WO2014034468A1 - Transparent conductive element and manufacturing method thereof, input device, electronic device, and method of forming conductive unit - Google Patents

Transparent conductive element and manufacturing method thereof, input device, electronic device, and method of forming conductive unit Download PDF

Info

Publication number
WO2014034468A1
WO2014034468A1 PCT/JP2013/072131 JP2013072131W WO2014034468A1 WO 2014034468 A1 WO2014034468 A1 WO 2014034468A1 JP 2013072131 W JP2013072131 W JP 2013072131W WO 2014034468 A1 WO2014034468 A1 WO 2014034468A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
transparent conductive
conductive
conductive element
elements
Prior art date
Application number
PCT/JP2013/072131
Other languages
French (fr)
Japanese (ja)
Inventor
井上 純一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2014034468A1 publication Critical patent/WO2014034468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0245Flakes, flat particles or lamellar particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0248Needles or elongated particles; Elongated cluster of chemically bonded particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0329Intrinsically conductive polymer [ICP]; Semiconductive polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09972Partitioned, e.g. portions of a PCB dedicated to different functions; Boundary lines therefore; Portions of a PCB being processed separately or differently
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10053Switch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0126Dispenser, e.g. for solder paste, for supplying conductive paste for screen printing or for filling holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/092Particle beam, e.g. using an electron beam or an ion beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board

Definitions

  • the present technology relates to a transparent conductive element and a manufacturing method thereof, an input device, an electronic device, and a method of forming a conductive portion.
  • the present invention relates to a transparent conductive element in which transparent conductive portions and transparent insulating portions are alternately provided on a substrate surface in a planar manner.
  • capacitive touch panels are mounted on mobile devices such as mobile phones and portable music terminals.
  • a transparent conductive film provided with a patterned transparent conductive layer on the substrate film surface is used.
  • Patent Document 1 proposes a transparent conductive sheet having the following configuration.
  • the transparent conductive sheet includes a conductive pattern layer formed on the base sheet and an insulating pattern layer formed on a portion of the base sheet where the conductive pattern layer is not formed.
  • the conductive pattern layer has a plurality of minute pinholes, and the insulating pattern layer is formed into a plurality of islands by narrow grooves.
  • an object of the present technology is to provide a transparent conductive element that can be easily formed by a printing method, a manufacturing method thereof, an input device, an electronic device, and a method for forming a conductive portion.
  • the first technique is: A substrate having a surface; With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane, The transparent conductive portion and the transparent insulating portion are transparent conductive elements including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
  • the second technology is A substrate having a first surface and a second surface; A transparent conductive portion and a transparent insulating portion provided alternately in a plane on the first surface and the second surface,
  • the transparent conductive portion and the transparent insulating portion are an input device including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  • the third technology is A first transparent conductive element; A second transparent conductive element provided on the surface of the first transparent conductive element, The first transparent conductive element and the second transparent conductive element are A substrate having a surface; With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane, The transparent conductive portion and the transparent insulating portion are an input device including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
  • the fourth technology is A transparent conductive element having a substrate having a first surface and a second surface, and transparent conductive portions and transparent insulating portions provided alternately in a plane on the first surface and the second surface;
  • the transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  • the fifth technology is A first transparent conductive element; A second transparent conductive element provided on the surface of the first transparent conductive element, The first transparent conductive element and the second transparent conductive element are A substrate having a surface; With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane, The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
  • the sixth technology is Transparent conductive provided alternately in a plane on the surface of the substrate by printing conductive ink on the surface of the substrate and forming conductive part elements two-dimensionally in the first direction and the second direction of the surface of the substrate. And a transparent insulating element manufacturing method including forming a transparent insulating part.
  • the seventh technology is This is a method for forming a conductive portion, which includes printing a conductive ink on a surface of a substrate by a microdroplet coating method and forming a plurality of conductive portion elements on the surface of the substrate in a one-dimensional or two-dimensional manner.
  • the conductive part elements are two-dimensionally provided in the first direction and the second direction on the substrate surface, the conductive part elements can be easily produced by a printing method.
  • the transparent conductive portion and the transparent insulating portion are alternately provided on the surface of the base material, the difference in reflectance between the region where the transparent conductive portion is provided and the region where the transparent conductive portion is not provided Can be reduced. Therefore, visual recognition of the pattern of a transparent conductive part can be suppressed.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of the information input device according to the first embodiment of the present technology.
  • FIG. 2A is a plan view illustrating a configuration example of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 2B is a cross-sectional view taken along line AA shown in FIG. 2A.
  • FIG. 3A is a plan view illustrating a configuration example of the transparent electrode portion of the first transparent conductive element according to the first embodiment of the present technology.
  • 3B is a cross-sectional view taken along line AA shown in FIG. 3A.
  • FIG. 3C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 3D is a cross-sectional view along the line AA shown in FIG. 3C.
  • FIG. 4A is a schematic diagram illustrating an arrangement example of conductive part elements in a transparent electrode part.
  • FIG. 4B is a schematic diagram illustrating an arrangement example of conductive part elements in the transparent insulating part.
  • FIG. 5A is a plan view illustrating an example of a shape pattern of a boundary portion.
  • FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A.
  • FIG. 6A is a schematic diagram illustrating a first arrangement example of conductive part elements in a boundary part.
  • FIG. 6B is a schematic diagram illustrating a second arrangement example of the conductive element at the boundary.
  • FIG. 7A is a plan view illustrating a configuration example of a second transparent conductive element according to the first embodiment of the present technology.
  • FIG. 7B is a cross-sectional view taken along line AA shown in FIG. 7A.
  • 8A to 8C are process diagrams for explaining an example of the manufacturing method of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 9 is a flowchart for explaining a random pattern generation algorithm.
  • 10A to 10D are schematic diagrams for explaining a random pattern generation algorithm.
  • FIG. 11A and FIG. 11B are schematic diagrams showing the relationship between the size of dots (squares) constituting the grid and the conductive part elements.
  • FIG. 12A is a schematic diagram illustrating a configuration example of an apparatus main body of a micro droplet application system.
  • FIG. 12B is a schematic diagram enlarging a main part related to the droplet application of FIG. 12A.
  • 13A to 13D are schematic diagrams showing an operation example of the application needle of the micro droplet application system.
  • FIG. 13E is a schematic diagram showing droplets formed on the surface to be coated by the steps of FIGS. 13A to 13D.
  • FIG. 14 is a schematic diagram illustrating the movement until a droplet ejected from an inkjet nozzle reaches a coating target.
  • FIG. 15A is a plan view illustrating an example of a droplet formed by inkjet.
  • FIG. 15B is a sectional view taken along line AA shown in FIG. 15A.
  • FIG. 15C is a plan view showing an example of a droplet formed by a needle-type dispenser.
  • FIG. 15D is a cross-sectional view taken along line AA shown in FIG. 15C.
  • 16A to 16D are cross-sectional views illustrating modifications of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 17A and FIG. 17B are cross-sectional views illustrating modifications of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 18A is a plan view illustrating a configuration example of a transparent electrode portion of the first transparent conductive element according to the second embodiment of the present technology.
  • FIG. 18B is a cross-sectional view along the line AA shown in FIG. 18A.
  • FIG. 18C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element.
  • FIG. 18A is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element.
  • FIG. 18D is a cross-sectional view taken along line AA shown in FIG. 18C.
  • FIG. 19A is a plan view illustrating an example of a shape pattern of a boundary portion.
  • FIG. 19B is a cross-sectional view along the line AA shown in FIG. 19A.
  • FIG. 20A is a plan view illustrating a configuration example of the first transparent conductive element according to the third embodiment of the present technology.
  • 20B is a cross-sectional view taken along the line AA shown in FIG. 20A.
  • FIG. 21A is a plan view illustrating a configuration example of the first transparent conductive element according to the fourth embodiment of the present technology.
  • FIG. 21B is a cross-sectional view along the line AA shown in FIG. 21A.
  • FIG. 22A is a plan view illustrating a configuration example of the first transparent conductive element according to the fifth embodiment of the present technology.
  • FIG. 22B is a cross-sectional view along the line AA shown in FIG. 22A.
  • FIG. 23A is a plan view illustrating a configuration example of the first transparent conductive element according to the sixth embodiment of the present technology.
  • FIG. 23B is a cross-sectional view along the line AA shown in FIG. 23A.
  • FIG. 24A is a schematic diagram illustrating an example of a grid having two types of dot sizes.
  • FIG. 24B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid having two types of dot sizes.
  • FIG. 24A is a schematic diagram illustrating an example of a grid having two types of dot sizes.
  • FIG. 24C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid having two types of dot sizes.
  • FIG. 25A is a schematic diagram illustrating an example of a grid having three types of dot sizes.
  • FIG. 25B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid having three types of dot sizes.
  • FIG. 25C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid having three types of dot sizes.
  • FIG. 26A is a schematic diagram illustrating an example of a grid in which the dot shape is a parallelogram shape.
  • FIG. 26B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid in which the dot shape is a parallelogram shape.
  • FIG. 26A is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid in which the dot shape is a parallelogram shape.
  • FIG. 26C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid in which the dot shape is a parallelogram shape.
  • FIG. 27A is a plan view illustrating a configuration example of the first transparent conductive element according to the ninth embodiment of the present technology.
  • FIG. 27B is a plan view illustrating a configuration example of the second transparent conductive element according to the ninth embodiment of the present technology.
  • FIG. 28 is a cross-sectional view illustrating a configuration example of an information input device according to the tenth embodiment of the present technology.
  • FIG. 29A is a plan view illustrating a configuration example of an information input device according to an eleventh embodiment of the present technology.
  • FIG. 29B is a cross-sectional view along the line AA shown in FIG. 29A.
  • FIG. 30A is an enlarged plan view showing the vicinity of the intersection C shown in FIG. 29A.
  • FIG. 30B is a cross-sectional view along the line AA shown in FIG. 30A.
  • FIG. 31 is an enlarged plan view showing the region R shown in FIG. 29A.
  • FIG. 32A is an external view illustrating an example of a television device as an electronic apparatus.
  • FIG. 32B is an external view illustrating an example of a notebook personal computer as an electronic apparatus.
  • FIG. 33A is an external view illustrating an example of a mobile phone as an electronic apparatus.
  • FIG. 33B is an external view illustrating an example of a tablet computer as an electronic device.
  • FIG. 34 is a diagram illustrating changes in sheet resistance with respect to ejection time.
  • First embodiment (example of transparent electrode portion and transparent insulating portion in which conductive portion elements are provided randomly) 2.
  • Second embodiment an example of a transparent electrode part and a transparent insulating part in which conductive part elements are regularly provided) 3.
  • Third embodiment (an example of a transparent electrode portion that is a continuous film and a transparent insulating portion in which conductive portion elements are randomly provided) 4).
  • Fourth embodiment (an example of a transparent electrode portion that is a continuous film and a transparent insulating portion in which conductive portion elements are regularly provided) 5.
  • Fifth embodiment (an example of a transparent electrode portion in which conductive portion elements are randomly provided and a transparent insulating portion in which conductive portion elements are regularly provided) 6).
  • FIG. 1 is a cross-sectional view illustrating a configuration example of the information input device according to the first embodiment of the present technology.
  • the information input device 10 is provided on the display surface of a display device 4 which is an example of an electronic device.
  • the information input device 10 is bonded to the display surface of the display device 4 by, for example, a bonding layer 5.
  • the display device 4 to which the information input device 10 is applied is not particularly limited.
  • a liquid crystal display a CRT (Cathode Ray Tube) display, a plasma display panel (PDP), electroluminescence (
  • Various display devices such as an electro luminescence (EL) display and a surface-conduction electron-emitter display (SED) can be used.
  • EL electro luminescence
  • SED surface-conduction electron-emitter display
  • the information input device 10 is a so-called projected capacitive touch panel, and includes a first transparent conductive element 1 and a second transparent conductive element provided on the surface of the first transparent conductive element 1. 2, and the first transparent conductive element 1 and the second transparent conductive element 2 are bonded together via a bonding layer 6. Moreover, you may make it further provide the optical layer 3 on the surface of the 2nd transparent conductive element 2 as needed.
  • FIG. 2A is a plan view illustrating a configuration example of the first transparent conductive element according to the first embodiment of the present technology.
  • FIG. 2B is a cross-sectional view taken along line AA shown in FIG. 2A.
  • the first transparent conductive element 1 includes a substrate 11 having a surface and a transparent conductive layer 12 provided on the surface.
  • two directions that are orthogonally crossed in the plane of the substrate 11 are defined as an X-axis direction (first direction) and a Y-axis direction (second direction).
  • the transparent conductive layer 12 includes a transparent electrode part (transparent conductive part) 13 and a transparent insulating part 14.
  • the transparent electrode portion 13 is an X electrode portion that extends in the X-axis direction.
  • the transparent insulating portion 14 is a so-called dummy electrode portion, is an insulating portion that extends in the X-axis direction and is interposed between the transparent electrode portions 13 to insulate between the adjacent transparent electrode portions 13.
  • These transparent electrode portions 13 and transparent insulating portions 14 are provided on the surface of the base material 11 so as to be alternately adjacent in a plane in the Y-axis direction. 2A and 2B, the first region R 1 indicates the formation region of the transparent electrode portion 13, and the second region R 2 indicates the formation region of the transparent insulating portion 14.
  • the shape of the transparent electrode portion 13 is preferably appropriately selected according to the screen shape, the drive circuit, and the like, and examples thereof include a linear shape and a shape in which a plurality of rhombus shapes (diamond shapes) are linearly connected. In particular, it is not limited to these shapes.
  • 2A and 2B illustrate a configuration in which the shape of the transparent electrode portion 13 is a linear shape.
  • the resistance (surface resistance) of the transparent electrode portion 13 is preferably 1.0 ⁇ 10 5 ⁇ / ⁇ or less, more preferably 1.0 ⁇ 10 4 ⁇ / ⁇ or less.
  • the resistance (surface resistance) of the transparent insulating portion 14 is preferably in the range of 10 6 ⁇ / ⁇ or more, more preferably 10 8 ⁇ / ⁇ or more.
  • FIG. 3A is a plan view showing a configuration example of the transparent electrode portion of the first transparent conductive element.
  • 3B is a cross-sectional view taken along line AA shown in FIG. 3A.
  • the transparent electrode portion 13 is a transparent conductive layer 12 formed such that a plurality of conductive portion elements 13 a are randomly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate 11. In this way, the formation of moire can be suppressed by forming the plurality of conductive part elements 13a at random. In adjacent rows, conductive part elements 13a adjacent in the X-axis direction and conductive part elements 13a adjacent in the Y-axis direction are connected.
  • the plurality of conductive part elements 13a are formed, for example, connected in the X-axis direction or separated from each other.
  • the plurality of conductive portion elements 13a are formed, for example, connected in the Y-axis direction or separated from each other.
  • the transparent conductive portion 13b of the transparent electrode portion 13 is formed by the conductive portion elements 13a formed so as to be connected or separated from each other. That is, the transparent conductive portion 13b is formed by one or a plurality of conductive portion elements 13a. In the adjacent row, it is preferable that the conductive portion elements 13a in the oblique direction with respect to the X-axis direction or the Y-axis direction are connected to each other.
  • the X-axis direction Alternatively, a conductive path oblique to the Y-axis direction can be ensured. That is, a low surface resistance can be maintained.
  • the transparent electrode portion 13 is a transparent conductive layer 12 formed by randomly separating a plurality of hole portions 13c, and the transparent conductive portion 13b is interposed between adjacent hole portions 13c. Yes.
  • the shape of the hole 13 c changes randomly on the surface of the substrate 11.
  • the transparent conductive part 13b has, for example, a transparent conductive material as a main component.
  • the conductivity of the transparent electrode portion 13 is obtained by the transparent conductive portion 13b.
  • FIG. 4A is a schematic diagram showing an example of arrangement of conductive part elements in a transparent electrode part.
  • the conductive part elements 13a adjacent to each other in the X-axis direction in the adjacent row and the conductive part elements 13a adjacent to each other in the Y-axis direction are connected to each other.
  • the conductive part elements 13a adjacent to each other in a direction oblique to the direction are also connected.
  • the oblique directions with respect to the X-axis direction or the Y-axis direction are specifically directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • arrangement positioning of the electroconductive part element 13a in the transparent electrode part 13 is not limited to the above-mentioned example.
  • the conductive part elements 13a adjacent to each other in the X-axis direction in the adjacent column and the conductive part elements 13a adjacent to each other in the Y-axis direction are connected to each other, whereas the X-axis direction or the Y-axis direction in the adjacent line is connected.
  • the conductive portion elements 13a adjacent in the oblique direction may be separated from each other by the hole portion 13c.
  • FIG. 3C is a plan view showing a configuration example of the transparent insulating portion of the first transparent conductive element.
  • FIG. 3D is a cross-sectional view along the line AA shown in FIG. 3C.
  • the transparent insulating portion 14 is a transparent conductive layer formed such that a plurality of conductive portion elements 14a are randomly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the substrate surface. In this way, the formation of moire can be suppressed by randomly forming the plurality of conductive portion elements 14a. In adjacent rows, conductive part elements 14a adjacent in the X-axis direction and conductive part elements 14a adjacent in the Y-axis direction are connected.
  • the plurality of conductive part elements 14a are formed, for example, connected in the X-axis direction or separated from each other.
  • the plurality of conductive part elements 14a are formed, for example, connected in the Y-axis direction or separated from each other.
  • the island portion 14b of the transparent insulating portion 14 is formed by the conductive portion elements 14a formed so as to be connected or separated from each other. In adjacent rows, it is preferable that the conductive portion elements 14a in the oblique direction with respect to the X-axis direction or the Y-axis direction are separated from each other.
  • the conductive paths oblique to the Y axis direction can be reduced. That is, a high surface resistance (insulating property) can be maintained.
  • the transparent insulating portion 14 is composed of a plurality of island portions 14b separated by a separation portion 14c.
  • the plurality of island portions 14b are formed on the surface of the base material 11 in a random pattern.
  • the island part 14b is formed by one conductive part element 14a or a plurality of connected conductive part elements 14a.
  • the island portions 14b are electrically insulated by the separation portion 14c.
  • the shape of the island part 14 b changes randomly on the surface of the base material 11.
  • the island part 14b has, for example, a transparent conductive material as a main component.
  • FIG. 4B is a schematic diagram illustrating an arrangement example of the conductive element in the transparent insulating part.
  • the conductive part elements 14 a adjacent to each other in the X-axis direction in the adjacent row and the conductive part elements 14 a adjacent to each other in the Y-axis direction are connected to each other.
  • the conductive portion elements 14a adjacent to each other in an oblique direction with respect to the direction are also connected.
  • the oblique directions with respect to the X-axis direction or the Y-axis direction are specifically directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • positioning of the electroconductive part element 14a in the transparent insulation part 14 is not limited to the above-mentioned example.
  • the adjacent conductive elements 14a adjacent to each other in the X-axis direction or the Y-axis direction in the adjacent row are connected to each other, whereas the adjacent conductive portions adjacent to each other in the oblique direction with respect to the X-axis direction or the Y-axis direction in the adjacent row
  • the elements 14a may be separated from each other by an island portion 14b.
  • FIGS. 4A and 4B show examples of the transparent electrode portion 13 and the transparent insulating portion 14 when the conductive portion elements 13a and 14a are formed by the ink jet printing method.
  • the conductive part elements 13a and 14a When the conductive part elements 13a and 14a are formed by the ink jet printing method, the conductive part elements 13a and 14a have a circular shape, a substantially circular shape, an elliptical shape, a substantially elliptical shape, or the like.
  • the ink jet printing method is used to form the conductive portion elements 13a and 14a can be confirmed as follows. That is, whether the transparent electrode portion 13 and the transparent insulating portion 14 are observed with a microscope or the like, and whether the shape of the conductive portion element 13a and the conductive portion element 14a includes an arc shape, a substantially arc shape, an elliptic arc shape, a substantially elliptic arc shape, or the like. Determine whether or not. If any of these shapes is included in the shape of the conductive part element 13a and the conductive part element 14a, it can be assumed that the ink jet printing method is used to form the conductive part element 13a and the conductive part element 14a.
  • a dot shape can be used as the shape of the conductive part elements 13a and 14a.
  • a dot shape for example, a circular shape, a substantially circular shape, an elliptical shape, or a substantially elliptical shape can be used.
  • Different shapes may be adopted for the conductive element 13a and the conductive element 14a.
  • the substantially circular shape means a circle in which some distortion is given to a perfect circle (perfect circle) defined mathematically.
  • the almost elliptical shape means an ellipse in which some distortion is given to a mathematically defined complete ellipse, and the elliptical shape includes, for example, an ellipse and an egg shape.
  • the conductive part element 13a and the conductive part element 14a have a size that cannot be visually recognized. Moreover, you may make it employ
  • the conductive part elements 13a and 14a are formed by printing a conductive composition such as a conductive ink on the surface of the substrate 11, and drying and / or firing. Printing (drawing) of the conductive composition is performed based on, for example, a random pattern created in advance.
  • the hole 13c and the island 14b have a size that cannot be visually recognized.
  • the size of the hole 13c and the island 14b is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the size (diameter) means the maximum length of the passing lengths of the hole portion 13c and the island portion 14b.
  • the plurality of island portions 14 b serve as the covering region of the base material surface, whereas the separated portions 14 c interposed between the adjacent island portions 14 b and the exposed region of the base material surface Become.
  • the average ratio P1 of the conductive part elements 13a per unit section of the transparent electrode part 13 is preferably 50 [%] ⁇ P1, more preferably 60 [%] ⁇ P1, and further preferably 70 [%] ⁇ P1. Satisfies. This is because, by satisfying the relationship of 50 [%] ⁇ P1, an increase in the electrical resistance of the transparent electrode portion 13 can be suppressed and the function of the transparent electrode portion 13 as an electrode can be improved.
  • the average ratio P2 of the conductive part elements 14a per unit section of the transparent insulating part 14 is preferably P2 ⁇ 50 [%], more preferably P2 ⁇ 40 [%], and further preferably P2 ⁇ 30 [%]. Satisfies. This is because, by satisfying the relationship of P2 ⁇ 50 [%], it is possible to suppress a decrease in the electrical resistance of the transparent insulating portion 14 and improve the function of the transparent insulating portion 14 as an insulating portion.
  • This process is performed at 10 locations arbitrarily selected from the transparent electrode portion 13, and the ratios p1, p2,..., P10 of the conductive portion elements 13a per unit section of the transparent electrode portion 13 are obtained.
  • the average number P1 of the conductive portion elements 13a per unit section of the transparent electrode portion 13 is obtained by simply averaging (arithmetic average) the number of dots obtained as described above.
  • the average ratio P2 of the conductive part elements 14a per unit section of the transparent insulating section 14 can also be obtained in the same manner as the average ratio P1 of the conductive section elements 13a per unit section of the transparent electrode section 13 described above.
  • FIG. 5A is a plan view illustrating an example of a shape pattern of a boundary portion.
  • FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A.
  • a random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14.
  • the boundary portion indicates a region between the transparent electrode portion 13 and the transparent insulating portion 14, and the boundary L indicates a boundary line that separates the transparent electrode portion 13 and the transparent insulating portion 14.
  • the boundary L may be a virtual line instead of a solid line.
  • FIG. 6A is a schematic diagram illustrating a first arrangement example of conductive part elements in a boundary part. It is preferable that the conductive part elements 13a and the conductive part elements 14a are randomly arranged at the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part. When such an arrangement is adopted, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
  • the arrangement of the conductive part elements 13a and the conductive part elements 14a at the boundary is not limited to a random arrangement, and the conductive part elements 13a and the conductive part elements 14a are regularly arranged only at the boundary part. Also good.
  • the hole 13c and the island 14b at the boundary L may be arranged in synchronization with the extending direction of the boundary L. Further, at the boundary L, the conductive portion element 13a and the conductive portion element 14a, or the hole 13c and the separation portion 14c may be arranged in synchronization with the extending direction of the boundary L.
  • a transparent inorganic substrate or plastic substrate can be used as the substrate 11, for example, a transparent inorganic substrate or plastic substrate can be used.
  • a transparent film, sheet, substrate or the like can be used.
  • the inorganic base material include quartz, sapphire, glass, and clay film.
  • a known polymer material can be used as a material for the plastic substrate. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid.
  • the thickness of the plastic substrate is preferably 3 to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • Transparent conductive layer As the material of the transparent conductive layer 12, for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, conductive polymers, and the like can be used.
  • the metal oxide material include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide.
  • ITO indium tin oxide
  • zinc oxide indium oxide-tin oxide system
  • zinc oxide-indium oxide-magnesium oxide system As the metal material, for example, metal nanoparticles, metal wires, and the like can be used.
  • Such materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof.
  • the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymers selected from these can be used.
  • FIG. 7A is a plan view illustrating a configuration example of a second transparent conductive element according to the first embodiment of the present technology.
  • FIG. 7B is a cross-sectional view taken along line AA shown in FIG. 7A.
  • the second transparent conductive element 2 includes a substrate 21 having a surface and a transparent conductive layer 22 provided on the surface.
  • two directions orthogonal to each other in the plane of the substrate 21 are defined as an X-axis direction and a Y-axis direction.
  • the transparent conductive layer 22 includes a transparent electrode part (transparent conductive part) 23 and a transparent insulating part 24.
  • the transparent electrode portion 23 is a Y electrode portion that extends in the Y-axis direction.
  • the transparent insulating portion 24 is a so-called dummy electrode portion, is an insulating portion that extends in the Y-axis direction and is interposed between the transparent electrode portions 23 to insulate between the adjacent transparent electrode portions 23. .
  • These transparent electrode portions 23 and transparent insulating portions 24 are provided on the surface of the base material 11 so as to be alternately adjacent in a plane in the X-axis direction.
  • the transparent electrode portion 13 and the transparent insulating portion 14 included in the first transparent conductive element 1 and the transparent electrode portion 23 and the transparent insulating portion 24 included in the second transparent conductive element 2 are, for example, orthogonal to each other. . 7A and 7B, the first region R 1 indicates a region for forming the transparent electrode portion 23, and the second region R 2 indicates a region for forming the transparent insulating portion 24.
  • the second transparent conductive element 2 is the same as the first transparent conductive element 1 except for the above.
  • the optical layer 3 is, for example, a protective layer for suppressing change with time.
  • the material of the optical layer 3 is not particularly limited as long as it is transparent, but examples thereof include UV (ultraviolet) curable resins, thermosetting resins, and thermoplastic resins. Specifically, acrylic resin, urethane resin, polyester resin, polyester polyurethane resin, epoxy resin, urea resin, melamine resin, cycloolefin polymer (COP), cycloolefin copolymer (COC), ethyl cellulose, polyvinyl alcohol (PVA), silicone Well-known materials, such as resin, are mentioned.
  • a conductive ink in which a metal filler is dispersed in a solvent is prepared.
  • the resin material (binder) is added to the solvent together with the metal filler.
  • stirring As the dispersion method, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, etc. can be preferably applied.
  • the metal filler is mainly composed of a metal material.
  • the metal material for example, at least one selected from the group consisting of Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn can be used.
  • the shape of the metal filler examples include a spherical shape, an ellipsoidal shape, a needle shape, a plate shape, a scale shape, a tube shape, a fiber shape, a rod shape (rod shape), and an indefinite shape. It is not a thing.
  • the fiber shape includes a wire shape.
  • the wire-like metal filler is referred to as “metal wire”. Two or more kinds of metal fillers having the above shapes may be used in combination.
  • the spherical shape includes not only a true spherical shape but also a substantially spherical shape in which the true spherical shape is slightly flattened or distorted.
  • the ellipsoidal shape includes not only a strict ellipsoidal shape but also an almost ellipsoidal shape in which the strict ellipsoidal shape is slightly flattened or distorted.
  • the metal filler surface is preferably modified with a colored compound.
  • a colored compound By modifying the surface of the metal filler with a colored compound, light incident on the surface of the metal filler is absorbed by the colored compound. Therefore, irregular reflection of light on the surface of the metal filler can be suppressed.
  • the colored compound is adsorbed on the surface of the metal filler, for example.
  • the adsorption means a phenomenon that remains on the surface of the metal filler or in the vicinity thereof.
  • the adsorption may be chemical adsorption or physical adsorption, or a combination thereof.
  • Chemisorption means adsorption that occurs with chemical bonds such as covalent bonds, ionic bonds, metal bonds, coordinate bonds, and hydrogen bonds between the surface of the metal filler and the colored compound.
  • Physical adsorption means adsorption caused by interaction such as van der Waals force, electrostatic attraction, magnetic force and the like.
  • the colored compound preferably covers the surface of the metal filler at a monomolecular level. Thereby, the fall of the transparency with respect to visible light can be suppressed. In addition, the amount of the colored compound used can be minimized.
  • the colored compound is unevenly distributed on the surface of the metal filler. Thereby, the fall of the transparency with respect to visible light can be suppressed. In addition, the amount of the colored compound used can be minimized.
  • the colored compound has an absorption ability to absorb light in the visible light region.
  • the visible light region is a wavelength band of approximately 360 nm or more and 830 nm or less.
  • the colored compound has, for example, a chromophore R having absorption in the visible light region and a functional group X adsorbed on the metal filler.
  • the colored compound has, for example, a structure represented by the general formula [RX].
  • the structure of the colored compound is not limited to the structure represented by this general formula.
  • the number of functional groups X is not limited to one, and can be two or more.
  • the chromophore [R] is, for example, at least one selected from the group consisting of an unsaturated alkyl group, an aromatic ring, a heterocyclic ring, and a metal ion.
  • Specific examples of such chromophore [R] include nitroso group, nitro group, azo group, methine group, amino group, ketone group, thiazolyl group, naphthoquinone group, stilbene derivative, indophenol derivative, diphenylmethane derivative, anthraquinone derivative.
  • Triarylmethane derivatives diazine derivatives, indigoid derivatives, xanthene derivatives, oxazine derivatives, phthalocyanine derivatives, acridine derivatives, thiazine derivatives, sulfur atom-containing compounds, metal ion-containing compounds, and the like.
  • the chromophore [R] at least one selected from the group consisting of the chromophores exemplified above and compounds containing the same can be used.
  • the chromophore [R] is at least one selected from the group consisting of a Cr complex, a Cu complex, an azo group, an indoline group, and a compound containing the same. It is also preferable to use.
  • the functional group [X] bonded to the metal constituting the metal filler is, for example, a sulfo group (including a sulfonate salt), a sulfonyl group, a sulfonamide group, a carboxylic acid group (including a carboxylate salt), an amino group, an amide group, Examples thereof include phosphoric acid groups (including phosphates and phosphate esters), phosphino groups, silanol groups, epoxy groups, isocyanate groups, cyano groups, vinyl groups, thiol groups, carbinol groups, and hydroxyl groups.
  • Such functional group [X] should just exist in at least 1 in a colored compound. From the viewpoint of suppressing the decrease in conductivity due to the adsorption of the colored compound, the functional group [X] is preferably a carboxylic acid group, a phosphoric acid group or the like, and more preferably a carboxylic acid group.
  • the functional group [X] may be an atom capable of coordinating to the metal constituting the metal filler. Such atoms are, for example, N (nitrogen), S (sulfur), O (oxygen), and the like. When the functional group [X] is these atoms, the functional group [X] may constitute a part of the chromophore [R], and the colored compound is a compound having a heterocyclic ring.
  • Examples of the colored compound as described above include dyes such as acid dyes and direct dyes.
  • dyes such as acid dyes and direct dyes.
  • a more specific dye as a dye having a sulfo group, Nippon Kayaku Co., Ltd. Kayakalan Bordeaux BL, Kayakalan Brown GL, Kayakalan Gray BL167, Kayakalan Yellow GL143, Kayakalan Black 2RL, Kayakalan Black BGL, Kayakalan Orange RL
  • Examples include Kayaru Cupro Green G, Kayaru Supra Blue MRG, Kayaru Supra Scarlet BNL200, and Lanyl Olive BG manufactured by Taoka Chemical Industry Co., Ltd.
  • Examples of the dye having a carboxyl group include dyes for dye-sensitized solar cells.
  • Ru complexes N3, N621, N712, N719, N749, N773, N790, N820, N823, N845, N886, N945, K9, K19 , K23, K27, K29, K51, K60, K66, K69, K73, K77, Z235, Z316, Z907, Z907Na, Z910, Z991, CYC-B1, HRS-1,
  • a colored compound used as a paint can also be used.
  • Opera Red, Permanent Scarlet, Carmine, Violet, Lemon Yellow, Permanent Yellow Deep, Sky Blue, Permanent Green manufactured by Turner Color Co., Ltd. List light, permanent green middle, burnt schener, yellow ocher, permanent orange, permanent lemon, permanent red, viridian (Hugh), cobalt blue (Hugh), Prussian blue (Hugh), jet black, permanent scarlet and violet Can do.
  • Bright Red, Cobalt Blue Hue, Ivory Black, Yellow Ocher, Permanent Green Light, Permanent Yellow Light, Burnt Senna, Ultramarine Deep, Vermillion Hugh and Permanent Green which are colored compounds manufactured by Holbein Industry Co., Ltd. Etc. can also be used.
  • permanent scarlet, violet and jet black are preferable.
  • edible colored compounds can also be used as the colored compounds.
  • edible red No. 2 amaranth edible red No. 3 erythrosin, edible red No. 102 New Coxin, edible red No. 104 Phloxine manufactured by Daiwa Kasei Co., Ltd.
  • Food Red 105 Rose Bengal Food Red 106 Acid Red, Food Blue 1 Brilliant Blue, Food Red 40 Allura Red, Food Blue 2 Indigo Carmine, Red 226 Helidon Pink CN, Red 227 First Acid Magenta Red No. 230 eosin YS, green No. 204 pyranin conc, orange No. 205 orange II, blue No. 205 alphazurin, purple No. 401 arizurol purple and black No. 401 naphthol blue black.
  • Natural colored compounds can also be used, such as High Red G-150 (water-soluble grape skin pigment), Cochineal Red AL (water-soluble / cochineal pigment), High Red MC (produced by Daiwa Kasei Co., Ltd.). Water-soluble / cochineal dye), High Red BL (water-soluble / beet red), Daiwamonas LA-R (water-soluble / Benicouji dye), High Red V80 (water-soluble, purple potato dye), Annatto N2R-25 (water dispersibility) Anato dye), Annatto WA-20 (water-soluble anato-anato dye), high orange SS-44R (water dispersible, low-viscosity product, red pepper dye), high orange LH (oil-soluble red pepper dye), high green B (Water-soluble and green colorant formulation), high green F (water-soluble and green colorant formulation), high blue AT (water-soluble and colorant formulation) Chinese pear pigment), Himelon P-2 (water-soluble, green colorant formulation),
  • the colored compound can be adsorbed to each metal constituting the metal filler from the compounds represented by the above general formula [RX], and is used as a solvent used in the manufacturing process of the transparent conductive layer 12. It is preferable to select and use a compound that can be dissolved at a concentration.
  • the transparent conductive layer containing the metal filler to be confirmed is immersed in a solution capable of etching a known metal for about several hours to several tens of hours to extract the metal filler and the modified compound modified on the surface thereof.
  • the extract component is concentrated by removing the solvent from the extract by heating or reducing the pressure. At this time, if necessary, separation by chromatography may be performed.
  • the modified compound can be identified by conducting a gas chromatograph (GC) analysis of the concentrated extracted component described above and confirming the molecule of the modified compound and fragments thereof.
  • a modified compound can also be identified by NMR analysis by using a deuterium substitution solvent for extraction of a modified compound.
  • a solvent that can disperse a metal filler For example, water, alcohol (eg, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (eg, cyclohexanone, cyclopentanone), amide (eg, N, N-dimethylformamide: DMF), sulfide (for example, dimethylsulfoxide: DMSO) and the like can be used alone or in combination of two or more.
  • alcohol eg, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.
  • anone eg, cyclohexanone, cyclopentanone
  • amide eg, N, N-
  • a high boiling point solvent may be further included.
  • the high boiling point solvent include butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether.
  • Diethylene glycol monoethyl ether Diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol isopropyl ether, triplicate Propylene glycol isopropyl ether, methyl glycol.
  • These high boiling solvents may be used alone or in combination.
  • the resin material is a so-called binder material, and can be widely selected and used from known transparent natural polymer resins or synthetic polymer resins. Even a thermoplastic resin is a thermosetting resin or a photocurable resin. It may be. Examples of the thermoplastic resin include polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, and hydroxypropyl methyl cellulose.
  • Examples of the heat (light) curable resin that is cured by heat, light, electron beam, and radiation include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate.
  • surfactants such as antioxidants and sulfidizing agents are added to the resin material as necessary. Also good.
  • conductive ink is printed (drawn) on the first region R 1 on the surface of the substrate 11.
  • the droplets 33a of the conductive ink coating two-dimensionally at random in the X-axis direction of the surface of the substrate 11 in the first region R 1 (first direction) and the Y-axis direction (second direction) Is done.
  • conductive ink is printed (drawn) on the second region R 2 on the surface of the substrate 11.
  • the droplets 33a of the conductive ink coating two-dimensionally at random in the X-axis direction of the surface of the substrate 11 in the second region R 2 (first direction) and the Y-axis direction (second direction) Is done.
  • a relief printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing method, a micro contact printing method, a screen printing method, or the like can be used.
  • 8A and 8B show an example in which conductive ink is printed (drawn) on the surface of the substrate 11 by applying the conductive ink from the nozzles 33 by the ink jet printing method.
  • the printing (drawing) of the conductive ink is performed based on, for example, a random pattern generated in advance.
  • the random pattern is stored in advance as a raster image in which white dots and black dots are arranged in a random pattern, and conductive ink is printed (drawn) based on the raster image.
  • the details of the algorithm for creating a raster image in which white dots and black dots are arranged in a random pattern will be described later.
  • the resolution Dots ⁇ ⁇ Per Inch (dpi)
  • the resolution must be determined from the size of one dot depending on the performance, and drawing is required.
  • Table 1 shows an example of the relationship between the size of one dot and the resolution.
  • the conductive ink printed on the surface of the substrate 11 is dried.
  • the dried conductive ink is baked as necessary.
  • the first region R 1 and the second region R 2 are randomly arranged two-dimensionally in the X-axis direction (first direction) and Y-axis direction (second direction) of the surface of the base material 11.
  • Conductive element 13a is formed.
  • the transparent electrode portions 13 and the transparent insulating portions 14 provided alternately on the surface of the base material 11 in a plane are formed.
  • the optical layer 3 is formed on the transparent electrode portion 13 and the transparent insulating portion 14 as necessary.
  • a coating method or a printing method can be used as a method for forming the optical layer.
  • the coating method include a micro gravure coating method, a wire bar coating method, a direct gravure coating method, a die coating method, a dip method, a spray coating method, a reverse roll coating method, a curtain coating method, a comma coating method, a knife coating method, or a spin coating method.
  • a coating method or the like can be used.
  • a printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing, a micro contact printing or a screen printing method can be used.
  • a relief printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing, a micro contact printing or a screen printing method
  • a relief printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing, a micro contact printing or a screen printing method.
  • a raster image creation algorithm will be described with reference to FIG. 10A.
  • conductive ink is printed (drawn) at the position of each dot of the grid to form the conductive portion elements 13a and 14a.
  • the dots constituting the grid are rectangular, but when conductive ink is printed (drawn) by the ink jet printing method, the conductive portion elements 13a and 14a are circular, almost circular, or elliptic as described above. Since the shape is almost elliptical, both shapes are different.
  • step S3 an address (n 1 , n 2 ) is set to each dot of the created grid.
  • n 1 is an address in the row direction (X-axis direction (first direction))
  • n 2 is an address in the column direction (Y-axis direction (second direction)).
  • the ratio p of dots forming the conductive element is set in step S4
  • the address (n 1 , n 2 ) is set to the initial address (1, 1) in step S5.
  • the dot ratio p is a numerical value of 0 or more and 100 or less. In the following description, “%” may be added to the dot ratio p.
  • the ratio p of the dots forming the conductive part element is the ratio of the dots forming the conductive part element among all the dots constituting the entire size (that is, the ratio of the dots for printing (drawing) the conductive ink). Show.
  • the ratio p of dots forming the conductive part element corresponds to the above-described average ratio P1 of the conductive part element 13a and average ratio P2 of the conductive part element 14a.
  • the dot ratio p is preferably 50 ⁇ p [%], more preferably 60 ⁇ p [%], and still more preferably 70 ⁇ p [%]. %] Is set.
  • the dot ratio p is preferably p ⁇ 50 [%], more preferably p ⁇ 40 [%], and still more preferably p ⁇ . Set within the range of 30 [%].
  • step S6 a dot of 0 or more and 100 or less is set for the dot of the address (n 1 , n 2 ) (hereinafter referred to as “set address”) set in step S5, step S12 or step S13.
  • a random number Nr is generated.
  • As an algorithm for generating the random number Nr for example, Mersenne twister (MT) can be used.
  • step S7 it is determined whether or not the random number Nr generated in step S6 is less than or equal to the dot ratio p set in step S4 (Nr ⁇ p).
  • Table 2 shows the relationship between the random number Nr and the print information (binary information).
  • step S8 When the random number Nr is equal to or less than the dot ratio p, in step S8, as shown in FIG. 10C, the dot at the set address (n 1 , n 2 ) is set to print. On the other hand, if the random number Nr is larger than the proportion P of the conductive part elements, the dot at the set address (n 1 , n 2 ) is not printed in step S8 as shown in FIG. 10C (hereinafter referred to as “non-printing”). )).
  • FIG. 10C shows an example in which dots set for printing are represented by “black dots” and dots set for non-printing are represented by “white dots”.
  • FIG. 10C shows an example in which any one of print information (binary information “print” and “non-print”) is set for each dot in the order indicated by the arrows. Is an example, and the order of setting print information is not limited to this example.
  • step S10 the address n 1 determines whether the maximum value N 1 of the row address direction. If the address n 1 is the maximum value N 1 , the process proceeds to step S11. On the other hand, if the address n 1 is not the maximum value N 1 in step S12, increments the address n 1, the process returns to step S6.
  • step S11 the address n 2 determines whether the maximum value N 2 of the column address. If the address n 2 is not the maximum value N 2 , the address n 2 is incremented in step S14, and the process returns to step S6. On the other hand, when the address n 2 is the maximum value N 2 , as shown in FIG. 10D, print information (binary information) is set for all the dots constituting the grid, and white dots and black dots are set. A raster image arranged in a random pattern is completed, and the process proceeds to step S14. Next, in step S14, the raster image (binary image) may be stored in the storage unit.
  • the raster image is read from the storage unit, and the inkjet head is sequentially moved to the position on the transparent conductive layer 12 corresponding to each dot of the raster image, while the inkjet head is based on the printing information of the raster image.
  • Conductive ink is applied from
  • conductive ink is applied from the inkjet head at a position on the substrate 11 corresponding to a dot (for example, “black dot”) set for printing a raster image.
  • the conductive ink is not applied from the inkjet head at a position on the substrate 11 corresponding to a dot (for example, “white dot”) set to non-printing of the raster image.
  • a print pattern corresponding to the random pattern of white dots and black dots of the raster image is formed on the surface of the substrate 11.
  • the operation control of the inkjet head is not limited to this example.
  • the operation control of the ink jet head may be performed so that the ink jet head sequentially moves only to the printing position.
  • FIG. 11A and FIG. 11B are schematic diagrams showing the relationship between the size of dots (squares) constituting the grid and the conductive part elements.
  • the periphery for example, the circumference
  • the conductive element 13a adjacent in the X-axis direction or the Y-axis direction in the adjacent example when the periphery (for example, the circumference) of the conductive element is positioned outside the corner of the square dot, the conductive element 13a adjacent in the X-axis direction or the Y-axis direction in the adjacent example.
  • the conductive part elements 13a adjacent in the oblique direction with respect to the X-axis direction or the Y-axis direction are also connected.
  • FIG. 11A when the periphery (for example, the circumference) of the conductive element is positioned outside the corner of the square dot, the conductive element 13a adjacent in the X-axis direction or the Y-axis direction in the adjacent example.
  • the adjacent example is inclined with respect to the X axis direction or the Y axis direction.
  • the conductive part elements 13a adjacent in the direction are not connected to each other and are separated from each other.
  • the method for printing the conductive ink is not limited to the above example, and a fine droplet coating method may be used.
  • a fine droplet coating method may be used.
  • an example of application of conductive ink by a micro droplet application system will be described.
  • FIG. 12A is a schematic diagram illustrating a configuration example of an apparatus main body of a micro droplet application system.
  • 12B is a schematic diagram enlarging a main part related to the droplet application of FIG. 12A.
  • a needle dispenser manufactured by Applied Micro System Co., Ltd. can be used.
  • Such needle type dispensers are described in, for example, Japanese Patent Application Laid-Open Nos. 2011-173029 and 2011-174907.
  • the apparatus main body 100 of the needle type dispenser includes an XY stage unit 101, a coarse movement stage unit 102, a fine movement stage unit 103, a pipette holding member 104, a glass pipette (a liquid reservoir) 105, and an application needle (needle) 106. And have.
  • the coarse movement stage unit 102 and the fine movement stage unit 103 constitute a Z stage (Z-axis actuator).
  • the minimum resolution of the Z stage is 0.25 [ ⁇ m], and the repeat positioning accuracy is within ⁇ 0.3 [ ⁇ m].
  • the apparatus main body 100 of a needle type dispenser is controlled by the control part which abbreviate
  • a base material 11 that is a target for applying conductive ink is placed on the XY stage unit 101.
  • the XY stage unit 101 moves the base material 11 placed on the upper surface thereof in the X-axis direction and the Y-axis direction. Thereby, the location which apply
  • the minimum resolution of the XY stage unit 101 is 0.25 [ ⁇ m], and the repeat positioning accuracy is within ⁇ 0.3 [ ⁇ m].
  • the fine movement stage unit 103 and the pipette holding member 104 are attached to the coarse movement stage unit 102.
  • the coarse movement stage unit 102 slides with a rough degree in the approach or separation direction, that is, in the Z-axis direction with respect to the surface of the base material 11 to be coated. Therefore, fine movement stage portion 103 and pipette holding member 104 slide in the Z-axis direction as coarse movement stage portion 102 slides.
  • the pipette holding member 104 holds a glass pipette 105.
  • the glass pipette 105 is a hollow structure and extends in the Z-axis direction. Accordingly, the glass pipette 105 moves in the Z-axis direction in which the glass pipette 105 extends as the coarse movement stage unit 102 slides in the Z-axis direction.
  • the fine movement stage unit 103 slides with a fine degree in the Z-axis direction.
  • the fine movement stage 103 is attached with a coating needle 106 extending in the Z-axis direction. Accordingly, the application needle 106 can be moved in the Z-axis direction with a fine degree as the fine movement stage 103 slides in the Z-axis direction.
  • Glass is used for the glass pipette 105, for example.
  • the tip of the glass pipette 105 faces the surface to be coated.
  • the inner diameter of the tip of the glass pipette 105 is, for example, 200 [ ⁇ m].
  • a coating liquid 107 is filled in the hollow glass pipette 105.
  • the coating liquid 107 is held in the glass pipette 105 by surface tension.
  • the coating liquid 107 is a conductive ink that is a conductive composition.
  • tungsten is used for the application needle 106.
  • the application needle 106 moves in the Z-axis direction so as to penetrate through the glass pipette 105.
  • the tip of the application needle 106 faces the surface to be applied.
  • the application needle 106 When the application needle 106 passes through the glass pipette 105, the droplet attached to the tip of the application needle 106 adheres to the surface of the substrate 11 to be applied, thereby forming a droplet 108 on the surface of the substrate 11. .
  • the application needle 106 has a replaceable structure, and the tip diameter can be arbitrarily selected, for example, 10 [ ⁇ m] or 100 [ ⁇ m]. That is, the application needle 106 can be selected in accordance with the desired dot diameter.
  • FIGS. 13A to 13D are schematic diagrams showing an operation example of the application needle of the micro droplet application system.
  • FIG. 13E is a schematic diagram showing droplets formed on the surface to be coated by the steps of FIGS. 13A to 13D.
  • the application needle 106 moves with the sliding movement of the fine movement stage unit 103 (see FIG. 12A).
  • the glass pipette 105 is filled with a coating liquid 107.
  • the tip of the application needle 106 is positioned above the liquid surface of the application liquid 107.
  • the tip of the application needle 106 is movable in a direction that can approach and separate from the surface of the substrate 11 that is the application target.
  • the tip of the application needle 106 is positioned in the application liquid 107.
  • the tip of the application needle 106 is moved below the glass pipette 105. At this time, a part of the application liquid 107 adheres as a droplet 109 to the tip of the application needle 106.
  • FIG. 13A the tip of the application needle 106 is positioned above the liquid surface of the application liquid 107.
  • the tip of the application needle 106 is movable in a direction that can approach and separate from the surface of the substrate 11 that is the application target.
  • the tip of the application needle 106 is positioned in the application liquid 107.
  • the tip of the application needle 106 is moved below the glass pipett
  • the application needle 106 is further moved downward so that the droplet 109 of the application liquid 107 adhering to the tip of the application needle 106 contacts the surface of the substrate 11. Transfer. As a result, droplets 108 are formed on the surface of the substrate 11. Thereafter, the application needle 106 is raised and the tip of the application needle 106 is moved into the application liquid 107 of the glass pipette 105.
  • the droplet 108 formed on the surface of the substrate 11 has a droplet diameter D and a thickness t.
  • the approximate minimum dimensions of the droplet 108 that can be formed are a droplet diameter D of 5 [ ⁇ m] and a thickness t of 1 [ ⁇ m].
  • the needle type dispenser not only dots (stipling) but also line drawing is possible. And the phenomenon which the edge and thickness which arise with an inkjet become uneven state does not occur easily with a needle type dispenser.
  • the minimum amount of liquid that can be applied is 1,000 [pl].
  • a needle-type dispenser a minute amount of 1 [pl] can be applied. 1 [pl] corresponds to 5 [ ⁇ m] as the coating diameter.
  • a low-viscosity coating liquid of 1 to 15 [mPa ⁇ s] is preferable, and it is impossible to apply a high-viscosity liquid.
  • a needle-type dispenser it is possible to apply a low to high viscosity liquid such as 1 to 350,000 [mPa ⁇ s].
  • a highly viscous liquid that cannot be applied by inkjet can be applied at the picoliter level by a needle dispenser. Therefore, a free paint design is possible with the needle-type dispenser having these characteristics.
  • a liquid with a high content of organic solvent but also a liquid with a high content of resin or the like can be used.
  • liquids with increased functional groups can be used to improve adhesion.
  • the thermosetting resin can be replaced with a UV curable resin, which is advantageous including tact.
  • the cost can be reduced by increasing the range of selection of the liquid to be used.
  • FIG. 14 shows the movement until the droplets ejected from the inkjet nozzles land on the application target.
  • the flight path of the droplet 108 ejected from the inkjet nozzle 33 is bent due to the influence of the airflow, the electric charge, and the like, and the landing deviation e is generated from a desired output position.
  • FIG. 15A is a plan view showing an example of a droplet formed by inkjet.
  • FIG. 15B is a sectional view taken along line AA shown in FIG. 15A.
  • FIG. 15C is a plan view showing an example of a droplet formed by a needle-type dispenser.
  • FIG. 15D is a cross-sectional view taken along line AA shown in FIG. 15C.
  • a droplet called an ink jet formed on the substrate 11 has a phenomenon called non-uniform film thickness called coffee ring.
  • FIG. 15C and FIG. 15D for example, a coffee ring is unlikely to occur in the droplet 108 to which a high-viscosity liquid is transferred by a needle-type dispenser formed on the transparent conductive layer 12.
  • a plurality of conductive part elements 13a and conductive part elements 14a are randomly arranged on the surface of the base material 11 in a two-dimensional manner in the X-axis direction and the Y-axis direction of the base material surface.
  • the conductive part elements 13a and 14a can be easily manufactured by the method, particularly the ink jet printing method and the microdroplet coating method.
  • the transparent conductive layer 12 can function as the transparent electrode portion 13.
  • the first region R 1 and the transparent electrode portions 13 are not provided to the transparent electrode portions 13 is provided Thus, the difference in reflectance from the region R 2 can be reduced. Further, since the provided conductive portion elements 13a to the transparent electrode 13, the first region R 1 and the reflectance difference between the second region R 2 can be further reduced. Therefore, the visual recognition of the pattern of the transparent electrode part 13 can be suppressed.
  • a random pattern matching a printing method particularly an ink jet printing method can be formed.
  • Inkjet printing is on-demand printing, so there is no need to produce a plate, and feedback such as trial design becomes easy. Further, the ink jet printing method is suitable for use in a small amount and a variety of products, and is suitable for use as a touch panel of a mobile device in which product changes are remarkable.
  • micro droplet application method micro droplet application system
  • it can be applied to the desired output position with high accuracy. Furthermore, when a high-viscosity paint is used, the coffee ring phenomenon caused by the paint drying can be suppressed.
  • a hard coat layer 61 may be provided on at least one of the two surfaces of the first transparent conductive element 1.
  • the hard coat material it is preferable to use an ionizing radiation curable resin that is cured by light or electron beam, or a thermosetting resin that is cured by heat, and a photosensitive resin that is cured by ultraviolet rays is most preferable.
  • acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used.
  • a urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting the resulting product with an acrylate or methacrylate monomer having a hydroxyl group.
  • the thickness of the hard coat layer 61 is preferably 1 ⁇ m to 20 ⁇ m, but is not particularly limited to this range.
  • the hard coat layer 61 is formed as follows. First, a hard coat paint is applied to the surface of the substrate 11.
  • the coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating. Method, spin coating method and the like.
  • the hard coat paint contains, for example, a resin raw material such as a bifunctional or higher functional monomer and / or oligomer, a photopolymerization initiator, and a solvent. Next, if necessary, the solvent is volatilized by drying the hard coat paint applied to the surface of the substrate 11.
  • the hard coat paint on the surface of the substrate 11 is cured by, for example, ionizing radiation irradiation or heating.
  • the hard coat layer 61 may be provided on at least one of the two surfaces of the second transparent conductive element 2 in the same manner as the first transparent conductive element 1 described above.
  • optical adjustment layer As shown in FIG. 16B, it is preferable to interpose an optical adjustment layer 62 between the base material 11 and the transparent conductive layer 12 of the first transparent conductive element 1. Thereby, the invisibility of the pattern shape of the transparent electrode part 13 can be assisted.
  • the optical adjustment layer 62 is composed of, for example, a laminate of two or more layers having different refractive indexes, and the transparent conductive layer 12 is formed on the low refractive index layer side. More specifically, as the optical adjustment layer 62, for example, a conventionally known optical adjustment layer can be used.
  • optical adjustment layer for example, those described in JP-A-2008-98169, JP-A-2010-15861, JP-A-2010-23282, and JP-A-2010-27294 are used. be able to.
  • the optical adjustment layer 62 may be interposed between the base material 21 and the transparent conductive layer 22 of the second transparent conductive element 2.
  • Adhesion auxiliary layer As shown in FIG. 16C, it is preferable to provide a close adhesion auxiliary layer 63 as a base layer of the transparent conductive layer 12 of the first transparent conductive element 1. Thereby, the adhesiveness of the transparent conductive layer 12 with respect to the base material 11 can be improved.
  • the material of the adhesion auxiliary layer 63 include polyacrylic resins, polyamide resins, polyamideimide resins, polyester resins, and hydrolysis and dehydration condensation products of metal element chlorides, peroxides, alkoxides, and the like. Etc. can be used.
  • a discharge treatment in which a surface on which the transparent conductive layer 12 is provided is irradiated with glow discharge or corona discharge may be used.
  • the adhesion auxiliary layer 63 may be provided in the same manner as the first transparent conductive element 1 described above.
  • shield layer As shown in FIG. 16D, it is preferable to provide a shield layer 64 on the first transparent conductive element 1.
  • a film provided with the shield layer 64 may be bonded to the first transparent conductive element 1 via a transparent adhesive layer.
  • the shield layer 64 may be directly formed on the opposite side.
  • the material of the shield layer 64 the same material as that of the transparent conductive layer 12 can be used.
  • a method for forming the shield layer 64 a method similar to that for the transparent conductive layer 12 can be used. However, the shield layer 64 is used in a state where it is formed on the entire surface of the substrate 11 without patterning.
  • a shield layer 64 may be provided on the second transparent conductive element 2.
  • Antireflection layer As shown in FIG. 17A, it is preferable to further provide an antireflection layer 65 on the first transparent conductive element 1.
  • the antireflection layer 65 is provided, for example, on the main surface opposite to the side on which the transparent conductive layer 12 is provided, of both main surfaces of the first transparent conductive element 1.
  • the antireflection layer 65 for example, a low refractive index layer or a moth-eye structure can be used.
  • a hard coat layer may be further provided between the base material 11 and the antireflection layer 65.
  • the second transparent conductive element 2 may be further provided with an antireflection layer 65.
  • FIG. 17B is a cross-sectional view showing an application example of the first transparent conductive element 1 and the second transparent conductive element 2 provided with the antireflection layer 65.
  • the first transparent conductive element 1 and the second transparent conductive element 2 have a main surface on the side where the antireflection layer 65 is provided, of the two main surfaces. It arrange
  • FIG. 18A is a plan view illustrating a configuration example of the transparent electrode portion of the first transparent conductive element.
  • FIG. 18B is a cross-sectional view along the line AA shown in FIG. 18A.
  • the transparent electrode portion 13 is a transparent conductive layer 12 formed such that a plurality of conductive portion elements 13a are regularly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate 11. In adjacent rows, conductive part elements adjacent in the X-axis direction and conductive part elements adjacent in the Y-axis direction are connected.
  • the transparent electrode portion 13 is a transparent conductive layer 12 regularly formed with a plurality of hole portions 13c spaced apart, and the transparent conductive portion 13b is interposed between adjacent hole portions 13c. ing.
  • the shape of the hole 13 c regularly changes on the surface of the base material 11.
  • FIG. 18C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element.
  • FIG. 18D is a cross-sectional view taken along line AA shown in FIG. 18C.
  • the transparent insulating part 14 is a transparent conductive layer formed such that a plurality of conductive part elements 14a are regularly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate. In adjacent rows, conductive part elements adjacent in the X-axis direction and conductive part elements adjacent in the Y-axis direction are connected.
  • the transparent insulating portion 14 is composed of a plurality of island portions 14b separated by a separation portion 14c.
  • the island part 14b is formed by one conductive part element 14a or a plurality of connected conductive part elements 14a.
  • the shape of the island portion 14 b regularly changes on the surface of the base material 11.
  • FIG. 19A is a plan view illustrating an example of a shape pattern of a boundary portion.
  • FIG. 19B is a cross-sectional view along the line AA shown in FIG. 19A.
  • a regular shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. In this way, by providing a regular shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
  • the conductive part elements 13a and the conductive part elements 14a are regularly arranged in the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part.
  • the arrangement of the conductive part elements 13a and the conductive part elements 14a at the boundary is not limited to the regular arrangement, and the conductive part elements 13a and the conductive part elements 14a may be randomly arranged only at the boundary part. Good.
  • the regular pattern is stored in advance in the storage unit as a raster image in which white dots and black dots are arranged in a regular pattern, and conductive ink is printed (drawn) based on the raster image.
  • FIG. 20A is a plan view illustrating a configuration example of the first transparent conductive element.
  • 20B is a cross-sectional view taken along the line AA shown in FIG. 20A.
  • the transparent electrode portion 13 is provided with a plurality of conductive portion elements 13a continuously on the surface of the base material 11 in the first region (electrode region) R1, and covers the surface. This is a transparent (continuous film) transparent conductive portion 13b.
  • the first region (electrode area) R 1 and the boundary portion between the second region (insulating region) R 2 shall be excluded.
  • the transparent conductive portion 13b which is a continuous film, preferably has a substantially uniform film thickness.
  • the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the first embodiment.
  • a random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14.
  • the visual recognition of the boundary part can be suppressed.
  • the conductive part elements 14a are randomly arranged in the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part.
  • the conductive part elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating part 14 side, for example.
  • sequence of the electroconductive part element 14a in a boundary part is not limited to a random arrangement
  • FIG. 21A is a plan view illustrating a configuration example of the first transparent conductive element.
  • FIG. 21B is a cross-sectional view along the line AA shown in FIG. 21A.
  • the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the third embodiment.
  • the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the second embodiment.
  • a regular shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. In this way, by providing a regular shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
  • the conductive portion elements 14a are regularly arranged in the boundary portion between the transparent electrode portion 13 and the transparent insulating portion 14 in the extending direction of the boundary portion.
  • the conductive part elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating part 14 side, for example.
  • sequence of the electroconductive part element 14a in a boundary part is not limited to a regular arrangement
  • FIG. 22A is a plan view showing a configuration example of the first transparent conductive element.
  • FIG. 22B is a cross-sectional view along the line AA shown in FIG. 22A.
  • the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the first embodiment.
  • the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the second embodiment.
  • a random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14.
  • the visual recognition of the boundary part can be suppressed.
  • Conductive element 13a is randomly arranged at the boundary between transparent electrode part 13 and transparent insulating part 14 in the extending direction of the boundary part, and conductive element 14a is regularly arranged. Is preferred. When such an arrangement is employed, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
  • sequence of the electroconductive part element 13a in a boundary part is not limited to a random arrangement
  • the arrangement of the conductive part elements 14a in the boundary part is not limited to the regular arrangement, and the conductive part elements 14a may be randomly arranged only in the boundary part.
  • FIG. 23A is a plan view showing a configuration example of the first transparent conductive element.
  • FIG. 23B is a cross-sectional view along the line AA shown in FIG. 23A.
  • the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the second embodiment.
  • the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the first embodiment.
  • a random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14.
  • the visual recognition of the boundary part can be suppressed.
  • Conductive element 13a is regularly arranged at the boundary between transparent electrode 13 and transparent insulating part 14 in the extending direction of the boundary, and conductive element 14a is randomly arranged. Is preferred. When such an arrangement is employed, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
  • the arrangement of the conductive portion elements 13a at the boundary is not limited to a regular arrangement, and the conductive portion elements 13a may be randomly arranged only at the boundary. Further, the arrangement of the conductive part elements 14a in the boundary part is not limited to a random arrangement, and the conductive part elements 14a may be regularly arranged only in the boundary part.
  • the seventh embodiment is different from the first embodiment in that the conductive portion elements 13a and 14a having two or more sizes are provided.
  • the dot size of the grid may be set to two or more types.
  • FIG. 24A shows an example of a grid having two types of dot sizes.
  • 24B and 24C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively.
  • the transparent electrode portion 13 and the transparent insulating portion 14 have two types of conductive portion elements 13a and 14a.
  • FIG. 25A shows an example of a grid having three types of dot sizes.
  • FIG. 25B and FIG. 25C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively.
  • the transparent electrode portion 13 and the transparent insulating portion 14 have three types of conductive portion elements 13a and 14a.
  • the X-axis direction (first direction) and the Y-axis direction (second direction) are in a diagonally crossing relationship
  • the conductive element 13a in the X-axis direction and the Y-axis direction in this relationship 14a is different from the first embodiment in that it is formed so as to be randomly arranged two-dimensionally.
  • the grid dot shape is a parallelogram shape or the like. You can do it.
  • FIG. 26A shows an example of a grid in which the dot shape is a parallelogram shape.
  • FIG. 26B and FIG. 26C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively.
  • FIG. 27A is a plan view illustrating a configuration example of the first transparent conductive element according to the ninth embodiment of the present technology.
  • FIG. 27B is a plan view illustrating a configuration example of the second transparent conductive element according to the ninth embodiment of the present technology.
  • the ninth embodiment is the same as the first embodiment except for the configuration of the transparent electrode portion 13, the transparent insulating portion 14, the transparent electrode portion 23, and the transparent insulating portion 24.
  • the transparent electrode portion 13 includes a plurality of pad portions (unit electrode bodies) 13m and a plurality of connecting portions 13n that connect the plurality of pad portions 13m.
  • the connection part 13n is extended in the X-axis direction, and connects the edge parts of the adjacent pad part 13m.
  • the pad portion 13m and the connecting portion 13n are integrally formed.
  • the transparent electrode portion 23 includes a plurality of pad portions (unit electrode bodies) 23m and a plurality of connecting portions 23n that connect the plurality of pad portions 23m to each other.
  • the connecting portion 23n extends in the Y-axis direction, and connects the ends of the adjacent pad portions 23m.
  • the pad part 23m and the connecting part 23n are integrally formed.
  • the shapes of the pad portion 13m and the pad portion 23m for example, a diamond shape (diamond shape), a polygonal shape such as a rectangle, a star shape, a cross shape, or the like can be used.
  • the shape is not limited to these shapes. .
  • the shape of the connecting portion 13n and the connecting portion 23n may be any shape as long as the adjacent pad portions 13m and the pad portions 23m can be connected to each other.
  • the shape is not particularly limited to a rectangular shape. Examples of shapes other than the rectangular shape include a linear shape, an oval shape, a triangular shape, and an indefinite shape.
  • FIG. 28 is a cross-sectional view illustrating a configuration example of an information input device according to the tenth embodiment of the present technology.
  • the information input device 10 according to the tenth embodiment includes a transparent conductive layer 12 on one main surface (first main surface) of a base material 21, and transparent conductivity on the other main surface (second main surface). It differs from the information input device 10 according to the first embodiment in that the layer 22 is provided.
  • the transparent conductive layer 12 includes a transparent electrode part and a transparent insulating part.
  • the transparent conductive layer 22 includes a transparent electrode part and a transparent insulating part.
  • the transparent electrode portion of the transparent conductive layer 12 is an X electrode portion that extends in the X-axis direction
  • the transparent electrode portion of the transparent conductive layer 22 is a Y electrode portion that extends in the Y-axis direction. Therefore, the transparent electrode portions of the transparent conductive layer 12 and the transparent conductive layer 22 are in a relationship orthogonal to each other.
  • the following effects can be further obtained in addition to the effects of the first embodiment. That is, since the transparent conductive layer 12 is provided on one main surface of the base material 21 and the transparent conductive layer 22 is provided on the other main surface, the base material 11 (see FIG. 1) in the first embodiment is omitted. be able to. Therefore, the information input device 10 can be further reduced in thickness.
  • FIG. 29A is a plan view illustrating a configuration example of an information input device according to an eleventh embodiment of the present technology.
  • FIG. 29B is a cross-sectional view along the line AA shown in FIG. 29A.
  • the information input device 10 is a so-called projected capacitive touch panel.
  • the transparent insulating layer 81 is provided.
  • the plurality of transparent electrode portions 13 and the transparent electrode portion 23 are provided on the same surface of the substrate 11.
  • the transparent insulating part 14 is provided between the transparent electrode part 13 and the transparent electrode part 23 in the in-plane direction of the substrate 11.
  • the transparent insulating layer 81 is interposed between the intersecting portions of the transparent electrode portion 13 and the transparent electrode portion 23.
  • an optical layer 91 may be further provided on the surface of the base material 11 on which the transparent electrode portion 13 and the transparent electrode portion 23 are formed as necessary.
  • the optical layer 91 is not shown.
  • the optical layer 91 includes a bonding layer 92 and a base 93, and the base 93 is bonded to the surface of the base material 11 via the bonding layer 92.
  • the information input device 10 is suitable for application to a display surface of a display device.
  • the base material 11 and the optical layer 91 have transparency with respect to visible light, for example, and the refractive index n is preferably in the range of 1.2 or more and 1.7 or less.
  • X-axis direction two directions orthogonal to each other within the surface of the information input device 10 are referred to as an X-axis direction and a Y-axis direction, respectively, and a direction perpendicular to the surface is referred to as a Z-axis direction.
  • the transparent electrode portion 13 extends in the X-axis direction (first direction) on the surface of the base material 11, while the transparent electrode portion 23 extends in the Y-axis direction (second direction on the surface of the base material 11. Direction). Therefore, the transparent electrode portion 13 and the transparent electrode portion 23 cross each other at right angles. At the intersection C where the transparent electrode portion 13 and the transparent electrode portion 23 intersect, a transparent insulating layer 81 for insulating the two electrodes is interposed.
  • FIG. 30A is an enlarged plan view showing the vicinity of the intersection C shown in FIG. 29A.
  • FIG. 30B is a cross-sectional view along the line AA shown in FIG. 30A.
  • the transparent electrode portion 13 includes a plurality of pad portions (unit electrode bodies) 13m and a plurality of connecting portions 13n that connect the plurality of pad portions 13m to each other.
  • the connection part 13n is extended in the X-axis direction, and connects the edge parts of the adjacent pad part 13m.
  • the transparent electrode portion 23 includes a plurality of pad portions (unit electrode bodies) 23m and a plurality of connecting portions 23n that connect the plurality of pad portions 23m.
  • the connecting portion 23n extends in the Y-axis direction, and connects the ends of the adjacent pad portions 23m.
  • the connecting portion 23n, the transparent insulating layer 81, and the connecting portion 13n are laminated on the surface of the base material 11 in this order.
  • the connecting portion 13n is formed so as to cross over the transparent insulating layer 81, and one end of the connecting portion 13n straddling the transparent insulating layer 81 is electrically connected to one of the adjacent pad portions 13m.
  • the other end of the connecting portion 13n straddling 81 is electrically connected to the other of the adjacent pad portions 13m.
  • the pad portion 23m and the connecting portion 23n are integrally formed, whereas the pad portion 13m and the connecting portion 13n are separately formed.
  • the pad portion 13m, the pad portion 23m, the connecting portion 23n, and the transparent insulating portion 14 are constituted by, for example, a single transparent conductive layer 12 provided on the surface of the base material 11.
  • the connection part 13n consists of a conductive layer, for example.
  • the shapes of the pad portion 13m and the pad portion 23m for example, a diamond shape (diamond shape), a polygonal shape such as a rectangle, a star shape, a cross shape, or the like can be used.
  • the shape is not limited to these shapes. .
  • the metal layer constituting the connecting portion 13n for example, a metal layer or a transparent conductive layer can be used.
  • the metal layer contains a metal as a main component.
  • As the metal it is preferable to use a metal having high conductivity. Examples of such a material include Ag, Al, Cu, Ti, Nb, and impurity-added Si. In consideration of film-forming properties and printability, Ag is preferable.
  • a highly conductive metal as the material of the metal layer, it is preferable to reduce the width of the connecting portion 13n, reduce the thickness thereof, and shorten the length thereof. Thereby, visibility can be improved.
  • the shape of the connecting portion 13n and the connecting portion 23n may be any shape as long as the adjacent pad portions 13m and the pad portions 23m can be connected to each other.
  • the shape is not particularly limited to a rectangular shape. Examples of shapes other than the rectangular shape include a linear shape, an oval shape, a triangular shape, and an indefinite shape.
  • the transparent insulating layer 81 preferably has a larger area than the portion where the connecting portion 13n and the connecting portion 23n intersect.
  • the transparent insulating layer 81 covers the pad portion 13m located at the intersecting portion C and the tip of the pad portion 23m. It has the size.
  • the transparent insulating layer 81 contains a transparent insulating material as a main component.
  • a transparent insulating material it is preferable to use a polymer material having transparency, and examples of such a material include vinyl monomers such as polymethyl methacrylate, methyl methacrylate and other alkyl (meth) acrylates, and styrene.
  • (Meth) acrylic resins such as copolymers; polycarbonate resins such as polycarbonate and diethylene glycol bisallyl carbonate (CR-39); homopolymers or copolymers of (brominated) bisphenol A type di (meth) acrylates
  • Thermosetting (meth) acrylic resins such as polymers and copolymers of urethane-modified monomers of (brominated) bisphenol A mono (meth) acrylate; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters Le, acrylonitrile - styrene copolymers, polyvinyl chloride, polyurethane, epoxy resins, polyarylate, polyether sulfone, polyether ketone, cycloolefin polymer (trade name: ARTON, ZEONOR), and the like cycloolefin copolymer. It is also possible to use an aramid resin in consideration of heat resistance.
  • the shape of the transparent insulating layer 81 is not particularly limited as long as it is interposed between the transparent electrode portion 13 and the transparent electrode portion 23 at the intersection C and can prevent electrical contact between both electrodes.
  • a polygon such as a quadrangle, an ellipse, and a circle can be given as examples.
  • the quadrangle include a rectangle, a square, a rhombus, a trapezoid, a parallelogram, and a rectangle with a corner having a curvature R.
  • wiring As shown in region R of FIG. 29A, wiring 82 is electrically connected to one end of each of transparent electrode portion 13 and transparent electrode portion 23, and this wiring 82 and a drive circuit (not shown) are connected to FPC (Flexible Printed). Circuit) 83 is connected.
  • FPC Flexible Printed
  • FIG. 31 is an enlarged plan view showing the region R shown in FIG. 29A.
  • the wiring 82 is a linear conductive layer (continuous film) in which a plurality of conductive part elements 13 a are continuously provided on the surface of the substrate 11.
  • An insulating portion 84 is provided between the wirings 82.
  • the conductive layer which is a continuous film, preferably has a substantially uniform film thickness.
  • the conductive layer contains a metal material or a transparent conductive material as a main component.
  • the conductive part element 13a can be formed by a printing method such as an ink jet printing method or a microdroplet coating method, as in the first embodiment.
  • adjacent droplets (conductive ink) dropped on the surface of the substrate 11 are in the X-axis direction (first direction) and / or the Y-axis. It is preferable to adjust the dropping position of the droplet (conductive ink) so as to be continuously connected in the direction (second direction).
  • the following effects can be further obtained in addition to the effects of the first embodiment. That is, since the transparent electrode portions 13 and 23 are provided on one main surface of the base material 11, the base material 21 (see FIG. 1) in the first embodiment can be omitted. Therefore, the information input device 10 can be further reduced in thickness.
  • the electronic apparatus according to the twelfth embodiment includes any one of the information input devices 10 according to the first to eleventh embodiments in the display unit.
  • An example of an electronic device according to the twelfth embodiment of the present technology will be described below.
  • FIG. 32A is an external view illustrating an example of a television device as an electronic apparatus.
  • the television apparatus 201 includes a display unit 202, and the display unit 202 includes any one of the information input devices 10 according to the first to eleventh embodiments.
  • FIG. 32B is an external view showing an example of a notebook personal computer as an electronic apparatus.
  • the notebook personal computer 211 includes a display unit 212, and the display unit 212 includes any one of the information input devices 10 according to the first to eleventh embodiments.
  • FIG. 33A is an external view illustrating an example of a mobile phone as an electronic apparatus.
  • the mobile phone 221 is a so-called smartphone, and includes a display unit 222.
  • the display unit 222 includes any one of the information input devices 10 according to the first to eleventh embodiments.
  • FIG. 33B is an external view illustrating an example of a tablet computer as an electronic device.
  • the tablet computer 231 includes a display unit 232, and the display unit 232 includes any one of the information input devices 10 according to the first to eleventh embodiments.
  • the electronic apparatus according to the twelfth embodiment described above includes any of the information input devices 10 according to the first to twelfth embodiments in the display unit, the information input device 10 can be visually recognized on the display unit. Can be suppressed.
  • Example 1-1 First, as a silver nanowire paint, a silver nanowire paint using isopropyl alcohol (IPA) as a main solvent as a diluent solvent (hereinafter referred to as “IPA-based silver nanowire paint”) was prepared. Silver nanowires having an average diameter of 110 nm and an average length of 60 ⁇ m or less were used.
  • IPA isopropyl alcohol
  • Example 1-2 A plurality of conductive part elements were formed on the surface of the acrylic sheet in the same manner as in Example 1-1 except that the IPA-based silver nanowire paint was applied in a line to the surface of the acrylic sheet with a needle-type dispenser.
  • Discharge time dependence of sheet resistance (surface resistance)> A silver nanowire paint was continuously applied to the sheet surface using an ink jet printing method to form a transparent conductive layer, and the discharge time dependency of the sheet resistance (surface resistance) was evaluated.
  • Example 2-1 First, a silver nanowire paint (hereinafter referred to as “aqueous silver nanowire paint”) using water as a main solvent as a dilution solvent was prepared. Next, a water-based silver nanowire paint was continuously applied to the acrylic sheet surface by an ink jet printing method to form a square-shaped coating film (continuous film) in which droplets were continuously connected two-dimensionally. This printing operation was performed for 60 minutes, and a square-shaped coating film (continuous film) was repeatedly formed. Table 3 shows the printing conditions at this time. Next, the plurality of transparent conductive layers having a square shape were formed on the acrylic sheet surface by heating and drying the coating film. Thereby, the target transparent conductive sheet was obtained.
  • aqueous silver nanowire paint a water-based silver nanowire paint
  • Example 2-2 A transparent conductive sheet was obtained in the same manner as in Example 2-1, except that an IPA silver nanowire paint was used as the silver nanowire paint.
  • Table 3 shows the printing conditions of the transparent conductive sheets of Examples 2-1 and 2-2.
  • Table 4 shows the measurement results of the transparent conductive sheets of Examples 2-1 and 2-2.
  • Example 3-1 First, an IPA silver nanowire paint was prepared as a silver nanowire paint. Next, IPA-based silver nanowire paint was printed on the acrylic sheet surface by an ink jet printing method. At the time of printing, printing was performed so that the droplets (dots) of the paints adjacent in the X-axis direction and the Y-axis direction were connected in adjacent rows. As the print pattern, a random pattern created based on a raster image creation algorithm shown in FIG. 9 was used. During the creation, the first region R 1 in which the proportion p of dots forming the conductive element is set to 50 [%] and the proportion p of dots forming the conductive element are set to 15 [%]. a second region R 2, and alternately formed in the acrylic sheet surface.
  • the first region R 1 and the second region R 2 of the shape was elongated rectangular. Next, by heating and drying the IPA Keigin nanowires paint printed on the acrylic sheet surface to form a first region R 1 and the second region R 2 to a plurality of conductive portions element acrylic sheet surface. Thus, the intended transparent conductive sheet was obtained.
  • Example 3-2 First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 25 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
  • Example 3-3 First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 35 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
  • Example 3-4 First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 40% in the same manner as in Example 3-1 Sex sheet was obtained.
  • Example 3-5 First the rate of dots p in the region R 1 60 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 25 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
  • Example 3-6 The transparent conductive material is the same as in Example 3-1, except that the dot ratio p in the first region R 1 is set to 60 [%] and the dot ratio p in the second region R 2 is set to 35 [%]. Sex sheet was obtained.
  • Example 3--7 First the rate of dots p in the region R 1 60 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 40% in the same manner as in Example 3-1 Sex sheet was obtained.
  • Example 3-8 The transparent conductive material is the same as in Example 3-1, except that the dot ratio p in the first region R 1 is set to 75 [%] and the dot ratio p in the second region R 2 is set to 40 [%]. Sex sheet was obtained.
  • Conductive part 1.0 ⁇ 10 5 ⁇ / ⁇ or less, usable as a transparent electrode
  • Non-conducting part 10 6 ⁇ / ⁇ or more, usable as an insulating part between transparent electrodes Show.
  • the proportion of dots p is the first region R 1 is 50 ⁇ p functions as a conductive portion (the transparent electrode).
  • the second region R 1 ratio of dot p is p ⁇ 50 functions as a non-conductive portion (insulating portion between the transparent electrodes). Therefore, the conductive portion and the non-conductive portion can be separately formed according to the dot ratio p.
  • Table 5 shows the evaluation results of the transparent conductive sheets of Examples 3-1 to 3-8.
  • the present technology can also employ the following configurations.
  • a substrate having a surface Comprising transparent conductive portions and transparent insulating portions provided alternately on the surface in a plane,
  • the transparent conductive element and the transparent insulating part are transparent conductive elements including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the surface.
  • the transparent conductive element according to (1) wherein the conductive part elements adjacent in the first direction and the conductive part elements adjacent in the second direction are connected.
  • the said electroconductive part element is a transparent conductive element in any one of (1) to (6) obtained by printing electroconductive ink on the said surface.
  • the boundary part of the said transparent conductive part and a transparent insulating part is a transparent conductive element in any one of (1) to (7) which has a shape pattern.
  • the plurality of conductive part elements of the transparent conductive part and the transparent insulating part are randomly provided two-dimensionally in the first direction and the second direction,
  • the average ratio P1 of the conductive part elements in the transparent conductive part satisfies the relationship of 50 [%] ⁇ P1
  • a substrate having a first surface and a second surface; A transparent conductive portion and a transparent insulating portion provided alternately in a plane on the first surface and the second surface,
  • the transparent conductive part and the transparent insulating part include an input device including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  • An input device comprising the transparent conductive element according to any one of (1) to (12).
  • a transparent conductive element having a substrate having a first surface and a second surface, and transparent conductive portions and transparent insulating portions provided alternately in a plane on the first surface and the second surface Prepared,
  • the transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  • An electronic device comprising the transparent conductive element according to any one of (1) to (12).
  • the conductive ink was printed on the surface of the base material, and the conductive portion elements were two-dimensionally formed in the first direction and the second direction of the base material surface, thereby being alternately provided in a plane on the base material surface.
  • a method for producing a transparent conductive element comprising forming a transparent conductive part and a transparent insulating part.
  • the printing is printing by an inkjet method or a microdroplet coating method,
  • the said conductive ink is a manufacturing method of the transparent conductive element as described in (17) containing the metal wire.
  • a method for forming a conductive portion comprising: printing a conductive ink on a surface of a base material by a microdroplet coating method, and forming a plurality of conductive portion elements on the surface of the base material one-dimensionally or two-dimensionally.

Abstract

This transparent conductive element is easily formed by printing, and is provided with a substrate having a surface, and transparent conductive units and transparent insulating units alternately disposed planarly on the surface. The transparent conductive units and transparent insulating units include multiple conductive unit elements provided two-dimensionally in a first direction and a second direction of the substrate surface.

Description

透明導電性素子およびその製造方法、入力装置、電子機器、ならびに導電部の形成方法Transparent conductive element and method for manufacturing the same, input device, electronic device, and method for forming conductive part
 本技術は、透明導電性素子およびその製造方法、入力装置、電子機器、ならびに導電部の形成方法に関する。詳しくは、透明導電部および透明絶縁部が基材表面に平面的に交互に設けられた透明導電性素子に関する。 The present technology relates to a transparent conductive element and a manufacturing method thereof, an input device, an electronic device, and a method of forming a conductive portion. Specifically, the present invention relates to a transparent conductive element in which transparent conductive portions and transparent insulating portions are alternately provided on a substrate surface in a planar manner.
 近年、静電容量式のタッチパネルが携帯電話や携帯音楽端末などのモバイル機器に搭載されるケースが増えている。静電容量式のタッチパネルでは、基材フィルム表面にパターニングされた透明導電層が設けられた透明導電性フィルムが用いられている。 In recent years, there have been an increasing number of cases where capacitive touch panels are mounted on mobile devices such as mobile phones and portable music terminals. In the capacitive touch panel, a transparent conductive film provided with a patterned transparent conductive layer on the substrate film surface is used.
 特許文献1では、次のような構成の透明導電性シートが提案されている。透明導電性シートは、基体シート上に形成された導電パターン層と、基体シートの導電パターン層が形成されていない部分に形成された絶縁パターン層とを備える。そして、導電パターン層が、複数の微少ピンホールを有し、絶縁パターン層が、狭小溝により複数の島状に形成される。 Patent Document 1 proposes a transparent conductive sheet having the following configuration. The transparent conductive sheet includes a conductive pattern layer formed on the base sheet and an insulating pattern layer formed on a portion of the base sheet where the conductive pattern layer is not formed. The conductive pattern layer has a plurality of minute pinholes, and the insulating pattern layer is formed into a plurality of islands by narrow grooves.
特開2010-157400号公報JP 2010-157400 A
 近年では、上述のように微小なパターンを有する透明導電層や金属層などの薄膜を印刷法により作製することが望まれている。このような要望に応えるためには、微小パターンも印刷法により形成が容易なものとすることが望ましい。 In recent years, it has been desired to produce a thin film such as a transparent conductive layer or a metal layer having a minute pattern as described above by a printing method. In order to meet such a demand, it is desirable that the minute pattern can be easily formed by a printing method.
 したがって、本技術の目的は、印刷法により形成が容易な透明導電性素子およびその製造方法、入力装置、電子機器、ならびに導電部の形成方法を提供することにある。 Therefore, an object of the present technology is to provide a transparent conductive element that can be easily formed by a printing method, a manufacturing method thereof, an input device, an electronic device, and a method for forming a conductive portion.
 上述の課題を解決するために、第1の技術は、
 表面を有する基材と、
 表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 透明導電部および透明絶縁部は、表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる透明導電性素子である。
In order to solve the above-mentioned problem, the first technique is:
A substrate having a surface;
With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane,
The transparent conductive portion and the transparent insulating portion are transparent conductive elements including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
 第2の技術は、
 第1の表面および第2の表面を有する基材と、
 第1の表面および第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 透明導電部および透明絶縁部は、第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる入力装置である。
The second technology is
A substrate having a first surface and a second surface;
A transparent conductive portion and a transparent insulating portion provided alternately in a plane on the first surface and the second surface,
The transparent conductive portion and the transparent insulating portion are an input device including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
 第3の技術は、
 第1の透明導電性素子と、
 第1の透明導電性素子の表面に設けられた第2の透明導電性素子と
 を備え、
 第1の透明導電性素子および第2の透明導電性素子が、
 表面を有する基材と、
 表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 透明導電部および透明絶縁部は、表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる入力装置である。
The third technology is
A first transparent conductive element;
A second transparent conductive element provided on the surface of the first transparent conductive element,
The first transparent conductive element and the second transparent conductive element are
A substrate having a surface;
With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane,
The transparent conductive portion and the transparent insulating portion are an input device including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
 第4の技術は、
 第1の表面および第2の表面を有する基材と、第1の表面および第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部とを有する透明導電性素子を備え、
 透明導電部および透明絶縁部は、第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる電子機器である。
The fourth technology is
A transparent conductive element having a substrate having a first surface and a second surface, and transparent conductive portions and transparent insulating portions provided alternately in a plane on the first surface and the second surface;
The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
 第5の技術は、
 第1の透明導電性素子と、
 第1の透明導電性素子の表面に設けられた第2の透明導電性素子と
 を備え、
 第1の透明導電性素子および第2の透明導電性素子が、
 表面を有する基材と、
 表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 透明導電部および透明絶縁部は、表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる電子機器である。
The fifth technology is
A first transparent conductive element;
A second transparent conductive element provided on the surface of the first transparent conductive element,
The first transparent conductive element and the second transparent conductive element are
A substrate having a surface;
With transparent conductive parts and transparent insulating parts provided alternately on the surface in a plane,
The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction on the surface.
 第6の技術は、
 基材表面に導電性インクを印刷し、基材表面の第1方向および第2方向に2次元的に導電部要素を形成することにより、基材表面に平面的に交互に設けられた透明導電部および透明絶縁部を形成することを含む透明導電性素子の製造方法である。
The sixth technology is
Transparent conductive provided alternately in a plane on the surface of the substrate by printing conductive ink on the surface of the substrate and forming conductive part elements two-dimensionally in the first direction and the second direction of the surface of the substrate. And a transparent insulating element manufacturing method including forming a transparent insulating part.
 第7の技術は、
 基材表面に導電性インクを微少液滴塗布法により印刷し、複数の導電部要素を1次元的または2次元的に基材表面に形成することを含む導電部の形成方法である。
The seventh technology is
This is a method for forming a conductive portion, which includes printing a conductive ink on a surface of a substrate by a microdroplet coating method and forming a plurality of conductive portion elements on the surface of the substrate in a one-dimensional or two-dimensional manner.
 本技術では、複数の導電部要素を基材表面の第1方向および第2方向に2次元的に設けているので、印刷法により導電部要素を容易に作製することができる。 In the present technology, since the plurality of conductive part elements are two-dimensionally provided in the first direction and the second direction on the substrate surface, the conductive part elements can be easily produced by a printing method.
 本技術では、基材表面に平面的に交互に透明導電部および透明絶縁部を設けているので、透明導電部が設けられている領域と透明導電部が設けられていない領域との反射率差を低減できる。したがって、透明導電部のパターンの視認を抑制することができる。 In the present technology, since the transparent conductive portion and the transparent insulating portion are alternately provided on the surface of the base material, the difference in reflectance between the region where the transparent conductive portion is provided and the region where the transparent conductive portion is not provided Can be reduced. Therefore, visual recognition of the pattern of a transparent conductive part can be suppressed.
 以上説明したように、本技術によれば、印刷法により形成が容易な透明導電性素子を提供することができる。 As described above, according to the present technology, it is possible to provide a transparent conductive element that can be easily formed by a printing method.
図1は、本技術の第1の実施形態に係る情報入力装置の一構成例を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration example of the information input device according to the first embodiment of the present technology. 図2Aは、本技術の第1の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図2Bは、図2Aに示したA-A線に沿った断面図である。FIG. 2A is a plan view illustrating a configuration example of the first transparent conductive element according to the first embodiment of the present technology. FIG. 2B is a cross-sectional view taken along line AA shown in FIG. 2A. 図3Aは、本技術の第1の実施形態に係る第1の透明導電性素子の透明電極部の一構成例を示す平面図である。図3Bは、図3Aに示したA-A線に沿った断面図である。図3Cは、本技術の第1の実施形態に係る第1の透明導電性素子の透明絶縁部の一構成例を示す平面図である。図3Dは、図3Cに示したA-A線に沿った断面図である。FIG. 3A is a plan view illustrating a configuration example of the transparent electrode portion of the first transparent conductive element according to the first embodiment of the present technology. 3B is a cross-sectional view taken along line AA shown in FIG. 3A. FIG. 3C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element according to the first embodiment of the present technology. FIG. 3D is a cross-sectional view along the line AA shown in FIG. 3C. 図4Aは、透明電極部における導電部要素の配置例を示す略線図である。図4Bは、透明絶縁部における導電部要素の配置例を示す略線図である。FIG. 4A is a schematic diagram illustrating an arrangement example of conductive part elements in a transparent electrode part. FIG. 4B is a schematic diagram illustrating an arrangement example of conductive part elements in the transparent insulating part. 図5Aは、境界部の形状パターンの例を示す平面図である。図5Bは、図5Aに示したA-A線に沿った断面図である。FIG. 5A is a plan view illustrating an example of a shape pattern of a boundary portion. FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A. 図6Aは、境界部における導電部要素の第1の配置例を示す略線図である。図6Bは、境界部における導電部要素の第2の配置例を示す略線図である。FIG. 6A is a schematic diagram illustrating a first arrangement example of conductive part elements in a boundary part. FIG. 6B is a schematic diagram illustrating a second arrangement example of the conductive element at the boundary. 図7Aは、本技術の第1の実施形態に係る第2の透明導電性素子の一構成例を示す平面図である。図7Bは、図7Aに示したA-A線に沿った断面図である。FIG. 7A is a plan view illustrating a configuration example of a second transparent conductive element according to the first embodiment of the present technology. FIG. 7B is a cross-sectional view taken along line AA shown in FIG. 7A. 図8A~図8Cは、本技術の第1の実施形態に係る第1の透明導電性素子の製造方法の一例について説明するための工程図である。8A to 8C are process diagrams for explaining an example of the manufacturing method of the first transparent conductive element according to the first embodiment of the present technology. 図9は、ランダムパターンの生成アルゴリズムについて説明するためのフローチャートである。FIG. 9 is a flowchart for explaining a random pattern generation algorithm. 図10A~図10Dは、ランダムパターンの生成アルゴリズムについて説明するための略線図である。10A to 10D are schematic diagrams for explaining a random pattern generation algorithm. 図11A、図11Bは、グリッドを構成するドット(マス目)と導電部要素との大きさの関係を示す略線図である。FIG. 11A and FIG. 11B are schematic diagrams showing the relationship between the size of dots (squares) constituting the grid and the conductive part elements. 図12Aは、微少液滴塗布システムの装置本体の一構成例を示す略線図である。図12Bは、図12Aの液滴塗布に係る要部を拡大した略線図である。FIG. 12A is a schematic diagram illustrating a configuration example of an apparatus main body of a micro droplet application system. 12B is a schematic diagram enlarging a main part related to the droplet application of FIG. 12A. 図13A~図13Dは、微少液滴塗布システムの塗布用針の動作例を示す略線図である。図13Eは、図13A~図13Dの工程によって塗布対象表面に形成される液滴を示す略線図である。13A to 13D are schematic diagrams showing an operation example of the application needle of the micro droplet application system. FIG. 13E is a schematic diagram showing droplets formed on the surface to be coated by the steps of FIGS. 13A to 13D. 図14は、インクジェットのノズルから噴射された液滴が塗布対象に着滴するまでの動きを示す略線図である。FIG. 14 is a schematic diagram illustrating the movement until a droplet ejected from an inkjet nozzle reaches a coating target. 図15Aは、インクジェットによって形成される液滴の一例を示す平面図である。図15Bは、図15Aに示したA-A線に沿った断面図である。図15Cは、ニードル式ディスペンサーによって形成される液滴の一例を示す平面図である。図15Dは、図15Cに示したA-A線に沿った断面図である。FIG. 15A is a plan view illustrating an example of a droplet formed by inkjet. FIG. 15B is a sectional view taken along line AA shown in FIG. 15A. FIG. 15C is a plan view showing an example of a droplet formed by a needle-type dispenser. FIG. 15D is a cross-sectional view taken along line AA shown in FIG. 15C. 図16A~図16Dは、本技術の第1の実施形態に係る第1の透明導電性素子の変形例を示す断面図である。16A to 16D are cross-sectional views illustrating modifications of the first transparent conductive element according to the first embodiment of the present technology. 図17A、図17Bは、本技術の第1の実施形態に係る第1の透明導電性素子の変形例を示す断面図である。FIG. 17A and FIG. 17B are cross-sectional views illustrating modifications of the first transparent conductive element according to the first embodiment of the present technology. 図18Aは、本技術の第2の実施形態に係る第1の透明導電性素子の透明電極部の一構成例を示す平面図である。図18Bは、図18Aに示したA-A線に沿った断面図である。図18Cは、第1の透明導電性素子の透明絶縁部の一構成例を示す平面図である。図18Dは、図18Cに示したA-A線に沿った断面図である。FIG. 18A is a plan view illustrating a configuration example of a transparent electrode portion of the first transparent conductive element according to the second embodiment of the present technology. FIG. 18B is a cross-sectional view along the line AA shown in FIG. 18A. FIG. 18C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element. FIG. 18D is a cross-sectional view taken along line AA shown in FIG. 18C. 図19Aは、境界部の形状パターンの例を示す平面図である。図19Bは、図19Aに示したA-A線に沿った断面図である。FIG. 19A is a plan view illustrating an example of a shape pattern of a boundary portion. FIG. 19B is a cross-sectional view along the line AA shown in FIG. 19A. 図20Aは、本技術の第3の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図20Bは、図20Aに示したA-A線に沿った断面図である。FIG. 20A is a plan view illustrating a configuration example of the first transparent conductive element according to the third embodiment of the present technology. 20B is a cross-sectional view taken along the line AA shown in FIG. 20A. 図21Aは、本技術の第4の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図21Bは、図21Aに示したA-A線に沿った断面図である。FIG. 21A is a plan view illustrating a configuration example of the first transparent conductive element according to the fourth embodiment of the present technology. FIG. 21B is a cross-sectional view along the line AA shown in FIG. 21A. 図22Aは、本技術の第5の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図22Bは、図22Aに示したA-A線に沿った断面図である。FIG. 22A is a plan view illustrating a configuration example of the first transparent conductive element according to the fifth embodiment of the present technology. FIG. 22B is a cross-sectional view along the line AA shown in FIG. 22A. 図23Aは、本技術の第6の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図23Bは、図23Aに示したA-A線に沿った断面図である。FIG. 23A is a plan view illustrating a configuration example of the first transparent conductive element according to the sixth embodiment of the present technology. FIG. 23B is a cross-sectional view along the line AA shown in FIG. 23A. 図24Aは、2種のドットサイズを有するグリッドの例を示す略線図である。図24Bは、2種のドットサイズを有するグリッドを用いて形成した透明電極部の例を示す略線図である。図24Cは、2種のドットサイズを有するグリッドを用いて形成した透明絶縁部の例を示す略線図である。FIG. 24A is a schematic diagram illustrating an example of a grid having two types of dot sizes. FIG. 24B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid having two types of dot sizes. FIG. 24C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid having two types of dot sizes. 図25Aは、3種のドットサイズを有するグリッドの例を示す略線図である。図25Bは、3種のドットサイズを有するグリッドを用いて形成した透明電極部の例を示す略線図である。図25Cは、3種のドットサイズを有するグリッドを用いて形成した透明絶縁部の例を示す略線図である。FIG. 25A is a schematic diagram illustrating an example of a grid having three types of dot sizes. FIG. 25B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid having three types of dot sizes. FIG. 25C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid having three types of dot sizes. 図26Aは、ドット形状を平行四辺形状としたグリッドの例を示す略線図である。図26Bは、ドット形状を平行四辺形状としたグリッドを用いて形成した透明電極部の例を示す略線図である。図26Cは、ドット形状を平行四辺形状としたグリッドを用いて形成した透明絶縁部の例を示す略線図である。FIG. 26A is a schematic diagram illustrating an example of a grid in which the dot shape is a parallelogram shape. FIG. 26B is a schematic diagram illustrating an example of a transparent electrode portion formed using a grid in which the dot shape is a parallelogram shape. FIG. 26C is a schematic diagram illustrating an example of a transparent insulating portion formed using a grid in which the dot shape is a parallelogram shape. 図27Aは、本技術の第9の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図27Bは、本技術の第9の実施形態に係る第2の透明導電性素子の一構成例を示す平面図である。FIG. 27A is a plan view illustrating a configuration example of the first transparent conductive element according to the ninth embodiment of the present technology. FIG. 27B is a plan view illustrating a configuration example of the second transparent conductive element according to the ninth embodiment of the present technology. 図28は、本技術の第10の実施形態に係る情報入力装置の一構成例を示す断面図である。FIG. 28 is a cross-sectional view illustrating a configuration example of an information input device according to the tenth embodiment of the present technology. 図29Aは、本技術の第11の実施形態に係る情報入力装置の一構成例を示す平面図である。図29Bは、図29Aに示したA-A線に沿った断面図である。FIG. 29A is a plan view illustrating a configuration example of an information input device according to an eleventh embodiment of the present technology. FIG. 29B is a cross-sectional view along the line AA shown in FIG. 29A. 図30Aは、図29Aに示した交差部Cの付近を拡大して示す平面図である。図30Bは、図30Aに示したA-A線に沿った断面図である。FIG. 30A is an enlarged plan view showing the vicinity of the intersection C shown in FIG. 29A. FIG. 30B is a cross-sectional view along the line AA shown in FIG. 30A. 図31は、図29Aに示した領域Rを拡大して表す平面図である。FIG. 31 is an enlarged plan view showing the region R shown in FIG. 29A. 図32Aは、電子機器としてテレビ装置の例を示す外観図である。図32Bは、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。FIG. 32A is an external view illustrating an example of a television device as an electronic apparatus. FIG. 32B is an external view illustrating an example of a notebook personal computer as an electronic apparatus. 図33Aは、電子機器として携帯電話の一例を示す外観図である。図33Bは、電子機器としてタブレット型コンピュータの一例を示す外観図である。FIG. 33A is an external view illustrating an example of a mobile phone as an electronic apparatus. FIG. 33B is an external view illustrating an example of a tablet computer as an electronic device. 図34は、吐出時間に対するシート抵抗の変化を示す図である。FIG. 34 is a diagram illustrating changes in sheet resistance with respect to ejection time.
 本技術の実施形態について図面を参照しながら以下の順序で説明する。
1.第1の実施形態(導電部要素がランダムに設けられた透明電極部および透明絶縁部の例)
2.第2の実施形態(導電部要素が規則的に設けられた透明電極部および透明絶縁部の例)
3.第3の実施形態(連続膜である透明電極部と、導電部要素がランダムに設けられた透明絶縁部との例)
4.第4の実施形態(連続膜である透明電極部と、導電部要素が規則的に設けられた透明絶縁部との例)
5.第5の実施形態(導電部要素がランダムに設けられた透明電極部と、導電部要素が規則的に設けられた透明絶縁部との例)
6.第6の実施形態(導電部要素が規則的に設けられた透明電極部と、導電部要素がランダムに設けられた透明絶縁部との例)
7.第7の実施形態(複数の大きさの導電部要素を有する透明電極部および透明絶縁部の例)
8.第8の実施形態(導電部要素の配列方向を斜め交差の関係とした例)
9.第9の実施形態(パッド部を連結した形状の透明電極部が設けられた例)
10.第10の実施形態(基材の両面に透明電極部が設けられた例)
11.第11の実施形態(基材の一主面に透明電極部が交差して設けられた例)
12.第12の実施形態(電子機器への適用例)
Embodiments of the present technology will be described in the following order with reference to the drawings.
1. First embodiment (example of transparent electrode portion and transparent insulating portion in which conductive portion elements are provided randomly)
2. Second embodiment (an example of a transparent electrode part and a transparent insulating part in which conductive part elements are regularly provided)
3. Third embodiment (an example of a transparent electrode portion that is a continuous film and a transparent insulating portion in which conductive portion elements are randomly provided)
4). Fourth embodiment (an example of a transparent electrode portion that is a continuous film and a transparent insulating portion in which conductive portion elements are regularly provided)
5. Fifth embodiment (an example of a transparent electrode portion in which conductive portion elements are randomly provided and a transparent insulating portion in which conductive portion elements are regularly provided)
6). Sixth embodiment (an example of a transparent electrode part in which conductive part elements are regularly provided and a transparent insulating part in which conductive part elements are provided randomly)
7). Seventh Embodiment (Example of Transparent Electrode Part and Transparent Insulating Part Having Conductive Part Elements of Multiple Sizes)
8). Eighth embodiment (example in which the arrangement direction of the conductive part elements is in an oblique crossing relationship)
9. Ninth Embodiment (Example in which a transparent electrode portion having a shape in which pad portions are connected) is provided
10. Tenth embodiment (example in which transparent electrode portions are provided on both surfaces of a base material)
11. Eleventh embodiment (example in which transparent electrode portions are provided to intersect one main surface of a substrate)
12 Twelfth embodiment (application example to electronic equipment)
<1.第1の実施形態>
[情報入力装置の構成]
 図1は、本技術の第1の実施形態に係る情報入力装置の一構成例を示す断面図である。図1に示すように、情報入力装置10は、電子機器の一例である表示装置4の表示面上に設けられる。情報入力装置10は、例えば貼合層5により表示装置4の表示面に貼り合わされている。
<1. First Embodiment>
[Configuration of information input device]
FIG. 1 is a cross-sectional view illustrating a configuration example of the information input device according to the first embodiment of the present technology. As shown in FIG. 1, the information input device 10 is provided on the display surface of a display device 4 which is an example of an electronic device. The information input device 10 is bonded to the display surface of the display device 4 by, for example, a bonding layer 5.
(表示装置)
 情報入力装置10が適用される表示装置4は特に限定されるものではないが、例示するならば、液晶ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface-conduction Electron-emitter Display:SED)などの各種表示装置が挙げられる。
(Display device)
The display device 4 to which the information input device 10 is applied is not particularly limited. For example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display panel (PDP), electroluminescence ( Various display devices such as an electro luminescence (EL) display and a surface-conduction electron-emitter display (SED) can be used.
(情報入力装置)
 情報入力装置10は、いわゆる投影型静電容量方式タッチパネルであり、第1の透明導電性素子1と、この第1の透明導電性素子1の表面上に設けられた第2の透明導電性素子2とを備え、第1の透明導電性素子1と第2の透明導電性素子2とは貼合層6を介して貼り合わされている。また、必要に応じて、第2の透明導電性素子2の表面上に光学層3をさらに備えるようにしてもよい。
(Information input device)
The information input device 10 is a so-called projected capacitive touch panel, and includes a first transparent conductive element 1 and a second transparent conductive element provided on the surface of the first transparent conductive element 1. 2, and the first transparent conductive element 1 and the second transparent conductive element 2 are bonded together via a bonding layer 6. Moreover, you may make it further provide the optical layer 3 on the surface of the 2nd transparent conductive element 2 as needed.
(第1の透明導電性素子)
 図2Aは、本技術の第1の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図2Bは、図2Aに示したA-A線に沿った断面図である。図2Aおよび図2Bに示すように、第1の透明導電性素子1は、表面を有する基材11と、この表面に設けられた透明導電層12とを備える。ここでは、基材11の面内において直交交差の関係にある2方向をX軸方向(第1方向)およびY軸方向(第2方向)と定義する。
(First transparent conductive element)
FIG. 2A is a plan view illustrating a configuration example of the first transparent conductive element according to the first embodiment of the present technology. FIG. 2B is a cross-sectional view taken along line AA shown in FIG. 2A. As shown in FIGS. 2A and 2B, the first transparent conductive element 1 includes a substrate 11 having a surface and a transparent conductive layer 12 provided on the surface. Here, two directions that are orthogonally crossed in the plane of the substrate 11 are defined as an X-axis direction (first direction) and a Y-axis direction (second direction).
 透明導電層12は、透明電極部(透明導電部)13と透明絶縁部14とを備える。透明電極部13は、X軸方向に延在されたX電極部である。透明絶縁部14は、いわゆるダミー電極部であり、X軸方向に延在されるとともに、透明電極部13の間に介在されて、隣り合う透明電極部13の間を絶縁する絶縁部である。これらの透明電極部13と透明絶縁部14とが、基材11の表面にY軸方向に向かって平面的に交互に隣接して設けられている。なお、図2A、図2Bにおいて、第1の領域Rは透明電極部13の形成領域を示し、第2の領域Rは透明絶縁部14の形成領域を示す。 The transparent conductive layer 12 includes a transparent electrode part (transparent conductive part) 13 and a transparent insulating part 14. The transparent electrode portion 13 is an X electrode portion that extends in the X-axis direction. The transparent insulating portion 14 is a so-called dummy electrode portion, is an insulating portion that extends in the X-axis direction and is interposed between the transparent electrode portions 13 to insulate between the adjacent transparent electrode portions 13. These transparent electrode portions 13 and transparent insulating portions 14 are provided on the surface of the base material 11 so as to be alternately adjacent in a plane in the Y-axis direction. 2A and 2B, the first region R 1 indicates the formation region of the transparent electrode portion 13, and the second region R 2 indicates the formation region of the transparent insulating portion 14.
(透明電極部、透明絶縁部)
 透明電極部13の形状は、画面形状や駆動回路などに応じて適宜選択することが好ましく、例えば、直線状、複数の菱形状(ダイヤモンド形状)を直線状に連結した形状などが挙げられるが、特にこれらの形状に限定されるものではない。なお、図2A、図2Bでは、透明電極部13の形状を直線状とした構成が例示されている。透明電極部13の抵抗(表面抵抗)は、好ましくは1.0×10Ω/□以下、より好ましくは1.0×10Ω/□以下の範囲内である。透明絶縁部14の抵抗(表面抵抗)は、好ましくは10Ω/□以上、より好ましくは10Ω/□以上の範囲内である。
(Transparent electrode part, transparent insulation part)
The shape of the transparent electrode portion 13 is preferably appropriately selected according to the screen shape, the drive circuit, and the like, and examples thereof include a linear shape and a shape in which a plurality of rhombus shapes (diamond shapes) are linearly connected. In particular, it is not limited to these shapes. 2A and 2B illustrate a configuration in which the shape of the transparent electrode portion 13 is a linear shape. The resistance (surface resistance) of the transparent electrode portion 13 is preferably 1.0 × 10 5 Ω / □ or less, more preferably 1.0 × 10 4 Ω / □ or less. The resistance (surface resistance) of the transparent insulating portion 14 is preferably in the range of 10 6 Ω / □ or more, more preferably 10 8 Ω / □ or more.
 図3Aは、第1の透明導電性素子の透明電極部の一構成例を示す平面図である。図3Bは、図3Aに示したA-A線に沿った断面図である。透明電極部13は、複数の導電部要素13aが基材11の表面のX軸方向およびY軸方向に2次元的にランダムに配列するように形成された透明導電層12である。このようにランダムに複数の導電部要素13aを形成することで、モアレの発生を抑制することができる。隣接列においてX軸方向に隣り合う導電部要素13a同士、およびY軸方向に隣り合う導電部要素13a同士が繋がっている。 FIG. 3A is a plan view showing a configuration example of the transparent electrode portion of the first transparent conductive element. 3B is a cross-sectional view taken along line AA shown in FIG. 3A. The transparent electrode portion 13 is a transparent conductive layer 12 formed such that a plurality of conductive portion elements 13 a are randomly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate 11. In this way, the formation of moire can be suppressed by forming the plurality of conductive part elements 13a at random. In adjacent rows, conductive part elements 13a adjacent in the X-axis direction and conductive part elements 13a adjacent in the Y-axis direction are connected.
 複数の導電部要素13aは、例えば、X軸方向に繋がってまたは離間して形成されている。複数の導電部要素13aは、例えば、Y軸方向に繋がってまたは離間して形成されている。このように繋がってまたは離間して形成された導電部要素13aにより、透明電極部13の透明導電部13bが形成されている。すなわち、透明導電部13bは、1または複数の導電部要素13aにより形成されている。隣接列においてX軸方向またはY軸方向に対して斜め方向の導電部要素13a同士は繋がっていることが好ましい。これにより、透明電極部13と透明絶縁部14との透明導電材料の被覆率差を小さくするために、透明電極部13の導電部要素13aの割合を減らした場合であっても、X軸方向またはY軸方向に対して斜め方向の導電パスを確保することができる。すなわち、低い表面抵抗を維持することができる。 The plurality of conductive part elements 13a are formed, for example, connected in the X-axis direction or separated from each other. The plurality of conductive portion elements 13a are formed, for example, connected in the Y-axis direction or separated from each other. The transparent conductive portion 13b of the transparent electrode portion 13 is formed by the conductive portion elements 13a formed so as to be connected or separated from each other. That is, the transparent conductive portion 13b is formed by one or a plurality of conductive portion elements 13a. In the adjacent row, it is preferable that the conductive portion elements 13a in the oblique direction with respect to the X-axis direction or the Y-axis direction are connected to each other. As a result, in order to reduce the coverage difference of the transparent conductive material between the transparent electrode portion 13 and the transparent insulating portion 14, even when the ratio of the conductive portion element 13a of the transparent electrode portion 13 is reduced, the X-axis direction Alternatively, a conductive path oblique to the Y-axis direction can be ensured. That is, a low surface resistance can be maintained.
 より具体的には、透明電極部13は、複数の孔部13cが離間してランダムに形成された透明導電層12であり、隣り合う孔部13cの間には透明導電部13bが介在されている。孔部13cの形状は、基材11の表面においてランダムに変化している。透明導電部13bは、例えば、透明導電材料を主成分としている。この透明導電部13bにより、透明電極部13の導電性が得られる。 More specifically, the transparent electrode portion 13 is a transparent conductive layer 12 formed by randomly separating a plurality of hole portions 13c, and the transparent conductive portion 13b is interposed between adjacent hole portions 13c. Yes. The shape of the hole 13 c changes randomly on the surface of the substrate 11. The transparent conductive part 13b has, for example, a transparent conductive material as a main component. The conductivity of the transparent electrode portion 13 is obtained by the transparent conductive portion 13b.
 図4Aは、透明電極部における導電部要素の配置例を示す略線図である。図4Aに示す配置例では、隣接列においてX軸方向に隣り合う導電部要素13a同士、およびY軸方向に隣り合う導電部要素13a同士は繋がっているとともに、隣接列においてX軸方向またはY軸方向に対して斜めの方向で隣り合う導電部要素13a同士も繋がっている。ここで、X軸方向またはY軸方向に対して斜め方向は、具体的には、45度、135度、225度および315度の方向である。 FIG. 4A is a schematic diagram showing an example of arrangement of conductive part elements in a transparent electrode part. In the arrangement example shown in FIG. 4A, the conductive part elements 13a adjacent to each other in the X-axis direction in the adjacent row and the conductive part elements 13a adjacent to each other in the Y-axis direction are connected to each other. The conductive part elements 13a adjacent to each other in a direction oblique to the direction are also connected. Here, the oblique directions with respect to the X-axis direction or the Y-axis direction are specifically directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
 なお、透明電極部13における導電部要素13aの配置は上述の例に限定されるものではない。例えば、隣接列においてX軸方向に隣り合う導電部要素13a同士、およびY軸方向に隣り合う導電部要素13a同士は繋がっているのに対して、隣接列においてX軸方向またはY軸方向に対して斜め方向に隣り合う導電部要素13a同士は孔部13cにより離間されているようにしてもよい。 In addition, arrangement | positioning of the electroconductive part element 13a in the transparent electrode part 13 is not limited to the above-mentioned example. For example, the conductive part elements 13a adjacent to each other in the X-axis direction in the adjacent column and the conductive part elements 13a adjacent to each other in the Y-axis direction are connected to each other, whereas the X-axis direction or the Y-axis direction in the adjacent line is connected. Thus, the conductive portion elements 13a adjacent in the oblique direction may be separated from each other by the hole portion 13c.
 図3Cは、第1の透明導電性素子の透明絶縁部の一構成例を示す平面図である。図3Dは、図3Cに示したA-A線に沿った断面図である。透明絶縁部14は、複数の導電部要素14aが基材表面のX軸方向およびY軸方向に2次元的にランダムに配列するように形成された透明導電層である。このようにランダムに複数の導電部要素14aを形成することで、モアレの発生を抑制することができる。隣接列においてX軸方向に隣り合う導電部要素14a同士、およびY軸方向に隣り合う導電部要素14a同士が繋がっている。 FIG. 3C is a plan view showing a configuration example of the transparent insulating portion of the first transparent conductive element. FIG. 3D is a cross-sectional view along the line AA shown in FIG. 3C. The transparent insulating portion 14 is a transparent conductive layer formed such that a plurality of conductive portion elements 14a are randomly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the substrate surface. In this way, the formation of moire can be suppressed by randomly forming the plurality of conductive portion elements 14a. In adjacent rows, conductive part elements 14a adjacent in the X-axis direction and conductive part elements 14a adjacent in the Y-axis direction are connected.
 複数の導電部要素14aは、例えば、X軸方向に繋がってまたは離間して形成されている。複数の導電部要素14aは、例えば、Y軸方向に繋がってまたは離間して形成されている。このように繋がってまたは離間して形成された導電部要素14aにより、透明絶縁部14の島部14bが形成されている。隣接列においてX軸方向またはY軸方向に対して斜め方向の導電部要素14a同士は離間していることが好ましい。これにより、透明電極部13と透明絶縁部14との透明導電材料の被覆率差を小さくするために、透明絶縁部14の導電部要素14aの割合を増やした場合であっても、X軸方向またはY軸方向に対して斜め方向の導電パスを減らすことができる。すなわち、高い表面抵抗(絶縁性)を維持することができる。 The plurality of conductive part elements 14a are formed, for example, connected in the X-axis direction or separated from each other. The plurality of conductive part elements 14a are formed, for example, connected in the Y-axis direction or separated from each other. The island portion 14b of the transparent insulating portion 14 is formed by the conductive portion elements 14a formed so as to be connected or separated from each other. In adjacent rows, it is preferable that the conductive portion elements 14a in the oblique direction with respect to the X-axis direction or the Y-axis direction are separated from each other. Thereby, in order to reduce the coverage difference of the transparent conductive material between the transparent electrode portion 13 and the transparent insulating portion 14, even when the ratio of the conductive portion element 14a of the transparent insulating portion 14 is increased, the X-axis direction Alternatively, the conductive paths oblique to the Y axis direction can be reduced. That is, a high surface resistance (insulating property) can be maintained.
 より具体的には、透明絶縁部14は、離間部14cにより離間された複数の島部14bからなる。複数の島部14bは、ランダムパターンで基材11の表面に形成されている。島部14bは、一つの導電部要素14aまたは繋がった複数の導電部要素14aにより形成されている。離間部14cにより、島部14b間が電気的に絶縁される。島部14bの形状は、基材11の表面においてランダムに変化している。島部14bは、例えば、透明導電材料を主成分としている。 More specifically, the transparent insulating portion 14 is composed of a plurality of island portions 14b separated by a separation portion 14c. The plurality of island portions 14b are formed on the surface of the base material 11 in a random pattern. The island part 14b is formed by one conductive part element 14a or a plurality of connected conductive part elements 14a. The island portions 14b are electrically insulated by the separation portion 14c. The shape of the island part 14 b changes randomly on the surface of the base material 11. The island part 14b has, for example, a transparent conductive material as a main component.
 図4Bは、透明絶縁部における導電部要素の配置例を示す略線図である。図4Bに示す配置例では、隣接列においてX軸方向に隣り合う導電部要素14a同士、およびY軸方向に隣り合う導電部要素14a同士は繋がっているとともに、隣接列においてX軸方向またはY軸方向に対して斜め方向に隣り合う導電部要素14a同士も繋がっている。ここで、X軸方向またはY軸方向に対して斜め方向は、具体的には、45度、135度、225度および315度の方向である。 FIG. 4B is a schematic diagram illustrating an arrangement example of the conductive element in the transparent insulating part. In the arrangement example shown in FIG. 4B, the conductive part elements 14 a adjacent to each other in the X-axis direction in the adjacent row and the conductive part elements 14 a adjacent to each other in the Y-axis direction are connected to each other. The conductive portion elements 14a adjacent to each other in an oblique direction with respect to the direction are also connected. Here, the oblique directions with respect to the X-axis direction or the Y-axis direction are specifically directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
 なお、透明絶縁部14における導電部要素14aの配置例は上述の例に限定されるものではない。例えば、隣接列においてX軸方向またはY軸方向に隣り合う導電部要素14a同士は繋がっているのに対して、隣接列においてX軸方向またはY軸方向に対して斜めの方向で隣り合う導電部要素14a同士は島部14bにより離間されているようにしてもよい。 In addition, the example of arrangement | positioning of the electroconductive part element 14a in the transparent insulation part 14 is not limited to the above-mentioned example. For example, the adjacent conductive elements 14a adjacent to each other in the X-axis direction or the Y-axis direction in the adjacent row are connected to each other, whereas the adjacent conductive portions adjacent to each other in the oblique direction with respect to the X-axis direction or the Y-axis direction in the adjacent row The elements 14a may be separated from each other by an island portion 14b.
 なお、図4Aおよび図4Bでは、インクジェット印刷法により導電部要素13a、14aを形成した場合の透明電極部13および透明絶縁部14の例が示されている。インクジェット印刷法により導電部要素13a、14aを形成する場合には、導電部要素13a、14aの形状は円形状、ほぼ円形状、楕円形状またはほぼ楕円形状などとなる。 4A and 4B show examples of the transparent electrode portion 13 and the transparent insulating portion 14 when the conductive portion elements 13a and 14a are formed by the ink jet printing method. When the conductive part elements 13a and 14a are formed by the ink jet printing method, the conductive part elements 13a and 14a have a circular shape, a substantially circular shape, an elliptical shape, a substantially elliptical shape, or the like.
 導電部要素13a、14aの形成にインクジェット印刷法が用いられているか否かは次のようにして確認することができる。すなわち、顕微鏡などにより透明電極部13および透明絶縁部14を観察し、導電部要素13aおよび導電部要素14aの形状に円弧状、ほぼ円弧状、楕円弧状、ほぼ楕円弧状などの形状が含まれるか否かを判別する。導電部要素13aおよび導電部要素14aの形状にこれらの形状のうちいずれかが含まれていれば、導電部要素13aおよび導電部要素14aの形成にインクジェット印刷法が用いられていると推測できる。 Whether or not the ink jet printing method is used to form the conductive portion elements 13a and 14a can be confirmed as follows. That is, whether the transparent electrode portion 13 and the transparent insulating portion 14 are observed with a microscope or the like, and whether the shape of the conductive portion element 13a and the conductive portion element 14a includes an arc shape, a substantially arc shape, an elliptic arc shape, a substantially elliptic arc shape, or the like. Determine whether or not. If any of these shapes is included in the shape of the conductive part element 13a and the conductive part element 14a, it can be assumed that the ink jet printing method is used to form the conductive part element 13a and the conductive part element 14a.
 導電部要素13a、14aの形状としては、例えば、ドット状を用いることができる。ドット状としては、例えば、円形状、ほぼ円形状、楕円形状またはほぼ楕円形状を用いることができる。導電部要素13aと導電部要素14aとで異なる形状を採用するようにしてもよい。ここで、ほぼ円形状は、数学的に定義される完全な円(真円)に多少の歪みが付与された円形を意味する。ほぼ楕円形状は、数学的に定義される完全な楕円に多少の歪みが付与された楕円を意味し、ほぼ楕円形状には、例えば長円、卵型なども含まれる。 As the shape of the conductive part elements 13a and 14a, for example, a dot shape can be used. As the dot shape, for example, a circular shape, a substantially circular shape, an elliptical shape, or a substantially elliptical shape can be used. Different shapes may be adopted for the conductive element 13a and the conductive element 14a. Here, the substantially circular shape means a circle in which some distortion is given to a perfect circle (perfect circle) defined mathematically. The almost elliptical shape means an ellipse in which some distortion is given to a mathematically defined complete ellipse, and the elliptical shape includes, for example, an ellipse and an egg shape.
 導電部要素13aおよび導電部要素14aは、目視により認識できないサイズであることが好ましい。また、導電部要素13aおよび導電部要素14aとで異なる大きさを採用するようにしてもよい。 It is preferable that the conductive part element 13a and the conductive part element 14a have a size that cannot be visually recognized. Moreover, you may make it employ | adopt a magnitude | size different with the electroconductive part element 13a and the electroconductive part element 14a.
 導電部要素13a、14aは、導電性インクなどの導電性組成物を基材11の表面に印刷し、乾燥および/または焼成することにより形成される。導電性組成物の印刷(描画)は、例えば、予め作成されたランダムパターンに基づき行われる。 The conductive part elements 13a and 14a are formed by printing a conductive composition such as a conductive ink on the surface of the substrate 11, and drying and / or firing. Printing (drawing) of the conductive composition is performed based on, for example, a random pattern created in advance.
 孔部13cおよび島部14bは、目視により認識できないサイズであることが好ましい。具体的には、孔部13cおよび島部14bのサイズは、好ましくは100μm以下、より好ましくは60μm以下である。ここで、サイズ(径)は、孔部13cおよび島部14bの差し渡しの長さのうち最大ものを意味している。孔部13cおよび島部14bのサイズを100μm以下にすると、目視による孔部13cおよび島部14bの視認を抑制することができる。 It is preferable that the hole 13c and the island 14b have a size that cannot be visually recognized. Specifically, the size of the hole 13c and the island 14b is preferably 100 μm or less, more preferably 60 μm or less. Here, the size (diameter) means the maximum length of the passing lengths of the hole portion 13c and the island portion 14b. When the size of the hole 13c and the island part 14b is 100 μm or less, the visual recognition of the hole 13c and the island part 14b by visual observation can be suppressed.
 第1の領域Rでは、例えば、複数の孔部13cが基材表面の露出領域となるのに対して、隣り合う孔部13c間に介在された透明導電部13bが基材表面の被覆領域となる。一方、第2の領域Rでは、複数の島部14bが基材表面の被覆領域となるのに対して、隣り合う島部14b間に介在された離間部14cが基材表面の露出領域となる。 In the first region R 1, for example, while the plurality of holes 13c becomes the exposed region of the substrate surface, a transparent conductive portion 13b interposed between adjacent holes 13c of the substrate surface covered region It becomes. On the other hand, in the second region R 2 , the plurality of island portions 14 b serve as the covering region of the base material surface, whereas the separated portions 14 c interposed between the adjacent island portions 14 b and the exposed region of the base material surface Become.
 透明電極部13の単位区画当たりの導電部要素13aの平均割合P1は、好ましくは50[%]≦P1、より好ましくは60[%]≦P1、さらに好ましくは70[%]≦P1の関係を満たしている。50[%]≦P1の関係を満たすことで、透明電極部13の電気抵抗の上昇を抑制して、透明電極部13の電極としての機能を向上させることができるからである。 The average ratio P1 of the conductive part elements 13a per unit section of the transparent electrode part 13 is preferably 50 [%] ≦ P1, more preferably 60 [%] ≦ P1, and further preferably 70 [%] ≦ P1. Satisfies. This is because, by satisfying the relationship of 50 [%] ≦ P1, an increase in the electrical resistance of the transparent electrode portion 13 can be suppressed and the function of the transparent electrode portion 13 as an electrode can be improved.
 透明絶縁部14の単位区画当たりの導電部要素14aの平均割合P2は、好ましくはP2<50[%]、より好ましくはP2<40[%]、さらに好ましくはP2<30[%]の関係を満たしている。P2<50[%]の関係を満たすことで、透明絶縁部14の電気抵抗の低下を抑制して、透明絶縁部14の絶縁部としての機能を向上させることができるからである。 The average ratio P2 of the conductive part elements 14a per unit section of the transparent insulating part 14 is preferably P2 <50 [%], more preferably P2 <40 [%], and further preferably P2 <30 [%]. Satisfies. This is because, by satisfying the relationship of P2 <50 [%], it is possible to suppress a decrease in the electrical resistance of the transparent insulating portion 14 and improve the function of the transparent insulating portion 14 as an insulating portion.
 透明電極部13の単位区画当たりの導電部要素13aの平均割合P1と、透明絶縁部14の単位区画当たりの導電部要素14aの平均割合P2との差ΔP(=P1-P2)は、好ましくはΔP≦30[%]、より好ましくはΔP≦20[%]、さらに好ましくはΔP≦10[%]の関係を満たす。この関係を満たすことで、透明電極部13と透明絶縁部14とを目視により比較したとき、透明導電層12が第1の領域Rと第2の領域Rとで同じように被覆されているように感じられるため、透明電極部13および透明絶縁部14の視認を抑制することができる。 The difference ΔP (= P1−P2) between the average ratio P1 of the conductive part elements 13a per unit section of the transparent electrode section 13 and the average ratio P2 of the conductive section elements 14a per unit section of the transparent insulating section 14 is preferably ΔP ≦ 30 [%], more preferably ΔP ≦ 20 [%], and still more preferably ΔP ≦ 10 [%]. By satisfying this relationship, when the transparent electrode portion 13 and the transparent insulating portion 14 are visually compared, the transparent conductive layer 12 is covered in the same manner in the first region R 1 and the second region R 2. Therefore, the visual recognition of the transparent electrode portion 13 and the transparent insulating portion 14 can be suppressed.
 透明電極部13の単位区画当たりの導電部要素13aの平均割合P1は、以下のようにして求めることができる。
 まず、透明電極部13の画像を顕微鏡により撮影する。次に、撮影した画像に100×100のグリッド(単位区画)を設定し、グリッドを構成する各ドット(マス目)位置に導電部要素13aが形成されているか否かを判断し、導電部要素13aが形成されているドットの個数nをカウントする。ここでは、100×100のグリッドが設定される区画を単位区画という。次に、導電部要素13aの割合pを以下の式を用いて求める。
 p=(n/N)×100
 n:100×100のグリッドを構成するドットのうち、導電部要素13aが形成されているドットの個数
 N:100×100のグリッドを構成するドットの総和
The average ratio P1 of the conductive part elements 13a per unit section of the transparent electrode part 13 can be obtained as follows.
First, an image of the transparent electrode portion 13 is taken with a microscope. Next, a 100 × 100 grid (unit section) is set on the photographed image, and it is determined whether or not the conductive portion element 13a is formed at each dot (square) position constituting the grid. The number n of dots on which 13a is formed is counted. Here, a section in which a 100 × 100 grid is set is referred to as a unit section. Next, the ratio p of the conductive part element 13a is obtained using the following formula.
p = (n / N) × 100
n: Number of dots in which the conductive element 13a is formed among the dots constituting the 100 × 100 grid N: Sum of the dots constituting the 100 × 100 grid
 この処理を透明電極部13から任意に選び出された10箇所にて行い、透明電極部13の単位区画当たりの導電部要素13aの割合p1、p2、・・・・、p10を求める。次に、上述のようにして求めたドットの個数を単純に平均(算術平均)して、透明電極部13の単位区画当たりの導電部要素13aの平均割合P1を求める。
 透明絶縁部14の単位区画当たりの導電部要素14aの平均割合P2も、上述の透明電極部13の単位区画当たりの導電部要素13aの平均割合P1と同様にして求めることができる。
This process is performed at 10 locations arbitrarily selected from the transparent electrode portion 13, and the ratios p1, p2,..., P10 of the conductive portion elements 13a per unit section of the transparent electrode portion 13 are obtained. Next, the average number P1 of the conductive portion elements 13a per unit section of the transparent electrode portion 13 is obtained by simply averaging (arithmetic average) the number of dots obtained as described above.
The average ratio P2 of the conductive part elements 14a per unit section of the transparent insulating section 14 can also be obtained in the same manner as the average ratio P1 of the conductive section elements 13a per unit section of the transparent electrode section 13 described above.
(境界部)
 図5Aは、境界部の形状パターンの例を示す平面図である。図5Bは、図5Aに示したA-A線に沿った断面図である。透明電極部13と透明絶縁部14との境界部には、ランダムな形状パターンが設けられていることが好ましい。このように境界部にランダムな形状パターンを設けることで、境界部の視認を抑制することができる。ここで、境界部とは、透明電極部13と透明絶縁部14との間の領域のことを示し、境界Lとは、透明電極部13と透明絶縁部14とを区切る境界線のことを示す。なお、境界部の形状パターンによっては、境界Lは実線ではなく仮想線の場合もある。
(Boundary part)
FIG. 5A is a plan view illustrating an example of a shape pattern of a boundary portion. FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A. A random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. Thus, by providing a random shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed. Here, the boundary portion indicates a region between the transparent electrode portion 13 and the transparent insulating portion 14, and the boundary L indicates a boundary line that separates the transparent electrode portion 13 and the transparent insulating portion 14. . Depending on the shape pattern of the boundary portion, the boundary L may be a virtual line instead of a solid line.
 図6Aは、境界部における導電部要素の第1の配置例を示す略線図である。透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素13aおよび導電部要素14aがランダムに配列されていることが好ましい。このような配列を採用する場合、導電部要素13aは、例えば、透明電極部13側の境界Lに接するようにして、または境界Lに重なるようにして配列される。また、導電部要素14aは、例えば、透明絶縁部14側の境界Lに接して、または境界Lに重なるようにして配列されている。 FIG. 6A is a schematic diagram illustrating a first arrangement example of conductive part elements in a boundary part. It is preferable that the conductive part elements 13a and the conductive part elements 14a are randomly arranged at the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part. When such an arrangement is adopted, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
 なお、境界部における導電部要素13aおよび導電部要素14aの配列は、ランダム配列に限定されるものではなく、境界部においてのみ導電部要素13aおよび導電部要素14aを規則的に配列するようにしてもよい。 Note that the arrangement of the conductive part elements 13a and the conductive part elements 14a at the boundary is not limited to a random arrangement, and the conductive part elements 13a and the conductive part elements 14a are regularly arranged only at the boundary part. Also good.
 図6Bに示すように、境界Lにおいて孔部13cおよび島部14bが、境界Lの延在方向に同期して配列するようにしてもよい。また、境界Lにおいて導電部要素13aおよび導電部要素14a、または孔部13cおよび離間部14cを境界Lの延在方向に同期して同期して配列するようにしてもよい。 As shown in FIG. 6B, the hole 13c and the island 14b at the boundary L may be arranged in synchronization with the extending direction of the boundary L. Further, at the boundary L, the conductive portion element 13a and the conductive portion element 14a, or the hole 13c and the separation portion 14c may be arranged in synchronization with the extending direction of the boundary L.
(基材)
 基材11としては、例えば、透明性を有する無機基材またはプラスチック基材を用いることができる。基材11の形状としては、例えば、透明性を有するフィルム、シート、基板などを用いることができる。無機基材の材料としては、例えば、石英、サファイア、ガラス、クレイフィルムなどが挙げられる。プラスチック基材の材料としては、例えば、公知の高分子材料を用いることができる。公知の高分子材料としては、具体的には例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などが挙げられる。プラスチック基材の厚さは、生産性の観点から3~500μmであることが好ましいが、この範囲に特に限定されるものではない。
(Base material)
As the substrate 11, for example, a transparent inorganic substrate or plastic substrate can be used. As the shape of the base material 11, for example, a transparent film, sheet, substrate or the like can be used. Examples of the inorganic base material include quartz, sapphire, glass, and clay film. As a material for the plastic substrate, for example, a known polymer material can be used. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid. , Polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin , Cycloolefin polymer (COP), cycloolefin copolymer (COC) and the like. The thickness of the plastic substrate is preferably 3 to 500 μm from the viewpoint of productivity, but is not particularly limited to this range.
(透明導電層)
 透明導電層12の材料としては、例えば、電気的導電性を有する金属酸化物材料、金属材料、炭素材料および導電性ポリマーなどからなる群より選ばれる1種以上を用いることができる。金属酸化物材料としては、例えば、インジウム錫酸化物(ITO)、酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛-酸化錫系、酸化インジウム-酸化錫系、酸化亜鉛-酸化インジウム-酸化マグネシウム系などが挙げられる。金属材料としては、例えば、金属ナノ粒子、金属ワイヤーなどを用いることができる。それらの具体的材料としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛などの金属、またはこれらの合金などが挙げられる。炭素材料としては、例えば、カーボンブラック、炭素繊維、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイルおよびナノホーンなどが挙げられる。導電性ポリマーとしては、例えば、置換または無置換のポリアニリン、ポリピロール、ポリチオフェン、およびこれらから選ばれる1種または2種からなる(共)重合体などを用いることができる。
(Transparent conductive layer)
As the material of the transparent conductive layer 12, for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, conductive polymers, and the like can be used. Examples of the metal oxide material include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide. -Tin oxide system, indium oxide-tin oxide system, zinc oxide-indium oxide-magnesium oxide system, and the like. As the metal material, for example, metal nanoparticles, metal wires, and the like can be used. Specific examples of such materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof. Examples of the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn. As the conductive polymer, for example, substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymers selected from these can be used.
(第2の透明導電性素子)
 図7Aは、本技術の第1の実施形態に係る第2の透明導電性素子の一構成例を示す平面図である。図7Bは、図7Aに示したA-A線に沿った断面図である。図7Aおよび図7Bに示すように、第2の透明導電性素子2は、表面を有する基材21と、この表面に設けられた透明導電層22とを備える。ここでは、基材21の面内において直交する2方向をX軸方向およびY軸方向と定義する。
(Second transparent conductive element)
FIG. 7A is a plan view illustrating a configuration example of a second transparent conductive element according to the first embodiment of the present technology. FIG. 7B is a cross-sectional view taken along line AA shown in FIG. 7A. As shown in FIGS. 7A and 7B, the second transparent conductive element 2 includes a substrate 21 having a surface and a transparent conductive layer 22 provided on the surface. Here, two directions orthogonal to each other in the plane of the substrate 21 are defined as an X-axis direction and a Y-axis direction.
 透明導電層22は、透明電極部(透明導電部)23と透明絶縁部24とを備える。透明電極部23は、Y軸方向に延在されたY電極部である。透明絶縁部24は、いわゆるダミー電極部であり、Y軸方向に延在されるとともに、透明電極部23の間に介在されて、隣り合う透明電極部23との間を絶縁する絶縁部である。これらの透明電極部23と透明絶縁部24とが、基材11の表面にX軸方向に向かって平面的に交互に隣接して設けられている。第1の透明導電性素子1が有する透明電極部13および透明絶縁部14と、第2の透明導電性素子2が有する透明電極部23および透明絶縁部24とは、例えば互いに直交する関係にある。なお、図7A、図7Bにおいて、第1の領域Rは透明電極部23の形成用領域を示し、第2の領域Rは透明絶縁部24の形成領域を示す。
 第2の透明導電性素子2において、上記以外のことは第1の透明導電性素子1と同様である。
The transparent conductive layer 22 includes a transparent electrode part (transparent conductive part) 23 and a transparent insulating part 24. The transparent electrode portion 23 is a Y electrode portion that extends in the Y-axis direction. The transparent insulating portion 24 is a so-called dummy electrode portion, is an insulating portion that extends in the Y-axis direction and is interposed between the transparent electrode portions 23 to insulate between the adjacent transparent electrode portions 23. . These transparent electrode portions 23 and transparent insulating portions 24 are provided on the surface of the base material 11 so as to be alternately adjacent in a plane in the X-axis direction. The transparent electrode portion 13 and the transparent insulating portion 14 included in the first transparent conductive element 1 and the transparent electrode portion 23 and the transparent insulating portion 24 included in the second transparent conductive element 2 are, for example, orthogonal to each other. . 7A and 7B, the first region R 1 indicates a region for forming the transparent electrode portion 23, and the second region R 2 indicates a region for forming the transparent insulating portion 24.
The second transparent conductive element 2 is the same as the first transparent conductive element 1 except for the above.
(光学層)
 光学層3は、例えば、経時変化抑制のための保護層である。光学層3の材料は透明なものであればよく特に制限されるものではないが、例示するならば、UV(紫外線)硬化樹脂、熱硬化樹脂、熱可塑性樹脂などが挙げられる。具体的には、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエステルポリウレタン樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、エチルセルロース、ポリビニルアルコール(PVA)、シリコーン樹脂などの公知の材料が挙げられる。
(Optical layer)
The optical layer 3 is, for example, a protective layer for suppressing change with time. The material of the optical layer 3 is not particularly limited as long as it is transparent, but examples thereof include UV (ultraviolet) curable resins, thermosetting resins, and thermoplastic resins. Specifically, acrylic resin, urethane resin, polyester resin, polyester polyurethane resin, epoxy resin, urea resin, melamine resin, cycloolefin polymer (COP), cycloolefin copolymer (COC), ethyl cellulose, polyvinyl alcohol (PVA), silicone Well-known materials, such as resin, are mentioned.
[透明導電性素子の製造方法]
 次に、図8A~図8Cを参照しながら、以上のように構成される第1の透明導電性素子1の製造方法の一例について説明する。なお、第2の透明導電性素子2は、第1の透明導電性素子1とほぼ同様にして製造することができるので、第2の透明導電性素子2の製造方法については説明を省略する。
[Method for producing transparent conductive element]
Next, an example of a method for manufacturing the first transparent conductive element 1 configured as described above will be described with reference to FIGS. 8A to 8C. Note that the second transparent conductive element 2 can be manufactured in substantially the same manner as the first transparent conductive element 1, and therefore the description of the method for manufacturing the second transparent conductive element 2 is omitted.
(導電性インクの調製)
 まず、金属フィラーを溶剤に分散させた導電性インクを調製する。ここでは、溶剤に対して、金属フィラーと共に樹脂材料(バインダー)を添加する。また必要に応じて、金属フィラーの分散性を向上させるための分散剤や、密着性や耐久性を向上させるためのその他の添加剤を混合するようにしてもよい。
(Preparation of conductive ink)
First, a conductive ink in which a metal filler is dispersed in a solvent is prepared. Here, the resin material (binder) is added to the solvent together with the metal filler. Moreover, you may make it mix the dispersing agent for improving the dispersibility of a metal filler, and the other additive for improving adhesiveness and durability as needed.
 分散手法としては、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理などが好ましく適用できる。 As the dispersion method, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, etc. can be preferably applied.
 金属フィラーは、金属材料を主成分としている。金属材料としては、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、CoおよびSnからなる群より選ばれる少なくとも1種を用いることができる。 The metal filler is mainly composed of a metal material. As the metal material, for example, at least one selected from the group consisting of Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn can be used.
 金属フィラーの形状としては、例えば、球状、楕円体状、針状、板状、鱗片状、チューブ状、繊維状、棒状(ロッド状)、不定形状などが挙げられるが、特にこれらに限定されるものではない。ここで、繊維状には、ワイヤー状が含まれるものとする。以下では、ワイヤー状の金属フィラーを「金属ワイヤー」と称する。なお、上記形状の金属フィラーを2種以上組み合わせて用いてもよい。ここで、球状には、真球状のみならず、真球状がやや扁平または歪んだほぼ球状も含まれる。楕円体状には、厳密な楕円体状のみならず、厳密な楕円体状がやや扁平または歪んだほぼ楕円体状も含まれる。 Examples of the shape of the metal filler include a spherical shape, an ellipsoidal shape, a needle shape, a plate shape, a scale shape, a tube shape, a fiber shape, a rod shape (rod shape), and an indefinite shape. It is not a thing. Here, the fiber shape includes a wire shape. Hereinafter, the wire-like metal filler is referred to as “metal wire”. Two or more kinds of metal fillers having the above shapes may be used in combination. Here, the spherical shape includes not only a true spherical shape but also a substantially spherical shape in which the true spherical shape is slightly flattened or distorted. The ellipsoidal shape includes not only a strict ellipsoidal shape but also an almost ellipsoidal shape in which the strict ellipsoidal shape is slightly flattened or distorted.
 金属フィラー表面が、有色化合物により修飾されていることが好ましい。金属フィラー表面を有色化合物により修飾することで、金属フィラー表面に入射する光が有色化合物により吸収される。したがって、金属フィラー表面での光の乱反射を抑制することができる。
 有色化合物は、例えば、金属フィラー表面に吸着している。ここで、吸着とは、金属フィラー表面またはその近傍にとどまっている現象を意味する。吸着は、化学吸着もしくは物理吸着、またはそれらが組み合わさったものでもよい。化学吸着とは、金属フィラー表面と有色化合物との間で、共有結合、イオン結合、金属結合、配位結合、水素結合などの化学結合を伴って起こる吸着を意味する。物理吸着とは、ファンデルワールス力、静電引力、磁力などの相互作用によって起こる吸着を意味する。
The metal filler surface is preferably modified with a colored compound. By modifying the surface of the metal filler with a colored compound, light incident on the surface of the metal filler is absorbed by the colored compound. Therefore, irregular reflection of light on the surface of the metal filler can be suppressed.
The colored compound is adsorbed on the surface of the metal filler, for example. Here, the adsorption means a phenomenon that remains on the surface of the metal filler or in the vicinity thereof. The adsorption may be chemical adsorption or physical adsorption, or a combination thereof. Chemisorption means adsorption that occurs with chemical bonds such as covalent bonds, ionic bonds, metal bonds, coordinate bonds, and hydrogen bonds between the surface of the metal filler and the colored compound. Physical adsorption means adsorption caused by interaction such as van der Waals force, electrostatic attraction, magnetic force and the like.
 有色化合物は、金属フィラー表面を単分子レベルで被覆していることが好ましい。これにより、可視光に対する透明性の低下を抑制することができる。また、有色化合物の使用量を最小限に抑えることもできる。 The colored compound preferably covers the surface of the metal filler at a monomolecular level. Thereby, the fall of the transparency with respect to visible light can be suppressed. In addition, the amount of the colored compound used can be minimized.
 金属フィラー表面に有色化合物を偏在させることが好ましい。これにより、可視光に対する透明性の低下を抑制することができる。また、有色化合物の使用量を最小限に抑えることもできる。 It is preferable that the colored compound is unevenly distributed on the surface of the metal filler. Thereby, the fall of the transparency with respect to visible light can be suppressed. In addition, the amount of the colored compound used can be minimized.
 有色化合物は、可視光領域の光を吸収する吸収能を持っていることが好ましい。ここで、可視光領域とは、およそ360nm以上830nm以下の波長帯域である。 It is preferable that the colored compound has an absorption ability to absorb light in the visible light region. Here, the visible light region is a wavelength band of approximately 360 nm or more and 830 nm or less.
 有色化合物は、例えば、可視光領域に吸収を持つ発色団Rと、金属フィラーに吸着する官能基Xを有している。有色化合物は、例えば、一般式[R-X]で表される構造を有している。なお、有色化合物の構造はこの一般式で表される構造に限定されるものではない。例えば官能基Xの数は1個に限定されるものではなく、2個以上とすることも可能である。 The colored compound has, for example, a chromophore R having absorption in the visible light region and a functional group X adsorbed on the metal filler. The colored compound has, for example, a structure represented by the general formula [RX]. The structure of the colored compound is not limited to the structure represented by this general formula. For example, the number of functional groups X is not limited to one, and can be two or more.
 このうち発色団[R]は、例えば、不飽和アルキル基、芳香環、複素環および金属イオンからなる群より選ばれる少なくとも1種である。このような発色団[R]の具体例としては、ニトロソ基、ニトロ基、アゾ基、メチン基、アミノ基、ケトン基、チアゾリル基、ナフトキノン基、スチルベン誘導体、インドフェノール誘導体、ジフェニルメタン誘導体、アントラキノン誘導体、トリアリールメタン誘導体、ジアジン誘導体、インジゴイド誘導体、キサンテン誘導体、オキサジン誘導体、フタロシアニン誘導体、アクリジン誘導体、チアジン誘導体、硫黄原子含有化合物、金属イオン含有化合物などが例示される。また、発色団[R]としては、上述の例示した発色団およびそれを含む化合物からなる群より選ばれる少なくとも1種を用いることができる。透明導電層12の透明性の向上の観点からすると、発色団[R]としては、シアニン、キノン、フェロセン、トリフェニルメタンおよびキノリンからなる群より選ばれる少なくとも1種を用いることが好ましい。また、透明導電層12の透明性の向上の観点からすると、発色団[R]としては、Cr錯体、Cu錯体、アゾ基、インドリン基、およびそれを含む化合物からなる群より選ばれる少なくとも1種を用いることも好ましい。 Of these, the chromophore [R] is, for example, at least one selected from the group consisting of an unsaturated alkyl group, an aromatic ring, a heterocyclic ring, and a metal ion. Specific examples of such chromophore [R] include nitroso group, nitro group, azo group, methine group, amino group, ketone group, thiazolyl group, naphthoquinone group, stilbene derivative, indophenol derivative, diphenylmethane derivative, anthraquinone derivative. , Triarylmethane derivatives, diazine derivatives, indigoid derivatives, xanthene derivatives, oxazine derivatives, phthalocyanine derivatives, acridine derivatives, thiazine derivatives, sulfur atom-containing compounds, metal ion-containing compounds, and the like. In addition, as the chromophore [R], at least one selected from the group consisting of the chromophores exemplified above and compounds containing the same can be used. From the viewpoint of improving the transparency of the transparent conductive layer 12, it is preferable to use at least one selected from the group consisting of cyanine, quinone, ferrocene, triphenylmethane and quinoline as the chromophore [R]. From the viewpoint of improving the transparency of the transparent conductive layer 12, the chromophore [R] is at least one selected from the group consisting of a Cr complex, a Cu complex, an azo group, an indoline group, and a compound containing the same. It is also preferable to use.
 金属フィラーを構成する金属に結合する官能基[X]は、例えば、スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミノ基、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基、水酸基などである。このような官能基[X]は、有色化合物中に少なくとも1つ存在していればよい。有色化合物の吸着による導電性低下を抑制する観点からすると、官能基[X]としては、カルボン酸基、リン酸基などが好ましく、カルボン酸基がより好ましい。 The functional group [X] bonded to the metal constituting the metal filler is, for example, a sulfo group (including a sulfonate salt), a sulfonyl group, a sulfonamide group, a carboxylic acid group (including a carboxylate salt), an amino group, an amide group, Examples thereof include phosphoric acid groups (including phosphates and phosphate esters), phosphino groups, silanol groups, epoxy groups, isocyanate groups, cyano groups, vinyl groups, thiol groups, carbinol groups, and hydroxyl groups. Such functional group [X] should just exist in at least 1 in a colored compound. From the viewpoint of suppressing the decrease in conductivity due to the adsorption of the colored compound, the functional group [X] is preferably a carboxylic acid group, a phosphoric acid group or the like, and more preferably a carboxylic acid group.
 また官能基[X]は、金属フィラーを構成する金属に配位可能な原子であってもよい。このような原子は、例えば、N(窒素)、S(イオウ)、O(酸素)などである。官能基[X]がこれらの原子の場合は、官能基[X]は、発色団[R]の一部を構成するものであっても良く、有色化合物は複素環を有する化合物となる。 The functional group [X] may be an atom capable of coordinating to the metal constituting the metal filler. Such atoms are, for example, N (nitrogen), S (sulfur), O (oxygen), and the like. When the functional group [X] is these atoms, the functional group [X] may constitute a part of the chromophore [R], and the colored compound is a compound having a heterocyclic ring.
 以上のような有色化合物としては、例えば、酸性染料、直接染料などの染料が挙げられる。より具体的な染料の一例としては、スルホ基を有する染料として、日本化薬(株)製Kayakalan Bordeaux BL、Kayakalan Brown GL、Kayakalan Gray BL167、Kayakalan Yellow GL143、KayakalanBlack 2RL、Kayakalan Black BGL、Kayakalan Orange RL、Kayarus Cupro Green G、Kayarus Supra Blue MRG、Kayarus Supra Scarlet BNL200、田岡化学工業(株)製Lanyl Olive BGなどが例示される。その他には、日本化薬(株)製Kayalon Polyester Blue 2R-SF、Kayalon Microester Red AQ-LE、Kayalon Polyester Black ECX300、Kayalon Microester Blue AQ-LEなどが例示される。また、カルボキシル基を有する染料としては色素増感太陽電池用色素が挙げられ、Ru錯体のN3、N621、N712、N719、N749、N773、N790、N820、N823、N845、N886、N945、K9、K19、K23、K27、K29、K51、K60、K66、K69、K73、K77、Z235、Z316、Z907、Z907Na、Z910、Z991、CYC-B1、HRS-1、有機色素系としてAnthocyanine、WMC234、WMC236、WMC239、WMC273、PPDCA、PTCA、BBAPDC、NKX-2311、NKX-2510、NKX-2553((株)林原)、NKX-2554((株)林原)、NKX-2569、NKX-2586、NKX-2587((株)林原)、NKX-267((株)林原)、NKX-2697、NKX-2753、NKX-2883、NK‐5958((株)林原)、NK‐2684((株)林原)、Eosin Y、Mercurochrome、MK-2(綜研化学(株))、D77、D102(三菱製紙(株))、D120、D131(三菱製紙(株))、D149(三菱製紙(株))、D150、D190、D205(三菱製紙(株))、D358(三菱製紙(株))、JK-1、JK-2、5、ZnTPP、H2TC1PP、H2TC4PP、Phthalocyanine Dye(Zinc
phtalocyanine-2,9,16,23-tetra-carboxylic acid)、2-[2’-(zinc9’,16’,23’-tri-tert-butyl-29H,31H-phthalocyanyl)] succinic acid、Polythiohene Dye(TT-1)、Pendant type polymer、Cyanine Dye(P3TTA、C1-D、SQ-3、B1)などが挙げられる。
Examples of the colored compound as described above include dyes such as acid dyes and direct dyes. As an example of a more specific dye, as a dye having a sulfo group, Nippon Kayaku Co., Ltd. Kayakalan Bordeaux BL, Kayakalan Brown GL, Kayakalan Gray BL167, Kayakalan Yellow GL143, Kayakalan Black 2RL, Kayakalan Black BGL, Kayakalan Orange RL Examples include Kayaru Cupro Green G, Kayaru Supra Blue MRG, Kayaru Supra Scarlet BNL200, and Lanyl Olive BG manufactured by Taoka Chemical Industry Co., Ltd. Other examples include Kayallon Polyester Blue 2R-SF, Kayallon Microester Red AQ-LE, Kayalon Polyester Black ECX300, and Kayalon Microester Blue AQ-LE manufactured by Nippon Kayaku Co., Ltd. Examples of the dye having a carboxyl group include dyes for dye-sensitized solar cells. Ru complexes N3, N621, N712, N719, N749, N773, N790, N820, N823, N845, N886, N945, K9, K19 , K23, K27, K29, K51, K60, K66, K69, K73, K77, Z235, Z316, Z907, Z907Na, Z910, Z991, CYC-B1, HRS-1, As organic dyes, Anthocyanine, WMC234, WMC236, WMC239 , WMC273, PPDCA, PTCA, BBAPDC, NKX-2311, NKX-2510, NKX-2553 (Hayashibara), NKX-2554 (Hayashibara), NKX-2569, NKX-2586, NKX-2587 (( Hayashibara), NKX-267 (Hayashibara), NKX-2697, NKX-2753, NKX-2883, NK-5958 (Hayashibara), NK-2684 (Hayashibara), Eosin Y, Mercurochrome, MK-2 (Soken Chemicals), D77, D102 (Mitsubishi Paper), D120, D131 (Mitsubishi Paper), D149 (Mitsubishi Paper), D150, D190, D205 ( Mitsubishi Paper Mills), D358 (Mitsubishi Paper Mills), JK-1, JK-2, 5, ZnTPP, H2TC1PP, H2TC4PP Phthalocyanine Dye (Zinc
phtalocyanine-2,9,16,23-tetra-carboxylic acid), 2- [2 '-(zinc9', 16 ', 23'-tri-tert-butyl-29H, 31H-phthalocyanyl)] succinic acid, Polythiohene Dye (TT-1), Pendant type polymer, Cyanine Dye (P3TTA, C1-D, SQ-3, B1).
 また、有色化合物としては絵の具などとして用いられる有色化合物も使用することができ、例えばターナー色彩(株)製のオペラレッド、パーマネントスカーレット、カーミン、バイオレット、レモンイエロー、パーマネントイエローディープ、スカイブルー、パーマネントグリーンライト、パーマネントグリーンミドル、バーントシェナー、イエローオーカー、パーマネントオレンジ、パーマネントレモン、パーマネントレッド、ビリディアン(ヒュー)、コバルトブルー(ヒュー)、プルシアンブルー(ヒュー)、ジェットブラック、パーマネントスカーレットおよびバイオレットなどを挙げることができる。また、例えばホルベイン工業(株)製の有色化合物である、ブライトレッド、コバルトブルーヒュー、アイボリックブラック、イエローオーカー、パーマネントグリーンライト、パーマネントイエローライト、バーントシェンナ、ウルトラマリンディープ、バーミリオンヒューおよびパーマネントグリーンなども使用することができる。これらの有色化合物の中でも、パーマネントスカーレット、バイオレットおよびジェットブラック(ターナー色彩(株))が好ましい。 In addition, as the colored compound, a colored compound used as a paint can also be used. For example, Opera Red, Permanent Scarlet, Carmine, Violet, Lemon Yellow, Permanent Yellow Deep, Sky Blue, Permanent Green manufactured by Turner Color Co., Ltd. List light, permanent green middle, burnt schener, yellow ocher, permanent orange, permanent lemon, permanent red, viridian (Hugh), cobalt blue (Hugh), Prussian blue (Hugh), jet black, permanent scarlet and violet Can do. Also, for example, Bright Red, Cobalt Blue Hue, Ivory Black, Yellow Ocher, Permanent Green Light, Permanent Yellow Light, Burnt Senna, Ultramarine Deep, Vermillion Hugh and Permanent Green, which are colored compounds manufactured by Holbein Industry Co., Ltd. Etc. can also be used. Among these colored compounds, permanent scarlet, violet and jet black (Turner Color Co., Ltd.) are preferable.
 さらに、有色化合物としては食用の有色化合物も使用することができ、例えばダイワ化成(株)製の食用赤色2号アマランス、食用赤色3号エリスロシン、食用赤色102号ニューコクシン、食用赤色104号フロキシン、食用赤色105号ローズベンガル、食用赤色106号アシッドレッド、食用青色1号ブリリアントブルー、食用赤色40号アルラレッド、食用青色2号インジゴカーミン、赤色226号ヘリドンピンクCN、赤色227号ファーストアシッドマゲンタ、赤色230号エオシンYS、緑色204号ピラニンコンク、だいだい色205号オレンジII、青色205号アルファズリン、紫色401号アリズロールパープルおよび黒色401号ナフトールブルーブラックなどを挙げることができる。また、天然の有色化合物も使用することができ、例えばダイワ化成(株)製のハイレッドG-150(水溶性・ブドウ果皮色素)、コチニールレッドAL(水溶性・コチニール色素)、ハイレッドMC(水溶性・コチニール色素)、ハイレッドBL(水溶性・ビートレッド)、ダイワモナスLA-R(水溶性・ベニコウジ色素)、ハイレッドV80(水溶性・ムラサキイモ色素)、アンナットーN2R-25(水分散性・アナトー色素)、アンナットーWA-20(水溶性アナトー・アナトー色素)、ハイオレンジSS-44R(水分散性、低粘度品・トウガラシ色素)、ハイオレンジLH(油溶性・トウガラシ色素)、ハイグリーンB(水溶性・緑色着色料製剤)、ハイグリーンF(水溶性・緑色着色料製剤)、ハイブルーAT(水溶性・クチナシ青色素)、ハイメロンP-2(水溶性・緑色着色料製剤)、ハイオレンジWA-30(水分散性・トウガラシ色素)、ハイレッドRA-200(水溶性・アカダイコン色素)、ハイレッドCR-N(水溶性・アカキャベツ色素)、ハイレッドEL(水溶性・エルダーベリー色素)、ハイオレンジSPN(水分散性・トウガラシ色素)などを挙げることができる。 Furthermore, edible colored compounds can also be used as the colored compounds. For example, edible red No. 2 amaranth, edible red No. 3 erythrosin, edible red No. 102 New Coxin, edible red No. 104 Phloxine manufactured by Daiwa Kasei Co., Ltd. Food Red 105 Rose Bengal, Food Red 106 Acid Red, Food Blue 1 Brilliant Blue, Food Red 40 Allura Red, Food Blue 2 Indigo Carmine, Red 226 Helidon Pink CN, Red 227 First Acid Magenta Red No. 230 eosin YS, green No. 204 pyranin conc, orange No. 205 orange II, blue No. 205 alphazurin, purple No. 401 arizurol purple and black No. 401 naphthol blue black. Natural colored compounds can also be used, such as High Red G-150 (water-soluble grape skin pigment), Cochineal Red AL (water-soluble / cochineal pigment), High Red MC (produced by Daiwa Kasei Co., Ltd.). Water-soluble / cochineal dye), High Red BL (water-soluble / beet red), Daiwamonas LA-R (water-soluble / Benicouji dye), High Red V80 (water-soluble, purple potato dye), Annatto N2R-25 (water dispersibility) Anato dye), Annatto WA-20 (water-soluble anato-anato dye), high orange SS-44R (water dispersible, low-viscosity product, red pepper dye), high orange LH (oil-soluble red pepper dye), high green B (Water-soluble and green colorant formulation), high green F (water-soluble and green colorant formulation), high blue AT (water-soluble and colorant formulation) Chinese pear pigment), Himelon P-2 (water-soluble, green colorant formulation), High Orange WA-30 (water-dispersible, red pepper pigment), High Red RA-200 (water-soluble, red radish pigment), High Red CR -N (water-soluble, red cabbage dye), high red EL (water-soluble, elderberry dye), high orange SPN (water-dispersible, red pepper dye), and the like.
 有色化合物は、上述の一般式[R-X]で表される化合物中から、金属フィラーを構成する金属毎に、その金属に吸着可能で、かつ透明導電層12の製造工程で用いる溶剤に所定濃度で溶解可能な化合物を選択して用いることが好ましい。 The colored compound can be adsorbed to each metal constituting the metal filler from the compounds represented by the above general formula [RX], and is used as a solvent used in the manufacturing process of the transparent conductive layer 12. It is preferable to select and use a compound that can be dissolved at a concentration.
 有色化合物により金属フィラー表面が修飾されているか否かは、以下のようにして確認することができる。まず、確認対象となる金属フィラーを含む透明導電層を、既知の金属をエッチングできる溶液に数時間から十数時間程度浸漬し、金属フィラーとその表面に修飾された修飾化合物とを抽出する。次に、加熱または減圧によって、抽出液から溶剤を除去することにより、抽出成分を濃縮する。この際、必要に応じてクロマトグラフィーによる分離を行ってもよい。次に、上述の濃縮した抽出成分のガスクロマトグラフ(GC)分析を行い、修飾化合物の分子およびそのフラグメントを確認することによって、修飾化合物を同定することができる。また、修飾化合物の抽出に重水素置換溶剤を用いることで、NMR分析によって修飾化合物を同定することもできる。 Whether or not the surface of the metal filler is modified with a colored compound can be confirmed as follows. First, the transparent conductive layer containing the metal filler to be confirmed is immersed in a solution capable of etching a known metal for about several hours to several tens of hours to extract the metal filler and the modified compound modified on the surface thereof. Next, the extract component is concentrated by removing the solvent from the extract by heating or reducing the pressure. At this time, if necessary, separation by chromatography may be performed. Next, the modified compound can be identified by conducting a gas chromatograph (GC) analysis of the concentrated extracted component described above and confirming the molecule of the modified compound and fragments thereof. Moreover, a modified compound can also be identified by NMR analysis by using a deuterium substitution solvent for extraction of a modified compound.
 溶剤としては、金属フィラーを分散可能なものを用いることが好ましい。例えば、水、アルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノールなど)、アノン(例えばシクロヘキサノン、シクロペンタノン)、アミド(例えばN,N-ジメチルホルムアミド:DMF)、スルフィド(例えばジメチルスルホキシド:DMSO)などを単独または2種以上組み合わせて用いることができる。 It is preferable to use a solvent that can disperse a metal filler. For example, water, alcohol (eg, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (eg, cyclohexanone, cyclopentanone), amide (eg, N, N-dimethylformamide: DMF), sulfide (for example, dimethylsulfoxide: DMSO) and the like can be used alone or in combination of two or more.
 溶剤の蒸発速度をコントロールするために、高沸点溶剤をさらに含んでいてもよい。高沸点溶剤としては、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコールが挙げられる。これらの高沸点溶剤は単独で用いてもよく、また複数を組み合わせてもよい。 In order to control the evaporation rate of the solvent, a high boiling point solvent may be further included. Examples of the high boiling point solvent include butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether. , Diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol isopropyl ether, triplicate Propylene glycol isopropyl ether, methyl glycol. These high boiling solvents may be used alone or in combination.
 樹脂材料は、いわゆるバインダー材料であり、既知の透明な天然高分子樹脂または合成高分子樹脂から広く選択して使用することができ、熱可塑性樹脂であっても熱硬化性樹脂や光硬化性樹脂であってもよい。熱可塑性樹脂としては、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロースが例示される。熱、光、電子線、放射線で硬化する熱(光)硬化性樹脂としては、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコン樹脂が例示される。 The resin material is a so-called binder material, and can be widely selected and used from known transparent natural polymer resins or synthetic polymer resins. Even a thermoplastic resin is a thermosetting resin or a photocurable resin. It may be. Examples of the thermoplastic resin include polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, and hydroxypropyl methyl cellulose. Examples of the heat (light) curable resin that is cured by heat, light, electron beam, and radiation include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate.
 また、樹脂材料には、添加剤として、界面活性剤、粘度調整剤、分散剤、硬化促進触媒、可塑剤、さらには酸化防止剤や硫化防止剤などの安定剤を必要に応じて添加してもよい。 In addition, surfactants, viscosity modifiers, dispersants, curing accelerating catalysts, plasticizers, and stabilizers such as antioxidants and sulfidizing agents are added to the resin material as necessary. Also good.
(印刷工程)
 次に、図8Aに示すように、基材11の表面の第1の領域Rに導電性インクを印刷(描画)する。これにより、導電性インクの液滴33aが、第1の領域Rにおける基材11の表面のX軸方向(第1方向)およびY軸方向(第2方向)に2次元的にランダムに塗布される。
(Printing process)
Next, as shown in FIG. 8A, conductive ink is printed (drawn) on the first region R 1 on the surface of the substrate 11. Thereby, the droplets 33a of the conductive ink, coating two-dimensionally at random in the X-axis direction of the surface of the substrate 11 in the first region R 1 (first direction) and the Y-axis direction (second direction) Is done.
 次に、図8Bに示すように、基材11の表面の第2の領域Rに導電性インクを印刷(描画)する。これにより、導電性インクの液滴33aが、第2の領域Rにおける基材11の表面のX軸方向(第1方向)およびY軸方向(第2方向)に2次元的にランダムに塗布される。 Next, as shown in FIG. 8B, conductive ink is printed (drawn) on the second region R 2 on the surface of the substrate 11. Thereby, the droplets 33a of the conductive ink, coating two-dimensionally at random in the X-axis direction of the surface of the substrate 11 in the second region R 2 (first direction) and the Y-axis direction (second direction) Is done.
 上述の領域Rおよび領域Rの印刷工程を繰り返す。印刷法としては、例えば、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、インクジェット印刷法、マイクロコンタクト印刷法、またはスクリーン印刷法などを用いることができ、これらの方法のうちでもインクジェット印刷法を用いることが好ましい。版を作製する必要が無く、オンデマンドでの印刷が可能だからである。なお、図8A、図8Bでは、インクジェット印刷法によりノズル33から導電性インクを塗出することにより、基材11の表面に導電性インクを印刷(描画)する例が示されている。 Repeat the above region R 1 and the region R 2 of the printing process. As the printing method, for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing method, a micro contact printing method, a screen printing method, or the like can be used. Among the methods, it is preferable to use an ink jet printing method. This is because there is no need to produce a plate and printing on demand is possible. 8A and 8B show an example in which conductive ink is printed (drawn) on the surface of the substrate 11 by applying the conductive ink from the nozzles 33 by the ink jet printing method.
 導電性インクの印刷(描画)は、例えば、予め生成されたランダムパターンに基づき行われる。具体的には、ランダムパターンは、白色ドットおよび黒色ドットがランダムパターンで配列されたラスター画像として記憶部に予め記憶されており、このラスター画像に基づき導電性インクの印刷(描画)が行われる。なお、白色ドットおよび黒色ドットがランダムパターンで配列されたラスター画像の作成アルゴリズムの詳細については後述する。 The printing (drawing) of the conductive ink is performed based on, for example, a random pattern generated in advance. Specifically, the random pattern is stored in advance as a raster image in which white dots and black dots are arranged in a random pattern, and conductive ink is printed (drawn) based on the raster image. The details of the algorithm for creating a raster image in which white dots and black dots are arranged in a random pattern will be described later.
 印刷の解像度は印刷方式により適宜選択することが好ましい。例えば、インクジェット印刷法では、その性能により1ドットのサイズから解像度(Dots Per Inch(dpi))を決め、描画する必要がある。 It is preferable to select the printing resolution according to the printing method. For example, in the inkjet printing method, the resolution (Dots 決 め Per Inch (dpi)) must be determined from the size of one dot depending on the performance, and drawing is required.
 表1に、1ドットのサイズと解像度との関係の例を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows an example of the relationship between the size of one dot and the resolution.
Figure JPOXMLDOC01-appb-T000001
(乾燥工程)
 次に、基材11の表面に印刷された導電性インクを乾燥させる。次に、必要に応じて、乾燥した導電性インクを焼成する。これにより、第1の領域Rおよび第2の領域Rにおいて基材11の表面のX軸方向(第1方向)およびY軸方向(第2方向)に2次元的にランダムに配列された導電部要素13aが形成される。この導電部要素13aの形成により、基材11の表面に平面的に交互に設けられた透明電極部13および透明絶縁部14が形成される。
(Drying process)
Next, the conductive ink printed on the surface of the substrate 11 is dried. Next, the dried conductive ink is baked as necessary. As a result, the first region R 1 and the second region R 2 are randomly arranged two-dimensionally in the X-axis direction (first direction) and Y-axis direction (second direction) of the surface of the base material 11. Conductive element 13a is formed. By the formation of the conductive portion element 13a, the transparent electrode portions 13 and the transparent insulating portions 14 provided alternately on the surface of the base material 11 in a plane are formed.
(光学層形成工程)
 次に、必要に応じて、透明電極部13および透明絶縁部14上に光学層3を形成する。光学層の形成方法としては、例えば、塗布法または印刷法を用いることができる。塗布方法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法またはスピンコート法などを用いることができる。印刷方法としては、例えば、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、インクジェット印刷、マイクロコンタクト印刷またはスクリーン印刷法などを用いることができる。
 以上により、図2Aおよび図2Bに示す第1の透明導電性素子1が得られる。
(Optical layer forming process)
Next, the optical layer 3 is formed on the transparent electrode portion 13 and the transparent insulating portion 14 as necessary. As a method for forming the optical layer, for example, a coating method or a printing method can be used. Examples of the coating method include a micro gravure coating method, a wire bar coating method, a direct gravure coating method, a die coating method, a dip method, a spray coating method, a reverse roll coating method, a curtain coating method, a comma coating method, a knife coating method, or a spin coating method. A coating method or the like can be used. As a printing method, for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, an ink jet printing, a micro contact printing or a screen printing method can be used.
Thus, the first transparent conductive element 1 shown in FIGS. 2A and 2B is obtained.
[ラスター画像の作成アルゴリズム]
 以下、図9を参照して、ラスター画像の作成アルゴリズムについて説明する。
 まず、ステップS1において、ドットサイズおよび全体サイズが設定されると、ステップS2において、図10Aに示すように、設定したドットサイズの単位で全体サイズを区切ったグリッドを作成する。上述の印刷工程では、グリッドの各ドットの位置に導電性インクが印刷(描画)されて、導電部要素13a、14aが形成される。なお、グリッドを構成するドットは矩形状であるが、インクジェット印刷法により導電性インクを印刷(描画)した場合には、導電部要素13a、14aは上述のように円形状、ほぼ円形状、楕円形状またはほぼ楕円形状となるため、両者の形状は異なっている。
[Raster image creation algorithm]
Hereinafter, a raster image creation algorithm will be described with reference to FIG.
First, when the dot size and the overall size are set in step S1, a grid in which the overall size is divided in units of the set dot size is created in step S2 as shown in FIG. 10A. In the printing process described above, conductive ink is printed (drawn) at the position of each dot of the grid to form the conductive portion elements 13a and 14a. The dots constituting the grid are rectangular, but when conductive ink is printed (drawn) by the ink jet printing method, the conductive portion elements 13a and 14a are circular, almost circular, or elliptic as described above. Since the shape is almost elliptical, both shapes are different.
 次に、ステップS3において、図10Bに示すように、作成したグリッドの各ドットにアドレス(n、n)を設定する。ここで、nが行方向(X軸方向(第1方向))のアドレスであり、nが列方向(Y軸方向(第2方向))のアドレスである。次に、ステップS4において、導電部要素を形成するドットの割合pが設定されると、ステップS5において、アドレス(n、n)を初期値であるアドレス(1、1)に設定する。ここで、ドットの割合pは、0以上100以下の数値である。なお、以下では、ドットの割合pに「%」を付して示すことがある。 Next, in step S3, as shown in FIG. 10B, an address (n 1 , n 2 ) is set to each dot of the created grid. Here, n 1 is an address in the row direction (X-axis direction (first direction)), and n 2 is an address in the column direction (Y-axis direction (second direction)). Next, when the ratio p of dots forming the conductive element is set in step S4, the address (n 1 , n 2 ) is set to the initial address (1, 1) in step S5. Here, the dot ratio p is a numerical value of 0 or more and 100 or less. In the following description, “%” may be added to the dot ratio p.
 ここで、導電部要素を形成するドットの割合pは、全体サイズを構成する全ドットのうち導電部要素を形成するドットの割合(すなわち、導電性インクを印刷(描画)するドットの割合)を示す。この導電部要素を形成するドットの割合pは、上述の導電部要素13aの平均割合P1および導電部要素14aの平均割合P2に対応する。透明電極部13を形成するためのランダムパターンを生成する場合には、ドットの割合pを、好ましくは50≦p[%]、より好ましくは60≦p[%]、さらに好ましくは70≦p[%]の範囲内に設定する。一方、透明絶縁部14を形成するためのランダムパターンを生成する場合には、ドットの割合pを、好ましくはp<50[%]、より好ましくはp<40[%]、さらに好ましくはp<30[%]の範囲内に設定する。 Here, the ratio p of the dots forming the conductive part element is the ratio of the dots forming the conductive part element among all the dots constituting the entire size (that is, the ratio of the dots for printing (drawing) the conductive ink). Show. The ratio p of dots forming the conductive part element corresponds to the above-described average ratio P1 of the conductive part element 13a and average ratio P2 of the conductive part element 14a. When generating a random pattern for forming the transparent electrode portion 13, the dot ratio p is preferably 50 ≦ p [%], more preferably 60 ≦ p [%], and still more preferably 70 ≦ p [%]. %] Is set. On the other hand, when generating a random pattern for forming the transparent insulating portion 14, the dot ratio p is preferably p <50 [%], more preferably p <40 [%], and still more preferably p <. Set within the range of 30 [%].
 透明電極部13を形成するためのランダムパターンのドットの割合p1と、透明絶縁部14を形成するためのランダムパターンのドットの割合p2との差Δp(=p1-p2)を、好ましくはΔp≦30[%]、より好ましくはΔp≦20[%]、さらに好ましくはΔp≦10[%]の範囲内に設定する。 The difference Δp (= p1−p2) between the dot ratio p1 of the random pattern for forming the transparent electrode portion 13 and the dot ratio p2 of the random pattern for forming the transparent insulating portion 14 is preferably Δp ≦ It is set within the range of 30 [%], more preferably Δp ≦ 20 [%], and still more preferably Δp ≦ 10 [%].
 次に、ステップS6において、ステップS5、ステップS12またはステップS13にて設定されたアドレス(n、n)(以下、「設定アドレス」という。)のドットに対して、0以上100以下の一様な乱数Nrを発生させる。乱数Nrの発生アルゴリズムとしては、例えば、メルセンヌ・ツイスタ(Mersenne twister(MT))を用いることができる。次に、ステップS7において、ステップS6にて発生させた乱数Nrが、ステップS4にて設定されたドットの割合pの以下(Nr≦p)であるか否かを判別する。 Next, in step S6, a dot of 0 or more and 100 or less is set for the dot of the address (n 1 , n 2 ) (hereinafter referred to as “set address”) set in step S5, step S12 or step S13. A random number Nr is generated. As an algorithm for generating the random number Nr, for example, Mersenne twister (MT) can be used. Next, in step S7, it is determined whether or not the random number Nr generated in step S6 is less than or equal to the dot ratio p set in step S4 (Nr ≦ p).
 表2に、乱数Nrと印刷情報(2値情報)との関係を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the relationship between the random number Nr and the print information (binary information).
Figure JPOXMLDOC01-appb-T000002
 乱数Nrがドットの割合p以下である場合には、ステップS8において、図10Cに示すように、設定アドレス(n、n)のドットを印刷に設定する。一方、乱数Nrが導電部要素の割合Pより大きい場合には、ステップS8において、図10Cに示すように、設定アドレス(n、n)のドットを印刷しない(以下、「非印刷」という。)に設定する。 When the random number Nr is equal to or less than the dot ratio p, in step S8, as shown in FIG. 10C, the dot at the set address (n 1 , n 2 ) is set to print. On the other hand, if the random number Nr is larger than the proportion P of the conductive part elements, the dot at the set address (n 1 , n 2 ) is not printed in step S8 as shown in FIG. 10C (hereinafter referred to as “non-printing”). )).
 図10Cでは、印刷に設定したドットを「黒色ドット」で表し、非印刷に設定したドットを「白色ドット」で表した例が示されている。また、図10Cでは、矢印で示す順序で各ドットに対して印刷情報(「印刷」および「非印刷」の2値情報)のいずれかを設定する例が示されているが、この設定の順序は一例であって、印刷情報の設定の順序はこの例に限定されるものではない。 FIG. 10C shows an example in which dots set for printing are represented by “black dots” and dots set for non-printing are represented by “white dots”. FIG. 10C shows an example in which any one of print information (binary information “print” and “non-print”) is set for each dot in the order indicated by the arrows. Is an example, and the order of setting print information is not limited to this example.
 次に、ステップS10において、アドレスnが行方向のアドレスの最大値Nであるか否かを判断する。アドレスnが最大値Nである場合には、処理はステップS11に移行する。一方、アドレスnが最大値Nでない場合には、ステップS12において、アドレスnをインクリメントして、処理はステップS6に戻る。 Next, in step S10, the address n 1 determines whether the maximum value N 1 of the row address direction. If the address n 1 is the maximum value N 1 , the process proceeds to step S11. On the other hand, if the address n 1 is not the maximum value N 1 in step S12, increments the address n 1, the process returns to step S6.
 ステップS11において、アドレスnが列方向のアドレスの最大値Nであるか否かを判断する。アドレスnが最大値Nでない場合には、ステップS14において、アドレスnをインクリメントして、処理はステップS6に戻る。一方、アドレスnが最大値Nである場合には、図10Dに示すように、グリッドを構成する全てのドットに対して印刷情報(2値情報)が設定されて、白色ドットおよび黒色ドットがランダムパターンで配列されたラスター画像が完成されて、処理はステップS14に移行する。次に、ステップS14において、このラスター画像(2値画像)を記憶部に記憶するようにしてもよい。 In step S11, the address n 2 determines whether the maximum value N 2 of the column address. If the address n 2 is not the maximum value N 2 , the address n 2 is incremented in step S14, and the process returns to step S6. On the other hand, when the address n 2 is the maximum value N 2 , as shown in FIG. 10D, print information (binary information) is set for all the dots constituting the grid, and white dots and black dots are set. A raster image arranged in a random pattern is completed, and the process proceeds to step S14. Next, in step S14, the raster image (binary image) may be stored in the storage unit.
 上述の印刷工程では、ラスター画像を記憶部から読み出し、このラスター画像の各ドットに対応する透明導電層12上の位置にインクジェットヘッドのノズルを順次移動させながら、ラスター画像の印刷情報に基づきインクジェットヘッドから導電性インクを塗出する。 In the above-described printing process, the raster image is read from the storage unit, and the inkjet head is sequentially moved to the position on the transparent conductive layer 12 corresponding to each dot of the raster image, while the inkjet head is based on the printing information of the raster image. Conductive ink is applied from
 具体的には、ラスター画像の印刷に設定されているドット(例えば、「黒色ドット」)に対応する基材11上の位置では、インクジェットヘッドから導電性インクを塗出する。一方、ラスター画像の非印刷に設定されているドット(例えば、「白色ドット」)に対応する基材11上の位置では、インクジェットヘッドから導電性インクを塗出させない。これにより、ラスター画像の白色ドットおよび黒色ドットのランダムパターンに対応する印刷パターンが基材11の表面に形成される。なお、上述のインクジェットヘッドの動作制御の説明では、印刷位置および非印刷位置のすべてにインクジェットヘッドを移動させる例について説明したが、インクジェットヘッドの動作制御はこの例に限定されるものではない。例えば、インクジェットヘッドが印刷位置のみに順次移動するように、インクジェットヘッドの動作制御を行うようにしてもよい。 Specifically, conductive ink is applied from the inkjet head at a position on the substrate 11 corresponding to a dot (for example, “black dot”) set for printing a raster image. On the other hand, the conductive ink is not applied from the inkjet head at a position on the substrate 11 corresponding to a dot (for example, “white dot”) set to non-printing of the raster image. As a result, a print pattern corresponding to the random pattern of white dots and black dots of the raster image is formed on the surface of the substrate 11. In the above description of the operation control of the inkjet head, the example in which the inkjet head is moved to all of the printing position and the non-printing position has been described. However, the operation control of the inkjet head is not limited to this example. For example, the operation control of the ink jet head may be performed so that the ink jet head sequentially moves only to the printing position.
 図11A、図11Bは、グリッドを構成するドット(マス目)と導電部要素との大きさの関係を示す略線図である。図11Aに示すように、正方形状のドットの角より導電部要素の周(例えば円周)が外側に位置する場合には、隣接例においてX軸方向またはY軸方向に隣り合う導電部要素13aのみならず、隣接例においてX軸方向またはY軸方向に対して斜めの方向で隣り合う導電部要素13a同士も繋がった状態となる。一方、図11Bに示すように、正方形状のドットの角より導電部要素の周(例えば円周)が内側に位置する場合には、隣接例においてX軸方向またはY軸方向に対して斜めの方向で隣り合う導電部要素13a同士は繋がらず、離間した状態となる。 FIG. 11A and FIG. 11B are schematic diagrams showing the relationship between the size of dots (squares) constituting the grid and the conductive part elements. As shown in FIG. 11A, when the periphery (for example, the circumference) of the conductive element is positioned outside the corner of the square dot, the conductive element 13a adjacent in the X-axis direction or the Y-axis direction in the adjacent example. In addition, in the adjacent example, the conductive part elements 13a adjacent in the oblique direction with respect to the X-axis direction or the Y-axis direction are also connected. On the other hand, as shown in FIG. 11B, when the circumference of the conductive element (for example, the circumference) is located on the inner side than the corner of the square dot, the adjacent example is inclined with respect to the X axis direction or the Y axis direction. The conductive part elements 13a adjacent in the direction are not connected to each other and are separated from each other.
[微少液滴塗布システムによる導電性インクの塗布)
 導電性インクの印刷方法は、上述の例に限定されるものではなく、微少液滴塗布法を用いてもよい。以下、微少液滴塗布システムによる導電性インクの塗布の例について説明する。
[Applying conductive ink using micro droplet application system]
The method for printing the conductive ink is not limited to the above example, and a fine droplet coating method may be used. Hereinafter, an example of application of conductive ink by a micro droplet application system will be described.
 図12Aは、微少液滴塗布システムの装置本体の一構成例を示す略線図である。図12Bは、図12Aの液滴塗布に係る要部を拡大した略線図である。微少液滴塗布システムとしては、例えば、(株)アプライド・マイクロシステム製のニードル式ディスペンサーを用いることができる。このようなニードル式ディスペンサーは、例えば、特開2011-173029号公報、特開2011-174907号公報に記載されている。 FIG. 12A is a schematic diagram illustrating a configuration example of an apparatus main body of a micro droplet application system. 12B is a schematic diagram enlarging a main part related to the droplet application of FIG. 12A. As the micro droplet application system, for example, a needle dispenser manufactured by Applied Micro System Co., Ltd. can be used. Such needle type dispensers are described in, for example, Japanese Patent Application Laid-Open Nos. 2011-173029 and 2011-174907.
 ニードル式ディスペンサーの装置本体100は、XYステージ部101と、粗動ステージ部102と、微動ステージ部103と、ピペット保持部材104と、ガラスピペット(液だめ)105と、塗布用針(ニードル)106とを有する。なお、粗動ステージ部102と、微動ステージ部103とはZステージ(Z軸アクチュエータ)を構成する。Zステージの最小分解能は0.25[μm]であり、繰り返し位置決め精度は±0.3[μm]以内である。なお、ニードル式ディスペンサーの装置本体100は、図示を省略した制御部によって制御される。 The apparatus main body 100 of the needle type dispenser includes an XY stage unit 101, a coarse movement stage unit 102, a fine movement stage unit 103, a pipette holding member 104, a glass pipette (a liquid reservoir) 105, and an application needle (needle) 106. And have. The coarse movement stage unit 102 and the fine movement stage unit 103 constitute a Z stage (Z-axis actuator). The minimum resolution of the Z stage is 0.25 [μm], and the repeat positioning accuracy is within ± 0.3 [μm]. In addition, the apparatus main body 100 of a needle type dispenser is controlled by the control part which abbreviate | omitted illustration.
 XYステージ部101上には、導電性インクの塗布対象である基材11が載置される。XYステージ部101は、その上面に載置された基材11をX軸方向およびY軸方向に移動させる。これにより、基材11のXY平面上での導電性インクを塗布する箇所の位置決めができる。XYステージ部101の最小分解能は0.25[μm]であり、繰り返し位置決め精度は±0.3[μm]以内である。 On the XY stage unit 101, a base material 11 that is a target for applying conductive ink is placed. The XY stage unit 101 moves the base material 11 placed on the upper surface thereof in the X-axis direction and the Y-axis direction. Thereby, the location which apply | coats the conductive ink on XY plane of the base material 11 can be positioned. The minimum resolution of the XY stage unit 101 is 0.25 [μm], and the repeat positioning accuracy is within ± 0.3 [μm].
 粗動ステージ部102には、微動ステージ部103およびピペット保持部材104が取り付けられている。粗動ステージ部102は、塗布対象である基材11の表面に対して近接または離反の方向、すなわちZ軸方向に粗い度合いで摺動する。したがって、微動ステージ部103およびピペット保持部材104は粗動ステージ部102の摺動に伴ってZ軸方向に摺動する。さらに、ピペット保持部材104はガラスピペット105を保持している。ガラスピペット105は、中空構造物であってZ軸方向に延在している。したがって、粗動ステージ部102のZ軸方向の摺動に伴ってガラスピペット105は、自身が延在するZ軸方向に移動する。 The fine movement stage unit 103 and the pipette holding member 104 are attached to the coarse movement stage unit 102. The coarse movement stage unit 102 slides with a rough degree in the approach or separation direction, that is, in the Z-axis direction with respect to the surface of the base material 11 to be coated. Therefore, fine movement stage portion 103 and pipette holding member 104 slide in the Z-axis direction as coarse movement stage portion 102 slides. Further, the pipette holding member 104 holds a glass pipette 105. The glass pipette 105 is a hollow structure and extends in the Z-axis direction. Accordingly, the glass pipette 105 moves in the Z-axis direction in which the glass pipette 105 extends as the coarse movement stage unit 102 slides in the Z-axis direction.
 微動ステージ部103は、Z軸方向に微細な度合いで摺動する。そして、微動ステージ部103には、Z軸方向に延在する塗布用針106が取り付けられている。したがって、微動ステージ部103のZ軸方向の摺動に伴って、塗布用針106をZ軸方向に微細な度合いで移動させることができる。 The fine movement stage unit 103 slides with a fine degree in the Z-axis direction. The fine movement stage 103 is attached with a coating needle 106 extending in the Z-axis direction. Accordingly, the application needle 106 can be moved in the Z-axis direction with a fine degree as the fine movement stage 103 slides in the Z-axis direction.
 ガラスピペット105には、例えばガラスが用いられる。ガラスピペット105の先端は、塗布対象の表面と対向する。ガラスピペット105の先端の内径は、例えば200[μm]である。中空構造のガラスピペット105内には塗布液体107が充填される。塗布液体107は、表面張力によってガラスピペット105内に保持される。ここで、塗布液体107は、導電性組成物である導電性インクである。塗布用針106には、例えばタングステンが用いられる。塗布用針106は、ガラスピペット105内を貫通するようにZ軸方向に動く。塗布用針106の先端は塗布対象の表面と対向している。塗布用針106がガラスピペット105を貫通した際に、その先端に付着した液滴が、塗布対象の基材11の表面に付着することで基材11の表面上に液滴108が形成される。塗布用針106は交換可能な構造となっており、その先端の直径は、例えば10[μm]や100[μm]のように任意に選択可能である。すなわち、所望のドットの径に合わせて塗布用針106を選択可能である。 Glass is used for the glass pipette 105, for example. The tip of the glass pipette 105 faces the surface to be coated. The inner diameter of the tip of the glass pipette 105 is, for example, 200 [μm]. A coating liquid 107 is filled in the hollow glass pipette 105. The coating liquid 107 is held in the glass pipette 105 by surface tension. Here, the coating liquid 107 is a conductive ink that is a conductive composition. For example, tungsten is used for the application needle 106. The application needle 106 moves in the Z-axis direction so as to penetrate through the glass pipette 105. The tip of the application needle 106 faces the surface to be applied. When the application needle 106 passes through the glass pipette 105, the droplet attached to the tip of the application needle 106 adheres to the surface of the substrate 11 to be applied, thereby forming a droplet 108 on the surface of the substrate 11. . The application needle 106 has a replaceable structure, and the tip diameter can be arbitrarily selected, for example, 10 [μm] or 100 [μm]. That is, the application needle 106 can be selected in accordance with the desired dot diameter.
 図13A~図13Dは、微少液滴塗布システムの塗布用針の動作例を示す略線図である。図13Eは、図13A~図13Dの工程によって塗布対象表面に形成される液滴を示す略線図である。なお、上述したように、塗布用針106は、微動ステージ部103(図12A参照)の摺動動作に伴って移動する。 13A to 13D are schematic diagrams showing an operation example of the application needle of the micro droplet application system. FIG. 13E is a schematic diagram showing droplets formed on the surface to be coated by the steps of FIGS. 13A to 13D. As described above, the application needle 106 moves with the sliding movement of the fine movement stage unit 103 (see FIG. 12A).
 ガラスピペット105には塗布液体107が充填されている。まず、図13Aに示すように、塗布用針106の先端を、塗布液体107の液面の上方に位置させる。塗布用針106の先端は、塗布対象である基材11の表面に対して接近および離間可能な方向に移動可能である。次に、図13Bに示すように、塗布用針106の先端を、塗布液体107の液中に位置させる。次に、図13Cに示すように、塗布用針106の先端を、ガラスピペット105の下方に移動する。このとき、塗布用針106の先端には塗布液体107の一部が液滴109として付着する。次に、図13Dに示すように、塗布用針106をさらに下方に移動させて、塗布用針106の先端に付着している塗布液体107の液滴109を基材11の表面に接触して転写させる。これにより、基材11の表面に液滴108が形成される。その後、塗布用針106を上昇させて、塗布用針106の先端をガラスピペット105の塗布液体107中へと移動させる。 The glass pipette 105 is filled with a coating liquid 107. First, as shown in FIG. 13A, the tip of the application needle 106 is positioned above the liquid surface of the application liquid 107. The tip of the application needle 106 is movable in a direction that can approach and separate from the surface of the substrate 11 that is the application target. Next, as shown in FIG. 13B, the tip of the application needle 106 is positioned in the application liquid 107. Next, as shown in FIG. 13C, the tip of the application needle 106 is moved below the glass pipette 105. At this time, a part of the application liquid 107 adheres as a droplet 109 to the tip of the application needle 106. Next, as shown in FIG. 13D, the application needle 106 is further moved downward so that the droplet 109 of the application liquid 107 adhering to the tip of the application needle 106 contacts the surface of the substrate 11. Transfer. As a result, droplets 108 are formed on the surface of the substrate 11. Thereafter, the application needle 106 is raised and the tip of the application needle 106 is moved into the application liquid 107 of the glass pipette 105.
 図13Eに示すように、基材11の表面に形成される液滴108は液滴径Dおよび厚さtの寸法を有している。形成することのできる液滴108のおおよその最小の寸法は、液滴径Dが5[μm]であり、厚さtが1[μm]である。なお、ニードル式ディスペンサーでは、ドット(点描)だけでなく線描も可能である。そして、インクジェットで生じる縁および厚みが凸凹状態になる現象がニードル式ディスペンサーでは生じにくい。 As shown in FIG. 13E, the droplet 108 formed on the surface of the substrate 11 has a droplet diameter D and a thickness t. The approximate minimum dimensions of the droplet 108 that can be formed are a droplet diameter D of 5 [μm] and a thickness t of 1 [μm]. In addition, in the needle type dispenser, not only dots (stipling) but also line drawing is possible. And the phenomenon which the edge and thickness which arise with an inkjet become uneven state does not occur easily with a needle type dispenser.
 ジェット式ディスペンサーおよび空圧式ディスペンサーでは塗布可能な液量は最小でも1,000[pl]が限界である。それに対して、ニードル式ディスペンサーでは1[pl]の微小量の塗布が可能である。1[pl]とは、塗布直径としては5[μm]に当たる。一方で、インクジェットでは、1~15[mPa・s]の低粘度な塗布液体が好ましく、高粘度の液体を塗布することは不可能である。それに対して、ニードル式ディスペンサーでは、1~350,000[mPa・s]といった低粘度から高粘度の液体の塗布が可能である。このように、インクジェットでは塗布できない高粘度の液体をニードル式ディスペンサーではピコリットルの水準で塗布できる。したがって、これらの特徴を有するニードル式ディスペンサーでは自由な塗料設計が可能となる。具体的には、有機溶剤の含量の高い液体だけでなく、樹脂等の含量の高い液体を用いることができるようになる。さらに、密着性を上げるために官能基が増えた液体が使えるようになる。他にも、熱硬化樹脂をUV硬化樹脂に置き換えることができ、タクトを含めて有利となる。さらに、使用する液体の選択の幅が増えることによって、費用を下げることもできる。 In the jet dispenser and the pneumatic dispenser, the minimum amount of liquid that can be applied is 1,000 [pl]. On the other hand, with a needle-type dispenser, a minute amount of 1 [pl] can be applied. 1 [pl] corresponds to 5 [μm] as the coating diameter. On the other hand, in an inkjet, a low-viscosity coating liquid of 1 to 15 [mPa · s] is preferable, and it is impossible to apply a high-viscosity liquid. On the other hand, with a needle-type dispenser, it is possible to apply a low to high viscosity liquid such as 1 to 350,000 [mPa · s]. In this way, a highly viscous liquid that cannot be applied by inkjet can be applied at the picoliter level by a needle dispenser. Therefore, a free paint design is possible with the needle-type dispenser having these characteristics. Specifically, not only a liquid with a high content of organic solvent but also a liquid with a high content of resin or the like can be used. In addition, liquids with increased functional groups can be used to improve adhesion. In addition, the thermosetting resin can be replaced with a UV curable resin, which is advantageous including tact. Furthermore, the cost can be reduced by increasing the range of selection of the liquid to be used.
 図14は、インクジェットのノズルから噴射された液滴が塗布対象に着滴するまでの動きを示す。気流や電荷などの影響によって、インクジェットのノズル33から噴射された液滴108の飛行経路が曲がり、所望の出力位置から着滴ズレeが生じている。 FIG. 14 shows the movement until the droplets ejected from the inkjet nozzles land on the application target. The flight path of the droplet 108 ejected from the inkjet nozzle 33 is bent due to the influence of the airflow, the electric charge, and the like, and the landing deviation e is generated from a desired output position.
 図15Aは、インクジェットによって形成される液滴の一例を示す平面図である。図15Bは、図15Aに示したA-A線に沿った断面図である。図15Cは、ニードル式ディスペンサーによって形成される液滴の一例を示す平面図である。図15Dは、図15Cに示したA-A線に沿った断面図である。図15Aおよび図15Bに示すように、例えば基材11上に形成されたインクジェットによる液滴108では、コーヒーリングと呼ばれる膜厚が不均一となる現象が生じる。それに対して、図15Cおよび図15Dに示すように、例えば透明導電層12上に形成されたニードル式ディスペンサーによって高粘度の液体を転着した液滴108ではコーヒーリングは生じにくい。 FIG. 15A is a plan view showing an example of a droplet formed by inkjet. FIG. 15B is a sectional view taken along line AA shown in FIG. 15A. FIG. 15C is a plan view showing an example of a droplet formed by a needle-type dispenser. FIG. 15D is a cross-sectional view taken along line AA shown in FIG. 15C. As shown in FIGS. 15A and 15B, for example, a droplet called an ink jet formed on the substrate 11 has a phenomenon called non-uniform film thickness called coffee ring. On the other hand, as shown in FIG. 15C and FIG. 15D, for example, a coffee ring is unlikely to occur in the droplet 108 to which a high-viscosity liquid is transferred by a needle-type dispenser formed on the transparent conductive layer 12.
[効果]
 第1の実施形態では、基材表面のX軸方向およびY軸方向に2次元的に複数の導電部要素13aおよび導電部要素14aを基材11の表面にランダムに配列しているので、印刷法、特にインクジェット印刷法および微少液滴塗布法により導電部要素13a、14aを容易に作製することができる。
[effect]
In the first embodiment, a plurality of conductive part elements 13a and conductive part elements 14a are randomly arranged on the surface of the base material 11 in a two-dimensional manner in the X-axis direction and the Y-axis direction of the base material surface. The conductive part elements 13a and 14a can be easily manufactured by the method, particularly the ink jet printing method and the microdroplet coating method.
 X軸方向に隣り合う導電部要素14a同士、およびY軸方向に隣り合う導電部要素14a同士を繋げることで、第1の領域Rに電気的パスを形成し、第1の領域Rの透明導電層12を透明電極部13として機能させることができる。 Conductive portion elements 14a adjacent in the X-axis direction, and by connecting the conductive portion elements 14a adjacent in the Y-axis direction, an electric path is formed in the first region R 1, the first region R 1 The transparent conductive layer 12 can function as the transparent electrode portion 13.
 基材表面に平面的に交互に透明電極部13および透明絶縁部14を設けているので、透明電極部13が設けられている第1の領域Rと透明電極部13が設けられていない第2の領域Rとの反射率差を低減できる。また、透明電極部13にも導電部要素13aを設けているので、第1の領域Rと第2の領域Rとの反射率差をさらに低減できる。したがって、透明電極部13のパターンの視認を抑制することができる。 Since the planarly alternately provided with a transparent electrode 13 and the transparent insulating portion 14 on the substrate surface, the first region R 1 and the transparent electrode portions 13 are not provided to the transparent electrode portions 13 is provided Thus, the difference in reflectance from the region R 2 can be reduced. Further, since the provided conductive portion elements 13a to the transparent electrode 13, the first region R 1 and the reflectance difference between the second region R 2 can be further reduced. Therefore, the visual recognition of the pattern of the transparent electrode part 13 can be suppressed.
 ラスター画像を用いてランダムパターンを作成した場合には、印刷法、特にインクジェット印刷法にマッチングしたランダムパターンを形成することができる。インクジェット印刷はオンデマンド印刷であるため版の作製が必要なく、試作設計などのフィードバックが容易になる。また、インクジェット印刷法は、少量多品種用途に向いており、製品の変更がめざましいモバイル機器のタッチパネル用途などに用いて好適である。 When a random pattern is created using a raster image, a random pattern matching a printing method, particularly an ink jet printing method can be formed. Inkjet printing is on-demand printing, so there is no need to produce a plate, and feedback such as trial design becomes easy. Further, the ink jet printing method is suitable for use in a small amount and a variety of products, and is suitable for use as a touch panel of a mobile device in which product changes are remarkable.
 微少液滴塗布法(微少液滴塗布システム)により導電性インクを印刷した場合には、所望の出力位置に精度良く塗布できる。さらに、高粘度塗料が用いられた場合において、塗料乾燥によって生じるコーヒーリング現象を抑制することができる。 ∙ When conductive ink is printed by the micro droplet application method (micro droplet application system), it can be applied to the desired output position with high accuracy. Furthermore, when a high-viscosity paint is used, the coffee ring phenomenon caused by the paint drying can be suppressed.
(変形例)
 以下、第1の実施形態の変形例について説明する。
(Modification)
Hereinafter, modifications of the first embodiment will be described.
(ハードコート層)
 図16Aに示すように、第1の透明導電性素子1の両表面のうち、少なくとも一方の表面にハードコート層61を設けるようにしてもよい。これにより、基材11にプラスチック基材を用いる場合、工程上での基材11の傷付き防止、耐薬品性付与、オリゴマーなどの低分子量物の析出を抑制することができる。ハードコート材料には、光または電子線などにより硬化する電離放射線硬化型樹脂、または熱により硬化する熱硬化型樹脂を用いることが好ましく、紫外線により硬化する感光性樹脂が最も好ましい。このような感光性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、メラミンアクリレートなどのアクリレート系樹脂を用いることができる。例えば、ウレタンアクリレート樹脂は、ポリエステルポリオールにイソシアネートモノマー、あるいはプレポリマーを反応させ、得られた生成物に、水酸基を有するアクリレートまたはメタクリレート系のモノマーを反応させることによって得られる。ハードコート層61の厚みは、1μm~20μmであることが好ましいが、この範囲に特に限定されるものではない。
(Hard coat layer)
As shown in FIG. 16A, a hard coat layer 61 may be provided on at least one of the two surfaces of the first transparent conductive element 1. Thereby, when using a plastic base material for the base material 11, the damage of the base material 11 in a process, chemical-resistance provision, and precipitation of low molecular weight substances, such as an oligomer, can be suppressed. As the hard coat material, it is preferable to use an ionizing radiation curable resin that is cured by light or electron beam, or a thermosetting resin that is cured by heat, and a photosensitive resin that is cured by ultraviolet rays is most preferable. As such a photosensitive resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used. For example, a urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting the resulting product with an acrylate or methacrylate monomer having a hydroxyl group. The thickness of the hard coat layer 61 is preferably 1 μm to 20 μm, but is not particularly limited to this range.
 ハードコート層61は、次のようにして形成される。まず、ハードコート塗料を基材11の表面に塗工する。塗工方法は、特に限定されるものではなく公知の塗工方法を用いることができる。公知の塗工方法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法などが挙げられる。ハードコート塗料は、例えば、二官能以上のモノマーおよび/またはオリゴマーなどの樹脂原料、光重合開始剤、および溶剤を含有する。次に、必要に応じて、基材11の表面に塗工されたハードコート塗料を乾燥させることにより、溶剤を揮発させる。次に、例えば電離放射線照射または加熱により、基材11の表面のハードコート塗料を硬化させる。なお、上述した第1の透明導電性素子1と同様にして、第2の透明導電性素子2の両表面のうち、少なくとも一方の表面にハードコート層61を設けるようにしてもよい。 The hard coat layer 61 is formed as follows. First, a hard coat paint is applied to the surface of the substrate 11. The coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating. Method, spin coating method and the like. The hard coat paint contains, for example, a resin raw material such as a bifunctional or higher functional monomer and / or oligomer, a photopolymerization initiator, and a solvent. Next, if necessary, the solvent is volatilized by drying the hard coat paint applied to the surface of the substrate 11. Next, the hard coat paint on the surface of the substrate 11 is cured by, for example, ionizing radiation irradiation or heating. Note that the hard coat layer 61 may be provided on at least one of the two surfaces of the second transparent conductive element 2 in the same manner as the first transparent conductive element 1 described above.
(光学調整層)
 図16Bに示すように、第1の透明導電性素子1の基材11と透明導電層12との間に光学調整層62を介在させることが好ましい。これにより、透明電極部13のパターン形状の非視認性をアシストすることができる。光学調整層62は、例えば屈折率が異なる2層以上の積層体から構成され、低屈折率層側に透明導電層12が形成される。より具体的には、光学調整層62としては、たとえば、従来公知の光学調整層を用いることができる。このような光学調整層としては、例えば、特開2008-98169号公報、特開2010-15861号公報、特開2010-23282号公報、特開2010-27294号公報に記載されているものを用いることができる。なお、上述した第1の透明導電性素子1と同様に、第2の透明導電性素子2の基材21と透明導電層22との間に光学調整層62を介在させるようにしてもよい。
(Optical adjustment layer)
As shown in FIG. 16B, it is preferable to interpose an optical adjustment layer 62 between the base material 11 and the transparent conductive layer 12 of the first transparent conductive element 1. Thereby, the invisibility of the pattern shape of the transparent electrode part 13 can be assisted. The optical adjustment layer 62 is composed of, for example, a laminate of two or more layers having different refractive indexes, and the transparent conductive layer 12 is formed on the low refractive index layer side. More specifically, as the optical adjustment layer 62, for example, a conventionally known optical adjustment layer can be used. As such an optical adjustment layer, for example, those described in JP-A-2008-98169, JP-A-2010-15861, JP-A-2010-23282, and JP-A-2010-27294 are used. be able to. In addition, like the first transparent conductive element 1 described above, the optical adjustment layer 62 may be interposed between the base material 21 and the transparent conductive layer 22 of the second transparent conductive element 2.
(密着補助層)
 図16Cに示すように、第1の透明導電性素子1の透明導電層12の下地層として密着補助層63を設けることが好ましい。これにより、基材11に対する透明導電層12の密着性を向上することができる。密着補助層63の材料としては、例えば、ポリアクリル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂、および金属元素の塩化物や過酸化物やアルコキシドなどの加水分解および脱水縮合生成物などを用いることができる。
(Adhesion auxiliary layer)
As shown in FIG. 16C, it is preferable to provide a close adhesion auxiliary layer 63 as a base layer of the transparent conductive layer 12 of the first transparent conductive element 1. Thereby, the adhesiveness of the transparent conductive layer 12 with respect to the base material 11 can be improved. Examples of the material of the adhesion auxiliary layer 63 include polyacrylic resins, polyamide resins, polyamideimide resins, polyester resins, and hydrolysis and dehydration condensation products of metal element chlorides, peroxides, alkoxides, and the like. Etc. can be used.
 密着補助層63を用いるのではなく、透明導電層12を設ける表面にグロー放電またはコロナ放電を照射する放電処理を用いるようにしてもよい。また、透明導電層12を設ける表面に、酸またはアルカリで処理する化学薬品処理法を用いてもよい。また、透明導電層12を設けた後、カレンダー処理により密着を向上させるようにしてもよい。なお、第2の透明導電性素子2においても、上述した第1の透明導電性素子1と同様に密着補助層63を設けるようにしてもよい。また、上述の密着性向上のための処理を施すようにしてもよい。 Instead of using the adhesion auxiliary layer 63, a discharge treatment in which a surface on which the transparent conductive layer 12 is provided is irradiated with glow discharge or corona discharge may be used. Moreover, you may use the chemical treatment method processed with the acid or alkali on the surface in which the transparent conductive layer 12 is provided. Moreover, after providing the transparent conductive layer 12, you may make it improve contact | adherence by a calendar process. Note that, in the second transparent conductive element 2 as well, the adhesion auxiliary layer 63 may be provided in the same manner as the first transparent conductive element 1 described above. Moreover, you may make it perform the process for the above-mentioned adhesive improvement.
(シールド層)
 図16Dに示すように、第1の透明導電性素子1にシールド層64を設けることが好ましい。例えば、シールド層64が設けられたフィルムを第1の透明導電性素子1に透明粘着剤層を介して貼り合わせるようにしてもよい。また、X電極およびY電極が1枚の基材11の同じ面側に形成されてある場合、それとは反対側にシールド層64を直接形成してもよい。シールド層64の材料としては、透明導電層12と同様の材料を用いることができる。シールド層64の形成方法としても、透明導電層12と同様の方法を用いることができる。但し、シールド層64はパターニングせず基材11の表面全体に形成された状態で使用される。第1の透明導電性素子1にシールド層64を形成することで、表示装置4から発せられる電磁波などに起因するノイズを低減し、情報入力装置10の位置検出の精度を向上させることができる。なお、上述した第1の透明導電性素子1と同様に、第2の透明導電性素子2にシールド層64を設けるようにしてもよい。
(Shield layer)
As shown in FIG. 16D, it is preferable to provide a shield layer 64 on the first transparent conductive element 1. For example, a film provided with the shield layer 64 may be bonded to the first transparent conductive element 1 via a transparent adhesive layer. In addition, when the X electrode and the Y electrode are formed on the same surface side of the single substrate 11, the shield layer 64 may be directly formed on the opposite side. As the material of the shield layer 64, the same material as that of the transparent conductive layer 12 can be used. As a method for forming the shield layer 64, a method similar to that for the transparent conductive layer 12 can be used. However, the shield layer 64 is used in a state where it is formed on the entire surface of the substrate 11 without patterning. By forming the shield layer 64 on the first transparent conductive element 1, noise caused by electromagnetic waves emitted from the display device 4 can be reduced, and the position detection accuracy of the information input device 10 can be improved. Note that, similarly to the first transparent conductive element 1 described above, a shield layer 64 may be provided on the second transparent conductive element 2.
(反射防止層)
 図17Aに示すように、第1の透明導電性素子1に反射防止層65をさらに設けることが好ましい。反射防止層65は、例えば、第1の透明導電性素子1の両主面のうち、透明導電層12が設けられる側とは反対側の主面に設けられる。
(Antireflection layer)
As shown in FIG. 17A, it is preferable to further provide an antireflection layer 65 on the first transparent conductive element 1. The antireflection layer 65 is provided, for example, on the main surface opposite to the side on which the transparent conductive layer 12 is provided, of both main surfaces of the first transparent conductive element 1.
 反射防止層65としては、例えば、低屈折率層またはモスアイ構造体などを用いることができる。反射防止層65として低屈折率層を用いる場合には、基材11と反射防止層65との間にハードコート層をさらに設けるようにしてもよい。なお、上述した第1の透明導電性素子1と同様に、第2の透明導電性素子2にも反射防止層65をさらに設けるようにしてもよい。 As the antireflection layer 65, for example, a low refractive index layer or a moth-eye structure can be used. When a low refractive index layer is used as the antireflection layer 65, a hard coat layer may be further provided between the base material 11 and the antireflection layer 65. Note that, similarly to the first transparent conductive element 1 described above, the second transparent conductive element 2 may be further provided with an antireflection layer 65.
 図17Bは、反射防止層65を設けた第1の透明導電性素子1および第2の透明導電性素子2の適用例を示す断面図である。図17Bに示すように、第1の透明導電性素子1および第2の透明導電性素子2は、それら両主面のうち反射防止層65が設けられた側の主面が表示装置4の表示面に対向するようにして、表示装置4上に配置される。このような構成を採用することで、表示装置4の表示面からの光の透過率を向上し、表示装置4の表示性能を向上することができる。 FIG. 17B is a cross-sectional view showing an application example of the first transparent conductive element 1 and the second transparent conductive element 2 provided with the antireflection layer 65. As shown in FIG. 17B, the first transparent conductive element 1 and the second transparent conductive element 2 have a main surface on the side where the antireflection layer 65 is provided, of the two main surfaces. It arrange | positions on the display apparatus 4 so as to oppose a surface. By adopting such a configuration, the light transmittance from the display surface of the display device 4 can be improved, and the display performance of the display device 4 can be improved.
<2.第2の実施形態>
[透明導電性素子の構成]
(透明電極部、透明絶縁部)
 図18Aは、第1の透明導電性素子の透明電極部の一構成例を示す平面図である。図18Bは、図18Aに示したA-A線に沿った断面図である。透明電極部13は、複数の導電部要素13aが基材11の表面のX軸方向およびY軸方向に2次元的に規則的に配列するように形成された透明導電層12である。隣接列においてX軸方向に隣り合う導電部要素同士、およびY軸方向に隣り合う導電部要素同士が繋がっている。
<2. Second Embodiment>
[Configuration of transparent conductive element]
(Transparent electrode part, transparent insulation part)
FIG. 18A is a plan view illustrating a configuration example of the transparent electrode portion of the first transparent conductive element. FIG. 18B is a cross-sectional view along the line AA shown in FIG. 18A. The transparent electrode portion 13 is a transparent conductive layer 12 formed such that a plurality of conductive portion elements 13a are regularly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate 11. In adjacent rows, conductive part elements adjacent in the X-axis direction and conductive part elements adjacent in the Y-axis direction are connected.
 より具体的には、透明電極部13は、複数の孔部13cが離間して規則的に形成された透明導電層12であり、隣り合う孔部13cの間には透明導電部13bが介在されている。孔部13cの形状は、基材11の表面において規則的に変化している。 More specifically, the transparent electrode portion 13 is a transparent conductive layer 12 regularly formed with a plurality of hole portions 13c spaced apart, and the transparent conductive portion 13b is interposed between adjacent hole portions 13c. ing. The shape of the hole 13 c regularly changes on the surface of the base material 11.
 図18Cは、第1の透明導電性素子の透明絶縁部の一構成例を示す平面図である。図18Dは、図18Cに示したA-A線に沿った断面図である。透明絶縁部14は、複数の導電部要素14aが基材表面のX軸方向およびY軸方向に2次元的に規則的に配列するように形成された透明導電層である。隣接列においてX軸方向に隣り合う導電部要素同士、およびY軸方向に隣り合う導電部要素同士が繋がっている。 FIG. 18C is a plan view illustrating a configuration example of the transparent insulating portion of the first transparent conductive element. FIG. 18D is a cross-sectional view taken along line AA shown in FIG. 18C. The transparent insulating part 14 is a transparent conductive layer formed such that a plurality of conductive part elements 14a are regularly arranged two-dimensionally in the X-axis direction and the Y-axis direction on the surface of the substrate. In adjacent rows, conductive part elements adjacent in the X-axis direction and conductive part elements adjacent in the Y-axis direction are connected.
 より具体的には、透明絶縁部14は、離間部14cにより離間された複数の島部14bからなる。島部14bは、一つの導電部要素14aまたは繋がった複数の導電部要素14aにより形成されている。島部14bの形状は、基材11の表面において規則的に変化している。 More specifically, the transparent insulating portion 14 is composed of a plurality of island portions 14b separated by a separation portion 14c. The island part 14b is formed by one conductive part element 14a or a plurality of connected conductive part elements 14a. The shape of the island portion 14 b regularly changes on the surface of the base material 11.
(境界部)
 図19Aは、境界部の形状パターンの例を示す平面図である。図19Bは、図19Aに示したA-A線に沿った断面図である。透明電極部13と透明絶縁部14との境界部には、規則的な形状パターンが設けられていることが好ましい。このように境界部に規則的な形状パターンを設けることで、境界部の視認を抑制することができる。
(Boundary part)
FIG. 19A is a plan view illustrating an example of a shape pattern of a boundary portion. FIG. 19B is a cross-sectional view along the line AA shown in FIG. 19A. A regular shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. In this way, by providing a regular shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
 透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素13aおよび導電部要素14aが規則的に配列されていることが好ましい。なお、境界部における導電部要素13aおよび導電部要素14aの配列は、規則配列に限定されるものではなく、境界部においてのみ導電部要素13aおよび導電部要素14aをランダムに配列するようにしてもよい。 It is preferable that the conductive part elements 13a and the conductive part elements 14a are regularly arranged in the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part. The arrangement of the conductive part elements 13a and the conductive part elements 14a at the boundary is not limited to the regular arrangement, and the conductive part elements 13a and the conductive part elements 14a may be randomly arranged only at the boundary part. Good.
[透明導電性素子の製造方法]
 予め生成された規則パターンに基づいて導電性インクの印刷(描画)を行う以外のことは、上述の第1の実施形態と同様である。規則パターンは、例えば、白色ドットおよび黒色ドットが規則パターンで配列されたラスター画像として記憶部に予め記憶されており、このラスター画像に基づき導電性インクの印刷(描画)が行われる。
[Method for producing transparent conductive element]
Except for performing printing (drawing) of conductive ink based on a rule pattern generated in advance, it is the same as in the first embodiment. For example, the regular pattern is stored in advance in the storage unit as a raster image in which white dots and black dots are arranged in a regular pattern, and conductive ink is printed (drawn) based on the raster image.
 第2の実施形態において上記以外のことは、第1の実施形態と同様である。 In the second embodiment, other than the above are the same as in the first embodiment.
<3.第3の実施形態>
[透明導電性素子の構成]
(透明電極部、透明絶縁部)
 図20Aは、第1の透明導電性素子の一構成例を示す平面図である。図20Bは、図20Aに示したA-A線に沿った断面図である。透明電極部13は、図20Aおよび図20Bに示すように、第1の領域(電極領域)Rの基材11の表面に複数の導電部要素13aを連続的に設けて、その表面を覆いつくした(連続膜)透明導電部13bである。但し、第1の領域(電極領域)Rと第2の領域(絶縁領域)Rとの境界部は除くものとする。連続膜である透明導電部13bは、ほぼ一様な膜厚を有していることが好ましい。一方、透明絶縁部14は、図20Aおよび図20Bに示すように、第1の実施形態における透明絶縁部14と同様の構成を有している。
<3. Third Embodiment>
[Configuration of transparent conductive element]
(Transparent electrode part, transparent insulation part)
FIG. 20A is a plan view illustrating a configuration example of the first transparent conductive element. 20B is a cross-sectional view taken along the line AA shown in FIG. 20A. As shown in FIGS. 20A and 20B, the transparent electrode portion 13 is provided with a plurality of conductive portion elements 13a continuously on the surface of the base material 11 in the first region (electrode region) R1, and covers the surface. This is a transparent (continuous film) transparent conductive portion 13b. However, the first region (electrode area) R 1 and the boundary portion between the second region (insulating region) R 2 shall be excluded. The transparent conductive portion 13b, which is a continuous film, preferably has a substantially uniform film thickness. On the other hand, as shown in FIGS. 20A and 20B, the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the first embodiment.
(境界部)
 透明電極部13と透明絶縁部14との境界部には、ランダムな形状パターンが設けられていることが好ましい。このように境界部にランダムな形状パターンを設けることで、境界部の視認を抑制することができる。
(Boundary part)
A random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. Thus, by providing a random shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
 透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素14aがランダムに配列されていることが好ましい。このような配列を採用する場合、導電部要素14aは、例えば、透明絶縁部14側の境界Lに接して、または境界Lに重なるようにして配列されている。なお、境界部における導電部要素14aの配列は、ランダム配列に限定されるものではなく、境界部においてのみ導電部要素14aを規則的に配列するようにしてもよい。 It is preferable that the conductive part elements 14a are randomly arranged in the boundary part between the transparent electrode part 13 and the transparent insulating part 14 in the extending direction of the boundary part. When such an arrangement is employed, the conductive part elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating part 14 side, for example. In addition, the arrangement | sequence of the electroconductive part element 14a in a boundary part is not limited to a random arrangement | sequence, You may make it arrange | position the electroconductive part element 14a regularly only in a boundary part.
 第3の実施形態において上記以外のことは、第1の実施形態と同様である。 In the third embodiment, other than the above are the same as in the first embodiment.
<4.第4の実施形態>
[透明導電性素子の構成]
(透明電極部、透明絶縁部)
 図21Aは、第1の透明導電性素子の一構成例を示す平面図である。図21Bは、図21Aに示したA-A線に沿った断面図である。透明電極部13は、図21Aおよび図21Bに示すように、第3の実施形態における透明電極部13と同様の構成を有している。一方、透明絶縁部14は、図21Aおよび図21Bに示すように、第2の実施形態における透明絶縁部14と同様の構成を有している。
<4. Fourth Embodiment>
[Configuration of transparent conductive element]
(Transparent electrode part, transparent insulation part)
FIG. 21A is a plan view illustrating a configuration example of the first transparent conductive element. FIG. 21B is a cross-sectional view along the line AA shown in FIG. 21A. As shown in FIGS. 21A and 21B, the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the third embodiment. On the other hand, as shown in FIGS. 21A and 21B, the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the second embodiment.
(境界部)
 透明電極部13と透明絶縁部14との境界部には、規則的な形状パターンが設けられていることが好ましい。このように境界部に規則的な形状パターンを設けることで、境界部の視認を抑制することができる。
(Boundary part)
A regular shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. In this way, by providing a regular shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
 透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素14aが規則的に配列されていることが好ましい。このような配列を採用する場合、導電部要素14aは、例えば、透明絶縁部14側の境界Lに接して、または境界Lに重なるようにして配列されている。なお、境界部における導電部要素14aの配列は、規則的配列に限定されるものではなく、境界部においてのみ導電部要素14aをランダムに配列するようにしてもよい。 It is preferable that the conductive portion elements 14a are regularly arranged in the boundary portion between the transparent electrode portion 13 and the transparent insulating portion 14 in the extending direction of the boundary portion. When such an arrangement is employed, the conductive part elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating part 14 side, for example. In addition, the arrangement | sequence of the electroconductive part element 14a in a boundary part is not limited to a regular arrangement | sequence, You may make it arrange | position the electroconductive part element 14a at random only in a boundary part.
 第4の実施形態において上記以外のことは、第2の実施形態と同様である。 In the fourth embodiment, other than the above are the same as in the second embodiment.
<5.第5の実施形態>
[透明導電性素子の構成]
(透明電極部、透明絶縁部)
 図22Aは、第1の透明導電性素子の一構成例を示す平面図である。図22Bは、図22Aに示したA-A線に沿った断面図である。透明電極部13は、図22Aおよび図22Bに示すように、第1の実施形態における透明電極部13と同様の構成を有している。一方、透明絶縁部14は、図22Aおよび図22Bに示すように、第2の実施形態における透明絶縁部14と同様の構成を有している。
<5. Fifth Embodiment>
[Configuration of transparent conductive element]
(Transparent electrode part, transparent insulation part)
FIG. 22A is a plan view showing a configuration example of the first transparent conductive element. FIG. 22B is a cross-sectional view along the line AA shown in FIG. 22A. As shown in FIGS. 22A and 22B, the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the first embodiment. On the other hand, as shown in FIGS. 22A and 22B, the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the second embodiment.
(境界部)
 透明電極部13と透明絶縁部14との境界部には、ランダムな形状パターンが設けられていることが好ましい。このように境界部にランダムな形状パターンを設けることで、境界部の視認を抑制することができる。
(Boundary part)
A random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. Thus, by providing a random shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
 透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素13aがランダムに配列されるとともに、導電部要素14aが規則的に配列されていることが好ましい。このような配列を採用する場合、導電部要素13aは、例えば、透明電極部13側の境界Lに接して、または境界Lに重なるようにして配列されている。また、導電部要素14aは、例えば、透明絶縁部14側の境界Lに接して、または境界Lに重なるようにして配列されている。 Conductive element 13a is randomly arranged at the boundary between transparent electrode part 13 and transparent insulating part 14 in the extending direction of the boundary part, and conductive element 14a is regularly arranged. Is preferred. When such an arrangement is employed, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
 なお、境界部における導電部要素13aの配列は、ランダム配列に限定されるものではなく、境界部においてのみ導電部要素13aを規則的に配列するようにしてもよい。また、境界部における導電部要素14aの配列は、規則的配列に限定されるものではなく、境界部においてのみ導電部要素14aをランダムに配列するようにしてもよい。 In addition, the arrangement | sequence of the electroconductive part element 13a in a boundary part is not limited to a random arrangement | sequence, You may make it arrange | position the electroconductive part element 13a regularly only in a boundary part. Further, the arrangement of the conductive part elements 14a in the boundary part is not limited to the regular arrangement, and the conductive part elements 14a may be randomly arranged only in the boundary part.
 第5の実施形態において上記以外のことは、第1の実施形態と同様である。 In the fifth embodiment, other than the above are the same as in the first embodiment.
<6.第6の実施形態>
[透明導電性素子の構成]
(透明電極部、透明絶縁部)
 図23Aは、第1の透明導電性素子の一構成例を示す平面図である。図23Bは、図23Aに示したA-A線に沿った断面図である。透明電極部13は、図23Aおよび図23Bに示すように、第2の実施形態における透明電極部13と同様の構成を有している。一方、透明絶縁部14は、図23Aおよび図23Bに示すように、第1の実施形態における透明絶縁部14と同様の構成を有している。
<6. Sixth Embodiment>
[Configuration of transparent conductive element]
(Transparent electrode part, transparent insulation part)
FIG. 23A is a plan view showing a configuration example of the first transparent conductive element. FIG. 23B is a cross-sectional view along the line AA shown in FIG. 23A. As shown in FIGS. 23A and 23B, the transparent electrode portion 13 has the same configuration as the transparent electrode portion 13 in the second embodiment. On the other hand, as shown in FIGS. 23A and 23B, the transparent insulating portion 14 has the same configuration as the transparent insulating portion 14 in the first embodiment.
(境界部)
 透明電極部13と透明絶縁部14との境界部には、ランダムな形状パターンが設けられていることが好ましい。このように境界部にランダムな形状パターンを設けることで、境界部の視認を抑制することができる。
(Boundary part)
A random shape pattern is preferably provided at the boundary between the transparent electrode portion 13 and the transparent insulating portion 14. Thus, by providing a random shape pattern at the boundary part, the visual recognition of the boundary part can be suppressed.
 透明電極部13および透明絶縁部14の境界部には、該境界部の延在方向に向かって導電部要素13aが規則的に配列されるとともに、導電部要素14aがランダムに配列されていることが好ましい。このような配列を採用する場合、導電部要素13aは、例えば、透明電極部13側の境界Lに接して、または境界Lに重なるようにして配列されている。また、導電部要素14aは、例えば、透明絶縁部14側の境界Lに接して、または境界Lに重なるようにして配列されている。 Conductive element 13a is regularly arranged at the boundary between transparent electrode 13 and transparent insulating part 14 in the extending direction of the boundary, and conductive element 14a is randomly arranged. Is preferred. When such an arrangement is employed, the conductive part elements 13a are arranged so as to be in contact with or overlap the boundary L on the transparent electrode part 13 side, for example. Further, the conductive portion elements 14a are arranged so as to be in contact with or overlap the boundary L on the transparent insulating portion 14 side, for example.
 なお、境界部における導電部要素13aの配列は、規則的配列に限定されるものではなく、境界部においてのみ導電部要素13aをランダムに配列するようにしてもよい。また、境界部における導電部要素14aの配列は、ランダム配列に限定されるものではなく、境界部においてのみ導電部要素14aを規則的に配列するようにしてもよい。 Note that the arrangement of the conductive portion elements 13a at the boundary is not limited to a regular arrangement, and the conductive portion elements 13a may be randomly arranged only at the boundary. Further, the arrangement of the conductive part elements 14a in the boundary part is not limited to a random arrangement, and the conductive part elements 14a may be regularly arranged only in the boundary part.
 第6の実施形態において上記以外のことは、第1の実施形態と同様である。 In the sixth embodiment, other than the above are the same as in the first embodiment.
<7.第7の実施形態>
 第7の実施形態は、2種以上の大きさの導電部要素13a、14aを有している点において、第1の実施形態とは異なっている。2種以上の大きさの導電部要素13a、14aを形成するためには、例えば、グリッドのドットサイズを2種以上とすればよい。
<7. Seventh Embodiment>
The seventh embodiment is different from the first embodiment in that the conductive portion elements 13a and 14a having two or more sizes are provided. In order to form the conductive part elements 13a and 14a having two or more types of sizes, for example, the dot size of the grid may be set to two or more types.
 図24Aでは、2種のドットサイズを有するグリッドの例が示されている。図24Bおよび図24Cにはそれぞれ、このグリッドを用いて形成した透明電極部13および透明絶縁部14の例が示されている。この透明電極部13および透明絶縁部14は、2種の大きさの導電部要素13a、14aを有している。 FIG. 24A shows an example of a grid having two types of dot sizes. 24B and 24C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively. The transparent electrode portion 13 and the transparent insulating portion 14 have two types of conductive portion elements 13a and 14a.
 図25Aでは、3種のドットサイズを有するグリッドの例が示されている。図25Bおよび図25Cにはそれぞれ、このグリッドを用いて形成した透明電極部13および透明絶縁部14の例が示されている。この透明電極部13および透明絶縁部14は、3種の大きさの導電部要素13a、14aを有している。 FIG. 25A shows an example of a grid having three types of dot sizes. FIG. 25B and FIG. 25C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively. The transparent electrode portion 13 and the transparent insulating portion 14 have three types of conductive portion elements 13a and 14a.
<8.第8の実施形態>
 第8の実施形態は、X軸方向(第1方向)とY軸方向(第2方向)とが斜め交差の関係にあり、この関係にあるX軸方向およびY軸方向に導電部要素13a、14aが2次元的にランダムに配列するように形成されている点において第1の実施形態とは異なっている。斜め交差の関係にあるX軸方向(第1方向)とY軸方向(第2方向)に導電部要素13a、14aを形成するためには、例えば、グリッドのドット形状を平行四辺形状などの形状にすればよい。
<8. Eighth Embodiment>
In the eighth embodiment, the X-axis direction (first direction) and the Y-axis direction (second direction) are in a diagonally crossing relationship, and the conductive element 13a in the X-axis direction and the Y-axis direction in this relationship 14a is different from the first embodiment in that it is formed so as to be randomly arranged two-dimensionally. In order to form the conductive element 13a, 14a in the X-axis direction (first direction) and the Y-axis direction (second direction) that are in an oblique intersection relationship, for example, the grid dot shape is a parallelogram shape or the like. You can do it.
 図26Aでは、ドット形状を平行四辺形状としたグリッドの例が示されている。図26Bおよび図26Cにはそれぞれ、このグリッドを用いて形成した透明電極部13および透明絶縁部14の例が示されている。 FIG. 26A shows an example of a grid in which the dot shape is a parallelogram shape. FIG. 26B and FIG. 26C show examples of the transparent electrode portion 13 and the transparent insulating portion 14 formed using this grid, respectively.
<9.第9の実施形態>
[透明導電性素子の構成]
 図27Aは、本技術の第9の実施形態に係る第1の透明導電性素子の一構成例を示す平面図である。図27Bは、本技術の第9の実施形態に係る第2の透明導電性素子の一構成例を示す平面図である。第9の実施形態は、透明電極部13、透明絶縁部14、透明電極部23および透明絶縁部24の構成以外は、第1の実施形態と同様である。
<9. Ninth Embodiment>
[Configuration of transparent conductive element]
FIG. 27A is a plan view illustrating a configuration example of the first transparent conductive element according to the ninth embodiment of the present technology. FIG. 27B is a plan view illustrating a configuration example of the second transparent conductive element according to the ninth embodiment of the present technology. The ninth embodiment is the same as the first embodiment except for the configuration of the transparent electrode portion 13, the transparent insulating portion 14, the transparent electrode portion 23, and the transparent insulating portion 24.
 透明電極部13は、複数のパッド部(単位電極体)13mと、複数のパッド部13m同士を連結する複数の連結部13nとを備える。連結部13nは、X軸方向に延在されており、隣り合うパッド部13mの端部同士を連結する。パッド部13mと連結部13nとは一体的に形成されている。 The transparent electrode portion 13 includes a plurality of pad portions (unit electrode bodies) 13m and a plurality of connecting portions 13n that connect the plurality of pad portions 13m. The connection part 13n is extended in the X-axis direction, and connects the edge parts of the adjacent pad part 13m. The pad portion 13m and the connecting portion 13n are integrally formed.
 透明電極部23は、複数のパッド部(単位電極体)23mと、複数のパッド部23m同士を連結する複数の連結部23nとを備える。連結部23nは、Y軸方向に延在されており、隣り合うパッド部23mの端部同士を連結する。パッド部23mと連結部23nとは一体的に形成されている。 The transparent electrode portion 23 includes a plurality of pad portions (unit electrode bodies) 23m and a plurality of connecting portions 23n that connect the plurality of pad portions 23m to each other. The connecting portion 23n extends in the Y-axis direction, and connects the ends of the adjacent pad portions 23m. The pad part 23m and the connecting part 23n are integrally formed.
 パッド部13mおよびパッド部23mの形状としては、例えば、菱形(ダイヤモンド形)や矩形などの多角形状、星形、および十字形などを用いることができるが、これらの形状に限定されるものではない。 As the shapes of the pad portion 13m and the pad portion 23m, for example, a diamond shape (diamond shape), a polygonal shape such as a rectangle, a star shape, a cross shape, or the like can be used. However, the shape is not limited to these shapes. .
 連結部13nおよび連結部23nの形状としては矩形状を採用することができるが、連結部13nおよび連結部23nの形状は隣り合うパッド部13mおよびパッド部23m同士を連結可能な形状であればよく特に矩形状に限定されるものではない。矩形状以外の形状の例としては、線状、長円状、三角形状、不定形状などを挙げることができる。 Although the rectangular shape can be adopted as the shape of the connecting portion 13n and the connecting portion 23n, the shape of the connecting portion 13n and the connecting portion 23n may be any shape as long as the adjacent pad portions 13m and the pad portions 23m can be connected to each other. The shape is not particularly limited to a rectangular shape. Examples of shapes other than the rectangular shape include a linear shape, an oval shape, a triangular shape, and an indefinite shape.
 第9の実施形態において上記以外のことは、第1の実施形態と同様である。 In the ninth embodiment, other than the above are the same as in the first embodiment.
[効果]
 第9の実施形態によれば、第1の実施形態と同様の効果を得ることができる。
[effect]
According to the ninth embodiment, the same effects as those of the first embodiment can be obtained.
<10.第10の実施形態>
[情報入力装置の構成]
 図28は、本技術の第10の実施形態に係る情報入力装置の一構成例を示す断面図である。第10の実施形態に係る情報入力装置10は、基材21の一方の主面(第1の主面)に透明導電層12を備え、他方の主面(第2の主面)に透明導電層22を備える点において、第1の実施形態に係る情報入力装置10とは異なっている。透明導電層12は、透明電極部と透明絶縁部とを備える。透明導電層22は、透明電極部と透明絶縁部とを備える。透明導電層12の透明電極部は、X軸方向に延在されたX電極部であり、透明導電層22の透明電極部は、Y軸方向に延在されたY電極部である。したがって、透明導電層12および透明導電層22の透明電極部は互いに直交する関係にある。
<10. Tenth Embodiment>
[Configuration of information input device]
FIG. 28 is a cross-sectional view illustrating a configuration example of an information input device according to the tenth embodiment of the present technology. The information input device 10 according to the tenth embodiment includes a transparent conductive layer 12 on one main surface (first main surface) of a base material 21, and transparent conductivity on the other main surface (second main surface). It differs from the information input device 10 according to the first embodiment in that the layer 22 is provided. The transparent conductive layer 12 includes a transparent electrode part and a transparent insulating part. The transparent conductive layer 22 includes a transparent electrode part and a transparent insulating part. The transparent electrode portion of the transparent conductive layer 12 is an X electrode portion that extends in the X-axis direction, and the transparent electrode portion of the transparent conductive layer 22 is a Y electrode portion that extends in the Y-axis direction. Therefore, the transparent electrode portions of the transparent conductive layer 12 and the transparent conductive layer 22 are in a relationship orthogonal to each other.
 第10の実施形態において上記以外のことは、第1の実施形態と同様である。 In the tenth embodiment, other than the above are the same as in the first embodiment.
[効果]
 第10の実施形態によれば、第1の実施形態の効果に加えて以下の効果をさらに得ることができる。すなわち、基材21の一方の主面に透明導電層12を設け、他方の主面に透明導電層22を設けているので、第1の実施形態における基材11(図1参照)を省略することができる。したがって、情報入力装置10をさらに薄型化することができる。
[effect]
According to the tenth embodiment, the following effects can be further obtained in addition to the effects of the first embodiment. That is, since the transparent conductive layer 12 is provided on one main surface of the base material 21 and the transparent conductive layer 22 is provided on the other main surface, the base material 11 (see FIG. 1) in the first embodiment is omitted. be able to. Therefore, the information input device 10 can be further reduced in thickness.
<11.第11の実施形態>
[情報入力装置の構成]
 図29Aは、本技術の第11の実施形態に係る情報入力装置の一構成例を示す平面図である。図29Bは、図29Aに示したA-A線に沿った断面図である。情報入力装置10は、いわゆる投影型静電容量方式タッチパネルであり、図29Aおよび図29Bに示すように、基材11と、複数の透明電極部13および透明電極部23と、透明絶縁部14と、透明絶縁層81とを備える。複数の透明電極部13および透明電極部23は、基材11の同一の表面に設けられている。透明絶縁部14は、基材11の面内方向における透明電極部13および透明電極部23の間に設けられている。透明絶縁層81は、透明電極部13および透明電極部23の交差部間に介在されている。
<11. Eleventh Embodiment>
[Configuration of information input device]
FIG. 29A is a plan view illustrating a configuration example of an information input device according to an eleventh embodiment of the present technology. FIG. 29B is a cross-sectional view along the line AA shown in FIG. 29A. The information input device 10 is a so-called projected capacitive touch panel. As shown in FIGS. 29A and 29B, the base material 11, the plurality of transparent electrode portions 13 and the transparent electrode portions 23, and the transparent insulating portion 14. The transparent insulating layer 81 is provided. The plurality of transparent electrode portions 13 and the transparent electrode portion 23 are provided on the same surface of the substrate 11. The transparent insulating part 14 is provided between the transparent electrode part 13 and the transparent electrode part 23 in the in-plane direction of the substrate 11. The transparent insulating layer 81 is interposed between the intersecting portions of the transparent electrode portion 13 and the transparent electrode portion 23.
 また、図29Bに示すように、必要に応じて、透明電極部13および透明電極部23が形成された基材11の表面に光学層91をさらに備えるようにしてもよい。なお、図29Aでは、光学層91の記載を省略している。光学層91は、貼合層92と、基体93とを備え、貼合層92を介して基体93が基材11の表面に貼り合わされている。情報入力装置10は、表示装置の表示面に対して適用して好適なものである。基材11および光学層91は、例えば、可視光に対して透明性を有しており、その屈折率nは、1.2以上1.7以下の範囲内であることが好ましい。以下では、情報入力装置10の表面の面内で互いに直交する2方向をそれぞれX軸方向、およびY軸方向とし、その表面に垂直な方向をZ軸方向と称する。 29B, an optical layer 91 may be further provided on the surface of the base material 11 on which the transparent electrode portion 13 and the transparent electrode portion 23 are formed as necessary. In FIG. 29A, the optical layer 91 is not shown. The optical layer 91 includes a bonding layer 92 and a base 93, and the base 93 is bonded to the surface of the base material 11 via the bonding layer 92. The information input device 10 is suitable for application to a display surface of a display device. The base material 11 and the optical layer 91 have transparency with respect to visible light, for example, and the refractive index n is preferably in the range of 1.2 or more and 1.7 or less. Hereinafter, two directions orthogonal to each other within the surface of the information input device 10 are referred to as an X-axis direction and a Y-axis direction, respectively, and a direction perpendicular to the surface is referred to as a Z-axis direction.
(透明電極部)
 透明電極部13は、基材11の表面においてX軸方向(第1の方向)に延在されているのに対して、透明電極部23は、基材11の表面においてY軸方向(第2の方向)に向かって延在されている。したがって、透明電極部13と透明電極部23とは互いに直交交差している。透明電極部13と透明電極部23とが交差する交差部Cには、両電極間を絶縁するための透明絶縁層81が介在されている。
(Transparent electrode part)
The transparent electrode portion 13 extends in the X-axis direction (first direction) on the surface of the base material 11, while the transparent electrode portion 23 extends in the Y-axis direction (second direction on the surface of the base material 11. Direction). Therefore, the transparent electrode portion 13 and the transparent electrode portion 23 cross each other at right angles. At the intersection C where the transparent electrode portion 13 and the transparent electrode portion 23 intersect, a transparent insulating layer 81 for insulating the two electrodes is interposed.
 図30Aは、図29Aに示した交差部Cの付近を拡大して示す平面図である。図30Bは、図30Aに示したA-A線に沿った断面図である。透明電極部13は、複数のパッド部(単位電極体)13mと、複数のパッド部13m同士を連結する複数の連結部13nとを備える。連結部13nは、X軸方向に延在されており、隣り合うパッド部13mの端部同士を連結する。透明電極部23は、複数のパッド部(単位電極体)23mと、複数のパッド部23m同士を連結する複数の連結部23nとを備える。連結部23nは、Y軸方向に延在されており、隣り合うパッド部23mの端部同士を連結する。 FIG. 30A is an enlarged plan view showing the vicinity of the intersection C shown in FIG. 29A. FIG. 30B is a cross-sectional view along the line AA shown in FIG. 30A. The transparent electrode portion 13 includes a plurality of pad portions (unit electrode bodies) 13m and a plurality of connecting portions 13n that connect the plurality of pad portions 13m to each other. The connection part 13n is extended in the X-axis direction, and connects the edge parts of the adjacent pad part 13m. The transparent electrode portion 23 includes a plurality of pad portions (unit electrode bodies) 23m and a plurality of connecting portions 23n that connect the plurality of pad portions 23m. The connecting portion 23n extends in the Y-axis direction, and connects the ends of the adjacent pad portions 23m.
 交差部Cでは、連結部23n、透明絶縁層81、連結部13nがこの順序で基材11の表面に積層されている。連結部13nは、透明絶縁層81を横断して跨ぐように形成され、透明絶縁層81を跨いだ連結部13nの一端が、隣り合うパッド部13mの一方と電気的に接続され、透明絶縁層81を跨いだ連結部13nの他端が、隣り合うパッド部13mの他方と電気的に接続される。 In the intersection C, the connecting portion 23n, the transparent insulating layer 81, and the connecting portion 13n are laminated on the surface of the base material 11 in this order. The connecting portion 13n is formed so as to cross over the transparent insulating layer 81, and one end of the connecting portion 13n straddling the transparent insulating layer 81 is electrically connected to one of the adjacent pad portions 13m. The other end of the connecting portion 13n straddling 81 is electrically connected to the other of the adjacent pad portions 13m.
 パッド部23mと連結部23nとは、一体的に形成されているのに対して、パッド部13mと連結部13nとは、別形成されている。パッド部13m、パッド部23m、連結部23n、および透明絶縁部14は、例えば、基材11の表面に設けられた単層の透明導電層12により構成されている。連結部13nは、例えば、導電層からなる。 The pad portion 23m and the connecting portion 23n are integrally formed, whereas the pad portion 13m and the connecting portion 13n are separately formed. The pad portion 13m, the pad portion 23m, the connecting portion 23n, and the transparent insulating portion 14 are constituted by, for example, a single transparent conductive layer 12 provided on the surface of the base material 11. The connection part 13n consists of a conductive layer, for example.
 パッド部13mおよびパッド部23mの形状としては、例えば、菱形(ダイヤモンド形)や矩形などの多角形状、星形、および十字形などを用いることができるが、これらの形状に限定されるものではない。 As the shapes of the pad portion 13m and the pad portion 23m, for example, a diamond shape (diamond shape), a polygonal shape such as a rectangle, a star shape, a cross shape, or the like can be used. However, the shape is not limited to these shapes. .
 連結部13nを構成する導電層としては、例えば、金属層または透明導電層を用いることができる。金属層は、金属を主成分として含んでいる。金属としては、導電性の高い金属を用いるこことが好ましく、このような材料としては、例えば、Ag、Al、Cu、Ti、Nb、不純物添加Siなどが挙げられるが、導電性の高さ、ならびに成膜性および印刷性などを考慮すると、Agが好ましい。金属層の材料として導電性が高い金属を用いることにより、連結部13nの幅を狭くし、その厚さを薄くし、その長さを短くすることが好ましい。これにより視認性を向上することができる。 As the conductive layer constituting the connecting portion 13n, for example, a metal layer or a transparent conductive layer can be used. The metal layer contains a metal as a main component. As the metal, it is preferable to use a metal having high conductivity. Examples of such a material include Ag, Al, Cu, Ti, Nb, and impurity-added Si. In consideration of film-forming properties and printability, Ag is preferable. By using a highly conductive metal as the material of the metal layer, it is preferable to reduce the width of the connecting portion 13n, reduce the thickness thereof, and shorten the length thereof. Thereby, visibility can be improved.
 連結部13nおよび連結部23nの形状としては矩形状を採用することができるが、連結部13nおよび連結部23nの形状は隣り合うパッド部13mおよびパッド部23m同士を連結可能な形状であればよく特に矩形状に限定されるものではない。矩形状以外の形状の例としては、線状、長円状、三角形状、不定形状などを挙げることができる。 Although the rectangular shape can be adopted as the shape of the connecting portion 13n and the connecting portion 23n, the shape of the connecting portion 13n and the connecting portion 23n may be any shape as long as the adjacent pad portions 13m and the pad portions 23m can be connected to each other. The shape is not particularly limited to a rectangular shape. Examples of shapes other than the rectangular shape include a linear shape, an oval shape, a triangular shape, and an indefinite shape.
(透明絶縁層)
 透明絶縁層81は、連結部13nと連結部23nとが交差する部分より大きな面積を有していることが好ましく、例えば、交差部Cに位置するパッド部13mおよびパッド部23mの先端に被さる程度の大きさを有している。
(Transparent insulation layer)
The transparent insulating layer 81 preferably has a larger area than the portion where the connecting portion 13n and the connecting portion 23n intersect. For example, the transparent insulating layer 81 covers the pad portion 13m located at the intersecting portion C and the tip of the pad portion 23m. It has the size.
 透明絶縁層81は、透明絶縁材料を主成分として含んでいる。透明絶縁材料としては、透明性を有する高分子材料を用いることが好ましく、このような材料としては、例えば、ポリメチルメタアクリレート、メチルメタクリレートと他のアルキル(メタ)アクリレート、スチレンなどといったビニルモノマーとの共重合体などの(メタ)アクリル系樹脂;ポリカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などのポリカーボネート系樹脂;(臭素化)ビスフェノールA型のジ(メタ)アクリレートの単独重合体ないし共重合体、(臭素化)ビスフェノールAモノ(メタ)アクリレートのウレタン変性モノマーの重合体および共重合体などといった熱硬化性(メタ)アクリル系樹脂;ポリエステル特にポリエチレンテレフタレート、ポリエチレンナフタレートおよび不飽和ポリエステル、アクリロニトリル-スチレン共重合体、ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、ポリアリレート、ポリエーテルスルホン、ポリエーテルケトン、シクロオレフィンポリマー(商品名:アートン、ゼオノア)、シクロオレフィンコポリマーなどが挙げられる。また、耐熱性を考慮したアラミド系樹脂を使用することも可能である。ここで、(メタ)アクリレートは、アクリレートまたはメタアクリレートを意味する。 The transparent insulating layer 81 contains a transparent insulating material as a main component. As the transparent insulating material, it is preferable to use a polymer material having transparency, and examples of such a material include vinyl monomers such as polymethyl methacrylate, methyl methacrylate and other alkyl (meth) acrylates, and styrene. (Meth) acrylic resins such as copolymers; polycarbonate resins such as polycarbonate and diethylene glycol bisallyl carbonate (CR-39); homopolymers or copolymers of (brominated) bisphenol A type di (meth) acrylates Thermosetting (meth) acrylic resins such as polymers and copolymers of urethane-modified monomers of (brominated) bisphenol A mono (meth) acrylate; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters Le, acrylonitrile - styrene copolymers, polyvinyl chloride, polyurethane, epoxy resins, polyarylate, polyether sulfone, polyether ketone, cycloolefin polymer (trade name: ARTON, ZEONOR), and the like cycloolefin copolymer. It is also possible to use an aramid resin in consideration of heat resistance. Here, (meth) acrylate means acrylate or methacrylate.
 透明絶縁層81の形状は、交差部Cにおいて透明電極部13と透明電極部23との間に介在し、両電極の電気的接触を防ぐことが可能な形状であればよく特に限定されるものではないが、例示するならば、四角形などの多角形、楕円形、円形などを挙げることができる。四角形としては、例えば、長方形、正方形、菱形、台形、平行四辺形、角に曲率Rが付された矩形状が挙げられる。 The shape of the transparent insulating layer 81 is not particularly limited as long as it is interposed between the transparent electrode portion 13 and the transparent electrode portion 23 at the intersection C and can prevent electrical contact between both electrodes. However, for example, a polygon such as a quadrangle, an ellipse, and a circle can be given as examples. Examples of the quadrangle include a rectangle, a square, a rhombus, a trapezoid, a parallelogram, and a rectangle with a corner having a curvature R.
(配線)
 透明電極部13および透明電極部23の一端にはそれぞれ、図29Aの領域Rに示すように、配線82が電気的に接続され、この配線82と駆動回路(図示省略)とがFPC(Flexible Printed Circuit)83を介して接続されている。
(wiring)
As shown in region R of FIG. 29A, wiring 82 is electrically connected to one end of each of transparent electrode portion 13 and transparent electrode portion 23, and this wiring 82 and a drive circuit (not shown) are connected to FPC (Flexible Printed). Circuit) 83 is connected.
 図31は、図29Aに示した領域Rを拡大して表す平面図である。配線82は、図31に示すように、複数の導電部要素13aが基材11の表面に連続的に設けられた線状の導電層(連続膜)である。配線82の間には絶縁部84が設けられている。連続膜である導電層は、ほぼ一様な膜厚を有していることが好ましい。導電層は、金属材料または透明導電材料を主成分としている。導電部要素13aは、上述の第1の実施形態と同様に、インクジェット印刷法または微少液滴塗布法などの印刷法により形成することができる。印刷法としてインクジェット印刷法または微少液滴塗布法を用いる場合には、基材11の表面に滴下された隣り合う液滴(導電性インク)がX軸方向(第1方向)および/またはY軸方向(第2方向)に連続的に繋がるように、液滴(導電性インク)の滴下位置を調整することが好ましい。 FIG. 31 is an enlarged plan view showing the region R shown in FIG. 29A. As shown in FIG. 31, the wiring 82 is a linear conductive layer (continuous film) in which a plurality of conductive part elements 13 a are continuously provided on the surface of the substrate 11. An insulating portion 84 is provided between the wirings 82. The conductive layer, which is a continuous film, preferably has a substantially uniform film thickness. The conductive layer contains a metal material or a transparent conductive material as a main component. The conductive part element 13a can be formed by a printing method such as an ink jet printing method or a microdroplet coating method, as in the first embodiment. When an ink jet printing method or a micro droplet application method is used as a printing method, adjacent droplets (conductive ink) dropped on the surface of the substrate 11 are in the X-axis direction (first direction) and / or the Y-axis. It is preferable to adjust the dropping position of the droplet (conductive ink) so as to be continuously connected in the direction (second direction).
 第11の実施形態において上記以外のことは、第1の実施形態と同様である。 In the eleventh embodiment, other than the above are the same as in the first embodiment.
[効果]
 第11の実施形態によれば、第1の実施形態の効果に加えて以下の効果をさらに得ることができる。すなわち、基材11の一方の主面に透明電極部13、23を設けているので、第1の実施形態における基材21(図1参照)を省略することができる。したがって、情報入力装置10をさらに薄型化することができる。
[effect]
According to the eleventh embodiment, the following effects can be further obtained in addition to the effects of the first embodiment. That is, since the transparent electrode portions 13 and 23 are provided on one main surface of the base material 11, the base material 21 (see FIG. 1) in the first embodiment can be omitted. Therefore, the information input device 10 can be further reduced in thickness.
<12.第12の実施形態>
 第12の実施形態に係る電子機器は、第1~第11の実施形態に係る情報入力装置10のいずれかを表示部に備えている。以下に、本技術の第12の実施形態に係る電子機器の例について説明する。
<12. Twelfth Embodiment>
The electronic apparatus according to the twelfth embodiment includes any one of the information input devices 10 according to the first to eleventh embodiments in the display unit. An example of an electronic device according to the twelfth embodiment of the present technology will be described below.
 図32Aは、電子機器としてテレビ装置の例を示す外観図である。テレビ装置201は、表示部202を備え、その表示部202に第1~第11の実施形態に係る情報入力装置10のいずれかを備える。 FIG. 32A is an external view illustrating an example of a television device as an electronic apparatus. The television apparatus 201 includes a display unit 202, and the display unit 202 includes any one of the information input devices 10 according to the first to eleventh embodiments.
 図32Bは、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。ノート型パーソナルコンピュータ211は、表示部212を備え、その表示部212に第1~第11の実施形態に係る情報入力装置10のいずれかを備える。 FIG. 32B is an external view showing an example of a notebook personal computer as an electronic apparatus. The notebook personal computer 211 includes a display unit 212, and the display unit 212 includes any one of the information input devices 10 according to the first to eleventh embodiments.
 図33Aは、電子機器として携帯電話の一例を示す外観図である。携帯電話221は、いわゆるスマートフォンであり、表示部222を備え、その表示部222に第1~第11の実施形態に係る情報入力装置10のいずれかを備える。 FIG. 33A is an external view illustrating an example of a mobile phone as an electronic apparatus. The mobile phone 221 is a so-called smartphone, and includes a display unit 222. The display unit 222 includes any one of the information input devices 10 according to the first to eleventh embodiments.
 図33Bは、電子機器としてタブレット型コンピュータの一例を示す外観図である。タブレット型コンピュータ231は、表示部232を備え、その表示部232に第1~第11の実施形態に係る情報入力装置10のいずれかを備える。 FIG. 33B is an external view illustrating an example of a tablet computer as an electronic device. The tablet computer 231 includes a display unit 232, and the display unit 232 includes any one of the information input devices 10 according to the first to eleventh embodiments.
[効果]
 以上説明した第12の実施形態に係る電子機器は、第1~第12の実施形態に係る情報入力装置10のいずれかを表示部に備えているので、表示部における情報入力装置10の視認を抑制することができる。
[effect]
Since the electronic apparatus according to the twelfth embodiment described above includes any of the information input devices 10 according to the first to twelfth embodiments in the display unit, the information input device 10 can be visually recognized on the display unit. Can be suppressed.
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。 Hereinafter, the present technology will be specifically described by way of examples. However, the present technology is not limited to only these examples.
 実施例について以下の順序で説明する。
<1.ニードル式ディスペンサーの描画性>
<2.シート抵抗(表面抵抗)の吐出時間依存性>
<3.導電部要素を形成するドットの割合の差と視認性との関係>
Examples will be described in the following order.
<1. Drawing performance of needle dispenser>
<2. Discharge time dependence of sheet resistance (surface resistance)>
<3. Relationship between the difference in the proportion of dots forming the conductive element and the visibility>
<1.ニードル式ディスペンサーの描画性>
 銀ナノワイヤーを含む導電性インク(以下「銀ナノワイヤー塗料」という。)をニードル式ディスペンサーにより塗布し、ニードル式ディスペンサーの描画性を評価した。
<1. Drawing performance of needle dispenser>
A conductive ink containing silver nanowires (hereinafter referred to as “silver nanowire paint”) was applied with a needle-type dispenser, and the drawability of the needle-type dispenser was evaluated.
(実施例1-1)
 まず、銀ナノワイヤー塗料として、希釈溶媒としてイソプロピルアルコール(IPA)を主溶媒として用いた銀ナノワイヤー塗料(以下、「IPA系銀ナノワイヤー塗料」という。)を準備した。銀ナノワイヤーとしては平均径110nm、平均長さ60μm以下のものを用いた。
Example 1-1
First, as a silver nanowire paint, a silver nanowire paint using isopropyl alcohol (IPA) as a main solvent as a diluent solvent (hereinafter referred to as “IPA-based silver nanowire paint”) was prepared. Silver nanowires having an average diameter of 110 nm and an average length of 60 μm or less were used.
 次に、このIPA系銀ナノワイヤー塗料をニードル式ディスペンサーにより、アクリルシート表面にドット状に塗布した後、加熱乾燥させることにより、アクリルシート表面に複数の導電部要素を形成した。以下に、印刷に使用したニードル式ディスペンサーの構成を示す。
 ガラスピペット(液だめ) 先端内径(直径)φ:400μm、材質:ガラス
 塗布用針(ニードル) 径(直径)φ:50μm、材質:タングステン
 タクト 1dot/sec
Next, after applying this IPA type silver nanowire coating material to the acrylic sheet surface in the form of dots with a needle-type dispenser, a plurality of conductive parts were formed on the acrylic sheet surface by heating and drying. Below, the structure of the needle type dispenser used for printing is shown.
Glass pipette (pump) Tip inner diameter (diameter) φ: 400 μm, Material: Glass Application needle (needle) Diameter (diameter) φ: 50 μm, Material: Tungsten tact 1 dot / sec
(実施例1-2)
 ニードル式ディスペンサーにより、IPA系銀ナノワイヤー塗料をアクリルシート表面にライン状に塗布する以外のことは実施例1-1と同様にして、アクリルシート表面に複数の導電部要素を形成した。
Example 1-2
A plurality of conductive part elements were formed on the surface of the acrylic sheet in the same manner as in Example 1-1 except that the IPA-based silver nanowire paint was applied in a line to the surface of the acrylic sheet with a needle-type dispenser.
[描画性]
 上述のようにして得られた実施例1、2のアクリルシート表面の導電部要素を光学顕微鏡で観察した。その結果、以下のことがわかった。
 ニードル式ディスペンサーにより、ドット状およびライン状の導電部要素を描画可能である。
 ドットの径およびラインの幅は、ニードル径(φ:50μm)にほぼ等しい。したがって、ニードル径により描画するドットの径およびラインの幅を設定することが可能である。
[Drawability]
The conductive part elements on the acrylic sheet surfaces of Examples 1 and 2 obtained as described above were observed with an optical microscope. As a result, the following was found.
With the needle-type dispenser, dot-shaped and line-shaped conductive part elements can be drawn.
The dot diameter and line width are approximately equal to the needle diameter (φ: 50 μm). Therefore, it is possible to set the diameter of the dot to be drawn and the width of the line by the needle diameter.
<2.シート抵抗(表面抵抗)の吐出時間依存性>
 インクジェット印刷法を用いて銀ナノワイヤー塗料をシート表面に連続塗布することにより、透明導電層を形成し、そのシート抵抗(表面抵抗)の吐出時間依存性を評価した。
<2. Discharge time dependence of sheet resistance (surface resistance)>
A silver nanowire paint was continuously applied to the sheet surface using an ink jet printing method to form a transparent conductive layer, and the discharge time dependency of the sheet resistance (surface resistance) was evaluated.
(実施例2-1)
 まず、希釈溶媒として水を主溶媒として用いた銀ナノワイヤー塗料(以下、「水系銀ナノワイヤー塗料」という。)を準備した。次に、水系銀ナノワイヤー塗料をインクジェット印刷法により、アクリルシート表面に連続的に塗布して、液滴が連続的に2次元的に繋がった正方形状の塗膜(連続膜)を形成した。この印刷操作を60分間行い、正方形状の塗膜(連続膜)を繰り返し形成した。この際の印刷条件を表3に示す。次に、塗膜を加熱乾燥させることにより、正方形状を有する複数の透明導電層をアクリルシート表面に形成した。これにより、目的とする透明導電性シートを得た。
Example 2-1
First, a silver nanowire paint (hereinafter referred to as “aqueous silver nanowire paint”) using water as a main solvent as a dilution solvent was prepared. Next, a water-based silver nanowire paint was continuously applied to the acrylic sheet surface by an ink jet printing method to form a square-shaped coating film (continuous film) in which droplets were continuously connected two-dimensionally. This printing operation was performed for 60 minutes, and a square-shaped coating film (continuous film) was repeatedly formed. Table 3 shows the printing conditions at this time. Next, the plurality of transparent conductive layers having a square shape were formed on the acrylic sheet surface by heating and drying the coating film. Thereby, the target transparent conductive sheet was obtained.
(実施例2-2)
 銀ナノワイヤー塗料としてIPA系銀ナノワイヤー塗料を用いる以外は、実施例2-1と同様にして透明導電性シートを得た。
(Example 2-2)
A transparent conductive sheet was obtained in the same manner as in Example 2-1, except that an IPA silver nanowire paint was used as the silver nanowire paint.
[シート抵抗]
 上述のようにして得られた実施例2-1、2-2の透明導電性シートのシート抵抗を4探針法により測定した。その結果を表4および図34に示す。シート抵抗の測定装置としては、(株)三菱化学アナリテック製、ロレスタEP、MCP-T360型を用いた。なお、シート抵抗の測定は、アクリルシート表面に形成された複数の透明導電層のうち、塗布開始直後、塗布開始から10分後、・・・、60分後の塗布により形成された矩形状の透明導電層それぞれについて行った。
[Sheet resistance]
The sheet resistance of the transparent conductive sheets of Examples 2-1 and 2-2 obtained as described above was measured by a four-probe method. The results are shown in Table 4 and FIG. As a sheet resistance measuring device, Loresta EP, MCP-T360, manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used. In addition, measurement of sheet resistance is a rectangular shape formed by application | coating after 60 minutes after application | coating start immediately after application | coating start among several transparent conductive layers formed in the acrylic sheet surface. It carried out about each transparent conductive layer.
 表3は、実施例2-1、2-2の透明導電性シートの印刷条件を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the printing conditions of the transparent conductive sheets of Examples 2-1 and 2-2.
Figure JPOXMLDOC01-appb-T000003
 表4は、実施例2-1、2-2の透明導電性シートの測定結果を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the measurement results of the transparent conductive sheets of Examples 2-1 and 2-2.
Figure JPOXMLDOC01-appb-T000004
 表4および図34から以下のことがわかる。
 水系銀ナノワイヤー塗料およびIPA系銀ナノワイヤー塗料のいずれを用いた場合にも、吐出時間(印刷時間)によるシート抵抗値の変動はほとんど無く、100Ω/□前後のシート抵抗値が得られる。すなわち、銀ナノワイヤー塗料を用いてインクジェット法により印刷を行った場合でも、ヘッドの塗布詰まりなどの不具合が発生しない。
The following can be understood from Table 4 and FIG.
When using either the water-based silver nanowire paint or the IPA-based silver nanowire paint, there is almost no variation in the sheet resistance value due to the discharge time (printing time), and a sheet resistance value of around 100Ω / □ can be obtained. That is, even when printing is performed by an ink jet method using a silver nanowire paint, problems such as head clogging do not occur.
<3.導電部要素を形成するドットの割合の差と視認性との関係>
 導電部要素を形成するドットの割合pが異なる領域を隣接して形成して、それらの領域を有するサンプルの視認性およびシート抵抗を評価した。
<3. Relationship between the difference in the proportion of dots forming the conductive element and the visibility>
Regions having different proportions p of dots forming the conductive element were formed adjacent to each other, and the visibility and sheet resistance of the samples having these regions were evaluated.
(実施例3-1)
 まず、銀ナノワイヤー塗料としてIPA系銀ナノワイヤー塗料を準備した。次に、IPA系銀ナノワイヤー塗料をインクジェット印刷法により、アクリルシート表面に印刷した。印刷時には、隣接する列においてX軸方向およびY軸方向に隣り合う塗料の液滴(ドット)同士が繋がるように印刷を行った。印刷パターンとしては、図9に示したラスター画像の作成アルゴリズムに基づき作成したランダムパターンを用いた。その作成の際に、導電部要素を形成するドットの割合pを50[%]に設定した第1の領域Rと、導電部要素を形成するドットの割合pを15[%]に設定した第2の領域Rとを、アクリルシート表面に交互に形成した。なお、第1の領域Rおよび第2の領域Rの形状は細長い矩形状とした。次に、アクリルシート表面に印刷したIPA系銀ナノワイヤー塗料を加熱乾燥させることにより、アクリルシート表面の第1の領域Rおよび第2の領域Rに複数の導電部要素を形成した。以上により、目的とする透明導電性シートを得た。
Example 3-1
First, an IPA silver nanowire paint was prepared as a silver nanowire paint. Next, IPA-based silver nanowire paint was printed on the acrylic sheet surface by an ink jet printing method. At the time of printing, printing was performed so that the droplets (dots) of the paints adjacent in the X-axis direction and the Y-axis direction were connected in adjacent rows. As the print pattern, a random pattern created based on a raster image creation algorithm shown in FIG. 9 was used. During the creation, the first region R 1 in which the proportion p of dots forming the conductive element is set to 50 [%] and the proportion p of dots forming the conductive element are set to 15 [%]. a second region R 2, and alternately formed in the acrylic sheet surface. The first region R 1 and the second region R 2 of the shape was elongated rectangular. Next, by heating and drying the IPA Keigin nanowires paint printed on the acrylic sheet surface to form a first region R 1 and the second region R 2 to a plurality of conductive portions element acrylic sheet surface. Thus, the intended transparent conductive sheet was obtained.
(実施例3-2)
 第1の領域Rにおけるドットの割合pを50[%]、第2の領域Rにおけるドットの割合pを25[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-2)
First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 25 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
(実施例3-3)
 第1の領域Rにおけるドットの割合pを50[%]、第2の領域Rにおけるドットの割合pを35[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-3)
First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 35 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
(実施例3-4)
 第1の領域Rにおけるドットの割合pを50[%]、第2の領域Rにおけるドットの割合pを40[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-4)
First the rate of dots p in the region R 1 50 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 40% in the same manner as in Example 3-1 Sex sheet was obtained.
(実施例3-5)
 第1の領域Rにおけるドットの割合pを60[%]、第2の領域Rにおけるドットの割合pを25[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-5)
First the rate of dots p in the region R 1 60 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 25 [%] in the same manner as in Example 3-1 Sex sheet was obtained.
(実施例3-6)
 第1の領域Rにおけるドットの割合pを60[%]、第2の領域Rにおけるドットの割合pを35[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-6)
The transparent conductive material is the same as in Example 3-1, except that the dot ratio p in the first region R 1 is set to 60 [%] and the dot ratio p in the second region R 2 is set to 35 [%]. Sex sheet was obtained.
(実施例3-7)
 第1の領域Rにおけるドットの割合pを60[%]、第2の領域Rにおけるドットの割合pを40[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-7)
First the rate of dots p in the region R 1 60 [%], the transparent conductive except for setting the proportion p of the dots in the second region R 2 to 40% in the same manner as in Example 3-1 Sex sheet was obtained.
(実施例3-8)
 第1の領域Rにおけるドットの割合pを75[%]、第2の領域Rにおけるドットの割合pを40[%]に設定したこと以外は実施例3-1と同様にして透明導電性シートを得た。
(Example 3-8)
The transparent conductive material is the same as in Example 3-1, except that the dot ratio p in the first region R 1 is set to 75 [%] and the dot ratio p in the second region R 2 is set to 40 [%]. Sex sheet was obtained.
[視認性]
 上述のようにして得られた実施例3-1~3-8の透明導電性シートをスライドガラスに粘着シートで貼り付け、裏側に黒テープを貼り付け表面の反射を見やすくし、目視により以下の基準で官能評価を行った。その結果を表5に示す。
 ○:第1の領域Rと第2の領域Rとの境界部が不明瞭である。
 ×:第1の領域Rと第2の領域Rとの境界部が明瞭である。
[Visibility]
The transparent conductive sheets of Examples 3-1 to 3-8 obtained as described above were attached to a slide glass with an adhesive sheet, and a black tape was attached to the back side so that the reflection on the surface was easy to see. Sensory evaluation was performed on the basis. The results are shown in Table 5.
○: the boundary of the first region R 1 and the second region R 2 is unclear.
×: the boundary of the first region R 1 and the second region R 2 is clear.
[シート抵抗]
 上述のようにして得られた実施例3-1~3-8の透明導電性シートの第1の領域Rと第2の領域Rとのシート抵抗を4探針法により測定した。その結果を表5に示す。シート抵抗の測定装置としては、(株)三菱化学アナリテック製、ロレスタEP、MCP-T360型を用いた。
[Sheet resistance]
The sheet resistance of the first region R 1 and the second region R 2 of the transparent conductive sheets of Examples 3-1 to 3-8 obtained as described above was measured by the 4 probe method. The results are shown in Table 5. As a sheet resistance measuring device, Loresta EP, MCP-T360, manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
 次に、測定したシート抵抗値に基づき、第1の領域Rと第2の領域Rとが導電部および非導電部のいずれとして機能するかを以下の基準で判別した。
 導通部:1.0×10Ω/□以下であり、透明電極として使用可能
 非導通部:10Ω/□以上であり、透明電極間の絶縁部として使用可能
 上記判別の結果を以下に示す。ドットの割合pが50≦pである第1の領域Rは、導電部(透明電極)として機能する。一方、ドットの割合pがp<50である第2の領域Rは、非導電部(透明電極間の絶縁部)として機能する。したがって、ドットの割合pにより導電部および非導電部を作り分けることができる。
Then, based on the measured sheet resistance and whether it functions as either a first region R 1 and the second region R 2 are conductively portion and nonconductive portion determined by the following criteria.
Conductive part: 1.0 × 10 5 Ω / □ or less, usable as a transparent electrode Non-conducting part: 10 6 Ω / □ or more, usable as an insulating part between transparent electrodes Show. The proportion of dots p is the first region R 1 is 50 ≦ p functions as a conductive portion (the transparent electrode). On the other hand, the second region R 1 ratio of dot p is p <50 functions as a non-conductive portion (insulating portion between the transparent electrodes). Therefore, the conductive portion and the non-conductive portion can be separately formed according to the dot ratio p.
 表5は、実施例3-1~3-8の透明導電性シートの評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the evaluation results of the transparent conductive sheets of Examples 3-1 to 3-8.
Figure JPOXMLDOC01-appb-T000005
 上記評価結果から以下のことがわかった。
 第1の領域Rのドットの割合pと、第2の領域Rのドットの割合pとの差Δpを30[%]以下にすると、第1の領域Rと第2の領域Rとの間の境界の視認を抑制することができる。すなわち、透明電極部と透明絶縁部との境界の視認を抑制する観点からすると、透明電極部の単位区画当たりの導電部要素の平均割合P1と、透明絶縁部の単位区画当たりの導電部要素の平均割合P2との差ΔP(=P1-P2)を30[%]以下に設定することが好ましい。
The following was found from the above evaluation results.
When the difference Δp between the dot ratio p of the first area R 1 and the dot ratio p of the second area R 2 is set to 30% or less, the first area R 1 and the second area R 2 are used. Visual recognition of the boundary between the two can be suppressed. That is, from the viewpoint of suppressing the visual recognition of the boundary between the transparent electrode part and the transparent insulating part, the average ratio P1 of the conductive part element per unit section of the transparent electrode part and the conductive part element per unit section of the transparent insulating part It is preferable to set the difference ΔP (= P1−P2) from the average ratio P2 to 30% or less.
 以上、本技術の実施形態および実施例について具体的に説明したが、本技術は、上述の実施形態および実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。 The embodiments and examples of the present technology have been specifically described above. However, the present technology is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present technology are possible. It is.
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。 For example, the configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments and examples are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like are necessary as necessary. May be used.
 また、本技術は以下の構成を採用することもできる。
(1)
 表面を有する基材と、
 上記表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 上記透明導電部および上記透明絶縁部は、上記表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる透明導電性素子。
(2)
 上記第1方向に隣り合う導電部要素同士、および上記第2方向に隣り合う導電部要素同士が繋がっている(1)に記載の透明導電性素子。
(3)
 上記透明絶縁部は、上記導電部要素からなる複数の島部を含んでいる(1)または(2)記載の透明導電性素子。
(4)
 上記複数の導電部要素は、上記第1方向および上記第2方向に2次元的にランダムに設けられている(1)から(3)のいずれかに記載の透明導電性素子。
(5)
 上記導電部要素は、円形状、ほぼ円形状、楕円形状またはほぼ楕円形状を有している(1)から(4)のいずれかに記載の透明導電性素子。
(6)
 上記第1方向または上記第2方向に対して斜めの方向に隣り合う導電部要素同士が繋がっている(1)から(5)のいずれかに記載の透明導電性素子。
(7)
 上記導電部要素は、導電性インクを上記表面に印刷することにより得られる(1)から(6)のいずれかに記載の透明導電性素子。
(8)
 上記透明導電部および透明絶縁部の境界部は、形状パターンを有している(1)から(7)のいずれかに記載の透明導電性素子。
(9)
 上記透明導電部は、複数の孔部を含んでいる(1)から(8)のいずれかに記載の透明導電性素子。
(10)
 上記透明導電部および上記透明絶縁部の複数の導電部要素は、上記第1方向および上記第2方向に2次元的にランダムに設けられ、
 上記透明導電部における導電部要素の平均割合P1は、50[%]≦P1の関係を満たし、
 上記透明絶縁部における導電部要素の平均割合P2は、P2<50[%]の関係を満たしている(1)から(9)のいずれかに記載の透明導電性素子。
(11)
 上記透明導電部における導電部要素の平均割合P1と、上記透明絶縁部における導電部要素の平均割合P2との差ΔP(=P1-P2)は、ΔP≦30[%]の関係を満たす(10)に記載の透明導電性素子。
(12)
 上記透明導電部は、上記透明絶縁部間の領域に連続的に設けられた透明導電層である(1)から(9)のいずれかに記載の透明導電性素子。
(13)
 第1の表面および第2の表面を有する基材と、
 上記第1の表面および上記第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部と
 を備え、
 上記透明導電部および上記透明絶縁部は、上記第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる入力装置。
(14)
 (1)から(12)のいずれかに記載の透明導電性素子を備える入力装置。
(15)
 第1の表面および第2の表面を有する基材と、上記第1の表面および上記第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部とを有する透明導電性素子を備え、
 上記透明導電部および上記透明絶縁部は、上記第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる電子機器。
(16)
 (1)から(12)のいずれかに記載の透明導電性素子を備える電子機器。
(17)
 基材表面に導電性インクを印刷し、上記基材表面の第1方向および第2方向に2次元的に導電部要素を形成することにより、上記基材表面に平面的に交互に設けられた透明導電部および透明絶縁部を形成することを含む透明導電性素子の製造方法。
(18)
 上記印刷は、インクジェット法または微少液滴塗布法による印刷であり、
 上記導電性インクは、金属ワイヤーを含んでいる(17)に記載の透明導電性素子の製造方法。
(19)
 上記基材表面に仮想的なグリッドを設定し、設定した該グリッドに基づき、上記導電性インクの印刷を行う(17)または(18)記載の透明導電性素子の製造方法。
(20)
 基材表面に導電性インクを微少液滴塗布法により印刷し、複数の導電部要素を1次元的または2次元的に上記基材表面に形成することを含む導電部の形成方法。
The present technology can also employ the following configurations.
(1)
A substrate having a surface;
Comprising transparent conductive portions and transparent insulating portions provided alternately on the surface in a plane,
The transparent conductive element and the transparent insulating part are transparent conductive elements including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the surface.
(2)
The transparent conductive element according to (1), wherein the conductive part elements adjacent in the first direction and the conductive part elements adjacent in the second direction are connected.
(3)
The transparent conductive element according to (1) or (2), wherein the transparent insulating part includes a plurality of island parts made of the conductive part element.
(4)
The transparent conductive element according to any one of (1) to (3), wherein the plurality of conductive part elements are randomly provided two-dimensionally in the first direction and the second direction.
(5)
The transparent conductive element according to any one of (1) to (4), wherein the conductive part element has a circular shape, a substantially circular shape, an elliptical shape, or a substantially elliptical shape.
(6)
The transparent conductive element according to any one of (1) to (5), wherein conductive part elements adjacent to each other in a direction oblique to the first direction or the second direction are connected.
(7)
The said electroconductive part element is a transparent conductive element in any one of (1) to (6) obtained by printing electroconductive ink on the said surface.
(8)
The boundary part of the said transparent conductive part and a transparent insulating part is a transparent conductive element in any one of (1) to (7) which has a shape pattern.
(9)
The transparent conductive element according to any one of (1) to (8), wherein the transparent conductive part includes a plurality of holes.
(10)
The plurality of conductive part elements of the transparent conductive part and the transparent insulating part are randomly provided two-dimensionally in the first direction and the second direction,
The average ratio P1 of the conductive part elements in the transparent conductive part satisfies the relationship of 50 [%] ≦ P1,
The transparent conductive element according to any one of (1) to (9), wherein an average ratio P2 of conductive part elements in the transparent insulating part satisfies a relationship of P2 <50 [%].
(11)
The difference ΔP (= P1−P2) between the average ratio P1 of the conductive part elements in the transparent conductive part and the average ratio P2 of the conductive part elements in the transparent insulating part satisfies the relationship ΔP ≦ 30 [%] (10 ) Transparent conductive element.
(12)
The transparent conductive element according to any one of (1) to (9), wherein the transparent conductive part is a transparent conductive layer continuously provided in a region between the transparent insulating parts.
(13)
A substrate having a first surface and a second surface;
A transparent conductive portion and a transparent insulating portion provided alternately in a plane on the first surface and the second surface,
The transparent conductive part and the transparent insulating part include an input device including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
(14)
An input device comprising the transparent conductive element according to any one of (1) to (12).
(15)
A transparent conductive element having a substrate having a first surface and a second surface, and transparent conductive portions and transparent insulating portions provided alternately in a plane on the first surface and the second surface Prepared,
The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
(16)
An electronic device comprising the transparent conductive element according to any one of (1) to (12).
(17)
The conductive ink was printed on the surface of the base material, and the conductive portion elements were two-dimensionally formed in the first direction and the second direction of the base material surface, thereby being alternately provided in a plane on the base material surface. A method for producing a transparent conductive element, comprising forming a transparent conductive part and a transparent insulating part.
(18)
The printing is printing by an inkjet method or a microdroplet coating method,
The said conductive ink is a manufacturing method of the transparent conductive element as described in (17) containing the metal wire.
(19)
The method for producing a transparent conductive element according to (17) or (18), wherein a virtual grid is set on the surface of the substrate, and the conductive ink is printed based on the set grid.
(20)
A method for forming a conductive portion, comprising: printing a conductive ink on a surface of a base material by a microdroplet coating method, and forming a plurality of conductive portion elements on the surface of the base material one-dimensionally or two-dimensionally.
 1  第1の透明導電性素子
 2  第2の透明導電性素子
 3  光学層
 4  表示装置
 5、6  貼合層
 10  情報入力装置
 11、21 基材
 12、22  透明導電層
 13、23  透明電極部
 14、24  透明絶縁部
 13a、14a  導電部要素
 13b  透明導電部
 13c  孔部
 14b  島部
 14c  離間部
 L  境界
 R  第1の領域
 R  第2の領域
 
DESCRIPTION OF SYMBOLS 1 1st transparent conductive element 2 2nd transparent conductive element 3 Optical layer 4 Display apparatus 5, 6 Bonding layer 10 Information input device 11, 21 Base material 12, 22 Transparent conductive layer 13, 23 Transparent electrode part 14 , 24 Transparent insulating portion 13a, 14a Conductive portion element 13b Transparent conductive portion 13c Hole portion 14b Island portion 14c Separating portion L Boundary R 1 First region R 2 Second region

Claims (20)

  1.  表面を有する基材と、
     上記表面に平面的に交互に設けられた透明導電部および透明絶縁部と
     を備え、
     上記透明導電部および上記透明絶縁部は、上記表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる透明導電性素子。
    A substrate having a surface;
    Comprising transparent conductive portions and transparent insulating portions provided alternately on the surface in a plane,
    The transparent conductive element and the transparent insulating part are transparent conductive elements including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the surface.
  2.  上記第1方向に隣り合う導電部要素同士、および上記第2方向に隣り合う導電部要素同士が繋がっている請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the conductive part elements adjacent in the first direction and the conductive part elements adjacent in the second direction are connected to each other.
  3.  上記透明絶縁部は、上記導電部要素からなる複数の島部を含んでいる請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the transparent insulating part includes a plurality of island parts made of the conductive part elements.
  4.  上記複数の導電部要素は、上記第1方向および上記第2方向に2次元的にランダムに設けられている請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the plurality of conductive part elements are randomly provided two-dimensionally in the first direction and the second direction.
  5.  上記導電部要素は、円形状、ほぼ円形状、楕円形状またはほぼ楕円形状を有している請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the conductive part element has a circular shape, a substantially circular shape, an elliptical shape, or a substantially elliptical shape.
  6.  上記第1方向または上記第2方向に対して斜めの方向に隣り合う導電部要素同士が繋がっている請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein conductive part elements adjacent to each other in an oblique direction with respect to the first direction or the second direction are connected to each other.
  7.  上記導電部要素は、導電性インクを上記表面に印刷することにより得られる請求項1に記載の透明導電性素子。 2. The transparent conductive element according to claim 1, wherein the conductive part element is obtained by printing a conductive ink on the surface.
  8.  上記透明導電部および透明絶縁部の境界部は、形状パターンを有している請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein a boundary portion between the transparent conductive portion and the transparent insulating portion has a shape pattern.
  9.  上記透明導電部は、複数の孔部を含んでいる請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the transparent conductive part includes a plurality of holes.
  10.  上記透明導電部および上記透明絶縁部の複数の導電部要素は、上記第1方向および上記第2方向に2次元的にランダムに設けられ、
     上記透明導電部における導電部要素の平均割合P1は、50[%]≦P1の関係を満たし、
     上記透明絶縁部における導電部要素の平均割合P2は、P2<50[%]の関係を満たしている請求項1に記載の透明導電性素子。
    The plurality of conductive part elements of the transparent conductive part and the transparent insulating part are randomly provided two-dimensionally in the first direction and the second direction,
    The average ratio P1 of the conductive part elements in the transparent conductive part satisfies the relationship of 50 [%] ≦ P1,
    2. The transparent conductive element according to claim 1, wherein an average ratio P <b> 2 of the conductive part elements in the transparent insulating part satisfies a relationship of P <b> 2 <50 [%].
  11.  上記透明導電部における導電部要素の平均割合P1と、上記透明絶縁部における導電部要素の平均割合P2との差ΔP(=P1-P2)は、ΔP≦30[%]の関係を満たす請求項10に記載の透明導電性素子。 A difference ΔP (= P1−P2) between an average ratio P1 of conductive part elements in the transparent conductive part and an average ratio P2 of conductive part elements in the transparent insulating part satisfies a relationship of ΔP ≦ 30 [%]. The transparent conductive element according to 10.
  12.  上記透明導電部は、上記透明絶縁部間の領域に連続的に設けられた透明導電層である請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the transparent conductive portion is a transparent conductive layer continuously provided in a region between the transparent insulating portions.
  13.  第1の表面および第2の表面を有する基材と、
     上記第1の表面および上記第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部と
     を備え、
     上記透明導電部および上記透明絶縁部は、上記第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる入力装置。
    A substrate having a first surface and a second surface;
    A transparent conductive portion and a transparent insulating portion provided alternately in a plane on the first surface and the second surface,
    The transparent conductive part and the transparent insulating part include an input device including a plurality of conductive part elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  14.  第1の透明導電性素子と、
     上記第1の透明導電性素子の表面に設けられた第2の透明導電性素子と
     を備え、
     上記第1の透明導電性素子および上記第2の透明導電性素子が、
     表面を有する基材と、
     上記表面に平面的に交互に設けられた透明導電部および透明絶縁部と
     を備え、
     上記透明導電部および上記透明絶縁部は、上記表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる入力装置。
    A first transparent conductive element;
    A second transparent conductive element provided on the surface of the first transparent conductive element,
    The first transparent conductive element and the second transparent conductive element are
    A substrate having a surface;
    Comprising transparent conductive portions and transparent insulating portions provided alternately on the surface in a plane,
    The input device including the transparent conductive portion and the transparent insulating portion including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the surface.
  15.  第1の表面および第2の表面を有する基材と、上記第1の表面および上記第2の表面に平面的に交互に設けられた透明導電部および透明絶縁部とを有する透明導電性素子を備え、
     上記透明導電部および上記透明絶縁部は、上記第1の表面および第2の表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる電子機器。
    A transparent conductive element having a substrate having a first surface and a second surface, and transparent conductive portions and transparent insulating portions provided alternately in a plane on the first surface and the second surface Prepared,
    The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the first surface and the second surface.
  16.  第1の透明導電性素子と、
     上記第1の透明導電性素子の表面に設けられた第2の透明導電性素子と
     を備え、
     上記第1の透明導電性素子および上記第2の透明導電性素子が、
     表面を有する基材と、
     上記表面に平面的に交互に設けられた透明導電部および透明絶縁部と
     を備え、
     上記透明導電部および上記透明絶縁部は、上記表面の第1方向および第2方向に2次元的に設けられた複数の導電部要素を含んでいる電子機器。
    A first transparent conductive element;
    A second transparent conductive element provided on the surface of the first transparent conductive element,
    The first transparent conductive element and the second transparent conductive element are
    A substrate having a surface;
    Comprising transparent conductive portions and transparent insulating portions provided alternately on the surface in a plane,
    The transparent conductive portion and the transparent insulating portion are electronic devices including a plurality of conductive portion elements provided two-dimensionally in the first direction and the second direction of the surface.
  17.  基材表面に導電性インクを印刷し、上記基材表面の第1方向および第2方向に2次元的に導電部要素を形成することにより、上記基材表面に平面的に交互に設けられた透明導電部および透明絶縁部を形成することを含む透明導電性素子の製造方法。 The conductive ink was printed on the surface of the base material, and the conductive portion elements were two-dimensionally formed in the first direction and the second direction of the base material surface, thereby being alternately provided in a plane on the base material surface. A method for producing a transparent conductive element, comprising forming a transparent conductive part and a transparent insulating part.
  18.  上記印刷は、インクジェット法または微少液滴塗布法による印刷であり、
     上記導電性インクは、金属ワイヤーを含んでいる請求項17に記載の透明導電性素子の製造方法。
    The printing is printing by an inkjet method or a microdroplet coating method,
    The method of manufacturing a transparent conductive element according to claim 17, wherein the conductive ink includes a metal wire.
  19.  上記基材表面に仮想的なグリッドを設定し、設定した該グリッドに基づき、上記導電性インクの印刷を行う請求項17に記載の透明導電性素子の製造方法。 The method for manufacturing a transparent conductive element according to claim 17, wherein a virtual grid is set on the surface of the base material, and the conductive ink is printed based on the set grid.
  20.  基材表面に導電性インクを微少液滴塗布法により印刷し、複数の導電部要素を1次元的または2次元的に上記基材表面に形成することを含む導電部の形成方法。
     
    A method for forming a conductive portion, comprising: printing a conductive ink on a surface of a base material by a microdroplet coating method, and forming a plurality of conductive portion elements on the surface of the base material one-dimensionally or two-dimensionally.
PCT/JP2013/072131 2012-08-31 2013-08-20 Transparent conductive element and manufacturing method thereof, input device, electronic device, and method of forming conductive unit WO2014034468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-192269 2012-08-31
JP2012192269A JP2014048952A (en) 2012-08-31 2012-08-31 Transparent conductive element and manufacturing method for the same, input device, electronic apparatus, and formation method for conductive part

Publications (1)

Publication Number Publication Date
WO2014034468A1 true WO2014034468A1 (en) 2014-03-06

Family

ID=50183283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072131 WO2014034468A1 (en) 2012-08-31 2013-08-20 Transparent conductive element and manufacturing method thereof, input device, electronic device, and method of forming conductive unit

Country Status (2)

Country Link
JP (1) JP2014048952A (en)
WO (1) WO2014034468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422238A (en) * 2014-06-02 2020-07-17 Tk控股公司 System and method for printing sensor circuit on sensor pad of steering wheel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658800B2 (en) * 2018-06-12 2020-03-04 コニカミノルタ株式会社 Functional fine wire pattern, substrate with transparent conductive film, device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040653A (en) * 2003-07-22 2005-02-17 Seiko Epson Corp Method for applying liquid material, apparatus for applying liquid material, and liquid crystal apparatus
JP2010115568A (en) * 2008-11-11 2010-05-27 Shibaura Mechatronics Corp Droplet application apparatus and droplet application method
WO2011008055A2 (en) * 2009-07-16 2011-01-20 주식회사 엘지화학 Electrical conductor and a production method therefor
JP2011228619A (en) * 2010-03-30 2011-11-10 Fujifilm Corp Methods for nano-imprint, for creating ink droplet layout pattern, and for processing substrate
JP4862969B1 (en) * 2011-02-07 2012-01-25 ソニー株式会社 Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040653A (en) * 2003-07-22 2005-02-17 Seiko Epson Corp Method for applying liquid material, apparatus for applying liquid material, and liquid crystal apparatus
JP2010115568A (en) * 2008-11-11 2010-05-27 Shibaura Mechatronics Corp Droplet application apparatus and droplet application method
WO2011008055A2 (en) * 2009-07-16 2011-01-20 주식회사 엘지화학 Electrical conductor and a production method therefor
JP2011228619A (en) * 2010-03-30 2011-11-10 Fujifilm Corp Methods for nano-imprint, for creating ink droplet layout pattern, and for processing substrate
JP4862969B1 (en) * 2011-02-07 2012-01-25 ソニー株式会社 Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422238A (en) * 2014-06-02 2020-07-17 Tk控股公司 System and method for printing sensor circuit on sensor pad of steering wheel
CN111422238B (en) * 2014-06-02 2022-10-25 Tk控股公司 System and method for printing sensor circuit on sensor pad of steering wheel
US11599226B2 (en) 2014-06-02 2023-03-07 Joyson Safety Systems Acquisition Llc Systems and methods for printing sensor circuits on a sensor mat for a steering wheel

Also Published As

Publication number Publication date
JP2014048952A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
WO2014034451A1 (en) Transparent conductor, input device and electronic equipment
JP5075270B2 (en) Transparent conductive element, method for manufacturing the same, input device, and electronic device
KR101752041B1 (en) Transparent conductive film, conductive element, composition, input device, display device and electronic equipment
JP4893867B1 (en) Transparent conductive film, dispersion, information input device, and electronic device
CN105830000B (en) The manufacturing method of touch sensing and the touch sensing
WO2013111807A1 (en) Transparent conductive element, manufacturing method therefor, input apparatus, electronic device, and thin-film patterning method
US20190114003A1 (en) Nanowire contact pads with enhanced adhesion to metal interconnects
CN105988623B (en) Touch-control window
CN104246666A (en) Conductive substrate comprising conductive pattern and touch panel comprising same
CN108475152A (en) Touch panel sensor
WO2014034468A1 (en) Transparent conductive element and manufacturing method thereof, input device, electronic device, and method of forming conductive unit
JP2013152578A (en) Transparent conductive element, input device, electronic apparatus and master disk for producing transparent conductive element
WO2012144643A1 (en) Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element
JP2018106395A (en) Transparent conductive laminate, touch panel, and display
US10474309B2 (en) Conductive element, input device, and electronic apparatus
JP2014047402A (en) Etchant, method of producing conductive element, and method of producing processed body
JP2017068844A (en) Transparent conductive substrate and capacitance type touch panel
KR20180059194A (en) Touch window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832045

Country of ref document: EP

Kind code of ref document: A1