WO2014034848A1 - Non-destructive diagnosis method for covered metal material - Google Patents

Non-destructive diagnosis method for covered metal material Download PDF

Info

Publication number
WO2014034848A1
WO2014034848A1 PCT/JP2013/073322 JP2013073322W WO2014034848A1 WO 2014034848 A1 WO2014034848 A1 WO 2014034848A1 JP 2013073322 W JP2013073322 W JP 2013073322W WO 2014034848 A1 WO2014034848 A1 WO 2014034848A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
electromagnetic wave
wave beam
nondestructive
diagnosis method
Prior art date
Application number
PCT/JP2013/073322
Other languages
French (fr)
Japanese (ja)
Inventor
小山 裕
匡生 田邉
恭介 齊藤
祥子 竹原
パガノ サルヴァトーレ
Original Assignee
コンパニー ゼネラール デ エタブリッスマン ミシュラン
ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コンパニー ゼネラール デ エタブリッスマン ミシュラン, ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム filed Critical コンパニー ゼネラール デ エタブリッスマン ミシュラン
Priority to JP2014533108A priority Critical patent/JPWO2014034848A1/en
Publication of WO2014034848A1 publication Critical patent/WO2014034848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the present invention relates to a method for diagnosing a coated metal material, and more particularly to a non-destructive diagnostic method for a coated metal material by irradiation with an electromagnetic wave beam having a frequency in the sub-terahertz band.
  • Metal wires and / or metal cables coated with polymer compositions are widely used for reinforcing purposes (reinforcing belt layers made up of multiple metal cords and metal cables, etc.) for insulated wires, diagonal materials for extradosed bridges, tires, etc.
  • an oxide film such as rust is generated when water enters from cracks in the coating of the polymer composition, metal wire / cable connection, or the like.
  • the oxide film generated on the metal wire / cable deteriorates the adhesion to the coating, and the oxide film may progress to the inside of the metal wire / cable, resulting in disconnection.
  • an oscillating unit that radiates an electromagnetic wave having a millimeter wave or terahertz band disposed outside the tire, and a receiving unit that is disposed on the inner side of the tire and receives millimeter waves transmitted through the tire rubber layer, etc.
  • a control device that judges the quality of tires based on the transmission intensity of received millimeter waves, etc.
  • Patent Document 2 irradiates a reference wire and a diagnosis target wire with a far infrared ray for determining a frequency selected from a range of 1.3 to 2.3 THz and a far infrared ray for correcting with a certain frequency, respectively, and its reflection intensity.
  • a technique for diagnosing the occurrence state of an oxide film of an insulated electric wire to be diagnosed by comparing the above is disclosed.
  • Patent Document 1 determines the quality of a tire by detecting cavities and foreign matter in the tire based on the transmission intensity of the millimeter wave transmitted through the tire. Since the metal wire / cable cannot be transmitted, it is difficult to detect the oxide film generated on the metal wire / cable based on the transmission intensity of millimeter waves or the like. Further, since the influence of the oxide film generated on the metal wire / cable on the transmission intensity of millimeter waves or the like transmitted through the tire is minute, it is difficult to detect the generation of the oxide film based on the change in the transmission intensity. Due to these problems, there is a problem that it is difficult to accurately diagnose the generation of an oxide film even if the technique disclosed in Patent Document 1 is used.
  • an electromagnetic wave having a specific frequency in the terahertz band is irradiated, and a laser light source is used as a light source for irradiating the electromagnetic wave in such a frequency band.
  • a laser light source is used as a light source for irradiating the electromagnetic wave in such a frequency band.
  • the generation efficiency of terahertz band electromagnetic waves from a laser light source is extremely low, and a strong excitation laser is required, so that strict curing is necessary from the viewpoint of safety, and power consumption is also increased.
  • a solid-state laser since a solid-state laser is used, there is a problem that the apparatus becomes large.
  • the present invention has been made to solve the above-described problems of the prior art, and an oxide film which causes a problem in a metal material coated with a polymer composition, particularly a metal wire and / or cable.
  • An object of the present invention is to provide a non-destructive diagnostic method for simply and reliably diagnosing the presence or absence of occurrence.
  • the present invention provides: A nondestructive diagnostic method for diagnosing generation of an oxide film in a metal material, particularly a metal wire and / or a metal cable, coated with a polymer composition having a predetermined thickness E, using a nondestructive diagnostic device,
  • the non-destructive diagnostic apparatus includes an oscillating unit that oscillates an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band and having a predetermined polarization direction, and an optical unit that detects an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band.
  • the oscillating unit has an electronic device as a light source for oscillating the electromagnetic wave beam, and the predetermined frequency of the sub-terahertz band is a frequency of 0.05 to 0.2 THz,
  • the non-destructive diagnosis method is: Providing a coated metal material to be diagnosed; Disposing the metal material relative to the oscillation unit such that the predetermined polarization direction is the same as the direction in which the metal material extends; Irradiating the coated metal material with the electromagnetic wave beam from the oscillation unit; Detecting the reflection intensity of the electromagnetic wave beam reflected by the coated metal material by the detection unit; The reflection intensity of the electromagnetic wave beam from the diagnosis target metal material detected by the detection step is covered with a polymer composition having the same thickness E as the diagnosis target metal material, and the oxide film of the metal material is a problem. Comparing the reflected intensity of the electromagnetic wave beam from the coated metal material as a reference, which is less than the amount of It is characterized by that.
  • the electromagnetic wave beam oscillated from the oscillating unit is irradiated to the coated metal material to be diagnosed, and the reflection intensity of the electromagnetic wave beam reflected by the coated metal material is detected by the detecting unit.
  • the reflection intensity of the detected coated metal material is coated with a polymer composition having the same thickness E as the coated metal material to be diagnosed, and the oxide film of the metal material becomes a problem. Since the comparison is made with the reflection intensity of the coated metal material used as a reference, which is less than the amount, a metal material coated with a polymer composition having a predetermined thickness E to be diagnosed, particularly a metal It is possible to diagnose the state of occurrence of an oxide film in a wire and / or cable without destroying both the coating and the metal material.
  • the reflection intensity of the electromagnetic wave beam is reduced in the metal material in which the oxide film is generated, the reflection intensity of the coated metal material to be diagnosed is less than the amount that causes the oxide film of the metal material to be a problem.
  • the coated metal material used as a reference is coated with a polymer composition having the same thickness E as the coated metal material to be diagnosed, and the oxide film of the metal material is less than the amount in question. Therefore, it is possible to easily and reliably diagnose the presence or absence of an oxide film that causes a problem.
  • the oxide film of the metal material is less than the amount causing the problem” means that the oxide film is not generated, or even if the oxide film is generated, the generated amount is so small that the polymer composition This means an amount in which there is no problem in the adhesion and no cracks are generated on the surface of the metal material.
  • an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz is used, so that an oxide film generated on a metal material coated with a polymer composition can be detected more accurately. I can do it. That is, when the predetermined frequency in the sub-terahertz band is less than 0.05 THz, the so-called skin effect that occurs in the metal material due to irradiation with electromagnetic waves is reduced, so that the state of the metal material surface becomes insensitive and the surface of the metal material is insensitive. It becomes difficult to detect the generated oxide film.
  • the electromagnetic wave beam is easily attenuated by the polymer composition that coats the metal material, and the influence of light scattering due to the unevenness of the oxide film generated on the surface of the metal material. Therefore, it becomes difficult to detect the oxide film generated on the surface of the metal material.
  • an electronic device is used as the light source of the electromagnetic wave beam, so that an electromagnetic wave beam with sufficient intensity can be generated with a small output.
  • non-destructive diagnosis can be performed more safely, and non-destructive diagnosis with reduced power consumption can be performed because a small power source can be used.
  • a solid-state electronic device such as a diode is used as the electronic device, the nondestructive diagnostic apparatus can be downsized.
  • the electromagnetic wave beam has a predetermined polarization direction
  • the nondestructive diagnostic method further includes the predetermined polarization direction and the direction in which the coated metal material to be diagnosed extends. Place the coated metal material to be diagnosed and / or set up a non-destructive diagnostic device to be the same.
  • the predetermined polarization direction of the electromagnetic wave beam for example, the direction of linearly polarized light or the major axis direction of elliptically polarized light
  • the direction in which the metal material coated with the polymer composition extends are the same.
  • the oxide film generated on the surface of the metal material can be detected more accurately.
  • the amount of the relative angle corresponds to the metal material.
  • the reflection intensity of the electromagnetic wave beam from becomes small. Even in such a case, it is possible to detect the oxide film, but by making the polarization direction and the direction in which the metal material extends the same, a larger (more efficient) reflection intensity can be obtained and a more accurate diagnosis can be performed. It becomes possible.
  • the reflection intensity detection step is preferably performed while relatively rotating the non-destructive diagnostic apparatus and the metal material about the longitudinal axis of the metal material.
  • the present invention configured as described above, it becomes possible to irradiate the entire circumference of the metal material coated with the polymer composition to be measured with an electromagnetic wave beam, and the oxide film generated on the surface of the metal material can be further reduced. It can be detected reliably.
  • the reflection intensity detecting step is performed while relatively moving the nondestructive diagnostic apparatus and the metal material on a plane.
  • the present invention configured as described above, for example, an oxide film generated on the surface of each metal material (metal cord, metal cable, etc.) in a belt layer for reinforcing a tire provided with a plurality of cords and wires. The efficiency of diagnosis can be improved.
  • the metal material is selected from the group consisting of iron, copper, aluminum, silver, platinum, gold, zinc, cadmium, tin, nickel, chromium, brass, bronze, cobalt, beryllium and alloys of these metals. To be elected.
  • the metal material has a metal coating layer made of a material different from the metal material, and the metal forming the metal coating layer is platinum, gold, silver, copper, zinc, cadmium, tin, Selected from the group consisting of nickel, chromium, brass, bronze, zinc alloy steel, zinc-nickel alloy, tin-zinc alloy, tin-silver alloy and tin-cobalt alloy.
  • the coating thickness E is preferably between 0.5 mm and 20 mm.
  • an oxide film generated on the metal material coated with the polymer composition can be detected more reliably. That is, when the coating thickness E is smaller than 0.5 mm, the influence of light scattering is excessive due to the unevenness caused by the oxide film generated on the surface of the metal material, so that it becomes difficult to detect the oxide film generated on the surface of the metal material.
  • the thickness E of the coating is larger than 20 mm, the influence of attenuation of the electromagnetic wave beam by the coating increases, and it becomes difficult to detect the oxide film generated on the metal material. Therefore, if the coating thickness E is between 0.5 mm and 20 mm, the oxide film generated on the metal material coated with the polymer composition can be detected more reliably. More preferably, the coating thickness E is between 0.5 mm and 15 mm.
  • the polymer of the polymer composition is preferably a rubber material or a plastic material.
  • the metal material is preferably a wire and / or cable embedded in a rubber material.
  • the metal material is preferably a wire and / or cable embedded in a plastic material.
  • the wire and / or cable embedded in the rubber material is preferably a tire reinforcing product or a tire semi-finished product.
  • the wires and / or cables embedded in the plastic material are for electric wires.
  • the wire and / or cable embedded in the plastic material is for reinforcing a bridge.
  • the nondestructive diagnosis method of the present invention it is possible to easily and reliably diagnose the generation of an oxide film in a metal material coated with a polymer composition, particularly a metal wire and / or cable.
  • FIG. 1 is a diagram schematically showing a configuration of an apparatus for carrying out a nondestructive diagnosis method according to a first embodiment of the present invention.
  • An apparatus (non-destructive diagnostic apparatus) 1 includes an oscillating unit 2 that irradiates an electromagnetic wave beam having a predetermined frequency in a sub-terahertz band, and a metal wire that is irradiated from the oscillating unit 2 and is covered with a polymer composition 71 that is a measurement target 7. And a detection unit 3 that detects an electromagnetic wave beam reflected by an elongated metal material 72 such as a metal cable and measures the reflection intensity.
  • the apparatus further collimates and condenses an electromagnetic beam having a predetermined frequency in the sub-terahertz band irradiated from the oscillating unit 2 and an electromagnetic beam having a predetermined frequency in the sub-terahertz band.
  • the mirror 5a, 5b, 5c which reflects and condenses, and the rotation apparatus 6 which rotates the elongate metal material 72 coat
  • the mirror 5a is a mirror assembly composed of a plurality of half mirrors
  • 5b is a plane mirror
  • 5c is a parabolic half mirror having a predetermined curvature.
  • An electromagnetic wave beam with a predetermined frequency in the sub-terahertz band irradiated from the oscillating unit 2 passes through the lens 4 as shown in FIG. After being reflected by the mirror 5a and the mirror 5b, it passes through the half mirror 5c and is irradiated onto the measurement object 7.
  • An electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 covered with the polymer composition 71 as the measurement object 7 is collected by the half mirror 5c and then reflected by the mirrors 5b and 5a as parallel light.
  • the measurement object 7 is covered with the polymer composition 71 by rotating the metal material 72 covered with the polymer composition as the measurement object 7 around the longitudinal axis by the rotating device 6 during the measurement. It is possible to diagnose the generation of an oxide film over the entire circumferential surface of the metal material 72.
  • the light source of the electromagnetic wave beam emitted from the oscillation unit 2 is an electronic device, and in the nondestructive diagnostic apparatus 1, a tannet diode (TUNNETT) is used.
  • TUNNETT tannet diode
  • the difference between the intensity of the electromagnetic wave beam irradiated from the oscillation unit 2 and the reflection intensity detected by the detection unit 3 of the electromagnetic wave beam reflected by the metal material 72 by a determination device (not shown). ) Is detected / determined. Such a difference is detected / determined over the circumferential direction of the reflection intensity of the metal material 72 adapted to rotate as described above.
  • the detection unit 3 is a pyroelectric detector (DTGS).
  • the predetermined frequency of the sub-terahertz band electromagnetic wave beam emitted from the oscillation unit 2 is set to 0.05 to 0.2 THz.
  • the so-called skin effect that occurs in a metal material by irradiation with an electromagnetic wave beam compared to the case of using an electromagnetic beam of another frequency band such as a terahertz band. Is reduced, and the reflection of the electromagnetic wave beam can be suppressed from becoming insensitive to the state of the surface of the metal material. Moreover, it can also suppress that an electromagnetic wave beam is attenuate
  • the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is elongated and covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which the metal material 72 extends (the axial direction of the metal material).
  • elliptically polarized light may be created by a waveguide or the like.
  • the major axis direction of the elliptically polarized light is the same as the direction in which the metal material 72 extends. Is set. In this way, the direction of linear polarization of the electromagnetic wave beam or the major axis direction of elliptically polarized light is the same as the direction in which the metal material 72 extends, so that the oxide film generated on the surface of the metal material can be detected more accurately. I can do it.
  • the metal corresponding to the relative angle.
  • the reflection intensity of the electromagnetic wave beam from the material 72 is reduced. Even in such a case, it is possible to detect the oxide film, but by making the polarization direction of the electromagnetic wave beam the same as the direction in which the metal material extends, the reflection is large enough to enable more efficient diagnosis of the oxide film. Gain strength and allow more accurate diagnosis.
  • the polarization direction of the electromagnetic wave beam is important for obtaining a large reflection intensity for more accurate diagnosis of the oxide film.
  • the induction high-frequency current is induced in the direction in which the metal material extends, and the electromagnetic wave beam is prevented from interfering between the metal materials.
  • a larger reflection intensity is obtained, and a more accurate diagnosis is possible.
  • a method according to an embodiment of the present invention for diagnosing the generation of an oxide film on the surface of the metal material 72 coated with the polymer composition 71 using the diagnostic apparatus 1 will be described.
  • a metal material 72 covered with a polymer composition having a predetermined thickness E which is considered to be an oxide film, which is an object to be diagnosed, and an oxide film serving as a reference for comparison with the object to be diagnosed are
  • a metal material 72 coated with a polymer composition having the same predetermined thickness E which is not generated or less than an amount in which generation of an oxide film is a problem.
  • “less than the amount causing the generation of an oxide film” includes, of course, those in which no oxide film is generated, but even if an oxide film is generated, the generated amount is small. Therefore, it means a metal material that has no problem in adhesion to the polymer composition and has no cracks or the like on the surface of the metal material due to the influence of the generation of an oxide film.
  • a reference metal material 72 coated with the polymer composition 71 is placed in the optical system 1 described above, and an electromagnetic wave beam having a frequency of 0.05 to 0.2 THz in the sub-terahertz band irradiated from the oscillation unit 2 is applied to the metal.
  • the material 72 is irradiated, and the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 is measured by the detection unit 3 to obtain the reflection intensity of the reference metal material coated with the polymer composition.
  • the device 1 is used to irradiate the metal material 72 to be diagnosed coated with the polymer composition with an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band, and the reflection intensity thereof is the same as that of the reference metal material. Measure according to the procedure.
  • the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam extends from the elongated metal material 72 that is the measurement object 7. It is set to be the same as the direction (axial direction of the metal material).
  • the elongated metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam while being continuously or intermittently rotated about the longitudinal axis, and the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 is measured.
  • the reflection intensity of the metal material 72 to be diagnosed is compared with the reflection intensity of the metal material to be a reference, and the occurrence state of the oxide film in the metal material to be diagnosed is diagnosed.
  • the reflection intensity is lower than the reflection intensity of the reference genus material, it is determined that an oxide film is generated.
  • standard comparison reference
  • an electromagnetic beam in the sub-terahertz band reflected from the metal material 72 at a wide range of angles on the measurement object 7 can be condensed with high efficiency by the parabolic mirror 5c. Since it is possible, it is particularly suitable for diagnosing a cylindrical measuring object.
  • the type of electronic device that serves as the light source of the oscillation unit 2 is not particularly limited, as long as it can generate an electromagnetic wave beam with a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz, for example, a tannet diode (TUNNETT), a gun Fixed electronic devices such as diodes (GUNN) and impatted diodes (IMPATT) and electronic devices such as traveling wave tubes can be used.
  • these electronic devices do not have to be fundamental wave oscillation, and may obtain a predetermined frequency in the sub-terahertz band described above using a multiplier or the like.
  • These electronic devices can be used with a small power source, and can generate a sub-terahertz band electromagnetic wave beam having a sufficient intensity with a power consumption of about 1 to 2 W, for example. Also, the polarization direction of the electromagnetic wave beam can be easily changed by rotating the electronic device itself that is the light source of the oscillation unit 2 or the entire oscillation unit 2 in which the electronic device is incorporated.
  • the type of detector used in the detector 3 is not particularly limited, but a pyroelectric detector (eg, TGS, DTGS) or a semiconductor device detector (eg, SBD) that is a detector operating at room temperature may be used. I can do it.
  • a pyroelectric detector eg, TGS, DTGS
  • a semiconductor device detector eg, SBD
  • FIG. 2 is a diagram schematically showing the configuration of an apparatus for carrying out the nondestructive diagnosis method according to the second embodiment of the present invention. Since the basic configuration and the effect of the second embodiment are the same as those of the first embodiment described above, the configuration and effect different from the first embodiment will be mainly described here and the first embodiment and the first embodiment will be described. Description of similar configurations and effects is omitted.
  • the path of the electromagnetic wave beam is indicated by a one-dot chain line, and the spread, parallel light, convergence, condensing, etc. of the electromagnetic wave beam are indicated by broken lines.
  • an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz irradiated by the oscillating unit 2 is converted into parallel light by the lens 4 and then converged.
  • the metal material 72 of the measuring object 7 covered with the composition 71 is irradiated with an angle.
  • the electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 is collected by the mirror 5, further converged by the lens 4, and projected onto the detection unit 3.
  • the metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam having the same polarization direction as the direction in which the elongated metal material 72 extends (the axial direction of the metal material). Then, the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 to be diagnosed is measured and compared with the reflection intensity of the metal material 72 serving as a reference.
  • an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz is irradiated at an angle to the measurement object 7 arranged in a two-dimensional plane. It is possible to irradiate the electromagnetic wave beam over a wider range. That is, since the reflected light reflected from the measurement object 7 at a wide range of angles can be collected and detected by the mirror 5, the oxide film generated on the metal material 72 of the measurement object 7 can be diagnosed efficiently.
  • the electromagnetic wave beam is irradiated at an angle of 45 ° with respect to the metal material 72 covered with the polymer composition 71 that is the measurement object 7.
  • the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which 72 extends (the axial direction of the metal material).
  • the loss is reduced by condensing the electromagnetic wave beam reflected by the metal material 72 of the measuring object 7 by the mirror without passing through the lens while enhancing the detection sensitivity by condensing in a wider range of angles. Since it does not occur, an optical system with higher sensitivity can be obtained.
  • a rotation device for rotating the optical system (device 1) itself is added to the optical system of the present embodiment so that the irradiation angle of the electromagnetic wave beam with respect to the measurement target 7 can be changed, or the measurement target 7 can be set to a predetermined value. It is also possible to improve the efficiency of diagnosis by adding a plane moving device for moving in a plane to make the measuring object 7 movable. For example, for a relatively large size diagnostic object 7, a plane moving device for moving the optical system (device 1) itself within a predetermined plane is added, and the optical system is moved in a plane, The diagnosis object 7 may be measured. In addition, regarding such rotation and plane movement of the apparatus 1 and the measuring object 7, both the apparatus 1 and the measuring object 7 may be rotated and moved in accordance with the dimensions of the measuring object 7 as appropriate. .
  • the lens 4 immediately after the oscillation unit 1 of the present embodiment for example, by replacing it with a single lens having both the functions of condensing and converging.
  • FIG. 3 is a diagram schematically showing a configuration of an apparatus for performing the nondestructive diagnosis method according to the third embodiment of the present invention.
  • the basic configuration and effects of the third embodiment are the same as those of the above-described first embodiment. Therefore, here, the configurations and effects different from those of the first embodiment will be mainly described. Description of similar configurations and effects is omitted.
  • the path of the electromagnetic wave beam is indicated by a one-dot chain line, and the spread, parallel light, convergence, condensing, etc. of the electromagnetic wave beam are indicated by broken lines.
  • the electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz irradiated from the oscillation unit 1 is converged by the lens 4 and passes through the chopper 8 and then the lens 4.
  • the light is converted into parallel light, passes through the mirror 5 that is a half mirror, is further converged by the lens 4, and is irradiated onto the metal material 72 that is covered with the polymer composition 71 that is the measurement object 7.
  • the electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 is converted into parallel light by the lens 4, then reflected by the mirror 5, which is a half mirror, and the angle is changed. Is projected.
  • a plane moving device 9 is provided, and this plane moving device 9 moves the measurement object 7 on a plane in a direction in which the plurality of metal materials 72 of the measurement object 7 extend and are aligned.
  • the apparatus 1 is configured to change the position of the measurement object 7.
  • the metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam having the same polarization direction as the direction in which the elongated metal material 72 extends (the axial direction of the metal material). Then, the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 to be diagnosed is measured and compared with the reflection intensity of the metal material 72 serving as a reference.
  • the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which 72 extends (the axial direction of the metal material).
  • the chopper 8 is added to the optical system, thereby providing an optical system that enables more accurate diagnosis.
  • the sub-terahertz wave is always generated in a direct current and almost constant manner from a heat source of about room temperature, such as a human body or a surrounding wall at room temperature.
  • the chopper 8 selectively detects an electromagnetic wave beam in a target frequency band for measurement as an alternating intermittent sub-terahertz wave, so that noisy sub-waves that exist in the outside world are detected.
  • the terahertz wave is excluded, so that the sub-terahertz wave in the target frequency band can be measured with high sensitivity.
  • the chopper 8 can be arbitrarily selected from a mechanically intermittent configuration, a configuration that electrically modulates a light source, and the like. Such a chopper can be added as necessary in other embodiments.
  • the electromagnetic wave beam applied to the metal material is linearly polarized.
  • the polarization state of the electromagnetic wave beam oscillated by the oscillation unit 2 is circularly polarized, elliptically polarized, It is not limited to specific polarization such as linearly polarized light.
  • the detection unit 3 detects the electromagnetic wave beam that has been converted to the linearly polarized light.
  • the reflection intensity is measured by irradiating an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band using the diagnostic apparatus shown in FIG.
  • the sample was subjected to a step of comparing the reflection intensity of the electromagnetic wave beam of each sample with reference to the reference sample.
  • the measurement for each sample was performed by rotating the wire sample from 0 ° to 355 ° in increments of 5 ° using a rotating system to measure the reflection intensity, and comparing the reflection integral intensity, which is an integral value of the reflection intensity.
  • TUNNETT 0.13THz tannet
  • DTGS pyroelectric detector
  • FIG. 4 shows the reflection integral intensity obtained by irradiating each sample with an electromagnetic wave beam and measuring the reflection intensity to obtain the reflection integral intensity. It is a graph which shows the relationship with the determination by visual inspection. The larger the value, the stronger the reflection intensity.
  • the tread height is different from the reference sample cut from the new tire, so the reference sample tread height is aligned with the deteriorated sample.
  • TUNNETT THz tannet
  • DTGS pyroelectric detector
  • Table 1 is a table showing an example of the difference in the reflection intensity between the reference sample and the deteriorated sample.
  • the reflection intensity is measured by irradiating the tread part and the groove part with an electromagnetic wave beam on both samples. It is a table

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a non-destructive diagnosis method for diagnosing occurrence of an oxide film on a metal material, particularly a metal wire and/or a metal cable, covered with a polymer composition, the cover having a predetermined thickness E, using a non-destructive diagnosis device. The non-destructive diagnosis device includes an optical system that includes: an oscillation section that oscillates an electromagnetic beam having a predetermined polarization direction and having a predetermined frequency in a sub-terahertz band; and a detection section that detects an electromagnetic beam having a predetermined frequency in a sub-terahertz band, wherein the oscillation section includes an electronic device as a light source for oscillating an electromagnetic beam, and the predetermined frequency in the sub-terahertz band is a frequency of 0.05 to 0.2 THz. The non-destructive diagnosis method includes the steps of: providing a covered metal material that is a diagnosis object; arranging the metal material with respect to the oscillation section in such a manner that the predetermined polarizing direction is directed in the same direction as that in which the metal material extends; projecting an electromagnetic beam from the oscillation section to the covered metal material; detecting a reflection intensity of an electromagnetic beam reflected by the covered metal material with the detection section; and comparing the reflection intensity of the electromagnetic beam from the metal material as the diagnosis object, which has been detected by the detecting step, with a reflection intensity of the electromagnetic beam reflected from a metal material covered with a polymer composition that serves as a reference, the cover having the same thickness E as that of the metal material as the diagnosis object, in which an amount of an oxide film of the metal material is less than a critical amount.

Description

被覆金属材料の非破壊診断方法Non-destructive diagnostic method for coated metal materials
 本発明は、被覆金属材料の診断方法に関し、詳しくは、サブテラヘルツ帯域の周波数の電磁波ビームの照射による、被覆金属材料の非破壊診断方法に関する。 The present invention relates to a method for diagnosing a coated metal material, and more particularly to a non-destructive diagnostic method for a coated metal material by irradiation with an electromagnetic wave beam having a frequency in the sub-terahertz band.
 ポリマー組成物により被覆された金属ワイヤ及び/又は金属ケーブルは、絶縁電線やエクストラドーズド橋の斜材、タイヤ等の補強目的(複数の金属コードや金属ケーブルからなる補強ベルト層等)で広く利用されているが、ポリマー組成物の被覆に入ったクラックや、金属ワイヤ/ケーブルの接続部等から水分が浸入することにより錆等の酸化膜が発生する。金属ワイヤ/ケーブルに発生した酸化膜は被覆との接着性を低下させ、また酸化膜が金属ワイヤ/ケーブルの内部へと進行することにより断線に至ることもある。 Metal wires and / or metal cables coated with polymer compositions are widely used for reinforcing purposes (reinforcing belt layers made up of multiple metal cords and metal cables, etc.) for insulated wires, diagonal materials for extradosed bridges, tires, etc. However, an oxide film such as rust is generated when water enters from cracks in the coating of the polymer composition, metal wire / cable connection, or the like. The oxide film generated on the metal wire / cable deteriorates the adhesion to the coating, and the oxide film may progress to the inside of the metal wire / cable, resulting in disconnection.
 このような問題となる酸化膜の発生を診断する方法として、局所的に被覆を剥がし、露出させた金属ワイヤ/ケーブルを目視観察する方法がある。しかしながら、この方法では診断後被覆を復元する作業が必要となり手間が掛かる上、復元後に、元の性能を確保することが難しい。特にタイヤの内部補強部材として使用されている被覆金属ワイヤ/ケーブルをこの方法で診断しようとする場合、被覆金属ワイヤ/ケーブルをタイヤのトレッドなど他の部材から露出させる必要があるため、タイヤの内部補強部材として使用されている被覆金属ワイヤ/ケーブルをこの方法で診断することは現実的ではない。 As a method for diagnosing the occurrence of such an oxide film, there is a method in which the coating is locally peeled off and the exposed metal wire / cable is visually observed. However, this method requires work to restore the coating after diagnosis, which is troublesome and it is difficult to ensure the original performance after restoration. In particular, when a coated metal wire / cable used as an internal reinforcing member of a tire is to be diagnosed by this method, it is necessary to expose the coated metal wire / cable from other members such as a tire tread. It is not practical to diagnose coated metal wires / cables used as reinforcement members in this way.
 一方、タイヤの外方に配置されてミリ波やテラヘルツ帯域からなる電磁波を照射する発振部と、タイヤの内方部に配置されてタイヤのゴム層を透過したミリ波等を受信する受信部と、受信したミリ波等の透過強度を基にタイヤの品質の良否を判断する制御装置により、非破壊でタイヤの品質、特に、ゴムの内部における空洞や異物の有無を診断するようにした技術が知られている(特許文献1)。 On the other hand, an oscillating unit that radiates an electromagnetic wave having a millimeter wave or terahertz band disposed outside the tire, and a receiving unit that is disposed on the inner side of the tire and receives millimeter waves transmitted through the tire rubber layer, etc. By using a control device that judges the quality of tires based on the transmission intensity of received millimeter waves, etc., there is a technology that diagnoses tire quality non-destructively, in particular, the presence of cavities and foreign objects inside rubber. Known (Patent Document 1).
 また、特許文献2には、1.3~2.3THzの範囲から選んだ周波数の判定用遠赤外線と、ある周波数の更正用遠赤外線とを、各々、基準電線及び診断対象電線に照射し、その反射強度を比較することにより診断対象絶縁電線の酸化膜の発生状態を診断するようにした技術が開示されている。 Further, Patent Document 2 irradiates a reference wire and a diagnosis target wire with a far infrared ray for determining a frequency selected from a range of 1.3 to 2.3 THz and a far infrared ray for correcting with a certain frequency, respectively, and its reflection intensity. A technique for diagnosing the occurrence state of an oxide film of an insulated electric wire to be diagnosed by comparing the above is disclosed.
特開2006-153789号公報JP 2006-153789 A 特開2010-164475号公報JP 2010-164475 A
 しかしながら、特許文献1に開示された技術は、タイヤを透過したミリ波等の透過強度を基にタイヤ内の空洞や異物を検出してタイヤの良否判定を行うものであるが、ミリ波等は金属ワイヤ/ケーブルを透過することが出来ないため、ミリ波等の透過強度に基づいて金属ワイヤ/ケーブルに発生した酸化膜の検出することは難しい。また、金属ワイヤ/ケーブルに発生した酸化膜がタイヤを透過したミリ波等の透過強度に与える影響は微小であるため、透過強度の変化に基づいて酸化膜の発生を検出することが難しい。
 これらの問題により、特許文献1に開示された技術を用いても、酸化膜の発生を正確に診断することが難しいという問題点がある。
However, the technique disclosed in Patent Document 1 is to determine the quality of a tire by detecting cavities and foreign matter in the tire based on the transmission intensity of the millimeter wave transmitted through the tire. Since the metal wire / cable cannot be transmitted, it is difficult to detect the oxide film generated on the metal wire / cable based on the transmission intensity of millimeter waves or the like. Further, since the influence of the oxide film generated on the metal wire / cable on the transmission intensity of millimeter waves or the like transmitted through the tire is minute, it is difficult to detect the generation of the oxide film based on the change in the transmission intensity.
Due to these problems, there is a problem that it is difficult to accurately diagnose the generation of an oxide film even if the technique disclosed in Patent Document 1 is used.
 また、特許文献2に開示された技術では、テラヘルツ帯域の特定の周波数を有する電磁波を照射するようにしており、このような周波数帯の電磁波を照射するための光源としてレーザー光源を用いている。しかしながら、レーザー光源からテラヘルツ帯域の電磁波を発生する発生効率は極めて低く、強力な励起レーザーが必要となるため安全性の観点から厳重な養生が必要となり、消費電力も大きくなる、という問題点がある。また一般的には固体レーザーが用いられるため装置が大型になってしまうという問題点がある。 In the technology disclosed in Patent Document 2, an electromagnetic wave having a specific frequency in the terahertz band is irradiated, and a laser light source is used as a light source for irradiating the electromagnetic wave in such a frequency band. However, the generation efficiency of terahertz band electromagnetic waves from a laser light source is extremely low, and a strong excitation laser is required, so that strict curing is necessary from the viewpoint of safety, and power consumption is also increased. . In general, since a solid-state laser is used, there is a problem that the apparatus becomes large.
 そこで本発明は、上述した従来技術が抱える問題点を解決するためになされたものであり、ポリマー組成物により被覆された金属材料、特に金属ワイヤ及び/またはケーブルにおける、問題となるような酸化膜の発生の有無を簡便且つ確実に診断するための非破壊診断方法を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems of the prior art, and an oxide film which causes a problem in a metal material coated with a polymer composition, particularly a metal wire and / or cable. An object of the present invention is to provide a non-destructive diagnostic method for simply and reliably diagnosing the presence or absence of occurrence.
上記の目的を達成するために、本発明は、
 所定の厚さEを有するポリマー組成物により被覆された金属材料、特に金属ワイヤ及び/又は金属ケーブルにおける酸化膜発生を、非破壊診断装置を用いて診断するための非破壊診断方法であって、
 前記非破壊診断装置は、所定の偏光方向を有しサブテラヘルツ帯域の所定の周波数の電磁波ビームを発振する発振部と、サブテラヘルツ帯域の所定の周波数の電磁波ビームを検出する検出部とを含む光学系を有し、
 前記発振部は、前記電磁波ビームを発振する光源として電子デバイスを有し、前記サブテラヘルツ帯域の所定の周波数が0.05~0.2THzの周波数であり、
 前記非破壊診断方法は、
 診断対象となる被覆された金属材料を提供するステップと、
 前記金属材料を、前記所定の偏光方向が該金属材料が延びる方向と同じになるように、前記発振部に対して配置するステップと、
 前記発振部から前記電磁波ビームを前記被覆された金属材料に照射するステップと、
 前記被覆された金属材料で反射された電磁波ビームの反射強度を前記検出部により検出するステップと、
 前記検出ステップにより検出された診断対象の金属材料からの電磁波ビームの反射強度を、前記診断対象の金属材料と同じ厚さEを有するポリマー組成物により被覆され且つその金属材料の酸化膜が問題となる量未満のものである、比較基準となる被覆された金属材料からの電磁波ビームの反射強度と比較するステップと、を有する、
 ことを特徴としている。
In order to achieve the above object, the present invention provides:
A nondestructive diagnostic method for diagnosing generation of an oxide film in a metal material, particularly a metal wire and / or a metal cable, coated with a polymer composition having a predetermined thickness E, using a nondestructive diagnostic device,
The non-destructive diagnostic apparatus includes an oscillating unit that oscillates an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band and having a predetermined polarization direction, and an optical unit that detects an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band. Have a system,
The oscillating unit has an electronic device as a light source for oscillating the electromagnetic wave beam, and the predetermined frequency of the sub-terahertz band is a frequency of 0.05 to 0.2 THz,
The non-destructive diagnosis method is:
Providing a coated metal material to be diagnosed;
Disposing the metal material relative to the oscillation unit such that the predetermined polarization direction is the same as the direction in which the metal material extends;
Irradiating the coated metal material with the electromagnetic wave beam from the oscillation unit;
Detecting the reflection intensity of the electromagnetic wave beam reflected by the coated metal material by the detection unit;
The reflection intensity of the electromagnetic wave beam from the diagnosis target metal material detected by the detection step is covered with a polymer composition having the same thickness E as the diagnosis target metal material, and the oxide film of the metal material is a problem. Comparing the reflected intensity of the electromagnetic wave beam from the coated metal material as a reference, which is less than the amount of
It is characterized by that.
 このように構成された本発明においては、発振部から発振される電磁波ビームを診断対象となる被覆された金属材料に照射し、被覆された金属材料で反射される電磁波ビームの反射強度を検出部により検出し、検出された被覆された金属材料の反射強度を、診断対象となる被覆された金属材料と同じ厚さEを有するポリマー組成物により被覆され且つその金属材料の酸化膜が問題となる量未満のものである、比較基準となる被覆された金属材料の反射強度とを比較しているので、診断対象となる所定の厚さEを有するポリマー組成物により被覆された金属材料、特に金属ワイヤ及び/またはケーブルにおける酸化膜の発生状況を、被覆及び金属材料をいずれも破壊することなく診断することができる。
 即ち、酸化膜の発生した金属材料は電磁波ビームの反射強度が低下するので、診断対象とする被覆された金属材料の反射強度を、金属材料の酸化膜が問題となる量未満である比較基準となる被覆された金属材料の反射強度と比較することにより、診断対象となる金属材料の酸化膜発生状況を把握することが出来るのである。
 特に、基準となる被覆された金属材料として、診断対象である被覆された金属材料と同じ厚さEを有するポリマー組成物により被覆され且つその金属材料の酸化膜が問題となる量未満であるものが用いられるので、問題となるような酸化膜の発生の有無を簡便且つ確実に診断することが出来る。
 ここで、「金属材料の酸化膜が問題となる量未満」とは、酸化膜が発生していない、または、酸化膜が発生していたとしても、発生量がわずかであるためポリマー組成物との接着性に問題がなく、また、金属材料の表面にクラック等が発生していない量を意味する。
In the present invention configured as described above, the electromagnetic wave beam oscillated from the oscillating unit is irradiated to the coated metal material to be diagnosed, and the reflection intensity of the electromagnetic wave beam reflected by the coated metal material is detected by the detecting unit. The reflection intensity of the detected coated metal material is coated with a polymer composition having the same thickness E as the coated metal material to be diagnosed, and the oxide film of the metal material becomes a problem. Since the comparison is made with the reflection intensity of the coated metal material used as a reference, which is less than the amount, a metal material coated with a polymer composition having a predetermined thickness E to be diagnosed, particularly a metal It is possible to diagnose the state of occurrence of an oxide film in a wire and / or cable without destroying both the coating and the metal material.
That is, since the reflection intensity of the electromagnetic wave beam is reduced in the metal material in which the oxide film is generated, the reflection intensity of the coated metal material to be diagnosed is less than the amount that causes the oxide film of the metal material to be a problem. By comparing with the reflection intensity of the coated metal material, it is possible to grasp the state of oxide film generation of the metal material to be diagnosed.
In particular, the coated metal material used as a reference is coated with a polymer composition having the same thickness E as the coated metal material to be diagnosed, and the oxide film of the metal material is less than the amount in question. Therefore, it is possible to easily and reliably diagnose the presence or absence of an oxide film that causes a problem.
Here, “the oxide film of the metal material is less than the amount causing the problem” means that the oxide film is not generated, or even if the oxide film is generated, the generated amount is so small that the polymer composition This means an amount in which there is no problem in the adhesion and no cracks are generated on the surface of the metal material.
 さらに本発明においては、サブテラヘルツ帯域の所定の周波数を0.05~0.2THzとした電磁波ビームを用いているので、ポリマー組成物により被覆された金属材料に発生した酸化膜を、より正確に検出する事が出来る。
 すなわち、サブテラヘルツ帯域の所定の周波数が0.05THzを下回ると、電磁波を照射する事により金属材料に発生する、いわゆる表皮効果が減少するため、金属材料表面の状態に鈍感になり、金属材料表面に発生した酸化膜の検出が難しくなる。また、サブテラヘルツ帯域の所定の周波数が0.2THzを上回ると、電磁波ビームが金属材料を被覆するポリマー組成物により減衰されやすくなり、また、金属材料表面に発生した酸化膜による凹凸により光散乱の影響が過大となるため、金属材料表面に発生した酸化膜の検出が難しくなる。
Furthermore, in the present invention, an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz is used, so that an oxide film generated on a metal material coated with a polymer composition can be detected more accurately. I can do it.
That is, when the predetermined frequency in the sub-terahertz band is less than 0.05 THz, the so-called skin effect that occurs in the metal material due to irradiation with electromagnetic waves is reduced, so that the state of the metal material surface becomes insensitive and the surface of the metal material is insensitive. It becomes difficult to detect the generated oxide film. In addition, when the predetermined frequency of the sub-terahertz band exceeds 0.2 THz, the electromagnetic wave beam is easily attenuated by the polymer composition that coats the metal material, and the influence of light scattering due to the unevenness of the oxide film generated on the surface of the metal material. Therefore, it becomes difficult to detect the oxide film generated on the surface of the metal material.
 さらに本発明の非破壊診断方法においては、電磁波ビームの光源として電子デバイスを用いているので、小さな出力で十分な強度の電磁波ビームを発生させる事が出来る。これにより、より安全に非破壊診断が可能となり、また、電源も小型のものが使用できるため消費電力も小さく抑えた非破壊診断が可能となる。そして、電子デバイスとして、特にダイオード等の固体電子デバイスを用いると、非破壊診断装置の小型化が可能となる。 Furthermore, in the non-destructive diagnostic method of the present invention, an electronic device is used as the light source of the electromagnetic wave beam, so that an electromagnetic wave beam with sufficient intensity can be generated with a small output. As a result, non-destructive diagnosis can be performed more safely, and non-destructive diagnosis with reduced power consumption can be performed because a small power source can be used. If a solid-state electronic device such as a diode is used as the electronic device, the nondestructive diagnostic apparatus can be downsized.
 さらに本発明の非破壊診断方法においては、電磁波ビームは所定の偏光方向を有し、非破壊診断方法は、さらに、この所定の偏光方向と、診断対象となる被覆された金属材料が延びる方向が同じになるように、診断対象となる被覆された金属材料を配置し及び/又は非破壊診断装置を設定するステップを有する。
 これにより、電磁波ビームの所定の偏光方向(例えば、直線偏光の方向や楕円偏光の長軸方向)と、ポリマー組成物により被覆された金属材料が延びる方向とが同じになるようにしているので、金属材料表面に発生した酸化膜をより正確に検出することが出来る。ここで、例えば、電磁波ビームの直線偏光の方向や楕円偏光の長軸方向が、金属材料が延びる方向に対して相対的な角度を有している場合、その相対的な角度の分、金属材料からの電磁波ビームの反射強度が小さくなる。このような場合でも、酸化膜の検出は可能であるが、偏光方向と金属材料が延びる方向とを同じにすることで、より大きな(より効率よく)反射強度を得て、より正確な診断が可能になるのである。
Furthermore, in the nondestructive diagnostic method of the present invention, the electromagnetic wave beam has a predetermined polarization direction, and the nondestructive diagnostic method further includes the predetermined polarization direction and the direction in which the coated metal material to be diagnosed extends. Place the coated metal material to be diagnosed and / or set up a non-destructive diagnostic device to be the same.
Thereby, the predetermined polarization direction of the electromagnetic wave beam (for example, the direction of linearly polarized light or the major axis direction of elliptically polarized light) and the direction in which the metal material coated with the polymer composition extends are the same. The oxide film generated on the surface of the metal material can be detected more accurately. Here, for example, when the direction of the linearly polarized light of the electromagnetic wave beam or the major axis direction of the elliptically polarized light has a relative angle with respect to the direction in which the metal material extends, the amount of the relative angle corresponds to the metal material. The reflection intensity of the electromagnetic wave beam from becomes small. Even in such a case, it is possible to detect the oxide film, but by making the polarization direction and the direction in which the metal material extends the same, a larger (more efficient) reflection intensity can be obtained and a more accurate diagnosis can be performed. It becomes possible.
 本発明において、好ましくは、反射強度検出ステップは、前記非破壊診断装置と前記金属材料とを、前記金属材料の長手方向軸線を中心に相対回転させながら行われる。
 このように構成された本発明においては、測定対象となるポリマー組成物により被覆された金属材料の全周面に電磁波ビームを照射することが可能となり、金属材料の表面に発生した酸化膜をより確実に検出する事が出来る。
In the present invention, the reflection intensity detection step is preferably performed while relatively rotating the non-destructive diagnostic apparatus and the metal material about the longitudinal axis of the metal material.
In the present invention configured as described above, it becomes possible to irradiate the entire circumference of the metal material coated with the polymer composition to be measured with an electromagnetic wave beam, and the oxide film generated on the surface of the metal material can be further reduced. It can be detected reliably.
 本発明において、好ましくは、非破壊診断装置は、さらに、前記反射強度検出ステップは、前記非破壊診断装置と前記金属材料を相対的に平面移動させながら行われる。
 このように構成された本発明においては、例えば、複数のコードやワイヤを備えたタイヤの補強用のベルト層などにおいて、個々の金属材料(金属コードや金属ケーブルなど)の表面に発生した酸化膜の診断の効率を向上させることが出来る。
In the present invention, preferably, in the nondestructive diagnostic apparatus, the reflection intensity detecting step is performed while relatively moving the nondestructive diagnostic apparatus and the metal material on a plane.
In the present invention configured as described above, for example, an oxide film generated on the surface of each metal material (metal cord, metal cable, etc.) in a belt layer for reinforcing a tire provided with a plurality of cords and wires. The efficiency of diagnosis can be improved.
 本発明において、好ましくは、金属材料が、鉄、銅、アルミニウム、銀、白金、金、亜鉛、カドミウム、スズ、ニッケル、クロム、真鍮、青銅、コバルト、ベリリウム及びこれらの金属の合金からなる群から選ばれる。 In the present invention, preferably, the metal material is selected from the group consisting of iron, copper, aluminum, silver, platinum, gold, zinc, cadmium, tin, nickel, chromium, brass, bronze, cobalt, beryllium and alloys of these metals. To be elected.
 本発明において、好ましくは、金属材料は、その金属材料とは異なる材料からなる金属コーティング層を有し、金属コーティング層を形成する金属が、白金、金、銀、銅、亜鉛、カドミウム、スズ、ニッケル、クロム、真鍮、青銅、亜鉛合金鋼、亜鉛-ニッケル合金、スズ-亜鉛合金、スズ-銀合金およびスズ-コバルト合金からなる群から選ばれる。 In the present invention, preferably, the metal material has a metal coating layer made of a material different from the metal material, and the metal forming the metal coating layer is platinum, gold, silver, copper, zinc, cadmium, tin, Selected from the group consisting of nickel, chromium, brass, bronze, zinc alloy steel, zinc-nickel alloy, tin-zinc alloy, tin-silver alloy and tin-cobalt alloy.
 本発明において、好ましくは、被覆の厚さEは0.5mmと20mmの間である。
 このように構成された本発明においては、ポリマー組成物により被覆された金属材料に発生した酸化膜をより確実に検出する事が出来る。すなわち、被覆の厚さEを0.5mmよりも小さくすると、金属材料表面に発生した酸化膜による凹凸により光散乱の影響が過大となるため、金属材料表面に発生した酸化膜の検出が難しくなる。一方、被覆の厚さEを20mmよりも大きくすると、被覆による電磁波ビームの減衰の影響が大きくなり、金属材料に発生した酸化膜の検出が難しくなってしまう。従って、被覆の厚さEを0.5mmと20mmの間とすれば、ポリマー組成物により被覆された金属材料に発生した酸化膜をより確実に検出することができる。
 さらに好ましくは、被覆の厚さEは0.5mmと15mmの間である。
In the present invention, the coating thickness E is preferably between 0.5 mm and 20 mm.
In the present invention configured as described above, an oxide film generated on the metal material coated with the polymer composition can be detected more reliably. That is, when the coating thickness E is smaller than 0.5 mm, the influence of light scattering is excessive due to the unevenness caused by the oxide film generated on the surface of the metal material, so that it becomes difficult to detect the oxide film generated on the surface of the metal material. On the other hand, if the thickness E of the coating is larger than 20 mm, the influence of attenuation of the electromagnetic wave beam by the coating increases, and it becomes difficult to detect the oxide film generated on the metal material. Therefore, if the coating thickness E is between 0.5 mm and 20 mm, the oxide film generated on the metal material coated with the polymer composition can be detected more reliably.
More preferably, the coating thickness E is between 0.5 mm and 15 mm.
 本発明において、好ましくは、ポリマー組成物のポリマーがゴム材料もしくはプラスティック材料である。 In the present invention, the polymer of the polymer composition is preferably a rubber material or a plastic material.
 本発明において、好ましくは、金属材料はゴム材料に埋設されたワイヤ及び/またはケーブルである。 In the present invention, the metal material is preferably a wire and / or cable embedded in a rubber material.
 本発明において、好ましくは、金属材料はプラスティック材料に埋設されたワイヤ及び/またはケーブルである。 In the present invention, the metal material is preferably a wire and / or cable embedded in a plastic material.
 本発明において、好ましくは、ゴム材料に埋設されたワイヤおよび/またはケーブルはタイヤ補強用またはタイヤ用半製品である。 In the present invention, the wire and / or cable embedded in the rubber material is preferably a tire reinforcing product or a tire semi-finished product.
 本発明において、好ましくは、プラスティック材料に埋設されたワイヤおよび/またはケーブルは電線用である。 In the present invention, preferably, the wires and / or cables embedded in the plastic material are for electric wires.
 本発明において、好ましくは、プラスティック材料に埋設されたワイヤおよび/またはケーブルは橋梁補強用である。 In the present invention, it is preferable that the wire and / or cable embedded in the plastic material is for reinforcing a bridge.
 本発明による非破壊診断方法によれば、ポリマー組成物により被覆された金属材料、特に金属ワイヤ及び/またはケーブルにおける酸化膜の発生を簡便且つ確実に診断ことが出来る。 According to the nondestructive diagnosis method of the present invention, it is possible to easily and reliably diagnose the generation of an oxide film in a metal material coated with a polymer composition, particularly a metal wire and / or cable.
本発明の第一実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the apparatus for implementing the nondestructive diagnostic method by 1st embodiment of this invention. 本発明の第二実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the apparatus for enforcing the nondestructive diagnostic method by 2nd embodiment of this invention. 本発明の第三実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the apparatus for enforcing the nondestructive diagnostic method by 3rd embodiment of this invention. 反射強度と熟練検査員の目視点検による判定との関係を示すグラフである。It is a graph which shows the relationship between reflection intensity and the determination by visual inspection of a skilled inspector.
 以下、本発明の好ましい実施形態を、図面を参照して説明する。
 図1は、本発明の第一実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。
 装置(非破壊診断装置)1は、サブテラヘルツ帯域の所定の周波数の電磁波ビームを照射する発振部2と、発振部2から照射され、測定対象7であるポリマー組成物71により被覆された金属ワイヤ、金属ケーブル等の細長い金属材料72で反射された電磁波ビームを検出し、反射強度を測定する検出部3とを備えている。この装置はさらに、発振部2から照射されるサブテラヘルツ帯域の所定の周波数の電磁波ビームを平行に(コリメート)させる、また集光させるレンズ4と、同じくサブテラヘルツ帯域の所定の周波数の電磁波ビームを反射し、また集光させるミラー5a、5b、5cと、測定対象7であるポリマー組成物71により被覆された細長い金属材料72を長手方向軸線を中心に回転させる回転装置6とを備えている。ミラー5aは複数枚のハーフミラー等によって構成されたミラー組立体であり、5bは平面ミラーであり、5cは所定の曲率を有する放物面状のハーフミラーである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration of an apparatus for carrying out a nondestructive diagnosis method according to a first embodiment of the present invention.
An apparatus (non-destructive diagnostic apparatus) 1 includes an oscillating unit 2 that irradiates an electromagnetic wave beam having a predetermined frequency in a sub-terahertz band, and a metal wire that is irradiated from the oscillating unit 2 and is covered with a polymer composition 71 that is a measurement target 7. And a detection unit 3 that detects an electromagnetic wave beam reflected by an elongated metal material 72 such as a metal cable and measures the reflection intensity. The apparatus further collimates and condenses an electromagnetic beam having a predetermined frequency in the sub-terahertz band irradiated from the oscillating unit 2 and an electromagnetic beam having a predetermined frequency in the sub-terahertz band. The mirror 5a, 5b, 5c which reflects and condenses, and the rotation apparatus 6 which rotates the elongate metal material 72 coat | covered with the polymer composition 71 which is the measuring object 7 centering on a longitudinal axis. The mirror 5a is a mirror assembly composed of a plurality of half mirrors, 5b is a plane mirror, and 5c is a parabolic half mirror having a predetermined curvature.
 発振部2から照射されたサブテラヘルツ帯域の所定の周波数の電磁波ビーム(図1では、その電磁波ビームの経路のみを一点鎖線で示す)は、図1に示すように、レンズ4を通過する事で平行光とされ、ミラー5a、ミラー5bで反射された後、ハーフミラー5cを通過して測定対象7に照射される。測定対象7であるポリマー組成物71により被覆された金属材料72で反射されたサブテラヘルツ帯域の所定の周波数の電磁波ビームは、ハーフミラー5cにより集光されたのち平行光としてミラー5b、5aで反射され、レンズ4により集光され検出部3へと投影され、検出部3で、検出される。また、測定対象7であるポリマー組成物により被覆された金属材料72を、測定中に回転装置6により長手方向軸線を中心に回転させることで、ポリマー組成物71により被覆された測定対象7である金属材料72の円周方向の全面にわたり酸化膜の発生の診断する事が可能となる。 An electromagnetic wave beam with a predetermined frequency in the sub-terahertz band irradiated from the oscillating unit 2 (in FIG. 1, only the path of the electromagnetic wave beam is indicated by an alternate long and short dash line) passes through the lens 4 as shown in FIG. After being reflected by the mirror 5a and the mirror 5b, it passes through the half mirror 5c and is irradiated onto the measurement object 7. An electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 covered with the polymer composition 71 as the measurement object 7 is collected by the half mirror 5c and then reflected by the mirrors 5b and 5a as parallel light. Then, the light is condensed by the lens 4 and projected onto the detection unit 3, and is detected by the detection unit 3. In addition, the measurement object 7 is covered with the polymer composition 71 by rotating the metal material 72 covered with the polymer composition as the measurement object 7 around the longitudinal axis by the rotating device 6 during the measurement. It is possible to diagnose the generation of an oxide film over the entire circumferential surface of the metal material 72.
 非破壊診断装置1では、発振部2から照射される電磁波ビームの光源を電子デバイスとしており、非破壊診断装置1では、タンネットダイオード(TUNNETT)を用いている。このような電子デバイスを用いることで、装置を小型化することが可能となり、また小さな出力で十分な強度の電磁波ビームを発生する事が出来るため安全であり、電源も小型のものが使用できるため消費電力も小さく抑えることが出来る。 In the nondestructive diagnostic apparatus 1, the light source of the electromagnetic wave beam emitted from the oscillation unit 2 is an electronic device, and in the nondestructive diagnostic apparatus 1, a tannet diode (TUNNETT) is used. By using such an electronic device, it is possible to reduce the size of the apparatus, and because it is possible to generate an electromagnetic wave beam with sufficient intensity with a small output, it is safe and a power supply with a small size can be used. Power consumption can also be kept small.
 装置1では、図示しない判定装置により、このような発振部2から照射された電磁波ビームの強度と、金属材料72で反射された電磁波ビームの検出部3により検出された反射強度との違い(差)を検知/判定するようにしている。このような違いは、上述したように回転されるようになっている金属材料72の反射強度の円周方向にわたって検知/判定される。本実施形態において、検出部3は焦電型検出器(DTGS)である。 In the apparatus 1, the difference (difference) between the intensity of the electromagnetic wave beam irradiated from the oscillation unit 2 and the reflection intensity detected by the detection unit 3 of the electromagnetic wave beam reflected by the metal material 72 by a determination device (not shown). ) Is detected / determined. Such a difference is detected / determined over the circumferential direction of the reflection intensity of the metal material 72 adapted to rotate as described above. In the present embodiment, the detection unit 3 is a pyroelectric detector (DTGS).
 次に、本実施形態では発振部2から照射されるサブテラヘルツ帯域の電磁波ビームの所定の周波数を0.05~0.2THzとしている。このような0.05~0.2THzというサブテラヘルツ帯域の周波数を用いることで、例えば、テラヘルツ帯域など他の周波数帯の電磁波ビームを用いる場合に比べて、電磁波ビームの照射により金属材料に発生するいわゆる表皮効果が減少して、電磁波ビームの反射が金属材料表面の状態に鈍感になることを抑制することが出来る。また、電磁波ビームが金属材料を被覆するポリマー組成物により減衰されることも抑制することが出来る。さらに、金属材料表面に発生した酸化膜による凹凸による光散乱の影響が過大になることも抑制可能となる。従って、0.05~0.2THzというサブテラヘルツ帯域の周波数を用いることで、ポリマー組成物により被覆された金属材料表面に発生した酸化膜を、より正確に検出する事が可能となる。また、本実施形態では、図示しない共振器矩形導波管又は偏光子により、電磁波ビームを直線偏光としており、その電磁波ビームの偏光方向が、測定対象7であるポリマー組成物71により被覆された細長い金属材料72が延びる方向(金属材料の軸線方向)と同じとなるように設定されている。なお、導波管などにより、楕円偏光を作り出すようにしても良く、この場合、直線偏光の場合と同様に、その楕円偏光の長軸方向が、金属材料72が延びる方向と同じとなるように設定される。
 このように、電磁波ビームの直線偏光の方向や楕円偏光の長軸方向と、金属材料72が延びる方向とが同じになるようにしているので、金属材料表面に発生した酸化膜をより正確に検出することが出来る。ここで、例えば、電磁波ビームの直線偏光の方向や楕円偏光の長軸方向が、金属材料72が延びる方向に対して相対的な角度を有している場合、その相対的な角度の分、金属材料72からの電磁波ビームの反射強度が小さくなる。このような場合でも、酸化膜の検出は可能であるが、電磁波ビームの偏光方向と金属材料が延びる方向とを同じにすることで、より効率よく、酸化膜の診断が十分可能な程大きな反射強度を得て、より正確な診断が可能になる。
Next, in this embodiment, the predetermined frequency of the sub-terahertz band electromagnetic wave beam emitted from the oscillation unit 2 is set to 0.05 to 0.2 THz. By using such sub-terahertz band frequencies of 0.05 to 0.2 THz, for example, the so-called skin effect that occurs in a metal material by irradiation with an electromagnetic wave beam, compared to the case of using an electromagnetic beam of another frequency band such as a terahertz band. Is reduced, and the reflection of the electromagnetic wave beam can be suppressed from becoming insensitive to the state of the surface of the metal material. Moreover, it can also suppress that an electromagnetic wave beam is attenuate | damped by the polymer composition which coat | covers a metal material. Furthermore, it becomes possible to suppress the influence of light scattering due to the unevenness caused by the oxide film generated on the surface of the metal material from becoming excessive. Therefore, by using a frequency in the sub-terahertz band of 0.05 to 0.2 THz, it becomes possible to more accurately detect an oxide film generated on the surface of the metal material coated with the polymer composition. Further, in this embodiment, the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is elongated and covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which the metal material 72 extends (the axial direction of the metal material). Note that elliptically polarized light may be created by a waveguide or the like. In this case, as in the case of linearly polarized light, the major axis direction of the elliptically polarized light is the same as the direction in which the metal material 72 extends. Is set.
In this way, the direction of linear polarization of the electromagnetic wave beam or the major axis direction of elliptically polarized light is the same as the direction in which the metal material 72 extends, so that the oxide film generated on the surface of the metal material can be detected more accurately. I can do it. Here, for example, when the direction of the linearly polarized light of the electromagnetic wave beam and the major axis direction of the elliptically polarized light have a relative angle with respect to the direction in which the metal material 72 extends, the metal corresponding to the relative angle. The reflection intensity of the electromagnetic wave beam from the material 72 is reduced. Even in such a case, it is possible to detect the oxide film, but by making the polarization direction of the electromagnetic wave beam the same as the direction in which the metal material extends, the reflection is large enough to enable more efficient diagnosis of the oxide film. Gain strength and allow more accurate diagnosis.
 電磁波ビームの偏光方向は、より正確な酸化膜の診断を行うための大きな反射強度を得るためには重要である。電磁波ビームの偏光方向と金属材料が延びる方向とを同じにすることで、誘導高周波電流は金属材料が延びる方向に誘導され、電磁波ビームが金属材料間で干渉することを防止し、その結果、電磁波ビームの偏光方向が金属材料が延びる方向と異なる場合と比較して、より大きな反射強度を得て、より正確な診断を可能とするものである。 The polarization direction of the electromagnetic wave beam is important for obtaining a large reflection intensity for more accurate diagnosis of the oxide film. By making the polarization direction of the electromagnetic wave beam the same as the direction in which the metal material extends, the induction high-frequency current is induced in the direction in which the metal material extends, and the electromagnetic wave beam is prevented from interfering between the metal materials. Compared with the case where the polarization direction of the beam is different from the direction in which the metal material extends, a larger reflection intensity is obtained, and a more accurate diagnosis is possible.
 この診断装置1を使用して、ポリマー組成物71により被覆された金属材料72の表面の酸化膜発生を診断する本発明の実施形態の方法を説明する。まず、診断対象である、酸化膜が発生していると考えられる所定の厚さEを有するポリマー組成物により被覆された金属材料72と、この診断対象と比較する比較基準となる、酸化膜が発生していないもしくは酸化膜の発生が問題となる量未満である、同じ所定の厚さEを有するポリマー組成物により被覆された金属材料72と、を用意する。
 ここで、「酸化膜の発生が問題となる量未満」の金属材料とは、当然に酸化膜が発生していないものも含むが、酸化膜が発生していたとしても、発生量がわずかであるためポリマー組成物との接着性に問題がなく、また、酸化膜の発生の影響により金属材料の表面にクラック等が発生していない金属材料を意味する。
A method according to an embodiment of the present invention for diagnosing the generation of an oxide film on the surface of the metal material 72 coated with the polymer composition 71 using the diagnostic apparatus 1 will be described. First, a metal material 72 covered with a polymer composition having a predetermined thickness E, which is considered to be an oxide film, which is an object to be diagnosed, and an oxide film serving as a reference for comparison with the object to be diagnosed are And a metal material 72 coated with a polymer composition having the same predetermined thickness E, which is not generated or less than an amount in which generation of an oxide film is a problem.
Here, “less than the amount causing the generation of an oxide film” includes, of course, those in which no oxide film is generated, but even if an oxide film is generated, the generated amount is small. Therefore, it means a metal material that has no problem in adhesion to the polymer composition and has no cracks or the like on the surface of the metal material due to the influence of the generation of an oxide film.
 次に、ポリマー組成物71により被覆された基準となる金属材料72を、上述した光学系1に配置し、発振部2から照射されるサブテラヘルツ帯域の0.05~0.2THzの周波数の電磁波ビームを金属材料72に照射し、検出部3により、その金属材料72で反射される電磁波ビームの反射強度を測定し、ポリマー組成物により被覆された基準となる金属材料の反射強度を得る。
 さらに、装置1を用いて、ポリマー組成物により被覆された診断対象である金属材料72にサブテラヘルツ帯域の所定の周波数の電磁波ビームを照射し、その反射強度を、基準となる金属材料と同様の手順で測定する。
 上述したように、本実施形態では、図示しない共振器矩形導波管又は偏光子により、電磁波ビームが直線偏光とされ、その電磁波ビームの偏光方向が、測定対象7である細長い金属材料72が延びる方向(金属材料の軸線方向)と同じとなるように設定されている。
 本実施形態では、診断対象の細長い金属材料72は、長手方向軸線を中心に連続的または断続的に回転させられながら電磁波ビームを照射され、金属材料72で反射した電磁波ビームの反射強度が測定される。
 診断対象の金属材料72の反射強度を、基準となる金属材料の反射強度と比較し、診断対象の金属材料における酸化膜の発生状態を診断する。一般に、反射強度が、基準の属材料の反射強度より小さければ、酸化膜が発生していると判定される。
 なお、診断対象と比較する基準(比較基準)となる測定対象7の反射強度については、上述した方法と同一の条件下であれば、例えば、製品製造時に、予め、データを取得しても良い。この場合、比較基準となり得るデータが得られるのであれば、上述した装置1とは異なる他の装置(例えば、後述する第二実施形態で用いる装置など)を用いても良い。
Next, a reference metal material 72 coated with the polymer composition 71 is placed in the optical system 1 described above, and an electromagnetic wave beam having a frequency of 0.05 to 0.2 THz in the sub-terahertz band irradiated from the oscillation unit 2 is applied to the metal. The material 72 is irradiated, and the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 is measured by the detection unit 3 to obtain the reflection intensity of the reference metal material coated with the polymer composition.
Further, the device 1 is used to irradiate the metal material 72 to be diagnosed coated with the polymer composition with an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band, and the reflection intensity thereof is the same as that of the reference metal material. Measure according to the procedure.
As described above, in this embodiment, the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam extends from the elongated metal material 72 that is the measurement object 7. It is set to be the same as the direction (axial direction of the metal material).
In this embodiment, the elongated metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam while being continuously or intermittently rotated about the longitudinal axis, and the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 is measured. The
The reflection intensity of the metal material 72 to be diagnosed is compared with the reflection intensity of the metal material to be a reference, and the occurrence state of the oxide film in the metal material to be diagnosed is diagnosed. Generally, if the reflection intensity is lower than the reflection intensity of the reference genus material, it is determined that an oxide film is generated.
In addition, about the reflection intensity of the measuring object 7 used as the reference | standard (comparison reference | standard) compared with a diagnostic object, if the conditions are the same as the method mentioned above, you may acquire data beforehand, for example at the time of product manufacture . In this case, as long as data that can serve as a comparison reference is obtained, another device different from the device 1 described above (for example, a device used in the second embodiment described later) may be used.
 本実施形態にかかる光学系の配置は、測定対象7で金属材料72から広範囲の角度で反射されるサブテラヘルツ帯域の電磁波ビームを、放物面状のミラー5cによって高効率に集光する事が可能であるため、特に円柱状の測定対象物を診断する場合に好適である。 With the arrangement of the optical system according to the present embodiment, an electromagnetic beam in the sub-terahertz band reflected from the metal material 72 at a wide range of angles on the measurement object 7 can be condensed with high efficiency by the parabolic mirror 5c. Since it is possible, it is particularly suitable for diagnosing a cylindrical measuring object.
 発振部2の光源となる電子デバイスの種類は特に限定されないが、0.05~0.2THzのサブテラヘルツ帯域の所定の周波数の電磁波ビームを発生するものであればよく、例えばタンネットダイオード(TUNNETT)、ガンダイオード(GUNN)、インパットダイオード(IMPATT)などの固定電子デバイスや、進行波管などの電子デバイスを用いる事が出来る。また、これら電子デバイスは基本波発振である必要はなく、逓倍器等により上述したサブテラヘルツ帯域の所定の周波数を得るものでも良い。これら電子デバイスは、電源も小型のものが使用でき、例えば1~2W程度の消費電力で十分な強度のサブテラヘルツ帯域の電磁波ビームを発生させる事が可能である。また、発振部2の光源である電子デバイス自体または電子デバイスの組込まれた発振部2全体を回転させることによっても、電磁波ビームの偏光方向を容易に変更する事が可能である。 The type of electronic device that serves as the light source of the oscillation unit 2 is not particularly limited, as long as it can generate an electromagnetic wave beam with a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz, for example, a tannet diode (TUNNETT), a gun Fixed electronic devices such as diodes (GUNN) and impatted diodes (IMPATT) and electronic devices such as traveling wave tubes can be used. In addition, these electronic devices do not have to be fundamental wave oscillation, and may obtain a predetermined frequency in the sub-terahertz band described above using a multiplier or the like. These electronic devices can be used with a small power source, and can generate a sub-terahertz band electromagnetic wave beam having a sufficient intensity with a power consumption of about 1 to 2 W, for example. Also, the polarization direction of the electromagnetic wave beam can be easily changed by rotating the electronic device itself that is the light source of the oscillation unit 2 or the entire oscillation unit 2 in which the electronic device is incorporated.
 また、検出部3に用いられる検出器の種類は特に限定されないが、常温動作の検出器である焦電型検出器(例えばTGS、DTGS)や半導体デバイス検出器(例えばSBD)などを用いる事が出来る。 The type of detector used in the detector 3 is not particularly limited, but a pyroelectric detector (eg, TGS, DTGS) or a semiconductor device detector (eg, SBD) that is a detector operating at room temperature may be used. I can do it.
 次に、図2により、本発明の第二実施形態による非破壊診断方法を説明する。
 図2は、本発明の第二実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。なお、この第二実施形態の基本構成及びその効果は、上述した第一実施形態と同様であるので、ここでは、第一実施形態と異なる構成及び効果について主に説明し、第一実施形態と同様の構成及び効果については、その説明を省略する。なお、図2中、電磁波ビームの経路を一点鎖線で示し、電磁波ビームの拡がり、平行光、収束、集光などは、破線で示す。
Next, the nondestructive diagnosis method according to the second embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a diagram schematically showing the configuration of an apparatus for carrying out the nondestructive diagnosis method according to the second embodiment of the present invention. Since the basic configuration and the effect of the second embodiment are the same as those of the first embodiment described above, the configuration and effect different from the first embodiment will be mainly described here and the first embodiment and the first embodiment will be described. Description of similar configurations and effects is omitted. In FIG. 2, the path of the electromagnetic wave beam is indicated by a one-dot chain line, and the spread, parallel light, convergence, condensing, etc. of the electromagnetic wave beam are indicated by broken lines.
 図2に示すように、第二実施形態では、発振部2により照射された0.05~0.2THzのサブテラヘルツ帯域の所定の周波数の電磁波ビームは、レンズ4により平行光とされたのち収束され、ポリマー組成物71により被覆された測定対象7の金属材料72に対して角度を持って照射される。金属材料72で反射されたサブテラヘルツ帯域の所定の周波数の電磁波ビームは、ミラー5により集光され、レンズ4によりさらに収束され検出部3へと投影される。
 本実施形態においても、細長い金属材料72が延びる方向(金属材料の軸線方向)と同じ偏光方向を有する電磁波ビームが、診断対象の金属材料72に照射される。そして、診断対象の金属材料72で反射した電磁波ビームの反射強度が測定され、基準となる金属材料72の反射強度と比較される。
As shown in FIG. 2, in the second embodiment, an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz irradiated by the oscillating unit 2 is converted into parallel light by the lens 4 and then converged. The metal material 72 of the measuring object 7 covered with the composition 71 is irradiated with an angle. The electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 is collected by the mirror 5, further converged by the lens 4, and projected onto the detection unit 3.
Also in the present embodiment, the metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam having the same polarization direction as the direction in which the elongated metal material 72 extends (the axial direction of the metal material). Then, the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 to be diagnosed is measured and compared with the reflection intensity of the metal material 72 serving as a reference.
 この第二実施形態では、二次元平面的に配置された測定対象7に対して角度を持って0.05~0.2THzのサブテラヘルツ帯域の所定の周波数の電磁波ビームを照射することで、測定対象7のより広い範囲に電磁波ビームを照射する事が可能となる。即ち、測定対象7から広範囲の角度で反射される反射光をミラー5により集光検出することができるため、測定対象7の金属材料72に発生した酸化膜を効率的に診断する事が出来る。本実施形態においては、電磁波ビームは、測定対象7であるポリマー組成物71により被覆された金属材料72に対して45°の角度を持って照射されるようにしている。
 本実施形態でも、図示しない共振器矩形導波管又は偏光子により、電磁波ビームが直線偏光とされ、その電磁波ビームの偏光方向が、測定対象7であるポリマー組成物71により被覆された細長い金属材料72が延びる方向(金属材料の軸線方向)と同じとなるように設定されている。
In the second embodiment, an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz is irradiated at an angle to the measurement object 7 arranged in a two-dimensional plane. It is possible to irradiate the electromagnetic wave beam over a wider range. That is, since the reflected light reflected from the measurement object 7 at a wide range of angles can be collected and detected by the mirror 5, the oxide film generated on the metal material 72 of the measurement object 7 can be diagnosed efficiently. In this embodiment, the electromagnetic wave beam is irradiated at an angle of 45 ° with respect to the metal material 72 covered with the polymer composition 71 that is the measurement object 7.
Also in this embodiment, the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which 72 extends (the axial direction of the metal material).
 本実施形態では、より広範な角度範囲で集光することにより検出感度を高めつつ、測定対象7の金属材料72で反射された電磁波ビームをレンズを通すことなくミラーにより集光させることで損失が発生しないことから、より感度の高い光学系とすることが可能となる。 In this embodiment, the loss is reduced by condensing the electromagnetic wave beam reflected by the metal material 72 of the measuring object 7 by the mirror without passing through the lens while enhancing the detection sensitivity by condensing in a wider range of angles. Since it does not occur, an optical system with higher sensitivity can be obtained.
 なお、本実施形態の光学系に、その光学系(装置1)自体を回転させるための回転装置を追加して、測定対象7に対する電磁波ビームの照射角度を可変にしたり、測定対象7を所定の平面内で移動させるための平面移動装置を追加して測定対象7を可動にし、診断の効率を向上させることも可能である。また、例えば、比較的大きな寸法の診断対象7に対しては、光学系(装置1)自体を所定の平面内で移動させるための平面移動装置を追加して、光学系を平面移動させながら、診断対象7を測定するようにしても良い。なお、このような装置1や測定対象7の回転や平面移動に関しては、適宜、測定対象7の寸法等に応じて、装置1及び測定対象7の両方を回転及び平面移動させるようにしても良い。 It should be noted that a rotation device for rotating the optical system (device 1) itself is added to the optical system of the present embodiment so that the irradiation angle of the electromagnetic wave beam with respect to the measurement target 7 can be changed, or the measurement target 7 can be set to a predetermined value. It is also possible to improve the efficiency of diagnosis by adding a plane moving device for moving in a plane to make the measuring object 7 movable. For example, for a relatively large size diagnostic object 7, a plane moving device for moving the optical system (device 1) itself within a predetermined plane is added, and the optical system is moved in a plane, The diagnosis object 7 may be measured. In addition, regarding such rotation and plane movement of the apparatus 1 and the measuring object 7, both the apparatus 1 and the measuring object 7 may be rotated and moved in accordance with the dimensions of the measuring object 7 as appropriate. .
 また、本実施形態の発振部1の直後にあるレンズ4を、集光と収束の両方の役割を持たせたひとつのレンズと置換するなど、適宜変更することも可能である。 Further, it is possible to appropriately change the lens 4 immediately after the oscillation unit 1 of the present embodiment, for example, by replacing it with a single lens having both the functions of condensing and converging.
 次に、図3により、本発明の第三実施形態による非破壊診断方法を説明する。
 図3は、本発明の第三実施形態による非破壊診断方法を実施するための装置の構成を概略的に示す図である。なお、この第三実施形態の基本構成及びその効果は、上述した第一実施形態と同様であるので、ここでは、第一実施形態と異なる構成及び効果について主に説明し、第一実施形態と同様の構成及び効果については、その説明を省略する。なお、図3中、電磁波ビームの経路を一点鎖線で示し、電磁波ビームの拡がり、平行光、収束、集光などは、破線で示す。
Next, a nondestructive diagnosis method according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a diagram schematically showing a configuration of an apparatus for performing the nondestructive diagnosis method according to the third embodiment of the present invention. The basic configuration and effects of the third embodiment are the same as those of the above-described first embodiment. Therefore, here, the configurations and effects different from those of the first embodiment will be mainly described. Description of similar configurations and effects is omitted. In FIG. 3, the path of the electromagnetic wave beam is indicated by a one-dot chain line, and the spread, parallel light, convergence, condensing, etc. of the electromagnetic wave beam are indicated by broken lines.
 図3に示すように、第三実施形態では、発振部1より照射された0.05~0.2THzのサブテラヘルツ帯域の所定の周波数の電磁波ビームはレンズ4により収束され、チョッパー8を通過したのちレンズ4により平行光とされ、ハーフミラーであるミラー5を通過しさらにレンズ4で収束され、測定対象7であるポリマー組成物71により被覆された金属材料72に照射される。金属材料72で反射されたサブテラヘルツ帯域の所定の周波数の電磁波ビームは、レンズ4で平行光とされたのちハーフミラーであるミラー5により反射され角度を変え、レンズ4により収束され検出部3へと投影される。
 また、本実施形態では、平面移動装置9が設けられ、この平面移動装置9は、測定対象7を、その測定対象7の複数の金属材料72がそれぞれ延びる方向且つ並ぶ方向における平面上で移動させ、このように、装置1は、測定対象7の位置を可変とするよう構成されている。
 本実施形態においても、細長い金属材料72が延びる方向(金属材料の軸線方向)と同じ偏光方向を有する電磁波ビームが、診断対象の金属材料72に照射される。そして、診断対象の金属材料72で反射した電磁波ビームの反射強度が測定され、基準となる金属材料72の反射強度と比較される。
As shown in FIG. 3, in the third embodiment, the electromagnetic wave beam having a predetermined frequency in the sub-terahertz band of 0.05 to 0.2 THz irradiated from the oscillation unit 1 is converged by the lens 4 and passes through the chopper 8 and then the lens 4. The light is converted into parallel light, passes through the mirror 5 that is a half mirror, is further converged by the lens 4, and is irradiated onto the metal material 72 that is covered with the polymer composition 71 that is the measurement object 7. The electromagnetic wave beam having a predetermined frequency in the sub-terahertz band reflected by the metal material 72 is converted into parallel light by the lens 4, then reflected by the mirror 5, which is a half mirror, and the angle is changed. Is projected.
Further, in the present embodiment, a plane moving device 9 is provided, and this plane moving device 9 moves the measurement object 7 on a plane in a direction in which the plurality of metal materials 72 of the measurement object 7 extend and are aligned. Thus, the apparatus 1 is configured to change the position of the measurement object 7.
Also in the present embodiment, the metal material 72 to be diagnosed is irradiated with an electromagnetic wave beam having the same polarization direction as the direction in which the elongated metal material 72 extends (the axial direction of the metal material). Then, the reflection intensity of the electromagnetic wave beam reflected by the metal material 72 to be diagnosed is measured and compared with the reflection intensity of the metal material 72 serving as a reference.
 この第三実施形態では、電磁波ビームの照射焦点位置と反射位置を同一光学軸上に配置することにより空間分解能の向上が可能となり、さらに電磁波ビームは測定対象7に対してほぼ垂直に照射されることにより、ビーム径の広がりによる空間分解能の低下を抑制する
 ことが出来るため、より精度の高い診断が可能となる。本実施形態でも、図示しない共振器矩形導波管又は偏光子により、電磁波ビームが直線偏光とされ、その電磁波ビームの偏光方向が、測定対象7であるポリマー組成物71により被覆された細長い金属材料72が延びる方向(金属材料の軸線方向)と同じとなるように設定されている。
In this third embodiment, it is possible to improve the spatial resolution by arranging the irradiation focus position and the reflection position of the electromagnetic wave beam on the same optical axis, and the electromagnetic wave beam is irradiated almost perpendicularly to the measuring object 7. As a result, it is possible to suppress a decrease in spatial resolution due to the spread of the beam diameter, so that a more accurate diagnosis is possible. Also in this embodiment, the electromagnetic wave beam is linearly polarized by a resonator rectangular waveguide or a polarizer (not shown), and the polarization direction of the electromagnetic wave beam is covered with the polymer composition 71 that is the measurement object 7. It is set to be the same as the direction in which 72 extends (the axial direction of the metal material).
 また、本実施形態では、光学系にチョッパー8を追加する事により、より精度の高い診断を可能とする光学系となっている。ここで、サブテラヘルツ波は室温程度の熱源、例えば人体や室温にある周囲の壁などからも直流的かつほぼ一定に常時発生している。本実施形態では、チョッパー8により、測定のための目的とする周波数帯域の電磁波ビームを交流的な断続するサブテラヘルツ波として選択的に検出することで、そのような外界に存在する雑音的なサブテラヘルツ波を除外するようにしており、これにより、目的とする周波数帯のサブテラヘルツ波を高感度に測定する事が可能となる。なお、チョッパー8は、機械的に断続する構成、電気的に光源を変調する構成など、任意に選択する事が出来る。このようなチョッパーは、他の実施形態においても必要に応じて追加する事が可能である。 Further, in this embodiment, the chopper 8 is added to the optical system, thereby providing an optical system that enables more accurate diagnosis. Here, the sub-terahertz wave is always generated in a direct current and almost constant manner from a heat source of about room temperature, such as a human body or a surrounding wall at room temperature. In the present embodiment, the chopper 8 selectively detects an electromagnetic wave beam in a target frequency band for measurement as an alternating intermittent sub-terahertz wave, so that noisy sub-waves that exist in the outside world are detected. The terahertz wave is excluded, so that the sub-terahertz wave in the target frequency band can be measured with high sensitivity. The chopper 8 can be arbitrarily selected from a mechanically intermittent configuration, a configuration that electrically modulates a light source, and the like. Such a chopper can be added as necessary in other embodiments.
 なお、上述した第二実施形態では、金属材料に照射する電磁波ビームを直線偏光としているが、本実施形態においては、発振部2により発振される電磁波ビームの偏光状態は、円偏光、楕円偏光、直線偏光など、特定の偏光に限定されない。上述した第一実施形態も同様である。
 ここで、一般的には、円偏光、楕円偏光、直線偏光などを有する電磁波ビームは、金属材料に照射されると、所定条件のもと、その金属材料が偏光子として機能し得ることが確認されており、本実施形態では、検出部3では、特にこの直線偏光とされた電磁波ビームを検出するようにしている。
In the second embodiment described above, the electromagnetic wave beam applied to the metal material is linearly polarized. However, in this embodiment, the polarization state of the electromagnetic wave beam oscillated by the oscillation unit 2 is circularly polarized, elliptically polarized, It is not limited to specific polarization such as linearly polarized light. The same applies to the first embodiment described above.
Here, generally, when an electromagnetic beam having circularly polarized light, elliptically polarized light, linearly polarized light, or the like is irradiated onto a metal material, it is confirmed that the metal material can function as a polarizer under predetermined conditions. In the present embodiment, the detection unit 3 detects the electromagnetic wave beam that has been converted to the linearly polarized light.
 以上、本発明の特に好ましい実施形態について記述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。 As mentioned above, although especially preferable embodiment of this invention was described, this invention can be deform | transformed and implemented in various aspects, without being limited to embodiment of illustration.
 次に、本発明の方法の有効性を確かめる実験例について説明する。まず、電線試料(被覆電線)を用い、図1に示した診断装置を使用して、内部ケーブルの診断に関する実験を行った。 Next, experimental examples for confirming the effectiveness of the method of the present invention will be described. First, an experiment related to diagnosis of an internal cable was performed using a wire sample (covered wire) and using the diagnostic apparatus shown in FIG.
 まず、直径13mmの銅撚り線(撚り本数12本、コーティングなし)を、厚さ1.0mmのポリマー組成物(ポリエチレン)により絶縁被覆した絶縁電線の現場撤去品を6サンプル用意し、ポリマー組成物である絶縁被覆を部分的に除去して熟練検査員による目視点検を行った。この目視点検により、3段階、すなわち酸化膜の発生が認識できない「変色なし」、通常の使用状態での許容範囲内での酸化膜の発生が認められる「変色小」、通常の使用状態での許容範囲を超えた酸化膜の発生が認められる「変色大」とに分類し、「変色なし」と認められたサンプルのうちの一つを基準サンプルとした。 First, we prepared 6 samples of on-site removed products of insulated wires in which 13 mm diameter copper stranded wires (12 strands, no coating) were insulated with a 1.0 mm thick polymer composition (polyethylene). A certain insulative coating was partially removed and a visual inspection was performed by a skilled inspector. By this visual inspection, there are three stages, ie, “no discoloration” where the occurrence of oxide film cannot be recognized, “small discoloration” where the occurrence of oxide film within the allowable range under normal use conditions is recognized, and under normal use conditions. The sample was classified as “large discoloration” in which the generation of an oxide film exceeding the allowable range was observed, and one of the samples recognized as “no discoloration” was used as a reference sample.
 次に、各サンプルの絶縁被覆が除去されていない部分に対して、図1に示した診断装置を使用してサブテラヘルツ帯域の所定の周波数の電磁波ビームを照射してその反射強度を測定し、基準サンプルを基準として各サンプルの電磁波ビームの反射強度を比較する段階に供した。各サンプルに対する測定は、回転系を利用して電線試料を0°~355°まで5°刻みで回転させて反射強度を測定し、反射強度の積分値である反射積分強度を比較した。 Next, with respect to the part where the insulation coating of each sample is not removed, the reflection intensity is measured by irradiating an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band using the diagnostic apparatus shown in FIG. The sample was subjected to a step of comparing the reflection intensity of the electromagnetic wave beam of each sample with reference to the reference sample. The measurement for each sample was performed by rotating the wire sample from 0 ° to 355 ° in increments of 5 ° using a rotating system to measure the reflection intensity, and comparing the reflection integral intensity, which is an integral value of the reflection intensity.
 診断装置の発振部には0.13THzタンネット(TUNNETT)を、また検出部には焦電型検出器(DTGS)を用いている。 The 0.13THz tannet (TUNNETT) is used for the oscillation part of the diagnostic device, and the pyroelectric detector (DTGS) is used for the detection part.
 図4は、各サンプルに対して電磁波ビームを照射して反射強度を測定して反射積分強度を求め、基準サンプルの反射積分強度を100とした場合の各サンプルの反射積分強度と、熟練検査員の目視点検による判定との関係を示すグラフである。数値が大きいほど反射強度が強い事を表している。 FIG. 4 shows the reflection integral intensity obtained by irradiating each sample with an electromagnetic wave beam and measuring the reflection intensity to obtain the reflection integral intensity. It is a graph which shows the relationship with the determination by visual inspection. The larger the value, the stronger the reflection intensity.
 図4に示される如く、実施例による非破壊診断方法によれば、所定の厚さを有するポリマー組成物により被覆された金属材料の酸化膜発生を診断しうる事が確認できる。 As shown in FIG. 4, according to the nondestructive diagnosis method according to the embodiment, it can be confirmed that the generation of an oxide film of a metal material coated with a polymer composition having a predetermined thickness can be diagnosed.
 次に、タイヤ試料を用い、図2に示した診断装置を使用して、内部ケーブルの診断に関する実験を行った。 Next, an experiment related to the diagnosis of the internal cable was conducted using the tire sample and using the diagnostic apparatus shown in FIG.
 205/65R15サイズのタイヤを用い、タイヤ内部の補強材料(ベルト層)として使用されている、ポリマー組成物(ゴム材料)により被覆され、真鍮によるコーティングのなされた直径0.3mmの素線を4本撚りした鉄製の金属ケーブルに、酸化膜が発生していないと推測される新品タイヤのトレッド部を切り出した基準サンプルと、同じサイズの同じモデルのタイヤで、酸化膜が発生している事が推測される使用済みタイヤのトレッド部を切り出した劣化サンプルとを用意した。なお、これらのサンプルは、後述する測定後に被覆を除去し、熟練検査員の目視点検により、基準サンプルには酸化膜の発生が認識できず、劣化サンプルには許容範囲を超えた酸化膜の発生が認められることを確認している。 Using 205 / 65R15 size tires, four strands of 0.3mm in diameter coated with a polymer composition (rubber material) and coated with brass, used as a reinforcing material (belt layer) inside the tire It is estimated that an oxide film is generated on the same model tire with the same size as the reference sample cut out of the tread part of a new tire that is estimated to be free of oxide film on the twisted iron metal cable The deterioration sample which cut out the tread part of the used tire used was prepared. In these samples, the coating is removed after the measurement described later, and by the visual inspection of a skilled inspector, the generation of oxide film cannot be recognized in the reference sample, and the generation of oxide film exceeding the allowable range is observed in the deteriorated sample. Is confirmed.
 劣化サンプルは使用済みタイヤから切り出されているため、トレッド部の高さが新品タイヤから切り出された基準サンプルと異なることから、基準サンプルのトレッド部高さが劣化サンプルと同様となるよう揃え、図2に示した診断装置を使用してサブテラヘルツ帯域の所定の周波数の電磁波ビームを、偏光方向が金属ケーブルが延びる方向と同じになるように照射してその反射強度を測定し、基準サンプルを基準として劣化サンプルの電磁波ビームの反射強度を比較する段階に供した。測定は被覆厚さの異なるトレッド部及び溝部とで行われ、両サンプルのトレッド部から金属材料までの厚さは8.5mm(基準サンプルの調整前の厚さは10.5mm)、溝部での厚さは3.0mmである。 Since the deteriorated sample is cut from the used tire, the tread height is different from the reference sample cut from the new tire, so the reference sample tread height is aligned with the deteriorated sample. Using the diagnostic device shown in Fig. 2, irradiate an electromagnetic beam with a predetermined frequency in the sub-terahertz band so that the polarization direction is the same as the direction in which the metal cable extends, measure the reflection intensity, and use the reference sample as a reference As a result, it was subjected to a step of comparing the reflection intensity of the electromagnetic wave beam of the degraded sample. Measurements are taken at treads and grooves with different coating thicknesses. The thickness from the tread to the metal material of both samples is 8.5mm (thickness before adjustment of the reference sample is 10.5mm), and the thickness at the groove Is 3.0mm.
 診断装置の発振部には0.118THzのタンネット(TUNNETT)を、また検出部には焦電型検出器(DTGS)を用いている。 ¡A 0.118 THz tannet (TUNNETT) is used for the oscillation part of the diagnostic device, and a pyroelectric detector (DTGS) is used for the detection part.
 表1は、基準サンプルと劣化サンプルの反射強度の違いの一例を示す表であり、両サンプルに対してトレッド部と溝部それぞれに対して電磁波ビームを照射して反射強度を測定し、基準サンプルの反射強度を100とした場合の劣化サンプルの反射強度を示す表である。数値が大きいほど反射強度が強い事を表している。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing an example of the difference in the reflection intensity between the reference sample and the deteriorated sample. The reflection intensity is measured by irradiating the tread part and the groove part with an electromagnetic wave beam on both samples. It is a table | surface which shows the reflection intensity of the deterioration sample when a reflection intensity is set to 100. The larger the value, the stronger the reflection intensity.
Figure JPOXMLDOC01-appb-T000001
 表1に示される如く、実施例による非破壊診断方法によれば、所定の厚さを有するポリマー組成物により被覆された金属材料の酸化膜発生を診断しうる事が確認できる。 As shown in Table 1, according to the nondestructive diagnosis method according to the example, it can be confirmed that the generation of an oxide film of a metal material coated with a polymer composition having a predetermined thickness can be diagnosed.
 1 光学系、非破壊診断装置
 2 発振部
 3 検出部
 4 レンズ
 5 ミラー、ハーフミラー
 6 回転装置
 7 測定対象、診断対象
 71 被覆であるポリマー組成物
 72 金属材料、金属ワイヤ、金属ケーブル
 8 チョッパー
 9 平面移動装置
DESCRIPTION OF SYMBOLS 1 Optical system, Nondestructive diagnostic apparatus 2 Oscillator 3 Detection part 4 Lens 5 Mirror, half mirror 6 Rotating device 7 Measurement object, diagnosis object 71 Polymer composition which is coating 72 Metal material, metal wire, metal cable 8 Chopper 9 Plane Mobile device

Claims (13)

  1.  所定の厚さEを有するポリマー組成物により被覆された金属材料、特に金属ワイヤ及び/又は金属ケーブルにおける酸化膜発生を、非破壊診断装置を用いて診断するための非破壊診断方法であって、
     前記非破壊診断装置は、所定の偏光方向を有しサブテラヘルツ帯域の所定の周波数の電磁波ビームを発振する発振部と、サブテラヘルツ帯域の所定の周波数の電磁波ビームを検出する検出部とを含む光学系を有し、
     前記発振部は、前記電磁波ビームを発振する光源として電子デバイスを有し、前記サブテラヘルツ帯域の所定の周波数が0.05~0.2THzの周波数であり、
     前記非破壊診断方法は、
     診断対象となる被覆された金属材料を提供するステップと、
     前記金属材料を、前記所定の偏光方向が該金属材料が延びる方向と同じになるように、前記発振部に対して配置するステップと、
     前記発振部から前記電磁波ビームを前記被覆された金属材料に照射するステップと、
     前記被覆された金属材料で反射された電磁波ビームの反射強度を前記検出部により検出するステップと、
     前記検出ステップにより検出された診断対象の金属材料からの電磁波ビームの反射強度を、前記診断対象の金属材料と同じ厚さEを有するポリマー組成物により被覆され且つその金属材料の酸化膜が問題となる量未満のものである、比較基準となる被覆された金属材料からの電磁波ビームの反射強度と比較するステップと、を有する、
     ことを特徴とする非破壊診断方法。
    A nondestructive diagnostic method for diagnosing generation of an oxide film in a metal material, particularly a metal wire and / or a metal cable, coated with a polymer composition having a predetermined thickness E, using a nondestructive diagnostic device,
    The non-destructive diagnostic apparatus includes an oscillating unit that oscillates an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band and having a predetermined polarization direction, and an optical unit that detects an electromagnetic wave beam having a predetermined frequency in the sub-terahertz band. Have a system,
    The oscillating unit has an electronic device as a light source for oscillating the electromagnetic wave beam, and the predetermined frequency of the sub-terahertz band is a frequency of 0.05 to 0.2 THz,
    The non-destructive diagnosis method is:
    Providing a coated metal material to be diagnosed;
    Disposing the metal material relative to the oscillation unit such that the predetermined polarization direction is the same as the direction in which the metal material extends;
    Irradiating the coated metal material with the electromagnetic wave beam from the oscillation unit;
    Detecting the reflection intensity of the electromagnetic wave beam reflected by the coated metal material by the detection unit;
    The reflection intensity of the electromagnetic wave beam from the diagnosis target metal material detected by the detection step is covered with a polymer composition having the same thickness E as the diagnosis target metal material, and the oxide film of the metal material is a problem. Comparing the reflected intensity of the electromagnetic wave beam from the coated metal material as a reference, which is less than the amount of
    A nondestructive diagnostic method characterized by that.
  2.  前記反射強度検出ステップは、前記非破壊診断装置と前記金属材料とを、前記金属材料の長手方向軸線を中心に相対回転させながら行われる、請求項1に記載の非破壊診断方法。 The non-destructive diagnosis method according to claim 1, wherein the reflection intensity detecting step is performed while relatively rotating the non-destructive diagnostic device and the metal material around a longitudinal axis of the metal material.
  3.  前記反射強度検出ステップは、前記非破壊診断装置と前記金属材料を相対的に平面移動させながら行われる、請求項1または2に記載の非破壊診断方法。 The non-destructive diagnosis method according to claim 1 or 2, wherein the reflection intensity detecting step is performed while relatively moving the non-destructive diagnostic apparatus and the metal material on a plane.
  4.  前記金属材料が、鉄、銅、アルミニウム、銀、白金、金、亜鉛、カドミウム、スズ、ニッケル、クロム、真鍮、青銅、コバルト、ベリリウム及びこれらの金属の合金からなる群から選ばれる請求項1及至3の何れか1項に記載の非破壊診断方法。 The metal material is selected from the group consisting of iron, copper, aluminum, silver, platinum, gold, zinc, cadmium, tin, nickel, chromium, brass, bronze, cobalt, beryllium and alloys of these metals. 4. The nondestructive diagnosis method according to any one of 3 above.
  5.  前記金属材料は、その金属材料とは異なる材料からなる金属コーティング層を有し、前記金属コーティング層を形成する金属が、白金、金、銀、銅、亜鉛、カドミウム、スズ、ニッケル、クロム、真鍮、青銅、亜鉛合金鋼、亜鉛-ニッケル合金、スズ-亜鉛合金、スズ-銀合金およびスズ-コバルト合金からなる群から選ばれる請求項1及至4の何れか1項に記載の非破壊診断方法。 The metal material has a metal coating layer made of a material different from the metal material, and the metal forming the metal coating layer is platinum, gold, silver, copper, zinc, cadmium, tin, nickel, chromium, brass The nondestructive diagnostic method according to any one of claims 1 to 4, selected from the group consisting of bronze, zinc alloy steel, zinc-nickel alloy, tin-zinc alloy, tin-silver alloy and tin-cobalt alloy.
  6.  前記ポリマー組成物の被覆の厚さEが0.5mmと20mmの間である請求項1及至5の何れか1項に記載の非破壊診断方法。 The nondestructive diagnosis method according to any one of claims 1 to 5, wherein a coating thickness E of the polymer composition is between 0.5 mm and 20 mm.
  7.  前記ポリマー組成物の被覆の厚さEが0.5mmと15mmの間である請求項6に記載の非破壊診断方法。 The nondestructive diagnosis method according to claim 6, wherein the coating thickness E of the polymer composition is between 0.5 mm and 15 mm.
  8.  前記ポリマー組成物のポリマーがゴム材料もしくはプラスティック材料である請求項1及至7の何れか1項に記載の非破壊診断方法。 The nondestructive diagnosis method according to any one of claims 1 to 7, wherein the polymer of the polymer composition is a rubber material or a plastic material.
  9.  前記金属材料はゴム材料に埋設されたワイヤおよび/またはケーブルである請求項1及至8の何れか1項に記載の非破壊診断方法。 The nondestructive diagnosis method according to any one of claims 1 to 8, wherein the metal material is a wire and / or cable embedded in a rubber material.
  10.  前記金属材料はプラスティック材料に埋設されたワイヤおよび/またはケーブルである請求項1及至8の何れか1項に記載の非破壊診断方法。 The nondestructive diagnosis method according to any one of claims 1 to 8, wherein the metal material is a wire and / or cable embedded in a plastic material.
  11.  前記ゴム材料に埋設されたワイヤおよび/またはケーブルはタイヤ補強用またはタイヤ用半製品である請求項9に記載の非破壊診断方法。 10. The nondestructive diagnosis method according to claim 9, wherein the wire and / or cable embedded in the rubber material is a tire reinforcing or semifinished product for tire.
  12.  前記プラスティック材料に埋設されたワイヤおよび/またはケーブルは電線用である請求項10に記載の非破壊診断方法。 The nondestructive diagnosis method according to claim 10, wherein the wire and / or cable embedded in the plastic material is for electric wires.
  13.  前記プラスティック材料に埋設されたワイヤおよび/またはケーブルは橋梁補強用である請求項10に記載の非破壊診断方法。 The non-destructive diagnosis method according to claim 10, wherein the wire and / or cable embedded in the plastic material is for bridge reinforcement.
PCT/JP2013/073322 2012-08-31 2013-08-30 Non-destructive diagnosis method for covered metal material WO2014034848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533108A JPWO2014034848A1 (en) 2012-08-31 2013-08-30 Non-destructive diagnostic method for coated metal materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/072139 2012-08-31
JP2012072139 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034848A1 true WO2014034848A1 (en) 2014-03-06

Family

ID=50183653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073322 WO2014034848A1 (en) 2012-08-31 2013-08-30 Non-destructive diagnosis method for covered metal material

Country Status (2)

Country Link
JP (1) JPWO2014034848A1 (en)
WO (1) WO2014034848A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041577A (en) * 2014-08-13 2016-03-31 ステインビッヒラー オプトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection method and device for tire
JP2019158820A (en) * 2018-03-16 2019-09-19 Jfeエンジニアリング株式会社 Base processing inspection device and method for inspecting base processing
WO2023026418A1 (en) * 2021-08-25 2023-03-02 日本電信電話株式会社 Deterioration assessment device, system, and method
US11874223B1 (en) 2022-08-30 2024-01-16 The Goodyear Tire & Rubber Company Terahertz characterization of a multi-layered tire tread

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055911A (en) * 2001-08-13 2003-02-26 Sumitomo Electric Ind Ltd Structure for saddle exit part of diagonal cable
JP2007084706A (en) * 2005-09-22 2007-04-05 Bridgestone Corp Rubber composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055911A (en) * 2001-08-13 2003-02-26 Sumitomo Electric Ind Ltd Structure for saddle exit part of diagonal cable
JP2007084706A (en) * 2005-09-22 2007-04-05 Bridgestone Corp Rubber composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KYOSUKE SAITO ET AL.: "Do Sankabutsu no Terahertz Spectrum Keisoku to sono Oyo", ABSTRACTS OF THE JAPAN INSTITUTE OF METALS, 15 March 2012 (2012-03-15) *
TADAO TANABE ET AL.: "Polyethylene Hifuku sareta Dosen Hyomen Jotai no Terahertz Hihakai Shindan", ABSTRACTS OF THE JAPAN INSTITUTE OF METALS, 15 September 2009 (2009-09-15), pages 70 *
TORU KURABAYASHI ET AL.: "Development of TUNNETT Diode and Its Application for Terahertz Imaging", MATERIA JAPAN, vol. 46, no. 2, 2007, pages 63 - 69 *
YUTAKA OYAMA ET AL.: "Structural Defect Imaging in Timber and Concrete Building Blocks Implemented with Sub-terahertz TUNNETT Oscillator", IEICE TECHNICAL REPORT, 20 November 2007 (2007-11-20), pages 57 - 62 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041577A (en) * 2014-08-13 2016-03-31 ステインビッヒラー オプトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection method and device for tire
JP2019158820A (en) * 2018-03-16 2019-09-19 Jfeエンジニアリング株式会社 Base processing inspection device and method for inspecting base processing
WO2023026418A1 (en) * 2021-08-25 2023-03-02 日本電信電話株式会社 Deterioration assessment device, system, and method
US11874223B1 (en) 2022-08-30 2024-01-16 The Goodyear Tire & Rubber Company Terahertz characterization of a multi-layered tire tread

Also Published As

Publication number Publication date
JPWO2014034848A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
Ahi et al. Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution
WO2014034848A1 (en) Non-destructive diagnosis method for covered metal material
CN103335951B (en) The measuring system of stealth material Terahertz reflectivity
Fukuchi et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave
JP6281941B2 (en) Dielectric refractive index detection method and apparatus, film thickness detection method and apparatus, and surface roughness detection method and apparatus
Fuse et al. Evaluation of applicability of noncontact analysis methods to detect rust regions in coated steel plates
KR102506305B1 (en) Method and THz measuring device for measuring a measurement target using electromagnetic radiation
KR20190080200A (en) Apparatus for nondestructive and noncontact inspection of composite structures based on terahertz wave and the method for the same
KR101739628B1 (en) Apparatus and method for analyzing a semiconductor wafer by using a terahertz wave
US11085874B2 (en) Characterization of multilayer structures
JP2004177274A (en) Non-contact electric conductivity measurement system
US20190257770A1 (en) Microwave sensor
Zeng et al. Excitation of Lamb waves over a large frequency-thickness product range for corrosion detection
JP2012021880A (en) Method and device for detecting package with terahertz light
JP2011209266A (en) Insulation defect detection device for semiconductor device
Anastasi et al. Terahertz NDE for metallic surface roughness evaluation
Kurabayashi et al. Terahertz imaging through paint layers
JP2007017289A (en) Non-destructive inspection system and non-destructive inspection method of fss sandwich panel
WO2016203049A1 (en) Characterization of multilayer structures
JP2015178980A (en) Coating film image analysis device and coating film analysis method
JP2008304358A (en) Device for inspecting leakage of enclosed component and its inspection method
JP5252500B2 (en) Internal diagnostic method and diagnostic device for insulated wire
Fukuchi et al. Measurement of refractive index of thermal barrier coating using reflection of terahertz waves and variable aperture
JP6973324B2 (en) Anomaly detection method
JP7196581B2 (en) Structure inspection method of material to be inspected

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833284

Country of ref document: EP

Kind code of ref document: A1