WO2012144643A1 - Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element - Google Patents

Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element Download PDF

Info

Publication number
WO2012144643A1
WO2012144643A1 PCT/JP2012/060802 JP2012060802W WO2012144643A1 WO 2012144643 A1 WO2012144643 A1 WO 2012144643A1 JP 2012060802 W JP2012060802 W JP 2012060802W WO 2012144643 A1 WO2012144643 A1 WO 2012144643A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
pattern portion
transparent conductive
electrode pattern
conductive element
Prior art date
Application number
PCT/JP2012/060802
Other languages
French (fr)
Japanese (ja)
Inventor
水野 幹久
秀俊 高橋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2012144643A1 publication Critical patent/WO2012144643A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present technology relates to a transparent conductive element, a manufacturing method thereof, an input device using the same, and an electronic apparatus.
  • the present invention relates to an electrode pattern of a transparent conductive element.
  • a transparent conductive film obtained by laminating a transparent thin film with low resistance on a substrate made of a transparent plastic film is widely used for applications utilizing the conductivity.
  • applications in the electric and electronic fields such as flat panel displays such as liquid crystal displays and organic electroluminescence (EL) displays, and transparent electrodes of resistive touch panels.
  • EL organic electroluminescence
  • capacitive touch panels are mounted on mobile devices such as mobile phones and portable music terminals.
  • a transparent conductive film in which a patterned transparent conductive layer is formed on the substrate surface is used.
  • a conventional transparent conductive film is used, the difference in optical characteristics between the portion having the transparent conductive layer and the removed portion is large.
  • the optical adjustment function of the laminated film depends on the wavelength, and thus it is difficult to sufficiently improve the non-visibility of the transparent conductive film. For this reason, in recent years, as a technique for improving the invisibility of the transparent conductive film, a technique replacing the above-described laminated film is desired. Further, in order to realize an input device with stable response speed and position detection accuracy as a capacitive touch panel or the like, the resistance value of the transparent conductive layer must also be considered.
  • the present technology provides a transparent conductive element excellent in non-visibility and suitable for reducing the resistance value of a transparent conductive layer, a manufacturing method thereof, an information input device and an electronic apparatus using the transparent conductive element.
  • the transparent conductive element of the present technology includes a base material, and a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a predetermined direction on the surface of the base material, and the transparent electrode pattern
  • Each of the part and the transparent insulating pattern part has at least a conductive material part, and the conductive material parts are formed in different patterns.
  • the conductive material portion and the nonconductive portion are formed in different random patterns.
  • the transparent electrode pattern portion is formed randomly in the formation surface of the conductive material portion with the plurality of nonconductive portions spaced apart from each other, and the transparent insulating pattern portion is formed of the nonconductive portion.
  • An input device of the present technology includes a first transparent conductive element having a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on a surface of a base material in a predetermined direction, and the above-mentioned surface of the base material surface.
  • a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a direction orthogonal to a predetermined direction, and overlapped with the first transparent conductive element as viewed from the input surface direction And a second transparent conductive element arranged in a positional relationship.
  • the transparent electrode pattern portion and the transparent insulating pattern portion in the first and second transparent conductive elements each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  • the transparent electrode pattern portion and the transparent insulating pattern portion have the conductive material portion and the non-conductive portion formed in different random patterns.
  • the device includes a display device, a first transparent conductive element, and a second transparent conductive element.
  • the 1st transparent conductive element has the transparent electrode pattern part and transparent insulating pattern part which were formed by laying alternately toward the predetermined direction in the display surface of a display apparatus.
  • the second transparent conductive element has a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in the direction orthogonal to the predetermined direction on the display surface of the display device.
  • the first and second transparent conductive elements are arranged in a positional relationship where they are overlapped when viewed from the input surface direction.
  • the transparent electrode pattern portion and the transparent insulating pattern portion in the first and second transparent conductive elements each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  • the production method of the present technology is a production of a transparent conductive element including a base material, and transparent electrode pattern portions and transparent insulating pattern portions formed by alternately spreading in a predetermined direction on the surface of the base material. Is the method. And the process of producing
  • the transparent conductive element includes a transparent electrode pattern portion and a transparent insulating pattern portion.
  • the formation pattern of the conductive material portion and the non-conductive portion is changed.
  • the invisibility between the transparent electrode pattern portion and the transparent insulating pattern portion is improved while avoiding an increase in the resistance value of the conductive material portion that becomes the conductive portion forming the actual electrode.
  • non-visibility can be improved by making each a random pattern, but by making a different random pattern, the transparent electrode pattern portion can improve the coverage of the conductive material portion, and transparent insulation It is possible to reduce the difference between the coverage of the conductive material portion of the pattern portion and the coverage of the conductive material portion of the transparent electrode pattern portion. That is, it is possible to simultaneously realize a reduction in the resistance value of the transparent electrode pattern portion and an improvement in invisibility between the transparent electrode pattern portion and the transparent insulating pattern portion.
  • the present technology there is an effect that it is possible to realize a transparent conductive element and an information input device which are excellent in invisibility and are suitable for reducing the resistance value of the transparent conductive layer. Further, by using this transparent conductive element, there is an effect that it is possible to realize an electronic device capable of high-definition display.
  • FIG. 1 is an explanatory diagram of the structure of the input device according to the embodiment of the present technology.
  • 2A to 2C are explanatory diagrams of the first transparent conductive element according to the first embodiment.
  • 3A and 3B are explanatory diagrams of the structure of the random pattern portion of the first transparent conductive element according to the first embodiment.
  • 4A to 4C are explanatory diagrams of the second transparent conductive element according to the first embodiment.
  • 5A to 5C are explanatory diagrams of the pattern of the conductive portion and the comparative example.
  • FIG. 6 is an explanatory diagram of sheet resistance with respect to the coverage of the conductive portion.
  • 7A and 7B are explanatory diagrams of the overlapping region of the first and second transparent conductive elements in the first embodiment.
  • FIG. 8A and 8B are explanatory diagrams of the first and second transparent conductive elements according to the second embodiment.
  • 9A and 9B are explanatory diagrams of overlapping regions of the first and second transparent conductive elements in the second embodiment.
  • FIG. 10 is an explanatory diagram of a pattern combination according to the second embodiment.
  • 11A and 11B are flowcharts of manufacturing methods I and II of the transparent conductive element of the embodiment.
  • 12A to 12D are explanatory diagrams of the manufacturing method I according to the embodiment.
  • 13A and 13B are explanatory diagrams of the manufacturing method II of the embodiment.
  • 14A and 14B are explanatory diagrams of the manufacturing method II of the embodiment.
  • FIG. 15 is an explanatory diagram of a random pattern forming process according to the embodiment.
  • FIG. 16 is a flowchart of random pattern formation processing according to the embodiment.
  • FIG. 17 is an explanatory diagram of a random pattern forming process according to the embodiment.
  • FIG. 18 is a flowchart of random pattern formation processing according to the embodiment.
  • FIG. 19 is an explanatory diagram of circle coordinates in random pattern formation according to the embodiment.
  • FIG. 20 is an explanatory diagram of a random pattern forming process according to the embodiment.
  • 21A and 21B are explanatory diagrams of random weighting according to the embodiment.
  • 22A to 22C are explanatory diagrams of mesh pattern formation according to the embodiment.
  • 23A to 23C are explanatory diagrams of a transparent conductive element using metal nanowires according to the embodiment.
  • FIG. 24 is an explanatory diagram of a position detection marker according to the embodiment.
  • FIG. 25A to 25C are explanatory diagrams of the silver wiring region of the embodiment.
  • 26A to 26E are explanatory diagrams of various structural examples of the input device according to the embodiment.
  • FIG. 27 is a perspective view illustrating a television (electronic device) including a display unit.
  • 28A and 28B are perspective views illustrating a digital camera (electronic device) including a display unit.
  • FIG. 29 is a perspective view illustrating a notebook personal computer (electronic device) including a display unit.
  • FIG. 30 is a perspective view illustrating a video camera (electronic device) including a display unit.
  • FIG. 31 is a perspective view of a mobile terminal device (electronic device) including a display unit.
  • FIG. 32 is an explanatory diagram of an evaluation result of the example.
  • FIG. 33 is an explanatory diagram of an evaluation result of the example.
  • FIG. 34 is an explanatory diagram of an evaluation result of the example.
  • FIG. 35A and FIG. 35B are explanatory diagrams of a random pattern according to the embodiment.
  • FIG. 36 is an explanatory diagram of a random pattern according to the embodiment.
  • Example of input device structure> ⁇ 2.
  • Transparent Conductive Element of First Embodiment Linear Pattern Electrode> ⁇ 3.
  • Transparent Conductive Element of Second Embodiment Diamond Pattern Electrode> ⁇ 4.
  • Manufacturing Method I> ⁇ 5.
  • Method for forming random pattern> ⁇ 7.
  • Position detection marker> ⁇ 9.
  • Example of electronic device structure> ⁇ 1.
  • FIG. 1 is a cross-sectional view illustrating an example of a configuration of an input device according to an embodiment of the present technology. As shown in FIG.
  • the input device 10 is provided on the display surface of the display device 4.
  • the input device 10 is bonded to the display surface of the display device 4 by, for example, a bonding layer 5.
  • the input device 10 is a so-called projected capacitive touch panel, and includes a first transparent conductive element 1 and a second transparent conductive element 2 provided on the surface of the transparent conductive element 1. .
  • the transparent conductive element 1 forms an X electrode
  • the transparent conductive element 2 forms a Y electrode.
  • the transparent conductive element 1 and the transparent conductive element 2 are bonded together via a bonding layer 6.
  • you may make it further provide the optical layers 3, such as an antireflection film, on the surface of the transparent conductive element 2 through the bonding layer 7 as needed.
  • the optical layer 3 may be a ceramic coat (overcoat) such as SiO2.
  • the transparent conductive element 1 is formed by forming a transparent conductive layer 12 on the surface of the substrate 11 (in this example, the bonding layer 5 side).
  • the transparent conductive element 2 is formed by forming a transparent conductive layer 22 on the surface of the base material 21 (in this case, the bonding layer 6 side).
  • this display device 4 is not particularly limited, for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (PDP), an electroluminescence (EL) display, Various display devices such as a surface-conduction electron-emitter display (SED) may be used.
  • a display device 4 is not particularly limited, for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (PDP), an electroluminescence (EL) display, Various display devices such as a surface-conduction electron-emitter display (SED) may be used.
  • a surface-conduction electron-emitter display SED
  • the transparent conductive element 1 includes a substrate 11 having a surface and a transparent conductive layer 12 formed on the surface.
  • the transparent conductive layer 12 includes a transparent electrode pattern portion 13 and a transparent insulating pattern portion 14.
  • the transparent electrode pattern portion 13 is an X electrode pattern portion that extends in the X-axis direction.
  • the transparent insulating pattern portion 14 is a so-called dummy electrode pattern portion, extends in the X-axis direction, and is interposed between the transparent electrode pattern portions 13 to insulate between the adjacent transparent electrode pattern portions 13. It is a pattern part.
  • transparent electrode pattern portions 13 and transparent insulating pattern portions 14 are alternately laid on the surface of the substrate 11 in the Y-axis direction. 2A to 2C, a region R1 indicates a formation region of the transparent electrode pattern portion 13, and a region R2 indicates a formation region of the transparent insulating pattern portion 14.
  • the shapes of the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are preferably selected as appropriate according to the screen shape, the drive circuit, etc. For example, a straight line shape or a plurality of rhombus shapes (diamond shape) are linearly connected However, it is not particularly limited to these shapes. In the first embodiment, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are linear patterns.
  • the transparent electrode pattern portion 13 is a transparent conductive layer formed by randomly separating a plurality of hole portions 13a, and a conductive portion 13b is interposed between adjacent hole portions 13a.
  • the conductive portion 13b is a conductive material portion in which a conductive material is coated on the surface of the substrate 11, and the hole portion 13a is a portion that is not covered with the conductive material, that is, a nonconductive portion. Therefore, in the transparent electrode pattern portion 13, a plurality of non-conductive portions (hole portions 13a) are formed at random in the formation surface of the conductive material portion (conductive portion 13b).
  • the transparent insulating pattern portion 14 is a transparent conductive layer composed of a plurality of island portions 14a that are randomly formed apart from each other, and a gap portion 14b as an insulating portion is interposed between adjacent island portions 14a.
  • the island portion 14a is a conductive material portion in which the surface of the base material 11 is coated with a conductive material
  • the gap portion 14b is a portion that is not covered with the conductive material, that is, a non-conductive portion. Accordingly, the transparent insulating pattern portion 14 is formed at random in the formation surface of the non-conductive portion (gap portion 14b) with the conductive material portion (island portion 14a) spaced apart.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed in different random patterns. Specifically, the patterns formed by the boundary between the conductive material part and the non-conductive part are different random patterns. Different random patterns are formed by arranging conductive material portions and non-conductive portions based on random patterns generated under different generation conditions. That is, a random pattern for the transparent electrode pattern portion 13 is formed, and the hole portion 13a and the conductive portion 13b are formed based on the random pattern. Further, a random pattern for the transparent insulating pattern portion 14 is formed, and an island portion 14a and a gap portion 14b are formed based on the random pattern. In the gap portion 14b of the transparent insulating pattern portion 14, it is preferable that the conductive material is completely removed.
  • FIG. 3A is an enlarged plan view showing the vicinity of the boundary line between the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14.
  • 3B is a cross-sectional view taken along line bb shown in FIG.
  • the conductive portion 13b and the island portion 14a become a portion coated with the conductive material on the base material 11, and the hole portion 13a and the gap portion 14b are removed of the conductive material and the surface of the base material is exposed. It is a part to do.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed with conductive material portions and non-conductive portions in different random patterns, and on the boundary line L1, there are simply two types of random The pattern is cut and pasted as it is. For this reason, the boundary line between the conductive material portion and the non-conductive portion in the vicinity of the boundary line L1 becomes irregular, and the visual recognition of the boundary line L1 can be suppressed.
  • FIG. 3B the conductive portion 13b and the island portion 14a become a portion coated with the conductive material on the base material 11, and the hole portion 13a and the gap portion 14b are removed of the conductive material and the surface of the base material is exposed. It is a part to do.
  • FIG. 4 shows the transparent conductive element 2 forming the Y electrode.
  • 4A is a plan view showing an example of the configuration of the transparent conductive element 2
  • FIG. 4B is a cross-sectional view taken along the line cc shown in FIG. 4A.
  • FIG. 4C is an enlarged plan view showing a region C2 shown in FIG. 4A.
  • the transparent conductive element 2 includes a base material 21 having a surface and a transparent conductive layer 22 formed on the surface.
  • the transparent conductive layer 22 includes a transparent electrode pattern portion 23 and a transparent insulating pattern portion 24.
  • the transparent electrode pattern portion 23 is a Y electrode pattern portion that extends in the Y-axis direction.
  • the transparent insulating pattern portion 24 is a so-called dummy electrode pattern portion, extends in the Y-axis direction, is interposed between the transparent electrode pattern portions 23, and insulates the adjacent transparent electrode pattern portions 23 from each other. It is a pattern part. These transparent electrode pattern portions 23 and transparent insulating pattern portions 24 are alternately laid on the surface of the substrate 21 in the X-axis direction.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 included in the transparent conductive element 1 described above and the transparent electrode pattern portion 23 and the transparent insulating pattern portion 24 included in the transparent conductive element 2 are, for example, in a relationship orthogonal to each other. is there.
  • a region R1 indicates a formation region of the transparent electrode pattern portion 23, and a region R2 indicates a formation region of the transparent insulating pattern portion 24.
  • the transparent electrode pattern portion 23 is a transparent conductive layer formed by randomly separating a plurality of hole portions 23a, and a conductive portion 23b is interposed between adjacent hole portions 23a. Yes. Therefore, in the transparent electrode pattern portion 23, a plurality of non-conductive portions (hole portions 23a) are formed at random in the formation surface of the conductive material portion (conductive portion 23b).
  • the transparent insulating pattern portion 24 is a transparent conductive layer composed of a plurality of island portions 24a that are randomly spaced apart, and a gap portion 24b as an insulating portion is interposed between adjacent island portions 24a. Yes. Therefore, the transparent insulating pattern portion 24 is formed at random in the formation surface of the non-conductive portion (gap portion 24b) with the conductive material portion (island portion 24a) spaced apart. And the transparent electrode pattern part 23 and the transparent insulation pattern part 24 are formed in the mutually different random pattern similarly to the transparent conductive element 1 of the X electrode mentioned above. Specifically, the patterns formed by the boundary between the conductive material portion and the non-conductive portion are different random patterns.
  • glass or plastic can be used as a material of the base materials 11 and 21 in the transparent conductive elements 1 and 2 described above.
  • glass for example, known glass can be used. Specific examples of the known glass include soda lime glass, lead glass, hard glass, quartz glass, and liquid crystal glass.
  • plastic for example, a known polymer material can be used. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid.
  • the thickness of the glass substrate is preferably 20 ⁇ m to 10 mm, but is not particularly limited to this range.
  • the thickness of the plastic substrate is preferably 20 ⁇ m to 500 ⁇ m, but is not particularly limited to this range.
  • Examples of the conductive material for forming the transparent conductive layers 12 and 22 include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, Metal oxide such as silicon-doped zinc oxide, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide-indium oxide-magnesium oxide, or copper, silver, gold, platinum, palladium, nickel, tin, cobalt , Rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, lead, and other metals, or alloys thereof.
  • ITO indium tin oxide
  • Metal oxide such as silicon-doped zinc oxide, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide-indium oxide-magnesium oxide, or copper
  • a conductive material for forming the transparent conductive layers 12 and 22 a composite material in which carbon nanotubes are dispersed in a binder material may be used. Substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymer conductive polymers selected from these may be used. Two or more of these may be used in combination. The configuration using metal nanowires as the conductive material will be described in detail later.
  • a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a CVD method, a coating method, a printing method, or the like can be used.
  • the thickness of the transparent conductive layers 12 and 22 is a surface resistance of 1000 ⁇ / ⁇ (ohm / square) or less in a state before patterning (a state where the transparent conductive layers 12 and 22 are formed on the entire surfaces of the base materials 11 and 21). It is preferable to select as appropriate.
  • the conductive material coating of the transparent electrode pattern portions 13 and 23 and the transparent insulating pattern portions 14 and 24 in the transparent conductive elements 1 and 2 having the above structure will be described. In the following description, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 mainly on the X electrode side will be described, but the same applies to the transparent electrode pattern portion 23 and the transparent insulating pattern portion 24 on the Y electrode side. is there.
  • Electrode width W.
  • the average electrode width W ⁇ 0.5. Therefore, when the film thickness of the conductive material is the same, the electrical resistance of the transparent electrode pattern portion 13 in FIG.
  • FIG. 5B is twice that in the case of the coverage rate of 100% in FIG. 5A. If the electrical resistance of the transparent electrode pattern portion 13 is large, there is a possibility that the response speed and the position detection accuracy will be lowered when used for a capacitive touch panel. Of course, even if the hole 13a is formed as shown in FIG. 5B, the electrical resistance can be made equivalent to that shown in FIG. 5A if the thickness of the conductive material is doubled. However, in that case, problems such as an increase in material cost and a decrease in production line speed occur, which is not preferable. On the other hand, providing the hole 13a has the meaning of improving the invisibility between the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14. For example, FIG.
  • 5C shows a random pattern in which dots of various diameters are randomly arranged, and based on this, the hole 13a of the transparent electrode pattern portion 13 and the island portion 14a of the transparent insulating pattern portion 14 are formed. is there.
  • one random pattern is used in common by the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, and is inverted at the boundary line L1. That is, the dot portion in the random pattern is the hole portion 13a (non-conductive portion) in the transparent electrode pattern portion 13 and the island portion 14a (conductive material portion) in the transparent insulating pattern portion 14.
  • the problem of the previous resistance value occurs.
  • a random pattern is introduced into the transparent electrode pattern portion 13 as shown in FIG. 5C
  • the electrical resistance is increased.
  • the area ratio of the island portion 14a is reduced on the transparent insulating pattern portion 14 side, and the area of the gap portion 14b is reduced. The proportion increases.
  • FIG. 6 shows the change in sheet resistance with respect to the coverage of the conductive portion 13b.
  • the sheet resistance is 135 ⁇ / ⁇ , 100 ⁇ / ⁇ , 75 ⁇ / ⁇ , 50 ⁇ / ⁇ .
  • the change in sheet resistance when the coverage is lowered is shown. As illustrated, the sheet resistance increases as the coverage of the conductive portion 13b decreases.
  • the standard is about 150 ⁇ / ⁇ or less.
  • the coverage of the conductive portion 13b is 67% or more (roughly from the figure). It is understood that it is preferable to set it to about 65% or more. That is, by providing the holes 13a and the islands 14a in a random pattern, it is advantageous for non-visibility, but in order to improve the non-visibility, the area ratio of the holes 13a in the transparent electrode pattern portion 13, It is preferable that the area ratio of the island part 14a in the transparent insulating pattern part 14 is substantially equal. For this purpose, a random pattern is formed so that the coverage of the conductive material as shown in FIG.
  • the coverage of the conductive portion 13b in the transparent electrode pattern portion 13 is about 50%, and the sheet resistance is increased.
  • the coverage of the conductive portion 13b in the transparent electrode pattern portion 13 is, for example, about 65% or more, the sheet resistance can be suppressed, but this time the area ratio of the gap portion 14b in the transparent insulating pattern portion 14 is reduced. This increases the non-visibility.
  • the transparent electrode pattern portion 13 is a solid coating pattern in which the coverage of the conductive material is 100%, and the transparent insulating pattern portion 14 is a random pattern.
  • the entire transparent electrode pattern portion 13 is the conductive portion 13b, and the hole portion 13a does not exist.
  • the transparent insulating pattern portion 14 island portions 14a and gap portions 14b are randomly arranged.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are an example in which each of the conductive material portions is formed in a different pattern while having at least the conductive material portion. Furthermore, the transparent electrode pattern part 13 and the transparent insulating pattern part 14 have an example in which the conductive material part and the non-conductive part are formed in different random patterns. For example, the transparent electrode pattern portion 13 is randomly formed with a plurality of hole portions 13a (non-conductive portions) separated from each other within the conductive material portion formation surface, and the transparent insulating pattern portion 14 is within the non-conductive portion formation surface. Thus, the conductive material portion (island portion 14a) is formed at a distance from each other at random.
  • the patterns formed by the boundary between the conductive material portion and the non-conductive portion are different random patterns.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed by using different random patterns as described above.
  • a different random pattern is a pattern generated under different random pattern generation conditions (radius range, graphic drawing conditions in a generated circle, weighting of random numbers described later, etc.).
  • the resistance value reduction of the transparent electrode pattern part 13 and non-visibility can be made compatible. For example, in the case of forming the conductive portion 13b having the sheet resistance of 100 ⁇ / ⁇ in FIG.
  • the coverage of the conductive portion 13b is approximately 65. Since it may be about% or more, a random pattern in which the area ratio of the holes 13a is 35% or less may be used. At this time, the transparent insulating pattern portion 14 may use a random pattern in which the area ratio of the gap portion 14b is not so different from the area ratio of the hole portion 13a. Thereby, non-visibility can be maintained. For example, when the coverage of the conductive material portion (conductive portion 13b) in the transparent electrode pattern portion 13 is 65% or more and 100 or less, the coverage of the conductive material portion (gap portion 14b) in the transparent insulating pattern portion 14 is also 65% or more and 100.
  • the transparent conductive elements 1 and 2 constituting the input device 10 of the present embodiment have a transparent electrode pattern portion 13 (23) and a transparent insulating pattern portion 14 (24), respectively, having a conductive material portion and a non-conductive portion. They are formed with different random patterns.
  • FIG. 7A shows the state of FIG. 1, that is, the state where the transparent conductive elements 1 and 2 are stacked, and FIG. 7B shows a partial enlarged view.
  • the area AR1 is an area where the transparent electrode pattern portions 13 and 23 overlap.
  • the area AR2 is an area where the transparent insulating pattern portions 14 and 24 overlap.
  • the area AR3 is an area where the transparent electrode pattern portion 13 and the transparent insulating pattern portion 24 overlap or the transparent insulating pattern portion 14 and the transparent electrode pattern portion 23 overlap.
  • the transparent conductive element 1 in a state where the transparent conductive element 1 and the transparent conductive element 2 are overlapped, in all the regions AR1, AR2, AR3 viewed from the input surface direction, the transparent conductive element 1
  • the difference of the addition value between the coverage of the conductive material portion and the coverage of the conductive material portion in the transparent conductive element 2 is set to be 0 or more and 60 or less. Furthermore, the difference between the addition values is preferably 0 or more and 30 or less.
  • the coverage of the conductive material portions (conductive portions 13b and 23b) in the transparent electrode pattern portions 13 and 23 is set to 80%. Further, the coverage of the conductive material portions (island portions 14a, 24a) in the transparent insulating pattern portions 14, 24 is set to 50%.
  • the added value of the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is as follows.
  • Area AR1: 80 + 80 160
  • Area AR2: 50 + 50 100
  • Area AR3: 80 + 50 130
  • the added value is the largest in the area AR1 and the smallest in the area AR2, but the difference between the added values is 60. If the difference between the addition values is 60 or less, it can be said that the non-visibility is good.
  • the reason for using the added value as an index is to consider non-visibility according to the user's vision.
  • the actual diameter of the hole 13a and the island 14a is, for example, 10 ⁇ m to 100 ⁇ m, or 100 ⁇ m to 500 ⁇ m, depending on the parameter setting at the time of random pattern generation. It is a minute hole. There is almost no case where the user can visually recognize each of the hole 13a and the island 14a on the transparent electrode.
  • the transparent conductive elements 1 and 2 are overlapped, the coverage of the conductive material portion in the transparent conductive element 1 and the transparent conductive element 2 The sum of the coverage of the conductive material portion is regarded as the average coverage of the region.
  • the inventors have found that non-visibility can be maintained when the difference between the addition values is 0 or more and 60 or less in all regions viewed from the input surface direction.
  • reducing the difference between the addition values is more suitable for non-visibility. For example, in the above example, if the addition value in the area AR2 is increased, the difference between the addition values in each area can be further reduced. Therefore, the coverage of the conductive material portions (island portions 14a, 24a) in the transparent insulating pattern portions 14, 24 is set to 65%.
  • the added value of the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is as follows.
  • Area AR1: 80 + 80 160
  • Area AR2: 65 + 65 130
  • Area AR3: 80 + 65 145
  • the difference between the added values is 30, which is more preferable in terms of non-visibility.
  • increasing the coverage of the conductive material portions (islands 14a and 24a) in the transparent insulating pattern portions 14 and 24, for example, in the case of print formation described later the amount of the conductive material used is increased accordingly, and the material cost is increased. Get higher.
  • the conductive material portion (island portion 14a, The coverage of 24a) may be set.
  • different random patterns are used for the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24). By using different random patterns, the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) can increase the degree of freedom in setting the coverage of the conductive material portion.
  • the resistance value in the transparent electrode pattern portion 13 (23) is set to an appropriate value (for example, 150 ⁇ or less), and the conductive material portion on the transparent insulating pattern portion 14 (24) side is considered in view of invisibility and material cost. Coverage can be set. As described above, it is possible to realize the non-visualization of the electrode configuration in the entire region viewed from the input surface side while realizing the reduction of the resistance value in the transparent electrode pattern portion 13 (23). As a result, it is possible to realize a high-performance input device 10 that is hardly visible.
  • the coverage of the conductive material portion in the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) is preferably 65% or more and less than 100.
  • the difference in the added value of the coverage ratio of the conductive material is set to 0 or more and 60 or less in any region when the transparent conductive elements 1 and 2 are overlapped.
  • the difference between the added values is set to 0 or more and 30 or more.
  • two types of random patterns are present on the boundary line L1 (L2) between the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24). It is in the state of being cut and pasted as it is (pattern cutting). This is preferable in that a boundary line with a random shape that is difficult to be visually recognized is formed.
  • the transparent electrode pattern portion 13 may have a coverage of the hole 13a of 0%, that is, a coverage of the conductive portion 13b of 100%. Moreover, you may form the transparent electrode pattern part 13 with the mix of 2 or more types of area
  • the hole 13a and the island 14a have a circular shape, but an elliptical shape, a shape obtained by cutting a part of the circular shape, a shape obtained by cutting a part of the elliptical shape, a polygonal shape, and a corner are taken.
  • Polygon shape, indefinite shape, etc. may be sufficient.
  • those types of shapes may be used. From the viewpoint of easy generation of a random pattern, a circular shape is preferable.
  • the elliptical shape includes not only a perfect ellipse defined mathematically but also an ellipse (for example, an ellipse, an egg shape, etc.) with some distortion.
  • the circle includes not only a perfect circle (perfect circle) defined mathematically but also a circle with some distortion.
  • Polygons are not only full polygons defined mathematically, but also polygons with distortion on the sides, polygons with rounded corners, and distortions on the sides and corners. Also included are rounded polygons. Examples of the strain applied to the side include a curved shape such as a convex shape or a concave shape. Moreover, you may use the random mesh pattern which is illustrated to FIG. 10 and FIG.
  • the plurality of hole portions 13a are preferably formed apart from each other, but a part of the plurality of hole portions 13a is brought into contact with each other as long as the non-visibility and the conductivity are not deteriorated. Alternatively, they may be overlapped. In addition, it is preferable to form all of the plurality of islands 14a apart from each other, but if the range does not cause a decrease in invisibility and a decrease in insulation, a part of the plurality of islands 14a are brought into contact with each other. Or you may make it overlap. ⁇ 3.
  • Transparent Conductive Element of Second Embodiment Diamond Pattern Electrode>
  • FIG. 8A and 8B show electrode patterns in the transparent conductive elements 1 and 2.
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed on the transparent conductive layer 12.
  • the transparent electrode pattern part 13 is made into the shape where the site
  • the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are alternately laid on the surface of the base material 11 in the Y-axis direction.
  • the transparent conductive element 2 has a transparent conductive layer 22 having a transparent electrode pattern portion 23 and a transparent insulating pattern portion 24 formed thereon.
  • the transparent electrode pattern part 23 is made into the shape where the site
  • the transparent electrode pattern portions 23 and the transparent insulating pattern portions 24 are alternately laid on the surface of the base material 21 in the X-axis direction.
  • the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) may be formed by using different random patterns to form the conductive material portion. This is the same as in the first embodiment.
  • FIG. 9A shows the case where the transparent electrode pattern portions 13 and 23 are in a diamond shape in a state where the transparent conductive elements 1 and 2 are overlapped like FIG. 7A, and FIG. Yes.
  • the transparent conductive element 2 side is indicated by a broken line.
  • the area AR ⁇ b> 1 is an area where the transparent electrode pattern portions 13 and 23 overlap
  • the area AR ⁇ b> 2 is an area where the transparent insulating pattern portions 14 and 24 overlap
  • the area AR3 is an area where the transparent electrode pattern portion 13 and the transparent insulating pattern portion 24 overlap, or the transparent insulating pattern portion 14 and the transparent electrode pattern portion 23 overlap.
  • all of the portions where the transparent conductive elements 1 and 2 overlap are classified into these regions AR1, AR2, and AR3.
  • the shapes and ranges of the regions AR1, AR2, AR3 are also different.
  • the conductive material portions conductive portions 13b, The coverage of 23b) is 80%, and the coverage of the conductive material portions (islands 14a, 24a) in the transparent insulating pattern portions 14, 24 is 50%. If the difference between the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is 60 or less, non-visibility Is good. Furthermore, when the difference between the added values is 30 or less, the non-visibility is extremely good.
  • the transparent electrode pattern portion 13 having a diamond-shaped pattern is divided into a region A and a region B.
  • a portion corresponding to the transparent insulating pattern portion 14 is defined as a region C.
  • the width of the area A is WA and the length is LA.
  • LB is the length of the region B.
  • the region A has a larger L (x) / W (x) value than the region B, and the resistance value is large in the first place.
  • the coverage of the conductive portion 13b is 79% (the hole 13a is 21%), and in the region A, the coverage of the conductive portion 13b is 100% (the hole 13a is 0%). It is possible to do. This coverage is only an example.
  • the coverage of the conductive material portion is set so as to meet the above-described condition of the added value difference of the coverage when the X and Y electrodes are overlapped. You only have to set it.
  • a random mesh pattern may be used instead of a random dot pattern.
  • the difference in coverage of the conductive material in the regions A to C is preferably 0% or more and 30% or less.
  • step F101 a random pattern used for the transparent electrode pattern unit 13 is generated.
  • step F102 a random pattern used for the transparent insulating pattern portion 14 is generated.
  • the random pattern for the transparent electrode pattern part and the random pattern for the transparent insulating pattern part are such that the pattern generation conditions (radius range, graphic drawing condition in the generated circle, random number weighting described later, etc.) are different from each other. Set to and generate.
  • steps F101 and F102 may be reversed or performed in parallel. Further, it may be executed away from the actual production line.
  • FIG. 11A for convenience of explanation, a single flowchart is shown.
  • step F103 the transparent conductive layer 12 is formed.
  • the transparent conductive layer 12 is formed on the surface of the substrate 11 as shown in FIG. 12A.
  • the base material 11 may be heated.
  • a CVD method Chemical Vapor Deposition: a technique for depositing a thin film from a gas phase using a chemical reaction, such as thermal CVD, plasma CVD, or photo-CVD.
  • PVD methods Physical Vapor Deposition
  • vacuum deposition plasma-assisted deposition
  • sputtering ion plating
  • etc . A technology that forms a thin film by agglomerating materials that have been physically vaporized in a vacuum on a substrate. ) Can be used.
  • the transparent conductive layer 12 is annealed as necessary. Thereby, the transparent conductive layer 12 becomes, for example, a mixed state of amorphous and polycrystalline or a polycrystalline state, and the conductivity of the transparent conductive layer 12 is improved.
  • Step F104 a resist layer is formed. As shown in FIG.
  • a resist layer 41 having openings 33 at portions corresponding to the above-described hole portions 13a and the gap portions 14b is patterned by a lithography technique.
  • the resist layer 41 corresponding to the hole portion 13a is formed based on the random pattern for the transparent electrode pattern portion formed in step F101.
  • the resist layer 41 corresponding to the gap portion 14b is formed based on the random pattern for the transparent insulating pattern portion formed in step F102.
  • a material of the resist layer 41 for example, either an organic resist or an inorganic resist may be used.
  • the organic resist for example, a novolac resist or a chemically amplified resist can be used.
  • the metal compound which consists of 1 type, or 2 or more types of transition metals can be used, for example.
  • Development is performed as step F105.
  • the transparent conductive layer 12 is etched using the resist layer 41 in which the plurality of openings 33 are formed as an etching mask.
  • the hole 13a and the conductive portion 13b are formed in the transparent conductive layer 12 in the region R1
  • the island portion 14a and the gap portion 14b are formed in the transparent conductive layer 12 in the region R2.
  • the etching for example, both dry etching and wet etching can be used. From the viewpoint of simple equipment, it is preferable to use wet etching.
  • step F106 the resist layer is peeled off.
  • the resist layer 41 formed on the transparent conductive layer 12 is removed by ashing or the like.
  • the intended transparent conductive element 1 is obtained.
  • step F106 a manufacturing method II of the transparent conductive elements 1 and 2 using a printing method will be described with reference to FIGS. 11B, 13, and 14.
  • step F201 a random pattern used for the transparent electrode pattern unit 13 is generated.
  • step F202 a random pattern used for the transparent insulating pattern portion 14 is generated.
  • the random pattern for the transparent electrode pattern part and the random pattern for the transparent insulating pattern part are such that the pattern generation conditions (radius range, graphic drawing condition in the generated circle, random number weighting described later, etc.) are different from each other.
  • the points related to steps F201 and F202 are the same as steps F101 and F102 of FIG. 11A.
  • a master is formed.
  • FIG. 13A is a perspective view showing an example of the shape of the master.
  • FIG. 13B is an enlarged plan view illustrating a part of the region R1 and the region R2 illustrated in FIG. 13A.
  • the master 100 is, for example, a roll master having a cylindrical surface as a transfer surface, and regions R1 and R2 are alternately laid on the cylindrical surface.
  • a plurality of concave holes 113a are formed apart from each other, and the holes 113a are separated from each other by convex parts 113b.
  • the hole portion 113a is for forming the hole portion 13a of the transparent electrode pattern portion 13 by printing
  • the convex portion 113b is for forming the conductive portion 13b of the transparent electrode pattern portion 13 by printing.
  • the arrangement of the hole 113a and the convex 113b is based on the random pattern generated in step F201.
  • a plurality of island portions 114a having a convex shape are formed apart from each other, and the island portions 114a are separated from each other by a recess 114b.
  • the island portion 114a is for forming the island portion 14a of the transparent insulating pattern portion 14 by printing
  • the concave portion 114b is for forming the gap portion 14b of the transparent insulating pattern portion 14 by printing.
  • the arrangement of the islands 114a and the recesses 114b is based on the random pattern generated in step F202.
  • the conductive ink is printed using the master 100 described above.
  • conductive ink is applied to the transfer surface of the master 100, and the applied conductive ink is printed on the surface of the substrate 11.
  • the printing method for example, screen printing, waterless flat printing, flexographic printing, gravure printing, gravure offset printing, reverse offset printing, and the like can be used.
  • step F205 drying or baking is performed in step F205.
  • the conductive ink printed on the surface of the substrate 11 is heated and dried and / or baked as necessary.
  • the intended transparent conductive element 1 can be obtained.
  • the conductive material portion is formed based on the random patterns that are different between the transparent electrode pattern portions 13 and 23 and the transparent insulating pattern portions 14 and 24.
  • an example of a method of forming a random pattern itself that is the basis for forming such a conductive material portion will be described.
  • a method of generating a random pattern for forming the circular holes 13a and 23a and the islands 14a and 24a will be described, but the shape of the random pattern is not limited to this.
  • the center coordinates of the circle are calculated and arranged so that the adjacent circle is always in contact with each other.
  • Generated random pattern the following (1) and (2) algorithms can obtain a random pattern with a small amount of calculation and a uniform random arrangement with high density.
  • Xmax X coordinate maximum value of a region for generating a circle
  • Yw Setting of the maximum value of Y coordinate that can be taken by the center of the circle when placing the circle on the X axis
  • Rmin Minimum radius of the circle to be generated
  • Rmax Circle to be generated Maximum radius
  • Rnd a random value Pn obtained in a range of 0.0 to 1.0: a circle defined by an X coordinate value xn, a Y coordinate value yn, and a radius rn
  • FIG. 15 is a schematic diagram illustrating the algorithm (1).
  • the Y coordinate value is randomly determined in the range of 0.0 to approximately Rmin on the X axis, and the circle whose radius is determined randomly in the range of Rmin to Rmax Arrangement so as to touch the circle is repeated, and one row of circles is randomly arranged on the X axis.
  • the radius of the circle Pn is also set at random by using the random number value Rnd as a coefficient.
  • the center Y coordinate value yn is also set at random within the range of Yw.
  • step S4 it is determined whether or not Xn> Xmax.
  • step S4 If it is determined in step S4 that Xn> Xmax, the process ends. If it is determined in step S4 that Xn> Xmax is not satisfied, the process proceeds to step S5. In step S5, the circle Pn (xn, yn, rn) is stored. Next, in step S6, the value of n is incremented, and the process proceeds to step S3. That is, the next circle Pn (xn, yn, rn) is determined. (2) “Random radius circle” is determined, stacked in order from the bottom so as to touch two existing circles and not overlap other circles. The necessary parameters are shown below.
  • FIG. 17 is a schematic diagram illustrating the algorithm (2).
  • step S12 a circle Pi having the smallest Y coordinate value yi is obtained from the circles P0 to Pn generated in (1).
  • step S13 it is determined whether yi ⁇ Ymax. If it is determined in step S13 that yi ⁇ Ymax is not satisfied (No), the process ends. That is, it is determined that the stacking of the circles up to the Y coordinate maximum value has been completed, and the processing ends. If it is determined in step S13 that yi ⁇ Ymax (Yes), the process proceeds to step S14 and subsequent steps, and processing for adding circles is performed.
  • step S15 a circle Pj having a minimum Y coordinate value yi is obtained in the vicinity of the circle Pi, excluding the circle Pi.
  • step S16 it is determined whether or not a minimum circle Pi exists. If it is determined in step S16 that the minimum circle Pi does not exist, Pi is invalidated in step S17. If it is determined in step S16 that the minimum circle Pi exists, in step S18, it is determined whether or not there is a circle Pk having a radius rk in contact with the circle Pi and the circle Pj.
  • step S19 shows how to obtain the coordinates when arranging so that a circle with an arbitrary radius is in contact with two circles in contact with each other in step S18. That is, according to the equation shown in the figure, cos ⁇ i is obtained using the coordinates (xi, yi) and radius ri of the circle Pi, the coordinates (xj, yj) and radius rj of the circle Pj, and the radius rk of the circle Pk to be added, The coordinates (xk, yk) of the circle Pk to be added are calculated using ⁇ i. Next, in step S19, it is determined whether or not there is a circle Pk having a radius rk in contact with the circle Pi and the circle Pj.
  • step S22 If it is determined in step S21 that overlapping circles exist, it is determined in step S22 whether or not overlapping can be avoided by reducing the radius rk of the circle Pk within a range equal to or greater than Rfill. If it is determined in step S22 that the overlap cannot be avoided, the combination of the circle Pi and the circle Pj is excluded in step S20. If it is determined in step S22 that the overlap can be avoided, the radius rk is set to the maximum value that can avoid the overlap in step S23. Next, in step S24, the circle Pk (xk, yk, rk) is stored.
  • n is incremented in step S25
  • Pn Pk is set in step S26
  • the value of k is incremented in step S27, and the process proceeds to step S12.
  • circles are randomly arranged on a plane as shown in FIG.
  • a random pattern corresponding to the arrangement of the holes 13a and the islands 14a can be formed.
  • a circle T reduced at a certain reduction rate is indicated by a wavy line.
  • the radius ranges of random circles generated as shown in FIG. 20 are different.
  • the reduction rate from the state shown in FIG. 20 to the circle T (or another figure arranged in the circle) may be different.
  • positioned at random differ.
  • one is a circle and the other is a square.
  • One may be a random dot pattern, and the other may be a random mesh pattern.
  • Rnd a random value obtained in the range of 0.0 to 1.0 is used as the random value Rnd, it is also conceivable to assign different weights thereto. Of course, these may be combined.
  • the random pattern used for the transparent electrode pattern portion 13 and the random pattern used for the transparent insulating pattern portion 14 are different from each other, thereby realizing a desired coverage of the conductive material portion.
  • the weighting of random numbers will be described.
  • the radius of the circle generated as shown in FIG. Circle radius minimum radius Rmin + (maximum radius Rmax ⁇ minimum radius Rmin) ⁇ random number value Rnd.
  • the random value Rnd is a random number obtained in the range of 0.0 to 1.0. By assigning this random number to a calculation formula in which the calculation result is in the range of 0 to 1, weight distribution can be weighted. For example, random value [Rnd] 3 By doing so, the distribution of small circle radii can be increased.
  • Random value [Rnd] 1/3 By doing so, the distribution of large circle radii can be increased, and the filling rate of circles (dots) can be increased.
  • y x 1/3
  • Y x 3
  • the random numbers after weighting are shown.
  • FIG. 21B shows the frequency of the diameter of the circle (dot) when the random number is weighted in this way. This is a case where a circular random pattern is generated under the following conditions as the generated random pattern.
  • -Radius reduction value 10 ⁇ m
  • the frequency distribution when the above weighting is performed is shown by a 1 ⁇ m diameter pitch. It can be seen that it is possible to increase the dot filling rate by increasing the frequency of occurrence of large diameter circles by weighting random numbers. Conversely, it is possible to increase the frequency of small diameters and reduce the dot filling rate. However, if the frequency of the arbitrary diameter is increased too much, the randomness decreases, and moire or diffracted light may be generated. In the frequency distribution with a 1 ⁇ m diameter pitch, the frequency of the arbitrary diameter is preferably 35% or less.
  • a random mesh pattern such as a dot shape or a polygonal shape in a circle has been described so far, but generation of a random mesh pattern as shown in FIG. 22A will also be described.
  • a random circle arrangement pattern as shown in FIG. 22B
  • a mesh pattern is formed by drawing lines at random angles with respect to this random circle pattern. That is, using the center coordinates of each circle as they are, a straight line passing through the center of each circle is drawn. At this time, by randomly determining the rotation angle of each straight line in the range of 0 to 180 degrees, a line having a random inclination is formed as shown in the figure. By doing so, a random mesh pattern can be generated.
  • FIG. 22C may be used. Also in the case of FIG. 22C, a random circle arrangement pattern generated as shown in FIG. 20 is used. In this case, a line segment connecting the center coordinates of adjacent circles is subtracted from the center coordinates of each circle. That is, the centers of neighboring circles are connected. By doing so, a random mesh pattern can be generated. 22B and 22C, two different types of random patterns can be generated by changing parameter settings or changing the weighting of random values. In addition, it is possible to easily form random patterns having different coverage ratios of the conductive material portions by changing the thickness of the straight lines formed at random. ⁇ 7.
  • Transparent conductive element using metal nanowire> When the transparent conductive layer 12 is formed of metal nanowires, if the transparent electrode pattern portion 13 is subjected to random pattern processing, the metal nanowire coating area is reduced, thereby reducing the reflection L value of the conductive portion. As a result, the black display on the screen of the conductive material portion sinks further, and the display characteristics (contrast) of the display are improved as compared with the case where a linear pattern or a diamond pattern is used. Further, by combining a predetermined surface treatment, the reflection L value can be kept lower in both the conductive material portion and the non-conductive portion, and the contrast is further improved.
  • a transparent conductive film using metal nanowires as a conductive material can be formed using a coating process instead of sputtering like a transparent conductive film using ITO. Since the coating process does not require a vacuum environment unlike sputtering, it can be expected to reduce manufacturing costs. Moreover, the transparent conductive film using the metal nanowire has been attracting attention as a next-generation transparent conductive film that does not use indium which is a rare metal.
  • FIG. 23A shows a structural example of a transparent conductive element using metal nanowires.
  • a transparent conductive film 81 using metal nanowires is formed on the substrate 80.
  • surface treatment dyes, dispersants, binders and the like are also used.
  • the base material 80 is, for example, a transparent inorganic base material or plastic base material.
  • a transparent film, sheet, substrate or the like can be used.
  • the material of the inorganic base material include quartz, sapphire, and glass.
  • a material for the plastic substrate for example, a known polymer material can be used. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid.
  • the thickness of the plastic substrate is preferably 38 to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • the constituent element of the metal nanowire is composed of one or more selected from Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn.
  • the average minor axis diameter of the nanowire is preferably larger than 1 nm and not larger than 500 nm, and the average major axis length is preferably larger than 1 ⁇ m and not larger than 1000 ⁇ m.
  • the average minor axis diameter is smaller than 1 nm, the conductivity of the wire is deteriorated and it is difficult to function as a conductive film after coating. Further, when the average minor axis diameter is larger than 500 nm, the total light transmittance is deteriorated.
  • the average major axis length is shorter than 1 ⁇ m, the wires are not easily connected to each other and do not function as a conductive film after application.
  • the metal nanowires when formed into a paint tends to deteriorate.
  • the metal nanowires may be surface-treated with an amino group-containing compound such as PVP or polyethyleneimine. It is preferable to make the addition amount so that the conductivity is not deteriorated when the coating is formed.
  • sulfo group including sulfonate), sulfonyl group, sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group
  • a compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group that can be adsorbed to a metal may be used as a dispersant.
  • the solvent a solvent in which metal nanowires are dispersed is used.
  • a high boiling point solvent can be further added to control the evaporation rate of the solvent.
  • Applicable binder materials can be widely selected from known transparent natural polymer resins or synthetic polymer resins.
  • a transparent thermoplastic resin for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, hydroxypropyl methyl cellulose
  • a transparent curable resin for example, a melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate
  • heat, light, electron beam, or radiation can be used.
  • examples of the additive include a surfactant, a viscosity modifier, a dispersant, a curing accelerating catalyst, a plasticizer, a stabilizer such as an antioxidant and an antisulfurizing agent, and the like.
  • an overcoat layer 82 may be separately provided after the metal nanowire is applied as shown in FIG. 23B.
  • hydrolysis / dehydration condensate such as polyacrylic, polyamide, polyester, cellulose or metal alkoxide can be used.
  • the thickness of the overcoat layer 82 is a thickness that does not significantly deteriorate the optical characteristics.
  • an anchor layer 83 may be separately provided on the substrate 80 before applying the metal nanowires as shown in FIG. 23C.
  • the anchor layer 83 may be hydrolyzed / dehydrated condensate such as polyacrylic, polyamide, polyester, cellulose, or metal alkoxide. It is desirable that the anchor layer 83 has a thickness that does not significantly deteriorate the optical characteristics. Both the overcoat layer and the anchor layer may be used in combination.
  • the transparent conductive film 81 using metal nanowires is manufactured through the following steps. (Step 1) Disperse metal nanowires in a solvent.
  • the compounding amount of the nanowire is 0.01 to 10 parts by weight when the weight of the coating is 100 parts by weight. When the amount is less than 0.01 part by weight, a sufficient basis weight cannot be obtained when a film is formed by coating. On the other hand, when larger than 10 weight part, it exists in the tendency for the dispersibility of nanowire to deteriorate.
  • an amino group-containing compound such as PVP or polyethyleneimine may be added as a dispersant to the metal nanowire dispersion.
  • sulfo group including sulfonate
  • sulfonyl group sulfonamide group
  • carboxylic acid group including carboxylate
  • amide group phosphate group (including phosphate and phosphate ester)
  • phosphino group silanol group
  • a compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group that can be adsorbed to a metal may be used as a dispersant.
  • Step 2 A transparent conductive film made of metal nanowires on a substrate is prepared.
  • a wet film-forming method is preferable in consideration of physical properties, convenience, production costs, and the like, and examples of known methods include coating, spraying, and printing.
  • the coating method is not particularly limited, and a known coating method can be used.
  • Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating method. And spin coating method.
  • Step 3 After coating, the solvent is dried. Either natural drying or heat drying may be used. Further, when the binder is cured, it is cured by UV or heat. Further, in order to reduce the sheet resistance value, a pressurizing process using a calendar may be performed.
  • the basis weight (g / m 2) of the metal nanowires in the metal nanowire layer in FIG. 23A is preferably 0.001 g to 1 g. When it is less than 0.001 g, metal nanowires are not sufficiently present in the coating film, and the performance as a transparent conductive film is deteriorated.
  • Position detection marker> A position detection marker for improving the efficiency of the manufacturing process of the input device 10 of the present embodiment will be described.
  • the invisibility of the transparent conductive elements 1 and 2 is improved.
  • FIG. 24 shows a state where a large number of transparent conductive layers 12 are formed on the sheet of the base material 11 before cutting.
  • a position detection marker MP is formed at a predetermined position on the sheet.
  • the position detection marker MP is preferably arranged outside the region where the pattern of the transparent conductive layer 12 is formed. Since the position detection marker MP is not required after the input device 10 (touch panel) is assembled, if the position detection marker MP is disposed at the above position, the position detection marker MP can be easily removed after the touch panel is assembled. However, the position detection marker MP is not necessarily outside the pattern of the transparent conductive layer 12.
  • FIG. 25A shows the transparent conductive element 1
  • FIG. 25B shows a part thereof enlarged
  • the area AR10 is an area where the silver wiring 18 is formed.
  • FIG. 25C a part of the area AR10 is enlarged as an island part 14a is arranged in the area AR10.
  • the area AR10 is an area hidden by the frame of the input device 10 (touch panel) and does not affect the non-visibility effect. Therefore, it is not necessary to arrange a random pattern in such a silver wiring area AR10, or in an area hidden by a frame regardless of the presence or absence of silver wiring. ⁇ 10. Modification of input device structure> Here, a modified example of the structure of the transparent conductive elements 1 and 2 in the input device 10 shown in FIG. 1 will be described. As shown in FIG.
  • the transparent conductive layer 12 may be formed on one surface of the substrate 21 of the transparent conductive element 2, and the transparent conductive layer 22 may be formed on the other surface.
  • the formation of the base material 11 can be omitted.
  • a hard coat layer 61 may be formed on at least one of the two surfaces of the transparent conductive element 1.
  • a photosensitive resin for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used.
  • a urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting the resulting product with an acrylate or methacrylate monomer having a hydroxyl group.
  • the thickness of the hard coat layer 61 is preferably 1 ⁇ m to 20 ⁇ m, but is not particularly limited to this range.
  • the hard coat layer 61 is formed by applying a hard coat paint to the substrate 11.
  • the coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating. Method, spin coating method and the like.
  • the hard coat paint contains, for example, a resin raw material such as a bifunctional or higher functional monomer and / or oligomer, a photopolymerization initiator, and a solvent.
  • the solvent is volatilized by drying the hard coat paint applied on the substrate 11. Thereafter, the hard coat paint dried on the substrate 11 is cured, for example, by irradiation with ionizing radiation or heating.
  • the hard coat layer 61 may be formed on at least one of the two surfaces of the transparent conductive element 2. As shown in FIG. 26C, it is preferable to interpose the optical adjustment layer 62 between the base material 11 and the transparent conductive layer 12 of the transparent conductive element 1. Thereby, the invisibility of the pattern shape of the transparent electrode pattern part 13 can be assisted.
  • the optical adjustment layer 62 is composed of, for example, a laminate of two or more layers having different refractive indexes, and the transparent conductive layer 12 is formed on the low refractive index layer side. More specifically, as the optical adjustment layer 62, for example, a conventionally known optical adjustment layer can be used. As such an optical adjustment layer, for example, those described in Japanese Patent Application Laid-Open Nos. 2008-98169, 2010-15861, 2010-23282, and 2010-27294 are used. be able to. Note that, similarly to the transparent conductive element 1 described above, the optical adjustment layer 62 may be interposed between the base 21 and the transparent conductive layer 22 of the transparent conductive element 2. As shown in FIG.
  • a close adhesion auxiliary layer 63 as a base layer of the transparent conductive layer 12 of the transparent conductive element 1.
  • the adhesiveness of the transparent conductive layer 12 with respect to the base material 11 can be improved.
  • the material of the adhesion auxiliary layer 63 include polyacrylic resins, polyamide resins, polyamideimide resins, polyester resins, and hydrolysis / dehydration condensation products such as metal element chlorides, peroxides, and alkoxides. Etc. can be used.
  • a discharge treatment in which a surface on which the transparent conductive layer 12 is provided is irradiated with glow discharge or corona discharge may be used.
  • the adhesion auxiliary layer 63 may be provided in the same manner as the transparent conductive element 1. Moreover, you may make it perform the process for the above-mentioned adhesive improvement. As shown in FIG. 26E, it is preferable to form a shield layer 64 on the transparent conductive element 1. For example, a film provided with the shield layer 64 may be bonded to the first transparent conductive element 1 via a transparent adhesive layer.
  • the shield layer 64 may be directly formed on the opposite side.
  • the material of the shield layer 64 the same material as that of the transparent conductive layer 12 can be used.
  • a method for forming the shield layer 64 a method similar to that for the transparent conductive layer 12 can be used.
  • the shield layer 64 is used in a state where it is formed on the entire surface of the substrate 11 without patterning. By forming the shield layer 64 on the transparent conductive element 1, noise caused by electromagnetic waves emitted from the display device 4 can be reduced, and the position detection accuracy of the input device 10 can be improved. Note that, similarly to the transparent conductive element 1, the shield layer 64 may be formed on the transparent conductive element 2.
  • FIG. 27 is a perspective view illustrating a television to which the present technology is applied.
  • the television 200 according to this application example includes a display unit 201 including a front panel 202, a filter glass 203, and the like, and the display device described above is applied as the display unit 201.
  • FIG. 28 is a diagram illustrating a digital camera to which the present technology is applied.
  • FIG. 28A is a perspective view seen from the front side, and FIG.
  • a digital camera 210 includes a light emitting unit 211 for flash, a display unit 212, a menu switch 213, a shutter button 214, and the like, and the display device described above is applied as the display unit 212.
  • FIG. 29 is a perspective view illustrating a notebook personal computer to which the present technology is applied.
  • the notebook personal computer 220 according to this application example includes a keyboard 222 that is operated when a character or the like is input, a display unit 223 that displays an image, and the like on the main body 221, and the display device described above as the display unit 223.
  • FIG. 30 is a perspective view illustrating a video camera to which the present technology is applied.
  • the video camera 230 includes a main body 231, a subject shooting lens 232 on the side facing forward, a start / stop switch 233 at the time of shooting, a display unit 234, and the like. Apply the described display device.
  • FIG. 31 is a perspective view illustrating a mobile terminal device to which the present technology is applied.
  • the mobile terminal device 240 according to this application example includes a display unit 241 provided in the center of the front panel, a sensor 242 provided in the periphery thereof, a speaker 243, and an operation switch 244, and the display device described above as the display unit 241 Apply.
  • the display device including the input device according to the present embodiment on the display surface is used for the display unit.
  • the apparatus is not obstructed and a high-definition display can be performed.
  • the sheet resistance of this transparent conductive film was 150 ⁇ / ⁇ .
  • a resist layer was formed on the transparent conductive layer made of ITO, and the resist layer was exposed using a Cr photomask on which a random pattern was formed. At this time, a circular random pattern was adopted as the random pattern of the Cr photomask.
  • the resist layer was developed to form a resist pattern. ITO was wet etched using the resist pattern as a mask, and then the resist layer was removed by ashing.
  • the resist pattern used here was based on the parameters of each example shown in FIG.
  • an example of the transparent conductive element in the present embodiment is shown in FIG.
  • FIG. 1 an example of a transparent conductive element employing a circular random pattern
  • FIG. 35A shows an X electrode transparent conductive element
  • FIG. 35B shows a Y electrode transparent conductive element.
  • the two transparent conductive elements having the transparent electrode pattern portion and the transparent insulating pattern portion on which different random patterns are formed that is, the transparent conductivity of the X electrode
  • the transparent conductive element of the conductive element and the Y electrode was produced.
  • a laminate (X electrode + Y electrode) in which the two transparent conductive elements thus produced were overlapped so that the respective transparent electrode pattern portions were crossed was produced.
  • FIG. 32 also shows the evaluation results of the non-visibility of the transparent electrode pattern portion, moire / interference light, and glare. From the evaluation results shown in FIG.
  • the sheet resistance of this transparent conductive film was 100 ⁇ / ⁇ . Thereafter, the same procedure as in Examples # 1 to # 12 was performed based on the parameters of the examples shown in FIGS. However, in the transparent insulating pattern portions in Examples # 19 and # 20, a random mesh pattern was adopted as a random pattern of the Cr photomask. In the transparent electrode pattern portions in Examples # 14, # 19, and # 20, a random pattern was not provided, and a solid coating pattern with a conductive material coverage of 100% was used.
  • FIG. an example of a transparent conductive element employing a random mesh pattern is shown in FIG. In the transparent conductive element shown in FIG.
  • the transparent electrode pattern portion 13 is a solid coating pattern with a conductive material coverage of 100%
  • the transparent insulating pattern portion 14 is a random mesh pattern.
  • two transparent conductive elements having a transparent electrode pattern portion and a transparent insulating pattern portion on which different random patterns are formed that is, the X electrode A transparent conductive element and a transparent conductive element of a Y electrode were produced.
  • a laminate (X electrode + Y electrode) in which the two transparent conductive elements thus produced were overlapped so that the respective transparent electrode pattern portions were crossed was produced. Further, FIGS.
  • FIGS. 33 and 34 also show the evaluation results of the non-visibility of the transparent electrode pattern portion, moire / interference light, and glare. From the evaluation results shown in FIGS. 33 and 34, the same effects as in Examples # 1 to 12 were confirmed even when a silver nanowire layer was used as the transparent conductive layer. That is, for both the transparent conductive element and the laminate, it was confirmed that good invisibility could be obtained even when the transparent electrode pattern portion and the transparent insulating pattern portion were formed by different random patterns. In particular, when the coverage difference due to the conductive material is 60% or less, good non-visibility is obtained. Furthermore, when the coverage difference due to the conductive material is 30% or less, extremely good non-visibility is obtained.
  • the moire / interference light and the glare were extremely good. Furthermore, in the case of the transparent conductive film which consists of a silver nanowire layer, when the transparent electrode pattern part was subjected to random pattern processing, the coverage of the conductive material was lowered and the area covered by the silver nanowire layer was reduced. Therefore, irregular reflection of external light on the surface of the silver nanowire is suppressed, and the value of the reflection L value of the conductive portion in the transparent electrode pattern portion is small.
  • the colored compound is selectively adsorbed on the surface of the silver nanowire by immersing a transparent conductive film made of a silver nanowire layer subjected to random pattern treatment in a solution in which the colored compound is dissolved. Processing was performed. By this process, it was confirmed that the reflection L value becomes smaller in both the transparent electrode pattern portion and the transparent insulating pattern portion.
  • a transparent conductive film in which a colored compound is adsorbed on metal nanowires and using a transparent conductive element subjected to random pattern processing as a touch panel a display panel is provided while providing a touch panel on the surface. It was confirmed that the display characteristics can be maintained.
  • the present technology is not limited to the above-described embodiments, and various modifications can be made.
  • the configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like are used as necessary. May be.
  • the configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments can be combined with each other without departing from the gist of the present technology.
  • the substrate surface may be exposed in a region where the conductive material formed by patterning does not exist, or an intermediate layer (for example, hard coat) formed on the substrate surface. Layer, optical adjustment layer, adhesion auxiliary layer) may be exposed.
  • the transparent conductive layer is formed of a conductive material and a binder material, the binder material may remain.
  • both the X electrode pattern portion and the Y electrode pattern portion may be formed on one of the first surface and the second surface of a single substrate. In this case, it is preferable to employ a configuration in which one of the X electrode pattern portion and the Y electrode pattern portion is electrically connected via a relay electrode at the intersection of the two.
  • the configuration of the X electrode pattern portion and the Y electrode pattern portion using such a relay electrode for example, a conventionally known configuration disclosed in Japanese Patent Application Laid-Open No. 2008-310550 can be employed.
  • this technique can also take the following structures.
  • the transparent electrode pattern portion is randomly formed with a plurality of nonconductive portions spaced apart from each other within the formation surface of the conductive material portion,
  • the transparent insulating pattern portion is formed randomly in the formation surface of the non-conductive portion with the conductive material portion being spaced apart,
  • Conductive element (4)
  • the transparent electrode pattern portion and the transparent insulating pattern portion are arranged in different random patterns by arranging the conductive material portion and the non-conductive portion based on random patterns generated under different generation conditions. (1) The transparent conductive element according to any one of (3).
  • a first transparent conductive element having a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the substrate in a predetermined direction;
  • a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the base material in a direction orthogonal to the predetermined direction, and the first transparent conductivity as viewed from the input surface direction;
  • a second transparent conductive element disposed in a positional relationship superimposed with the element; With In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  • the transparent electrode pattern portion and the transparent insulating pattern portion are formed such that the conductive material portion and the nonconductive portion are different from each other in a random pattern.
  • Input device. (8) The coverage ratio of the conductive material portion of the first transparent conductive element in all regions viewed from the input surface direction in a state where the first transparent conductive element and the second transparent conductive element are overlapped with each other.
  • the input device according to (6) or (7), wherein a difference in addition value from the coverage of the conductive material portion in the second transparent conductive element is 0 or more and 60 or less.
  • a display device On the display surface of the display device, a first transparent conductive element having a transparent electrode pattern part and a transparent insulating pattern part formed by alternately spreading in a predetermined direction;
  • the display surface of the display device includes a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a direction orthogonal to the predetermined direction, and the first surface as viewed from the input surface direction.
  • a second transparent conductive element disposed in a positional relationship superimposed on the transparent conductive element of With In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  • a method for producing a transparent conductive element comprising a base material and a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately laying in a predetermined direction on the surface of the base material, Generating a first random pattern used for the transparent electrode pattern portion; Generating a second random pattern to be used for the transparent insulating pattern part under a generation condition different from the first random pattern; Forming a conductive material part in the transparent electrode pattern part and a conductive material part in the transparent insulating pattern part on the substrate based on the first and second random patterns;
  • a method for producing a transparent conductive element comprising:

Abstract

In the present invention, transparent electrode pattern portions and transparent insulating pattern portions each have at least a conductive material portion and are such that the conductive material portions are formed to be of mutually different patterns. For example, the transparent electrode pattern portions and the transparent insulating pattern portions are each provided with conductive material portions and non-conductive portions such that the patterns of the conductive material portions (conductive portions) and the non-conductive portions (hole portions) of the transparent electrode pattern portions, and the patterns of the conductive material portions (island portions) and the non-conductive portions (gap portions) of the transparent insulating pattern portions, are formed to be of mutually different random patterns.

Description

透明導電性素子、入力装置、電子機器、透明導電性素子の製造方法Transparent conductive element, input device, electronic device, and method for manufacturing transparent conductive element
 本技術は、透明導電性素子およびその製造方法、それを用いる入力装置および電子機器に関する。特に透明導電性素子の電極パターンに関する。 The present technology relates to a transparent conductive element, a manufacturing method thereof, an input device using the same, and an electronic apparatus. In particular, the present invention relates to an electrode pattern of a transparent conductive element.
 透明プラスチックフィルムからなる基材上に、透明でかつ抵抗が小さい薄膜を積層した透明導電性フィルムは、その導電性を利用した用途に広く使用されている。例えば、液晶ディスプレイや有機エレクトロルミネッセンス(EL:Electroluminescence)ディスプレイなどのようなフラットパネルディスプレイや、抵抗膜式タッチパネルの透明電極などの電気、電子分野の用途がある。
 特に近年では、静電容量式のタッチパネルが携帯電話、携帯音楽端末などのモバイル機器に搭載されるケースが増えている。このような静電容量式のタッチパネルでは、基材表面にパターニングされた透明導電層が形成された透明導電性フィルムが用いられる。
 しかしながら、従来の透明導電性フィルムを用いた場合、透明導電層を有する部分と除去された部分とでの光学特性の差が大きい。このため、パターニングが強調され、液晶ディスプレイなどの表示装置の前面に透明導電性フィルムを配置した際に、透明導電性フィルム自体が視認されやすく、表示装置の見栄えが悪化するという問題がある。
 そこで、透明導電性薄膜層と基材フィルムとの間に、屈折率の異なる誘電体層を積層した積層膜を設け、これらの積層膜の光学干渉を利用して、透明導電性フィルムの非視認性を向上する技術が提案されている(例えば上記特許文献1、2)。
A transparent conductive film obtained by laminating a transparent thin film with low resistance on a substrate made of a transparent plastic film is widely used for applications utilizing the conductivity. For example, there are applications in the electric and electronic fields such as flat panel displays such as liquid crystal displays and organic electroluminescence (EL) displays, and transparent electrodes of resistive touch panels.
In particular, in recent years, an increasing number of cases in which capacitive touch panels are mounted on mobile devices such as mobile phones and portable music terminals. In such a capacitive touch panel, a transparent conductive film in which a patterned transparent conductive layer is formed on the substrate surface is used.
However, when a conventional transparent conductive film is used, the difference in optical characteristics between the portion having the transparent conductive layer and the removed portion is large. For this reason, patterning is emphasized, and when a transparent conductive film is disposed on the front surface of a display device such as a liquid crystal display, there is a problem that the transparent conductive film itself is easily visible and the appearance of the display device deteriorates.
Therefore, a laminated film in which dielectric layers with different refractive indexes are laminated is provided between the transparent conductive thin film layer and the base film, and the transparent conductive film is not visually recognized using the optical interference of these laminated films. Techniques for improving the performance have been proposed (for example, Patent Documents 1 and 2 above).
特開2010−23282号公報JP 2010-23282 A 特開2010−27294号公報JP 2010-27294 A
 しかしながら、上述の技術では、積層膜の光学調整機能に波長依存があるため、透明導電性フィルムの非視認性を十分に向上させることは困難である。このため、近年では、透明導電性フィルムの非視認性を向上する技術として、上述の積層膜に代わる技術が望まれている。
 また静電容量タッチパネル等として、応答速度や位置検出精度の安定した入力装置を実現するためには、透明導電層の抵抗値も考慮されなければならない。
 本技術では、非視認性に優れ、また透明導電層の抵抗値の低減にも適した透明導電性素子およびその製造方法、それを用いる情報入力装置および電子機器を提供する。
However, in the above-described technique, the optical adjustment function of the laminated film depends on the wavelength, and thus it is difficult to sufficiently improve the non-visibility of the transparent conductive film. For this reason, in recent years, as a technique for improving the invisibility of the transparent conductive film, a technique replacing the above-described laminated film is desired.
Further, in order to realize an input device with stable response speed and position detection accuracy as a capacitive touch panel or the like, the resistance value of the transparent conductive layer must also be considered.
The present technology provides a transparent conductive element excellent in non-visibility and suitable for reducing the resistance value of a transparent conductive layer, a manufacturing method thereof, an information input device and an electronic apparatus using the transparent conductive element.
 本技術の透明導電性素子は、基材と、上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを備え、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている。
 例えば上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている。
 その場合、例えば、上記透明電極パターン部は、上記導電材料部の形成面内で、複数の上記非導電部が離間してランダムに形成され、上記透明絶縁パターン部は、上記非導電部の形成面内で、上記導電材料部が離間してランダムに形成されており、上記透明電極パターン部と上記透明絶縁パターン部とでは、上記導電材料部と上記非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている。
 本技術の入力装置は、基材表面に所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有する第1の透明導電性素子と、基材表面に上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有し、入力面方向から見て上記第1の透明導電性素子と重ね合わされた位置関係で配置される第2の透明導電性素子とを備える。そして上記第1,第2の透明導電性素子における、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている。
 例えば上記第1,第2の透明導電性素子における、上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている
 本技術の電子機器は、表示装置と第1の透明導電性素子と第2の透明導電性素子とを備える。ここで、第1の透明導電性素子は、表示装置の表示面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部を有している。一方、第2の透明導電性素子は、表示装置の表示面において、上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部を有している。さらに、第1,第2の透明導電性素子は、入力面方向から見て重ね合わされた位置関係で配置されている。そして、第1,第2の透明導電性素子における、透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、導電材料部が互いに異なるパターンで形成されている。
 本技術の製造方法は、基材と、上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを備えた透明導電性素子の製造方法である。そして、上記透明電極パターン部に用いる第1のランダムパターンを生成する工程と、上記第1のランダムパターンとは異なる生成条件で上記透明絶縁パターン部に用いる第2のランダムパターンを生成する工程と、上記第1,第2のランダムパターンに基づいて、上記基材上に、上記透明電極パターン部における導電材料部と上記透明絶縁パターン部における導電材料部を形成する工程とを含む。
 上述した本技術では、透明導電性素子は、透明電極パターン部及び透明絶縁パターン部とを備えるが、この透明電極パターン部及び透明絶縁パターン部で、導電材料部と非導電部の形成パターンを、異なるパターンとすることで、実際の電極を形成する導電部となる導電材料部の抵抗値増加を回避しつつ、透明電極パターン部及び透明絶縁パターン部の間の非視認性を向上させる。例えば、それぞれをランダムパターンとすることで非視認性を向上させることができるが、異なるランダムパターンとすることで、透明電極パターン部では導電材料部の被覆率を向上させることができつつ、透明絶縁パターン部の導電材料部の被覆率を、透明電極パターン部の導電材料部の被覆率との差が小さくなるようにすることが可能となる。つまり、透明電極パターン部の抵抗値の低減と、透明電極パターン部と透明絶縁パターン部の間の非視認性向上を同時に実現可能となる。
The transparent conductive element of the present technology includes a base material, and a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a predetermined direction on the surface of the base material, and the transparent electrode pattern Each of the part and the transparent insulating pattern part has at least a conductive material part, and the conductive material parts are formed in different patterns.
For example, in the transparent electrode pattern portion and the transparent insulating pattern portion, the conductive material portion and the nonconductive portion are formed in different random patterns.
In that case, for example, the transparent electrode pattern portion is formed randomly in the formation surface of the conductive material portion with the plurality of nonconductive portions spaced apart from each other, and the transparent insulating pattern portion is formed of the nonconductive portion. In the plane, the conductive material portions are spaced apart and randomly formed, and in the transparent electrode pattern portion and the transparent insulating pattern portion, a pattern formed by a boundary between the conductive material portion and the non-conductive portion is formed. The random patterns are different from each other.
An input device of the present technology includes a first transparent conductive element having a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on a surface of a base material in a predetermined direction, and the above-mentioned surface of the base material surface. A transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a direction orthogonal to a predetermined direction, and overlapped with the first transparent conductive element as viewed from the input surface direction And a second transparent conductive element arranged in a positional relationship. The transparent electrode pattern portion and the transparent insulating pattern portion in the first and second transparent conductive elements each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
For example, in the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion have the conductive material portion and the non-conductive portion formed in different random patterns. The device includes a display device, a first transparent conductive element, and a second transparent conductive element. Here, the 1st transparent conductive element has the transparent electrode pattern part and transparent insulating pattern part which were formed by laying alternately toward the predetermined direction in the display surface of a display apparatus. On the other hand, the second transparent conductive element has a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in the direction orthogonal to the predetermined direction on the display surface of the display device. Yes. Further, the first and second transparent conductive elements are arranged in a positional relationship where they are overlapped when viewed from the input surface direction. The transparent electrode pattern portion and the transparent insulating pattern portion in the first and second transparent conductive elements each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
The production method of the present technology is a production of a transparent conductive element including a base material, and transparent electrode pattern portions and transparent insulating pattern portions formed by alternately spreading in a predetermined direction on the surface of the base material. Is the method. And the process of producing | generating the 1st random pattern used for the said transparent electrode pattern part, The process of producing | generating the 2nd random pattern used for the said transparent insulation pattern part on the production | generation conditions different from the said 1st random pattern, Forming a conductive material portion in the transparent electrode pattern portion and a conductive material portion in the transparent insulating pattern portion on the base material based on the first and second random patterns.
In the present technology described above, the transparent conductive element includes a transparent electrode pattern portion and a transparent insulating pattern portion. With this transparent electrode pattern portion and the transparent insulating pattern portion, the formation pattern of the conductive material portion and the non-conductive portion is changed. By making it a different pattern, the invisibility between the transparent electrode pattern portion and the transparent insulating pattern portion is improved while avoiding an increase in the resistance value of the conductive material portion that becomes the conductive portion forming the actual electrode. For example, non-visibility can be improved by making each a random pattern, but by making a different random pattern, the transparent electrode pattern portion can improve the coverage of the conductive material portion, and transparent insulation It is possible to reduce the difference between the coverage of the conductive material portion of the pattern portion and the coverage of the conductive material portion of the transparent electrode pattern portion. That is, it is possible to simultaneously realize a reduction in the resistance value of the transparent electrode pattern portion and an improvement in invisibility between the transparent electrode pattern portion and the transparent insulating pattern portion.
 本技術によれば、非視認性に優れ、また透明導電層の抵抗値の低減にも適した透明導電性素子および情報入力装置を実現できるという効果がある。また、この透明導電性素子を用いることで、高精彩な表示が可能な電子機器を実現できるという効果がある。 According to the present technology, there is an effect that it is possible to realize a transparent conductive element and an information input device which are excellent in invisibility and are suitable for reducing the resistance value of the transparent conductive layer. Further, by using this transparent conductive element, there is an effect that it is possible to realize an electronic device capable of high-definition display.
 図1は、本技術の実施の形態の入力装置の構造の説明図である。
 図2A~図2Cは、第1の実施の形態の第1の透明導電性素子の説明図である。
 図3A、図3Bは、第1の実施の形態の第1の透明導電性素子のランダムパターン部分の構造の説明図である。
 図4A~図4Cは、第1の実施の形態の第2の透明導電性素子の説明図である。
 図5A~図5Cは、導電部のパターンと比較例の説明図である。
 図6は、導電部の被覆率に対するシート抵抗の説明図である。
 図7A、図7Bは、第1の実施の形態における第1,第2の透明導電性素子の重なり領域の説明図である。
 図8A、図8Bは、第2の実施の形態の第1,第2の透明導電性素子の説明図である。
 図9A、図9Bは、第2の実施の形態における第1,第2の透明導電性素子の重なり領域の説明図である。
 図10は、第2の実施の形態のパターン組み合わせの説明図である。
 図11A、図11Bは、実施の形態の透明導電性素子の製造方法I、IIのフローチャートである。
 図12A~図12Dは、実施の形態の製造方法Iの説明図である。
 図13A、図13Bは、実施の形態の製造方法IIの説明図である。
 図14A、図14Bは、実施の形態の製造方法IIの説明図である。
 図15は、実施の形態のランダムパターン形成過程の説明図である。
 図16は、実施の形態のランダムパターン形成処理のフローチャートである。
 図17は、実施の形態のランダムパターン形成過程の説明図である。
 図18は、実施の形態のランダムパターン形成処理のフローチャートである。
 図19は、実施の形態のランダムパターン形成における円の座標の説明図である。
 図20は、実施の形態のランダムパターン形成過程の説明図である。
 図21A、図21Bは、実施の形態の乱数重み付けの説明図である。
 図22A~図22Cは、実施の形態のメッシュパターン形成の説明図である。
 図23A~図23Cは、実施の形態の金属ナノワイヤーを用いた透明導電性素子の説明図である。
 図24は、実施の形態の位置検出マーカーの説明図である。
 図25A~図25Cは、実施の形態の銀配線領域の説明図である。
 図26A~図26Eは、実施の形態の入力装置の各種構造例の説明図である。
 図27は、表示部を備えたテレビ(電子機器)を示す斜視図である。
 図28A、図28Bは、表示部を備えたデジタルカメラ(電子機器)を示す斜視図である。
 図29は、表示部を備えたノート型パーソナルコンピュータ(電子機器)を示す斜視図である。
 図30は、表示部を備えたビデオカメラ(電子機器)を示す斜視図である。
 図31は、表示部を備えた携帯端末装置(電子機器)の斜視図である。
 図32は、実施例の評価結果の説明図である。
 図33は、実施例の評価結果の説明図である。
 図34は、実施例の評価結果の説明図である。
 図35A、図35Bは、実施例のランダムパターンの説明図である。
 図36は、実施例のランダムパターンの説明図である。
FIG. 1 is an explanatory diagram of the structure of the input device according to the embodiment of the present technology.
2A to 2C are explanatory diagrams of the first transparent conductive element according to the first embodiment.
3A and 3B are explanatory diagrams of the structure of the random pattern portion of the first transparent conductive element according to the first embodiment.
4A to 4C are explanatory diagrams of the second transparent conductive element according to the first embodiment.
5A to 5C are explanatory diagrams of the pattern of the conductive portion and the comparative example.
FIG. 6 is an explanatory diagram of sheet resistance with respect to the coverage of the conductive portion.
7A and 7B are explanatory diagrams of the overlapping region of the first and second transparent conductive elements in the first embodiment.
8A and 8B are explanatory diagrams of the first and second transparent conductive elements according to the second embodiment.
9A and 9B are explanatory diagrams of overlapping regions of the first and second transparent conductive elements in the second embodiment.
FIG. 10 is an explanatory diagram of a pattern combination according to the second embodiment.
11A and 11B are flowcharts of manufacturing methods I and II of the transparent conductive element of the embodiment.
12A to 12D are explanatory diagrams of the manufacturing method I according to the embodiment.
13A and 13B are explanatory diagrams of the manufacturing method II of the embodiment.
14A and 14B are explanatory diagrams of the manufacturing method II of the embodiment.
FIG. 15 is an explanatory diagram of a random pattern forming process according to the embodiment.
FIG. 16 is a flowchart of random pattern formation processing according to the embodiment.
FIG. 17 is an explanatory diagram of a random pattern forming process according to the embodiment.
FIG. 18 is a flowchart of random pattern formation processing according to the embodiment.
FIG. 19 is an explanatory diagram of circle coordinates in random pattern formation according to the embodiment.
FIG. 20 is an explanatory diagram of a random pattern forming process according to the embodiment.
21A and 21B are explanatory diagrams of random weighting according to the embodiment.
22A to 22C are explanatory diagrams of mesh pattern formation according to the embodiment.
23A to 23C are explanatory diagrams of a transparent conductive element using metal nanowires according to the embodiment.
FIG. 24 is an explanatory diagram of a position detection marker according to the embodiment.
25A to 25C are explanatory diagrams of the silver wiring region of the embodiment.
26A to 26E are explanatory diagrams of various structural examples of the input device according to the embodiment.
FIG. 27 is a perspective view illustrating a television (electronic device) including a display unit.
28A and 28B are perspective views illustrating a digital camera (electronic device) including a display unit.
FIG. 29 is a perspective view illustrating a notebook personal computer (electronic device) including a display unit.
FIG. 30 is a perspective view illustrating a video camera (electronic device) including a display unit.
FIG. 31 is a perspective view of a mobile terminal device (electronic device) including a display unit.
FIG. 32 is an explanatory diagram of an evaluation result of the example.
FIG. 33 is an explanatory diagram of an evaluation result of the example.
FIG. 34 is an explanatory diagram of an evaluation result of the example.
FIG. 35A and FIG. 35B are explanatory diagrams of a random pattern according to the embodiment.
FIG. 36 is an explanatory diagram of a random pattern according to the embodiment.
 以下、実施の形態を次の順序で説明する。
<1.入力装置の構造例>
<2.第1の実施の形態の透明導電性素子:直線状パターン電極>
<3.第2の実施の形態の透明導電性素子:ダイヤモンド状パターン電極>
<4.製造方法I>
<5.製造方法II>
<6.ランダムパターンの形成方法>
<7.金属ナノワイヤーを用いた透明導電性素子>
<8.位置検出マーカー>
<9.銀配線領域>
<10.入力装置構造の変形例>
<11.電子機器の構造例>
<1.入力装置の構造例>
 図1は、本技術の実施の形態に係る入力装置の構成の一例を示す断面図である。
 図1に示すように、入力装置10は、表示装置4の表示面上に設けられる。入力装置10は、例えば貼合層5により表示装置4の表示面に貼り合わされている。
 入力装置10は、いわゆる投影型静電容量方式タッチパネルであり、第1の透明導電性素子1と、この透明導電性素子1の表面上に設けられた第2の透明導電性素子2とを備える。例えば透明導電性素子1がX電極を形成し、透明導電性素子2がY電極を形成する。
 透明導電性素子1と透明導電性素子2とは貼合層6を介して貼り合わされている。
 また、必要に応じて、透明導電性素子2の表面上に、貼合層7を介して、反射防止フィルム等の光学層3をさらに備えるようにしてもよい。光学層3は、SiO2などのセラミックコート(オーバーコート)とすることも可能である。
 詳しくは後述するが、透明導電性素子1は、基材11の表面(この例の場合、貼合層5側)に透明導電層12が形成されて成る。また透明導電性素子2は、基材21の表面(この例の場合、貼合層6側)に透明導電層22が形成されて成る。
 本技術の電子機器の一例として、入力装置10を表示面上に備えた表示装置4がある。この表示装置4は特に限定されるものではないが、例示するならば、液晶ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface−conduction Electron−emitter Display:SED)などの各種表示装置が挙げられる。
<2.第1の実施の形態の透明導電性素子:直線状パターン電極>
 第1の実施の形態の透明導電性素子1,2について説明する。
 まず図2,図3を用いてX電極を形成する透明導電性素子1について説明する。
 図2Aは、透明導電性素子1の構成の一例を示す平面図、図2Bは図2Aに示したa−a線に沿った断面図、図2Cは図2Aに示した領域C1を拡大して示す平面図である。
 図2Aおよび図2Bに示すように、透明導電性素子1は、表面を有する基材11と、この表面に形成された透明導電層12とを備える。
 透明導電層12は、透明電極パターン部13と透明絶縁パターン部14とを備える。
 透明電極パターン部13は、X軸方向に延在されたX電極パターン部である。
 透明絶縁パターン部14は、いわゆるダミー電極パターン部であり、X軸方向に延在されるとともに、透明電極パターン部13の間に介在されて、隣り合う透明電極パターン部13の間を絶縁する絶縁パターン部である。
 これらの透明電極パターン部13と透明絶縁パターン部14とが、基材11の表面にY軸方向に向かって交互に敷き詰められている。
 なお、図2A~図2Cにおいて、領域R1は透明電極パターン部13の形成領域を示し、領域R2は透明絶縁パターン部14の形成領域を示す。
 透明電極パターン部13、および透明絶縁パターン部14の形状は、画面形状や駆動回路などに応じて適宜選択することが好ましく、例えば、直線状、複数の菱形状(ダイヤモンド形状)を直線状に連結した形状などが挙げられるが、特にこれらの形状に限定されるものではない。この第1の実施の形態は、透明電極パターン部13および透明絶縁パターン部14の形状が直線状のパターンである例としている。ダイヤモンド形状のパターンの例は、第2の実施の形態として後述する。
 図2Cに示すように、透明電極パターン部13は、複数の孔部13aが離間してランダムに形成された透明導電層であり、隣り合う孔部13aの間には導電部13bが介在されている。
 導電部13bは導電材料が基材11の表面に被覆された導電材料部であり、孔部13aは、導電材料が被覆されていない部分、つまり非導電部である。
 従って、透明電極パターン部13は、導電材料部(導電部13b)の形成面内で、複数の非導電部(孔部13a)が、それぞれ離間してランダムに形成されている。
 一方、透明絶縁パターン部14は、離間してランダムに形成された複数の島部14aからなる透明導電層であり、隣り合う島部14aの間には絶縁部としての間隙部14bが介在される。
 島部14aは導電材料が基材11の表面に被覆された導電材料部であり、間隙部14bは、導電材料が被覆されていない部分、つまり非導電部である。
 従って透明絶縁パターン部14は、非導電部(間隙部14b)の形成面内で、導電材料部(島部14a)が離間してランダムに形成されている。
 そして本実施の形態の場合、透明電極パターン部13及び透明絶縁パターン部14は、互いに異なるランダムパターンで形成されている。具体的には、導電材料部と非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている。
 互いに異なるランダムパターンとは、異なる生成条件によって生成したランダムパターンに基づいて、導電材料部と非導電部を配置することで形成する。
 すなわち透明電極パターン部13用のランダムパターンを形成し、それに基づいて孔部13a、導電部13bを形成する。また透明絶縁パターン部14用のランダムパターンを形成し、それに基づいて島部14a、間隙部14bを形成する。
 なお、透明絶縁パターン部14の間隙部14bでは、導電材料が完全に除去されていることが好ましいが、間隙部14bが絶縁部として機能する範囲内であれば、導電材料の一部が島状や薄膜状に残留していてもよい。
 また、孔部13aおよび島部14aは周期性のないランダム構造を有することが好ましい。孔部13aおよび島部14aがミクロンオーダー以下の周期構造によって形成されていると、それ自体で干渉光が発生したり、表示装置4の表示面上に入力装置10を配置して目視した場合、モアレが発生したりする傾向があるためである。
 図3Aは、透明電極パターン部13と透明絶縁パターン部14との境界線近傍を拡大して示す平面図である。図3Bは、図3Aに示したb−b線に沿った断面図である。
 図3Bに示すように、導電部13b、島部14aが、基材11上において導電材料が被覆されている部分となり、孔部13a、間隙部14bが、導電材料が除去され基材表面が露出する部分である。
 また図3Aからわかるように、透明電極パターン部13と透明絶縁パターン部14は、互いに異なるランダムパターンで導電材料部と非導電部が形成されており、境界線L1上は、単に2種類のランダムパターンをそのままカットして貼り合わせたような状態となっている。このため境界線L1付近での導電材料部と非導電部の境界線は不規則となり、境界線L1の視認を抑制することができる。
 図4は、Y電極を形成する透明導電性素子2を示している。
 図4Aは、透明導電性素子2の構成の一例を示す平面図であり、図4Bは図4Aに示したc−c線に沿った断面図である。図4Cは、図4Aに示した領域C2を拡大して示す平面図である。
 図4Aおよび図4Bに示すように、透明導電性素子2は、表面を有する基材21と、この表面に形成された透明導電層22とを備える。
 透明導電層22は、透明電極パターン部23と透明絶縁パターン部24とを備える。
 透明電極パターン部23は、Y軸方向に延在されたY電極パターン部である。
 透明絶縁パターン部24は、いわゆるダミー電極パターン部であり、Y軸方向に延在されるとともに、透明電極パターン部23の間に介在されて、隣り合う透明電極パターン部23の間を絶縁する絶縁パターン部である。
 これらの透明電極パターン部23と透明絶縁パターン部24とが、基材21の表面にX軸方向に向かって交互に敷き詰められている。上述した透明導電性素子1が有する透明電極パターン部13および透明絶縁パターン部14と、この透明導電性素子2が有する透明電極パターン部23および透明絶縁パターン部24とは、例えば互いに直交する関係にある。
 なお、図4A~図4Cにおいて、領域R1は透明電極パターン部23の形成領域を示し、領域R2は透明絶縁パターン部24の形成領域を示す。
 図4Cに示すように、透明電極パターン部23は、複数の孔部23aが離間してランダムに形成された透明導電層であり、隣り合う孔部23aの間には導電部23bが介在されている。
 従って、透明電極パターン部23は、導電材料部(導電部23b)の形成面内で、複数の非導電部(孔部23a)が、それぞれ離間してランダムに形成されている。
 一方、透明絶縁パターン部24は、離間してランダムに形成された複数の島部24aからなる透明導電層であり、隣り合う島部24aの間には絶縁部としての間隙部24bが介在されている。
 従って透明絶縁パターン部24は、非導電部(間隙部24b)の形成面内で、導電材料部(島部24a)が離間してランダムに形成されている。
 そして上述したX電極の透明導電性素子1と同様、透明電極パターン部23及び透明絶縁パターン部24は、互いに異なるランダムパターンで形成されている。具体的には導電材料部と非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている。
 透明電極パターン部23と透明絶縁パターン部24との境界線L2上は、2種類のランダムパターンがそのままカットされて貼り合わせたような状態となっている。
 以上の透明導電性素子1,2における基材11、21の材料としては、例えば、ガラス、プラスチックを用いることができる。
 ガラスとしては、例えば公知のガラスを用いることができる。公知のガラスとしては、具体的には例えば、ソーダライムガラス、鉛ガラス、硬質ガラス、石英ガラス、液晶化ガラスなどが挙げられる。
 プラスチックとしては、例えば、公知の高分子材料を用いることができる。公知の高分子材料としては、具体的には例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(P)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、環状オレフィンポリマー(COP)、ノルボルネン系熱可塑性樹脂などが挙げられる。
 ガラス基材の厚みは、20μm~10mmであることが好ましいが、この範囲に特に限定されるものではない。プラスチック基材の厚さは、20μm~500μmであることが好ましいが、この範囲に特に限定されるものではない。
 透明導電層12、22を形成する導電材料としては、例えば、インジウム錫酸化物(ITO)、酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛−酸化錫系、酸化インジウム−酸化錫系、酸化亜鉛−酸化インジウム−酸化マグネシウム系などの金属酸化物、もしくは銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛などの金属、又はこれらの合金などが挙げられる。
 透明導電層12、22を形成する導電材料として、カーボンナノチューブをバインダー材料に分散させた複合材料を用いてもよい。置換または無置換のポリアニリン、ポリピロール、ポリチオフェン、およびこれらから選ばれる1種または2種からなる(共)重合体の導電性ポリマーを使用してもよい。これら2種以上を複合して使用してもよい。
 導電材料として金属ナノワイヤーを用いた構成については後に詳述する。
 透明導電層12、22の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法などのPVD法や、CVD法、塗工法、印刷法など用いることができる。透明導電層12、22の厚みは、パターニング前の状態(基材11、21の全面に透明導電層12、22が形成されている状態)にて表面抵抗が1000Ω/□(ohm/square)以下となるように適宜選択することが好ましい。
 以上のような構造の透明導電性素子1,2における透明電極パターン部13,23と透明絶縁パターン部14,24の導電材料被覆について述べる。なお以下では、主にX電極側となる透明電極パターン部13,透明絶縁パターン部14を用いて説明していくが、Y電極側の透明電極パターン部23,透明絶縁パターン部24についても同様である。
 図5Aは、透明電極パターン部13において全面に導電材料を形成した状態を示している。つまり孔部13aを設けず、全面が導電部13bとなっている状態である。従って図示されていない下部の基材11に対する導電材抖(導電部13b)の被覆率は100%である。電極幅=Wとする。
 これに対し、図5Bのように、ランダムパターンで孔部13aを形成することを考える。この場合に、導電部13bの被覆率が50%であったとする。すると、この図5Bの場合、平均電極幅はW×0.5となる。
 従って、導電材料の膜厚を同じとした場合、図5Bの透明電極パターン部13は、図5Aの被覆率100%の場合と比較して、電気抵抗は2倍になってしまう。
 透明電極パターン部13の電気抵抗が大きいと、静電容量タッチパネルに使用した場合、応答速度や位置検出精度の低下を招く虞がある。
 もちろん、図5Bのように孔部13aを形成しても、導電材料の膜厚を2倍にすれば、電気抵抗を図5Aと同等にできる。しかしながらその場合、材料コストの増加、製造ライン速度の低下などの問題が生じ、好ましくない。
 一方で、孔部13aを設けることは、透明電極パターン部13と透明絶縁パターン部14の間の非視認性を向上させる意味を持つ。
 例えば図5Cは、各種の径のドットがランダムに配置されるランダムパターンを生成し、それに基づいて透明電極パターン部13の孔部13aと、透明絶縁パターン部14の島部14aを形成したものである。この図5Cは、1つのランダムパターンを透明電極パターン部13と透明絶縁パターン部14で共通に用い、それを境界線L1で反転させているものである。すなわち該ランダムパターンにおけるドット部分を、透明電極パターン部13では孔部13a(非導電部)とし、透明絶縁パターン部14では島部14a(導電材料部)とする。
 このように透明電極パターン部13と透明絶縁パターン部14にランダムパターンを導入することで、電極ラインが視認できなくなるようにする非視認性を向上できる。
 ここで、先の抵抗値の問題が生ずる。
 透明電極パターン部13において図5Cのようにランダムパターンを導入すると、電気抵抗が高くなる。
 この透明電極パターン部13の抵抗劣化(抵抗値上昇)の改善のためには、透明電極パターン部13の導電材料被覆率は大きくしたい。つまり孔部13aの面積割合を小さくし、導電部13bの面積割合を大きくしたい。
 ところがそのようにした場合、透明電極パターン部13と透明絶縁パターン部14で共通のランダムパターンを用いると、透明絶縁パターン部14側では、島部14aの面積割合が小さくなり、間隙部14bの面積割合が大きくなる。
 結果として、透明電極パターン部13では、導電材料被覆部分である導電部13bが目立ち、透明絶縁パターン部14では、導電材料が被覆されていない間隙部14bが目立つ状態となる。つまり、透明電極パターン部13と透明絶縁パターン部14とで導電材料の被覆率差が大きくなってしまい、非視認性が阻害される。
 導電部13bの被覆率に対するシート抵抗の変化を図6に示す。図6では、それぞれ或る電極幅と或る厚みの導電材料を用い、導電部13bの被覆率を100%としたときにシート抵抗が135Ω/□、100Ω/□、75Ω/□、50Ω/□となるものについて、被覆率を下げたときのシート抵抗の変化を示している。
 図示のように、導電部13bの被覆率が小さくなるにつれシート抵抗は高くなる。例えばノートタイプやタブレットタイプのパーソナルコンピュータ等の中型のディスプレイにタッチパネルを採用する場合、150Ω/□程度以下が目安となる。すると、被覆率100%のときにシート抵抗が100Ω/□となる導電材料、電極幅、膜厚の導電部13bの場合で言えば、図から、導電部13bの被覆率は67%以上(大まかには65%程度以上)とすることが好ましいことがわかる。
 つまり、ランダムパターンで孔部13a及び島部14aを設けることで、非視認性に有利であるが、非視認性の向上のためには、透明電極パターン部13における孔部13aの面積比率と、透明絶縁パターン部14における島部14aの面積比率がほぼ同等であることが好ましい。そのためには、図5Bのような導電材料の被覆率が50%となるようなランダムパターンを形成し、図5Cのように、透明電極パターン部13と透明絶縁パターン部14で、1つのランダムパターンが境界線L1でパターン反転させて導電材料を被覆するようにすることが好適である。
 ところがその場合、透明電極パターン部13における導電部13bの被覆率が50%程度となり、シート抵抗が高くなる。
 そこでこれを考慮して、透明電極パターン部13における導電部13bの被覆率が例えば65%程度以上とすると、シート抵抗は抑えられるが、今度は透明絶縁パターン部14における間隙部14bの面積比率が高まり、非視認性が悪化してしまう。
 このように、透明電極パターン部13と透明絶縁パターン部14で共通のランダムパターンを折り返して用いると、電極抵抗と非視認性がトレードオフの関係になる。
 そこで本実施の形態では、透明電極パターン部13と透明絶縁パターン部14において、異なるパターンを使用する。
 異なるパターンとは、次のような例がある。
 まず、透明電極パターン部13は導電材料の被覆率が100%となるベタ塗りパターンで、透明絶縁パターン部14はランダムパターンとすることが考えられる。ベタ塗りパターンは、透明電極パターン部13の全体が導電部13bであり、孔部13aが存在しないものとなる。そして透明絶縁パターン部14は、島部14aと間隙部14bがランダムに配置される。つまり、透明電極パターン部13及び透明絶縁パターン部14は、それぞれ少なくとも導電材料部を有しながら、導電材料部が互いに異なるパターンで形成される場合の一例である。
 さらに透明電極パターン部13及び透明絶縁パターン部14は、導電材料部と非導電部が、互いに異なるランダムパターンで形成されている例がある。例えば透明電極パターン部13は、導電材料部の形成面内で、複数の孔部13a(非導電部)が離間してランダムに形成され、透明絶縁パターン部14は、非導電部の形成面内で、導電材料部(島部14a)が離間してランダムに形成されている。そして透明電極パターン部13と透明絶縁パターン部14とでは、導電材料部と非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている例である。
 本実施の形態の場合、図2C、図4Cのように、透明電極パターン部13と透明絶縁パターン部14が、このように互いに異なるランダムパターンを用いて形成されているものである。
 異なるランダムパターンとは、異なるランダムパターン生成条件(半径範囲、生成した円内への図形描写条件、後述する乱数の重み付け等)にて生成したパターンのことである。
 そして異なるランダムパターンを用いることで、透明電極パターン部13の抵抗値低減と、非視認性を両立できる。
 例えば透明電極パターン部13において、図6のシート抵抗が100Ω/□となる導電材料、電極幅、膜厚の導電部13bを形成する例の場合で言えば、導電部13bの被覆率を略65%程度以上とすればよいため、孔部13aの面積比率が35%以下となるようなランダムパターンを用いればよい。
 このとき、透明絶縁パターン部14では、間隙部14bの面積比率が孔部13aの面積比率とあまり異ならないようなランダムパターンを用いればよい。それにより非視認性を維持できる。
 例えば透明電極パターン部13における導電材料部(導電部13b)の被覆率を65%以上100以下とする場合、透明絶縁パターン部14における導電材料部(間隙部14b)の被覆率も65%以上100未満とするとよい。異なるランダムパターンを用いることで、このような状態が実現できる。
 さらに非視認化のためには、透明導電性素子1(X電極)と透明導電性素子2(Y電極)の両方を重ねた状態で考えることも必要である。
 まず本実施の形態の入力装置10を構成する透明導電性素子1,2は、それぞれ透明電極パターン部13(23)及び透明絶縁パターン部14(24)は、導電材料部と非導電部が、互いに異なるランダムパターンで形成されている。
 図7Aには、図1の状態、つまり透明導電性素子1,2が重ねて配置されている状態を示し、図7Bに一部の拡大図を示している。
 この場合、領域AR1は、透明電極パターン部13、23が重なる領域である。
 領域AR2は、透明絶縁パターン部14、24が重なる領域である。
 領域AR3は、透明電極パターン部13と透明絶縁パターン部24が重なるか、もしくは透明絶縁パターン部14と透明電極パターン部23が重なる領域である。
 ユーザがタッチ操作を行う入力面側から見た場合、透明導電性素子1,2が重なる部分(入力面形成部分)の全ては、これら領域AR1,AR2,AR3に分類される。
 ユーザの視覚からの非視認性を考えた場合、これら領域AR1,AR2,AR3の別が視認されることを防がなくてはならない。
 結論的には、本実施の形態では、透明導電性素子1と透明導電性素子2が重ね合わされた状態で、入力面方向からみた全ての領域AR1,AR2,AR3で、透明導電性素子1の導電材料部の被覆率と、透明導電性素子2における導電材料部の被覆率との加算値の差が、0以上60以下であるようにする。さらには、その加算値の差が、0以上30以下であるとよい。
 例えば、透明電極パターン部13、23における導電材料部(導電部13b、23b)の被覆率を80%とする。
 また透明絶縁パターン部14、24における導電材料部(島部14a、24a)の被覆率を50%とする。
 すると、領域AR1,AR2,AR3での透明導電性素子1の導電材料部の被覆率と透明導電性素子2における導電材料部の被覆率との加算値は次のようになる。
 領域AR1:80+80=160
 領域AR2:50+50=100
 領域AR3:80+50=130
 この場合、加算値は領域AR1で最も大きく、領域AR2で最も小さいが、その加算値の差は60である。
 加算値の差が60以下であれば、非視認性は良好といえる。
 加算値を指標とするのは、あくまでもユーザの視覚に沿って非視認性を考えるためである。例えば実際の孔部13aや島部14aの直径は、例えば10μm~100μmであったり、或いは100μm~500μmであったりと、ランダムパターン生成時のパラメータ設定によって異なるにせよ、人の視覚からすれば極めて微少な孔である。そして透明な電極上で孔部13aや島部14aの個々をユーザが視認できる場合はほとんど無い。
 ユーザの視覚に即してマクロ的に考えた場合、透明導電性素子1,2を重ね合わせたときは、透明導電性素子1での導電材料部の被覆率と、透明導電性素子2での導電材料部の被覆率を加算したものが、その領域の平均的な被覆率と捉えられる。つまり加算値の差が大きいと、ユーザの視覚上、領域AR1,AR2,AR3の別が視認しやすくなる。
 発明者らは、視認性検討の結果、入力面方向からみた全ての領域で、上記の加算値の差が、0以上60以下であるようにすると、非視認性を維持できることを見いだした。
 もちろん、加算値の差を小さくすることで、より非視認性には好適となる。
 例えば上記の例で言えば、領域AR2での加算値を大きくすれば、より各領域での加算値の差を小さくすることができる。
 そこで、透明絶縁パターン部14、24における導電材料部(島部14a、24a)の被覆率を65%とする。
 すると、領域AR1,AR2,AR3での透明導電性素子1の導電材料部の被覆率と透明導電性素子2における導電材料部の被覆率との加算値は次のようになる。
 領域AR1:80+80=160
 領域AR2:65+65=130
 領域AR3:80+65=145
 この場合、加算値の差は30となり、非視認性の点でより好適となる。
 但し、透明絶縁パターン部14、24における導電材料部(島部14a、24a)の被覆率を高くすることは、例えば後述する印刷形成の場合、それだけ導電材料の使用量が多くなり、材料コストが高くなる。
 そこで、各領域間の加算値の差が60を越えない範囲で、材料コストや透明電極パターン部13の抵抗値を勘案して、透明絶縁パターン部14、24における導電材料部(島部14a、24a)の被覆率を設定するとよい。
 以上の本実施の形態では、まず透明電極パターン部13(23)と透明絶縁パターン部14(24)とで、異なるランダムパターンを用いる。
 異なるランダムパターンを用いることで、透明電極パターン部13(23)と透明絶縁パターン部14(24)とで、導電材料部の被覆率設定の自由度を高めることができる。
 それによって透明電極パターン部13(23)における抵抗値を適切な値(例えば150Ω以下)としたうえで、非視認性や材料コストを鑑みて透明絶縁パターン部14(24)側の導電材料部の被覆率を設定できる。
 以上により、透明電極パターン部13(23)における抵抗値の低減を実現しつつ、入力面側から見た全領域での電極構成の非視認化を実現できる。
 そしてこれにより、視認されにくく高性能な入力装置10が実現できる。
 また透明電極パターン部13(23)及び透明絶縁パターン部14(24)における導電材料部の被覆率は65%以上100未満であるとよい。
 また、透明導電層パターンの非視認化のため、透明導電性素子1,2を重ねたときのあらゆる領域において、導電材料の被覆率の加算値の差は0以上60以下とする。さらに良好な非視認化のためには、その加算値の差を0以上30以上とする。
 なお、図3A、図4Cの説明の際に述べたが、透明電極パターン部13(23)と透明絶縁パターン部14(24)との境界線L1(L2)上は、2種類のランダムパターンがそのままカットされて貼り合わせたような状態(パターンのブツ切り)となっている。これは、視認されにくい、ランダムな形状の境界線が形成されるという点で好適である。
 また、透明電極パターン部13(23)には複数の孔部13a(23a)を離間してランダムに形成し、透明絶縁パターン部14(24)には複数の島部14a(24a)を離間してランダムに形成しているので、モアレの発生を抑制することができる。
 なお、透明電極パターン部13は、孔部13aの被覆率0%、つまり導電部13bの被覆率が100%でもよい。
 また、孔部の被覆率が異なる領域の2種類以上の領域のミックスで透明電極パターン部13を形成してもよい。
 ランダムパターンは多様に考えられる。上記例で孔部13aおよび島部14aの形状は、円形状としたが、楕円形状、円形状の一部を切り取った形状、楕円形状の一部を切り取った形状、多角形状、角を取った多角形状、不定形状などでもよい。
 さらに、それらの複数種類の形状が用いられてもよい。ランダムパターンの生成の容易さの観点からすると、円形状が好ましい。
 また、孔部13aおよび島部14aの形状として、異なる形状を採用するようにしてもよい。
 なお、上記の楕円形状には、数学的に定義される完全な楕円のみならず、多少の歪みが付与された楕円(例えば長円、卵型など)も含まれる。円形には、数学的に定義される完全な円(真円)のみならず、多少の歪みが付与された円形も含まれる。多角形には、数学的に定義される完全な多角形のみならず、辺に歪みが付与された多角形、角に丸みが付与された多角形、および辺に歪みが付与され、かつ角に丸みが付与された多角形なども含まれる。辺に付与される歪みとしては、凸状または凹状などの湾曲などが挙げられる。
 また透明電極パターン部13や透明絶縁パターン部14には、ランダムパターンとして、後述する図10や図36に例示するようなランダムメッシュパターンを用いてもよい。
 また、複数の孔部13aはすべてを離間して形成することが好ましいが、非視認性の低下および導電性の低下を招かない範囲であれば、複数の孔部13aの一部を互いに接し合わせる、または重なり合わせるようにしてもよい。また、複数の島部14aすべてを離間して形成することが好ましいが、非視認性の低下および絶縁性の低下を招かない範囲であれば、複数の島部14aの一部を互いに接し合わせる、または重なり合わせるようにしてもよい。
<3.第2の実施の形態の透明導電性素子:ダイヤモンド状パターン電極>
 透明導電性素子1,2の第2の実施の形態として、ダイヤモンド状パターン電極を有する場合を説明する。
 図8A、図8Bは、透明導電性素子1,2における電極パターンを示している。
 図8Aに示すように、この場合も透明導電性素子1は、透明導電層12に透明電極パターン部13と透明絶縁パターン部14が形成されている。そして透明電極パターン部13は、ダイヤモンド形状(略菱形状)の部位がX軸方向に連なっているような形状とされている。
 そしてこの透明電極パターン部13と透明絶縁パターン部14とが、基材11の表面にY軸方向に向かって交互に敷き詰められている。
 また図8Bに示すように、透明導電性素子2は、透明導電層22に透明電極パターン部23と透明絶縁パターン部24が形成されている。そして透明電極パターン部23は、ダイヤモンド形状(略菱形状)の部位がY軸方向に連なっているような形状とされている。
 そしてこの透明電極パターン部23と透明絶縁パターン部24とが、基材21の表面にX軸方向に向かって交互に敷き詰められている。
 このような第2の実施の形態においても、透明電極パターン部13(23)と、透明絶縁パターン部14(24)が、異なるランダムパターンを用いて導電材料部が形成されればよいことは、第1の実施の形態と同様である。その点において具体的には、第1の実施の形態で説明した各例と同様の例が考えられる。
 ここでは特に、X電極、Y電極が重なった場合での視認性や、透明電極パターン部13,23が、導電材料部の被覆率が異なる複数の領域により形成されている具体例について説明する。
 まず図9Aは、図7Aと同様に透明導電性素子1,2が重なった状態として、透明電極パターン部13、23がダイヤモンド形状の場合を示し、図9Bにその一部の拡大図を示している。ここでは透明導電性素子2側を破線で示している。
 図7で説明した場合と同様、領域AR1は透明電極パターン部13、23が重なる領域、領域AR2は透明絶縁パターン部14、24が重なる領域である。また領域AR3は、透明電極パターン部13と透明絶縁パターン部24が重なるか、もしくは透明絶縁パターン部14と透明電極パターン部23が重なる領域である。
 この場合も、ユーザがタッチ操作を行う入力面側から見た場合、透明導電性素子1,2が重なる部分(入力面形成部分)の全ては、これら領域AR1,AR2,AR3に分類される。そしてユーザの視覚からの非視認性を考えた場合、これら領域AR1,AR2,AR3の別が視認できないことが求められる。
 図9Bのように、電極パターン形状が異なれば、領域AR1,AR2,AR3の形状や範囲も異なってくるが、この場合も、例えば透明電極パターン部13、23における導電材料部(導電部13b、23b)の被覆率を80%とし、透明絶縁パターン部14、24における導電材料部(島部14a、24a)の被覆率を50%などとする。そして、領域AR1,AR2,AR3での透明導電性素子1の導電材料部の被覆率と透明導電性素子2における導電材料部の被覆率との加算値の差を60以下とすると、非視認性は良好となる。さらには、その加算値の差を30以下とすると、非視認性は極めて良好となる。
 また、特にこのダイヤモンド形状のパターンの場合、透明電極パターン部13において、導電材料部の被覆率が異なる2種類以上の領域をミックスさせることが有効である。
 図10に示すように、ダイヤモンド形状のパターンの透明電極パターン部13を、領域Aと領域Bに分割する。また透明絶縁パターン部14に相当する部分を領域Cとする。
 領域Aの幅をWA、長さをLAとする。
 領域Bの幅WBは、WB=(領域Bの面積)/LBとする。LBは領域Bの長さである。
 透明電極パターン部13の形状が、ダイヤモンド形状の場合のように2つ以上の領域に区別できるとき、L(x)/W(x)値がより大きな領域にて、孔部13aの被覆率をより小さく(=導電部13bの被覆率をより大きく)設定するのがよい。
 これは、L(x)/W(x)値がより大きな領域にて、その領域のそもそもの抵抗値が大きく、孔部13aの被覆率増に伴う抵抗増のインパクトがより大きいためである。
 図10の場合で言えば、領域Aは領域Bに対してL(x)/W(x)値が大きく、そもそもの抵抗値が大きい。
 そこで図示のように、領域Bでは例えば導電部13bの被覆率を79%(孔部13aを21%)とし、領域Aでは導電部13bの被覆率を100%(孔部13aを0%)とすることなどが考えられる。なお、この被覆率はあくまで一例である。
 また領域C、すなわち透明絶縁パターン部14については、上記のX、Y電極重ね合わせ時の被覆率の加算値の差の条件に合致するように、導電材料部(島部14a)の被覆率を設定すればよい。また図示のように、ランダムドット状ではなくランダムメッシュ状のパターンとしてもよい。
 この例のように、導電材料部の被覆率を部分的にコントロールすることで、電極を印刷形成する場合、導電材料の使用量を抑える(=材料コストを抑える)ことができる。
 またパターン非視認化のため、領域A~Cにおける導電材料の被覆率差は、0%以上30%以下とするのがよい。
<4.製造方法I>
 続いて上記第1,第2の実施の形態のような透明導電性素子1の製造方法の例について説明する。なお、透明導電性素子2の製造方法は、透明導電性素子1と同様であるため説明を省略する。
 まず製造方法Iとしてエッチングを用いた工程を図11A、図12で説明する。
 図11Aに示すように、ステップF101で、透明電極パターン部13に用いるランダムパターンを生成する。
 またステップF102で透明絶縁パターン部14に用いるランダムパターンを生成する。透明電極パターン部用のランダムパターンと透明絶縁パターン部用のランダムパターンは、パターン生成条件(半径範囲、生成した円内への図形描写条件、後述する乱数の重み付け等)が互いに異なる条件となるように設定して生成する。
 このステップF101,F102は逆でもよいし同時並行的に行ってもよい。また、実際の製造ラインとは離れて実行されてもよい。図11Aでは説明の便宜上、1つのフローチャートで示しているが、いずれにしろステップF103以降の製造ラインに入る時点で、ステップF101,F102の結果として2種類のパターン(ランダムパターン)が用意されていればよいものである。
 ステップF103として透明導電層12の成膜が行われる。
 この工程では、図12Aに示すように、基材11の表面上に透明導電層12を形成する。透明導電層12を形成する際に、基材11を加熱するようにしてもよい。透明導電層12の形成方法としては、例えば、熱CVD、プラズマCVD、光CVDなどのCVD法(Chemical Vapor Deposition(化学蒸着法):化学反応を利用して気相から薄膜を析出させる技術)のほか、真空蒸着、プラズマ援用蒸着、スパッタリング、イオンプレーティングなどのPVD法(Physical Vapor Deposition(物理蒸着法):真空中で物理的に気化させた材料を基板上に凝集させ、薄膜を形成する技術)を用いることができる。
 次に、必要に応じて、透明導電層12に対してアニール処理を施す。これにより、透明導電層12が、例えばアモルファスと多結晶との混合状態、または多結晶状態となり、透明導電層12の導電性が向上する。
 ステップF104として、レジスト層の成膜が行われる。
 図12Bに示すように、透明導電層12の表面上に、上述の孔部13aおよび間隙部14bに対応する部分に開口部33を有するレジスト層41をリソグラフィー技術によってパターン形成する。
 孔部13aに対応するレジスト層41は、ステップF101で形成した透明電極パターン部用のランダムパターンに基づいて形成される。また間隙部14bに対応するレジスト層41は、ステップF102で形成した透明絶縁パターン部用のランダムパターンに基づいて形成される。
 レジスト層41の材料としては、例えば有機系レジスト、および無機系レジストのいずれを用いてもよい。有機系レジストとしては、例えばノボラック系レジストや化学増幅型レジストを用いることができる。また、無機系レジストとしては、例えば、1種または2種以上の遷移金属からなる金属化合物を用いることができる。
 ステップF105として現像が行われる。
 図12Cに示すように、複数の開口部33が形成されたレジスト層41をエッチングマスクとして、透明導電層12に対してエッチング処理を施す。
 これにより、領域R1の透明導電層12には孔部13aおよび導電部13bが形成されるとともに、領域R2の透明導電層12には島部14aおよび間隙部14bが形成される。エッチングとしては、例えば、ドライエッチングおよびウエットエッチングのいずれも用いることができるが、設備が簡易である点からすると、ウエットエッチングを用いることが好ましい。
 ステップF106としてレジスト層の剥離が行われる。
 図12Dに示すように、アッシングなどにより、透明導電層12上に形成されたレジスト層41を剥離する。
 以上により、目的とする透明導電性素子1が得られる。
<5.製造方法II>
 続いて印刷手法を用いた透明導電性素子1,2の製造方法IIを図11B、図13、図14で説明する。
 図11Bに示すように、ステップF201で、透明電極パターン部13に用いるランダムパターンを生成する。
 またステップF202で透明絶縁パターン部14に用いるランダムパターンを生成する。透明電極パターン部用のランダムパターンと透明絶縁パターン部用のランダムパターンは、パターン生成条件(半径範囲、生成した円内への図形描写条件、後述する乱数の重み付け等)が互いに異なる条件となるように設定して生成する。
 このステップF201,F202に関する点は、図11AのステップF101,F102と同様である。
 ステップF203で原盤形成を行う。
 図13Aは、原盤の形状の一例を示す斜視図である。図13Bは、図13Aに示した領域R1および領域R2の一部を拡大して示す平面図である。原盤100は、例えば、転写面としての円柱面を有するロール原盤であり、その円柱面には領域R1および領域R2が交互に敷き詰められている。
 領域R1には、凹状を有する複数の孔部113aが離間して形成されており、この孔部113a間は凸部113bにより離間されている。孔部113aは透明電極パターン部13の孔部13aを印刷により形成するためのものであり、凸部113bは透明電極パターン部13の導電部13bを印刷により形成するためのものである。
 この場合の孔部113aと凸部113bの配置は、ステップF201で生成したランダムパターンに基づいたものとなる。
 領域R2には、凸状を有する複数の島部114aが離間して形成されており、この島部114a間は凹部114bにより離間されている。島部114aは透明絶縁パターン部14の島部14aを印刷により形成するためのものであり、凹部114bは透明絶縁パターン部14の間隙部14bを印刷により形成するためのものである。
 この場合の島部114aと凹部114bの配置は、ステップF202で生成したランダムパターンに基づいたものとなる。
 ステップF204で、上記の原盤100を用いた導電性インクの印刷が行われる。
 まず、図14Aに示すように、原盤100の転写面に導電性インクを塗布し、塗布した導電性インクを基材11の表面に印刷する。
 印刷法としては、例えば、スクリーン印刷、水なし平板印刷、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、反転オフセット印刷などを用いることができる。
 次にステップF205で乾燥又は焼成が行われる。
 図14Bに示すように、必要に応じて、基材11の表面に印刷された導電性インクを加熱することにより、導電性インクを乾燥および/または焼成する。
 以上により、目的とする透明導電性素子1を得ることができる。
<6.ランダムパターンの形成方法>
 以上のように本実施の形態の透明導電性素子1,2は、透明電極パターン部13,23と透明絶縁パターン部14、24とで異なるランダムパターンに基づいて導電材料部が形成されている。
 ここでは、このような導電材料部を形成するための元となるランダムパターン自体の形成方法の例を述べる。例として、円形状の孔部13a、23a、および島部14a、24aを形成するためのランダムパターンの生成方法について説明するが、ランダムパターンの形状はこれに限定されるものではない。
 先ず、円の半径を設定範囲内でランダムに変化させて配置する際、隣接した円が常に接するように円の中心座標を計算し配置することで、配置のランダム性と高密度充填とを両立したランダムパターンを生成する。この場合、以下のような(1)、(2)のアルゴリズムにより、少ない計算量で高密度、かつ一様にランダム配置されたランダムパターンが得られる。
(1)X軸上に「半径をある範囲でランダム」とした円を接するように並べる。以下に、必要なパラメータを示す。Xmax:円を生成する領域のX座標最大値Yw:X軸上に円を配置する時に、円の中心が取り得るY座標の最大値の設定Rmin:生成する円の最小半径Rmax:生成する円の最大半径Rnd:0.0~1.0の範囲で得られる乱数値Pn:X座標値xn、Y座標値yn、半径rnで定義される円
 図15には、上記(1)のアルゴリズムを説明する略線図を示す。この図に示すように、Y座標値をX軸上である0.0から概ねRminの値の範囲でランダムに決定し、また半径をRminからRmaxの範囲でランダムに決定した円を、既存の円に接するように並べることを繰り返し、X軸上にランダムに1列の円を並べる。
 以下、図16に示したフローチャートを用いて(1)のアルゴリズムについて説明する。
 まず、ステップS1において、上述した(1)で必要なパラメータを設定する。次に、ステップS2において、円P0(x0,y0,r0)を以下のように設定する。
 x0=0.0
 y0=0.0
 r0=Rmin+(Rmax−Rmin)×Rnd
 乱数値Rndを係数とすることで、円P0の半径がランダムに設定される。
 その後、ステップS2’において、n=1に設定する。
 次に、ステップS3において、円Pn(xn,yn,rn)を以下の式により決定する。
 rn=Rmin+(Rmax−Rmin)×Rnd
 yn=Yw×Rnd
 xn=xn−1+(rn−rn−1)×cos(asin(yn−yn−1)/(rn−rn−1))
 円Pnの半径も乱数値Rndを係数とすることでランダムに設定される。また中心のY座標値ynも、Ywの範囲内でランダムに設定される。
 次に、ステップS4において、Xn>Xmaxであるか否かを判別する。ステップS4にてXn>Xmaxであると判別された場合には、処理は終了する。ステップS4にてXn>Xmaxでないと判別された場合には、処理はステップS5に進む。ステップS5において、円Pn(xn,yn,rn)を記憶する。次に、ステップS6において、nの値をインクリメントし、ステップS3に処理を移行する。つまり次の円Pn(xn,yn,rn)を決定する。
(2)「ランダムな半径の円」を決定し、既存の2つの円に接し、他の円に重ならないよう下から順に積上げる。以下に、必要なパラメータを示す。Ymax:円を生成する領域のY座標最大値Rmin:生成する円の最小半径Rmax:生成する円の最大半径Rfill:充填率を上げるため、補助的に円を設定する場合の最小半径Rnd:0.0~1.0の範囲で得られる乱数値Pn:X座標値xn、Y座標値yn、半径rnで定義される円
 図17には、上記(2)のアルゴリズムを説明する略線図を示す。この図に示すように、(1)で決定したX軸上に1列に並んだ円(破線で図示)を元に、RminからRmaxの範囲でランダムな半径の円を決定し、Y座標が小さい方から他の円に接するように円を配置し重ねて行く。また、Rminより小さいRfillを設定し、決定した円では埋まらない隙間ができた場合にのみ、隙間を埋めることで充填率を向上させる。Rminより小さい円を用いない場合は、Rfill=Rminと設定する。
 以下、図18に示したフローチャートを用いて(2)のアルゴリズムについて説明する。
 まず、ステップS11において、上述した(2)で必要なパラメータを設定する。
 次に、ステップS12において、(1)で生成した円P0から円PnのうちY座標値yiが最小な円Piを求める。
 次に、ステップS13において、yi<Ymaxである否かを判別する。ステップS13にてyi<Ymaxではない(No)と判別された場合には、処理は終了となる。つまり、Y座標最大値まで円の積み重ねが終了したと判定され、処理は終了する。ステップS13において、yi<Ymaxである(Yes)と判別された場合には、ステップS14以降に進み、円を重ねるように追加していく処理を行う。
 ステップS14において追加する円Pkの半径rkをrk=Rmin+(Rmax−Rmin)×Rndとする。乱数値Rndを係数とすることで、円Pkの半径rkがランダムに設定される。次に、ステップS15において、円Pi近傍で円Piを除きY座標値yiが最小な円Pjを求める。
 次に、ステップS16において、最小な円Piが存在するか否かを判別する。ステップS16にて最小な円Piが存在しないと判別した場合には、ステップS17において、以降Piは無効とする。ステップS16にて最小な円Piが存在すると判別した場合には、ステップS18において、円Piと円Pjとに接する半径rkの円Pkが存在するかを求める。
 図19には、ステップS18において、接する2つの円に、任意の半径の円が接するように配置するときの座標の求め方を示す。
 すなわち、図示する式により、円Piの座標(xi,yi)と半径ri、及び円Pjの座標(xj,yj)と半径rj、及び追加する円Pkの半径rkを用いてcosθiを求め、さらにθiを用いて、追加する円Pkの座標(xk,yk)を算出する。
 次に、ステップS19において、円Piと円Pjとに接する半径rkの円Pkが存在するか否かを判別する。ステップS19において円Pkが存在しないと判別した場合には、ステップS20において、以降円Pi、円Pjの組み合わせは除外する。ステップS19において円Pkが存在すると判別した場合には、ステップS21において、円P0から円Pnに円Pkと重なる円が存在するか否かを判別する。ステップS21にて重なる円が存在しないと判別した場合には、ステップS24において、円Pk(xk,yk,rk)を記憶する。次に、ステップS25においてnの値をインクリメントし、ステップS26においてPn=Pkとし、さらにステップS27においてkの値をインクリメントしてステップS12に処理を移行する。
 ステップS21にて重なる円が存在すると判別した場合には、ステップS22にて円Pkの半径rkをRfill以上の範囲で小さくすれば重なりを回避できるか否かを判別する。ステップS22にて重なりを回避できないと判別した場合には、ステップS20において、以降円Pi、円Pjの組み合わせは除外する。ステップS22にて重なりを回避できると判別した場合には、ステップS23において、半径rkを重なりを回避できる最大の値にする。次に、ステップS24において、円Pk(xk,yk,rk)を記憶する。次に、ステップS25において、nの値をインクリメントし、ステップS26においてPn=Pkとし、さらにステップS27においてkの値をインクリメントしてステップS12に処理を移行する。
 以上の処理により、例えば図20に示すように平面上にランダムに円が配置される。
 このようなランダムな円のパターンから、各円を縮小していくことで、孔部13aや島部14aの配置に相当するランダムパターンを形成できる。例えば図20の右上の数個の円について、或る縮小率で縮小した円Tを波線で示している。全ての円について、このように縮小することで、互いに離間した孔部13aや島部14aに相当するランダムパターンが得られる。
 なお、もちろん円を単に縮小するだけでなく、生成した円内に円より小さい図形を描くことで、それぞれが孤立した或る形状のパターンを形成することができる。円内に描く図形の形状例としては、円、楕円、多角形、角を取った多角形、不定形などが想定され、それによって円以外の孔部13aや島部14aを形成するランダムパターンを生成できる。
 透明電極パターン部13に用いるランダムパターンも、透明絶縁パターン部14に用いるランダムパターンも、基本的には以上の手法で生成する。本例では、透明電極パターン部13と透明絶縁パターン部14では互いに異なるランダムパターンを用いるが、これは各ランダムパターンの生成時に生成条件を異なるものとする。
 異なる生成条件としては、まず上記のパラメータ設定が想定される。例えばRmin、Rmax、Rfillを異なる設定とすることで、図20のように生成されるランダムな円の半径範囲が異なるものとなる。
 また図20のような状態からの円T(或いは円内配置される他の図形)への縮小率を異なるものとしてもよい。
 またランダム配置される図形を異なるようにしてもよい。例えば一方は円、他方は正方形などとする。また、一方はランダムドットのパターン、他方はランダムメッシュパターンなどとしてもよい。
 さらに、乱数値Rndとして、0.0~1.0の範囲で得られる乱数値が用いられるが、これに対して重み付けを異なるようにすることも考えられる。
 またこれらを組み合わせてもよいことは当然である。
 これらの生成条件が異なることで、透明電極パターン部13に用いるランダムパターンと透明絶縁パターン部14に用いるランダムパターンを異なるパターンとし、それによって、それぞれで所望の導電材料部の被覆率を実現できる。
 乱数の重み付けについて説明する。
 図20のように生成される円の半径は、
 円の半径=最小半径Rmin+(最大半径Rmax−最小半径Rmin)×乱数値Rndである。
 そして乱数値Rndは0.0~1.0の範囲で得られる乱数である。
 この乱数を、計算結果が0~1の範囲になるような計算式に代入することにより生成される円半径の分布に重み付けが可能となる。
 例えば、乱数値[Rnd]とすることで、小さい円半径の分布を増やすことができる。
 また乱数値[Rnd]1/3とすることで、大きい円半径の分布を増やすことができ、円(ドット)の充填率を上げることができる。
 図21Aに、y=x1/3、y=xとして重み付け後の乱数を示している。
 このように乱数の重み付けを行なった場合の円(ドット)の直径の頻度を図21Bに示す。
 これは生成するランダムパターンとして、以下の条件で円状のランダムパターンを生成した場合である。
 ・半径範囲:35~56μm
 ・半径縮小値:10μm
 図21Bにおいて、線NWは重み付けを行わなかった場合、線AWはy=x1/3の重み付けを行った場合での頻度分布を、直径1μmピッチで示している。
 乱数の重み付けにより、大きな直径の円の発生頻度を増やし、ドット充填率を上げることが可能であることがわかる。
 逆に、小さな直径の頻度を増やし、ドット充填率を下げることも可能である。但し、任意直径の頻度を増やしすぎるとランダム性が低下し、モアレや回折光が発生する虞がある。直径1μmピッチの頻度分布にて、任意直径の頻度は35%以下であることが好ましい。
 ところで、ここまではドット状、或いは円内の多角形状等のランダムパターンの生成について説明したが、図22Aのようなランダムメッシュパターンの生成についても述べておく。
 ランダムメッシュパターンの生成の際も、上述したアルゴリズムで、例えば図20のようなランダムな円配置のパターンをまず生成すればよい。
 図22Bは、このランダムな円のパターンに対して、ランダムな角度でラインを引くことでメッシュパターンを形成するものである。
 すなわち、各円の中心座標をそのまま利用し、各円の中心を通る直線を引く。このとき各直線の回転角度を0度~180度の範囲でランダムに決定することで、図示のようにランダムな傾きの線を形成していく。
 このようにすることで、ランダムメッシュパターンが生成できる。
 また図22Cの手法でもよい。
 図22Cの場合も、図20のように生成したランダムな円配置のパターンを利用する。そして、この場合は、各円の中心座標から、近接する円の中心座標を結ぶ線分を引いていく。つまり近傍の円の中心同士を結んでいく。このようにすることでもランダムメッシュパターンが生成できる。
 なお、図22B、図22Cのいずれの手法の場合も、パラメータ設定を異なるものとすることや、乱数値の重み付けを変えることなどで、2種類の異なるランダムパターンを生成できる。
 またランダムに形成する直線の太さを変化させるようにして、導電材料部の被覆率の異なるランダムパターンを簡単に形成するようにもできる。
<7.金属ナノワイヤーを用いた透明導電性素子>
 透明導電層12が金属ナノワイヤーで形成される場合、透明電極パターン部13にランダムパターン処理を施すと、金属ナノワイヤー被覆面積が減少することで、導電部の反射L値の値が小さくなる。
 その結果、導電材料部の画面の黒表示がより沈み、直線状パターンやダイヤモンドパターンなどを使用した場合と比べてディスプレイの表示特性(コントラスト)が向上する。また、所定の表面処理を組み合わせることにより、導電材料部と非導電部ともに反射L値をより低く抑えることが可能となり、コントラストがさらに向上する。
 導電材料に金属ナノワイヤーを用いる透明導電膜は、ITOを用いた透明導電膜のようなスパッタではなく塗布プロセスを用いて成膜が可能である。塗布プロセスは、スパッタと異なり真空環境が必要ないため、製造コストの削減が期待できる。また、この金属ナノワイヤーを用いた透明導電膜はレアメタルであるインジウムを使わない次世代透明導電膜としても注目されている。
 図23Aは金属ナノワイヤーを用いた透明導電性素子の構造例を示している。基材80上に金属ナノワイヤーを用いた透明導電膜81が形成される。透明導電膜81では金属ナノワイヤーに加えて表面処理染料、分散剤、バインダー等も用いられる。
 基材80は、例えば、透明性を有する無機基材或いはプラスチック基材である。基材の形状としては、例えば、透明性を有するフィルム、シート、基板などを用いることができる。無機基材の材料としては、例えば、石英、サファイア、ガラスなどが挙げられる。プラスチック基材の材料としては、例えば、公知の高分子材料を用いることができる。公知の高分子材料としては、具体的には例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)などが挙げられる。プラスチック基材の厚さは、生産性の観点から38~500μmであることが好ましいが、この範囲に特に限定されるものではない。
 金属ナノワイヤーの構成元素としてはAg、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Snより選択される1種類以上で構成される。
 ナノワイヤーの平均短軸径は、好ましくは1nmよりも大きく500nm以下、また平均長軸長は、好ましくは1μmよりも大きく1000μm以下である。
 平均短軸径が1nmよりも小さい場合、ワイヤーの導電率が劣化して塗布後に導電膜として機能しにくい。
 また、平均短軸径が500nmよりも大きい場合、全光線透過率が劣化してしまう。平均長軸長が1μmよりも短い場合、ワイヤー同士がつながりにくく、塗布後に導電膜として機能しにくい。
 また、平均長軸長が1000μmよりも長い場合、全光線透過率が劣化してしまう。或いは、塗料化した際のナノワイヤーの分散性が劣化する傾向にある。
 塗料中での金属ナノワイヤーの分散性向上のため、金属ナノワイヤーは、PVP、ポリエチレンイミン等のアミノ基含有化合物で表面処理されていてもよい。
 塗膜化した際に導電性が劣化しない程度の添加量にすることが好ましい。その他、スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基などの官能基を有する化合物で金属に吸着可能なものを分散剤として用いてもよい。
 溶媒としては、金属ナノワイヤーが分散するものを使用する。例えば、水、アルコール(メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、tert−ブタノール等)、アノン(シクロヘキサノン、シクロペンタノン)、アミド(DMF)、スルフィド(DMSO)等から選択される少なくとも1種類以上が使用される。塗布面状の乾燥ムラやクラックを抑えるため、高沸点溶媒をさらに添加して、溶剤の蒸発速度をコントロールすることもできる。例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコールが挙げられる。これらの溶媒は単独で用いられてもよく、また複数を組み合わせてもよい。
 適用可能なバインダー材料としては、既知の透明な天然高分子樹脂または合成高分子樹脂から広く選択して使用することができる。
 例えば、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース)や、熱・光・電子線・放射線で硬化する透明硬化性樹脂(例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂)を使用することができる。
 さらに添加剤としては、界面活性剤、粘度調整剤、分散剤、硬化促進触媒、可塑剤、酸化防止剤や硫化防止剤などの安定剤などが挙げられる。
 また、耐久性向上のために、図23Bのように金属ナノワイヤーを塗布後に別途オーバーコート層82を設けてもよい。
 オーバーコート層82には、ポリアクリル系、ポリアミド系、ポリエステル系、セルロース系や金属アルコキシド等の加水分解・脱水縮合物などを使用できる。また、このオーバーコート層82の厚みは光学特性を著しく低下させない厚みとすることが望ましい。
 また、密着性向上のために、図23Cのように、金属ナノワイヤーを塗布する前にアンカー層83を別途基材80上に設けてもよい。
 アンカー層83には、ポリアクリル系、ポリアミド系、ポリエステル系、セルロース系や金属アルコキシド等の加水分解・脱水縮合物などを使用できる。また、このアンカー層83の厚みは光学特性を著しく低下させない厚みとすることが望ましい。
 オーバーコート層及びアンカー層を両方併用しても構わない。
 金属ナノワイヤーを用いた透明導電膜81は以下の工程を経て製造される。
 (工程1)金属ナノワイヤーを溶剤に分散させる。
 分散手法としては、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理等が好ましく適用できる。ナノワイヤーの配合量は塗料重量を100重量部とした場合、0.01~10重量部とする。0.01重量部未満である場合、塗布で膜形成した場合に十分な目付量が得られない。一方、10重量部よりも大きい場合、ナノワイヤーの分散性が劣化する傾向にある。
 金属ナノワイヤーの分散性向上のため、金属ナノワイヤー分散液にPVP、ポリエチレンイミン等のアミノ基含有化合物を分散剤として添加してもよい。分散剤を添加する場合は、塗膜化した際に導電性が劣化しない程度の添加量にすることが好ましい。その他、スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基などの官能基を有する化合物で金属に吸着可能なものを分散剤として用いてもよい。
 基材80への塗布性、密着性や耐久性を向上させるため、バインダーや添加剤等を混合してもよい。
 (工程2)基材上への金属ナノワイヤーによる透明導電膜を作製する。
 この方法として特に制限はないが、物性、利便性、製造コストなどを考慮すると湿式製膜法が好ましく、公知の方法としては、例えば、塗布、スプレー法、印刷などが挙げられる。塗布方法は、特に限定されるものではなく、公知の塗布方法を用いることができる。公知の塗布方法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法などが挙げられる。
 印刷方法としては、例えば、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン、インクジェット印刷などが挙げられる。
 (工程3)塗布後、溶剤を乾燥させる。
 自然乾燥、加熱乾燥のいずれでもよい。さらにバインダーを硬化させる場合はUVや熱等によって硬化させる。また、シート抵抗値を下げるためにカレンダーによる加圧処理を施してもよい。
 図23Aにおける金属ナノワイヤー層中の金属ナノワイヤーの目付量(g/m2)は、0.001g~1gにすることが望ましい。0.001g未満である場合、金属ナノワイヤーが十分に塗膜中に存在せず、透明導電膜としての性能が劣化する。目付量が多いとシート抵抗値は下がるが、1gより多い場合、金属ナノワイヤーが塗膜中に存在しすぎるため全光線透過率が劣化する。
<8.位置検出マーカー>
 本実施の形態の入力装置10の製造工程の効率化のための位置検出マーカーについて説明する。
 本実施の形態の入力装置10では、透明導電性素子1,2の非視認性が向上される。これに応じて、銀配線の印刷形成工程、X電極とY電極の貼合工程等での位置合わせが困難になる。
 そこで基材上に、例えば1~30mmφくらいの大きさの位置検出マーカーを形成しておくのが好ましい。このマーカーを光学的方法等により検出すれば、基材上の所定の位置への銀配線の形成や、貼合工程が可能となるからである。
 図24は、カット前の基材11のシート上に透明導電層12が多数形成されている状態を示している。
 このシート上の所定位置に、位置検出マーカーMPを形成する。
 位置検出マーカーMPは、例えば、透明導電層12のパターンが形成される領域の外側に配置するのが好ましい。
 位置検出マーカーMPは、入力装置10(タッチパネル)の組立て完成後は不要となるため、上記の位置に配置しておくと、タッチパネル組立て完成後に容易に切除することが可能となる。
 但し、位置検出マーカーMPは、必ずしも透明導電層12のパターンの外側でなくてもよい。入力装置10においてフレームで隠れる部分、つまり透明導電層12の周縁部分等に形成しておいてもよい。
<9.銀配線領域>
 透明導電性素子1,2においては、銀配線が形成される領域(透明絶縁パターン部の一部)には、島部14aを配置しなくてもよい。
 図25Aは透明導電性素子1を示し、図25Bはその一部を拡大して示しており、領域AR10は銀配線18が形成される領域である。
 図25Cは、該領域AR10の一部を、この領域AR10に島部14aが配置されたものとして、拡大している。
 この図25Cのように、銀配線が形成される領域AR10に島部14aを配置すると、銀配線間の間隔が狭い場合には、破線PSTの部分のように、隣り合った銀配線18同士が島部14aによって短絡してしまうおそれがある。
 また、この領域AR10は、入力装置10(タッチパネル)のフレームで隠れる領域であり、非視認性効果に影響はない。
 そこで、このような銀配線領域AR10や、さらには、銀配線の有無に関わらずフレームで隠れる領域には、ランダムパターンを配置しなくてもよい。
<10.入力装置構造の変形例>
 ここでは図1に示した入力装置10における透明導電性素子1,2の構造の変形例について説明する。
 図26Aに示すように、透明導電性素子2の基材21の一方の表面に透明導電層12を形成し、他の表面に透明導電層22を形成するようにしてもよい。
 この場合、図1に示した入力装置10において、基材11の形成は省略することができる。
 図26Bに示すように、透明導電性素子1の両表面のうち、少なくとも一方の表面にハードコート層61を形成するようにしてもよい。
 これにより、基材11にプラスチック基材を用いる場合、工程上での基材11の傷付き防止、耐薬品性付与、オリゴマーなどの低分子量物の析出を抑制することができる。ハードコート材料には、光または電子線などにより硬化する電離放射線硬化型樹脂、または熱により硬化する熱硬化型樹脂を用いることが好ましく、紫外線により硬化する感光性樹脂が最も好ましい。このような感光性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、メラミンアクリレートなどのアクリレート系樹脂を用いることができる。例えば、ウレタンアクリレート樹脂は、ポリエステルポリオールにイソシアネートモノマー、あるいはプレポリマーを反応させ、得られた生成物に、水酸基を有するアクリレートまたはメタクリレート系のモノマーを反応させることによって得られる。ハードコート層61の厚みは、1μm~20μmであることが好ましいが、この範囲に特に限定されるものではない。
 ハードコート層61は、ハードコート塗料を基材11に塗工することにより形成される。塗工方法は、特に限定されるものではなく公知の塗工方法を用いることができる。公知の塗工方法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法などが挙げられる。ハードコート塗料は、例えば、二官能以上のモノマーおよび/またはオリゴマーなどの樹脂原料、光重合開始剤、および溶剤を含有する。基材11上に塗工されたハードコート塗料を乾燥させることにより、溶剤を揮発させる。その後、例えば電離放射線照射または加熱により、基材11上にて乾燥されたハードコート塗料を硬化させる。
 なお、以上の透明導電性素子1と同様に、透明導電性素子2の両表面のうち、少なくとも一方の表面にハードコート層61を形成するようにしてもよい。
 図26Cに示すように、透明導電性素子1の基材11と透明導電層12との間に光学調整層62を介在させることが好ましい。これにより、透明電極パターン部13のパターン形状の非視認性をアシストすることができる。
 光学調整層62は、例えば屈折率が異なる2層以上の積層体から構成され、低屈折率層側に透明導電層12が形成される。より具体的には、光学調整層62としては、たとえば、従来公知の光学調整層を用いることができる。このような光学調整層としては、例えば、特開2008−98169号公報、特開2010−15861号公報、特開2010−23282号公報、特開2010−27294号公報に記載されているものを用いることができる。なお、以上の透明導電性素子1と同様に、透明導電性素子2の基材21と透明導電層22との間に光学調整層62を介在させるようにしてもよい。
 図26Dに示すように、透明導電性素子1の透明導電層12の下地層として密着補助層63を設けることが好ましい。これにより、基材11に対する透明導電層12の密着性を向上することができる。
 密着補助層63の材料としては、例えば、ポリアクリル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂、および金属元素の塩化物や過酸化物やアルコキシドなどの加水分解・脱水縮合生成物などを用いることができる。
 密着補助層63を用いるのではなく、透明導電層12を設ける表面にグロー放電またはコロナ放電を照射する放電処理を用いるようにしてもよい。また、透明導電層12を設ける表面に、酸またはアルカリで処理する化学薬品処理法を用いてもよい。
 また、透明導電層12を設けた後、カレンダー処理により密着を向上させるようにしてもよい。なお、透明導電性素子2においても、この透明導電性素子1と同様に密着補助層63を設けるようにしてもよい。また、上述の密着性向上のための処理を施すようにしてもよい。
 図26Eに示すように、透明導電性素子1にシールド層64を形成することが好ましい。例えば、シールド層64が設けられたフィルムを第1の透明導電性素子1に透明粘着剤層を介して貼り合わせるようにしてもよい。また、X電極パターンおよびY電極パターンが1枚の基材11の同じ面側に形成されている場合、それとは反対側にシールド層64を直接形成してもよい。
 シールド層64の材料としては、透明導電層12と同様の材料を用いることができる。シールド層64の形成方法としても、透明導電層12と同様の方法を用いることができる。但し、シールド層64はパターニングせず基材11の表面全体に形成された状態で使用される。
 透明導電性素子1にシールド層64を形成することで、表示装置4から発せられる電磁波などに起因するノイズを低減し、入力装置10の位置検出の精度を向上させることができる。なお、透明導電性素子1と同様に、透明導電性素子2にシールド層64を形成するようにしてもよい。
<11.電子機器の構造例>
 図27~図31には、図1を用いて説明した本実施形態の入力装置を表示面上備えた表示装置を、表示部に適用した電子機器の一例を示す。以下に、本技術の電子機器の適用例について説明する。
 図27は、本技術が適用されるテレビを示す斜視図である。本適用例に係るテレビ200は、フロントパネル202やフィルターガラス203等から構成される表示部201を含み、その表示部201として先に説明した表示装置を適用する。
 図28は、本技術が適用されるデジタルカメラを示す図であり、図28Aは表側から見た斜視図、図28Bは裏側から見た斜視図である。本適用例に係るデジタルカメラ210は、フラッシュ用の発光部211、表示部212、メニュースイッチ213、シャッターボタン214等を含み、その表示部212として先に説明した表示装置を適用する。
 図29は、本技術が適用されるノート型パーソナルコンピュータを示す斜視図である。本適用例に係るノート型パーソナルコンピュータ220は、本体221に、文字等を入力するとき操作されるキーボード222、画像を表示する表示部223等を含み、その表示部223として先に説明した表示装置を適用する。
 図30は、本技術が適用されるビデオカメラを示す斜視図である。本適用例に係るビデオカメラ230は、本体部231、前方を向いた側面に被写体撮影用のレンズ232、撮影時のスタート/ストップスイッチ233、表示部234等を含み、その表示部234として先に説明した表示装置を適用する。
 図31は、本技術が適用される携帯端末装置を示す斜視図である。本適用例に係る携帯端末装置240は、前面パネルの中央に設けた表示部241、その周囲に設けたセンサー242、スピーカー243、操作スイッチ244を含み、その表示部241として先に説明した表示装置を適用する。
 以上説明した本実施形態の各電子機器では、本実施形態の入力装置を表示面上に備えた表示装置を表示部に用いているため、入力装置を有しつつも、表示装置の表示が入力装置に妨げられることはなく、高精彩な表示を行うことが可能になる。
Hereinafter, embodiments will be described in the following order.
<1. Example of input device structure>
<2. Transparent Conductive Element of First Embodiment: Linear Pattern Electrode>
<3. Transparent Conductive Element of Second Embodiment: Diamond Pattern Electrode>
<4. Manufacturing Method I>
<5. Production Method II>
<6. Method for forming random pattern>
<7. Transparent conductive element using metal nanowire>
<8. Position detection marker>
<9. Silver wiring area>
<10. Modification of input device structure>
<11. Example of electronic device structure>
<1. Example of input device structure>
FIG. 1 is a cross-sectional view illustrating an example of a configuration of an input device according to an embodiment of the present technology.
As shown in FIG. 1, the input device 10 is provided on the display surface of the display device 4. The input device 10 is bonded to the display surface of the display device 4 by, for example, a bonding layer 5.
The input device 10 is a so-called projected capacitive touch panel, and includes a first transparent conductive element 1 and a second transparent conductive element 2 provided on the surface of the transparent conductive element 1. . For example, the transparent conductive element 1 forms an X electrode, and the transparent conductive element 2 forms a Y electrode.
The transparent conductive element 1 and the transparent conductive element 2 are bonded together via a bonding layer 6.
Moreover, you may make it further provide the optical layers 3, such as an antireflection film, on the surface of the transparent conductive element 2 through the bonding layer 7 as needed. The optical layer 3 may be a ceramic coat (overcoat) such as SiO2.
As will be described in detail later, the transparent conductive element 1 is formed by forming a transparent conductive layer 12 on the surface of the substrate 11 (in this example, the bonding layer 5 side). The transparent conductive element 2 is formed by forming a transparent conductive layer 22 on the surface of the base material 21 (in this case, the bonding layer 6 side).
As an example of the electronic apparatus of the present technology, there is a display device 4 including the input device 10 on a display surface. Although this display device 4 is not particularly limited, for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (PDP), an electroluminescence (EL) display, Various display devices such as a surface-conduction electron-emitter display (SED) may be used.
<2. Transparent Conductive Element of First Embodiment: Linear Pattern Electrode>
The transparent conductive elements 1 and 2 according to the first embodiment will be described.
First, the transparent conductive element 1 for forming the X electrode will be described with reference to FIGS.
2A is a plan view showing an example of the configuration of the transparent conductive element 1, FIG. 2B is a cross-sectional view taken along the line aa shown in FIG. 2A, and FIG. 2C is an enlarged view of the region C1 shown in FIG. 2A. FIG.
As shown in FIGS. 2A and 2B, the transparent conductive element 1 includes a substrate 11 having a surface and a transparent conductive layer 12 formed on the surface.
The transparent conductive layer 12 includes a transparent electrode pattern portion 13 and a transparent insulating pattern portion 14.
The transparent electrode pattern portion 13 is an X electrode pattern portion that extends in the X-axis direction.
The transparent insulating pattern portion 14 is a so-called dummy electrode pattern portion, extends in the X-axis direction, and is interposed between the transparent electrode pattern portions 13 to insulate between the adjacent transparent electrode pattern portions 13. It is a pattern part.
These transparent electrode pattern portions 13 and transparent insulating pattern portions 14 are alternately laid on the surface of the substrate 11 in the Y-axis direction.
2A to 2C, a region R1 indicates a formation region of the transparent electrode pattern portion 13, and a region R2 indicates a formation region of the transparent insulating pattern portion 14.
The shapes of the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are preferably selected as appropriate according to the screen shape, the drive circuit, etc. For example, a straight line shape or a plurality of rhombus shapes (diamond shape) are linearly connected However, it is not particularly limited to these shapes. In the first embodiment, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are linear patterns. An example of a diamond-shaped pattern will be described later as a second embodiment.
As shown in FIG. 2C, the transparent electrode pattern portion 13 is a transparent conductive layer formed by randomly separating a plurality of hole portions 13a, and a conductive portion 13b is interposed between adjacent hole portions 13a. Yes.
The conductive portion 13b is a conductive material portion in which a conductive material is coated on the surface of the substrate 11, and the hole portion 13a is a portion that is not covered with the conductive material, that is, a nonconductive portion.
Therefore, in the transparent electrode pattern portion 13, a plurality of non-conductive portions (hole portions 13a) are formed at random in the formation surface of the conductive material portion (conductive portion 13b).
On the other hand, the transparent insulating pattern portion 14 is a transparent conductive layer composed of a plurality of island portions 14a that are randomly formed apart from each other, and a gap portion 14b as an insulating portion is interposed between adjacent island portions 14a. .
The island portion 14a is a conductive material portion in which the surface of the base material 11 is coated with a conductive material, and the gap portion 14b is a portion that is not covered with the conductive material, that is, a non-conductive portion.
Accordingly, the transparent insulating pattern portion 14 is formed at random in the formation surface of the non-conductive portion (gap portion 14b) with the conductive material portion (island portion 14a) spaced apart.
In the present embodiment, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed in different random patterns. Specifically, the patterns formed by the boundary between the conductive material part and the non-conductive part are different random patterns.
Different random patterns are formed by arranging conductive material portions and non-conductive portions based on random patterns generated under different generation conditions.
That is, a random pattern for the transparent electrode pattern portion 13 is formed, and the hole portion 13a and the conductive portion 13b are formed based on the random pattern. Further, a random pattern for the transparent insulating pattern portion 14 is formed, and an island portion 14a and a gap portion 14b are formed based on the random pattern.
In the gap portion 14b of the transparent insulating pattern portion 14, it is preferable that the conductive material is completely removed. However, if the gap portion 14b is within a range that functions as an insulating portion, a part of the conductive material is island-shaped. Or may remain in the form of a thin film.
Moreover, it is preferable that the hole part 13a and the island part 14a have a random structure without periodicity. When the hole 13a and the island 14a are formed by a periodic structure of micron order or less, interference light is generated by itself, or when the input device 10 is placed on the display surface of the display device 4 and visually observed, This is because moire tends to occur.
FIG. 3A is an enlarged plan view showing the vicinity of the boundary line between the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14. 3B is a cross-sectional view taken along line bb shown in FIG. 3A.
As shown in FIG. 3B, the conductive portion 13b and the island portion 14a become a portion coated with the conductive material on the base material 11, and the hole portion 13a and the gap portion 14b are removed of the conductive material and the surface of the base material is exposed. It is a part to do.
As can be seen from FIG. 3A, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed with conductive material portions and non-conductive portions in different random patterns, and on the boundary line L1, there are simply two types of random The pattern is cut and pasted as it is. For this reason, the boundary line between the conductive material portion and the non-conductive portion in the vicinity of the boundary line L1 becomes irregular, and the visual recognition of the boundary line L1 can be suppressed.
FIG. 4 shows the transparent conductive element 2 forming the Y electrode.
4A is a plan view showing an example of the configuration of the transparent conductive element 2, and FIG. 4B is a cross-sectional view taken along the line cc shown in FIG. 4A. FIG. 4C is an enlarged plan view showing a region C2 shown in FIG. 4A.
As shown in FIGS. 4A and 4B, the transparent conductive element 2 includes a base material 21 having a surface and a transparent conductive layer 22 formed on the surface.
The transparent conductive layer 22 includes a transparent electrode pattern portion 23 and a transparent insulating pattern portion 24.
The transparent electrode pattern portion 23 is a Y electrode pattern portion that extends in the Y-axis direction.
The transparent insulating pattern portion 24 is a so-called dummy electrode pattern portion, extends in the Y-axis direction, is interposed between the transparent electrode pattern portions 23, and insulates the adjacent transparent electrode pattern portions 23 from each other. It is a pattern part.
These transparent electrode pattern portions 23 and transparent insulating pattern portions 24 are alternately laid on the surface of the substrate 21 in the X-axis direction. The transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 included in the transparent conductive element 1 described above and the transparent electrode pattern portion 23 and the transparent insulating pattern portion 24 included in the transparent conductive element 2 are, for example, in a relationship orthogonal to each other. is there.
4A to 4C, a region R1 indicates a formation region of the transparent electrode pattern portion 23, and a region R2 indicates a formation region of the transparent insulating pattern portion 24.
As shown in FIG. 4C, the transparent electrode pattern portion 23 is a transparent conductive layer formed by randomly separating a plurality of hole portions 23a, and a conductive portion 23b is interposed between adjacent hole portions 23a. Yes.
Therefore, in the transparent electrode pattern portion 23, a plurality of non-conductive portions (hole portions 23a) are formed at random in the formation surface of the conductive material portion (conductive portion 23b).
On the other hand, the transparent insulating pattern portion 24 is a transparent conductive layer composed of a plurality of island portions 24a that are randomly spaced apart, and a gap portion 24b as an insulating portion is interposed between adjacent island portions 24a. Yes.
Therefore, the transparent insulating pattern portion 24 is formed at random in the formation surface of the non-conductive portion (gap portion 24b) with the conductive material portion (island portion 24a) spaced apart.
And the transparent electrode pattern part 23 and the transparent insulation pattern part 24 are formed in the mutually different random pattern similarly to the transparent conductive element 1 of the X electrode mentioned above. Specifically, the patterns formed by the boundary between the conductive material portion and the non-conductive portion are different random patterns.
On the boundary line L2 between the transparent electrode pattern portion 23 and the transparent insulating pattern portion 24, two types of random patterns are cut and pasted as they are.
As a material of the base materials 11 and 21 in the transparent conductive elements 1 and 2 described above, for example, glass or plastic can be used.
As glass, for example, known glass can be used. Specific examples of the known glass include soda lime glass, lead glass, hard glass, quartz glass, and liquid crystal glass.
As the plastic, for example, a known polymer material can be used. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid. , Polyethylene (P), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin , Cyclic olefin polymer (COP), norbornene-based thermoplastic resin, and the like.
The thickness of the glass substrate is preferably 20 μm to 10 mm, but is not particularly limited to this range. The thickness of the plastic substrate is preferably 20 μm to 500 μm, but is not particularly limited to this range.
Examples of the conductive material for forming the transparent conductive layers 12 and 22 include indium tin oxide (ITO), zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, Metal oxide such as silicon-doped zinc oxide, zinc oxide-tin oxide, indium oxide-tin oxide, zinc oxide-indium oxide-magnesium oxide, or copper, silver, gold, platinum, palladium, nickel, tin, cobalt , Rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, lead, and other metals, or alloys thereof.
As a conductive material for forming the transparent conductive layers 12 and 22, a composite material in which carbon nanotubes are dispersed in a binder material may be used. Substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and one or two (co) polymer conductive polymers selected from these may be used. Two or more of these may be used in combination.
The configuration using metal nanowires as the conductive material will be described in detail later.
As a method for forming the transparent conductive layers 12 and 22, for example, a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a CVD method, a coating method, a printing method, or the like can be used. The thickness of the transparent conductive layers 12 and 22 is a surface resistance of 1000Ω / □ (ohm / square) or less in a state before patterning (a state where the transparent conductive layers 12 and 22 are formed on the entire surfaces of the base materials 11 and 21). It is preferable to select as appropriate.
The conductive material coating of the transparent electrode pattern portions 13 and 23 and the transparent insulating pattern portions 14 and 24 in the transparent conductive elements 1 and 2 having the above structure will be described. In the following description, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 mainly on the X electrode side will be described, but the same applies to the transparent electrode pattern portion 23 and the transparent insulating pattern portion 24 on the Y electrode side. is there.
FIG. 5A shows a state in which a conductive material is formed on the entire surface of the transparent electrode pattern portion 13. That is, the hole 13a is not provided and the entire surface is a conductive portion 13b. Therefore, the coverage of the conductive material basket (conductive portion 13b) with respect to the lower substrate 11 (not shown) is 100%. Electrode width = W.
On the other hand, as shown in FIG. 5B, consider forming the holes 13a in a random pattern. In this case, it is assumed that the coverage of the conductive portion 13b is 50%. Then, in the case of FIG. 5B, the average electrode width is W × 0.5.
Therefore, when the film thickness of the conductive material is the same, the electrical resistance of the transparent electrode pattern portion 13 in FIG. 5B is twice that in the case of the coverage rate of 100% in FIG. 5A.
If the electrical resistance of the transparent electrode pattern portion 13 is large, there is a possibility that the response speed and the position detection accuracy will be lowered when used for a capacitive touch panel.
Of course, even if the hole 13a is formed as shown in FIG. 5B, the electrical resistance can be made equivalent to that shown in FIG. 5A if the thickness of the conductive material is doubled. However, in that case, problems such as an increase in material cost and a decrease in production line speed occur, which is not preferable.
On the other hand, providing the hole 13a has the meaning of improving the invisibility between the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14.
For example, FIG. 5C shows a random pattern in which dots of various diameters are randomly arranged, and based on this, the hole 13a of the transparent electrode pattern portion 13 and the island portion 14a of the transparent insulating pattern portion 14 are formed. is there. In FIG. 5C, one random pattern is used in common by the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, and is inverted at the boundary line L1. That is, the dot portion in the random pattern is the hole portion 13a (non-conductive portion) in the transparent electrode pattern portion 13 and the island portion 14a (conductive material portion) in the transparent insulating pattern portion 14.
Thus, by introducing a random pattern into the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, it is possible to improve the invisibility so that the electrode line becomes invisible.
Here, the problem of the previous resistance value occurs.
When a random pattern is introduced into the transparent electrode pattern portion 13 as shown in FIG. 5C, the electrical resistance is increased.
In order to improve the resistance deterioration (resistance value increase) of the transparent electrode pattern portion 13, it is desired to increase the conductive material coverage of the transparent electrode pattern portion 13. That is, it is desired to reduce the area ratio of the hole 13a and increase the area ratio of the conductive portion 13b.
However, in such a case, if a common random pattern is used in the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, the area ratio of the island portion 14a is reduced on the transparent insulating pattern portion 14 side, and the area of the gap portion 14b is reduced. The proportion increases.
As a result, in the transparent electrode pattern portion 13, the conductive portion 13 b that is a conductive material coating portion is conspicuous, and in the transparent insulating pattern portion 14, the gap portion 14 b that is not covered with the conductive material is conspicuous. That is, the difference in coverage of the conductive material between the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 becomes large, and the invisibility is hindered.
FIG. 6 shows the change in sheet resistance with respect to the coverage of the conductive portion 13b. In FIG. 6, when a conductive material having a certain electrode width and a certain thickness is used and the coverage of the conductive portion 13b is 100%, the sheet resistance is 135Ω / □, 100Ω / □, 75Ω / □, 50Ω / □. The change in sheet resistance when the coverage is lowered is shown.
As illustrated, the sheet resistance increases as the coverage of the conductive portion 13b decreases. For example, when a touch panel is used for a medium-sized display such as a notebook-type or tablet-type personal computer, the standard is about 150Ω / □ or less. Then, in the case of the conductive portion 13b having a sheet resistance of 100Ω / □ when the coverage is 100%, the electrode width and the film thickness, the coverage of the conductive portion 13b is 67% or more (roughly from the figure). It is understood that it is preferable to set it to about 65% or more.
That is, by providing the holes 13a and the islands 14a in a random pattern, it is advantageous for non-visibility, but in order to improve the non-visibility, the area ratio of the holes 13a in the transparent electrode pattern portion 13, It is preferable that the area ratio of the island part 14a in the transparent insulating pattern part 14 is substantially equal. For this purpose, a random pattern is formed so that the coverage of the conductive material as shown in FIG. 5B is 50%, and one random pattern is formed by the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 as shown in FIG. 5C. It is preferable to cover the conductive material by inverting the pattern at the boundary line L1.
However, in that case, the coverage of the conductive portion 13b in the transparent electrode pattern portion 13 is about 50%, and the sheet resistance is increased.
In view of this, if the coverage of the conductive portion 13b in the transparent electrode pattern portion 13 is, for example, about 65% or more, the sheet resistance can be suppressed, but this time the area ratio of the gap portion 14b in the transparent insulating pattern portion 14 is reduced. This increases the non-visibility.
As described above, when a common random pattern is folded and used in the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, the electrode resistance and the invisibility are in a trade-off relationship.
Therefore, in the present embodiment, different patterns are used in the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14.
Examples of different patterns are as follows.
First, it is conceivable that the transparent electrode pattern portion 13 is a solid coating pattern in which the coverage of the conductive material is 100%, and the transparent insulating pattern portion 14 is a random pattern. In the solid coating pattern, the entire transparent electrode pattern portion 13 is the conductive portion 13b, and the hole portion 13a does not exist. In the transparent insulating pattern portion 14, island portions 14a and gap portions 14b are randomly arranged. That is, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are an example in which each of the conductive material portions is formed in a different pattern while having at least the conductive material portion.
Furthermore, the transparent electrode pattern part 13 and the transparent insulating pattern part 14 have an example in which the conductive material part and the non-conductive part are formed in different random patterns. For example, the transparent electrode pattern portion 13 is randomly formed with a plurality of hole portions 13a (non-conductive portions) separated from each other within the conductive material portion formation surface, and the transparent insulating pattern portion 14 is within the non-conductive portion formation surface. Thus, the conductive material portion (island portion 14a) is formed at a distance from each other at random. In the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14, the patterns formed by the boundary between the conductive material portion and the non-conductive portion are different random patterns.
In the case of the present embodiment, as shown in FIGS. 2C and 4C, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed by using different random patterns as described above.
A different random pattern is a pattern generated under different random pattern generation conditions (radius range, graphic drawing conditions in a generated circle, weighting of random numbers described later, etc.).
And by using a different random pattern, the resistance value reduction of the transparent electrode pattern part 13 and non-visibility can be made compatible.
For example, in the case of forming the conductive portion 13b having the sheet resistance of 100Ω / □ in FIG. 6 in the transparent electrode pattern portion 13 and the conductive portion 13b having the electrode width and film thickness, the coverage of the conductive portion 13b is approximately 65. Since it may be about% or more, a random pattern in which the area ratio of the holes 13a is 35% or less may be used.
At this time, the transparent insulating pattern portion 14 may use a random pattern in which the area ratio of the gap portion 14b is not so different from the area ratio of the hole portion 13a. Thereby, non-visibility can be maintained.
For example, when the coverage of the conductive material portion (conductive portion 13b) in the transparent electrode pattern portion 13 is 65% or more and 100 or less, the coverage of the conductive material portion (gap portion 14b) in the transparent insulating pattern portion 14 is also 65% or more and 100. It should be less than. Such a state can be realized by using different random patterns.
Further, in order to make it invisible, it is also necessary to consider a state in which both the transparent conductive element 1 (X electrode) and the transparent conductive element 2 (Y electrode) are overlapped.
First, the transparent conductive elements 1 and 2 constituting the input device 10 of the present embodiment have a transparent electrode pattern portion 13 (23) and a transparent insulating pattern portion 14 (24), respectively, having a conductive material portion and a non-conductive portion. They are formed with different random patterns.
FIG. 7A shows the state of FIG. 1, that is, the state where the transparent conductive elements 1 and 2 are stacked, and FIG. 7B shows a partial enlarged view.
In this case, the area AR1 is an area where the transparent electrode pattern portions 13 and 23 overlap.
The area AR2 is an area where the transparent insulating pattern portions 14 and 24 overlap.
The area AR3 is an area where the transparent electrode pattern portion 13 and the transparent insulating pattern portion 24 overlap or the transparent insulating pattern portion 14 and the transparent electrode pattern portion 23 overlap.
When viewed from the input surface side where the user performs a touch operation, all of the portions where the transparent conductive elements 1 and 2 overlap (input surface formation portions) are classified into these regions AR1, AR2, and AR3.
When considering the non-visibility from the user's sight, it is necessary to prevent these areas AR1, AR2, and AR3 from being visually recognized.
In conclusion, in the present embodiment, in a state where the transparent conductive element 1 and the transparent conductive element 2 are overlapped, in all the regions AR1, AR2, AR3 viewed from the input surface direction, the transparent conductive element 1 The difference of the addition value between the coverage of the conductive material portion and the coverage of the conductive material portion in the transparent conductive element 2 is set to be 0 or more and 60 or less. Furthermore, the difference between the addition values is preferably 0 or more and 30 or less.
For example, the coverage of the conductive material portions (conductive portions 13b and 23b) in the transparent electrode pattern portions 13 and 23 is set to 80%.
Further, the coverage of the conductive material portions ( island portions 14a, 24a) in the transparent insulating pattern portions 14, 24 is set to 50%.
Then, the added value of the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is as follows.
Area AR1: 80 + 80 = 160
Area AR2: 50 + 50 = 100
Area AR3: 80 + 50 = 130
In this case, the added value is the largest in the area AR1 and the smallest in the area AR2, but the difference between the added values is 60.
If the difference between the addition values is 60 or less, it can be said that the non-visibility is good.
The reason for using the added value as an index is to consider non-visibility according to the user's vision. For example, the actual diameter of the hole 13a and the island 14a is, for example, 10 μm to 100 μm, or 100 μm to 500 μm, depending on the parameter setting at the time of random pattern generation. It is a minute hole. There is almost no case where the user can visually recognize each of the hole 13a and the island 14a on the transparent electrode.
When considered in macro view in accordance with the user's vision, when the transparent conductive elements 1 and 2 are overlapped, the coverage of the conductive material portion in the transparent conductive element 1 and the transparent conductive element 2 The sum of the coverage of the conductive material portion is regarded as the average coverage of the region. That is, if the difference between the added values is large, the distinction between the areas AR1, AR2, and AR3 is easily visually recognized by the user.
As a result of visibility examination, the inventors have found that non-visibility can be maintained when the difference between the addition values is 0 or more and 60 or less in all regions viewed from the input surface direction.
Of course, reducing the difference between the addition values is more suitable for non-visibility.
For example, in the above example, if the addition value in the area AR2 is increased, the difference between the addition values in each area can be further reduced.
Therefore, the coverage of the conductive material portions ( island portions 14a, 24a) in the transparent insulating pattern portions 14, 24 is set to 65%.
Then, the added value of the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is as follows.
Area AR1: 80 + 80 = 160
Area AR2: 65 + 65 = 130
Area AR3: 80 + 65 = 145
In this case, the difference between the added values is 30, which is more preferable in terms of non-visibility.
However, increasing the coverage of the conductive material portions ( islands 14a and 24a) in the transparent insulating pattern portions 14 and 24, for example, in the case of print formation described later, the amount of the conductive material used is increased accordingly, and the material cost is increased. Get higher.
In view of the material cost and the resistance value of the transparent electrode pattern portion 13 within a range where the difference of the added values between the regions does not exceed 60, the conductive material portion (island portion 14a, The coverage of 24a) may be set.
In the above embodiment, first, different random patterns are used for the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24).
By using different random patterns, the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) can increase the degree of freedom in setting the coverage of the conductive material portion.
As a result, the resistance value in the transparent electrode pattern portion 13 (23) is set to an appropriate value (for example, 150Ω or less), and the conductive material portion on the transparent insulating pattern portion 14 (24) side is considered in view of invisibility and material cost. Coverage can be set.
As described above, it is possible to realize the non-visualization of the electrode configuration in the entire region viewed from the input surface side while realizing the reduction of the resistance value in the transparent electrode pattern portion 13 (23).
As a result, it is possible to realize a high-performance input device 10 that is hardly visible.
The coverage of the conductive material portion in the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) is preferably 65% or more and less than 100.
Further, in order to make the transparent conductive layer pattern invisible, the difference in the added value of the coverage ratio of the conductive material is set to 0 or more and 60 or less in any region when the transparent conductive elements 1 and 2 are overlapped. For better non-visualization, the difference between the added values is set to 0 or more and 30 or more.
As described in the description of FIGS. 3A and 4C, two types of random patterns are present on the boundary line L1 (L2) between the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24). It is in the state of being cut and pasted as it is (pattern cutting). This is preferable in that a boundary line with a random shape that is difficult to be visually recognized is formed.
In addition, a plurality of hole portions 13a (23a) are formed at random in the transparent electrode pattern portion 13 (23), and a plurality of island portions 14a (24a) are separated from the transparent insulating pattern portion 14 (24). Therefore, the generation of moire can be suppressed.
The transparent electrode pattern portion 13 may have a coverage of the hole 13a of 0%, that is, a coverage of the conductive portion 13b of 100%.
Moreover, you may form the transparent electrode pattern part 13 with the mix of 2 or more types of area | regions from which the coverage of a hole part differs.
There are various random patterns. In the above example, the hole 13a and the island 14a have a circular shape, but an elliptical shape, a shape obtained by cutting a part of the circular shape, a shape obtained by cutting a part of the elliptical shape, a polygonal shape, and a corner are taken. Polygon shape, indefinite shape, etc. may be sufficient.
Furthermore, those types of shapes may be used. From the viewpoint of easy generation of a random pattern, a circular shape is preferable.
Moreover, you may make it employ | adopt a different shape as a shape of the hole 13a and the island part 14a.
The elliptical shape includes not only a perfect ellipse defined mathematically but also an ellipse (for example, an ellipse, an egg shape, etc.) with some distortion. The circle includes not only a perfect circle (perfect circle) defined mathematically but also a circle with some distortion. Polygons are not only full polygons defined mathematically, but also polygons with distortion on the sides, polygons with rounded corners, and distortions on the sides and corners. Also included are rounded polygons. Examples of the strain applied to the side include a curved shape such as a convex shape or a concave shape.
Moreover, you may use the random mesh pattern which is illustrated to FIG. 10 and FIG. 36 mentioned later as a random pattern for the transparent electrode pattern part 13 and the transparent insulating pattern part 14. FIG.
The plurality of hole portions 13a are preferably formed apart from each other, but a part of the plurality of hole portions 13a is brought into contact with each other as long as the non-visibility and the conductivity are not deteriorated. Alternatively, they may be overlapped. In addition, it is preferable to form all of the plurality of islands 14a apart from each other, but if the range does not cause a decrease in invisibility and a decrease in insulation, a part of the plurality of islands 14a are brought into contact with each other. Or you may make it overlap.
<3. Transparent Conductive Element of Second Embodiment: Diamond Pattern Electrode>
As a second embodiment of the transparent conductive elements 1 and 2, a case having a diamond-like pattern electrode will be described.
8A and 8B show electrode patterns in the transparent conductive elements 1 and 2.
As shown in FIG. 8A, also in this case, in the transparent conductive element 1, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are formed on the transparent conductive layer 12. And the transparent electrode pattern part 13 is made into the shape where the site | part of a diamond shape (substantially rhombus shape) continues in the X-axis direction.
The transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 are alternately laid on the surface of the base material 11 in the Y-axis direction.
Further, as shown in FIG. 8B, the transparent conductive element 2 has a transparent conductive layer 22 having a transparent electrode pattern portion 23 and a transparent insulating pattern portion 24 formed thereon. And the transparent electrode pattern part 23 is made into the shape where the site | part of a diamond shape (substantially rhombus shape) continues in the Y-axis direction.
The transparent electrode pattern portions 23 and the transparent insulating pattern portions 24 are alternately laid on the surface of the base material 21 in the X-axis direction.
Even in the second embodiment as described above, the transparent electrode pattern portion 13 (23) and the transparent insulating pattern portion 14 (24) may be formed by using different random patterns to form the conductive material portion. This is the same as in the first embodiment. Specifically, in this respect, examples similar to the examples described in the first embodiment can be considered.
Here, in particular, a description will be given of a specific example in which the visibility when the X electrode and the Y electrode overlap and the transparent electrode pattern portions 13 and 23 are formed by a plurality of regions having different coverage ratios of the conductive material portions.
First, FIG. 9A shows the case where the transparent electrode pattern portions 13 and 23 are in a diamond shape in a state where the transparent conductive elements 1 and 2 are overlapped like FIG. 7A, and FIG. Yes. Here, the transparent conductive element 2 side is indicated by a broken line.
As in the case described with reference to FIG. 7, the area AR <b> 1 is an area where the transparent electrode pattern portions 13 and 23 overlap, and the area AR <b> 2 is an area where the transparent insulating pattern portions 14 and 24 overlap. The area AR3 is an area where the transparent electrode pattern portion 13 and the transparent insulating pattern portion 24 overlap, or the transparent insulating pattern portion 14 and the transparent electrode pattern portion 23 overlap.
Also in this case, when viewed from the input surface side where the user performs a touch operation, all of the portions where the transparent conductive elements 1 and 2 overlap (input surface forming portions) are classified into these regions AR1, AR2, and AR3. When considering the invisibility of the user's vision, it is required that these areas AR1, AR2, AR3 cannot be visually recognized.
As shown in FIG. 9B, when the electrode pattern shape is different, the shapes and ranges of the regions AR1, AR2, AR3 are also different. In this case as well, for example, the conductive material portions (conductive portions 13b, The coverage of 23b) is 80%, and the coverage of the conductive material portions ( islands 14a, 24a) in the transparent insulating pattern portions 14, 24 is 50%. If the difference between the coverage of the conductive material portion of the transparent conductive element 1 and the coverage of the conductive material portion of the transparent conductive element 2 in the regions AR1, AR2, AR3 is 60 or less, non-visibility Is good. Furthermore, when the difference between the added values is 30 or less, the non-visibility is extremely good.
In particular, in the case of this diamond-shaped pattern, it is effective to mix two or more types of regions having different coverage ratios of the conductive material portion in the transparent electrode pattern portion 13.
As shown in FIG. 10, the transparent electrode pattern portion 13 having a diamond-shaped pattern is divided into a region A and a region B. A portion corresponding to the transparent insulating pattern portion 14 is defined as a region C.
The width of the area A is WA and the length is LA.
The width WB of the region B is WB = (area of the region B) / LB. LB is the length of the region B.
When the shape of the transparent electrode pattern portion 13 can be distinguished into two or more regions as in the case of a diamond shape, the coverage of the hole portion 13a is set in a region where the L (x) / W (x) value is larger. It is preferable to set the value smaller (= the coverage of the conductive portion 13b is larger).
This is because in the region where the L (x) / W (x) value is larger, the original resistance value in that region is larger, and the impact of the resistance increase accompanying the increase in the coverage of the hole 13a is greater.
In the case of FIG. 10, the region A has a larger L (x) / W (x) value than the region B, and the resistance value is large in the first place.
Therefore, as illustrated, in the region B, for example, the coverage of the conductive portion 13b is 79% (the hole 13a is 21%), and in the region A, the coverage of the conductive portion 13b is 100% (the hole 13a is 0%). It is possible to do. This coverage is only an example.
Further, for the region C, that is, the transparent insulating pattern portion 14, the coverage of the conductive material portion (island portion 14a) is set so as to meet the above-described condition of the added value difference of the coverage when the X and Y electrodes are overlapped. You only have to set it. Further, as shown in the drawing, a random mesh pattern may be used instead of a random dot pattern.
As in this example, by partially controlling the coverage of the conductive material portion, when the electrode is printed and formed, the amount of the conductive material used can be suppressed (= material cost can be suppressed).
In order to make the pattern invisible, the difference in coverage of the conductive material in the regions A to C is preferably 0% or more and 30% or less.
<4. Manufacturing Method I>
Then, the example of the manufacturing method of the transparent conductive element 1 like the said 1st, 2nd embodiment is demonstrated. In addition, since the manufacturing method of the transparent conductive element 2 is the same as that of the transparent conductive element 1, description is abbreviate | omitted.
First, a process using etching as manufacturing method I will be described with reference to FIGS. 11A and 12.
As shown in FIG. 11A, in step F101, a random pattern used for the transparent electrode pattern unit 13 is generated.
In step F102, a random pattern used for the transparent insulating pattern portion 14 is generated. The random pattern for the transparent electrode pattern part and the random pattern for the transparent insulating pattern part are such that the pattern generation conditions (radius range, graphic drawing condition in the generated circle, random number weighting described later, etc.) are different from each other. Set to and generate.
These steps F101 and F102 may be reversed or performed in parallel. Further, it may be executed away from the actual production line. In FIG. 11A, for convenience of explanation, a single flowchart is shown. In any case, two types of patterns (random patterns) are prepared as a result of steps F101 and F102 at the time of entering the manufacturing line after step F103. It is good.
As step F103, the transparent conductive layer 12 is formed.
In this step, the transparent conductive layer 12 is formed on the surface of the substrate 11 as shown in FIG. 12A. When the transparent conductive layer 12 is formed, the base material 11 may be heated. As a method of forming the transparent conductive layer 12, for example, a CVD method (Chemical Vapor Deposition): a technique for depositing a thin film from a gas phase using a chemical reaction, such as thermal CVD, plasma CVD, or photo-CVD. In addition, PVD methods (Physical Vapor Deposition) such as vacuum deposition, plasma-assisted deposition, sputtering, ion plating, etc .: A technology that forms a thin film by agglomerating materials that have been physically vaporized in a vacuum on a substrate. ) Can be used.
Next, the transparent conductive layer 12 is annealed as necessary. Thereby, the transparent conductive layer 12 becomes, for example, a mixed state of amorphous and polycrystalline or a polycrystalline state, and the conductivity of the transparent conductive layer 12 is improved.
As Step F104, a resist layer is formed.
As shown in FIG. 12B, on the surface of the transparent conductive layer 12, a resist layer 41 having openings 33 at portions corresponding to the above-described hole portions 13a and the gap portions 14b is patterned by a lithography technique.
The resist layer 41 corresponding to the hole portion 13a is formed based on the random pattern for the transparent electrode pattern portion formed in step F101. Further, the resist layer 41 corresponding to the gap portion 14b is formed based on the random pattern for the transparent insulating pattern portion formed in step F102.
As a material of the resist layer 41, for example, either an organic resist or an inorganic resist may be used. As the organic resist, for example, a novolac resist or a chemically amplified resist can be used. Moreover, as an inorganic type resist, the metal compound which consists of 1 type, or 2 or more types of transition metals can be used, for example.
Development is performed as step F105.
As shown in FIG. 12C, the transparent conductive layer 12 is etched using the resist layer 41 in which the plurality of openings 33 are formed as an etching mask.
Thereby, the hole 13a and the conductive portion 13b are formed in the transparent conductive layer 12 in the region R1, and the island portion 14a and the gap portion 14b are formed in the transparent conductive layer 12 in the region R2. As the etching, for example, both dry etching and wet etching can be used. From the viewpoint of simple equipment, it is preferable to use wet etching.
In step F106, the resist layer is peeled off.
As shown in FIG. 12D, the resist layer 41 formed on the transparent conductive layer 12 is removed by ashing or the like.
As a result, the intended transparent conductive element 1 is obtained.
<5. Production Method II>
Next, a manufacturing method II of the transparent conductive elements 1 and 2 using a printing method will be described with reference to FIGS. 11B, 13, and 14.
As shown in FIG. 11B, in step F201, a random pattern used for the transparent electrode pattern unit 13 is generated.
In step F202, a random pattern used for the transparent insulating pattern portion 14 is generated. The random pattern for the transparent electrode pattern part and the random pattern for the transparent insulating pattern part are such that the pattern generation conditions (radius range, graphic drawing condition in the generated circle, random number weighting described later, etc.) are different from each other. Set to and generate.
The points related to steps F201 and F202 are the same as steps F101 and F102 of FIG. 11A.
In step F203, a master is formed.
FIG. 13A is a perspective view showing an example of the shape of the master. FIG. 13B is an enlarged plan view illustrating a part of the region R1 and the region R2 illustrated in FIG. 13A. The master 100 is, for example, a roll master having a cylindrical surface as a transfer surface, and regions R1 and R2 are alternately laid on the cylindrical surface.
In the region R1, a plurality of concave holes 113a are formed apart from each other, and the holes 113a are separated from each other by convex parts 113b. The hole portion 113a is for forming the hole portion 13a of the transparent electrode pattern portion 13 by printing, and the convex portion 113b is for forming the conductive portion 13b of the transparent electrode pattern portion 13 by printing.
In this case, the arrangement of the hole 113a and the convex 113b is based on the random pattern generated in step F201.
In the region R2, a plurality of island portions 114a having a convex shape are formed apart from each other, and the island portions 114a are separated from each other by a recess 114b. The island portion 114a is for forming the island portion 14a of the transparent insulating pattern portion 14 by printing, and the concave portion 114b is for forming the gap portion 14b of the transparent insulating pattern portion 14 by printing.
In this case, the arrangement of the islands 114a and the recesses 114b is based on the random pattern generated in step F202.
In step F204, the conductive ink is printed using the master 100 described above.
First, as shown in FIG. 14A, conductive ink is applied to the transfer surface of the master 100, and the applied conductive ink is printed on the surface of the substrate 11.
As the printing method, for example, screen printing, waterless flat printing, flexographic printing, gravure printing, gravure offset printing, reverse offset printing, and the like can be used.
Next, drying or baking is performed in step F205.
As shown in FIG. 14B, the conductive ink printed on the surface of the substrate 11 is heated and dried and / or baked as necessary.
Thus, the intended transparent conductive element 1 can be obtained.
<6. Method for forming random pattern>
As described above, in the transparent conductive elements 1 and 2 of the present embodiment, the conductive material portion is formed based on the random patterns that are different between the transparent electrode pattern portions 13 and 23 and the transparent insulating pattern portions 14 and 24.
Here, an example of a method of forming a random pattern itself that is the basis for forming such a conductive material portion will be described. As an example, a method of generating a random pattern for forming the circular holes 13a and 23a and the islands 14a and 24a will be described, but the shape of the random pattern is not limited to this.
First, when arranging the circle by changing the radius of the circle at random within the set range, the center coordinates of the circle are calculated and arranged so that the adjacent circle is always in contact with each other. Generated random pattern. In this case, the following (1) and (2) algorithms can obtain a random pattern with a small amount of calculation and a uniform random arrangement with high density.
(1) Arrange the circles with “radius random within a certain range” on the X axis so as to touch each other. The necessary parameters are shown below. Xmax: X coordinate maximum value of a region for generating a circle Yw: Setting of the maximum value of Y coordinate that can be taken by the center of the circle when placing the circle on the X axis Rmin: Minimum radius of the circle to be generated Rmax: Circle to be generated Maximum radius Rnd: a random value Pn obtained in a range of 0.0 to 1.0: a circle defined by an X coordinate value xn, a Y coordinate value yn, and a radius rn
FIG. 15 is a schematic diagram illustrating the algorithm (1). As shown in this figure, the Y coordinate value is randomly determined in the range of 0.0 to approximately Rmin on the X axis, and the circle whose radius is determined randomly in the range of Rmin to Rmax Arrangement so as to touch the circle is repeated, and one row of circles is randomly arranged on the X axis.
The algorithm (1) will be described below using the flowchart shown in FIG.
First, in step S1, necessary parameters are set in the above (1). Next, in step S2, the circle P0 (x0, y0, r0) is set as follows.
x0 = 0.0
y0 = 0.0
r0 = Rmin + (Rmax−Rmin) × Rnd
By using the random number value Rnd as a coefficient, the radius of the circle P0 is set at random.
Thereafter, in step S2 ′, n = 1 is set.
Next, in step S3, the circle Pn (xn, yn, rn) is determined by the following equation.
rn = Rmin + (Rmax−Rmin) × Rnd
yn = Yw × Rnd
xn = xn-1 + (rn-rn-1) * cos (asin (yn-yn-1) / (rn-rn-1))
The radius of the circle Pn is also set at random by using the random number value Rnd as a coefficient. The center Y coordinate value yn is also set at random within the range of Yw.
Next, in step S4, it is determined whether or not Xn> Xmax. If it is determined in step S4 that Xn> Xmax, the process ends. If it is determined in step S4 that Xn> Xmax is not satisfied, the process proceeds to step S5. In step S5, the circle Pn (xn, yn, rn) is stored. Next, in step S6, the value of n is incremented, and the process proceeds to step S3. That is, the next circle Pn (xn, yn, rn) is determined.
(2) “Random radius circle” is determined, stacked in order from the bottom so as to touch two existing circles and not overlap other circles. The necessary parameters are shown below. Ymax: Y coordinate maximum value of a region for generating a circle Rmin: Minimum radius of a generated circle Rmax: Maximum radius of a generated circle Rfill: Minimum radius Rnd for setting a circle in order to increase the filling rate Rnd: 0 A random value Pn obtained in the range of 0.0 to 1.0: a circle defined by an X coordinate value xn, a Y coordinate value yn, and a radius rn
FIG. 17 is a schematic diagram illustrating the algorithm (2). As shown in this figure, based on the circles arranged in a line on the X axis determined in (1) (shown by broken lines), a circle with a random radius in the range from Rmin to Rmax is determined, and the Y coordinate is Arrange the circles so that they touch the other circles from the smallest. Moreover, Rfill smaller than Rmin is set, and the filling rate is improved by filling the gap only when a gap that cannot be filled with the determined circle is formed. If a circle smaller than Rmin is not used, Rfill = Rmin is set.
The algorithm (2) will be described below using the flowchart shown in FIG.
First, in step S11, necessary parameters are set in (2) described above.
Next, in step S12, a circle Pi having the smallest Y coordinate value yi is obtained from the circles P0 to Pn generated in (1).
Next, in step S13, it is determined whether yi <Ymax. If it is determined in step S13 that yi <Ymax is not satisfied (No), the process ends. That is, it is determined that the stacking of the circles up to the Y coordinate maximum value has been completed, and the processing ends. If it is determined in step S13 that yi <Ymax (Yes), the process proceeds to step S14 and subsequent steps, and processing for adding circles is performed.
The radius rk of the circle Pk added in step S14 is set to rk = Rmin + (Rmax−Rmin) × Rnd. By using the random number value Rnd as a coefficient, the radius rk of the circle Pk is set at random. Next, in step S15, a circle Pj having a minimum Y coordinate value yi is obtained in the vicinity of the circle Pi, excluding the circle Pi.
Next, in step S16, it is determined whether or not a minimum circle Pi exists. If it is determined in step S16 that the minimum circle Pi does not exist, Pi is invalidated in step S17. If it is determined in step S16 that the minimum circle Pi exists, in step S18, it is determined whether or not there is a circle Pk having a radius rk in contact with the circle Pi and the circle Pj.
FIG. 19 shows how to obtain the coordinates when arranging so that a circle with an arbitrary radius is in contact with two circles in contact with each other in step S18.
That is, according to the equation shown in the figure, cos θi is obtained using the coordinates (xi, yi) and radius ri of the circle Pi, the coordinates (xj, yj) and radius rj of the circle Pj, and the radius rk of the circle Pk to be added, The coordinates (xk, yk) of the circle Pk to be added are calculated using θi.
Next, in step S19, it is determined whether or not there is a circle Pk having a radius rk in contact with the circle Pi and the circle Pj. If it is determined in step S19 that the circle Pk does not exist, the combination of the circle Pi and the circle Pj is excluded in step S20. If it is determined in step S19 that the circle Pk exists, it is determined in step S21 whether or not there is a circle overlapping the circle Pk from the circle P0 to the circle Pn. If it is determined in step S21 that there are no overlapping circles, the circle Pk (xk, yk, rk) is stored in step S24. Next, the value of n is incremented in step S25, Pn = Pk is set in step S26, the value of k is further incremented in step S27, and the process proceeds to step S12.
If it is determined in step S21 that overlapping circles exist, it is determined in step S22 whether or not overlapping can be avoided by reducing the radius rk of the circle Pk within a range equal to or greater than Rfill. If it is determined in step S22 that the overlap cannot be avoided, the combination of the circle Pi and the circle Pj is excluded in step S20. If it is determined in step S22 that the overlap can be avoided, the radius rk is set to the maximum value that can avoid the overlap in step S23. Next, in step S24, the circle Pk (xk, yk, rk) is stored. Next, the value of n is incremented in step S25, Pn = Pk is set in step S26, and the value of k is incremented in step S27, and the process proceeds to step S12.
By the above processing, for example, circles are randomly arranged on a plane as shown in FIG.
By reducing each circle from such a random circle pattern, a random pattern corresponding to the arrangement of the holes 13a and the islands 14a can be formed. For example, for several circles on the upper right in FIG. 20, a circle T reduced at a certain reduction rate is indicated by a wavy line. By reducing the size of all the circles in this way, a random pattern corresponding to the hole 13a and the island 14a that are separated from each other can be obtained.
Of course, not only simply reducing the circle, but also by drawing a figure smaller than the circle in the generated circle, it is possible to form a pattern having an isolated shape. Examples of shapes of figures drawn in a circle are assumed to be circles, ellipses, polygons, polygons with rounded corners, indeterminate shapes, etc., and thereby random patterns that form holes 13a and islands 14a other than circles. Can be generated.
The random pattern used for the transparent electrode pattern portion 13 and the random pattern used for the transparent insulating pattern portion 14 are basically generated by the above method. In this example, the transparent electrode pattern portion 13 and the transparent insulating pattern portion 14 use different random patterns. However, the generation conditions are different when generating each random pattern.
As the different generation conditions, the above parameter setting is first assumed. For example, by setting different values for Rmin, Rmax, and Rfill, the radius ranges of random circles generated as shown in FIG. 20 are different.
Further, the reduction rate from the state shown in FIG. 20 to the circle T (or another figure arranged in the circle) may be different.
Moreover, you may make it the figure arrange | positioned at random differ. For example, one is a circle and the other is a square. One may be a random dot pattern, and the other may be a random mesh pattern.
Furthermore, although a random value obtained in the range of 0.0 to 1.0 is used as the random value Rnd, it is also conceivable to assign different weights thereto.
Of course, these may be combined.
Since these generation conditions are different, the random pattern used for the transparent electrode pattern portion 13 and the random pattern used for the transparent insulating pattern portion 14 are different from each other, thereby realizing a desired coverage of the conductive material portion.
The weighting of random numbers will be described.
The radius of the circle generated as shown in FIG.
Circle radius = minimum radius Rmin + (maximum radius Rmax−minimum radius Rmin) × random number value Rnd.
The random value Rnd is a random number obtained in the range of 0.0 to 1.0.
By assigning this random number to a calculation formula in which the calculation result is in the range of 0 to 1, weight distribution can be weighted.
For example, random value [Rnd] 3 By doing so, the distribution of small circle radii can be increased.
Random value [Rnd] 1/3 By doing so, the distribution of large circle radii can be increased, and the filling rate of circles (dots) can be increased.
In FIG. 21A, y = x 1/3 , Y = x 3 As shown, the random numbers after weighting are shown.
FIG. 21B shows the frequency of the diameter of the circle (dot) when the random number is weighted in this way.
This is a case where a circular random pattern is generated under the following conditions as the generated random pattern.
-Radius range: 35-56μm
-Radius reduction value: 10 μm
In FIG. 21B, when the line NW is not weighted, the line AW is y = x 1/3 The frequency distribution when the above weighting is performed is shown by a 1 μm diameter pitch.
It can be seen that it is possible to increase the dot filling rate by increasing the frequency of occurrence of large diameter circles by weighting random numbers.
Conversely, it is possible to increase the frequency of small diameters and reduce the dot filling rate. However, if the frequency of the arbitrary diameter is increased too much, the randomness decreases, and moire or diffracted light may be generated. In the frequency distribution with a 1 μm diameter pitch, the frequency of the arbitrary diameter is preferably 35% or less.
By the way, the generation of a random pattern such as a dot shape or a polygonal shape in a circle has been described so far, but generation of a random mesh pattern as shown in FIG. 22A will also be described.
When generating a random mesh pattern, for example, a random circle arrangement pattern as shown in FIG.
In FIG. 22B, a mesh pattern is formed by drawing lines at random angles with respect to this random circle pattern.
That is, using the center coordinates of each circle as they are, a straight line passing through the center of each circle is drawn. At this time, by randomly determining the rotation angle of each straight line in the range of 0 to 180 degrees, a line having a random inclination is formed as shown in the figure.
By doing so, a random mesh pattern can be generated.
Further, the method of FIG. 22C may be used.
Also in the case of FIG. 22C, a random circle arrangement pattern generated as shown in FIG. 20 is used. In this case, a line segment connecting the center coordinates of adjacent circles is subtracted from the center coordinates of each circle. That is, the centers of neighboring circles are connected. By doing so, a random mesh pattern can be generated.
22B and 22C, two different types of random patterns can be generated by changing parameter settings or changing the weighting of random values.
In addition, it is possible to easily form random patterns having different coverage ratios of the conductive material portions by changing the thickness of the straight lines formed at random.
<7. Transparent conductive element using metal nanowire>
When the transparent conductive layer 12 is formed of metal nanowires, if the transparent electrode pattern portion 13 is subjected to random pattern processing, the metal nanowire coating area is reduced, thereby reducing the reflection L value of the conductive portion.
As a result, the black display on the screen of the conductive material portion sinks further, and the display characteristics (contrast) of the display are improved as compared with the case where a linear pattern or a diamond pattern is used. Further, by combining a predetermined surface treatment, the reflection L value can be kept lower in both the conductive material portion and the non-conductive portion, and the contrast is further improved.
A transparent conductive film using metal nanowires as a conductive material can be formed using a coating process instead of sputtering like a transparent conductive film using ITO. Since the coating process does not require a vacuum environment unlike sputtering, it can be expected to reduce manufacturing costs. Moreover, the transparent conductive film using the metal nanowire has been attracting attention as a next-generation transparent conductive film that does not use indium which is a rare metal.
FIG. 23A shows a structural example of a transparent conductive element using metal nanowires. A transparent conductive film 81 using metal nanowires is formed on the substrate 80. In the transparent conductive film 81, in addition to the metal nanowires, surface treatment dyes, dispersants, binders and the like are also used.
The base material 80 is, for example, a transparent inorganic base material or plastic base material. As the shape of the substrate, for example, a transparent film, sheet, substrate or the like can be used. Examples of the material of the inorganic base material include quartz, sapphire, and glass. As a material for the plastic substrate, for example, a known polymer material can be used. Specific examples of known polymer materials include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), and aramid. , Polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin And cycloolefin polymer (COP). The thickness of the plastic substrate is preferably 38 to 500 μm from the viewpoint of productivity, but is not particularly limited to this range.
The constituent element of the metal nanowire is composed of one or more selected from Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn.
The average minor axis diameter of the nanowire is preferably larger than 1 nm and not larger than 500 nm, and the average major axis length is preferably larger than 1 μm and not larger than 1000 μm.
When the average minor axis diameter is smaller than 1 nm, the conductivity of the wire is deteriorated and it is difficult to function as a conductive film after coating.
Further, when the average minor axis diameter is larger than 500 nm, the total light transmittance is deteriorated. When the average major axis length is shorter than 1 μm, the wires are not easily connected to each other and do not function as a conductive film after application.
In addition, when the average major axis length is longer than 1000 μm, the total light transmittance is deteriorated. Alternatively, the dispersibility of nanowires when formed into a paint tends to deteriorate.
In order to improve the dispersibility of the metal nanowires in the paint, the metal nanowires may be surface-treated with an amino group-containing compound such as PVP or polyethyleneimine.
It is preferable to make the addition amount so that the conductivity is not deteriorated when the coating is formed. In addition, sulfo group (including sulfonate), sulfonyl group, sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group A compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group that can be adsorbed to a metal may be used as a dispersant.
As the solvent, a solvent in which metal nanowires are dispersed is used. For example, water, alcohol (methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (cyclohexanone, cyclopentanone), amide (DMF), At least one selected from sulfide (DMSO) or the like is used. In order to suppress drying unevenness and cracks on the coated surface, a high boiling point solvent can be further added to control the evaporation rate of the solvent. For example, butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, Diethylene glycol monomethyl ether Diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol isopropyl ether, tripropylene glycol Propyl ether, methyl glycol. These solvents may be used alone or in combination.
Applicable binder materials can be widely selected from known transparent natural polymer resins or synthetic polymer resins.
For example, a transparent thermoplastic resin (for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, hydroxypropyl methyl cellulose), A transparent curable resin (for example, a melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate) that can be cured by heat, light, electron beam, or radiation can be used.
Furthermore, examples of the additive include a surfactant, a viscosity modifier, a dispersant, a curing accelerating catalyst, a plasticizer, a stabilizer such as an antioxidant and an antisulfurizing agent, and the like.
Further, in order to improve durability, an overcoat layer 82 may be separately provided after the metal nanowire is applied as shown in FIG. 23B.
For the overcoat layer 82, hydrolysis / dehydration condensate such as polyacrylic, polyamide, polyester, cellulose or metal alkoxide can be used. Further, it is desirable that the thickness of the overcoat layer 82 is a thickness that does not significantly deteriorate the optical characteristics.
In order to improve adhesion, an anchor layer 83 may be separately provided on the substrate 80 before applying the metal nanowires as shown in FIG. 23C.
The anchor layer 83 may be hydrolyzed / dehydrated condensate such as polyacrylic, polyamide, polyester, cellulose, or metal alkoxide. It is desirable that the anchor layer 83 has a thickness that does not significantly deteriorate the optical characteristics.
Both the overcoat layer and the anchor layer may be used in combination.
The transparent conductive film 81 using metal nanowires is manufactured through the following steps.
(Step 1) Disperse metal nanowires in a solvent.
As a dispersion method, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, or the like can be preferably applied. The compounding amount of the nanowire is 0.01 to 10 parts by weight when the weight of the coating is 100 parts by weight. When the amount is less than 0.01 part by weight, a sufficient basis weight cannot be obtained when a film is formed by coating. On the other hand, when larger than 10 weight part, it exists in the tendency for the dispersibility of nanowire to deteriorate.
In order to improve the dispersibility of the metal nanowire, an amino group-containing compound such as PVP or polyethyleneimine may be added as a dispersant to the metal nanowire dispersion. When adding a dispersing agent, it is preferable to make it the addition amount of the grade that electroconductivity does not deteriorate when it forms a coating film. In addition, sulfo group (including sulfonate), sulfonyl group, sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group A compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group that can be adsorbed to a metal may be used as a dispersant.
In order to improve applicability, adhesion and durability to the substrate 80, a binder, an additive, or the like may be mixed.
(Step 2) A transparent conductive film made of metal nanowires on a substrate is prepared.
Although there is no particular limitation on this method, a wet film-forming method is preferable in consideration of physical properties, convenience, production costs, and the like, and examples of known methods include coating, spraying, and printing. The coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating method. And spin coating method.
Examples of the printing method include letterpress, offset, gravure, intaglio, rubber plate, screen, and ink jet printing.
(Step 3) After coating, the solvent is dried.
Either natural drying or heat drying may be used. Further, when the binder is cured, it is cured by UV or heat. Further, in order to reduce the sheet resistance value, a pressurizing process using a calendar may be performed.
The basis weight (g / m 2) of the metal nanowires in the metal nanowire layer in FIG. 23A is preferably 0.001 g to 1 g. When it is less than 0.001 g, metal nanowires are not sufficiently present in the coating film, and the performance as a transparent conductive film is deteriorated. When the basis weight is large, the sheet resistance value is lowered. However, when the weight is larger than 1 g, the total light transmittance is deteriorated because the metal nanowires are excessively present in the coating film.
<8. Position detection marker>
A position detection marker for improving the efficiency of the manufacturing process of the input device 10 of the present embodiment will be described.
In the input device 10 of the present embodiment, the invisibility of the transparent conductive elements 1 and 2 is improved. Correspondingly, it becomes difficult to align the silver wiring in the printing formation process, the X electrode and Y electrode bonding process, and the like.
Therefore, it is preferable to form a position detection marker having a size of about 1 to 30 mmφ on the base material. This is because if this marker is detected by an optical method or the like, a silver wiring can be formed at a predetermined position on the substrate and a bonding step can be performed.
FIG. 24 shows a state where a large number of transparent conductive layers 12 are formed on the sheet of the base material 11 before cutting.
A position detection marker MP is formed at a predetermined position on the sheet.
For example, the position detection marker MP is preferably arranged outside the region where the pattern of the transparent conductive layer 12 is formed.
Since the position detection marker MP is not required after the input device 10 (touch panel) is assembled, if the position detection marker MP is disposed at the above position, the position detection marker MP can be easily removed after the touch panel is assembled.
However, the position detection marker MP is not necessarily outside the pattern of the transparent conductive layer 12. You may form in the part hidden in a frame in the input device 10, ie, the peripheral part of the transparent conductive layer 12, etc.
<9. Silver wiring area>
In the transparent conductive elements 1 and 2, the island part 14a does not have to be disposed in a region where silver wiring is formed (a part of the transparent insulating pattern part).
FIG. 25A shows the transparent conductive element 1, FIG. 25B shows a part thereof enlarged, and the area AR10 is an area where the silver wiring 18 is formed.
In FIG. 25C, a part of the area AR10 is enlarged as an island part 14a is arranged in the area AR10.
When the island part 14a is arranged in the area AR10 where the silver wiring is formed as shown in FIG. 25C, when the interval between the silver wirings is narrow, the adjacent silver wirings 18 are separated from each other as shown by the broken line PST. There is a risk of short-circuiting by the island 14a.
The area AR10 is an area hidden by the frame of the input device 10 (touch panel) and does not affect the non-visibility effect.
Therefore, it is not necessary to arrange a random pattern in such a silver wiring area AR10, or in an area hidden by a frame regardless of the presence or absence of silver wiring.
<10. Modification of input device structure>
Here, a modified example of the structure of the transparent conductive elements 1 and 2 in the input device 10 shown in FIG. 1 will be described.
As shown in FIG. 26A, the transparent conductive layer 12 may be formed on one surface of the substrate 21 of the transparent conductive element 2, and the transparent conductive layer 22 may be formed on the other surface.
In this case, in the input device 10 shown in FIG. 1, the formation of the base material 11 can be omitted.
As shown in FIG. 26B, a hard coat layer 61 may be formed on at least one of the two surfaces of the transparent conductive element 1.
Thereby, when using a plastic base material for the base material 11, the damage of the base material 11 in a process, chemical-resistance provision, and precipitation of low molecular weight substances, such as an oligomer, can be suppressed. As the hard coat material, it is preferable to use an ionizing radiation curable resin that is cured by light or electron beam, or a thermosetting resin that is cured by heat, and a photosensitive resin that is cured by ultraviolet rays is most preferable. As such a photosensitive resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used. For example, a urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting the resulting product with an acrylate or methacrylate monomer having a hydroxyl group. The thickness of the hard coat layer 61 is preferably 1 μm to 20 μm, but is not particularly limited to this range.
The hard coat layer 61 is formed by applying a hard coat paint to the substrate 11. The coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating. Method, spin coating method and the like. The hard coat paint contains, for example, a resin raw material such as a bifunctional or higher functional monomer and / or oligomer, a photopolymerization initiator, and a solvent. The solvent is volatilized by drying the hard coat paint applied on the substrate 11. Thereafter, the hard coat paint dried on the substrate 11 is cured, for example, by irradiation with ionizing radiation or heating.
Note that, similarly to the transparent conductive element 1 described above, the hard coat layer 61 may be formed on at least one of the two surfaces of the transparent conductive element 2.
As shown in FIG. 26C, it is preferable to interpose the optical adjustment layer 62 between the base material 11 and the transparent conductive layer 12 of the transparent conductive element 1. Thereby, the invisibility of the pattern shape of the transparent electrode pattern part 13 can be assisted.
The optical adjustment layer 62 is composed of, for example, a laminate of two or more layers having different refractive indexes, and the transparent conductive layer 12 is formed on the low refractive index layer side. More specifically, as the optical adjustment layer 62, for example, a conventionally known optical adjustment layer can be used. As such an optical adjustment layer, for example, those described in Japanese Patent Application Laid-Open Nos. 2008-98169, 2010-15861, 2010-23282, and 2010-27294 are used. be able to. Note that, similarly to the transparent conductive element 1 described above, the optical adjustment layer 62 may be interposed between the base 21 and the transparent conductive layer 22 of the transparent conductive element 2.
As shown in FIG. 26D, it is preferable to provide a close adhesion auxiliary layer 63 as a base layer of the transparent conductive layer 12 of the transparent conductive element 1. Thereby, the adhesiveness of the transparent conductive layer 12 with respect to the base material 11 can be improved.
Examples of the material of the adhesion auxiliary layer 63 include polyacrylic resins, polyamide resins, polyamideimide resins, polyester resins, and hydrolysis / dehydration condensation products such as metal element chlorides, peroxides, and alkoxides. Etc. can be used.
Instead of using the adhesion auxiliary layer 63, a discharge treatment in which a surface on which the transparent conductive layer 12 is provided is irradiated with glow discharge or corona discharge may be used. Moreover, you may use the chemical treatment method processed with the acid or alkali on the surface in which the transparent conductive layer 12 is provided.
Moreover, after providing the transparent conductive layer 12, you may make it improve contact | adherence by a calendar process. In the transparent conductive element 2, the adhesion auxiliary layer 63 may be provided in the same manner as the transparent conductive element 1. Moreover, you may make it perform the process for the above-mentioned adhesive improvement.
As shown in FIG. 26E, it is preferable to form a shield layer 64 on the transparent conductive element 1. For example, a film provided with the shield layer 64 may be bonded to the first transparent conductive element 1 via a transparent adhesive layer. In addition, when the X electrode pattern and the Y electrode pattern are formed on the same surface side of the single substrate 11, the shield layer 64 may be directly formed on the opposite side.
As the material of the shield layer 64, the same material as that of the transparent conductive layer 12 can be used. As a method for forming the shield layer 64, a method similar to that for the transparent conductive layer 12 can be used. However, the shield layer 64 is used in a state where it is formed on the entire surface of the substrate 11 without patterning.
By forming the shield layer 64 on the transparent conductive element 1, noise caused by electromagnetic waves emitted from the display device 4 can be reduced, and the position detection accuracy of the input device 10 can be improved. Note that, similarly to the transparent conductive element 1, the shield layer 64 may be formed on the transparent conductive element 2.
<11. Example of electronic device structure>
27 to 31 show an example of an electronic apparatus in which a display device provided with the input device of the present embodiment described with reference to FIG. 1 on a display surface is applied to a display unit. Hereinafter, application examples of the electronic apparatus of the present technology will be described.
FIG. 27 is a perspective view illustrating a television to which the present technology is applied. The television 200 according to this application example includes a display unit 201 including a front panel 202, a filter glass 203, and the like, and the display device described above is applied as the display unit 201.
FIG. 28 is a diagram illustrating a digital camera to which the present technology is applied. FIG. 28A is a perspective view seen from the front side, and FIG. 28B is a perspective view seen from the back side. A digital camera 210 according to this application example includes a light emitting unit 211 for flash, a display unit 212, a menu switch 213, a shutter button 214, and the like, and the display device described above is applied as the display unit 212.
FIG. 29 is a perspective view illustrating a notebook personal computer to which the present technology is applied. The notebook personal computer 220 according to this application example includes a keyboard 222 that is operated when a character or the like is input, a display unit 223 that displays an image, and the like on the main body 221, and the display device described above as the display unit 223. Apply.
FIG. 30 is a perspective view illustrating a video camera to which the present technology is applied. The video camera 230 according to this application example includes a main body 231, a subject shooting lens 232 on the side facing forward, a start / stop switch 233 at the time of shooting, a display unit 234, and the like. Apply the described display device.
FIG. 31 is a perspective view illustrating a mobile terminal device to which the present technology is applied. The mobile terminal device 240 according to this application example includes a display unit 241 provided in the center of the front panel, a sensor 242 provided in the periphery thereof, a speaker 243, and an operation switch 244, and the display device described above as the display unit 241 Apply.
In each electronic device according to the present embodiment described above, the display device including the input device according to the present embodiment on the display surface is used for the display unit. The apparatus is not obstructed and a high-definition display can be performed.
 以下の実施例1~30のようにして、透明電極パターン部および透明絶縁パターン部を有する透明導電性素子(X電極およびY電極)を2枚作製し、作製した2枚の透明導電性素子を重ねた積層体(X電極+Y電極)を作製した。作製した各透明導電性素子およびこれらの積層体について、透明電極パターン部の非視認性、モアレ・干渉光、およびギラツキを評価した。各実施例のパラメータと評価結果は、それぞれ図32~34にまとめて示した。
 尚、透明電極パターン部の非視認性、モアレ・干渉光、およびギラツキの評価は次のように行った。まず、対角3.5インチの液晶ディスプレイ上に、粘着シートを介して透明導電性素子またはこれらの積層体における透明導電層の形成の面が画面と対向するように貼り合わせた。次に、透明導電性素子またはこれらの積層体における基材側に、粘着シートを介してARフィルムを貼り合わせた。その後、液晶ディスプレイを黒表示または緑色表示し、表示面を目視により観察して、非視認性、モアレ・干渉光、ならびにギラツキを評価した。各項目の評価基準は次のようである。
− 非視認性 −
 ◎:どの角度から見てもパターンを全く視認できない
 ○:パターンが非常に視認しにくいが、角度によっては視認可能
 ×:視認可能
− モアレ・干渉光 −
 ◎:あらゆる角度から観察してモアレおよび干渉光が感じられない
 ○:正面から観察してモアレおよび干渉光がないが、斜めから観察してモアレおよび干渉光が少し感じられる
 ×:正面から観察してモアレおよび干渉光が感じられる
− ギラツキ −
 ◎:あらゆる角度から観察してギラツキが感じられない
 ○:正面から観察してギラツキがないが、斜めから観察してギラツキが少し感じられる
 ×:正面から観察してギラツキが感じられる
<実施例#1~#12:ITO層>
 厚み125μmのPETフィルムを基材とし、この基材上にスパッタリング法によってITOからなる透明導電層を形成して透明導電性フィルムを得た。この透明導電性フィルムのシート抵抗は150Ω/□であった。
 次に、ITOからなる透明導電層上にレジスト層を形成し、ランダムパターンの形成されたCrフォトマスクを用いてレジスト層を露光した。この際、Crフォトマスクのランダムパターンとしては、円形状のランダムパターンを採用した。
 次に、レジスト層を現像してレジストパターンを形成し、このレジストパターンをマスクとして、ITOをウエットエッチングした後、レジスト層をアッシング処理により除去した。ここでのレジストパターンは、図27に示した各実施例のパラメータに基づいたものを使用した。
 ここで、本実施例における透明導電性素子の一例を図35に図示した。円形状のランダムパターンを採用した透明導電性素子の一例として、図35AにX電極の透明導電性素子を示し、図35BにY電極の透明導電性素子を示した。
 以上により、図32に示す各実施例のパラメータに基づいて、互いに異なるランダムパターンが形成された透明電極パターン部および透明絶縁パターン部を有する2枚の透明導電性素子、すなわち、X電極の透明導電性素子およびY電極の透明導電性素子を作製した。これらの作製した2枚の透明導電性素子を、それぞれの透明電極パターン部を交差させるようにして重ねた積層体(X電極+Y電極)を作製した。さらに図32に、透明電極パターン部の非視認性、モアレ・干渉光、およびギラツキの評価結果を合わせて示した。
 図32に示す評価結果から、透明導電性素子および積層体の両方について、透明電極パターン部と透明絶縁パターン部とが互いに異なるランダムパターンにより形成されていても、良好な非視認性を得られることが確認された。特に、導電材料による被覆率差が30%以下の場合には、極めて良好な非視認性が得られることが確認された。また、モアレ・干渉光、およびギラツキについても、極めて良好なことが確認された。
<実施例#13~#30:銀(Ag)ナノワイヤー層>
 厚み125μmのPETフィルムを基材とし、この基材上に塗布法によって銀(Ag)ナノワイヤー層からなる透明導電層を形成して透明導電性フィルムを得た。この透明導電性フィルムのシート抵抗は100Ω/□であった。その後は、図33,34に示す各実施例のパラメータに基づいて、実施例#1~#12と同様の手順を行なった。
 ただし、実施例#19および#20における透明絶縁パターン部では、Crフォトマスクのランダムパターンとして、ランダムメッシュパターンを採用した。また実施例#14、#19、および#20における透明電極パターン部では、ランダムパターンを設けず、導電材料被覆率100%のベタ塗りパターンとした。
 ここで、ランダムメッシュパターンを採用した透明導電性素子の一例を図36に示した。図36に示した透明導電性素子は、透明電極パターン部13が導電材料被覆率100%のベタ塗りパターンであり、透明絶縁パターン部14がランダムメッシュパターンである。
 以上により、図33,34に示す各実施例のパラメータに基づいて、互いに異なるランダムパターンが形成された透明電極パターン部および透明絶縁パターン部を有する2枚の透明導電性素子、すなわち、X電極の透明導電性素子およびY電極の透明導電性素子を作製した。これらの作製した2枚の透明導電性素子を、それぞれの透明電極パターン部を交差させるようにして重ねた積層体(X電極+Y電極)を作製した。さらに図33,34に、透明電極パターン部の非視認性、モアレ・干渉光、およびギラツキの評価結果を合わせて示した。
 図33,34に示す評価結果から、透明導電層として銀ナノワイヤー層を用いた場合であっても、実施例#1~12と同様の効果が確認された。すなわち、透明導電性素子および積層体の両方について、透明電極パターン部と透明絶縁パターン部とが互いに異なるランダムパターンにより形成されていても、良好な非視認性を得られることが確認された。特に、導電材料による被覆率差が60%以下の場合では、良好な非視認性が得られ、さらには、導電材料による被覆率差が30%以下の場合では、極めて良好な非視認性が得られることが確認された。また、モアレ・干渉光、およびギラツキについても、極めて良好なことが確認された。
 さらには、銀ナノワイヤー層からなる透明導電性フィルムの場合、透明電極パターン部にランダムパターン処理が施されたことにより、導電材料の被覆率は下がり、銀ナノワイヤー層による被覆面積が減少した。そのため、銀ナノワイヤー表面での外光の乱反射が抑えられ、透明電極パターン部における導電部の反射L値の値が小さくなっていた。これにより、透明電極素子を表示装置の表示面上に配置した構成において、例えば、透明電極パターン部がベタ塗りパターンである実施例#14(被覆率100%)との比較において、透明電極パターン部にランダムパターン処理を施した実施例#13(被覆率79.2%)の透明導電性素子を使用した場合では、表示画面の黒表示が沈む効果が見られた。
 その結果、銀ナノワイヤー層からなる透明導電性フィルムを用いて、これにランダムパターン処理を施した透明導電性素子をタッチパネルとして用いることにより、表示画面上にタッチパネルを設けた表示装置において、表示特性が向上する効果が確認された。
 さらに追加の実施例として、ランダムパターン処理が施され銀ナノワイヤー層からなる透明導電性フィルムを、有色化合物を溶解した溶液に浸漬することにより、有色化合物を銀ナノワイヤー表面に選択的に吸着させる処理を行なった。この処理により、透明電極パターン部と透明絶縁パターン部ともに反射L値がより小さくなることが確認された。
 その結果、金属ナノワイヤーに有色化合物を吸着させた透明導電性フィルムを用いて、これにランダムパターン処理を施した透明導電性素子をタッチパネルとして用いることにより、表面上にタッチパネルを設けながらも表示パネルにおいての表示特性を維持可能であることが確認された。
 以上、本技術の実施の形態及び実施例について具体的に説明したが、本技術は、上述の実施形態に限定されるものではなく各種の変形が可能である。
 例えば、上述の実施の形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施の形態の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、上述の実施の形態において、パターニングにより形成された導電性材料が存在しない領域において、基材表面が露出していてもよいし、基材表面上に形成された中間層(例えば、ハードコート層、光学調整層、密着補助層)が露出していていてもよい。また、透明導電層が導電性材料とバインダー材料とで形成される場合、該バインダー材料が残っていてもよい。
 また、上述の実施の形態において、X電極パターン部とY電極パターン部との両方を、一枚の基材の第1の表面および第2の表面の一方に形成するようにしてもよい。この場合、X電極パターン部およびY電極パターン部の一方を、両者の交差部分において中継電極を介して電気的に接続する構成を採用することが好ましい。このような中継電極を用いたX電極パターン部とY電極パターン部の構成としては、例えば、特開2008−310550号公報などに開示されている従来公知の構成を採用することができる。
 なお本技術は以下のような構成も、とることができる。
(1)
 基材と、
 上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部と、
 を備え、
 上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている透明導電性素子。
(2)
 上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている(1)記載の透明導電性素子。
(3)
 上記透明電極パターン部は、上記導電材料部の形成面内で、複数の非導電部が離間してランダムに形成され、
 上記透明絶縁パターン部は、非導電部の形成面内で、上記導電材料部が離間してランダムに形成されており、
 上記透明電極パターン部と上記透明絶縁パターン部とでは、上記導電材料部と上記非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている(1)または(2)記載の透明導電性素子。
(4)
 上記透明電極パターン部と上記透明絶縁パターン部とでは、異なる生成条件によって生成したランダムパターンに基づいて、上記導電材料部と上記非導電部を配置することで、互いに異なるランダムパターンとなるようにする(1)~(3)の何れかに記載の透明導電性素子。
(5)
 上記透明電極パターン部は、上記導電材料部の被覆率が異なる複数の領域により形成されている(1)~(4)の何れかに記載の透明導電性素子。
(6)
 基材表面に所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有する第1の透明導電性素子と、
 基材表面に上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有し、入力面方向から見て上記第1の透明導電性素子と重ね合わされた位置関係で配置される第2の透明導電性素子と、
 を備え、
 上記第1,第2の透明導電性素子における、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている入力装置。
(7)
 上記第1,第2の透明導電性素子における、上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている(6)記載の入力装置。
(8)
 上記第1の透明導電性素子と上記第2の透明導電性素子が重ね合わされた状態で入力面方向からみた全ての領域で、上記第1の透明導電性素子の上記導電材料部の被覆率と上記第2の透明導電性素子における導電材料部の被覆率との加算値の差が、0以上60以下である(6)または(7)記載の入力装置。
(9)
 上記第1の透明導電性素子と上記第2の透明導電性素子が重ね合わされた状態で入力面方向からみた全ての領域で、上記第1の透明導電性素子の上記導電材料部の被覆率と上記第2の透明導電性素子における導電材料部の被覆率との加算値の差が、0以上30以下である(6)または(7)記載の入力装置。
(10)
 表示装置と、
 上記表示装置の表示面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有する第1の透明導電性素子と、
 上記表示装置の表示面において、上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有し、入力面方向から見て上記第1の透明導電性素子と重ね合わされた位置関係で配置される第2の透明導電性素子と、
 を備え、
 上記第1,第2の透明導電性素子における、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている電子機器。
(11)
 基材と、上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを備えた透明導電性素子の製造方法として、
 上記透明電極パターン部に用いる第1のランダムパターンを生成する工程と、
 上記第1のランダムパターンとは異なる生成条件で上記透明絶縁パターン部に用いる第2のランダムパターンを生成する工程と、
 上記第1,第2のランダムパターンに基づいて、上記基材上に、上記透明電極パターン部における導電材料部と上記透明絶縁パターン部における導電材料部を形成する工程と、
 を備えた透明導電性素子の製造方法。
As in Examples 1 to 30 below, two transparent conductive elements (X electrode and Y electrode) having a transparent electrode pattern portion and a transparent insulating pattern portion were produced, and the two produced transparent conductive elements were A laminated body (X electrode + Y electrode) was produced. About each produced transparent conductive element and these laminated bodies, the non-visibility of a transparent electrode pattern part, a moire, interference light, and glare were evaluated. The parameters and evaluation results of each example are shown together in FIGS.
In addition, the non-visibility of the transparent electrode pattern portion, the moire / interference light, and the glare were evaluated as follows. First, it was bonded on a 3.5 inch diagonal liquid crystal display via an adhesive sheet so that the surface of the transparent conductive element or the laminate of the transparent conductive layer in the laminate was opposed to the screen. Next, an AR film was bonded to the transparent conductive element or the substrate side of these laminates via an adhesive sheet. Thereafter, the liquid crystal display was displayed in black or green, and the display surface was visually observed to evaluate non-visibility, moire / interference light, and glare. The evaluation criteria for each item are as follows.
− Invisibility −
◎: The pattern cannot be seen at all from any angle ○: The pattern is very difficult to see, but can be seen depending on the angle ×: Visible − Moire / interference light −
◎: Moire and interference light are not felt when observed from any angle ○: Moire and interference light are not observed when observed from the front, but moiré and interference light are felt slightly when observed from the front ×: Observed from the front Moiré and interference light can be felt-Glitter-
◎: No glare observed from any angle ○: No glare observed from the front, but slight glare observed from the diagonal ×: Glare observed from the front <Example # 1 to # 12: ITO layer>
A PET film having a thickness of 125 μm was used as a base material, and a transparent conductive layer made of ITO was formed on the base material by a sputtering method to obtain a transparent conductive film. The sheet resistance of this transparent conductive film was 150Ω / □.
Next, a resist layer was formed on the transparent conductive layer made of ITO, and the resist layer was exposed using a Cr photomask on which a random pattern was formed. At this time, a circular random pattern was adopted as the random pattern of the Cr photomask.
Next, the resist layer was developed to form a resist pattern. ITO was wet etched using the resist pattern as a mask, and then the resist layer was removed by ashing. The resist pattern used here was based on the parameters of each example shown in FIG.
Here, an example of the transparent conductive element in the present embodiment is shown in FIG. As an example of a transparent conductive element employing a circular random pattern, FIG. 35A shows an X electrode transparent conductive element, and FIG. 35B shows a Y electrode transparent conductive element.
As described above, based on the parameters of the respective embodiments shown in FIG. 32, the two transparent conductive elements having the transparent electrode pattern portion and the transparent insulating pattern portion on which different random patterns are formed, that is, the transparent conductivity of the X electrode The transparent conductive element of the conductive element and the Y electrode was produced. A laminate (X electrode + Y electrode) in which the two transparent conductive elements thus produced were overlapped so that the respective transparent electrode pattern portions were crossed was produced. Further, FIG. 32 also shows the evaluation results of the non-visibility of the transparent electrode pattern portion, moire / interference light, and glare.
From the evaluation results shown in FIG. 32, good invisibility can be obtained even if the transparent electrode pattern portion and the transparent insulating pattern portion are formed by different random patterns from each other for both the transparent conductive element and the laminate. Was confirmed. In particular, it was confirmed that very good non-visibility was obtained when the difference in coverage by the conductive material was 30% or less. Further, it was confirmed that the moire / interference light and the glare were extremely good.
<Examples # 13 to # 30: Silver (Ag) nanowire layer>
Using a PET film having a thickness of 125 μm as a base material, a transparent conductive layer composed of a silver (Ag) nanowire layer was formed on the base material by a coating method to obtain a transparent conductive film. The sheet resistance of this transparent conductive film was 100Ω / □. Thereafter, the same procedure as in Examples # 1 to # 12 was performed based on the parameters of the examples shown in FIGS.
However, in the transparent insulating pattern portions in Examples # 19 and # 20, a random mesh pattern was adopted as a random pattern of the Cr photomask. In the transparent electrode pattern portions in Examples # 14, # 19, and # 20, a random pattern was not provided, and a solid coating pattern with a conductive material coverage of 100% was used.
Here, an example of a transparent conductive element employing a random mesh pattern is shown in FIG. In the transparent conductive element shown in FIG. 36, the transparent electrode pattern portion 13 is a solid coating pattern with a conductive material coverage of 100%, and the transparent insulating pattern portion 14 is a random mesh pattern.
As described above, based on the parameters of the respective embodiments shown in FIGS. 33 and 34, two transparent conductive elements having a transparent electrode pattern portion and a transparent insulating pattern portion on which different random patterns are formed, that is, the X electrode A transparent conductive element and a transparent conductive element of a Y electrode were produced. A laminate (X electrode + Y electrode) in which the two transparent conductive elements thus produced were overlapped so that the respective transparent electrode pattern portions were crossed was produced. Further, FIGS. 33 and 34 also show the evaluation results of the non-visibility of the transparent electrode pattern portion, moire / interference light, and glare.
From the evaluation results shown in FIGS. 33 and 34, the same effects as in Examples # 1 to 12 were confirmed even when a silver nanowire layer was used as the transparent conductive layer. That is, for both the transparent conductive element and the laminate, it was confirmed that good invisibility could be obtained even when the transparent electrode pattern portion and the transparent insulating pattern portion were formed by different random patterns. In particular, when the coverage difference due to the conductive material is 60% or less, good non-visibility is obtained. Furthermore, when the coverage difference due to the conductive material is 30% or less, extremely good non-visibility is obtained. It was confirmed that Further, it was confirmed that the moire / interference light and the glare were extremely good.
Furthermore, in the case of the transparent conductive film which consists of a silver nanowire layer, when the transparent electrode pattern part was subjected to random pattern processing, the coverage of the conductive material was lowered and the area covered by the silver nanowire layer was reduced. Therefore, irregular reflection of external light on the surface of the silver nanowire is suppressed, and the value of the reflection L value of the conductive portion in the transparent electrode pattern portion is small. Thereby, in the structure which has arrange | positioned the transparent electrode element on the display surface of a display apparatus, for example, in comparison with Example # 14 (coverage 100%) whose transparent electrode pattern part is a solid coating pattern, a transparent electrode pattern part When the transparent conductive element of Example # 13 (coverage: 79.2%) subjected to random pattern processing was used, the effect of sinking the black display on the display screen was observed.
As a result, in a display device provided with a touch panel on a display screen by using a transparent conductive film made of a silver nanowire layer and using a transparent conductive element subjected to random pattern processing as a touch panel, display characteristics The effect of improving was confirmed.
As an additional example, the colored compound is selectively adsorbed on the surface of the silver nanowire by immersing a transparent conductive film made of a silver nanowire layer subjected to random pattern treatment in a solution in which the colored compound is dissolved. Processing was performed. By this process, it was confirmed that the reflection L value becomes smaller in both the transparent electrode pattern portion and the transparent insulating pattern portion.
As a result, using a transparent conductive film in which a colored compound is adsorbed on metal nanowires and using a transparent conductive element subjected to random pattern processing as a touch panel, a display panel is provided while providing a touch panel on the surface. It was confirmed that the display characteristics can be maintained.
Although the embodiments and examples of the present technology have been specifically described above, the present technology is not limited to the above-described embodiments, and various modifications can be made.
For example, the configurations, methods, steps, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, and the like are used as necessary. May be.
Further, the configurations, methods, steps, shapes, materials, numerical values, and the like of the above-described embodiments can be combined with each other without departing from the gist of the present technology.
In the above-described embodiment, the substrate surface may be exposed in a region where the conductive material formed by patterning does not exist, or an intermediate layer (for example, hard coat) formed on the substrate surface. Layer, optical adjustment layer, adhesion auxiliary layer) may be exposed. When the transparent conductive layer is formed of a conductive material and a binder material, the binder material may remain.
In the above-described embodiment, both the X electrode pattern portion and the Y electrode pattern portion may be formed on one of the first surface and the second surface of a single substrate. In this case, it is preferable to employ a configuration in which one of the X electrode pattern portion and the Y electrode pattern portion is electrically connected via a relay electrode at the intersection of the two. As the configuration of the X electrode pattern portion and the Y electrode pattern portion using such a relay electrode, for example, a conventionally known configuration disclosed in Japanese Patent Application Laid-Open No. 2008-310550 can be employed.
In addition, this technique can also take the following structures.
(1)
A substrate;
On the surface of the base material, transparent electrode pattern portions and transparent insulating pattern portions formed by alternately spreading in a predetermined direction,
With
The transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
(2)
The transparent conductive element according to (1), wherein the transparent electrode pattern portion and the transparent insulating pattern portion are formed such that the conductive material portion and the nonconductive portion are different from each other in a random pattern.
(3)
The transparent electrode pattern portion is randomly formed with a plurality of nonconductive portions spaced apart from each other within the formation surface of the conductive material portion,
The transparent insulating pattern portion is formed randomly in the formation surface of the non-conductive portion with the conductive material portion being spaced apart,
The transparent electrode according to (1) or (2), wherein the transparent electrode pattern part and the transparent insulating pattern part have different random patterns formed by the boundary between the conductive material part and the non-conductive part. Conductive element.
(4)
The transparent electrode pattern portion and the transparent insulating pattern portion are arranged in different random patterns by arranging the conductive material portion and the non-conductive portion based on random patterns generated under different generation conditions. (1) The transparent conductive element according to any one of (3).
(5)
The transparent conductive element according to any one of (1) to (4), wherein the transparent electrode pattern portion is formed of a plurality of regions having different coverage ratios of the conductive material portion.
(6)
A first transparent conductive element having a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the substrate in a predetermined direction;
A transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the base material in a direction orthogonal to the predetermined direction, and the first transparent conductivity as viewed from the input surface direction; A second transparent conductive element disposed in a positional relationship superimposed with the element;
With
In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
(7)
In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion are formed such that the conductive material portion and the nonconductive portion are different from each other in a random pattern. Input device.
(8)
The coverage ratio of the conductive material portion of the first transparent conductive element in all regions viewed from the input surface direction in a state where the first transparent conductive element and the second transparent conductive element are overlapped with each other. The input device according to (6) or (7), wherein a difference in addition value from the coverage of the conductive material portion in the second transparent conductive element is 0 or more and 60 or less.
(9)
The coverage of the conductive material portion of the first transparent conductive element in all regions viewed from the input surface direction in a state where the first transparent conductive element and the second transparent conductive element are overlapped with each other. The input device according to (6) or (7), wherein a difference in addition value from the coverage of the conductive material portion in the second transparent conductive element is 0 or more and 30 or less.
(10)
A display device;
On the display surface of the display device, a first transparent conductive element having a transparent electrode pattern part and a transparent insulating pattern part formed by alternately spreading in a predetermined direction;
The display surface of the display device includes a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a direction orthogonal to the predetermined direction, and the first surface as viewed from the input surface direction. A second transparent conductive element disposed in a positional relationship superimposed on the transparent conductive element of
With
In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
(11)
As a method for producing a transparent conductive element comprising a base material and a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately laying in a predetermined direction on the surface of the base material,
Generating a first random pattern used for the transparent electrode pattern portion;
Generating a second random pattern to be used for the transparent insulating pattern part under a generation condition different from the first random pattern;
Forming a conductive material part in the transparent electrode pattern part and a conductive material part in the transparent insulating pattern part on the substrate based on the first and second random patterns;
A method for producing a transparent conductive element comprising:
 1,2 透明導電性素子、3 光学層、4 表示装置、10 入力装置、11,21 基材、12,22 透明導電層、13,23 透明電極パターン部、14,24 透明絶縁パターン部、13a,23a 孔部、13b,23b 導電部、14a,24a 島部、14b,24b 間隙部 1, 2, Transparent conductive element, 3 Optical layer, 4 Display device, 10 Input device, 11, 21 Base material, 12, 22 Transparent conductive layer, 13, 23 Transparent electrode pattern part, 14, 24 Transparent insulation pattern part, 13a , 23a hole part, 13b, 23b conductive part, 14a, 24a island part, 14b, 24b gap part

Claims (11)

  1.  基材と、
     上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部と、
     を備え、
     上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている透明導電性素子。
    A substrate;
    On the surface of the base material, transparent electrode pattern portions and transparent insulating pattern portions formed by alternately spreading in a predetermined direction,
    With
    The transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  2.  上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the transparent electrode pattern portion and the transparent insulating pattern portion are formed such that the conductive material portion and the nonconductive portion are different from each other in a random pattern.
  3.  上記透明電極パターン部は、上記導電材料部の形成面内で、複数の非導電部が離間してランダムに形成され、
     上記透明絶縁パターン部は、非導電部の形成面内で、上記導電材料部が離間してランダムに形成されており、
     上記透明電極パターン部と上記透明絶縁パターン部とでは、上記導電材料部と上記非導電部の境界によって形成されるパターンが、互いに異なるランダムパターンとされている請求項1に記載の透明導電性素子。
    The transparent electrode pattern portion is randomly formed with a plurality of nonconductive portions spaced apart from each other within the formation surface of the conductive material portion,
    The transparent insulating pattern portion is formed randomly in the formation surface of the non-conductive portion with the conductive material portion being spaced apart,
    2. The transparent conductive element according to claim 1, wherein the transparent electrode pattern portion and the transparent insulating pattern portion have different random patterns formed by boundaries between the conductive material portion and the non-conductive portion. .
  4.  上記透明電極パターン部と上記透明絶縁パターン部とでは、異なる生成条件によって生成したランダムパターンに基づいて、上記導電材料部と上記非導電部を配置することで、互いに異なるランダムパターンとなるようにする請求項2に記載の透明導電性素子。 The transparent electrode pattern portion and the transparent insulating pattern portion are arranged in different random patterns by arranging the conductive material portion and the non-conductive portion based on random patterns generated under different generation conditions. The transparent conductive element according to claim 2.
  5.  上記透明電極パターン部は、上記導電材料部の被覆率が異なる複数の領域により形成されている請求項1に記載の透明導電性素子。 The transparent conductive element according to claim 1, wherein the transparent electrode pattern portion is formed of a plurality of regions having different coverage ratios of the conductive material portion.
  6.  基材表面に所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有する第1の透明導電性素子と、
     基材表面に上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有し、入力面方向から見て上記第1の透明導電性素子と重ね合わされた位置関係で配置される第2の透明導電性素子と、
     を備え、
     上記第1,第2の透明導電性素子における、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている入力装置。
    A first transparent conductive element having a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the substrate in a predetermined direction;
    A transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading on the surface of the base material in a direction orthogonal to the predetermined direction, and the first transparent conductivity as viewed from the input surface direction; A second transparent conductive element disposed in a positional relationship superimposed with the element;
    With
    In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  7.  上記第1,第2の透明導電性素子における、上記透明電極パターン部及び上記透明絶縁パターン部は、上記導電材料部と非導電部が、互いに異なるランダムパターンで形成されている請求項6に記載の入力装置。 The said transparent electrode pattern part and the said transparent insulation pattern part in the said 1st, 2nd transparent conductive element are the said conductive material part and a nonelectroconductive part are formed in the random pattern from which it mutually differs. Input device.
  8.  上記第1の透明導電性素子と上記第2の透明導電性素子が重ね合わされた状態で入力面方向からみた全ての領域で、上記第1の透明導電性素子の上記導電材料部の被覆率と上記第2の透明導電性素子における導電材料部の被覆率との加算値の差が、0以上60以下である請求項6に記載の入力装置。 The coverage of the conductive material portion of the first transparent conductive element in all regions viewed from the input surface direction in a state where the first transparent conductive element and the second transparent conductive element are overlapped with each other. The input device according to claim 6, wherein a difference in addition value from the coverage of the conductive material portion in the second transparent conductive element is 0 or more and 60 or less.
  9.  上記第1の透明導電性素子と上記第2の透明導電性素子が重ね合わされた状態で入力面方向からみた全ての領域で、上記第1の透明導電性素子の上記導電材料部の被覆率と上記第2の透明導電性素子における導電材料部の被覆率との加算値の差が、0以上30以下である請求項6に記載の入力装置。 The coverage of the conductive material portion of the first transparent conductive element in all regions viewed from the input surface direction in a state where the first transparent conductive element and the second transparent conductive element are overlapped with each other. The input device according to claim 6, wherein a difference in addition value from the coverage of the conductive material portion in the second transparent conductive element is 0 or more and 30 or less.
  10.  表示装置と、
     上記表示装置の表示面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有する第1の透明導電性素子と、
     上記表示装置の表示面において、上記所定方向とは直交する方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを有し、入力面方向から見て上記第1の透明導電性素子と重ね合わされた位置関係で配置される第2の透明導電性素子と、
     を備え、
     上記第1,第2の透明導電性素子における、上記透明電極パターン部及び透明絶縁パターン部は、それぞれ少なくとも導電材料部を有するとともに、上記導電材料部が互いに異なるパターンで形成されている電子機器。
    A display device;
    On the display surface of the display device, a first transparent conductive element having a transparent electrode pattern part and a transparent insulating pattern part formed by alternately spreading in a predetermined direction;
    The display surface of the display device includes a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately spreading in a direction orthogonal to the predetermined direction, and the first surface as viewed from the input surface direction. A second transparent conductive element disposed in a positional relationship superimposed on the transparent conductive element of
    With
    In the first and second transparent conductive elements, the transparent electrode pattern portion and the transparent insulating pattern portion each have at least a conductive material portion, and the conductive material portions are formed in different patterns.
  11.  基材と、上記基材の表面において、所定方向に向かって交互に敷き詰められて形成された透明電極パターン部及び透明絶縁パターン部とを備えた透明導電性素子の製造方法として、
     上記透明電極パターン部に用いる第1のランダムパターンを生成する工程と、
     上記第1のランダムパターンとは異なる生成条件で上記透明絶縁パターン部に用いる第2のランダムパターンを生成する工程と、
     上記第1,第2のランダムパターンに基づいて、上記基材上に、上記透明電極パターン部における導電材料部と上記透明絶縁パターン部における導電材料部を形成する工程と、
     を含む透明導電性素子の製造方法。
    As a method for producing a transparent conductive element comprising a base material and a transparent electrode pattern portion and a transparent insulating pattern portion formed by alternately laying in a predetermined direction on the surface of the base material,
    Generating a first random pattern used for the transparent electrode pattern portion;
    Generating a second random pattern to be used for the transparent insulating pattern part under a generation condition different from the first random pattern;
    Forming a conductive material part in the transparent electrode pattern part and a conductive material part in the transparent insulating pattern part on the substrate based on the first and second random patterns;
    The manufacturing method of the transparent conductive element containing this.
PCT/JP2012/060802 2011-04-19 2012-04-16 Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element WO2012144643A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-092997 2011-04-19
JP2011092997 2011-04-19
JP2011158326A JP2014130383A (en) 2011-04-19 2011-07-19 Transparent conductive element, input device, electronic apparatus, and method of manufacturing transparent conductive element
JP2011-158326 2011-07-19

Publications (1)

Publication Number Publication Date
WO2012144643A1 true WO2012144643A1 (en) 2012-10-26

Family

ID=47041738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060802 WO2012144643A1 (en) 2011-04-19 2012-04-16 Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element

Country Status (2)

Country Link
JP (1) JP2014130383A (en)
WO (1) WO2012144643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11188179B2 (en) 2017-08-11 2021-11-30 Boe Technology Group Co., Ltd. Touch panel and manufacturing method thereof, and touch display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927939B2 (en) 2014-08-13 2018-03-27 Samsung Display Co., Ltd. Touch panel and display apparatus including the same
JP6698291B2 (en) * 2014-08-13 2020-05-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Touch panel and display device including the same
JP2016162633A (en) * 2015-03-03 2016-09-05 凸版印刷株式会社 Transparent electrode and organic electroluminescent element
JP2016028335A (en) * 2015-09-28 2016-02-25 デクセリアルズ株式会社 Transparent electrode element, information input device, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014772A (en) * 2000-06-30 2002-01-18 Minolta Co Ltd Touch panel, display panel, and display device
WO2009108758A2 (en) * 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor with low visibility conductors
JP2010253813A (en) * 2009-04-24 2010-11-11 Nissha Printing Co Ltd Mat electrically conductive nano-fiber sheet and method of manufacturing the same
WO2011033907A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Touch panel and display device provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014772A (en) * 2000-06-30 2002-01-18 Minolta Co Ltd Touch panel, display panel, and display device
WO2009108758A2 (en) * 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor with low visibility conductors
JP2010253813A (en) * 2009-04-24 2010-11-11 Nissha Printing Co Ltd Mat electrically conductive nano-fiber sheet and method of manufacturing the same
WO2011033907A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Touch panel and display device provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11188179B2 (en) 2017-08-11 2021-11-30 Boe Technology Group Co., Ltd. Touch panel and manufacturing method thereof, and touch display device

Also Published As

Publication number Publication date
JP2014130383A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5075270B2 (en) Transparent conductive element, method for manufacturing the same, input device, and electronic device
JP5745190B2 (en) Conductive structure and manufacturing method thereof
JP5857474B2 (en) Transparent electrode element, information input device, and electronic device
JP5293843B2 (en) Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master
JP6025069B2 (en) Touch screen panel and manufacturing method thereof
US20120228110A1 (en) Transparent electrode element, information input device, and electronic apparatus
JP5801484B2 (en) Touch panel with conductive pattern {TOUCHPANELCOMPRISINGCONDUCTINGPATTERN}
JP6047994B2 (en) Transparent conductive element and method for manufacturing the same, input device, electronic device, and method for processing transparent conductive layer
WO2013048136A9 (en) Conductive substrate comprising conductive pattern and touch panel comprising same
WO2012144643A1 (en) Transparent conductive element, input device, electronic apparatus, and manufacturing method for transparent conductive element
WO2013111807A1 (en) Transparent conductive element, manufacturing method therefor, input apparatus, electronic device, and thin-film patterning method
JP2013152578A (en) Transparent conductive element, input device, electronic apparatus and master disk for producing transparent conductive element
KR101241632B1 (en) Method for manufacturing touch panel
JP2016028335A (en) Transparent electrode element, information input device, and electronic apparatus
JP5867446B2 (en) Transparent conductive element, input device, electronic device and transparent conductive element manufacturing master
CN109947299A (en) Folding film layer structure and preparation method thereof, touch module and touch screen
KR20170001328A (en) Touch window
KR20170003022A (en) Touch window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP