构网络中管理资源的系统和方法
WO2011158502A1 (ja) * 2010-06-18 2011-12-22 日本電気株式会社 無線制御装置、第二送信局送信電力決定方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894910A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2958357B1 (en) * 2014-06-20 2020-10-14 Sony Corporation Radio resource management systems
EP3748996A1 (en) * 2014-06-20 2020-12-09 Sony Corporation Radio resource management system and radio resource management method
US11129169B2 (en) 2014-06-20 2021-09-21 Sony Corporation Radio resource management system and radio resource management method
CN109156010A (zh) * 2016-07-29 2019-01-04 索尼公司 电子设备和用于电子设备的方法
CN109156010B (zh) * 2016-07-29 2023-04-28 索尼公司 电子设备和用于电子设备的方法
US11700630B2 (en) 2016-07-29 2023-07-11 Sony Group Corporation Electronic device and method for the electronic device
US11832288B2 (en) 2019-03-29 2023-11-28 Sony Group Corporation Communication control device, communication device, and communication control method
CN111263302A (zh) * 2020-01-07 2020-06-09 北京佰才邦技术有限公司 一种基于5g边缘计算网络的危险区域审计方法和系统

Also Published As

Publication number Publication date
CN103687030B (zh) 2019-09-13
BR112015004485A2 (pt) 2017-07-04
US10631274B2 (en) 2020-04-21
CN103687030A (zh) 2014-03-26
TWI559799B (zh) 2016-11-21
KR102134111B1 (ko) 2020-07-14
AR092267A1 (es) 2015-04-08
BR112015004485A8 (pt) 2019-08-27
AU2013312639A1 (en) 2015-03-12
AU2013312639B2 (en) 2016-12-22
KR20190102095A (ko) 2019-09-02
EP2894910A4 (en) 2016-04-20
CN108495319A (zh) 2018-09-04
TW201412168A (zh) 2014-03-16
CN108495319B (zh) 2022-07-01
CA2884100A1 (en) 2014-03-13
KR20170065679A (ko) 2017-06-13
JP2015531554A (ja) 2015-11-02
EP2894910A1 (en) 2015-07-15
US20150237609A1 (en) 2015-08-20
CA2884100C (en) 2022-02-22
KR20150052231A (ko) 2015-05-13
EP2894910B1 (en) 2020-12-16
RU2598530C1 (ru) 2016-09-27

Similar Documents

Publication Publication Date Title
TWI559799B (zh) 無線傳輸資源管理設備和方法
US9014112B2 (en) System and method for computing coverage set and resource allocations in wireless networks
US7477914B2 (en) Real-time spectrum management to increase frequency reuse
KR101764258B1 (ko) 무선통신 시스템에서 클러스터 기반의 기회적 전력 제어를 위한 방법 및 장치
AU2019202189B2 (en) Apparatus and method for wireless communication system
US20120188884A1 (en) Method and a network node for determining an offset for selection of a cell of a first radio network node
WO2010096985A1 (zh) 干扰控制信息的传输方法
CN103763777B (zh) 一种异构网络的控制方法及基站
JPWO2018173418A1 (ja) 装置、方法及び記録媒体
US20120170466A1 (en) Joint subcarrier usage ratio and power allocation method, system using the same, base station and controller using the same
JP5470505B2 (ja) 基地局及び基地局を動作させる方法
KR20130109476A (ko) 부분 주파수 재사용을 사용하는 lte 셀룰라 시스템에서의 향상된 펨토셀 자원 할당 장치 및 방법
Arafat et al. Performance Evaluation of LTE Femtocell for Different Channel Access Scenarios in an Enterprise Environment
Louvros et al. 5G C-RAn Uplink Cross-Layer optimization to Support Massive traffic Sensor network Services
Ar et al. Self-organized Clustering for Improved Interference Mitigation in White Spaces
KR101902755B1 (ko) 기지국제어장치 및 기지국제어장치의 동작 방법
KR20140118357A (ko) 서비스 우선권에 기초한 간섭인지 콤프 수행 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422533

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2884100

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015530273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013312639

Country of ref document: AU

Date of ref document: 20130711

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157008492

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015112617

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004485

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015004485

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150227