WO2014034730A1 - 表面被覆切削工具 - Google Patents
表面被覆切削工具 Download PDFInfo
- Publication number
- WO2014034730A1 WO2014034730A1 PCT/JP2013/073026 JP2013073026W WO2014034730A1 WO 2014034730 A1 WO2014034730 A1 WO 2014034730A1 JP 2013073026 W JP2013073026 W JP 2013073026W WO 2014034730 A1 WO2014034730 A1 WO 2014034730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- region
- tool
- coated cutting
- average
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/36—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/08—Rake or top surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/16—Supporting or bottom surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2222/00—Materials of tools or workpieces composed of metals, alloys or metal matrices
- B23B2222/28—Details of hard metal, i.e. cemented carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2222/00—Materials of tools or workpieces composed of metals, alloys or metal matrices
- B23B2222/61—Metal matrices with non-metallic particles or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2224/00—Materials of tools or workpieces composed of a compound including a metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2224/00—Materials of tools or workpieces composed of a compound including a metal
- B23B2224/32—Titanium carbide nitride (TiCN)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/12—Boron nitride
- B23B2226/125—Boron nitride cubic [CBN]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/04—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/44—Materials having grain size less than 1 micrometre, e.g. nanocrystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/56—Two phase materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23C2228/04—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time.
- the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.
- WC tungsten carbide
- TiCN titanium carbonitride
- cBN cubic boron nitride
- a coated tool is known in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a substrate (hereinafter collectively referred to as “substrate”). It is known that it exhibits excellent wear resistance.
- Patent Document 1 satisfies 0.35 ⁇ X ⁇ 0.60 (where X is an atomic ratio) when expressed on the surface of a substrate by a composition formula: (Ti 1-X Al X ) N.
- a hard coating layer composed of a composite nitride of Ti and Al is deposited by physical vapor deposition, and the hard coating layer is formed from a thin layer A composed of a granular crystal structure of the (Ti, Al) N layer and a columnar crystal structure.
- each of the thin layer A and the thin layer B has a thickness of 0.05 to 2 ⁇ m, and the crystal grain size of the granular crystals is 30 nm or less, and the crystal grain size of the columnar crystals is 50 to 500 nm, so that the hard coating layer has excellent chipping resistance, chipping resistance, and peeling resistance in high-speed intermittent cutting of high-hardness steel. It is said that.
- this coated tool deposits a hard coating layer by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and it is desired to further improve the cutting performance.
- Patent Document 2 discloses that a chemical vapor deposition is performed in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C., whereby an Al content ratio X is 0.65 to
- a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed by vapor deposition
- this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased to 0.65 to 0.95. There is no disclosure up to the point of how this will be affected.
- Patent Document 3 a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic structure (Ti 1-X Al) having a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition.
- X ) N layer (where X is 0.65 to 0.9) is coated as an outer layer, and by applying a compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool are improved. It has been proposed.
- the Al content X can be increased, and a cubic structure can be formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient, and the toughness is inferior. Furthermore, although the coated tool described in Patent Document 3 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. In addition, abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
- the present invention provides a coated tool that has excellent toughness and excellent chipping resistance and wear resistance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel. It is intended.
- the surface-coated cutting tool includes at least one (Ti 1-X Al X ) (C Y N 1-Y ) layer and has a predetermined total average layer thickness
- the Ti 1-X Al X ) (C Y N 1-Y ) layer is formed in a columnar shape in the direction perpendicular to the substrate, the surface-coated cutting tool has high wear resistance.
- the toughness of the (Ti 1-X Al X) (C Y N 1-Y) as the anisotropy of the crystal structure increases the layer (Ti 1-X Al X) (C Y N 1-Y) layer descend.
- the present inventors diligently studied the (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the hard coating layer. Further, by improving the toughness by relaxing the anisotropy of the crystal structure of the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the chipping resistance and fracture resistance of the hard coating layer can be improved. I found a new finding that I can.
- the hard layer (Ti 1-X Al X) (C Y N 1-Y) layer is mainly a fine grain structure (Ti 1-X Al X) (C Y N 1-Y ) Layer and a region B layer mainly composed of (Ti 1-X Al X ) (C Y N 1-Y ) layer having a columnar structure, the following effects can be obtained. Obtainable.
- the alternate laminated structure composed of the region B layer composed of the Ti 1-X Al X ) (C Y N 1-Y ) layer functions as one layer having both characteristics. Therefore, in the hard coating layer having the above characteristics, the anisotropy of the crystal structure of the (Ti 1-X Al X ) (C Y N 1-Y ) layer is relaxed as compared with the conventional hard coating layer. As a result, the chipping resistance and chipping resistance of the hard coating layer are improved, and excellent wear resistance is exhibited over a long period of time.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above-described configuration includes, for example, the following chemical vapor deposition containing trimethylaluminum (Al (CH 3 ) 3 ) as a reactive gas component.
- the film can be formed by the method.
- the reaction gas composition (volume%) is TiCl 4 : 1.0 to 2.0%, Al (CH 3 ) 3 : 1.0 to 2.0%, AlCl 3 : 3.
- reaction gas composition (volume%) is set to TiCl 4 : 3.0 to 4.0%, Al (CH 3 ) 3 : 3.0 to 5 0.0%, AlCl 3 : 1.0 to 2.0%, NH 3 : 7 to 10%, N 2 : 6 to 10%, C 2 H 4 : 0 to 1%, H 2 : remaining, reaction atmosphere pressure : 2-5 kPa, reaction atmosphere temperature: 700-900 ° C., and by performing a thermal CVD method for a predetermined time, (Ti 1-X Al X ) (C Y N 1 1- Y ) layer is formed (region A layer).
- (D) is towards the fine grain structure of (Ti 1-X Al X) (C Y N 1-Y) layer, a columnar texture (Ti 1-X Al X) than (C Y N 1-Y) layer Since the cutting edge toughness is excellent, the uppermost layer of the alternately laminated structure should be a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a fine grain structure, that is, a region A layer. This is preferable from the viewpoint of improving chipping resistance.
- a columnar structure in which the content ratio x of Al in the total amount of Al and Ti in the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the granular structure is 0.7 ⁇ x ⁇ 0.8.
- the Al content ratio x in the total amount of Al and Ti in the (Ti 1-X Al X ) (C Y N 1-Y ) layer is 0.85 ⁇ x ⁇ 0.95, , Chipping resistance and chipping resistance are improved.
- the hard coating layer has excellent cutting over a long period of use. Demonstrate performance.
- This invention is made
- a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body
- the hard coating layer has at least a Ti and Al composite carbonitride layer formed by chemical vapor deposition, and the composite carbonitride layer has a composition formula: (Ti 1-x Al x ) (C y N 1-y ), which has an alternately laminated structure having a total average layer thickness of 1 to 10 ⁇ m composed of a region A layer and a region B layer, and the region A layer includes a total amount of Ti of Ti and Al.
- the content ratio x in C and the content ratio y in the total amount of C and C in C are 0.70 ⁇ x ⁇ 0.80 and 0.0005, respectively.
- ⁇ y ⁇ 0.005 is satisfied and parallel to the surface of the tool base
- the average particle width W is 0.1 ⁇ m or less
- the average particle length L is 0.1 ⁇ m or less
- the region B layer has a content ratio x in the total amount of Ti and Al in Al and a content ratio y in the total amount of C and N in C (
- both x and y are atomic ratios) satisfy 0.85 ⁇ x ⁇ 0.95 and 0.0005 ⁇ y ⁇ 0.005, respectively, and are in a plane parallel to the surface of the tool base.
- the average particle width W is the average particle width W
- the average value of the particle length in the direction perpendicular to the surface of the tool base is the average particle length L
- the average particle width W is 0.1 to 2.0 ⁇ m
- the average particle length L is 0.5 to 5.0 ⁇ m
- the region A layer and the region B layer are alternately arranged in the alternate stacked structure. At least each present one or more layers, the top layer, the surface-coated cutting tool, wherein the a region A layer.
- a cubic crystal lattice There is a cubic crystal phase in which the electron backscatter diffraction image is observed and a hexagonal crystal phase in which the electron backscatter diffraction image of the hexagonal crystal lattice is observed, and the total of the cubic crystal phase and the hexagonal crystal phase
- the area ratio of the cubic crystal phase to the area is 50% or more, and the area ratio of the hexagonal crystal phase to the total area of the cubic crystal phase and the hexagonal crystal phase in the region B layer is 50%.
- the lattice constant a of cubic crystal grains is obtained from X-ray diffraction, and the lattice constant a of the cubic crystal grains is a lattice constant of TiN and cubic AlN. against the constant a AlN, the surface-coated cutting according to the above (1) or (2) and satisfies the relation 0.05a TiN + 0.95a AlN ⁇ a ⁇ 0.4a TiN + 0.6a AlN tool.
- the hard coating layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of (1) to (3) above, The surface-coated cutting tool described.
- An outermost layer composed of one or more layers selected from an Al 2 O 3 layer, a TiN layer, a TiCN layer, and a TiCNO layer on the Ti and Al composite carbonitride layer is the surface-coated cutting tool.
- the intermediate layer made of a TiN layer or a TiCN layer is formed between the surface of the tool base and the region B layer closest to the tool base.
- the intermediate layer composed of a TiN layer or a TiCN layer is formed between the surface of the tool base and the region B layer closest to the tool base.
- Surface coated cutting tool The ratio of the total average layer thickness of the composite carbonitride layer to the average layer thickness of the hard coating layer is 60% or more and 100% or less, according to (1) or (2), Surface coated cutting tool.
- the region A layer farthest from the tool base is the outermost layer of the surface-coated cutting tool, and the lower surface of the region B layer closest to the tool base is directly on the surface of the tool base.
- the surface-coated cutting tool according to (1) or (2) which is in contact.
- the ratio (1) or (2), wherein the ratio of the total average layer thickness of the region A layers to the total average layer thickness of the region B layers is in the range of 1: 9 to 9: 1
- a surface-coated cutting tool that is one embodiment of the present invention is a tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body.
- This is a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of the above.
- the hard coating layer is composed of a region A layer and a region B layer represented by a chemical vapor deposition composition formula: (Ti 1-x Al x ) (C y N 1-y ).
- the region A layer has a content ratio x in the total amount of Ti and Al in Al, and a content ratio y in the total amount of C and C in C (where x and y are atomic ratios), Each satisfies 0.70 ⁇ x ⁇ 0.80 and 0.0005 ⁇ y ⁇ 0.005.
- the average particle width W is 0.1 ⁇ m or less
- average particle length L is 0.1 ⁇ m or less.
- the region B layer has a content ratio x in the total amount of Ti and Al in Al, and a content ratio y in the total amount of C and C in C (where x and y are atomic ratios), 0.85 ⁇ x ⁇ 0.95 and 0.0005 ⁇ y ⁇ 0.005 are satisfied, respectively.
- the average value of the particle width in a plane parallel to the surface of the tool base is the average particle width W
- the average value of the particle length in the direction perpendicular to the surface of the tool base is the average particle length L
- the average particle width W is 0.1 to 2.0 ⁇ m
- the average particle length L is 0.5 to 5.0 ⁇ m.
- the uppermost layer of the alternate stacked structure is the region A layer.
- the surface-coated cutting tool of the present invention has a region composed of a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a fine grain structure that exhibits excellent toughness and heat shielding effect.
- Each layer has a layered structure composed of (Ti 1-X Al X ) (C Y N 1-Y ) layer having a columnar structure exhibiting excellent wear resistance and thermal conductivity as if each layer has an alternating layer structure. Functions as a single layer.
- the hard coating layer having the above configuration exhibits the effect of improving chipping resistance and chipping resistance.
- this hard coating layer exhibits excellent cutting performance over a long period of use as compared with the conventional hard coating layer, and a long life of the coated tool is achieved.
- FIG. 1 is a schematic diagram of a film configuration schematically showing a cross section of a hard coating layer (hereinafter sometimes referred to as a hard coating layer of the present invention) included in a surface-coated cutting tool according to an embodiment of the present invention.
- the hard coating layer 2 is formed on the tool base 1.
- the hard coating layer 2 includes a composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y )) 3 composed of the region A layer 4 and the region B layer 5.
- Composite carbonitride layer 3 has an alternately laminated structure of region A layer 4 and region B layer 5.
- the hard coating layer 2 is formed of only two sets of the region A layer 4 and the region B layer 5.
- FIG. 2 is a schematic diagram of a film structure schematically showing a cross section of a hard coating layer included in a surface-coated cutting tool according to another embodiment of the present invention. Also in this embodiment, the hard coating layer 2 is formed on the tool base 1.
- the hard coating layer 2 includes a composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y )) 3 composed of the region A layer 4 and the region B layer 5.
- Composite carbonitride layer 3 has an alternately laminated structure of region A layer 4 and region B layer 5.
- the hard coating layer 2 includes an outermost layer 6 and an intermediate layer 7 in addition to the composite carbonitride layer 3.
- the outermost layer 6 is formed on the region A layer 4 farthest from the tool base 1 as the outermost layer of the surface-coated cutting tool, and forms the outermost layer of the coated cutting tool.
- a suitable layer thickness of the outermost layer 6 is 1 to 5 ⁇ m.
- the intermediate layer 7 is formed between the tool base 1 and the region B layer 5 closest to the tool base 1.
- the lower surface of the intermediate layer 7 is in direct contact with the surface of the tool base 1.
- the upper surface of the intermediate layer 7 is in direct contact with the lower surface of the region B layer 5 closest to the tool base 1.
- a suitable layer thickness of the intermediate layer 7 is 1 to 5 ⁇ m.
- the ratio of the average layer thickness of the composite carbonitride layer 3 to the average layer thickness of the hard coating layer 2 is preferably 60% or more and 100% or less.
- the outermost layer 6 is preferably a single layer or two or more layers selected from an Al 2 O 3 layer, a TiN layer, a TiCN layer, and a TiCNO layer. By providing the outermost layer 6, the crater wear resistance, the flank wear resistance, the heat shielding property, and the like of the hard coating layer 2 are further improved.
- the intermediate layer 7 is preferably a TiN layer, a TiCN layer, or the like. By providing the intermediate layer 7, the flank wear resistance, peel resistance, and chipping resistance of the hard coating layer 2 are further improved.
- the outermost layer 6 and the intermediate layer 7 may each be formed alone in the surface-coated cutting tool of the present invention. Similar to the embodiment shown in FIG. 1, in the embodiment shown in FIG. 2, the region A layer 4 has a fine grain structure, and the region B layer 5 has a columnar structure.
- the hard coating layer included in the surface-coated cutting tool of the present invention comprises a chemical vapor deposited composition formula: (Ti 1-x Al x ) (C y N 1-y ) It has an alternately laminated structure.
- the Ti and Al composite carbonitride layers that make up the alternating layered structure have high hardness and excellent wear resistance, but the effect is particularly prominent when the total average layer thickness is 1 to 10 ⁇ m.
- the total average layer thickness of the composite carbonitride layer is set to 1 to 10 ⁇ m.
- Region A layer constituting an alternate laminated structure In the region A layer, the content ratio x in the total amount of Ti and Al in Al, and the content ratio y in the total amount of C and C in C (where x and y are atomic ratios), respectively, 0.70 ⁇ x ⁇ 0.80 and 0.0005 ⁇ y ⁇ 0.005 are satisfied. When this composition is satisfied, the crystal grains become tougher. Further, assuming that the average value of the particle width in the plane parallel to the surface of the tool base is the average particle width W, and the average value of the particle length in the direction perpendicular to the surface of the tool base is the average particle length L, the average particle width W is 0.1 ⁇ m or less, and average particle length L is 0.1 ⁇ m or less.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the region A layer has a fine grain structure and exhibits excellent toughness.
- the composition deviates from the above range, the (Ti 1-X Al X ) (C Y N 1-Y ) layer has an average particle width W of 0.1 ⁇ m or less and an average particle length L of 0.1 ⁇ m or less.
- the fine-grained structure does not satisfy the requirements, and the expected toughness cannot be achieved.
- Region B layer constituting an alternate laminated structure In the region B layer, the content ratio x in the total amount of Ti and Al in Al, and the content ratio y in the total amount of C and C in C (where x and y are atomic ratios) are respectively 0.85 ⁇ x ⁇ 0.95 and 0.0005 ⁇ y ⁇ 0.005 are satisfied. When this composition is satisfied, the crystal grains exhibit higher hardness. Further, assuming that the average value of the particle width in the plane parallel to the surface of the tool base is the average particle width W, and the average value of the particle length in the direction perpendicular to the surface of the tool base is the average particle length L, the average particle width W is 0.1 to 2.0 ⁇ m, and average particle length L is 0.5 to 5.0 ⁇ m.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the region B layer has a columnar structure and exhibits excellent wear resistance.
- the composition deviates from the above range, the (Ti 1-X Al X ) (C Y N 1-Y ) layer has an average particle width W of 0.1 to 2.0 ⁇ m and an average particle length L of 0. It does not have a columnar structure satisfying .5 to 5.0 ⁇ m, and the expected wear resistance cannot be achieved.
- the region A layer and the region B layer constitute an alternate laminated structure, whereby a region A layer composed of a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a fine grain structure exhibiting excellent toughness, and An alternating layered structure composed of a region B layer composed of (Ti 1-X Al X ) (C Y N 1-Y ) layers having a columnar structure exhibiting excellent wear resistance functions as one layer having both characteristics. To do. Therefore, the hard coating layer having the above characteristics maintains excellent cutting performance over a long period of time as compared with a conventional hard coating layer made of a single layer.
- the alternate laminated structure in the present invention means that there are at least one region A layer and a region B layer alternately in the film thickness direction.
- the number of stacks of the region A layer and the region B layer included in this alternate stacked structure may be one or more when the adjacent region A layer and region B layer are set as one set.
- the preferred number of layers of the region A layer and the region B layer is 2 to 8 times (1 to 4 sets).
- the ratio of the average layer thickness of the composite carbonitride layer 3 to the average layer thickness of the hard coating layer 2 is 60% or more and 100% or less, although the optimum configuration varies depending on the use of the surface-coated cutting tool. preferable.
- Ratio of total thickness of region A layer included in composite carbonitride layer 3 and total thickness of region B layer included in composite carbonitride layer 3 is preferably in the range of 1: 9 to 9: 1. If the ratio of the total area A layer thickness to the total area B layer thickness is in the range of 1: 9 to 9: 1, the required hardness and stickiness are taken into account according to the application of the surface-coated cutting tool. And can be selected as appropriate. When giving priority to hardness, the ratio of the region B layer may be increased within the above range. When giving priority to stickiness, the ratio of the region A layer may be increased within the above range.
- the uppermost layer of the alternately laminated structure should be a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a fine grain structure, that is, a region A layer. This is preferable from the viewpoint of improving chipping resistance.
- Trace C contained in region A layer and region B layer In the composite carbonitride layer of Ti and Al constituting the region A layer and the region B layer, when the content ratio of C in the total amount of C and N is y (atomic ratio), 0.0005 ⁇ y There is a trace amount of C shown in the range of ⁇ 0.005.
- the region A layer and the region B layer contain a trace amount of C, the adhesion between the region A layer and the region B layer is improved and the lubricity is improved, so that the impact at the time of cutting is improved. To ease. As a result, the chipping resistance and chipping resistance of the hard coating layer having an alternately laminated structure are improved.
- Area ratio occupied by cubic crystal phase in region A layer Further, for the region A layer, when the crystal orientation of each crystal grain is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer by using an electron beam backscattering diffractometer, the electrons of the cubic crystal lattice There is a cubic crystal phase in which a backscatter diffraction image is observed and a hexagonal crystal phase in which an electron backscatter diffraction image of a hexagonal crystal lattice is observed, and the total area occupied by the cubic crystal phase and the hexagonal crystal phase
- the area ratio occupied by the cubic crystal phase is more preferably 50% or more. When the area ratio of the cubic crystal phase in the region A layer is 50% or more, the hardness of the region A layer is improved, and in addition to excellent toughness, the wear resistance is also improved.
- Area ratio occupied by hexagonal crystal phase in region B layer Further, for the region B layer, when the crystal orientation of each crystal grain is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer using an electron beam backscattering diffractometer, the electrons in the cubic crystal lattice There is a cubic crystal phase in which a backscatter diffraction image is observed and a hexagonal crystal phase in which an electron backscatter diffraction image of a hexagonal crystal lattice is observed, and the total area occupied by the cubic crystal phase and the hexagonal crystal phase
- the area ratio occupied by the hexagonal crystal phase is more preferably 50% or more. When the area ratio of the hexagonal crystal phase in the region B layer is 50% or more, the thermal stability of the region B layer is improved, and in addition to excellent wear resistance, the plastic deformability is also improved. .
- Lattice constant a of cubic crystal grains in the composite carbonitride layer The composite carbonitride layer was subjected to an X-ray diffraction test using an X-ray diffractometer and Cu—K ⁇ rays as a radiation source, and the lattice constant a of the cubic crystal grains was obtained.
- the lattice constant a is 0.000 for the lattice constant a TiN of the cubic TiN (JCPDS00-038-1420): 4.24173 ⁇ and the lattice constant a AlN of the cubic AlN (JCPDS00-046-1200): 4.045 ⁇ .
- Tool bases A to D made of WC-base cemented carbide were manufactured by the following procedure. First, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 ⁇ m were prepared as raw material powders. Next, these raw material powders were blended in the blending composition shown in Table 1, added with wax, and ball mill mixed in acetone for 24 hours. Next, after drying under reduced pressure, it was press-molded into a green compact having a predetermined shape at a pressure of 98 MPa. Next, this green compact was vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Finally, after sintering, tool bases A to D made of WC-base cemented carbide having an insert shape of ISO standard SEEN1203AFSN were manufactured.
- the formation conditions F to J shown in Table 3, that is, the reaction gas composition (volume%) are TiCl 4 : 1.0 to 2.0%, Al (CH 3 ) 3 : 1.0 to 2.
- reaction atmosphere pressure (Ti 1-X Al) having a columnar structure with an average particle width W and an average particle length L shown in Table 5 by performing a thermal CVD method for 2 to 5 kPa and reaction atmosphere temperature: 700 to 900 ° C. for a predetermined time.
- X (C Y N 1-Y ) layer was formed (region B layer).
- a hard structure composed of an alternating laminated structure of (Ti 1-X Al X ) (C Y N 1-Y ) layers having a columnar structure and (Ti 1-X Al X ) (C Y N 1-Y ) layers having a fine grain structure
- the coated tools 1 to 15 of the present invention were produced by forming a coating layer.
- the uppermost layer of the alternately laminated structure should be a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a fine grain structure, that is, a region A layer. This is preferable from the viewpoint of improving chipping resistance.
- the lower layer and / or the upper layer of the composite carbonitride layer as shown in Table 5 were formed under the formation conditions shown in Table 4.
- the coated tools 1 to 15 of the present invention are applied to the surfaces of the tool bases A to D and the tool bases a to d under the conditions shown in Table 3 and the target total layer thickness ( ⁇ m) shown in Table 6.
- a composite carbonitride layer of Ti and Al having a single hard coating layer or an alternately laminated structure was formed by vapor deposition.
- the columnar structure (Ti 1-X Al X ) (C Y N 1-Y ) layer and the fine grain structure (Ti 1-X Al X ) (C Y N 1-Y ) layer are not separately formed, Alternating layered structure consisting only of columnar structure (Ti 1-X Al X ) (C Y N 1-Y ) layers, alternating structure consisting only of fine grain structure (Ti 1-X Al X ) (C Y N 1-Y ) layers A (Ti 1-X Al X ) (C Y N 1-Y ) layer having a laminated structure or a single-layer structure composed of any one layer was formed. In this way, comparative coated tools 1 to 8 and 11 to 15 were produced.
- the lower layer and / or the upper layer of the composite carbonitride layer as shown in Table 6 were formed under the formation conditions shown in Table 5.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus.
- the reference coated tools 9 and 10 shown in Table 6 were manufactured by vapor-depositing with a target layer thickness.
- the conditions for arc ion plating are as follows.
- the tool bases A and a are ultrasonically cleaned in acetone and dried, and in the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus.
- an Al—Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source)
- B First, the inside of the apparatus is evacuated and kept at a vacuum of 10 ⁇ 2 Pa or less, the inside of the apparatus is heated to 500 ° C.
- the average Al content ratio x of Al was determined from the 10-point average of the X-ray analysis results.
- the average C content ratio y was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
- the average C content ratio y indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti and Al.
- inventive coated tools 1 to 15 and comparative coated tools 1 to 8 and 11 to 15 reference coated tools 9 and 10 are similarly scanned with a scanning electron microscope (magnification 5000 times and 20000 from the cross-sectional direction perpendicular to the tool substrate.
- a fine granular structure (Ti 1-X Al X ) (C Y N) constituting a region A layer of an alternately laminated structure of hard coating layers existing in the range of 10 ⁇ m in length in the horizontal direction with the tool base surface.
- 1-Y The particle width of each crystal grain in the layer parallel to the tool substrate surface is measured, and the average value of the particles existing in the measurement range is calculated, whereby the average particle width W is perpendicular to the tool substrate surface.
- the average particle length L was determined by measuring the particle length in any direction and calculating the average value for the particles present in the measurement range.
- the particle width parallel to the tool substrate surface of each crystal grain in the columnar structure (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the region B layer is measured, and within the measurement range
- the average particle width W and the particle length in the direction perpendicular to the tool substrate surface are measured, and the average value for the particles existing within the measurement range is calculated.
- the length L was measured. The results are shown in Tables 5 and 6.
- a hard coating layer made of a composite carbonitride layer of Ti and Al is used as a polished surface in a cross section perpendicular to the tool substrate.
- a cubic structure or hexagonal structure is obtained by measuring an electron beam backscatter diffraction image at a distance of 0.01 ⁇ m / step for a hard coating layer in a horizontal direction of 100 ⁇ m in the horizontal direction and analyzing the crystal structure of each crystal grain.
- the crystal structure was identified, and the area ratio of the region A layer occupied by the cubic crystal phase and the area ratio of the region B layer occupied by the hexagonal crystal phase were determined. The results are shown in Tables 5 and 6.
- the composite carbonitride layer was subjected to an X-ray diffraction test using an X-ray diffractometer and Cu—K ⁇ rays as a radiation source to obtain a lattice constant a of cubic crystal grains.
- the diffraction peak of cubic crystal grains in the composite carbonitride layer is between the diffraction angles of the same crystal plane shown in each of JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic AlN (for example, 36 .66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °).
- the coated tools 1 to 15 of the present invention and the comparative coated tools 1 to 8, 11 to 10 in the state where each of the above various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig. 15 and the reference coated tools 9 and 10 were subjected to the following dry high-speed face milling and center-cut cutting test, which is a kind of high-speed intermittent cutting of alloy steel, and the flank wear width of the cutting edge was measured.
- Tool substrates E to H were manufactured by the following procedure. First, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 ⁇ m were prepared as raw material powders. Next, these raw material powders were blended into the blending composition shown in Table 9 and wet mixed by a ball mill for 80 hours. Next, after drying, it was press-molded into a green compact having a size of diameter: 50 mm ⁇ thickness: 1.5 mm at a pressure of 120 MPa. The green compact was then sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C.
- a presintered body for a cutting edge piece was obtained.
- this pre-sintered body was overlaid with a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm ⁇ thickness: 2 mm.
- the sample was charged into a normal ultra-high pressure sintering apparatus, and under normal conditions of pressure: 4 GPa, temperature: a predetermined temperature within a range of 1200 to 1400 ° C., and a holding time of 0.8 hours. High pressure sintered.
- the upper and lower surfaces were polished with a diamond grindstone and divided into predetermined dimensions with a wire electric discharge machine.
- Co 5% by mass
- TaC 5% by mass
- WC remaining composition and WC standard having the shape of JIS standard CNGA12041 (thickness: 4.76 mm ⁇ inscribed circle diameter: 12.7 mm, 80 ° rhombus)
- the cutting edge was subjected to honing with a width of 0.13 mm and an angle of 25 °.
- final polishing was performed to manufacture tool bases E to F having an insert shape conforming to ISO standard CNGA12041.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention is formed on the surfaces of these tool bases E to F using a normal chemical vapor deposition apparatus under the conditions shown in Table 3. Were formed by vapor deposition with a target layer thickness, and the inventive coated tools 16 to 20 shown in Table 9 were produced.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surface of the tool base E by arc ion plating using a conventional physical vapor deposition apparatus.
- the reference coated tool 20 shown in Table 10 was manufactured by vapor deposition.
- the arc ion plating conditions are the same as those shown in Example 1, and the target average composition and target total layer thickness (Al, Ti) shown in Table 10 are formed on the surface of the tool base.
- the reference layer tool 20 was manufactured by vapor-depositing an N layer.
- the cross-sections of the constituent layers of the inventive coated tools 16 to 20, comparative example coated tools 16 to 19 and reference coated tool 20 were measured using a scanning electron microscope (magnification 5000 times), and five points within the observation field of view were measured.
- the average layer thickness was determined by measuring the layer thicknesses of these, the average total layer thickness was substantially the same as the target total layer thickness shown in Table 9 and Table 10.
- the average Al of the hard coating layer was obtained by using the same method as shown in Example 1.
- the coated tools 16 to 20 of the present invention, the comparative coated tools 16 to 19 and the reference coated tool 20 are all mounted with the above various coated tools screwed to the tip of the tool steel tool with a fixing jig.
- the dry high-speed intermittent cutting test of carburized and quenched alloy steel shown below was performed, and the flank wear width of the cutting edge was measured.
- Work material JIS SCM415 (Hardness: HRC62) lengthwise equidistant four round grooved round bars, Cutting speed: 240 m / min, Cutting depth: 0.12 mm, Feed: 0.15mm / rev, Cutting time: 4 minutes Table 11 shows the results of the cutting test.
- the region A layer constituting the alternately laminated structure of the hard coating layers has a fine grain structure
- the region B layer has a columnar structure.
- the (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the hard coating layer has an alternately laminated structure of a layer having a fine grain structure and a layer having a columnar structure
- the comparative coated tools 1 to 8, 11 to 19 and the reference coated tools 9, 10, and 20 that do not have a high-speed intermittent cutting accompanied by high heat generation and an intermittent / impact high load acting on the cutting edge When used for processing, it reached the end of its service life in a short time due to the occurrence of chipping and chipping.
- the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本願は、2012年8月28日に、日本に出願された特願2012-187543号、および2013年8月27日に出願された特願2013-175238に基づき優先権を主張し、その内容をここに援用する。
ただ、上記従来のTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
例えば、特許文献2には、TiCl4、AlCl3、NH3の混合反応ガス中で、650~900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65~0.95である(Ti1-XAlX)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1-XAlX)N層の上にさらにAl2O3層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65~0.95まで高めた(Ti1-XAlX)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
しかし、上記特許文献1に記載される被覆工具は、(Ti1-XAlX)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分であるとは言えない。
一方、上記特許文献2に記載される化学蒸着法で蒸着形成した(Ti1-XAlX)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣る。
さらに、上記特許文献3に記載される被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。
本発明は、合金鋼の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とするものである。
そこで、本発明者らは、硬質被覆層を構成する(Ti1-XAlX)(CYN1-Y)層について鋭意研究した。そして、(Ti1-XAlX)(CYN1-Y)層の結晶組織の異方性を緩和し靭性を高めることによって、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
(a)工具基体表面に、反応ガス組成(容量%)を、TiCl4:1.0~2.0%、Al(CH3)3:1.0~2.0%、AlCl3:3.0~5.0%、NH3:3~6%、N2:6~10%、C2H4:0~1.0%、H2:残、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚の柱状組織の(Ti1-XAlX)(CYN1-Y)層を成膜する(領域B層)。
(b)その後、前記(a)の成膜工程を停止し、反応ガス組成(容量%)を、TiCl4:3.0~4.0%、Al(CH3)3:3.0~5.0%、AlCl3:1.0~2.0%、NH3:7~10%、N2:6~10%、C2H4:0~1%、H2:残、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚の微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層を成膜する(領域A層)。
(c)その後、前記(a)、(b)の工程を所定の回数繰り返し行なうことによって、柱状組織の(Ti1-XAlX)(CYN1-Y)層と微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層との交互積層構造からなる硬質被覆層を形成することができる。
(d)微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層の方が、柱状組織の(Ti1-XAlX)(CYN1-Y)層よりも刃先靭性にすぐれているので、交互積層構造の最上層は、微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層、すなわち領域A層となるようにすることが、耐チッピング性向上の観点から好ましい。
(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、前記硬質被覆層は、化学蒸着法により成膜されたTiとAlの複合炭窒化物層を少なくとも有し、前記複合炭窒化物層は、組成式:(Ti1-xAlx)(CyN1-y)で表される領域A層と領域B層とからなる合計平均層厚1~10μmの交互積層構造を有し、前記領域A層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.70≦x≦0.80、0.0005≦y≦0.005を満足するとともに、前記工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、前記工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、前記平均粒子幅Wが0.1μm以下、平均粒子長さLが0.1μm以下であり、前記領域B層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.85≦x≦0.95、0.0005≦y≦0.005を満足するとともに、前記工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、前記工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、前記平均粒子幅Wが0.1~2.0μm、平均粒子長さLが0.5~5.0μmであり、前記交互積層構造において、領域A層と領域B層は交互に少なくともそれぞれ1層以上存在し、最上層は、前記領域A層であることを特徴とする表面被覆切削工具。
(2)前記領域A層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する立方晶結晶相の占める面積割合が50%以上であり、前記領域B層について、前記立方晶結晶相と六方晶結晶相の占める合計の面積に対する六方晶結晶相の占める面積割合が50%以上であることを特徴とする上記(1)に記載の表面被覆切削工具。
(3)前記複合炭窒化物層について、X線回折から立方晶結晶粒の格子定数aを求め、前記立方晶結晶粒の格子定数aが立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN ≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすことを特徴とする上記(1)または(2)に記載の表面被覆切削工具。
(4)前記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする上記(1)から(3)のいずれか一項に記載の表面被覆切削工具。
(5)前記TiとAlの複合炭窒化物層上に、Al2O3層、TiN層、TiCN層、およびTiCNO層から選ばれる一層または二層以上からなる最外層が、前記表面被覆切削工具の最も外側の層として形成されていることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(6)前記工具基体の表面と、最も前記工具基体に近い前記領域B層との間に、TiN層またはTiCN層からなる中間層が形成されていることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(7)前記工具基体の表面と、最も前記工具基体に近い前記領域B層との間に、TiN層またはTiCN層からなる中間層が形成されていることを特徴とする前記(5)に記載の表面被覆切削工具。
(8)前記硬質被覆層の平均層厚に占める前記複合炭窒化物層の合計平均層厚の割合が60%以上100%以下であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(9)最も前記工具基体から離れた前記領域A層が、前記表面被覆切削工具の最も外側の層であり、最も前記工具基体に近い前記領域B層の下面は、前記工具基体の表面に直接接触していることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(10)前記領域A層の合計平均層厚と前記領域B層の合計平均層厚との比率が1:9から9:1の範囲であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
硬質被覆層2は工具基体1上に形成されている。硬質被覆層2には、領域A層4および領域B層5からなる複合炭窒化物層((Ti1-xAlx)(CyN1-y))3が含まれる。複合炭窒化物層3は、領域A層4および領域B層5の交互積層構造を有する。図1に示される実施形態では、硬質被覆層2は、二組の領域A層4および領域B層5のみから形成されている。本実施形態では、工具基体上に直接、領域B層が形成されており、最外層としては領域A層が形成されている。領域A層4は微粒粒状組織からなり、領域B層5は柱状組織からなる。
図2は、本願発明の他の実施形態である表面被覆切削工具が有する硬質被覆層の断面を模式的に表した膜構成模式図である。
本実施形態でも硬質被覆層2は工具基体1上に形成されている。硬質被覆層2には、領域A層4および領域B層5からなる複合炭窒化物層((Ti1-xAlx)(CyN1-y))3が含まれる。複合炭窒化物層3は、領域A層4および領域B層5の交互積層構造を有する。図2に示される実施形態では、硬質被覆層2には複合炭窒化物層3に加えて、最外層6および中間層7が含まれている。
最外層6は、工具基体1から最も離れた領域A層4上に、表面被覆切削工具の最も外側の層として形成され、被覆切削工具の最外層を形成している。最外層6の好適な層の厚さは1~5μmである。
中間層7は工具基体1および工具基体1に最も近い領域B層5の間に形成されている。中間層7の下面は工具基体1の表面に直接接触している。中間層7の上面は、最も工具基体1に近い領域B層5の下面に直接接触している。中間層7の好適な層の厚さは1~5μmである。
硬質被覆層2の平均層厚に占める複合炭窒化物層3の平均層厚の割合は、60%以上100%以下であることが好ましい。
最外層6としては、Al2O3層、TiN層、TiCN層、およびTiCNO層から選ばれる一層または二層以上が好ましい。最外層6を備えることにより、硬質被覆層2の耐クレーター摩耗性、耐逃げ面摩耗性、および熱遮蔽性などが、さらに向上する。
中間層7としては、TiN層、TiCN層などが好ましい。中間層7を備えることにより、硬質被覆層2の耐逃げ面摩耗性、耐剥離性、および耐チッピング性などが、さらに向上する。
最外層6および中間層7は、それぞれ単独で本願発明の表面被覆切削工具に形成されてもよい。
図1に示した実施形態と同様に、図2に示した実施形態でも、領域A層4は微粒粒状組織からなり、領域B層5は柱状組織からなる。
本願発明の表面被覆切削工具に含まれる硬質被覆層は、化学蒸着された組成式:(Ti1-xAlx)(CyN1-y)で表される領域A層と領域B層とからなる交互積層構造を有する。交互積層構造を構成するTiとAlの複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に合計平均層厚が1~10μmのとき、その効果が際立って発揮される。その理由は、合計平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その合計平均層厚が10μmを越えると、TiとAlの複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。したがって、複合炭窒化物層の合計平均層厚を1~10μmと定めた。
領域A層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.70≦x≦0.80、0.0005≦y≦0.005を満足する。この組成を満たすとき、結晶粒がより高靱性となる。さらに、工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、平均粒子幅Wが0.1μm以下、平均粒子長さLが0.1μm以下とする。この条件を満たすとき、領域A層を構成する(Ti1-XAlX)(CYN1-Y)層は、微粒粒状組織となり、すぐれた靭性を示す。一方、組成が前記範囲を逸脱するとき、(Ti1-XAlX)(CYN1-Y)層は、平均粒子幅Wが0.1μm以下、平均粒子長さLが0.1μm以下を満足するような微粒粒状組織にならず、期待する靭性を奏することができない。
領域B層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.85≦x≦0.95、0.0005≦y≦0.005を満足する。この組成を満たすとき、結晶粒がより高い堅さを示す。さらに、工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、平均粒子幅Wが0.1~2.0μm、平均粒子長さLが0.5~5.0μmとする。この条件を満たすとき、領域B層を構成する(Ti1-XAlX)(CYN1-Y)層は、柱状組織となり、すぐれた耐摩耗性を示す。一方、組成が前記範囲を逸脱するとき、(Ti1-XAlX)(CYN1-Y)層は、平均粒子幅Wが0.1~2.0μm、平均粒子長さLが0.5~5.0μmを満足するような柱状組織にならず、期待する耐摩耗性を奏することができない。
硬質被覆層2の平均層厚に占める複合炭窒化物層3の平均層厚の割合は、表面被覆切削工具の用途に応じ、最適な構成は異なるが、60%以上100%以下であることが好ましい。60%以上である場合、幅広い表面被覆切削工具の用途に対してすぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮することができる。
複合炭窒化物層3に含まれる領域A層の合計した膜厚と、複合炭窒化物層3に含まれる領域B層の合計した膜厚との比(領域A層合計膜厚:領域B層合計膜厚)は、1:9~9:1の範囲内であることが好ましい。領域A層合計膜厚と領域B層合計膜厚との比は、1:9~9:1の範囲内であれば、表面被覆切削工具の用途に応じ、求められる硬さと粘りを考慮に入れて、適宜選択することができる。硬さを優先する場合は、上記範囲内で領域B層の比率を上げればよい。粘りを優先する場合は、上記範囲内で領域A層の比率を上げればよい。
領域A層および領域B層を構成するTiとAlの複合炭窒化物層中には、CとNの合量に占めるCの含有割合をyとしたとき(原子比)、0.0005≦y≦0.005の範囲で示される微量のCが存在する。このように、領域A層および領域B層が微量のCを含有していることにより、領域A層および領域B層の密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和する。その結果として、交互積層構造の硬質被覆層の耐欠損性および耐チッピング性が向上する。
さらに、領域A層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する立方晶結晶相の占める面積割合が50%以上であることがより好ましい。領域A層の立方晶結晶相の占める面積割合が50%以上であることにより、領域A層の硬さが向上し、すぐれた靭性に加えて、さらに、耐摩耗性も向上する。
さらに、領域B層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する六方晶結晶相の占める面積割合が50%以上であることがより好ましい。領域B層の六方晶結晶相の占める面積割合が50%以上であることにより、領域B層の熱的安定性が向上し、すぐれた耐摩耗性に加えて、さらに、塑性変形性も向上する。
前記複合炭窒化物層について、X線回折装置を用い、Cu-Kα線を線源としてX線回折試験を実施し、立方晶結晶粒の格子定数aを求めたとき、前記立方晶結晶粒の格子定数aが、立方晶TiN(JCPDS00-038-1420)の格子定数aTiN:4.24173Åと立方晶AlN(JCPDS00-046-1200)の格子定数aAlN:4.045Åに対して、0.05aTiN+0.95aAlN ≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことで、すぐれた耐摩耗性に加えて、すぐれた耐熱衝撃性を備える。
(a)表3に示される形成条件F~J、すなわち、反応ガス組成(容量%)を、TiCl4:1.0~2.0%、Al(CH3)3:1.0~2.0%、AlCl3:3.0~5.0%、NH3:3~6%、N2:6~10%、C2H4:0~1%、H2:残、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃として、所定時間、熱CVD法を行うことにより、表5に示される平均粒子幅Wおよび平均粒子長さLの柱状組織の(Ti1-XAlX)(CYN1-Y)層を成膜した(領域B層)。
(b)その後、前記(a)の成膜工程を停止し、表3に示される形成条件A~E、すなわち、反応ガス組成(容量%)を、TiCl4:3.0~4.0%、Al(CH3)3:3.0~5.0%、AlCl3:1.0~2.0%、NH3:7~10%、N2:6~10%、C2H4:0~1%、H2:残、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃として、所定時間、熱CVD法を行うことにより、表5に示される平均粒子幅Wおよび平均粒子長さLの微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層を成膜した(領域A層)。
(c)前記(a)の成膜工程および(b)の成膜工程からなる工程を1セットとして表5に示された回数、繰り返し行なうことによって、表5に示される目標合計層厚を有する柱状組織の(Ti1-XAlX)(CYN1-Y)層と微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層との交互積層構造からなる硬質被覆層を形成することにより本発明被覆工具1~15を製造した。
(d)微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層の方が、柱状組織の(Ti1-XAlX)(CYN1-Y)層よりも刃先靭性にすぐれているので、交互積層構造の最上層は、微粒粒状組織の(Ti1-XAlX)(CYN1-Y)層、すなわち領域A層となるようにすることが、耐チッピング性向上の観点から好ましい。
なお、本発明被覆工具11~15については、表4に示される形成条件で、表5に示したような複合炭窒化物層の下部層および/または上部層を形成した。
なお、比較被覆工具11~15については、表5に示される形成条件で、表6に示したような複合炭窒化物層の下部層および/または上部層を形成した。
参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1-XAlX)(CYN1-Y)層を目標層厚で蒸着形成することにより、表6に示される参考被覆工具9、10を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)上記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl-Ti合金を配置し、
(b)まず、装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、かつAl-Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に-50Vの直流バイアス電圧を印加し、かつ、上記Al-Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表6に示される目標平均組成、目標平均層厚の(Al,Ti)N層を蒸着形成し、参考被覆工具9、10を製造した。
また、複合窒化物または複合炭窒化物層の平均Al含有割合xについては、電子線マイクロアナライザ(EPMA,Electron-Probe-Micro-Analyser)を用い、電子線を試料に照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合xを求めた。平均C含有割合yについては、二次イオン質量分析(SIMS,Secondary-Ion-Mass-Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合yはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。
また、本発明被覆工具1~15および比較被覆工具1~8、11~15参考被覆工具9、10については、同じく工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ10μmの範囲に存在する硬質被覆層の交互積層構造の領域A層を構成する微粒粒状組織(Ti1-XAlX)(CYN1-Y)層中の個々の結晶粒の工具基体表面と平行な粒子幅を測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子幅W、工具基体表面に垂直な方向の粒子長さを測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子長さLを求めた。また、領域B層を構成する柱状組織(Ti1-XAlX)(CYN1-Y)層中の個々の結晶粒の工具基体表面と平行な粒子幅を測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子幅W、工具基体表面に垂直な方向の粒子長さを測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子長さLを測定した。その結果を、表5および表6に示した。
また、電子線後方散乱回折装置を用いて、TiとAlの複合炭窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで立方晶構造あるいは六方晶構造であるかを同定し、領域A層の立方晶結晶相の占める面積割合、及び領域B層の六方晶結晶相の占める面積割合を求めた。その結果を、表5および表6に示す。
また、前記複合炭窒化物層について、X線回折装置を用い、Cu-Kα線を線源としてX線回折試験を実施し、立方晶結晶粒の格子定数aを求めた。複合炭窒化物層内の立方晶結晶粒の回折ピークは、JCPDS00-038-1420立方晶TiNとJCPDS00-046-1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66~38.53°、43.59~44.77°、61.81~65.18°)に現れる回折ピークを確認することによって同定した。
被削材:JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度:943min-1、
切削速度:370m/min、
切り込み:1mm、
一刃送り量:0.12mm/刃、
切削時間:8分、
表7に、上記切削試験の結果を示す。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表10に示される目標平均組成、目標合計層厚の(Al,Ti)N層を蒸着形成し、参考被覆工具20を製造した。
また、上記の本発明被覆工具16~20、比較例被覆工具16~19および参考被覆工具20硬質被覆層について、実施例1に示される方法と同様の方法を用いて、硬質被覆層の平均Al含有割合X、平均C含有割合Y、領域A層を構成する微粒粒状組織(Ti1-XAlX)(CYN1-Y)層の平均粒子幅W、平均粒子長さL、領域B層を構成する柱状組織(Ti1-XAlX)(CYN1-Y)層の平均粒子幅W、平均粒子長さL、領域A層の立方晶結晶相の占める面積割合、及び領域B層の六方晶結晶相の占める面積割合を求めた。その結果を、表9および表10に示す。
被削材:JIS・SCM415(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:240m/min、
切り込み:0.12mm、
送り:0.15mm/rev、
切削時間:4分、
表11に、上記切削試験の結果を示す。
2 硬質被覆層
3 複合炭窒化物層((Ti1-xAlx)(CyN1-y))
4 領域A層
5 領域B層
6 最外層
7 中間層
Claims (10)
- 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜されたTiとAlの複合炭窒化物層を少なくとも有し、
前記複合炭窒化物層は、組成式:(Ti1-xAlx)(CyN1-y)で表される領域A層と領域B層とからなる合計平均層厚1~10μmの交互積層構造を有し、
前記領域A層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.70≦x≦0.80、0.0005≦y≦0.005を満足するとともに、前記工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、前記工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、前記平均粒子幅Wが0.1μm以下、平均粒子長さLが0.1μm以下であり、
前記領域B層は、AlのTiとAlとの合量に占める含有割合x、およびCのCとNとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.85≦x≦0.95、0.0005≦y≦0.005を満足するとともに、前記工具基体の表面と平行な面内の粒子幅の平均値を平均粒子幅W、前記工具基体の表面と垂直な方向の粒子長さの平均値を平均粒子長さLとすると、前記平均粒子幅Wが0.1~2.0μm、平均粒子長さLが0.5~5.0μmであり、
前記交互積層構造において、領域A層と領域B層は交互に少なくともそれぞれ1層以上存在し、最上層は、前記領域A層であることを特徴とする表面被覆切削工具。 - 前記領域A層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する立方晶結晶相の占める面積割合が50%以上であり、
前記領域B層について、前記立方晶結晶相と六方晶結晶相の占める合計の面積に対する六方晶結晶相の占める面積割合が50%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 - 前記複合炭窒化物層について、X線回折から立方晶結晶粒の格子定数aを求め、前記立方晶結晶粒の格子定数aが立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN ≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすことを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
- 前記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆切削工具。
- 前記TiとAlの複合炭窒化物層上に、Al2O3層、TiN層、TiCN層、およびTiCNO層から選ばれる一層または二層以上からなる最外層が、前記表面被覆切削工具の最も外側の層として形成されていることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
- 前記工具基体の表面と、最も前記工具基体に近い前記領域B層との間に、TiN層またはTiCN層からなる中間層が形成されていることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
- 前記工具基体の表面と、最も前記工具基体に近い前記領域B層との間に、TiN層またはTiCN層からなる中間層が形成されていることを特徴とする請求項5に記載の表面被覆切削工具。
- 前記硬質被覆層の平均層厚に占める前記複合炭窒化物層の合計平均層厚の割合が60%以上100%以下であることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
- 最も前記工具基体から離れた前記領域A層が、前記表面被覆切削工具の最も外側の層であり、最も前記工具基体に近い前記領域B層の下面は、前記工具基体の表面に直接接触していることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
- 前記領域A層の合計平均層厚と前記領域B層の合計平均層厚との比率が1:9から9:1の範囲であることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157002393A KR20150045425A (ko) | 2012-08-28 | 2013-08-28 | 표면 피복 절삭 공구 |
CN201380044540.3A CN104582881B (zh) | 2012-08-28 | 2013-08-28 | 表面包覆切削工具 |
EP13832920.6A EP2891536B1 (en) | 2012-08-28 | 2013-08-28 | Surface-coated cutting tool |
US14/424,237 US9415446B2 (en) | 2012-08-28 | 2013-08-28 | Surface coated cutting tool |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012187543 | 2012-08-28 | ||
JP2012-187543 | 2012-08-28 | ||
JP2013175238A JP6090063B2 (ja) | 2012-08-28 | 2013-08-27 | 表面被覆切削工具 |
JP2013-175238 | 2013-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034730A1 true WO2014034730A1 (ja) | 2014-03-06 |
Family
ID=50183536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073026 WO2014034730A1 (ja) | 2012-08-28 | 2013-08-28 | 表面被覆切削工具 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9415446B2 (ja) |
EP (1) | EP2891536B1 (ja) |
JP (1) | JP6090063B2 (ja) |
KR (1) | KR20150045425A (ja) |
CN (1) | CN104582881B (ja) |
WO (1) | WO2014034730A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015208845A (ja) * | 2014-04-30 | 2015-11-24 | 三菱マテリアル株式会社 | すぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP2016078137A (ja) * | 2014-10-10 | 2016-05-16 | 新日鐵住金株式会社 | 超硬工具 |
EP2939769A4 (en) * | 2012-12-28 | 2016-08-03 | Sumitomo Elec Hardmetal Corp | SURFACE COATING ELEMENT AND METHOD FOR MANUFACTURING THE SAME |
EP3103572A4 (en) * | 2014-09-25 | 2017-07-26 | Mitsubishi Materials Corporation | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance |
WO2017167980A1 (en) | 2016-03-31 | 2017-10-05 | Walter Ag | Coated cutting tool with h-aln and ti1-xalxcynz layers |
EP3127637A4 (en) * | 2014-03-26 | 2017-10-18 | Mitsubishi Materials Corporation | Surface-coated cutting tool and production method therefor |
EP3305446A4 (en) * | 2015-05-26 | 2018-11-14 | Mitsubishi Materials Corporation | Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6238131B2 (ja) * | 2013-12-26 | 2017-11-29 | 住友電工ハードメタル株式会社 | 被膜および切削工具 |
JP6296294B2 (ja) * | 2014-07-30 | 2018-03-20 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6478100B2 (ja) * | 2015-01-28 | 2019-03-06 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6590255B2 (ja) | 2015-03-13 | 2019-10-16 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016148056A1 (ja) * | 2015-03-13 | 2016-09-22 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6507959B2 (ja) * | 2015-09-14 | 2019-05-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
CN109477215B (zh) * | 2016-07-07 | 2020-11-27 | 三菱日立工具株式会社 | 硬涂层、硬涂布的工具以及它们的生产方法 |
JP6931458B2 (ja) * | 2017-07-18 | 2021-09-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具 |
CN108559957B (zh) * | 2018-04-23 | 2019-09-20 | 广东工业大学 | 一种具有pvd涂层的钛合金切削刀具材料及其制备方法 |
CN109321861B (zh) * | 2018-11-20 | 2020-09-22 | 山东科技大学 | 一种层片状和柱状复合结构的耐蚀耐磨涂层及制备方法 |
WO2020138304A1 (ja) * | 2018-12-27 | 2020-07-02 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
CN110042353B (zh) * | 2019-04-04 | 2020-11-27 | 内蒙古科技大学 | 一种纳米叠层铝基复合材料及制备方法 |
JP7401242B2 (ja) * | 2019-09-30 | 2023-12-19 | 株式会社フジミインコーポレーテッド | 粉末材料 |
CN112934964A (zh) * | 2021-01-25 | 2021-06-11 | 太原理工大学 | 一种物理气相沉积与激光能场辅助的金属复合带轧制方法 |
JP7302628B2 (ja) * | 2021-06-18 | 2023-07-04 | 株式会社タンガロイ | 被覆切削工具 |
CN115537772B (zh) * | 2022-09-20 | 2024-04-26 | 株洲钻石切削刀具股份有限公司 | 一种涂层切削刀具 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066421A (ja) * | 2002-08-08 | 2004-03-04 | Mitsubishi Materials Corp | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
JP2011513594A (ja) | 2008-03-12 | 2011-04-28 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2011516722A (ja) | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2011224715A (ja) | 2010-04-20 | 2011-11-10 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 |
JP2012166294A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Materials Corp | 耐摩耗性と切屑排出性に優れた表面被覆ドリル |
WO2012172895A1 (ja) * | 2011-06-16 | 2012-12-20 | 住友電気工業株式会社 | 被覆回転ツール |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4984940A (en) | 1989-03-17 | 1991-01-15 | Kennametal Inc. | Multilayer coated cemented carbide cutting insert |
JP2979921B2 (ja) * | 1993-09-30 | 1999-11-22 | 住友電気工業株式会社 | 超薄膜積層体 |
DE69526301T2 (de) * | 1994-10-28 | 2002-12-05 | Sumitomo Electric Industries, Ltd. | Mehrschichtiges Material |
CA2285460A1 (en) * | 1998-02-04 | 1999-08-12 | Osg Corporation | Hard multilayer coated tool having increased toughness |
JP2005271190A (ja) * | 2003-12-05 | 2005-10-06 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
DE102005032860B4 (de) * | 2005-07-04 | 2007-08-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung |
JPWO2007111301A1 (ja) * | 2006-03-28 | 2009-08-13 | 京セラ株式会社 | 表面被覆工具 |
CN101568399B (zh) * | 2006-12-26 | 2011-07-27 | 特固克有限会社 | 切削工具 |
US8993095B2 (en) * | 2007-09-14 | 2015-03-31 | Sumitomo Electric Industries, Ltd. | Composite material and coated cutting tool |
DE102007000512B3 (de) * | 2007-10-16 | 2009-01-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung |
DE102009046667B4 (de) * | 2009-11-12 | 2016-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Beschichtete Körper aus Metall, Hartmetal, Cermet oder Keramik sowie Verfahren zur Beschichtung derartiger Körper |
JP5429693B2 (ja) * | 2010-04-14 | 2014-02-26 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 |
JP5440345B2 (ja) * | 2010-04-15 | 2014-03-12 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP5454788B2 (ja) * | 2010-04-16 | 2014-03-26 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP5682217B2 (ja) * | 2010-07-09 | 2015-03-11 | 三菱マテリアル株式会社 | 耐摩耗性と切屑排出性に優れた表面被覆ドリル |
JP6024981B2 (ja) * | 2012-03-09 | 2016-11-16 | 三菱マテリアル株式会社 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
-
2013
- 2013-08-27 JP JP2013175238A patent/JP6090063B2/ja active Active
- 2013-08-28 CN CN201380044540.3A patent/CN104582881B/zh active Active
- 2013-08-28 KR KR1020157002393A patent/KR20150045425A/ko not_active Application Discontinuation
- 2013-08-28 WO PCT/JP2013/073026 patent/WO2014034730A1/ja active Application Filing
- 2013-08-28 EP EP13832920.6A patent/EP2891536B1/en active Active
- 2013-08-28 US US14/424,237 patent/US9415446B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066421A (ja) * | 2002-08-08 | 2004-03-04 | Mitsubishi Materials Corp | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
JP2011513594A (ja) | 2008-03-12 | 2011-04-28 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2011516722A (ja) | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2011224715A (ja) | 2010-04-20 | 2011-11-10 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 |
JP2012166294A (ja) * | 2011-02-14 | 2012-09-06 | Mitsubishi Materials Corp | 耐摩耗性と切屑排出性に優れた表面被覆ドリル |
WO2012172895A1 (ja) * | 2011-06-16 | 2012-12-20 | 住友電気工業株式会社 | 被覆回転ツール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891536A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2939769A4 (en) * | 2012-12-28 | 2016-08-03 | Sumitomo Elec Hardmetal Corp | SURFACE COATING ELEMENT AND METHOD FOR MANUFACTURING THE SAME |
US9777367B2 (en) | 2012-12-28 | 2017-10-03 | Sumitomo Electric Hardmetal Corp. | Surface coated member and method for manufacturing same |
EP3127637A4 (en) * | 2014-03-26 | 2017-10-18 | Mitsubishi Materials Corporation | Surface-coated cutting tool and production method therefor |
US10265785B2 (en) | 2014-03-26 | 2019-04-23 | Mitsubishi Materials Corporation | Surface-coated cutting tool and method for producing the same |
JP2015208845A (ja) * | 2014-04-30 | 2015-11-24 | 三菱マテリアル株式会社 | すぐれた耐チッピング性を発揮する表面被覆切削工具 |
EP3103572A4 (en) * | 2014-09-25 | 2017-07-26 | Mitsubishi Materials Corporation | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance |
US10456842B2 (en) | 2014-09-25 | 2019-10-29 | Mitsubishi Materials Corporation | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance |
JP2016078137A (ja) * | 2014-10-10 | 2016-05-16 | 新日鐵住金株式会社 | 超硬工具 |
EP3305446A4 (en) * | 2015-05-26 | 2018-11-14 | Mitsubishi Materials Corporation | Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance |
WO2017167980A1 (en) | 2016-03-31 | 2017-10-05 | Walter Ag | Coated cutting tool with h-aln and ti1-xalxcynz layers |
Also Published As
Publication number | Publication date |
---|---|
EP2891536A4 (en) | 2016-04-13 |
US9415446B2 (en) | 2016-08-16 |
US20150217378A1 (en) | 2015-08-06 |
EP2891536B1 (en) | 2017-08-23 |
JP6090063B2 (ja) | 2017-03-08 |
CN104582881B (zh) | 2016-11-02 |
JP2014061588A (ja) | 2014-04-10 |
CN104582881A (zh) | 2015-04-29 |
EP2891536A1 (en) | 2015-07-08 |
KR20150045425A (ko) | 2015-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6090063B2 (ja) | 表面被覆切削工具 | |
JP5924507B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6268530B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6024981B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6402662B2 (ja) | 表面被覆切削工具及びその製造方法 | |
JP5939508B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5946017B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6478100B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6620482B2 (ja) | 耐チッピング性にすぐれた表面被覆切削工具 | |
JP6296294B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5939509B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6391045B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6344040B2 (ja) | すぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6150109B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2015182711A1 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2014097536A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5946016B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5935479B2 (ja) | 高速ミーリング切削加工、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6296298B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6171638B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6044401B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6171800B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2017038840A1 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6213066B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832920 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157002393 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14424237 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013832920 Country of ref document: EP |