WO2014034672A1 - Transmission circuit structure body - Google Patents

Transmission circuit structure body Download PDF

Info

Publication number
WO2014034672A1
WO2014034672A1 PCT/JP2013/072889 JP2013072889W WO2014034672A1 WO 2014034672 A1 WO2014034672 A1 WO 2014034672A1 JP 2013072889 W JP2013072889 W JP 2013072889W WO 2014034672 A1 WO2014034672 A1 WO 2014034672A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive fine
transmission circuit
circuit structure
insulating layer
fine particle
Prior art date
Application number
PCT/JP2013/072889
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 寛治
秋山 豊
千寿 上田
典史 笹岡
貴史 越智
大野 正人
Original Assignee
学校法人明星学苑
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人明星学苑, ニッポン高度紙工業株式会社 filed Critical 学校法人明星学苑
Publication of WO2014034672A1 publication Critical patent/WO2014034672A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0723Shielding provided by an inner layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout

Definitions

  • the present invention relates to a transmission circuit structure having a signal line and a ground pattern.
  • the frequency of the high-speed interface that has been developed exceeds 5 GHz, and in order to use such a high frequency, it is necessary to shorten the rise time of the signal compared to the conventional method. Yes, as the rise time is shortened, the high-frequency component of the signal appears significantly. Therefore, in order to reduce the loss of high-frequency components, it is essential to use copper foil with a low surface roughness and use a resin with a low dielectric constant and dielectric loss tangent.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 5 _ 7 6 6 8 ([0 0 0 2])
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 _ 2 6 6 5 2
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 6-1 2 8 3 2 6 ([0 0 1 0]) Summary of the Invention
  • Typical examples of substrate materials with good high-frequency characteristics include fluororesin substrates and liquid crystal polymer substrates, but they are more expensive than general-purpose glass epoxies.
  • There is also a problem in terms of processing such as low adhesive strength with the foil.
  • a high-frequency wave can be obtained even in a frequency region exceeding 5 GHz without using a low dielectric constant, low dielectric loss tangent resin such as a fluororesin or a liquid crystal polymer.
  • a signal line is formed in contact with one main surface of the insulating layer, and conductive fine particles are dispersed in the organic material in contact with the other main surface of the insulating layer.
  • a ground layer made of a conductive fine particle dispersion film is formed.
  • the ground layer formed with the signal line and the insulating layer interposed therebetween is configured with the conductive fine particle dispersed film.
  • the conduction in the conductive fine particle dispersed film is achieved by a talented junction at the contact portion between the conductive fine particles contained in the film. Even if the conductive fine particles do not contact each other, conduction can be achieved by the tunnel effect or the hot carrier effect. Even when the conductive fine particles are separated from each other, they can be conducted by many types of near-field effects such as a discharge effect due to electric field concentration and a shot effect if the material that disperses the conductive fine particles is a semiconductor. Is assisted. [0 0 1 0]
  • the action of the conductive fine particle dispersion film constituting the ground layer allows the use of a resin having a low dielectric constant and a low dielectric loss tangent such as a fluororesin and a liquid crystal polymer. Signals can be transmitted without loss of high-frequency components even in the frequency range exceeding. For this reason, it is possible to prevent signal loss and signal error. As a result, by using a circuit board provided with this transmission circuit structure, it is possible to achieve high speed as well as high integration and miniaturization of electronic equipment.
  • FIG. 1 is a schematic configuration diagram (plan view) of a transmission circuit structure according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 3 is a schematic cross-sectional view of a sample transmission circuit structure of a comparative example.
  • FIG. 4 is a diagram showing an input signal of TDR measurement and a reflected signal.
  • FIG. 5 is a diagram showing the time lapse of the voltage of the signal returned to the input side obtained as a result of the TDR measurement.
  • FIG. 6 A diagram showing the relationship between frequency and transmission loss, obtained as a result of S-parameter measurement.
  • FIG. 7 is a diagram showing the relationship between the passage of time and voltage obtained as a result of measuring the rise time of the propagation signal.
  • FIG. 8 is an enlarged view near the rising edge of the signal in FIG.
  • FIG. 9 is an eye pattern of a sample of the transmission circuit structure of the example.
  • FIG. 10 is an eye pattern of a sample of a transmission circuit structure of a comparative example.
  • FIG. 1 1 is a cross-sectional observation photograph of a sample of a transmission circuit structure of an example.
  • FIG. 12 An image obtained by three-dimensionally synthesizing a cross-sectional photograph of a sample of the transmission circuit structure of the example.
  • FIGS. 1 and 2 show a schematic configuration diagram of the transmission circuit structure according to the first embodiment of the present invention.
  • FIG. Figure 1 shows a plan view
  • Figure 2 shows a cross-sectional view at A- in Figure 1.
  • the transmission circuit structure shown in Figs. 1 and 2 is in contact with the upper surface of the interlayer insulating layer 15
  • Line 1 1 (S) and ground pattern 1 2 (G) are formed and in contact with the lower surface of the interlayer insulating layer 15 and containing conductive fine particles in resin ⁇ Ground consisting of conductive fine particle dispersion film dispersed Layer 17 is formed.
  • An insulating layer 1 4 is formed on the signal line 1 1 and the ground pattern 1 2. Under the ground layer 17, an insulating layer 16 is formed.
  • the insulating layer 14, the interlayer insulating layer 15, and the insulating layer 16 are formed of the same insulating material, and become an integrated insulating layer 13. Yes.
  • the signal line 1 1 is formed by patterning a thin film obtained by planarly extending a bulk material into a linear shape.
  • the material constituting the signal line 1 1 is not limited as long as the material has good conductivity.
  • copper (C u), aluminum (AI), gold (A u), silver ( A g) and alloys containing these as the main components are used as the metal foil.
  • a signal line 11 made of copper foil is provided.
  • ground patterns 1 2 are formed on both sides of the signal line 1 1 and apart from the signal line 1 1. That is, the signal line 11 and the ground pattern 12 form the same configuration as a so-called coplanar line.
  • the same potential for example, a ground potential, is applied to the two ground patterns 12.
  • the ground pattern 12 is formed by linearly patterning a thin film obtained by extending a bulk material in a plane.
  • the material constituting the ground pattern 12 is not limited as long as the material has good conductivity.
  • copper (C u), aluminum (AI), gold (A u), silver (A g) and alloys containing these as the main components are used as the metal foil.
  • a ground pattern 12 made of copper foil is provided. I will do it.
  • the ground layer 17 may be configured as a single-layer structure of a conductive fine particle dispersed film as illustrated, or a laminated structure of a conductive fine particle dispersed film and a conductive material such as a copper foil, for example. It may be configured as. When the ground layer has a laminated structure, the conductive fine particle dispersion film is arranged on the signal line and insulating layer side.
  • the conductive fine particles used for the conductive fine particle dispersed film are configured using a material having good conductivity.
  • Such conductive fine particles are composed of gold (Au), silver (Ag), copper (Cu), aluminum (AI), nickel (N ⁇ ), or graphite. These materials may be used alone or as an alloy based on these materials.
  • conductive fine particles may be formed by mixing a plurality of types of particles made of these materials, or particles made of other conductive materials.
  • These conductive fine particles are used in the form of flakes (flakes), spheres, and long particles, and a plurality of types may be used in combination.
  • graphite When graphite is used as the conductive fine particles, disc-shaped graphite particles having a and b surfaces as bottom surfaces are used. These graphite particles are particles in which graphene is laminated in the ab plane direction.
  • the free electron density of copper is 1.3 X 10 23 / cm 3 , but the electron mobility is only 5.1 X 10 1 cm 2 / V-s.
  • the a and b planes of the graph item have a free electron density of only 10 13 / cm 3, but the electron mobility is as high as 1 X 10 4 cm 2 / V ⁇ s and the mean free path is long. . For this reason, the electrical conductivity of the a and b surfaces of the graph items is said to be better than copper.
  • the c-axis direction of the graph item has a large resistance. For this reason, it is desirable to use thin crystalline particles of darafen as conductive fine particles.
  • the shape of conductive fine particles is, for example, 50 Aim or less in the long side direction, 1 O tm or less in the short side direction, and 5 tm in thickness. It is assumed that the following particle shapes are mainly included, and those with spherical shapes of less than l O m, elliptical spheres, and isotropically deformed particles are included.
  • the conductive fine particle-dispersed film is formed by dispersing the conductive fine particles as described above in an organic material and then curing.
  • an organic material for dispersing conductive fine particles As the organic material for dispersing conductive fine particles as described above, a material capable of dispersing conductive fine particles is used.
  • an organic material for example, an epoxy resin, a polyimide resin, a polyimide resin, and a BT (bismaleide ⁇ lyazine) resin can be selected as appropriate from commonly used organic insulating materials. Can be used.
  • the conductive fine particle-dispersed film preferably has an electric resistivity of 5 times or more that of the bulk material of the material constituting the conductive fine particles, more preferably 1 It is about 0 0 0 times.
  • the electrical resistivity of such a conductive fine particle dispersed film can be increased by reducing the film thickness.
  • the conductive fine particle-dispersed film is formed by using a pace rod in which conductive fine particles are dispersed in an organic material diluted with a solvent.
  • a pace rod in which conductive fine particles are dispersed in an organic material diluted with a solvent.
  • the silver paste is obtained by dispersing silver particles in a solution obtained by diluting, for example, an epoxy resin precursor and a curing agent as an organic material, and other additives as necessary.
  • the conductive state is maintained by approaching or partially contacting each other up to a distance where the interaction occurs, and a conductive fine particle dispersed film is obtained.
  • the solvent may be removed from the film in the process of curing or drying the organic material (for example, epoxy resin or polyamide imide resin). is there.
  • the conductive fine particle dispersed film may contain additives such as a dispersant and a cosolvent for improving the dispersibility of the conductive fine particles.
  • the thickness of the ground layer 17 composed of the conductive fine particle dispersed film is determined by the current capacity handled by the transmission circuit structure. If the transmission circuit structure is used for an electronic circuit, the thickness of the signal line 1 1 and the ground pattern 12 is preferably several m to several h.
  • the thickness of the signal line 11 and the ground pattern 12 is several atm to several tens of mm.
  • the insulating layer 13 is preferably made of an organic material that can be diluted in the same solvent as the organic material that forms the conductive fine particle dispersed film.
  • the precursors before drying or curing the respective organic materials constituting the insulating layer 13 and the conductive fine particle dispersed film can be diluted or dissolved in the same solvent. It ’s fine.
  • an insulating layer 13 for example, a material similar to the organic material constituting the conductive fine particle dispersed film is used.
  • an epoxy resin, a polyimide resin, a polyimide resin or the like is used for the insulating layer 13.
  • solvents such as alcohols, ketones and esters.
  • Other specific examples of such solvents that can be diluted or dissolved include N-methylpyrrolidone, alpha-pyrolactone, diglyme, cyclopentanone, and ethyl benzoate.
  • the solvent may be removed in the process of hardening or drying the organic material.
  • the insulating layer 13 is used by adjusting to an appropriate molecular structure and dielectric constant according to the performance required for the transmission circuit structure.
  • the dielectric structure can be improved by improving the molecular structure of polyamide or by dispersing high dielectric constant powder or low dielectric constant powder in the resin. The rate is adjusted.
  • the film thickness of the insulating layer 13 is set so that a predetermined characteristic impedance is obtained in the ground pattern 12 and the ground layer 17.
  • the thickness of the insulating layer 1 3 is set to several m to 200 m. If the transmission circuit structure is used for a transmission cable,
  • the film thickness of 13 is set to several m to several mm.
  • the insulating layer 14, the interlayer insulating layer 15, and the insulating layer 16 are formed of the same insulating material.
  • ground pattern 12 formed with the signal line 11 interposed therebetween may be omitted.
  • the signal line and the ground layer sandwich the interlayer insulating layer.
  • the transmission circuit structure having the above-described configuration is used as a circuit board or a transmission cable. In this case, for example, it may be used by being connected to the substrate extraction electrode, or may be used as a configuration embedded in the connector. Furthermore, this transmission circuit may have the ground layer covered with an inorganic insulating film or an organic insulating film.
  • the transmission circuit structure as described above can be manufactured, for example, as described below.
  • a copper foil is prepared, and an organic insulating film is formed thereon as an insulating layer. At this time, a solution obtained by diluting or dissolving the organic material with a solvent is applied onto the copper foil.
  • an insulating layer is obtained by performing a drying process.
  • the copper foil is patterned to form a signal line 11 and a ground pattern 12 made of the copper foil.
  • a conductive fine particle dispersion film is formed on the insulating layer.
  • a paste in which conductive fine particles are dispersed in a solution in which an organic material is diluted is applied onto the insulating layer.
  • the coated film is dried to obtain a conductive fine particle dispersed film.
  • a step of curing or drying the organic material of the conductive fine particle dispersed film is performed.
  • the insulating layer is cured simultaneously.
  • the heat treatment is performed at a temperature lower than the melting point of the conductive fine particles in the conductive fine particle dispersion film.
  • the organic material constituting the conductive fine particle dispersed film and the organic material constituting the insulating layer are photocurable resins, curing by light irradiation may be performed.
  • the conductive fine particle dispersion film thus obtained serves as a ground layer.
  • the ground layer is configured as a laminated structure of a conductive fine particle dispersed film and a conductive material such as copper foil
  • the upper part of the conductive fine particle dispersed film produced as described above is used.
  • a conductive material such as copper foil is laminated on the substrate.
  • a ground layer having a laminated structure of the conductive fine particle dispersed film on the insulating layer side and the conductive material on the upper side is obtained.
  • the transmission circuit structure is completed.
  • the ground layer 17 is configured using a conductive fine particle dispersed film in which conductive fine particles are dispersed in an organic material.
  • a transmission circuit structure (S 1) having the structure shown in FIGS. 1 and 2 and applying the configuration of the present invention was manufactured.
  • a transmission circuit structure (C 1) to which a conventional configuration was applied in which the structure shown in the sectional view of FIG. 2 was changed to the structure shown in the sectional view of FIG.
  • a ground layer 52 made of copper foil and a connection part 51 made of a conductor layer are formed instead of the conductive fine particle dispersed film shown in FIG.
  • the Cu foil is patterned by etching. As a result, a signal line 11 and a ground pattern 12 made of Cu foil are formed.
  • the length L of the transmission circuit structure was 20 Omm, and the width W of the transmission circuit structure was 20 mm.
  • the width of the signal line 11 is 100 m, and the distance between the signal line 1 1 and the daland pattern 12 is 550 m.
  • connection hole 5 1 is formed by filling the connection hole with a mesh or a conductive pace filling hole.
  • a ground layer 17 made of a conductive fine particle dispersion film is formed inside the connection hole and on the surface of the interlayer insulating film.
  • the shape and material of the conductive fine particles are flaky A 9 (major axis 6.2 m, content 85 wt%).
  • the film thickness of the ground layer 17 made of the conductive fine particle dispersed film is 5 to 1 Om.
  • N_methyl_2_pyrrolidone similar to P A I constituting the interlayer insulating layer 15 is used.
  • a copper (Cu) foil (film thickness: 18 Aim) is bonded to the interlayer insulating layer 15 and the connection portion 51 by thermocompression bonding to form the ground layer 52.
  • a solvent-soluble polyamideimide (PA I) using N-methyl-2-pyrrolidone as a solvent. ) Is applied and dried to form an insulating layer 16 made of PAI.
  • the film thickness of the insulating layer 16 is about 10 Aim.
  • a solvent-soluble polyamideimide (PA) using N _methyl _2 pyrrolidone as a solvent I) is applied and dried to form an insulating layer 14 made of PAI.
  • the thickness of the insulating layer 14 is about 1 O ⁇ m.
  • the dielectric constant ⁇ of the interlayer insulating layer 15 after completion of drying, measured by a cavity resonator perturbation method, and a measurement frequency of 1 GHz was 2.9.
  • TDR Time Domain Ref Lectmetory
  • the signal is returned at the other end 19 of the transmission circuit structure, that is, at the end of the line, so that the signal is returned.
  • the characteristic impedance Z of the circuit of the transmission circuit structure By detecting this reflected signal S ref, the characteristic impedance Z of the circuit of the transmission circuit structure. (The inherent value of the line) and the time 2 t pd required for the electromagnetic energy to travel back and forth on the transmission line.
  • the velocity V of the electromagnetic wave propagating through the transmission line is derived from the dielectric constant ⁇ of the resin of the interlayer insulating layer 15 and the following equation (1).
  • Fig. 5 shows the time lapse of the voltage of the signal returned to the input side as a measurement result.
  • the propagation time of the example was about 21% shorter than that of the comparative example.
  • Fig. 6 shows the relationship between frequency and transmission loss (dB) as a measurement result.
  • the example has less high-frequency component loss than the comparative example.
  • the comparative example has less high-frequency component loss than the comparative example.
  • the rise time of the propagation signal was measured in the transmission circuit structure samples of the example and the comparative example.
  • a clock signal was input from the input side.
  • the clock signal voltage was 1 V
  • the frequency was 1 MHz
  • the pulse rise time Tr was 36 to 44 ps.
  • the output of the signal obtained on the output side was observed with a digital oscilloscope.
  • Figure 7 shows the relationship between time and voltage as a measurement result.
  • Figure 8 shows an enlarged view around the rising edge of the signal.
  • Figure 8 shows the time elapsed between 20% and 80% of the voltage, assuming 0.6 1 6V as 100%.
  • the sample of the example has a shorter rise time of the propagation signal than the sample of the comparative example.
  • the elapsed time of 20% ⁇ 80% is 1 19 p s in the example and 1 63 p s in the comparative example.
  • the rise time of the propagation signal is shortened by about 27% compared to the comparative example.
  • the signal wiring width of the example is 1 000 tm and the width of the signal wiring of the comparative example is 60 m in order to eliminate the influence on the measurement data due to the characteristic impedance mismatch. Measurements were carried out on objects.
  • the size of the ground pattern on both sides is adjusted in response to changes in the signal wiring, and other sizes and external dimensions remain the same, and their characteristic impedances are in the range of 50 ⁇ 10 ⁇ . .
  • one end of the sample was used as the input side, and the other end of the sample was used as the output side.
  • a GS Prop (CP690-01, 6 GHz) was connected to each of the input and output sides.
  • the Anritsu pulse pattern generator MP1761B was connected to the input side through this program, and the Agi Lent digital talent Shiroscope 8686A was connected to the output side.
  • the eye patterns of the observed examples and comparative examples are shown in FIG. 9 and FIG.
  • the sample of the example can confirm the opening of the central portion, whereas the sample of the comparative example shows the opening at all. Absent. In other words, it can be said that the sample of the example has greatly improved the transmission characteristics of the high-speed digital signal compared to the comparative example.
  • the sample of the example has the characteristics that the propagation speed of the signal is fast, the rise of the propagation signal is short, and the transmission characteristic of the high-speed digital signal is good.
  • Figures 11 and 12 show photographs.
  • Fig. 11 is a photograph of the cross section taken from the side
  • Fig. 12 is a three-dimensional composite image of 50 cross-sections taken in steps of about 1 m as in Fig. 11.
  • a conductive fine particle dispersed film in which conductive fine particles are coarsely dispersed is formed.
  • the effective ground coupling of signal line 1 1 in Fig. 2 is much stronger in daland layer 1 7 than daland pattern 1 2. That is, since the spatial distance is narrow, a microstrip line structure in which the ground pattern 12 is omitted can be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided is a transmission circuit structure body whereby, without requiring a low dielectric-constant, low dielectric-tangent resin such as a fluorine resin or a liquid-crystal polymer, signal transmission without high-frequency component loss even in frequency regions beyond 5GHz is possible. A transmission circuit structure body is configured wherein a signal line is formed in contact with one surface of an interlaminar insulation layer, and a ground layer is formed in contact with another surface of the interlaminar insulation layer, said ground layer comprising a conductive microparticle dispersed film wherein conductive microparticles are dispersed in an organic material.

Description

明 細 書  Specification
発明の名称 : 伝送回路構造体  Title of invention: Transmission circuit structure
技術分野  Technical field
[0001 ] 本発明は、 信号線とグランドパターンを有する伝送回路構造体に係わる。  [0001] The present invention relates to a transmission circuit structure having a signal line and a ground pattern.
背景技術  Background art
[0002] 近年、 コンピュータや移動体通信機器など、 I Cチップを搭載した電子機 器の高速化および高実装密度化が進展している。 高実装密度化により、 信号 の反射や歪、 配線間で生じるクロストークなどを防ぐ配線設計を行い、 シグ ナルインテグリティと呼ばれる信号品質を確保することが、 ますます重要に なっている。  [0002] In recent years, electronic devices equipped with IC chips, such as computers and mobile communication devices, have been increasing in speed and mounting density. With higher mounting density, it is becoming increasingly important to ensure signal quality called signal integrity by designing wiring to prevent signal reflection and distortion, and crosstalk between wires.
[0003] しかしながら、 開発されている高速インタ一フェースの周波数は、 5 G H zを超える値となっており、 このような高い周波数を用いるには、 従来より も信号の立ち上がり時間を短くする必要があり、 立ち上がり時間が短くなる ことにより、 信号の高周波成分が顕著に現れる。 そのため、 高周波成分の損 失を低減させるために、 表面粗度の小さい銅箔の採用や、 誘電率および誘電 正接の低い樹脂の採用といつた材料選択が必須となる。  [0003] However, the frequency of the high-speed interface that has been developed exceeds 5 GHz, and in order to use such a high frequency, it is necessary to shorten the rise time of the signal compared to the conventional method. Yes, as the rise time is shortened, the high-frequency component of the signal appears significantly. Therefore, in order to reduce the loss of high-frequency components, it is essential to use copper foil with a low surface roughness and use a resin with a low dielectric constant and dielectric loss tangent.
[0004] 以上のような伝送回路においては、 高周波特性の良い基板材料の代表的な ものとして、 フッ素樹脂基板 (例えば、 特許文献 1、 特許文献 2を参照) や 液晶ポリマー基板 (例えば、 特許文献 3を参照) などが挙げられるが、 汎用 のガラスエポキシに比べると、 高価であることに加え、 メツキ密着性、 銅箔 との接着強度が低い、 といった加工面での課題もある。 また、 フッ素樹脂基 板や液晶ポリマ一基板などの材料においても、 先に述べたような 5 G H zを 超える高速信号伝送に使用するには、 表皮効果による損失低減のため、 表面 粗度の小さい銅箔の採用や、 誘電損失の低減のために樹脂層を厚くするなど とした回路設計が必須となる。  [0004] In the transmission circuit as described above, as typical examples of a substrate material having good high-frequency characteristics, a fluororesin substrate (see, for example, Patent Document 1 and Patent Document 2) and a liquid crystal polymer substrate (for example, Patent Document) However, in addition to being more expensive than general-purpose glass epoxies, there are also problems in processing such as low adhesion and low adhesive strength with copper foil. In addition, in materials such as fluororesin substrates and liquid crystal polymer substrates, the surface roughness is small to reduce loss due to the skin effect when used for high-speed signal transmission exceeding 5 GHz as described above. Circuit design such as adopting copper foil and thickening the resin layer to reduce dielectric loss is essential.
先行技術文献  Prior art documents
特許文献 [0005] 特許文献 1 :特開 2 0 0 5 _ 7 6 6 8号公報 ( [ 0 0 0 2 ] ) 特許文献 2:特開 2 0 0 2 _ 7 6 6 5 2号公報 Patent Literature Patent Document 1: Japanese Patent Laid-Open No. 2 0 5 _ 7 6 6 8 ([0 0 0 2]) Patent Document 2: Japanese Patent Laid-Open No. 2 0 _ 2 6 6 5 2
特許文献 3 :特開 2 0 0 6— 1 2 8 3 2 6号公報 ( [ 0 0 1 0 ] ) 発明の概要  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 6-1 2 8 3 2 6 ([0 0 1 0]) Summary of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 高周波特性の良い基板材料の代表的なものとして、 フッ素樹脂基板や液晶 ポリマ一基板などが挙げられるが、 汎用のガラスエポキシに比べると、 高価 であることに加え、 メツキ密着性、 銅箔との接着強度が低い、 といった加工 面での課題もある。 また、 5 G H zを超える高速信号伝送に使用するには、 表皮効果による損失低減のため、 表面粗度の小さい銅箔の採用や、 誘電損失 の低減のために樹脂層を厚くするなどを行つた回路設計が必須となる。  [0006] Typical examples of substrate materials with good high-frequency characteristics include fluororesin substrates and liquid crystal polymer substrates, but they are more expensive than general-purpose glass epoxies. There is also a problem in terms of processing such as low adhesive strength with the foil. For high-speed signal transmission exceeding 5 GHz, use copper foil with a small surface roughness to reduce loss due to the skin effect, and thicken the resin layer to reduce dielectric loss. Circuit design is essential.
[0007] 上述した問題の解決のために、 本発明においては、 フッ素樹脂や液晶ポリ マ一といった低誘電率、 低誘電正接の樹脂を用いることなく、 5 G H zを超 える周波数領域でも、 高周波成分の損失なく信号の伝送が可能な伝送回路構 造体を提供し、 これによつて電子機器の高速動作化を図ることを目的とする 課題を解決するための手段  [0007] In order to solve the above-described problems, in the present invention, a high-frequency wave can be obtained even in a frequency region exceeding 5 GHz without using a low dielectric constant, low dielectric loss tangent resin such as a fluororesin or a liquid crystal polymer. Means for solving a problem with the aim of providing a transmission circuit structure capable of transmitting a signal without loss of components, and thereby achieving high-speed operation of an electronic device
[0008] 本発明の伝送回路構造体は、 絶縁層の一方の主面に接して、 信号線が形成 され、 絶縁層の他方の主面に接して、 有機材料中に導電性微粒子が分散され て成る導電性微粒子分散膜からなるグランド層が形成されたものである。  In the transmission circuit structure of the present invention, a signal line is formed in contact with one main surface of the insulating layer, and conductive fine particles are dispersed in the organic material in contact with the other main surface of the insulating layer. A ground layer made of a conductive fine particle dispersion film is formed.
[0009] 上述の本発明の伝送回路構造体の構成によれば、 信号線と絶縁層を挟んで 形成されたグランド層が、 導電性微粒子分散膜で構成されている。 この導電 性微粒子分散膜における導通は、 膜中に含有された導電性微粒子同士の接触 部分の才一ミック接合によって図られる。 また導電性微粒子同士が接触しな くても、 トンネル効果やホッ トキャリア効果によっても導通が図られる。 さ らに導電性微粒子同士が離れた場合であつても、 電界集中による放電効果や 、 さらに導電性微粒子を分散させる物質が半導体であればショッ トキ一効果 など多くの種類の近接場効果によって導通が補助される。 [0 0 1 0] [0009] According to the configuration of the transmission circuit structure of the present invention described above, the ground layer formed with the signal line and the insulating layer interposed therebetween is configured with the conductive fine particle dispersed film. The conduction in the conductive fine particle dispersed film is achieved by a talented junction at the contact portion between the conductive fine particles contained in the film. Even if the conductive fine particles do not contact each other, conduction can be achieved by the tunnel effect or the hot carrier effect. Even when the conductive fine particles are separated from each other, they can be conducted by many types of near-field effects such as a discharge effect due to electric field concentration and a shot effect if the material that disperses the conductive fine particles is a semiconductor. Is assisted. [0 0 1 0]
また、 各導電性微粒子間には、 導電性微粒子の間隔に対応する電圧差があり、 この 電圧差が変化しているときはその間の容量に応じた変位電流が流れる。 すなわち容量 性結合となる。 これも電磁エネルギーの伝達を補助する。  In addition, there is a voltage difference corresponding to the interval between the conductive fine particles between the conductive fine particles, and when this voltage difference changes, a displacement current according to the capacity between them flows. That is, capacitive coupling. This also assists in the transmission of electromagnetic energy.
発明の効果 The invention's effect
[0 0 1 1 ]  [0 0 1 1]
上述の本発明の伝送回路構造体によれば、 グランド層を構成する導電性微粒子分散 膜の作用により、 フッ素樹脂や液晶ポリマーといった低誘電率、 低誘電正接の樹脂を 用いることなく、 5 GH zを超える周波数領域でも、 高周波成分の損失なく信号の伝 送が可能となる。 このため、 信号の損失や信号エラ一発生を防止することができる。 この結果、 この伝送回路構造体を備えた回路基板を用いることにより、 電子機器の高 集積化および小型化と共に高速化を達成することが可能になる。  According to the transmission circuit structure of the present invention described above, the action of the conductive fine particle dispersion film constituting the ground layer allows the use of a resin having a low dielectric constant and a low dielectric loss tangent such as a fluororesin and a liquid crystal polymer. Signals can be transmitted without loss of high-frequency components even in the frequency range exceeding. For this reason, it is possible to prevent signal loss and signal error. As a result, by using a circuit board provided with this transmission circuit structure, it is possible to achieve high speed as well as high integration and miniaturization of electronic equipment.
図面の簡単な説明 Brief Description of Drawings
[0 0 1 2 ] [0 0 1 2]
[図 1 ]本発明の第 1実施形態の伝送回路構造体の概略構成図 (平面図) である。  FIG. 1 is a schematic configuration diagram (plan view) of a transmission circuit structure according to a first embodiment of the present invention.
[図 2 ]図 1の A— A 'における断面図である。  FIG. 2 is a cross-sectional view taken along line AA ′ in FIG.
[図 3 ]比較例の伝送回路構造体の試料の概略断面図である。  FIG. 3 is a schematic cross-sectional view of a sample transmission circuit structure of a comparative example.
[図 4 ]TD R測定の入力信号と反射した信号とを示す図である。  FIG. 4 is a diagram showing an input signal of TDR measurement and a reflected signal.
[図 5 ] T D R測定の結果得られた、 入力側に戻った信号の電圧の時間経過を示す 図である。  FIG. 5 is a diagram showing the time lapse of the voltage of the signal returned to the input side obtained as a result of the TDR measurement.
[図 6 ] Sパラメーター測定の結果得られた、 周波数と伝送損失との関係を示す図 である。  [Fig. 6] A diagram showing the relationship between frequency and transmission loss, obtained as a result of S-parameter measurement.
[図 7 ]伝搬信号の立ち上がり時間の測定の結果得られた、 時間経過と電圧との関 係を示す図である。  FIG. 7 is a diagram showing the relationship between the passage of time and voltage obtained as a result of measuring the rise time of the propagation signal.
[図 8 ]図 7の信号の立ち上がり付近の拡大図である。  FIG. 8 is an enlarged view near the rising edge of the signal in FIG.
[図 9 ]実施例の伝送回路構造体の試料のアイパターンである。  FIG. 9 is an eye pattern of a sample of the transmission circuit structure of the example.
[図 1 0]比較例の伝送回路構造体の試料のアイパターンである。  FIG. 10 is an eye pattern of a sample of a transmission circuit structure of a comparative example.
[図 1 1 ]実施例の伝送回路構造体の試料の断面観察写真である。  FIG. 1 1 is a cross-sectional observation photograph of a sample of a transmission circuit structure of an example.
[図 1 2 ]実施例の伝送回路構造体の試料の断面写真を 3次元合成した画像である。 発明を実施するための形態  [FIG. 12] An image obtained by three-dimensionally synthesizing a cross-sectional photograph of a sample of the transmission circuit structure of the example. BEST MODE FOR CARRYING OUT THE INVENTION
[0 0 1 3 ] [0 0 1 3]
以下、 本発明の実施形態を、 図面に基づいて、 説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0 0 1 4 ] [0 0 1 4]
く 1. 第 1実施形態 > 1. First Embodiment>
' 本発明の第 1実施形態の伝送回路構造体の概略構成図を、 図 1および図 2に示す。 図 1は平面図を示し、 図 2は図 1の A— における断面図を示している。  'A schematic configuration diagram of the transmission circuit structure according to the first embodiment of the present invention is shown in FIGS. 1 and 2. FIG. Figure 1 shows a plan view, and Figure 2 shows a cross-sectional view at A- in Figure 1.
図 1〜図 2に示す伝送回路構造体は、 層間絶縁層 1 5の上面に接して、 信  The transmission circuit structure shown in Figs. 1 and 2 is in contact with the upper surface of the interlayer insulating layer 15
引用により含まれる(規則 20.6) 号線 1 1 ( S ) とグランドパターン 1 2 ( G ) とが形成され、 層間絶縁層 1 5の下面に接して、 導電性微粒子を樹脂に含有■分散させた導電性微粒子分 散膜からなるグランド層 1 7が形成されている。 Included by citation (Rule 20.6) Line 1 1 (S) and ground pattern 1 2 (G) are formed and in contact with the lower surface of the interlayer insulating layer 15 and containing conductive fine particles in resin ■ Ground consisting of conductive fine particle dispersion film dispersed Layer 17 is formed.
信号線 1 1およびグランドパターン 1 2の上には、 絶縁層 1 4が形成され ている。 グランド層 1 7の下には、 絶縁層 1 6が形成されている。  An insulating layer 1 4 is formed on the signal line 1 1 and the ground pattern 1 2. Under the ground layer 17, an insulating layer 16 is formed.
本実施形態では、 図 2に示すように、 絶縁層 1 4と層間絶縁層 1 5と絶縁 層 1 6とが、 同一の絶縁材料により形成されており、 一体化した絶縁層 1 3 となっている。  In this embodiment, as shown in FIG. 2, the insulating layer 14, the interlayer insulating layer 15, and the insulating layer 16 are formed of the same insulating material, and become an integrated insulating layer 13. Yes.
以下、 これらの構成要素の詳細について、 信号線 1 1、 グランドパターン 1 2、 絶縁層 1 3、 導電性微粒子分散膜からなるグランド層 1 7の順に説明 する。  Hereinafter, the details of these components will be described in the order of the signal line 11, the ground pattern 12, the insulating layer 13, and the ground layer 17 including the conductive fine particle dispersed film.
[001 5] 信号線 1 1は、 バルク状の材料を平面的に引き延ばした薄膜を、 線状にパ ターニングして構成されている。 このような信号線 1 1 を構成する材料は、 導電性が良好な材料であれば限定されることはなく、 例えば、 銅 (C u ) 、 アルミニウム (A I ) 、 金 (A u ) 、 銀 (A g ) 、 およびこれらを主成分と する合金が金属箔として用いられる。 ここでは例えば、 銅箔からなる信号線 1 1が設けられていることとする。  [001 5] The signal line 1 1 is formed by patterning a thin film obtained by planarly extending a bulk material into a linear shape. The material constituting the signal line 1 1 is not limited as long as the material has good conductivity. For example, copper (C u), aluminum (AI), gold (A u), silver ( A g) and alloys containing these as the main components are used as the metal foil. Here, for example, a signal line 11 made of copper foil is provided.
[001 6] グランドパターン 1 2は、 信号線 1 1 を挟んで、 かつ、 信号線 1 1から離 間して、 2本形成されている。 すなわち、 信号線 1 1及びグランドパターン 1 2によって、 いわゆるコプレーナ線路と同様の構成が形成されている。  [001 6] Two ground patterns 1 2 are formed on both sides of the signal line 1 1 and apart from the signal line 1 1. That is, the signal line 11 and the ground pattern 12 form the same configuration as a so-called coplanar line.
2本のグランドパターン 1 2には、 同一の電位、 例えばグランド電位が印 加される。  The same potential, for example, a ground potential, is applied to the two ground patterns 12.
グランドパターン 1 2は、 信号線 1 1 と同様に、 バルク状の材料を平面的 に引き延ばした薄膜を、 線状にパターニングして構成されている。 このよう なグランドパターン 1 2を構成する材料は、 導電性が良好な材料であれば限 定されることはなく、 例えば、 銅 (C u ) 、 アルミニウム (A I ) 、 金 (A u ) 、 銀 (A g ) 、 およびこれらを主成分とする合金が金属箔として用いら れる。 ここでは例えば、 銅箔からなるグランドパターン 1 2が設けられてい ることとする。 Similar to the signal line 11, the ground pattern 12 is formed by linearly patterning a thin film obtained by extending a bulk material in a plane. The material constituting the ground pattern 12 is not limited as long as the material has good conductivity. For example, copper (C u), aluminum (AI), gold (A u), silver (A g) and alloys containing these as the main components are used as the metal foil. Here, for example, a ground pattern 12 made of copper foil is provided. I will do it.
[0017] グランド層 1 7は、 図示したように導電性微粒子分散膜の単層構造として 構成されていても良いし、 導電性微粒子分散膜と例えば銅箔のような導電性 材料との積層構造として構成されていても良い。 グランド層を積層構造とす る場合には、 導電性微粒子分散膜の方を、 信号線及び絶縁層の側に配置する  [0017] The ground layer 17 may be configured as a single-layer structure of a conductive fine particle dispersed film as illustrated, or a laminated structure of a conductive fine particle dispersed film and a conductive material such as a copper foil, for example. It may be configured as. When the ground layer has a laminated structure, the conductive fine particle dispersion film is arranged on the signal line and insulating layer side.
[0018] ここで、 導電性微粒子分散膜に用いる導電性微粒子は、 導電性の良好な材 料を用いて構成されていることとする。 このような導電性微粒子は、 金 (A u) 、 銀 (A g) 、 銅 (C u) 、 アルミニウム (A I ) 、 ニッケル (N ί ) 、 またはグラフアイ トを用いて構成される。 これらの材料は、 単体で用いら れても良く、 またはこれらの材料を主成分とした合金として用いられても良 し、。 さらに、 これらの材料からなる複数種類の粒子や、 さらに他の導電性材 料からなる粒子を混ぜ合わせて導電性微粒子を構成しても良い。 Here, the conductive fine particles used for the conductive fine particle dispersed film are configured using a material having good conductivity. Such conductive fine particles are composed of gold (Au), silver (Ag), copper (Cu), aluminum (AI), nickel (N ί), or graphite. These materials may be used alone or as an alloy based on these materials. Furthermore, conductive fine particles may be formed by mixing a plurality of types of particles made of these materials, or particles made of other conductive materials.
これらの導電性微粒子は、 薄片状 (フレーク状) 、 球状、 長粒状などの形 状で用いられ、 複数種類の形状を合わせて用いても良い。  These conductive fine particles are used in the form of flakes (flakes), spheres, and long particles, and a plurality of types may be used in combination.
[0019] 導電性微粒子としてグラフアイ トを用いる場合、 a, b面を底面とした円 盤形状のグラフアイ ト粒子が用いられる。 このグラフアイ ト粒子は、 グラフ ェンを a b面方向に積層させた粒子である。 ここで、 銅は、 自由電子密度は 1. 3 X 1 023/c m3であるが、 電子移動度は 5. 1 X 1 01 c m2/V - s しかない。 一方、 グラフアイ トの a, b面は、 自由電子密度は 1 013/c m 3 しかないが、 電子移動度は 1 X 1 04 c m 2/V ■ sと高く、 しかも平均自由 行程が長い。 そのため、 グラフアイ トの a, b面の電気伝導度は銅より良い とされている。 なお、 グラフアイ トの c軸方向は大きな抵抗を持つ。 このた め、 ダラフェンの薄い結晶粒子を導電性微粒子として用いることが望ましい また、 導電性微粒子の形状は、 例えば長辺方向が 50 Aim以下、 短辺方向 が 1 O tm以下、 その厚みが 5 tm以下の粒子形状を主とし、 l O m以下 の球形、 楕円球体、 等方的異形態の粒子形状のものが含まれていることとす る。 [0019] When graphite is used as the conductive fine particles, disc-shaped graphite particles having a and b surfaces as bottom surfaces are used. These graphite particles are particles in which graphene is laminated in the ab plane direction. Here, the free electron density of copper is 1.3 X 10 23 / cm 3 , but the electron mobility is only 5.1 X 10 1 cm 2 / V-s. On the other hand, the a and b planes of the graph item have a free electron density of only 10 13 / cm 3, but the electron mobility is as high as 1 X 10 4 cm 2 / V ■ s and the mean free path is long. . For this reason, the electrical conductivity of the a and b surfaces of the graph items is said to be better than copper. The c-axis direction of the graph item has a large resistance. For this reason, it is desirable to use thin crystalline particles of darafen as conductive fine particles. The shape of conductive fine particles is, for example, 50 Aim or less in the long side direction, 1 O tm or less in the short side direction, and 5 tm in thickness. It is assumed that the following particle shapes are mainly included, and those with spherical shapes of less than l O m, elliptical spheres, and isotropically deformed particles are included. The
[0020] 導電性微粒子分散膜は、 以上のような導電性微粒子を有機材料中に分散さ せた後、 硬化させてなる。  [0020] The conductive fine particle-dispersed film is formed by dispersing the conductive fine particles as described above in an organic material and then curing.
以上のような導電性微粒子を分散させる有機材料は、 導電性微粒子を分散 可能な材料を用いることとする。 このような有機材料としては、 たとえばェ ポキシ樹脂、 ポリイミ ド樹脂、 ポリアミ ドイミ ド樹脂、 B T (ビスマレイ ド ■ 卜リアジン) レジンなど、 一般に使われている有機絶縁性材料の中から、 適宜選択して用いることができる。  As the organic material for dispersing conductive fine particles as described above, a material capable of dispersing conductive fine particles is used. As such an organic material, for example, an epoxy resin, a polyimide resin, a polyimide resin, and a BT (bismaleide 卜 lyazine) resin can be selected as appropriate from commonly used organic insulating materials. Can be used.
[0021 ] なお、 導電性微粒子分散膜は、 その電気抵抗率が、 導電性微粒子を構成す る材料のバルク材料の電気抵抗率の 5倍以上であることが好ましいが、 さら には好ましくは 1 0 0 0倍程度である。 このような導電性微粒子分散膜の電 気抵抗率は、 膜厚を薄くすることで引き上げられる。 [0021] The conductive fine particle-dispersed film preferably has an electric resistivity of 5 times or more that of the bulk material of the material constituting the conductive fine particles, more preferably 1 It is about 0 0 0 times. The electrical resistivity of such a conductive fine particle dispersed film can be increased by reducing the film thickness.
導電性微粒子分散膜は、 溶剤で希釈した有機材料に導電性微粒子を分散さ せたペース卜を用いて形成される。 例えば一般的に市販されている銀ペース 卜を用いて形成される。 銀ペーストは、 例えば有機材料としてのエポキシ樹 脂の前駆体および硬化剤、 さらには必要に応じた他の添加剤を溶剤で希釈し た溶液に、 銀粒子を分散させてなる。 このような銀ペーストを用いて薄膜を 形成し、 この薄膜中の有機材料を硬化させることにより、 導電性粒子同士が The conductive fine particle-dispersed film is formed by using a pace rod in which conductive fine particles are dispersed in an organic material diluted with a solvent. For example, it is formed by using a commercially available silver pace candy. The silver paste is obtained by dispersing silver particles in a solution obtained by diluting, for example, an epoxy resin precursor and a curing agent as an organic material, and other additives as necessary. By forming a thin film using such a silver paste and curing the organic material in this thin film, the conductive particles
、 前記相互作用が起る距離まで互いに接近し、 または部分的に接触すること で導通状態が保たれ、 導電性微粒子分散膜が得られる。 The conductive state is maintained by approaching or partially contacting each other up to a distance where the interaction occurs, and a conductive fine particle dispersed film is obtained.
[0022] なお、 このような導電性微粒子分散膜においては、 有機材料 (例えばェポ キシ樹脂やポリアミ ドイミ ド樹脂) を硬化または乾燥させる過程で、 膜中か ら溶剤が除去されている場合もある。 In such a conductive fine particle dispersed film, the solvent may be removed from the film in the process of curing or drying the organic material (for example, epoxy resin or polyamide imide resin). is there.
また、 導電性微粒子分散膜には、 導電性微粒子の分散性を向上させるため の分散剤や助溶剤等の添加剤が含有されていても良い。  Further, the conductive fine particle dispersed film may contain additives such as a dispersant and a cosolvent for improving the dispersibility of the conductive fine particles.
[0023] また、 例えば銅箔からなる信号線 1 1およびグランドパターン 1 2の厚み[0023] Further, for example, the thickness of the signal line 11 and the ground pattern 12 made of copper foil
、 並びに、 導電性微粒子分散膜からなるグランド層 1 7の厚みは、 伝送回路 構造体が取り扱う電流容量によって決められる。 伝送回路構造体が電子回路に用いられるものであれば、 信号線 1 1および グランドパターン 1 2の厚みは数 m ~" h数 t mが望ましい。 , And the thickness of the ground layer 17 composed of the conductive fine particle dispersed film is determined by the current capacity handled by the transmission circuit structure. If the transmission circuit structure is used for an electronic circuit, the thickness of the signal line 1 1 and the ground pattern 12 is preferably several m to several h.
また、 伝送回路構造体が伝送ケーブルに用いられるものであれば、 信号線 1 1およびグランドパターン 1 2の厚みは数 At mから数十 m mである。  Further, if the transmission circuit structure is used for a transmission cable, the thickness of the signal line 11 and the ground pattern 12 is several atm to several tens of mm.
[0024] 絶縁層 1 3は、 導電性微粒子分散膜を構成する有機材料と同一の溶剤に希 釈可能な有機材料を用いて構成されていることが好ましい。 この場合、 絶縁 層 1 3および導電性微粒子分散膜を構成するそれぞれの有機材料を乾燥させ る前または硬化させる前の前駆体が、 同一の溶剤で希釈可能であるかあるい は溶解可能であれば良い。 The insulating layer 13 is preferably made of an organic material that can be diluted in the same solvent as the organic material that forms the conductive fine particle dispersed film. In this case, the precursors before drying or curing the respective organic materials constituting the insulating layer 13 and the conductive fine particle dispersed film can be diluted or dissolved in the same solvent. It ’s fine.
このような絶縁層 1 3は、 例えば導電性微粒子分散膜を構成する有機材料 と同様の材料が用いられる。 例えば、 エポキシ樹脂に銀粒子を分散させた導 電性微粒子分散膜を設けた場合であれば、 絶縁層 1 3にはエポキシ樹脂、 ポ リイミ ド樹脂、 またはポリアミ ドイミ ド樹脂等が用いられる。 これらの樹脂 やその前駆体は、 アルコール、 ケトン、 エステル、 などの溶剤で希釈あるい は溶解が可能である。 それら希釈あるいは溶解が可能な溶剤の他の具体例と しては、 N—メチルピロリ ドン、 ァ一プチロラクトン、 ジグライム、 シクロ ペンタノン、 安息香酸ェチルなどがある。  For such an insulating layer 13, for example, a material similar to the organic material constituting the conductive fine particle dispersed film is used. For example, when a conductive fine particle dispersion film in which silver particles are dispersed in an epoxy resin is provided, an epoxy resin, a polyimide resin, a polyimide resin or the like is used for the insulating layer 13. These resins and their precursors can be diluted or dissolved in solvents such as alcohols, ketones and esters. Other specific examples of such solvents that can be diluted or dissolved include N-methylpyrrolidone, alpha-pyrolactone, diglyme, cyclopentanone, and ethyl benzoate.
なお、 このような有機材料からなる絶縁層 1 3においては、 有機材料の硬 化または乾燥の過程で溶剤が除去されている場合もある。  Note that in the insulating layer 13 made of such an organic material, the solvent may be removed in the process of hardening or drying the organic material.
[0025] また、 絶縁層 1 3は、 この伝送回路構造体に要求される性能に応じて、 適 切な分子構造や誘電率に調整して用いられる。 例えば、 ポリアミ ドイミ ド樹 脂からなる絶縁層 1 3を用いる場合、 ポリアミ ドイミ ドの分子構造の改良、 もしくは高誘電率の粉末または低誘電率の粉末などを樹脂中に分散させるこ とによって、 誘電率が調整される。 In addition, the insulating layer 13 is used by adjusting to an appropriate molecular structure and dielectric constant according to the performance required for the transmission circuit structure. For example, when an insulating layer 13 made of polyamide resin is used, the dielectric structure can be improved by improving the molecular structure of polyamide or by dispersing high dielectric constant powder or low dielectric constant powder in the resin. The rate is adjusted.
[0026] 絶縁層 1 3の膜厚は、 グランドパターン 1 2およびグランド層 1 7に所定 の特性ィンピ一ダンスが得られるように設定される。 The film thickness of the insulating layer 13 is set so that a predetermined characteristic impedance is obtained in the ground pattern 12 and the ground layer 17.
この伝送回路構造体が、 電子回路に用いられるものであれば、 絶縁層 1 3 の膜厚は数 m ~ 2 0 0 mに設定される。 また、 伝送回路構造体が伝送ケ一プルに用いられるものであれば、 絶縁層If this transmission circuit structure is used for an electronic circuit, the thickness of the insulating layer 1 3 is set to several m to 200 m. If the transmission circuit structure is used for a transmission cable,
1 3の膜厚は、 数 m〜数 m mに設定される。 The film thickness of 13 is set to several m to several mm.
[0027] なお、 本実施形態では、 絶縁層 1 4と層間絶縁層 1 5と絶縁層 1 6とが同 —の絶縁材料により形成されている場合を説明したが、 これらの絶縁層 1 4 , 1 5, 1 6に、 異なる絶縁材料を使用することも可能である。 In this embodiment, the case where the insulating layer 14, the interlayer insulating layer 15, and the insulating layer 16 are formed of the same insulating material has been described. However, these insulating layers 14, It is possible to use different insulating materials for 1 5 and 1 6.
また、 信号線 1 1 を挟んで形成されているグランドパターン 1 2は、 無く ても良い。 この場合、 信号線とグランド層とが層間絶縁層を挟んだ構成とな る。  Further, the ground pattern 12 formed with the signal line 11 interposed therebetween may be omitted. In this case, the signal line and the ground layer sandwich the interlayer insulating layer.
[0028] 上述した構成の伝送回路構造体は、 回路基板や伝送ケーブルとして用いら れる。 この場合、 例えば基板取り出し電極に対して接続させて用いられたり 、 コネクタの中に埋め込まれた構成として用いられても良い。 さらにこの伝 送回路は、 無機絶縁膜または有機絶縁膜でグランド層が覆われていても良い  [0028] The transmission circuit structure having the above-described configuration is used as a circuit board or a transmission cable. In this case, for example, it may be used by being connected to the substrate extraction electrode, or may be used as a configuration embedded in the connector. Furthermore, this transmission circuit may have the ground layer covered with an inorganic insulating film or an organic insulating film.
[0029] (伝送回路の製造方法) [0029] (Transmission circuit manufacturing method)
以上のような伝送回路構造体は、 例えば、 以下に説明するようにして、 製 造することができる。  The transmission circuit structure as described above can be manufactured, for example, as described below.
[0030] まず、 例えば銅箔を用意し、 この上部に絶縁層として有機絶縁膜を成膜す る。 この際、 有機材料を溶剤で希釈あるいは溶解した溶液を銅箔上に塗布し [0030] First, for example, a copper foil is prepared, and an organic insulating film is formed thereon as an insulating layer. At this time, a solution obtained by diluting or dissolving the organic material with a solvent is applied onto the copper foil.
、 その後、 乾燥処理することによって絶縁層を得る。 Then, an insulating layer is obtained by performing a drying process.
[0031 ] 次に、 銅箔をパターニングして、 銅箔からなる、 信号線 1 1 とグランドパ ターン 1 2を形成する。 Next, the copper foil is patterned to form a signal line 11 and a ground pattern 12 made of the copper foil.
絶縁層上に、 導電性微粒子分散膜を成膜する。 この際、 有機材料を希釈し た溶液に導電性微粒子を分散させたぺ一ストを用い、 絶縁層上に塗布する。 有機材料の希釈には、 絶縁層を構成する有機材料を希釈あるいは溶解したも のと同一の溶剤を用いることが好ましい。  A conductive fine particle dispersion film is formed on the insulating layer. At this time, a paste in which conductive fine particles are dispersed in a solution in which an organic material is diluted is applied onto the insulating layer. For diluting the organic material, it is preferable to use the same solvent in which the organic material constituting the insulating layer is diluted or dissolved.
その後、 塗布した膜を乾燥処理することによって、 導電性微粒子分散膜を 得る。  Thereafter, the coated film is dried to obtain a conductive fine particle dispersed film.
[0032] 次いで、 導電性微粒子分散膜の有機材料を硬化または乾燥させる工程を行 う。 この工程では、 絶縁層を同時に硬化させる。 ここでは、 導電性微粒子分 散膜中の導電性微粒子を変形させることなく有機材料を硬化させ、 膜中にお ける導電性微粒子の分散状態を保つことが重要である。 したがってここでは 、 導電性微粒子分散膜中の導電性微粒子の融点よりも低い温度で熱処理を行 う。 これにより、 導電性微粒子分散膜を構成する有機材料、 および絶縁層を 構成する有機材料を硬化または乾燥させる。 また、 導電性微粒子分散膜を構 成する有機材料、 および絶縁層を構成する有機材料が光硬化性樹脂である場 合には、 光照射による硬化を行っても良い。 このようにして得た導電性微粒 子分散膜が、 グランド層となる。 [0032] Next, a step of curing or drying the organic material of the conductive fine particle dispersed film is performed. Yeah. In this step, the insulating layer is cured simultaneously. Here, it is important to cure the organic material without deforming the conductive fine particles in the conductive fine particle dispersion film and to maintain the dispersed state of the conductive fine particles in the film. Therefore, here, the heat treatment is performed at a temperature lower than the melting point of the conductive fine particles in the conductive fine particle dispersion film. Thereby, the organic material constituting the conductive fine particle dispersed film and the organic material constituting the insulating layer are cured or dried. Further, when the organic material constituting the conductive fine particle dispersed film and the organic material constituting the insulating layer are photocurable resins, curing by light irradiation may be performed. The conductive fine particle dispersion film thus obtained serves as a ground layer.
なお、 グランド層が、 導電性微粒子分散膜と例えば銅箔のような導電性材 料との積層構造として構成されている場合であれば、 以上のようにして作製 した導電性微粒子分散膜の上部に銅箔のような導電性材料を積層する。 これ により、 絶縁層側の導電性微粒子分散膜とこの上部の導電性材料との積層構 造からなるグランド層を得る。  If the ground layer is configured as a laminated structure of a conductive fine particle dispersed film and a conductive material such as copper foil, the upper part of the conductive fine particle dispersed film produced as described above is used. A conductive material such as copper foil is laminated on the substrate. Thus, a ground layer having a laminated structure of the conductive fine particle dispersed film on the insulating layer side and the conductive material on the upper side is obtained.
[0033] 以上のようにして、 伝送回路構造体を完成させる。 このようにして得られ た伝送回路構造体は、 グランド層 1 7が、 有機材料に導電性微粒子を分散さ せた導電性微粒子分散膜を用いて構成されている。  As described above, the transmission circuit structure is completed. In the transmission circuit structure thus obtained, the ground layer 17 is configured using a conductive fine particle dispersed film in which conductive fine particles are dispersed in an organic material.
実施例  Example
[0034] (実験 1 )  [0034] (Experiment 1)
実施例として、 図 1〜図 2に示した構造で、 本発明構成を適用した伝送回 路構造体 (S 1 ) を作製した。  As an example, a transmission circuit structure (S 1) having the structure shown in FIGS. 1 and 2 and applying the configuration of the present invention was manufactured.
また、 比較例として、 図 2の断面図に示した構造を、 図 3の断面図に示す 構造に変更した、 従来構成を適用した伝送回路構造体 (C 1 ) を作製した。 図 3に示す構造は、 図 2の導電性微粒子分散膜の代わりに、 銅箔によるグ ランド層 5 2と導体層による接続部 5 1 を形成している。  As a comparative example, a transmission circuit structure (C 1) to which a conventional configuration was applied, in which the structure shown in the sectional view of FIG. 2 was changed to the structure shown in the sectional view of FIG. In the structure shown in FIG. 3, a ground layer 52 made of copper foil and a connection part 51 made of a conductor layer are formed instead of the conductive fine particle dispersed film shown in FIG.
[0035] 以上の実験 1の各試料の伝送回路構造体における、 グランド層の構成は、 下記表 1 に示す通りである。 The configuration of the ground layer in the transmission circuit structure of each sample in Experiment 1 is as shown in Table 1 below.
[0036] [表 1] [0036] [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0037] 続いて、 各伝送回路構造体の製造手順を説明する。 [0037] Next, a manufacturing procedure of each transmission circuit structure will be described.
まず、 厚さ 1 O O m程度のアルミ箔に、 通常の樹脂系接着剤よりも接着 力の弱い剥離可能な接着層を形成した支持体を用意して、 この支持体の接着 層の上に、 膜厚 1 8 Aimの C u箔を形成した。  First, prepare a support that has a peelable adhesive layer with a weaker adhesive strength than ordinary resin adhesives on an aluminum foil with a thickness of about 1 OO m. On the adhesive layer of this support, A Cu foil having a thickness of 18 Aim was formed.
その後、 C u箔を、 エッチングによりパターニングする。 これにより、 C u箔からなる、 信号線 1 1およびグランドパターン 1 2を形成する。  Thereafter, the Cu foil is patterned by etching. As a result, a signal line 11 and a ground pattern 12 made of Cu foil are formed.
このとき、 各試料において、 伝送回路構造体の長さ Lを 20 Omm、 伝送 回路構造体の幅 Wを 20 m mとした。 また、 信号線 1 1の幅を 1 00 m、 信号線 1 1 とダランドパターン 1 2との間隔を 5 50 mとした。  At this time, in each sample, the length L of the transmission circuit structure was 20 Omm, and the width W of the transmission circuit structure was 20 mm. In addition, the width of the signal line 11 is 100 m, and the distance between the signal line 1 1 and the daland pattern 12 is 550 m.
[0038] 次に、 C u箔の表面に、 N—メチル— 2 -ピロリ ドンを溶剤とした溶剤可 溶型のポリアミ ドイミ ド (PA I ) を塗布し、 これを乾燥させて P A Iから なる層間絶縁層 1 5を形成する。 層間絶縁層 1 5の膜厚は 1 5~20^mと する。 [0039] 次に、 層間絶縁層 1 5に接続孔を形成する。 試料 C 1では、 接続孔をメッ キもしくは穴埋め用導電性ペース卜で埋めて、 接続部 5 1 を形成する。 [0038] Next, on the surface of the Cu foil, a solvent-soluble polyamide-imide (PA I) using N-methyl-2-pyrrolidone as a solvent was applied, and this was dried to form an interlayer made of PAI. Insulating layer 15 is formed. The film thickness of the interlayer insulating layer 15 is 15 to 20 ^ m. Next, a connection hole is formed in the interlayer insulating layer 15. In sample C1, the connection hole 5 1 is formed by filling the connection hole with a mesh or a conductive pace filling hole.
次に、 試料 S 1では、 導電性微粒子分散べ一ストを塗布し、 これを乾燥さ せることによって、 接続孔の内部および層間絶縁膜の表面に、 導電性微粒子 分散膜からなるグランド層 1 7を形成する。 この際、 上記表 1 に示したよう に、 試料 S 1では、 導電性微粒子の形状および材質としては、 フレーク状 A 9 (長径 6. 2 m, 含有量 85重量%) とする。 導電性微粒子分散膜から なるグランド層 1 7の膜厚は、 5~ 1 O mとする。 導電性微粒子分散べ一 ストの溶剤としては、 層間絶縁層 1 5を構成する P A I と同様の N_メチル _2_ピロリ ドンを用いる。  Next, in sample S1, by applying a conductive fine particle dispersion base and drying it, a ground layer 17 made of a conductive fine particle dispersion film is formed inside the connection hole and on the surface of the interlayer insulating film. Form. At this time, as shown in Table 1 above, in Sample S1, the shape and material of the conductive fine particles are flaky A 9 (major axis 6.2 m, content 85 wt%). The film thickness of the ground layer 17 made of the conductive fine particle dispersed film is 5 to 1 Om. As the solvent for the conductive fine particle dispersion base, N_methyl_2_pyrrolidone similar to P A I constituting the interlayer insulating layer 15 is used.
—方、 試料 C 1では、 層間絶縁層 1 5及び接続部 5 1上に銅 (C u) 箔 ( 膜厚 1 8 Aim) を熱圧着により貼り合わせてグランド層 52を形成する。  On the other hand, in the sample C 1, a copper (Cu) foil (film thickness: 18 Aim) is bonded to the interlayer insulating layer 15 and the connection portion 51 by thermocompression bonding to form the ground layer 52.
[0040] その後、 グランド層 1 7, 52の上部に、 各試料において層間絶縁層 1 5 と同様に、 N—メチル— 2 -ピロリ ドンを溶剤とした溶剤可溶型のポリアミ ドイミ ド (PA I ) を塗布し、 これを乾燥させて P A Iからなる絶縁層 1 6 を形成する。 絶縁層 1 6の膜厚は 1 0 Aim程度とする。  [0040] After that, on each of the ground layers 17 and 52, similarly to the interlayer insulating layer 15 in each sample, a solvent-soluble polyamideimide (PA I) using N-methyl-2-pyrrolidone as a solvent. ) Is applied and dried to form an insulating layer 16 made of PAI. The film thickness of the insulating layer 16 is about 10 Aim.
[0041] 次に、 信号線 1 1およびグランドパターン 1 2の裏面にある、 支持体を除 去する。  [0041] Next, the support on the back surfaces of the signal line 11 and the ground pattern 12 is removed.
続いて、 信号線 1 1およびグランドパターン 1 2の裏面に、 各試料におい て絶縁層 1 4と同様に、 N _メチル _ 2 _ピロリ ドンを溶剤とした溶剤可溶 型のポリアミ ドイミ ド (PA I ) を塗布し、 これを乾燥させて P A Iからな る絶縁層 1 4を形成する。 絶縁層 1 4の膜厚は 1 O^m程度とする。  Subsequently, on the back surface of the signal line 1 1 and the ground pattern 1 2, as in the insulating layer 1 4 in each sample, a solvent-soluble polyamideimide (PA) using N _methyl _2 pyrrolidone as a solvent I) is applied and dried to form an insulating layer 14 made of PAI. The thickness of the insulating layer 14 is about 1 O ^ m.
[0042] 以上の工程を経て、 各試料の伝送回路構造体を得た。 [0042] Through the above steps, a transmission circuit structure of each sample was obtained.
なお、 乾燥完了後の層間絶縁層 1 5の比誘電率 ε ょ、 空洞共振器摂動法、 測定周波数 1 GH zで測定した結果、 2. 9であった。  The dielectric constant ε of the interlayer insulating layer 15 after completion of drying, measured by a cavity resonator perturbation method, and a measurement frequency of 1 GHz was 2.9.
[0043] 作製した各試料の伝送回路構造体について、 特性の測定および評価を行つ た。 [0043] The characteristics of the transmission circuit structures of the fabricated samples were measured and evaluated.
[0044] (1 ) TDR (Time Domain Ref Lectmetory) 測定 実施例および比較例の伝送回路構造体の試料において、 試料の一端を入力 側とした。 そして、 この入力側に、 G Sプロ一プ (CP690-01 ) を接続して、 さらに G Sプロ一プを Ag i Lent製デジタルオシロスコープ 861 00Cに接続した。 デジタル才シロスコープから G Sプロ一プを通じて、 図 4に示すように、 伝送回路構造体の試料の入力側に、 ステップ電圧 2 0 0 m Vを、 入力信号 S i nとして入力した。 [0044] (1) TDR (Time Domain Ref Lectmetory) measurement In the samples of the transmission circuit structures of the example and the comparative example, one end of the sample was used as the input side. Then, a GS probe (CP690-01) was connected to this input side, and the GS probe was further connected to an Ag i Lent digital oscilloscope 86100C. As shown in Fig. 4, a step voltage of 20 mV was input as an input signal S in to the input side of the sample of the transmission circuit structure from the digital talent siroscope through the GS probe.
伝送回路構造体の他端 1 9、 すなわち線路の終端で反射されて、 信号が戻 るので、 この反射した信号 S r e f を検出することによって、 伝送回路構造 体の回路の特性インピーダンス Z。 (線路の持つ固有の値) と、 電磁エネルギ —が伝送線路を往復するのに要する時間 2 t p dがわかる。 The signal is returned at the other end 19 of the transmission circuit structure, that is, at the end of the line, so that the signal is returned. By detecting this reflected signal S ref, the characteristic impedance Z of the circuit of the transmission circuit structure. (The inherent value of the line) and the time 2 t pd required for the electromagnetic energy to travel back and forth on the transmission line.
電磁気学的には、 伝送線路を伝搬する電磁波の速度 Vは、 層間絶縁層 1 5 の樹脂の誘電率 εと下記の式 (1 ) により、 導出される。  Electromagnetically, the velocity V of the electromagnetic wave propagating through the transmission line is derived from the dielectric constant ε of the resin of the interlayer insulating layer 15 and the following equation (1).
[0045] [数 1 ] [0045] [Equation 1]
ν - ω ν- ω
Figure imgf000014_0001
-.
Figure imgf000014_0001
-.
[0046] 測定結果として、 入力側に戻った信号の電圧の時間経過を、 図 5に示す。 [0046] Fig. 5 shows the time lapse of the voltage of the signal returned to the input side as a measurement result.
図 5からわかるように、 実施例は、 比較例に対して、 約 2 1 %伝搬時間が 短くなつた。  As can be seen from FIG. 5, the propagation time of the example was about 21% shorter than that of the comparative example.
[0047] なお、 実施例の伝送回路構造体の試料を繰り返し作製して、 測定を行った ところ、 同様の結果が得られた。  [0047] When the transmission circuit structure sample of the example was repeatedly manufactured and measured, the same result was obtained.
[0048] ところで、 実施例の試料の場合には、 式 (1 ) から考えると、 金属微粒子 分散膜の比誘電率 I ε J < 1 となり、 仮に金属微粒子分散膜内を伝搬する電 磁波を考えた場合、 光速よりも速い速度となってしまう。 ただし、 これは、 あくまでマックスウェルの電磁方程式により導かれる式 (1 ) による計算値 であるため、 金属微粒子分散膜の場合は、 マックスウェルの電磁方程式に当 てはまらないことも想定される。 物理学上、 光の速度より速い現象が無いこ とから、 これを合理的に説明する物理は、 層間絶縁物の分極に係わる比誘電 率が実効上低くなつた、 すなわち、 分極しにくくなつた、 と解釈することが できる。 [0048] By the way, in the case of the sample of the example, considering the equation (1), the relative permittivity of the metal fine particle dispersion film becomes I ε J <1, and the electromagnetic wave propagating in the metal fine particle dispersion film is considered. In this case, the speed is faster than the speed of light. However, since this is a calculated value based on Equation (1) derived from Maxwell's electromagnetic equation to the last, it is assumed that it does not fall within Maxwell's electromagnetic equation in the case of a metal particle dispersion film. Since there is no phenomenon faster than the speed of light in physics, the physics that reasonably explains this is that the relative permittivity related to the polarization of the interlayer insulator is effectively lowered, that is, it is difficult to polarize. Can be interpreted as it can.
[0049] (2) Sパラメータ一測定  [0049] (2) One S-parameter measurement
実施例および比較例の伝送回路構造体の試料において、 Sパラメーター測 定 (各周波数成分に対する損失の大きさを測定) した。  In the sample of the transmission circuit structure of the example and the comparative example, S parameter measurement (measurement of loss for each frequency component) was performed.
実施例および比較例の伝送回路構造体の試料において、 試料の一端を入力 側として、 試料の他端を出力側とした。 そして、 入力側と出力側のそれぞれ に、 Cascade Microtech製 Z Probe 040 K3N GSG 500を接続して、 このプロ一 プを介して、 Ag ent製べクトルネッ 卜ワークアナライザ N5230Aに接続した。 そして、 入力側に、 周波数を変えて信号を入力して、 各周波数について、 出力側での伝送損失の量を調べた。  In the samples of the transmission circuit structures of the example and the comparative example, one end of the sample was used as the input side, and the other end of the sample was used as the output side. Then, Cascade Microtech Z Probe 040 K3N GSG 500 was connected to each of the input side and output side, and through this prop, it was connected to an Nent vector network analyzer N5230A. Then, we input signals at different frequencies on the input side, and examined the amount of transmission loss on the output side for each frequency.
[0050] 測定結果として、 周波数と伝送損失 (dB) との関係を、 図 6に示す。 [0050] Fig. 6 shows the relationship between frequency and transmission loss (dB) as a measurement result.
図 6に示すように、 実施例は、 比較例に対して、 高周波成分損失が少ない 。 特に、 20G H zでは、 損失の大きさに顕著な差がみられた。  As shown in FIG. 6, the example has less high-frequency component loss than the comparative example. In particular, at 20 GHz, there was a marked difference in the magnitude of the loss.
[0051] (3) 伝搬信号の立ち上がり時間の測定 [0051] (3) Measurement of propagation signal rise time
実際のデジタル信号の伝送を想定して、 実施例および比較例の伝送回路構 造体の試料において、 伝搬信号の立ち上がり時間を測定した。  Assuming actual digital signal transmission, the rise time of the propagation signal was measured in the transmission circuit structure samples of the example and the comparative example.
実施例および比較例の伝送回路構造体の試料において、 試料の一端を入力 側として、 試料の他端を出力側とした。 そして、 入力側と出力側のそれぞれ に、 Cascade Microtech製 Z Probe 040 K3N GSG 500を接続した。 さらに、 こ のプロ一プを介して、 入力側に HewLett Packard製パルスパターンジエネレ一 タ 8133Aを接続し、 出力側に Ag i Lent製デジタル才シロスコ一プ 86100Aを接続 した。  In the samples of the transmission circuit structures of Examples and Comparative Examples, one end of the sample was used as the input side, and the other end of the sample was used as the output side. Cascade Microtech Z Probe 040 K3N GSG 500 was connected to each of the input and output sides. Furthermore, a pulse pattern generator 8133A made by HewLett Packard was connected to the input side via this probe, and a digital talent shiroscope 86100A made by Ag Lent was connected to the output side.
[0052] 上述のように接続した状態で、 入力側からクロック信号を入力した。 クロ ック信号の電圧は 1 V、 周波数は 1 MH z、 パルスの立ち上がり時間 T rは 36~44 p sとした。  [0052] With the connection as described above, a clock signal was input from the input side. The clock signal voltage was 1 V, the frequency was 1 MHz, and the pulse rise time Tr was 36 to 44 ps.
そして、 出力側で得られる信号の出力を、 デジタルオシロスコープで観察 した。  The output of the signal obtained on the output side was observed with a digital oscilloscope.
測定結果として、 時間経過と電圧との関係を、 図 7に示す。 また、 図 7の 信号の立ち上がり付近の拡大図を、 図 8に示す。 図 8では、 0. 6 1 6Vを 1 00%として、 その 20%と 80%の電圧の間に経過した時間を示してい る。 Figure 7 shows the relationship between time and voltage as a measurement result. Figure 7 Figure 8 shows an enlarged view around the rising edge of the signal. Figure 8 shows the time elapsed between 20% and 80% of the voltage, assuming 0.6 1 6V as 100%.
図 7および図 8に示すように、 実施例の試料は、 比較例の試料よりも、 伝 搬信号の立ち上がり時間が短くなつている。 図 8より、 20 %→ 80 %の経 過時間は、 実施例が 1 1 9 p sであり、 比較例が 1 63 p sである。  As shown in FIGS. 7 and 8, the sample of the example has a shorter rise time of the propagation signal than the sample of the comparative example. From FIG. 8, the elapsed time of 20% → 80% is 1 19 p s in the example and 1 63 p s in the comparative example.
すなわち、 実施例の試料は、 伝搬信号の立ち上がり時間が比較例に対して 、 約 27%短縮されている。  That is, in the sample of the example, the rise time of the propagation signal is shortened by about 27% compared to the comparative example.
[0053] (4) 高速デジタル信号の伝送特性評価 [0053] (4) Evaluation of transmission characteristics of high-speed digital signals
実際の高速デジタル信号の伝送を想定して、 実施例および比較例の伝送回 路構造体の試料において、 アイパターンを測定した。 アイパターン測定にお いて、 特性インピ一ダンス不整合による測定データへの影響を排除するため 、 実施例の信号配線の幅は 1 000 tm、 及び、 比較例の信号配線の幅は 6 0 mのものを対象として、 測定を実施した。 信号配線の変化に対して、 両 側のグランドパターンの寸法を調整し、 他のサイズ、 および外形サイズは同 じ寸法を保っており、 それぞれの特性インピーダンスは、 50± 1 0Ωの範 囲内である。  Assuming actual high-speed digital signal transmission, eye patterns were measured on samples of the transmission circuit structures of the examples and comparative examples. In the eye pattern measurement, the signal wiring width of the example is 1 000 tm and the width of the signal wiring of the comparative example is 60 m in order to eliminate the influence on the measurement data due to the characteristic impedance mismatch. Measurements were carried out on objects. The size of the ground pattern on both sides is adjusted in response to changes in the signal wiring, and other sizes and external dimensions remain the same, and their characteristic impedances are in the range of 50 ± 10Ω. .
実施例および比較例の伝送回路構造体の試料において、 試料の一端を入力 側として、 試料の他端を出力側とした。 そして、 入力側と出力側のそれぞれ に、 G Sプロ一プ(CP690-01、 6GH z)を接続した。 さらに、 このプロ一プ を介して、 入力側に Anritsu製パルスパターンジェネレータ MP1761Bを接続し 、 出力側に Ag i Lent製デジタル才シロスコ一プ 86100Aを接続した。  In the samples of the transmission circuit structures of the example and the comparative example, one end of the sample was used as the input side, and the other end of the sample was used as the output side. A GS Prop (CP690-01, 6 GHz) was connected to each of the input and output sides. Furthermore, the Anritsu pulse pattern generator MP1761B was connected to the input side through this program, and the Agi Lent digital talent Shiroscope 8686A was connected to the output side.
[0054] 上述のように接続した状態で、 入力側から、 振幅 1 V、 信号伝送レ一卜 10G bps, PRBS23段のランダム信号を入力した。 そして、 出力側で得られる信号を 、 デジタルオシロスコープで観察した。 [0054] With the connection as described above, a random signal having an amplitude of 1 V, a signal transmission rate of 10 G bps, and 23 stages of PRBS was input from the input side. The signal obtained on the output side was observed with a digital oscilloscope.
測定結果として、 観察した実施例、 比較例のアイパターンのそれぞれを、 図 9、 図 1 0に示す。 図 9及び図 1 0に示すように、 実施例の試料は、 中心 部の開口がはつきり確認できるのに対し、 比較例の試料は開口部が全く見え ない。 すなわち、 実施例の試料は、 高速デジタル信号の伝送特性が、 比較例 に対して、 大きく改善されていると言える。 As the measurement results, the eye patterns of the observed examples and comparative examples are shown in FIG. 9 and FIG. As shown in FIGS. 9 and 10, the sample of the example can confirm the opening of the central portion, whereas the sample of the comparative example shows the opening at all. Absent. In other words, it can be said that the sample of the example has greatly improved the transmission characteristics of the high-speed digital signal compared to the comparative example.
[0055] 以上から、 実施例の試料は、 信号の伝搬速度が速い、 伝搬信号の立ち上が りが短い、 高速デジタル信号の伝送特性が良い、 という特徴を有しているこ とがわかる。  From the above, it can be seen that the sample of the example has the characteristics that the propagation speed of the signal is fast, the rise of the propagation signal is short, and the transmission characteristic of the high-speed digital signal is good.
[0056] 続いて、 実施例の試料の導電性微粒子分散膜を、 電子顕微鏡で観察した。  [0056] Subsequently, the conductive fine particle dispersion film of the sample of the example was observed with an electron microscope.
図 1 1および図 1 2に、 写真を示す。 図 1 1は断面を側方から撮影した写真 であり、 図 1 2は図 1 1 と同様にして約 1 m刻みで 5 0断面撮影して、 3 次元合成した画像である。  Figures 11 and 12 show photographs. Fig. 11 is a photograph of the cross section taken from the side, and Fig. 12 is a three-dimensional composite image of 50 cross-sections taken in steps of about 1 m as in Fig. 11.
図 1 1および図 1 2に示すように、 導電性微粒子が粗く分散された、 導電 性微粒子分散膜が形成されている。  As shown in FIGS. 11 and 12, a conductive fine particle dispersed film in which conductive fine particles are coarsely dispersed is formed.
[0057] 本発明は、 上述の実施の形態や実施例に限定されるものではなく、 本発明 の要旨を逸脱しない範囲でその他様々な構成が取り得る。  The present invention is not limited to the above-described embodiments and examples, and various other configurations can be taken without departing from the gist of the present invention.
例えば、 図 1 1の断面にあるように、 図 2の信号線 1 1の実効的なグラン ドカップリングは、 ダランドパターン 1 2よりもダランド層 1 7の方がはる かに強いことから、 すなわち空間的距離が狭いことから、 グランドパターン 1 2を省いたマイクロストリップライン構造も採ることができる。  For example, as shown in the cross section of Fig. 11, the effective ground coupling of signal line 1 1 in Fig. 2 is much stronger in daland layer 1 7 than daland pattern 1 2. That is, since the spatial distance is narrow, a microstrip line structure in which the ground pattern 12 is omitted can be adopted.
符号の説明  Explanation of symbols
[0058] 1 1 信号線、 1 2 グランドパターン、 1 3, 1 4, 1 6 絶縁層、 1 5 層間絶縁層、 1 7, 5 2 グランド層、 5 1 接続部  [0058] 1 1 Signal line, 1 2 Ground pattern, 1 3, 1 4, 1 6 Insulating layer, 1 5 Inter-layer insulating layer, 1 7, 5 2 Ground layer, 5 1 Connection

Claims

請求の範囲 The scope of the claims
絶縁層の一方の主面に接して、 信号線が形成され、  A signal line is formed in contact with one main surface of the insulating layer,
前記絶縁層の他方の主面に接して、 有機材料中に導電性微粒子が分 散されて成る導電性微粒子分散膜からなるグランド層が形成された、 伝送回路構造体。  A transmission circuit structure in which a ground layer made of a conductive fine particle dispersion film in which conductive fine particles are dispersed in an organic material is formed in contact with the other main surface of the insulating layer.
前記導電性微粒子は、 金、 銀、 銅、 アルミニウム、 ニッケル、 また はグラフアイ 卜を用いて構成された  The conductive fine particles are composed of gold, silver, copper, aluminum, nickel, or graph eye 卜
請求項 1 に記載の伝送回路構造体。  The transmission circuit structure according to claim 1.
前記絶縁層は、 前記導電性微粒子分散膜を構成する有機材料と同一 の溶剤に希釈または溶解可能な有機材料を用いて構成されている 請求項 1 に記載の伝送回路構造体。  The transmission circuit structure according to claim 1, wherein the insulating layer is configured using an organic material that can be diluted or dissolved in the same solvent as the organic material that forms the conductive fine particle dispersion film.
前記導電性微粒子分散膜は、 当該微粒子分散膜を構成する有機材料 と同一の溶剤に希釈または溶解可能な有機材料を用いて構成された有 機絶縁膜で挟持されている  The conductive fine particle dispersion film is sandwiched between organic insulating films made of an organic material that can be diluted or dissolved in the same solvent as the organic material constituting the fine particle dispersion film.
請求項 1 に記載の伝送回路構造体。  The transmission circuit structure according to claim 1.
前記絶縁層の前記一方の主面に接して、 前記信号線を挟み前記信号 線から離間して配置されたグランドパターンが形成されている 請求項 1 に記載の伝送回路構造体。  The transmission circuit structure according to claim 1, wherein a ground pattern is formed in contact with the one main surface of the insulating layer and spaced apart from the signal line with the signal line interposed therebetween.
PCT/JP2013/072889 2012-08-31 2013-08-27 Transmission circuit structure body WO2014034672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012191061 2012-08-31
JP2012-191061 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034672A1 true WO2014034672A1 (en) 2014-03-06

Family

ID=50183484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072889 WO2014034672A1 (en) 2012-08-31 2013-08-27 Transmission circuit structure body

Country Status (2)

Country Link
TW (1) TW201414368A (en)
WO (1) WO2014034672A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111658A (en) * 2007-10-30 2009-05-21 Kyocera Corp Multilayer wiring board
JP2010239590A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Distributed constant structural component, and method of manufacturing the same
JP2012094843A (en) * 2010-09-30 2012-05-17 Incorporated Educational Institution Meisei Circuit board, power supply structure, method for manufacturing circuit board, and method for manufacturing power supply structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111658A (en) * 2007-10-30 2009-05-21 Kyocera Corp Multilayer wiring board
JP2010239590A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Distributed constant structural component, and method of manufacturing the same
JP2012094843A (en) * 2010-09-30 2012-05-17 Incorporated Educational Institution Meisei Circuit board, power supply structure, method for manufacturing circuit board, and method for manufacturing power supply structure

Also Published As

Publication number Publication date
TW201414368A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
Cai et al. High resolution aerosol jet printing of D-band printed transmission lines on flexible LCP substrate
Ji et al. The effect of electrical connector degradation on high-frequency signal transmission
Qayyum et al. Ultra wideband 3D interconnects using aerosol jet printing up to 110 GHz
US10340233B1 (en) Millimeter wave connectors to integrated circuit interposer boards
Yim et al. Microwave model of anisotropic conductive film flip-chip interconnections for high frequency applications
Watanabe et al. High-density low-loss millimeter-wave package interconnects with the impact of dielectric-material surface roughness
Zhang et al. A Study on Transmission properties of AuNi coated polymer ball joint and Sn58Bi solder joint for flex-on-board interconnection
Lomakin et al. Substituting bond wires by additively manufactured interconnections
WO2012043795A1 (en) Circuit board, power supply structure, method for manufacturing circuit board, and method for manufacturing power supply structure
Cho et al. Inkjet-printed multilayer bandpass filter using liquid crystal polymer system-on-package technology
WO2014034672A1 (en) Transmission circuit structure body
Decrossas et al. Broad frequency LTCC vertical interconnect transition for multichip modules and system on package applications
Joo et al. Performance of silver nano particles as an electronics packaging interconnects material
Yim et al. Effect of filler content on the dielectric properties of anisotropic conductive adhesives materials for high-frequency flip–chip interconnection
Dernevik et al. Electrically conductive adhesives at microwave frequencies
Moon et al. Magnetically aligned anisotropic conductive adhesive for microwave applications
Lotfi et al. Study of Flexible Printed Transmission Lines Realized by Direct-Write Printing Technology
Lacrevaz et al. Electrical broadband characterization method of dielectric molding in 3-D IC and results
Zheng et al. Polylithic integration for RF/MM-Wave chiplets using stitch-chips: Modeling, fabrication, and characterization
JP5286694B2 (en) Electronic equipment
Huang et al. Magnetically aligned anisotropic conductive adhesive for high-frequency interconnects
Lam et al. A 50-Ohm semi-enclosed stripline design in a 90-nm CMOS Process for silicon-based monolithic microwave wave integrated circuits
Aroor System-on-package integration for millimeter-wave circuits using low-cost laminates
Wolf et al. Transmission lines on flexible substrates with minimized dispersion and losses
JP7406191B2 (en) Bonded structure, chip, substrate, paste containing conductive filler, and method for manufacturing bonded structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP