WO2014034090A1 - 移動通信ネットワークにおけるモビリティ制御方法および装置 - Google Patents

移動通信ネットワークにおけるモビリティ制御方法および装置 Download PDF

Info

Publication number
WO2014034090A1
WO2014034090A1 PCT/JP2013/005039 JP2013005039W WO2014034090A1 WO 2014034090 A1 WO2014034090 A1 WO 2014034090A1 JP 2013005039 W JP2013005039 W JP 2013005039W WO 2014034090 A1 WO2014034090 A1 WO 2014034090A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mobility
mobile terminal
mobility control
priority
Prior art date
Application number
PCT/JP2013/005039
Other languages
English (en)
French (fr)
Inventor
佳央 植田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP13832997.4A priority Critical patent/EP2892278A4/en
Priority to US14/423,730 priority patent/US20150208301A1/en
Priority to CN201380056942.5A priority patent/CN104756549A/zh
Priority to JP2014532788A priority patent/JP5928756B2/ja
Publication of WO2014034090A1 publication Critical patent/WO2014034090A1/ja
Priority to IN1540DEN2015 priority patent/IN2015DN01540A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data

Definitions

  • the present invention relates to mobility control in a mobile communication network, and more particularly to a mobility control method and apparatus in a heterogeneous network having a plurality of cells having different cell sizes.
  • cells managed by radio base stations have various sizes. Depending on the cell radius, cells with a radius of 1 km or more are macro cells, and cells with a radius of about 0.5 to 1.5 km. Is called a pico cell, and a cell having a radius of about 10 to 500 m is called a femto cell. Among these, the femtocell and the picocell are also called small cells, and hereinafter, the term “small cell” is used unless otherwise specified.
  • Coverage complementation is necessary to cover areas where radio waves do not reach due to buildings or the like in the macro cell. For example, in a house where the radio wave of the macro cell base station does not reach due to an intrusion loss such as a wall of a building, it is possible to provide a sufficient mobile communication service by arranging the small cell base station.
  • the increase in capacity is necessary in order to cope with mobile traffic that is rapidly increasing due to the spread of mobile phones, particularly smartphones.
  • the overall capacity can be increased by reducing the cell radius and reducing the number of people per cell.
  • Heterogeneous Network perform appropriate interference control and power control, leave hot spots and areas where radio waves do not reach to small cells, and macro cells cover other places. The configuration is adopted.
  • Non-Patent Documents 1-4 describe cell reselection and handover control techniques.
  • Non-Patent Documents 1 and 2 define T_reselection, which is a cell reselection timer value.
  • T_reselection is a cell reselection timer value.
  • 31 seconds is set as the maximum value of the T_reselection timer in the 3G network.
  • 7 seconds is defined as the maximum value of the T_reselection timer in the LTE network. Therefore, in the LTE network, if the T_reselection timer is set to the maximum value of 7 seconds, the radio quality of other cells can be determined by measuring the radio quality of other cells for 7 seconds. If it is good, cell reselection can be executed.
  • T_reselection which is the cell reselection determination time, is changed depending on the mobile station speed. be able to.
  • the measurement time (Time ⁇ To Trigger) for measurement report can be changed by applying SpeedStateScaleFactors to mobile stations moving at high speed (Non-Patent Documents 3 and 4).
  • the residence time of a mobile station becomes shorter as the cell size becomes smaller, and when the mobile station is moving, it is proportional to the movement speed.
  • the staying time will be shortened. For this reason, even if the mobile station simply passes through the small cell, location registration signaling occurs when the mobile station enters the small cell and enters the macro cell again. Therefore, if a large number of mobile stations generate such location registration signaling, there is a new problem that as the small cell size is smaller and / or the number of mobile stations moving at a higher speed is larger, the increase in location registration signals becomes more significant. Arise. The problem of frequent location registration signaling will be described more specifically.
  • the location of a mobile terminal (User Equipment, hereinafter abbreviated as UE as appropriate) is managed by a location registration area.
  • a location area (Location Area) is used for the circuit switching service and a routing area (Routing Area) is used for the packet switching service.
  • LTE Long Term Evolution
  • the smaller the location registration area the shorter the UE stay time and the greater the UE location registration signaling.
  • a location registration procedure occurs in the small cell when moving from the macro cell to the small cell, and the location in the macro cell when moving from the small cell to the macro cell. Registration procedure occurs.
  • the small cell is a femto cell
  • the femto cell has a radius of several tens of meters, and thus the user moves to another cell without making a call in only several tens of seconds.
  • the above-described cell reselection and handover control techniques can be applied, but both have the problems described below, and the above-mentioned frequent problem of location registration signaling is effectively made effective. It cannot be solved.
  • Non-Patent Documents 1-4 as described above, a cell reselection timer (T_reselection) is defined, but only one cell reselection timer is defined for a serving cell.
  • T_reselection a cell reselection timer
  • changing the T_reselection of the macro cell affects not only the reselection from the macro cell to the small cell but also the reselection time from the macro cell to the macro cell, and as a result, the service quality may be degraded when reselecting to the macro cell.
  • the speed-dependent scaling factor (Speed dependent Scaling Factor for Treselection) is multiplied by T_reselection, which is the judgment time for cell reselection, so Can be changed.
  • T_reselection the judgment time for cell reselection
  • the range of the speed-dependent scaling factor is in increments of 0.1 between 0 and 1, and although the determination time for cell reselection can be shortened, it cannot be extended. That is, it is impossible to delay the start of location registration for the fast moving UE.
  • HCS Hierarchical Cell Structure
  • HCS_PRIO a cell with a lower priority of HCS
  • HCS_PRIO 7
  • the UE in stationary or low speed state preferentially selects the 3G small cell over the macro cell, and the macro cell is given priority when the high speed state is reached. The location registration to the 3G small cell can be avoided.
  • HCS Home Location Reference Service
  • SIB19 System Information Block type ⁇ 19, Non-Patent Document 3
  • the absolute Priority-based cell is also used in the 3G network. It is necessary to introduce a reselection mechanism.
  • the existing technology Non-Patent Document 1 cannot be used in combination with HCS. That is, since the HCS cannot be applied to the 3G network that enables mobility with LTE, the frequent occurrence problem of location registration signaling cannot be solved.
  • Non-Patent Documents 1-4 cannot reduce unnecessary location registration signaling to a small cell in a heterogeneous network.
  • an object of the present invention is to provide a mobility control method and apparatus capable of suppressing an increase in location registration signaling.
  • a mobility control method is a mobility control method of a mobile terminal in a mobile communication network composed of a plurality of types of cells having different cell sizes, and prioritizes mobility control for each adjacent cell or each type of adjacent cell. When the mobile terminal moves at a speed higher than a predetermined speed, mobility control is performed so as to select a neighboring cell having a lower priority than the serving cell.
  • a mobility control device is a mobility control device in a mobile communication network composed of a plurality of types of cells having different cell sizes, and is provided for each adjacent cell of a cell where a mobile terminal is located or for each type of adjacent cell.
  • Priority assignment information storage means for storing priority for mobility control, and when the mobile terminal moves at a speed higher than a predetermined speed, mobility control is executed so as to select a neighboring cell having a lower priority than the serving cell.
  • a mobility determination control means is a mobility control system in a mobile communication network including a plurality of types of cells having different cell sizes, and includes a base station that manages the cells and a mobile station that can move between the cells.
  • the mobile station sets a priority for mobility control in advance for each adjacent cell or each type of adjacent cell, and when the mobile terminal moves faster than a predetermined speed, the mobile station has a lower priority than the serving cell.
  • the mobility control is performed so as to select a neighboring cell.
  • the present invention it is possible to suppress an increase in location registration signaling by executing mobility control so as to select a neighboring cell having a lower priority than a serving cell when moving at high speed.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a heterogeneous network for implementing a mobility control system according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram showing a functional configuration of the mobile terminal according to the present embodiment.
  • FIG. 3 is a schematic block diagram showing a functional configuration of the base station according to the present embodiment.
  • FIG. 4 is a diagram showing an example of cell / frequency and priority assignment information used in the mobility control method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing the cell reselection control operation of the mobile terminal according to the first embodiment.
  • FIG. 6 is a diagram showing an example of cell type and priority assignment information used in the mobility control method according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a neighbor cell list for explaining a first example of a method for determining mobility determination time.
  • FIG. 8 is a flowchart showing a first example of a method for determining mobility determination time.
  • FIG. 9 is a diagram schematically showing the contents of the neighbor cell list for explaining a first example of the determination method of the mobility determination time.
  • FIG. 10 is a diagram illustrating an example of broadcast information for explaining a second example of the determination method of the mobility determination time.
  • FIG. 11A is a diagram illustrating an example of cell type estimation for explaining a third example of the determination method of the mobility determination time
  • FIG. 11B is a diagram illustrating an example of broadcast information in the third example. is there.
  • FIG. 12 is a diagram illustrating a correction example of the cell reselection timer for explaining a third example of the determination method of the mobility determination time.
  • the serving cell when a priority is set for each neighbor cell (neighbor cell) or for each cell type, if the mobile terminal moves faster than a predetermined speed, the serving cell By performing mobility control so as to select a neighboring cell having a mobility priority lower than the mobility priority, it is possible to avoid location registration in unnecessary cells.
  • the mobile terminal selects a cell with a lower priority instead of mobility control according to the normal priority when the moving speed becomes higher. Execute control. Thereby, it can be made to pass without performing cell reselection to a small cell with a small size, and as a result, frequent occurrence of location registration signaling can be avoided.
  • the neighboring cell is a macro cell, the cell reselection performance is not affected by executing the location registration according to the normal priority.
  • a mobile terminal located in a macro cell moves through the small cell in a heterogeneous network in which a macro cell and a small cell are adjacent to each other.
  • the macro cell and the small cell need only have different cell sizes and are adjacent to each other, and are not limited to the cell arrangement shown in FIG.
  • the heterogeneous network for implementing this embodiment includes a mobile terminal 10, a macro cell base station 20a, a small cell base station 20b, and a mobile management station 30, and the mobile management station 30 is a macro cell base station.
  • 20a and the small cell base station 20b are managed, and the macro cell base station 20a and the small cell base station 20b control the macro cell 21a and the small cell 21b, respectively.
  • a plurality of mobile terminals 10, macro cell base stations 20a, and small cell base stations 20b may exist.
  • the mobile terminal 10 has a function including a mobility determination control unit 103, a mobility determination timer 104, and a memory 105 in addition to the wireless transmission / reception unit 101 and the control unit 102.
  • the radio transmission / reception unit 101 can transmit and receive radio signals to and from the base stations (macro cell base station 20a and small cell base station 20b).
  • the radio transmission / reception unit 101 receives broadcast information from the base station, or RRC (Radio Resource Control). Or the like is transmitted to the base station.
  • the control unit 102 performs control such as bearer establishment, radio quality measurement, and handover according to an instruction of a message (for example, an RRC message) from the network.
  • the mobility determination control unit 103 executes mobility determination control using priority assignment information notified from the base station and stored in the memory 105, as will be described later.
  • the functions of the control unit 102, the mobility determination control unit 103, and the mobility determination timer 104 are not shown and a program stored in the storage device is transferred to the CPU (Central It can also be realized by executing on Processing (Unit).
  • the macro cell base station 20a and the small cell base station 20b are different in radio characteristics such as maximum transmission power and cell radius, but have the same basic functional configuration. Therefore, these base stations 20a and 20b will be collectively referred to as base station 20, and cells 21a and 21b, which are radio areas, will be described as cell 21.
  • a base station 20 includes a radio transmission / reception unit 201 for performing radio communication with the mobile terminal 10, a control unit 202 for performing overall control of the base station 20, a database 203 for storing configuration information and the like. And a transmission / reception unit 204 that performs communication with the mobility management station 30.
  • the control unit 202 performs control such as RRC connection setting, bearer establishment, and handover execution according to the RRC message from the mobile terminal 10. Further, the control unit 202 transmits / receives a message to / from the upper mobility management station 30 through the transmission / reception unit 204.
  • the database 203 stores station data (Office data), configuration information set by the operator, and the like.
  • the femto cell may be in an open mode, a hybrid access mode, or a closed mode.
  • the function of the control unit 202 can also be realized by executing a program stored in a storage device (not shown) on the CPU (Central Processing Unit) of the base station 20.
  • a different frequency is used for each cell type, and a different priority is assigned to each frequency (for each cell type). How to assign priority depends on the operator's policy. For example, when trying to collect mobile terminals in a small cell, a higher priority is assigned to a smaller cell size. As shown in FIG. 4, the lowest priority 1 is assigned to the macro cell, and a larger priority is assigned to the femto cell from the micro cell as the cell size decreases. Therefore, when a mobile terminal located in the micro cell stays near the pico cell, the mobile terminal performs cell reselection to the pico cell.
  • the mobility determination control unit 103 of the mobile terminal according to the first embodiment of the present invention does not select a high-priority cell (frequency) and moves to a lower-priority cell (frequency) during high-speed movement as described below. Frequency) is selected.
  • the mobility determination control unit 103 of the mobile terminal 10 detects the timing for performing cell reselection (operation 301; YES), the memory 105 is referred to and the priority of the serving cell and the neighboring cell is acquired. (Operation 302). Subsequently, the mobility determination control unit 103 determines whether or not the mobile terminal 10 is moving at a speed faster than a predetermined speed (operation 303). When moving faster than the predetermined speed (operation 303; YES), the mobility determination control unit 103 determines whether there is a cell (frequency) having a lower priority than the serving cell (operation 304).
  • the cell having the best quality among the low priority neighboring cells is determined as the best cell (operation 305).
  • the detection method of high-speed movement and its timing as described in 5.2.6.1 of Non-Patent Document 1 and 5.2.4.3 of Non-Patent Document 2, within a predetermined time. The number of cell reselections can be detected as an index.
  • the mobility determination control unit 103 determines the best quality cell among the neighbor cells having the lowest priority in the neighbor cell as the best cell. (Operation 306)
  • the mobility determination control unit 103 determines the neighboring cell having the highest priority as the best cell (operation 307).
  • the mobility determination control unit 103 determines the cell reselection timer (t-ReselectionEUTRA) of the best cell and one speed-dependent scaling factor (t-ReselectionEUTRA-SF) corresponding to the moving speed of the mobile terminal. Is used to calculate the cell reselection timer (T_reselection) of the best cell and set it in the mobility determination timer 104. Subsequently, during the calculated T_reselection, the mobility determination control unit 103 determines whether or not the quality of the best cell is higher than the quality of the serving cell (condition 1), and the serving cell receives a predetermined time (3GPP TS36).
  • T_reselectionEUTRA cell reselection timer
  • T_reselectionEUTRA-SF speed-dependent scaling factor
  • condition 2 It is determined whether or not the user has been in the service area for more than 1 second (condition 2) according to .304 to 5.2.4.6 (operations 308 and 309).
  • condition 3 When both condition 1 and condition 2 are satisfied (operation 308; YES, operation 409; YES), the mobility determination control unit 103 performs cell reselection to the best cell (operation 310) and ends the process. If either condition 1 or condition 2 is not satisfied (operation 308; NO or operation 309; NO), the cell reselection control of the mobile terminal ends.
  • the cell reselection timer (t-ReselectionEUTRA) can be set for each adjacent cell / cell type as described in the mobility determination time determination method (first to third examples) described later. .
  • the mobile terminal 10 When the mobile terminal 10 residing in the micro cell is not in a high speed state (operation 303 in FIG. 5; NO), the mobile terminal 10 performs cell reselection preferentially for a pico cell or femto cell having a high priority. However, in the high-speed movement state (operation 303 in FIG. 5; YES), the mobile terminal 10 preferentially selects a macro cell having a lower priority. As a result, during high-speed movement, pico cells and femto cells with high priority are not selected, and the number of reselections to a small cell can be reduced, and location registration signaling can be reduced as a whole.
  • LTE Extra-LTE
  • GERAN GERAN
  • CDMA2000 Cell reselection to UTRA
  • GERAN GERAN
  • CDMA2000 also has a lower priority in a high-speed state.
  • the same effect can be obtained by selecting the frequency.
  • the LTE case is described, but the present invention can be similarly applied to UTRA and other wireless access methods.
  • the same method can be applied by notifying the priority with a message such as RRC for each mobile terminal.
  • a fast moving mobile terminal selects a low priority frequency (cell).
  • a low priority frequency cell
  • the priority assigned to each frequency is used in the same manner as the current Absolute Priority mechanism. However, in the second embodiment of the present invention, it is introduced at 3G in LTE. Similar to HCS (Hierarchical Cell Structure), a priority is assigned to each cell, and a cell having a lower priority than a cell where a high-speed mobile terminal is located is preferentially selected. In this case, the macro cell, the micro cell, and the small cell do not need to have different frequencies, and may have the same frequency. In this way, by introducing HCS in LTE and controlling so that a high-speed mobile terminal can select a low-priority cell, the possibility of reselection to a small cell during high-speed movement can be reduced. .
  • HCS Hierarchical Cell Structure
  • different priorities are assigned to each cell in LTE. How to assign priority depends on the operator's policy. For example, when trying to collect mobile terminals in a small cell, a higher priority is assigned to a smaller cell size. As shown in FIG. 6, the lowest priority 1 is assigned to the macro cell, and a larger priority is assigned to the femto cell from the micro cell as the cell size decreases. Accordingly, when a low-speed mobile terminal located in the micro cell stays near the pico cell, the mobile terminal performs cell reselection to the pico cell.
  • the mobility determination control unit 103 of the mobile terminal selects a high priority cell when moving at high speed (operation 303 in FIG. 5; YES) as described in the flow of FIG. Instead, control is performed to select a lower priority cell (operation 305 in FIG. 5). If there is no neighboring cell with a lower priority than the serving cell, control is performed so as to select the cell with the lowest priority and the highest quality among them (operation 306 in FIG. 5).
  • the mobile terminal 10 is located in a micro cell (priority 3), and there are a macro cell, a pico cell, and a femto cell as its neighboring cells.
  • the same frequency is assigned to the macro cell, and a priority 1 lower than that of the micro cell is assigned.
  • the pico cell is assigned a higher priority 5 than the micro cell, and the femto cell is assigned a higher priority 7.
  • the mobile terminal 10 residing in the micro cell When the mobile terminal 10 residing in the micro cell is not in a high speed state (operation 303 in FIG. 5; NO), the mobile terminal 10 performs cell reselection preferentially for a pico cell or femto cell having a high priority.
  • the mobile terminal in the high-speed movement state (operation 303 in FIG. 5; YES), the mobile terminal can reduce the number of cell reselections by preferentially selecting a macro cell having a lower priority. Accordingly, when moving at high speed, pico cells and femto cells with high priority are not selected, so that the number of times of reselection to a small cell can be reduced, and location registration signaling can be reduced as a whole.
  • a high-speed moving mobile terminal selects a low-priority cell. Therefore, the possibility of reselection to a small cell during high-speed movement can be reduced, and the location registration in the small cell can be reduced.
  • Absolute Priority which is the priority for each frequency defined in 3GPP, may be applied simultaneously with the priority for each cell.
  • the location registration to the cell can be delayed and passed as a result. Frequent registration signaling can be avoided.
  • the neighboring cell is a macro cell, the cell reselection performance is not affected by performing the location registration at the normal timing.
  • the cell reselection timer T_reselection is set for each neighboring cell. For example, different cell reselection timers T_reselection are reported depending on whether the neighboring cell is a macro cell or a small cell, and the mobile terminal applies the notified cell reselection timer T_reselection.
  • the mobile terminal by further expanding the range of the value of the cell reselection timer T_reselection, the mobile terminal can determine the cell reselection timer T_reselection according to the moving speed.
  • the base station 20 periodically broadcasts broadcast information, and the mobile terminal 10 located in the cell 21 performs cell reselection based on cell reselection timer information included in the broadcast information. carry out.
  • the broadcast information includes a neighbor cell list indicating a cell reselection timer T_reselection for each of the neighbor cells of the cell 21.
  • SIB4 SystemInformationBlockType4
  • SIB4 which is broadcast information for controlling cell reselection of the same frequency in the LTE network, includes an adjacent cell list (IntraFreqNeighCellInfo) having the format shown in FIG.
  • t-ReselectionEUTRA that is a cell reselection timer and t-ReselectionEUTRA-SF that is a speed-dependent scaling factor Has been introduced.
  • the speed-dependent scaling factor t-ReselectionEUTRA-SF is an extended version of the speed state scale factor (SpeedStateScaleFactors-vabc), and its range is expanded not only from 0 to 1, but also beyond 1. .
  • the value of the speed-dependent scaling factor t-ReselectionEUTRA-SF can be defined as a numerical value in increments of 0.25 within the range of the minimum value 0.25 to the maximum value 100.
  • T_reselectionEUTRA-SF it is possible to extend the cell reselection timer T_reselection by a maximum of 100 times for the mobile terminal 10 moving at high speed.
  • SIB5 in the different frequency cell list SIB6 in the neighboring cell list of UTRA (Universal Terrestrial Radio Access, hereinafter abbreviated as UTRA), SIB7 in the neighboring cell list in GERAN (GSM / EDGE Radio Access Access Network), and neighboring cells in CDMA2000
  • UTRA Universal Terrestrial Radio Access
  • SIB7 in the neighboring cell list in GERAN GSM / EDGE Radio Access Access Network
  • CDMA2000 CDMA2000
  • the SIB8 in the list can also introduce the cell reselection timer and the speed dependent scaling factor described above.
  • the mobility determination control unit 103 of the mobile terminal 10 refers to the memory 105 and ranks adjacent cells in order of good quality according to the criterion R (cell-ranking criterion R defined by 3GPP TS36.304). The best cell is determined (operation 401).
  • the mobility determination control unit 103 includes a cell reselection timer (t-ReselectionEUTRA) of the best cell, one speed-dependent scaling factor (t-ReselectionEUTRA-SF) corresponding to the moving speed of the mobile terminal, Is read from the neighbor cell list, and the cell reselection timer (T_reselection) of the best cell is calculated (operation 402). Specifically, the T_reselection of the best cell is calculated by multiplying t-ReselectionEUTRA by t-ReselectionEUTRA-SF.
  • the mobility determination control unit 103 determines whether or not the best cell satisfies a predetermined mobility standard (operations 403 and 404). That is, during the calculated T_reselection, whether the quality of the best cell is higher than the quality of the serving cell (condition 1), and the serving cell has a predetermined time (according to 3GPP TS36.304.5.2.4.6) It is determined whether or not the user has been in the service area for more than 1 second (condition 2) (operations 403 and 404).
  • the mobility determination control unit 103 sets the T_reselection of the best cell determined in operation 402 in the mobility determination timer 104 ( Operation 405) and the process ends.
  • the mobility determination control unit 103 refers to the ranking result of the neighboring cell, and next neighbor cell with the next highest quality. It is determined whether there is any (operation 406). If there is such a neighbor cell (operation 406; YES), the neighbor cell is set as the best cell (operation 407), and the process returns to the T_reselection determination operation 402. The above-described processing is repeated until T_reselection of a new best cell is set (operation 405) or until all cells in the neighboring cell list are determined (operation 406; NO).
  • PhysCellId is an abbreviation for Physical Cell ID, and is identification information (ID) for identifying a cell at the physical channel level.
  • ID identification information
  • q-OffsetCell is an offset to the cell, and the mobile terminal 10 can easily reselect by increasing the cell radius virtually.
  • Such a technique is also called cell range expansion (Cell Range Expansion), and is a technology for offloading user traffic in a macro cell.
  • the q-OffsetCells of the pico cells 26c and 27c are set large for offloading.
  • the Cell range expansion technique is well known and will not be described.
  • t-ReselectionEUTRA is notified from the base station side to the mobile terminal for each neighboring cell.
  • a t-ReselectionEUTRA value (7 seconds) longer than the t-ReselectionEUTRA value (2 seconds) set in the macro cell or micro cell is set in the pico cell and the femto cell. That is, by setting a large cell reselection timer for a cell smaller than a microcell, it is possible to delay the reselection timing of the mobile terminal to a small cell and consequently reduce location registration signaling for a small cell. .
  • the q-OffsetCell value is set large, it is possible to obtain the traffic offload effect by Cell Range Expansion.
  • the reselection timer for the femto cell is also set to be long, only the mobile terminal staying in the femto cell for a while can be registered.
  • location registration signaling is not initiated because the reselection timer to the femtocell passes before it times out. Thereby, the position registration reduction effect to small cells, such as a femtocell and a picocell, can be acquired.
  • t-ReselectionEUTRA-SF is notified for each neighboring cell.
  • t-ReselectionEUTRA-SF 0.5 for microcells
  • t-ReselectionEUTRA-SF 5.0 for picocells smaller than that
  • t-ReselectionEUTRA-SF for smaller femtocells. 10.0 is set for each.
  • FIG. 9 mainly describes an example of cell reselection at the same frequency in LTE (Intra LTE), as already described, cell reselection to a different frequency, UTRA, GERAN, CDMA2000 Similar effects can be obtained for cell reselection by introducing cell reselection timer T_reselection and / or rate dependent scaling factor for each neighboring cell using each broadcast information SIB5, SIB6, SIB7, SIB8 Can do. Furthermore, T_reselection and / or rate dependent scaling factor for each neighboring cell may be introduced into other broadcast information (SIB). Moreover, you may notify T_reselection and / or a speed dependence scaling factor for every adjacent cell separately for every mobile terminal with messages, such as RRC other than alerting
  • SIB broadcast information
  • the effect such as Cell range expansion is impaired.
  • location registration in the small cell can be reduced.
  • a cell reselection timer T_reselection and / or a speed-dependent scaling factor is introduced for each neighboring cell.
  • the second example of the determination method of the mobility determination time for each cell type, Introduce cell reselection timer T_reselection and / or rate dependent scaling factor.
  • Cell types can be classified according to cell size. As already described, there are types of macro cell, micro cell, and small cell in descending order of cell size, and the small cell further includes types of pico cell and femto cell.
  • the base station 20 periodically broadcasts broadcast information, and the mobile terminal 10 that has received the broadcast information performs cell reselection based on cell reselection timer information for each cell type included in the broadcast information.
  • the broadcast information includes a cell reselection timer T_reselection and a rate dependent scaling factor set for each cell type.
  • the mobility determination control unit 103 determines the cell reselection timer (t-ReselectionEUTRA) and one speed-dependent scaling factor (t-ReselectionEUTRA) corresponding to the moving speed of the mobile terminal from the cell type of the best cell.
  • -SF cell reselection timer
  • T_reselection the cell reselection timer
  • the speed-dependent scaling factor for each cell type, it becomes possible to change the response characteristic of cell reselection that depends on the moving speed only for a specific cell type.
  • FIG. 10 mainly describes an example of cell reselection at the same frequency in LTE (Intra LTE), as already described, cell reselection to a different frequency, UTRA, GERAN, CDMA2000 Similar effects can be obtained for cell reselection by introducing cell reselection timer T_reselection and / or rate dependent scaling factor for each cell type using each broadcast information SIB5, SIB6, SIB7, SIB8 Can do. Furthermore, T_reselection and / or rate dependent scaling factor for each cell type may be introduced into other broadcast information (SIB). Moreover, you may notify T_reselection and / or a speed dependence scaling factor for every cell classification separately for every mobile terminal with messages, such as RRC other than alerting
  • SIB broadcast information
  • the T_reselection timer and the speed-dependent scaling factor can be set for each cell type, for example, without affecting cell reselection to a macro cell, a pico cell, a femto cell
  • the cell reselection to a small cell such as can be delayed. Therefore, similarly to the first embodiment, it is possible to reduce the location registration to the small cell without impairing the effects such as Cell range expansion. Furthermore, it becomes possible to reselect a cell following high-speed movement only in a specific neighboring cell.
  • the size of the broadcast information can be reduced, and the traffic volume can be reduced.
  • efficient broadcast information can be transmitted.
  • the base station broadcasts the transmission power information or the cell size (cell radius), so that the mobile terminal dynamically sets the scaling factor for each adjacent cell. Calculate and apply to cell reselection timer T_reselection.
  • the base station 20 periodically broadcasts broadcast information, and the mobile terminal 10 that has received the broadcast information estimates a cell type from the broadcast information and determines a correction coefficient.
  • transmission power information (Reference Power information) is reported to mobile terminals as common radio resource information by SIB2.
  • the transmission power (Reference Power) of a base station generally increases as the cell radius increases. Therefore, the cell type can be estimated from the reference power information on the mobile terminal side.
  • a correction coefficient to be applied is determined from the estimated cell type, and the cell reselection timer T_reselection is corrected. It is assumed that the cell reselection timer T_reselection is reported as 3 seconds in the macro cell by SIB2.
  • a neighboring cell of a certain macro cell has physical cell identifiers (PhysCellID) 1000 to 1003 and each transmission power (reference power) information is broadcast.
  • the mobile terminal 10 estimates the cell type of the neighboring cell based on transmission power (reference power).
  • a cell of 30 dBm which is the highest transmission power (reference power) is a macro cell
  • a cell of 1 dBm which is the lowest transmission power (reference power) is a femto cell
  • a cell of intermediate transmission power (reference power) is a pico cell.
  • the cell type can be estimated from the cell size. Further, in the case of a femtocell, CSG (Closed
  • the base station broadcasts the combination of the cell type and the correction coefficient.
  • the mobile terminal 10 estimates the cell type, the mobile terminal 10 can obtain a correction coefficient corresponding to the estimated cell type, and is applied to the notified cell reselection timer T_reselection (here, 3 seconds) to reselect the cell according to the cell type.
  • T_reselection here, 3 seconds
  • the mobility determination control unit 103 estimates the cell type from the transmission power (Reference (Power) information of the best cell, and uses the correction coefficient corresponding to the estimated cell type to notify the notified cell re-transmission.
  • the selection timer (t-ReselectionEUTRA) is corrected, and the cell reselection timer (T_reselection) of the best cell is calculated (operation 402). Specifically, T_reselection of the best cell is calculated by multiplying t-ReselectionEUTRA by a correction coefficient.
  • one speed-dependent scaling factor (t-ReselectionEUTRA-SF) corresponding to the moving speed of the mobile terminal is read from the memory 105, and the cell reselection timer (T_reselection) of the best cell is further changed. You can also.
  • the subsequent operation is as described in FIG.
  • the cell where the mobile terminal 10 is located is adjacent to four cells with PhysCellId of 1000 to 1003, and the cell types estimated from the respective transmission power information are pico cells, femto cells, femto cells, Assume that it is a macrocell.
  • cell reselection to the pico cell is performed, and the location registration procedure is executed, thereby enabling communication service in the pico cell.
  • cell reselection is not performed unless the stay is longer than 30 seconds in the vicinity of a femtocell smaller in size than the picocell. Therefore, by setting a correction coefficient according to the cell type, it is possible to change the response characteristics of cell reselection only for a specific type of cell.
  • a speed-dependent scaling factor is applied to a mobile terminal that moves at a high speed. Therefore, if the mobile terminal 10 is in the vicinity of a small cell, cell reselection is performed unless the mobile terminal 10 stays for a longer time. I will not. Therefore, when moving a small cell at high speed, the possibility of passing before the cell reselection to the small cell increases, and as a result, occurrence of location registration signaling can be reduced. In this way, by setting the speed-dependent scaling factor according to the cell type, it becomes possible to change the response characteristic of cell reselection that depends on the moving speed only for a specific type of cell.
  • FIG. 12 mainly describes an example of cell reselection at the same frequency in LTE (Intra LTE), as described above, cell reselection to a different frequency, UTRA, GERAN, CDMA2000
  • the broadcast information SIB5, SIB6, SIB7, and SIB8 are used to estimate the cell type based on the reference power of the broadcast information or the cell size, and use the corresponding correction coefficient. Similar effects can be obtained.
  • the present embodiment can be similarly applied to UTRA and other wireless access methods.
  • the cell type may be estimated based on reference power or cell size using a message such as RRC for each mobile terminal individually.
  • the cell type is estimated using broadcast information including transmission power information (or cell size) from the base station, a correction coefficient, etc., and the correction coefficient for each cell type is determined.
  • the transmission power information (or cell size) and the correction coefficient are notified for each cell type, not for each adjacent cell, the size of the broadcast information can be reduced, and the traffic volume can be reduced. It is possible to reduce and transmit efficient broadcast information.
  • the number of location registration signaling in the heterogeneous network is within a certain allowable range. It may be optimized by a self organizing network (SON). In this case, newly introduced parameters may be optimized in consideration of handover success rate and system throughput in addition to location registration signaling.
  • SON self organizing network
  • the present invention can be applied to cell reselection control in a heterogeneous network.

Abstract

【課題】位置登録シグナリングの増加を抑止できるモビリティ制御方法および装置を提供する。 【解決手段】セルサイズが異なる複数種類のセル(21a、21b)からなる移動通信ネットワークにおいて、隣接セル(22a~29d)ごと、あるいは隣接セルの種類ごとに、モビリティ制御のための優先度を設定し、移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する(動作303-306)。

Description

移動通信ネットワークにおけるモビリティ制御方法および装置
 本発明は移動通信ネットワークにおけるモビリティ制御に係り、特にセルサイズが異なる複数のセルを有するヘテロジニアスネットワークにおけるモビリティ制御方法および装置に関する。
 携帯電話等の移動通信ネットワークにおいて、無線基地局が管理するセルには様々なサイズがあり、セル半径の大きさにより、半径1km以上のセルはマクロセル、半径0.5~1.5km程度のセルはピコセル、半径10~500m程度のセルはフェムトセルと呼ばれている。このうち、フェムトセルおよびピコセルはスモールセルとも呼ばれており、以下、特に断らない限り、スモールセルという用語を使用するものとする。
 スモールセルを設けることで、カバレッジ補完と大容量化を達成することができる。カバレッジ補完は、マクロセル内において建物等により無線電波の届かない領域をカバーするために必要である。たとえば、建物の壁などの侵入損失によりマクロセル基地局の無線電波が届かない家屋内では、スモールセル基地局を配置することにより十分な移動通信サービスを提供することが可能となる。また、大容量化は、携帯電話、特にスマートフォンの普及により急増するモバイルトラフィックに対応するために必要となる。スモールセルでは、セル半径を小さくしてセルあたりの収容人数を少なくすることにより全体のキャパシティを増やすことが可能となる。
 このようにスモールセルの配置はカバレッジ補完と大容量化を達成するが、マクロセルとスモールセルが混在するシステムでは、電波干渉の可能性が高くなり通信品質の低下を招くという問題が発生する。こうした問題に対して、ヘテロジニアスネットワーク(Heterogeneous Network)では、適切な干渉制御や電力制御等を行い、ホットスポットや電波の届かないエリアはスモールセルに任せ、それ以外の場所はマクロセルがカバーする、という構成を採用している。
 また、移動通信ネットワークにおけるセル再選択制御については、非特許文献1-4にセル再選択およびハンドオーバ時の制御技術が記載されている。非特許文献1および2には、セル再選択タイマ値であるT_reselectionが定義されており、また、非特許文献3には3GネットワークにおけるT_reselectionタイマの最大値として31秒が、非特許文献4にはLTE網におけるT_reselectionタイマの最大値として7秒が、それぞれ定義されている。したがって、LTE網では、T_reselectionタイマを最大値の7秒に設定すれば、7秒の間、他のセルの電波品質を測定してセル再選択判定を行うことができ、他のセルの電波品質が良ければセル再選択を実行することができる。さらに、非特許文献1および3に規定されている速度依存スケーリングファクタ(Speed dependent Scaling Factor for Treselection)を使用すれば、セル再選択の判定時間であるT_reselectionを移動局の速度に依存して変更することができる。
 また、セル間ハンドオーバでは、測定報告のための測定時間(Time To Trigger)を高速移動している移動局に対してはSpeedStateScaleFactorsを適用して変更することができる(非特許文献3および4)。
3GPP TS25.304 Ver10.4.0 3GPP TS36.304 Ver10.4.0 3GPP TS25.331 Ver11.0.0 3GPP TS36.331 Ver10.5.0
 しかしながら、ヘテロジニアスネットワークのようなマクロセルとスモールセルが混在するシステムでは、一般に、セルサイズが小さくなるに従って移動局の滞在時間が短くなり、移動局が移動している場合には移動スピードに比例して滞在時間が短くなる。このために、移動局がスモールセルを単に通過する場合であっても、スモールセルに入った時と再びマクロセルに入った時に位置登録シグナリングが発生することとなる。したがって、多数の移動局がこのような位置登録シグナリングを発生すれば、スモールセルサイズが小さい程および/または高速移動する移動局が多い程、位置登録信号の増加が顕著となるという新たな問題が生じる。この位置登録シグナリングの頻発という問題について、より具体的に説明する。
 まず、移動体通信においては、位置登録エリアによって移動端末(User Equipment、以下、適宜、UEと略す。)の位置が管理されている。3Gネットワークでは、回線交換サービスに対してロケーションエリア(Location Area)が、パケット交換サービスに対してルーティングエリア(Routing Area)がそれぞれ用いられる。また、LTE(Long Term Evolution)では、複数のトラッキングエリア(TA)から構成されるTAリストをUEごとに割り当てて位置登録タイミングをずらすことが可能であるから、TAリストを位置登録エリアとみなすことができる。
 UEが同じスピードで移動すると仮定した場合、上述したように、位置登録エリアが小さくなる程、UEの滞在時間が短くなり、UEの位置登録シグナリングが非常に増加する。UEを保持するユーザが徒歩でスモールセルを通過するシナリオを考えると、マクロセルからスモールセルへの移動時にスモールセルにおいて位置登録手順が発生し、さらに、スモールセルからマクロセルへの移動時においてマクロセルにおいて位置登録手順が発生する。スモールセルをフェムトセルとした場合、フェムトセルは半径が数十メートルであるから、ユーザはわずか数十秒で、通話することなく他のセルに移動してしまうこととなる。数十秒間であれば、UEがスモールセルに移動して位置登録したとしても横切るのみで、実際に音声やパケットなどの通信サービスを行うUE数は数%に過ぎないと考えられる。このことはスモールセルおよびマクロセルにおける位置登録数を増加させてしまうだけである。
 ヘテロジニアスネットワークにおいて、上述したセル再選択およびハンドオーバ時の制御技術を適用することもできるが、いずれも以下に説明するような課題を有しており、上述した位置登録シグナリングの頻発問題を有効に解決することができない。
 (1)非特許文献1-4には、上述したように、セル再選択タイマ(T_reselection)が定義されているが、このセル再選択タイマは在圏セルに一つしか定義されていない。つまり、マクロセルのT_reselectionを変更すると、マクロセルからスモールセルへの再選択だけでなくマクロセルからマクロセルへの再選択時間にも影響が及び、その結果、マクロセルへの再選択時にサービス品質を劣化させる可能性がある。
 (2)非特許文献1および3に定義されているように、速度依存スケーリングファクタ(Speed dependent Scaling Factor for Treselection)をセル再選択の判定時間であるT_reselectionに乗じることで、高速移動時の判定時間を変更することができる。しかしながら、速度依存スケーリングファクタのレンジは0~1の間で0.1刻みとなっており、セル再選択のための判定時間を短縮することはできても延長することはできない。つまり、高速移動UEに対して位置登録の起動を遅らせることは不可能である。
 (3)非特許文献1にて定義されたHCS(Hierarchical Cell Structure;階層セル構造)を用いると、UEが高速状態の場合に、より低いHCSの優先度(HCS_PRIO)のセルを再選択させることができる。例えば、マクロセルにHCS_PRIO=1を、3GスモールセルにHCS_PRIO=7をそれぞれアサインした場合、静止あるいは低速状態のUEは、マクロセルより3Gスモールセルを優先的に選択し、高速状態になるとマクロセルを優先的に選択することが可能となり、3Gスモールセルへの位置登録を回避することができる。
 しかしながら、LTEでは、HCSが定義されておらず、その代わりに、絶対優先度(Absolute Priority)ベースによるセル再選択メカニズムが採用されている。したがって、LTEのスモールセルとLTEのマクロセルにおける位置登録シグナリングの低減にはHCSを適用することができない。さらに、3GネットワークにおいてLTEとのモビリティを行うためには、報知情報(SIB19: System Information Block type 19、非特許文献3)によってLTE側の周波数を報知するとともに、3GネットワークにおいてもAbsolute Priorityベースのセル再選択メカニズムを導入する必要があり、この場合、既存技術(非特許文献1)ではHCSとの併用ができなくなる。つまり、LTEとのモビリティを可能とする3GネットワークではHCSが適用できないために、位置登録シグナリングの頻発問題を解決することはできない。
 上述したように、非特許文献1-4に記載されている既存の技術では、ヘテロジニアスネットワークにおいて、スモールセルへの不要な位置登録シグナリングを減少させることができない。
 そこで、本発明の目的は、位置登録シグナリングの増加を抑止できるモビリティ制御方法および装置を提供することにある。
 本発明によるモビリティ制御方法は、セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおける移動端末のモビリティ制御方法であって、隣接セルごと、あるいは隣接セルの種類ごとに、モビリティ制御のための優先度を予め設定し、前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する、ことを特徴とする。
 本発明によるモビリティ制御装置は、セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおけるモビリティ制御装置であって、移動端末が在圏しているセルの隣接セルごと、あるいは隣接セルの種類ごとのモビリティ制御のための優先度を格納する優先度割当情報格納手段と、前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行するモビリティ判定制御手段と、を有することを特徴とする。
 本発明によるモビリティ制御システムは、セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおけるモビリティ制御システムであって、前記セルを管理する基地局と、セル間を移動可能な移動局と、を有し、前記移動局が、隣接セルごとあるいは隣接セルの種類ごとにモビリティ制御のための優先度を予め設定し、前記移動端末が所定速度より高速で移動する場合に在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する、ことを特徴とする。
 本発明によれば、高速移動時には在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行することにより、位置登録シグナリングの増加を抑止できる。
図1は本発明の一実施形態によるモビリティ制御システムを実施するためのヘテロジニアスネットワークの一例を示す概略的構成図である。 図2は本実施形態による移動端末の機能的構成を示す概略的ブロック図である。 図3は本実施形態による基地局の機能的構成を示す概略的ブロック図である。 図4は本発明の第1実施例によるモビリティ制御方法で使用するセル/周波数と優先度の割当情報の一例を示す図である。 図5は第1実施例による移動端末のセル再選択制御動作を示すフローチャートである。 図6は本発明の第2実施例によるモビリティ制御方法で使用するセル種別と優先度の割当情報の一例を示す図である。 図7はモビリティ判定時間の決定方法の第1例を説明するための隣接セルリストの一例を示す図である。 図8はモビリティ判定時間の決定方法の第1例を示すフローチャートである。 図9はモビリティ判定時間の決定方法の第1例を説明するための隣接セルリストの内容を模式的に示す図である。 図10はモビリティ判定時間の決定方法の第2例を説明するための報知情報の一例を示す図である。 図11(A)はモビリティ判定時間の決定方法の第3例を説明するためのセル種別推定の一例を示す図であり、図11(B)は第3例における報知情報の一例を示す図である。 図12はモビリティ判定時間の決定方法の第3例を説明するためのセル再選択タイマの補正例を示す図である。
 本発明の実施形態によれば、隣接セル(ネイバーセル;Neighbor cell)ごと、あるいはセルの種別ごとに優先度が設定されている場合、移動端末が所定速度より高速で移動する場合、在圏セルのモビリティ優先度より低いモビリティ優先度の隣接セルを選択するようにモビリティ制御を実行することにより、不要なセルへの位置登録を回避することが可能となる。
 セルのサイズが小さいほど高い優先度が予め設定されている場合、移動端末は、移動速度が高速になると、通常の優先度に従ったモビリティ制御ではなく、優先度がより低いセルを選択するモビリティ制御を実行する。これにより、サイズの小さいスモールセルへのセル再選択を実行せずに通過させることができ、結果として、位置登録シグナリングの頻発を回避できる。その際、隣接セルがマクロセルであれば、通常通りの優先度に従って位置登録を実行させることによりセル再選択性能に影響を与えることはない。以下、本実施形態によるモビリティ制御システムを実施するための移動通信ネットワークについて図面を参照しながら詳細に説明する。ここでは、説明を複雑化しないために、マクロセルとスモールセルとが隣接するヘテロジニアスネットワークにおいて、マクロセル内に位置する移動端末がスモールセルを通過して移動する場合を一例として説明する。ただし、マクロセルとスモールセルはセルサイズが異なり互いに隣接するセルであればよく、図1に示すようなセル配置に限定されるものではない。
 図1に示すように、本実施形態を実施するためのヘテロジニアスネットワークは、移動端末10、マクロセル基地局20a、スモールセル基地局20bおよび移動管理局30からなり、移動管理局30がマクロセル基地局20aおよびスモールセル基地局20bを管理し、マクロセル基地局20aおよびスモールセル基地局20bがマクロセル21aおよびスモールセル21bをそれぞれ制御する。なお、移動端末10、マクロセル基地局20aおよびスモールセル基地局20bは、それぞれ複数存在してもよい。
 図2に示すように、本実施形態における移動端末10は、無線送受信部101および制御部102に加えて、モビリティ判定制御部103、モビリティ判定タイマ104およびメモリ105からなる機能を有する。無線送受信部101は、基地局(マクロセル基地局20a、スモールセル基地局20b)との間で無線信号を送受信することができ、たとえば基地局から報知情報を受信したり、RRC(Radio Resource Control)等のメッセージを基地局へ送信したりする。制御部102は、ネットワークからのメッセージ(たとえばRRCメッセージ)の指示に従って、ベアラ確立、無線品質測定、ハンドオーバなどの制御を実行する。本実施形態によれば、モビリティ判定制御部103は、後述するように、基地局から報知されメモリ105に格納された優先度割当情報を用いて、モビリティ判定制御を実行する。なお、制御部102、モビリティ判定制御部103およびモビリティ判定タイマ104の機能(後述するセル再選択制御やハンドオーバ制御など)は、図示しないし記憶装置に格納されたプログラムを移動端末10のCPU(Central Processing Unit)上で実行することにより実現することもできる。
 図3に示すように、マクロセル基地局20aとスモールセル基地局20bとは、最大送信電力やセル半径などの無線特性は異なっているが、基本的な機能構成は同じである。したがって、これら基地局20aおよび20bをまとめて基地局20とし、その無線エリアであるセル21aおよび21bをセル21として説明する。
 図3において、基地局20は、移動端末10と無線通信を行うための無線送受信部201と、基地局20の全体的な制御を行う制御部202と、コンフィグレーション情報等を格納するデータベース203と、移動管理局30との通信を行う送受信部204とを有する。制御部202は、移動端末10からRRCメッセージに従ってRRCコネクション設定やベアラ確立、ハンドオーバ実行などの制御を行う。さらに、制御部202は、送受信部204を通して、上位の移動管理局30との間でメッセージの送受信を行う。データベース203は、局データ(Office data)やオペレータが設定したコンフィグレーション情報などを記憶する。なお、基地局20がスモールセル基地局20bであり、スモールセルがフェムトセルの場合、フェムトセルはオープンモードであってもよいし、ハイブリッドアクセスモードあるいはクローズドモードであってもよい。なお、制御部202の機能は、図示しないし記憶装置に格納されたプログラムを基地局20のCPU(Central Processing Unit)上で実行することにより実現することもできる。
 以下、上述したシステム、移動端末および基地局の構成において、本発明の実施例によるモビリティ制御方法およびシステムについて図面を参照しながら詳細に説明する。
 1.第1実施例
 本発明の第1実施例では、絶対優先度(Absolute Priority)ベースの周波数再選択メカニズムにおいて、高速移動の移動端末が低優先度の周波数(セル)を選択するように制御することで、高速移動時のスモールセルへの再選択の可能性を低下させることができる。
 1.1)報知情報
 Absolute Priorityベースの周波数再選択メカニズムでは、セル種別ごとに異なる周波数が使用され、周波数ごと(セル種別ごと)に異なる優先度が割り当てられる。優先度の割り当て方はオペレータのポリシーによる。たとえば、スモールセルに移動端末を集めようとすれば、セルサイズが小さいほど高い優先度が割り当てられる。図4に示すように、マクロセルには最も低い優先度1が割り当てられ、マイクロセルからフェムトセルに対してはセルサイズが小さくなるほど大きな優先度が割り当てられる。したがって、マイクロセルに在圏している移動端末がピコセル付近に滞在すると、移動端末はピコセルへのセル再選択を実行する。
 しかしながら、移動端末10が高速移動している場合、既に述べたように、セルサイズの小さいセルは通過するだけの場合も多い。そのような場合には、セル再選択を回避することが望ましい。そこで、本発明の第1実施例による移動端末のモビリティ判定制御部103は、次に述べるように、高速移動時には、高い優先度のセル(周波数)を選択しないで、より低い優先度のセル(周波数)を選択するように制御する。
 1.2)移動端末のセル再選択制御
 基地局20から上述した報知情報を受信すると、移動端末10の制御部102は、報知情報に含まれる隣接セルリストおよび周波数(セル種別)-優先度割当情報をメモリ105に格納し、次に述べるセル再選択制御を実行する。以下、図5および図2を参照しながらセル再選択制御について説明する。
 図5において、移動端末10のモビリティ判定制御部103は、セル再選択を実施するタイミングを検出すると(動作301;YES)、メモリ105を参照し、在圏セルと隣接セルの優先度を取得する(動作302)。続いて、モビリティ判定制御部103は、移動端末10が所定速度より速い速度で移動しているか否かを判定する(動作303)。所定速度より速く移動している場合(動作303;YES)、モビリティ判定制御部103は、在圏セルよりも優先度の低いセル(周波数)があるか否かを判定し(動作304)、そのような低優先度の隣接セルがあれば(動作304;YES)、当該低優先度隣接セルのうち、最も品質の良いセルをベストセルとして決定する(動作305)。なお、高速移動の検出方法およびそのタイミングについては、非特許文献1の5.2.6.1や非特許文献2の5.2.4.3に記載されているように、所定時間内でのセル再選択回数などを指標として検出することができる。低優先度の隣接セルが存在しなかった場合(動作304;NO)、モビリティ判定制御部103は、隣接セルにおいて最も低い優先度を有する隣接セルのうち、最も品質の良いセルをベストセルとして決定する(動作306)
 停止あるいは所定速度以下の速度で移動している場合(動作303;NO)、モビリティ判定制御部103は、最も高い優先度を有する隣接セルをベストセルに決定する(動作307)。
 ベストセルを決定すると、モビリティ判定制御部103は、当該ベストセルのセル再選択タイマ(t-ReselectionEUTRA)と、移動端末の移動速度に対応する1つの速度依存スケーリングファクタ(t-ReselectionEUTRA-SF)とを用いてベストセルのセル再選択タイマ(T_reselection)を算出してモビリティ判定タイマ104に設定する。続いて、モビリティ判定制御部103は、算出されたT_reselectionの間、ベストセルの品質が在圏セルの品質よりも上回っているか否か(条件1)、そして、在圏セルに所定時間(3GPP TS36.304 5.2.4.6によれば1秒間)を超えて在圏しているか否か(条件2)を判定する(動作308および309)。条件1および条件2が共に満足される場合(動作308;YES、動作409;YES)、モビリティ判定制御部103は当該ベストセルへのセル再選択を行い(動作310)、処理を終了する。条件1または条件2のどちらか一方でも満たされなければ(動作308;NOまたは動作309;NO)、移動端末のセル再選択制御は終了する。
 なお、セル再選択タイマ(t-ReselectionEUTRA)は、後述するモビリティ判定時間の決定方法(第1~第3例)で述べるように、隣接セルごと/セルの種別ごとに設定可能にすることができる。
 1.3)具体例
 次に、図4に示すような報知情報が報知された場合を例にとって、マイクロセル(優先度3)に在圏している移動端末10の具体的な動作を説明する。当該マイクロセルに隣接してマクロセル、ピコセル、フェムトセルが存在しているとする。マクロセルでは別の周波数を使用しており、マイクロセルよりも低い優先度1が割り当てられている。ピコセルでは、マイクロセルよりも高い優先度5が、フェムトセルでは高い優先度7が割り当てられている。
 マイクロセルに在圏している移動端末10は高速状態でない場合(図5の動作303;NO)、高い優先度であるピコセルあるいはフェムトセルに対して優先的にセル再選択を行う。しかしながら、高速移動状態においては(図5の動作303;YES)、移動端末10は、より優先度の低いマクロセルを優先的に選択する。これによって、高速移動時には、優先度の高いピコセル、フェムトセルは選択されなくなり、小さなセルへの再選択回数を減らすことができ、全体として位置登録シグナリングを低減させることができる。
 なお、図4および図5では主にLTE内(Intra LTE)での周波数再選択の例について述べているが、UTRA、GERAN、CDMA2000へのセル再選択についても、高速状態ではより低い優先度の周波数を選択することによって同様の効果を得ることができる。また、本実施例ではLTEのケースを述べているが、UTRAや他の無線アクセス方式についても同様に適用可能である。また、報知情報以外に、移動端末ごとに個別にRRC等のメッセージで優先度を通知することにより同様の方法を適用することができる。
 1.4)効果
 本発明の第1実施例によれば、絶対優先度(Absolute Priority)ベースの周波数再選択メカニズムにおいて、高速移動の移動端末が低優先度の周波数(セル)を選択するように制御することで、高速移動時のスモールセルへの再選択の可能性を低下させ、スモールセルへの位置登録低減を図ることができる。
 2.第2実施例
 上述した第1実施例では、現状のAbsolute Priorityメカニズムと同様に周波数ごとに割り当てられた優先度を活用しているが、本発明の第2実施例では、LTEにおいて、3Gで導入されているHCS(Hierarchical Cell Structure;階層セル構造)と同様にセルごとに優先度を割り当て、高速状態の移動端末が在圏しているセルよりも低い優先度のセルを優先的に選択する。この場合、マクロセル、マイクロセル、スモールセルでは異なる周波数である必要は無く、同じ周波数であってもよい。このようにLTEにおいてHCSを導入し、高速移動の移動端末が低優先度のセルを選択できるように制御することで、高速移動時のスモールセルへの再選択の可能性を低下させることができる。
 図6に示すように、LTEにおいて、セルごとに異なる優先度が割り当てられる。優先度の割り当て方はオペレータのポリシーによる。たとえば、スモールセルに移動端末を集めようとすれば、セルサイズが小さいほど高い優先度が割り当てられる。図6に示すように、マクロセルには最も低い優先度1が割り当てられ、マイクロセルからフェムトセルに対してはセルサイズが小さくなるほど大きな優先度が割り当てられる。したがって、マイクロセルに在圏している低速の移動端末がピコセル付近に滞在すると、この移動端末はピコセルへのセル再選択を実行する。
 しかしながら、移動端末10が高速移動している場合、既に述べたように、セルサイズの小さいセルは通過するだけの場合も多い。そのような場合には、セル再選択を回避することが望ましい。そこで、本発明の第2実施例による移動端末のモビリティ判定制御部103は、図5のフローで説明したように、高速移動時には(図5の動作303;YES)、高い優先度のセルを選択しないで、より低い優先度のセルを選択するように制御する(図5の動作305)。もし在圏セルより低い優先度の隣接セルが存在しなければ、その中で最も低い優先度のセルであって最も品質の良いセルを選択するように制御する(図5の動作306)。
 図6に示す例によれば、移動端末10がマイクロセル(優先度3)に在圏し、その隣接セルとしてマクロセル、ピコセル、フェムトセルが存在している。マクロセルでは同じ周波数が割り当てられており、マイクロセルよりも低い優先度1が割り当てられている。ピコセルでは、マイクロセルよりも高い優先度5が、フェムトセルでは高い優先度7が割り当てられている。
 マイクロセルに在圏している移動端末10は高速状態でない場合(図5の動作303;NO)、高い優先度であるピコセルあるいはフェムトセルに対して優先的にセル再選択を行う。しかしながら、高速移動状態においては(図5の動作303;YES)、移動端末はより優先度の低いマクロセルを優先的に選択することでセルの再選択回数を減らすことが可能となる。これによって、高速移動時には、優先度の高いピコセル、フェムトセルは選択されなくなることにより、小さなセルへの再選択回数を減らすことができ、全体として位置登録シグナリングを低減させることができる。
 このように、本発明の第2実施例によれば、LTEにおいて、HCSと同様に隣接セルごとに優先度を導入することにより、高速移動の移動端末が低優先度のセルを選択するように制御することができ、高速移動時のスモールセルへの再選択の可能性を低下させ、スモールセルへの位置登録低減を図ることができる。
 なお、セルごとの優先度と同時に、3GPPで定義された周波数ごとの優先度であるAbsolute Priorityを同時に適用してもよい。
 3.モビリティ判定時間の決定方法
 上述した本発明の第1および第2実施例によるセル再選択制御は、モビリティ優先度を設定した場合に、移動端末の移動速度に応じてモビリティ優先度に従わないセル再選択制御を可能にする。このセル再選択制御に加えて、モビリティ判定時間を変更する制御を行うことも可能である。すなわち、モビリティ優先度の他に、隣接セル(ネイバーセル;Neighbor cell)ごとあるいはセルの種別ごとにモビリティ判定時間を設定することにより、不要なセルへの位置登録を回避することが可能となる。モビリティ判定時間は、セル再選択のための判定時間を示すセル再選択タイマ(T_reselection)の変更などにより、セルごと/セル種別ごとに異なる値に設定することができる。
 たとえば、セル再選択タイマを移動局の移動速度に応じて長くすることで、隣接セルがサイズの小さいスモールセルであれば、当該セルへの位置登録を遅らせて通過させることができ、結果として位置登録シグナリングの頻発を回避できる。その際、隣接セルがマクロセルであれば、通常通りのタイミングで位置登録を実行させることによりセル再選択性能に影響を与えることはない。
 3.1)第1例
 モビリティ判定時間の決定方法の第1例によれば、隣接セルごとにセル再選択タイマT_reselectionが設定される。例えば、隣接セルがマクロセルであった場合とスモールセルであった場合とで異なったセル再選択タイマT_reselectionを報知し、報知されたセル再選択タイマT_reselectionを移動端末が適用する。本実施例によれば、さらにセル再選択タイマT_reselectionの値の範囲を拡張することで、移動端末が移動速度に応じてセル再選択タイマT_reselectionを決定することができる。このようにセル再選択タイマT_reselectionを設定することにより、隣接セルのセルサイズが小さい場合および/または移動端末が高速移動している場合に、位置登録の起動を遅らせ、スモールセルへの位置登録シグナリングを低減させることができる。以下、第1例について詳細に説明する。
 3.1.1)隣接セルリスト
 基地局20は報知情報を周期的に報知し、当該セル21内に位置する移動端末10は報知情報に含まれるセル再選択タイマ情報に基づいてセル再選択を実施する。報知情報は、当該セル21の隣接セルの各々に対するセル再選択タイマT_reselectionを示す隣接セルリストを含む。本実施例では、LTEネットワークにおいて同一周波数のセル再選択を制御する報知情報であるSIB4(SystemInformationBlockType4)が図7に示すフォーマットを有する隣接セルリスト(IntraFreqNeighCellInfo)を含む。
 図7に示すように、同一周波数の隣接セルリスト(IntraFreqNeighCellInfo)には、隣接セルの識別情報等に加えて、セル再選択タイマであるt-ReselectionEUTRAおよび速度依存スケーリングファクタであるt-ReselectionEUTRA-SFが導入されている。ここで、速度依存スケーリングファクタt-ReselectionEUTRA-SFは、速度状態スケールファクタの拡張バージョン(SpeedStateScaleFactors-vabc)であり、その値域は0~1だけでなく、1を超えた範囲にも拡張されている。例えば、速度依存スケーリングファクタt-ReselectionEUTRA-SFの値を最小値0.25~最大値100の範囲内の0.25刻みの数値として定義することができる。これにより高速移動の移動端末10には、セル再選択タイマT_reselectionを最大100倍にのばすことが可能となる。
 同様に、異周波数セルリストのSIB5、UTRA(Universal Terrestrial Radio Access、以下、UTRAと略す)の隣接セルリストのSIB6、GERAN(GSM/EDGE Radio Access Network) の隣接セルリストのSIB7、CDMA2000の隣接セルリストのSIB8にも、上述したセル再選択タイマならびに速度依存スケーリングファクタを導入することができる。
 3.1.2)移動端末のモビリティ判定時間決定制御
 基地局20から上述した隣接セルリストを含む報知情報(SIB4)を受信すると、移動端末10の制御部102は、報知情報に含まれる隣接セルリストをメモリ105に格納する。
 図8において、移動端末10のモビリティ判定制御部103は、メモリ105を参照し、基準R(3GPP TS36.304によって定義されるcell-ranking criterion R)に従って品質のよい順番に隣接セルをランキングすることで、ベストセルを決定する(動作401)。
 ベストセルを決定すると、モビリティ判定制御部103は当該ベストセルのセル再選択タイマ(t-ReselectionEUTRA)と、移動端末の移動速度に対応する1つの速度依存スケーリングファクタ(t-ReselectionEUTRA-SF)と、を隣接セルリストから読み出し、ベストセルのセル再選択タイマ(T_reselection)を算出する(動作402)。具体的には、t-ReselectionEUTRAにt-ReselectionEUTRA-SFを乗じることによってベストセルのT_reselectionを算出する。
 続いて、モビリティ判定制御部103は、ベストセルが所定のモビリティ基準を満たしているか否かを判定する(動作403および404)。すなわち、算出されたT_reselectionの間、ベストセルの品質が在圏セルの品質よりも上回っているか否か(条件1)、そして、在圏セルに所定時間(3GPP TS36.304 5.2.4.6によれば1秒間)を超えて在圏しているか否か(条件2)を判定する(動作403および404)。条件1および条件2が共に満足される場合(動作403;YES、動作404;YES)、モビリティ判定制御部103は、動作402で決定されたベストセルのT_reselectionをモビリティ判定タイマ104に設定して(動作405)、処理を終了する。
 条件1または条件2のどちらか一方でも満たされなければ(動作403;NOまたは動作404;NO)、モビリティ判定制御部103は、隣接セルのランキング結果を参照して、次に品質の良い隣接セルがあるかどうかを判定する(動作406)。そのような隣接セルがあれば(動作406;YES)、当該隣接セルをベストセルとして(動作407)、T_reselection決定動作402へ戻る。上述した処理は、新たなベストセルのT_reselectionが設定されるか(動作405)、隣接セルリストの全てのセルが判断されるまで(動作406;NO)、繰り返される。
 なお、図8に示される手順は図7に示される報知情報SIB4のケースを例に説明したが、報知情報SIB5、SIB6、SIBあるいはSIB8の場合であっても、同様に適用することができる。
 3.1.3)具体例
 次に、図9に示すような内容の隣接セルリストが報知された場合を例にとって、マクロセル21aにいる移動端末10の具体的な動作を説明する。
 図9において、移動端末10が在圏しているマクロセル21aには、マクロセル22aおよび23a、マイクロセル24bおよび25b、ピコセル26cおよび27c、フェムトセル28dおよび29dがそれぞれ隣接していると仮定する。PhysCellIdはPhysical Cell IDの略記であり、物理チャネルレベルにおいてセルを識別するための識別情報(ID)である。q-OffsetCellはセルに対するオフセットであり、セル半径を仮想的に大きくすることで移動端末10が再選択しやすくなる。このような技術はセル範囲拡張(Cell Range Expansion)とも呼ばれ、マクロセルのユーザトラフィックをオフロードさせるための技術である。この例では、ピコセル26cおよび27cのq-OffsetCellがオフロードのために大きく設定されている。なお、Cell range expansion技術は公知であるから、説明は省略する。
 さらに、本例では、隣接セルごとにt-ReselectionEUTRAが基地局側から移動端末へ通知される。図9に示す例では、マクロセルやマイクロセルに設定されたt-ReselectionEUTRA値(2秒)より長いt-ReselectionEUTRA値(7秒)がピコセルおよびフェムトセルに設定されている。すなわち、マイクロセルより小さいセルに対するセル再選択タイマを大きく設定することで、移動端末の小さいセルへの再選択タイミングを遅延させ、結果的に小さなセルに対する位置登録シグナリングを低減させることが可能となる。移動端末10の移動速度が速い程、ピコセルやフェムトセルを再選択する可能性が低くなる。逆に、ピコセル付近にしばらく滞在する(移動速度が遅い)移動端末については、q-OffsetCell値が大きく設定されているので、Cell Range Expansionによるトラフィックオフロード効果を得ることが可能となる。同様に、フェムトセルへの再選択タイマも長く設定されているので、フェムトセルにしばらく滞在する移動端末のみを位置登録させることが可能となる。素早く通り過ぎる移動端末については、フェムトセルへの再選択タイマがタイムアウトしないうちに通過するので、位置登録シグナリングが開始されない。これにより、フェムトセルやピコセルといったスモールセルへの位置登録低減効果を得ることができる。
 さらに、本例によれば、t-ReselectionEUTRA-SFが隣接セルごとに通知される。図6の例によれば、マイクロセルにt-ReselectionEUTRA-SF=0.5、それよりサイズの小さいピコセルにt-ReselectionEUTRA-SF=5.0、さらに小さいフェムトセルにはt-ReselectionEUTRA-SF=10.0がそれぞれ設定されている。たとえばマイクロセル24b、25bを高速移動する移動端末10では、速度依存スケーリングファクタが適用され、セル再選択タイマがt-ReselectionEUTRA(2秒)×t-ReselectionEUTRA-SF(0.5)=1秒に短縮される。一方、ピコセル26cを高速で移動する移動端末10では、速度依存スケーリングファクタが適用されると、セル再選択タイマがt-ReselectionEUTRA(7秒)×t-ReselectionEUTRA-SF(5.0)=35秒に長くなる。したがって、ピコセル26c、27cを高速移動する場合には、ピコセルへのセル再選択前に通過する可能性が高くなり、結果的に、位置登録シグナリングの発生を低減することが可能となる。このように速度依存スケーリングファクタを隣接セルごとに設定することで、特定の隣接セルに対してのみ移動速度に依存するセル再選択の応答特性を変更することが可能となる。
 なお、図9では主にLTE内(Intra LTE)での同一周波数でのセル再選択の例について記載されているが、既に述べたように、異周波数へのセル再選択、UTRA、GERAN、CDMA2000へのセル再選択についても、それぞれの報知情報SIB5、SIB6、SIB7、SIB8を用いて、隣接セルごとのセル再選択タイマT_reselectionおよび/または速度依存スケーリングファクタを導入することで同様の効果を得ることができる。さらに他の報知情報(SIB)に隣接セルごとのT_reselectionおよび/または速度依存スケーリングファクタを導入してもよい。また、報知情報以外のRRC等のメッセージにて、移動端末ごとに個別に隣接セルごとのT_reselectionおよび/または速度依存スケーリングファクタを通知してもよい。
 上述したように、モビリティ判定時間の決定方法の第1例によれば、隣接セルごとにセル再選択タイマT_reselectionおよび/または速度依存スケーリングファクタを導入することによって、Cell range expansionなどの効果を損ねることなく、スモールセルへの位置登録低減を図ることができる。さらに、特定の隣接セルのみ高速移動に追従したセル再選択が可能となる。
 3.2)第2例
 上述した第1例では隣接セルごとにセル再選択タイマT_reselectionおよび/または速度依存スケーリングファクタを導入したが、モビリティ判定時間の決定方法の第2例では、セル種別ごとにセル再選択タイマT_reselectionおよび/または速度依存スケーリングファクタを導入する。セルの種類はセルサイズにより分けることができる。既に述べたように、セルサイズが大きい順にマクロセル、マイクロセル、スモールセルの種類があり、スモールセルには更にピコセル、フェムトセルの種類がある。
 3.2.1)報知情報
 基地局20は報知情報を周期的に報知し、報知情報を受信した移動端末10は報知情報に含まれるセル種別ごとのセル再選択タイマ情報に基づいてセル再選択を実施する。報知情報には、セル種別ごとに設定されたセル再選択タイマT_reselectionと速度依存スケーリングファクタとが含まれる。
 図10にモビリティ判定時間の決定方法の第2例における報知情報の一例を示す。第1例で使用した例(図9)と同様に、マクロセルやマイクロセルに設定されたt-ReselectionEUTRA値(2秒)より長いt-ReselectionEUTRA値(7秒)がピコセルおよびフェムトセルに設定されている。また、マイクロセルにt-ReselectionEUTRA-SF=0.5、それよりサイズの小さいピコセルにt-ReselectionEUTRA-SF=2.0、さらに小さいフェムトセルにはt-ReselectionEUTRA-SF=4.0がそれぞれ設定されている。
 3.2.2)移動端末のモビリティ判定時間決定制御
 基地局20から上述した報知情報を受信すると、移動端末10の制御部102は、報知情報をメモリ105に格納し、図8と同様の処理によりモビリティ判定時間が決定される。ただし、第2例では、図8の動作402だけが異なっている。その他の動作は図8と同じであるから説明は省略する。
 図8の動作402において、モビリティ判定制御部103は、ベストセルのセル種別から、セル再選択タイマ(t-ReselectionEUTRA)と、移動端末の移動速度に対応する1つの速度依存スケーリングファクタ(t-ReselectionEUTRA-SF)と、をメモリ105から読み出し、ベストセルのセル再選択タイマ(T_reselection)を算出する。具体的には、t-ReselectionEUTRAにt-ReselectionEUTRA-SFを乗じることによってベストセルのT_reselectionを算出する。以降の動作は図8で説明したとおりである。
 3.2.3)具体例
 図10に示すような情報が報知された場合を例にとると、たとえば移動端末10がマイクロセル付近にt-ReselectionEUTRAの2秒を超えて滞在すれば当該マイクロセルへのセル再選択が行われ、位置登録手順が実行されてマイクロセルでの通信サービスが可能となる。しかしながら、マイクロセルよりもサイズが小さいスモールセル付近ではt-ReselectionEUTRAの7秒を超えて滞在しなければ当該ピコセルへのセル再選択は行われない。
 また、高速移動する移動端末に対しては、既に述べたように、速度依存スケーリングファクタが適用されるので、スモールセル付近に移動端末10が14秒(=7(秒)×2.0)を超えて滞在しない限りセル再選択は行われない。したがって、スモールセルを高速移動する場合には、スモールセルへのセル再選択前に通過する可能性が高くなり、結果的に、位置登録シグナリングの発生を低減することが可能となる。このように速度依存スケーリングファクタをセル種別ごとに設定することで、特定のセル種別に対してのみ移動速度に依存するセル再選択の応答特性を変更することが可能となる。
 なお、図10では主にLTE内(Intra LTE)での同一周波数でのセル再選択の例について記載されているが、既に述べたように、異周波数へのセル再選択、UTRA、GERAN、CDMA2000へのセル再選択についても、それぞれの報知情報SIB5、SIB6、SIB7、SIB8を用いて、セル種別ごとのセル再選択タイマT_reselectionおよび/または速度依存スケーリングファクタを導入することで同様の効果を得ることができる。さらに他の報知情報(SIB)にセル種別ごとのT_reselectionおよび/または速度依存スケーリングファクタを導入してもよい。また、報知情報以外のRRC等のメッセージにて、移動端末ごとに個別にセル種別ごとのT_reselectionおよび/または速度依存スケーリングファクタを通知してもよい。
 モビリティ判定時間決定方法の第2例によれば、セルの種別ごとにT_reselectionタイマおよび速度依存スケーリングファクタを設定できるため、例えば、マクロセルへのセル再選択には影響を与えることなく、ピコセル、フェムトセル等のスモールセルへのセル再選択を遅らせることができる。したがって、第1実施例と同様に、Cell range expansionなどの効果を損ねることなく、スモールセルへの位置登録低減を図ることができる。さらに、特定の隣接セルのみ高速移動に追従したセル再選択が可能となる。
 さらに、第2例によれば、隣接セルごとではなく、セル種別ごとにセル再選択タイマT_reselectionおよび速度依存スケーリングファクタを報知するので、報知情報のサイズを小さくすることができ、トラフィック量を低減して効率的な報知情報を伝送することが可能となる。
 3.3)第3例
 モビリティ判定時間決定方法の第3例では、基地局が送信電力情報あるいはセルサイズ(セル半径)を報知することにより、移動端末が隣接セルごとに動的にスケーリングファクタを計算しセル再選択タイマT_reselectionに適用する。
 3.3.1)報知情報
 基地局20は報知情報を周期的に報知し、報知情報を受信した移動端末10は報知情報からセル種別を推定し補正係数を決定する。LTEの場合、SIB2により共通の無線リソース情報として送信電力情報(Reference Power情報)を移動端末に通知している。基地局の送信電力(Reference Power)は、一般的に、セルの半径が大きいほど大きくなる。したがって、移動端末側でReference Power情報からセル種別を推定することができる。推定されたセルの種別より、適用する補正係数を決定し、セル再選択タイマT_reselectionの補正を行う。なお、SIB2により、マクロセルにおいてセル再選択タイマT_reselectionが3秒として報知されているものとする。
 図11(A)に示すように、あるマクロセルの隣接セルが物理セル識別子(PhysCellID)1000~1003を有し、それぞれの送信電力(reference power)情報が報知されるものと仮定する。この場合、移動端末10は、送信電力(reference power)に基づいて当該隣接セルのセル種別を推定する。ここでは、最も大きい送信電力(reference power)である30dBmのセルをマクロセル、最も小さい送信電力(reference power)である1dBmのセルをフェムトセル、その中間の送信電力(reference power)のセルをピコセルとそれぞれ推定する。
 送信電力情報(Reference Power情報)ではなくセルサイズが報知される場合も、セルサイズからセル種別を推定することができる。また、フェムトセルの場合には、CSG(Closed Subscriber Group)が適用されることもあるため、CSG IDが割り当てられている場合にフェムトセルの種別であると判断することもできる。
 図11(B)に示すように、基地局は、セル種別と補正係数の組み合わせを報知している。移動端末10は、セル種別を推定すれば、それに対応する補正係数を得ることができ、報知されたセル再選択タイマT_reselection(ここでは3秒)に適用することでセル種別に応じたセル再選択タイマを設定することができる。
 3.3.2)移動端末のモビリティ判定時間決定制御
 基地局20から上述した報知情報を受信すると、移動端末10の制御部102は、報知情報をメモリ105に格納し、図8と同様の処理によりモビリティ判定時間が決定される。ただし、第3例では、図8の動作402だけが異なっている。その他の動作は図8と同じであるから説明は省略する。
 図8の動作402において、モビリティ判定制御部103は、ベストセルの送信電力(Reference Power)情報からセル種別を推定し、推定されたセル種別に対応する補正係数を用いて、報知されたセル再選択タイマ(t-ReselectionEUTRA)を補正し、ベストセルのセル再選択タイマ(T_reselection)を算出する(動作402)。具体的には、t-ReselectionEUTRAに補正係数を乗じることによってベストセルのT_reselectionを算出する。なお、既に述べたように、移動端末の移動速度に対応する1つの速度依存スケーリングファクタ(t-ReselectionEUTRA-SF)をメモリ105から読み出し、ベストセルのセル再選択タイマ(T_reselection)を更に変更することもできる。以降の動作は図8で説明したとおりである。
 3.3.3)具体例
 次に、図11に示すような内容の情報が報知された場合を例にとって移動端末10の具体的な動作を説明する。
 図12において、移動端末10が在圏しているセルには、PhysCellIdが1000~1003の4つのセルが隣接し、それぞれの送信電力情報から推定されたセル種別がピコセル、フェムトセル、フェムトセル、マクロセルであるものと仮定する。この場合、マクロセルの補正係数は1であるから、報知されたt-ReselectionEUTRA=3秒がそのままセル再選択タイマ(T_reselection)となり、ピコセルでは補正係数が3であるから、3(秒)×3=9(秒)が、フェムトセルでは補正係数が10であるから、3(秒)×10=30(秒)が、それぞれ補正されたセル再選択タイマ(T_reselection)となる。
 したがって、たとえば移動端末10がピコセル付近に9秒を超えて滞在すれば当該ピコセルへのセル再選択が行われ、位置登録手順が実行されてピコセルでの通信サービスが可能となる。しかしながら、ピコセルよりもサイズが小さいフェムトセル付近では30秒を超えて滞在しなければセル再選択は行われない。したがって、セル種別に応じた補正係数を設定することで、特定の種別のセルに対してのみセル再選択の応答特性を変更することが可能となる。
 また、高速移動する移動端末に対しては、既に述べたように、速度依存スケーリングファクタが適用されるので、スモールセル付近に移動端末10がいれば、さらに長い時間滞在しない限りセル再選択は行われない。したがって、スモールセルを高速移動する場合には、スモールセルへのセル再選択前に通過する可能性が高くなり、結果的に、位置登録シグナリングの発生を低減することが可能となる。このようにセル種別に応じた速度依存スケーリングファクタを設定することで、特定の種別のセルに対してのみ移動速度に依存するセル再選択の応答特性を変更することが可能となる。
 なお、図12では主にLTE内(Intra LTE)での同一周波数でのセル再選択の例について記載されているが、既に述べたように、異周波数へのセル再選択、UTRA、GERAN、CDMA2000へのセル再選択についても、それぞれの報知情報SIB5、SIB6、SIB7、SIB8を用いて、報知情報のreference powerあるいはセルサイズをベースにセル種別を推定し、それに対応する補正係数を用いてことで同様の効果を得ることができる。さらに、UTRAやその他の無線アクセス方式についても同様に、本実施例を適用できる。また、報知情報以外に、移動端末ごとに個別にRRC等のメッセージを用いて、reference powerやセルサイズをベースにセル種別を推定してもよい。
 モビリティ判定時間決定方法の第3例によれば、基地局からの送信電力情報(あるいはセルサイズ)や補正係数等を含む報知情報を用いて、セル種別を推定し、セル種別ごとの補正係数を用いてT_reselectionタイマおよび/または速度依存スケーリングファクタを設定できるため、例えば、マクロセルへのセル再選択には影響を与えることなく、ピコセル、フェムトセル等のスモールセルへのセル再選択を遅らせることができる。したがって、第1実施例と同様に、Cell range expansionなどの効果を損ねることなく、スモールセルへの位置登録低減を図ることができる。さらに、特定の隣接セルのみ高速移動に追従したセル再選択が可能となる。
 さらに、第3例によれば、隣接セルごとではなく、セル種別ごとに送信電力情報(あるいはセルサイズ)おおび補正係数を報知するので、報知情報のサイズを小さくすることができ、トラフィック量を低減して効率的な報知情報を伝送することが可能となる。
 4.他の実施例
 上述した第1実施例で導入される周波数ごとの優先度、第2実施例で導入されるセルごとの優先度については、ヘテロジニアスネットワークにおける位置登録シグナリング数が一定の許容範囲内におさまるように、自己組織化ネットワーク(SON:Self Organizing Network)により最適化されてもよい。この際に位置登録シグナリングのほかにハンドオーバ成功率やシステムスループットなども考慮として、新規に導入されたパラメータが最適化されてもよい。
 本発明はヘテロジニアスネットワークにおけるセル再選択制御に適用可能である。
10 移動端末
20 基地局
20a マクロセル基地局
20b スモールセル基地局
30 移動管理局
101 無線送受信部
102 制御部
103 モビリティ判定制御部
104 モビリティ判定タイマ
105 メモリ
201 無線送受信部
202 制御部
203 データベース
204 送受信部

Claims (22)

  1.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおける移動端末のモビリティ制御方法であって、
     隣接セルごと、あるいは隣接セルの種類ごとに、モビリティ制御のための優先度を予め設定し、
     前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する、
     ことを特徴とするモビリティ制御方法。
  2.  前記優先度は前記在圏セルの基地局から報知されることを特徴とする請求項1に記載のモビリティ制御方法。
  3.  前記優先度は前記隣接セルのセルサイズに依存して設定されることを特徴とする請求項1または2に記載のモビリティ制御方法。
  4.  前記優先度は前記隣接セルのセルサイズが小さくなるほど高く設定されることを特徴とする請求項3に記載のモビリティ制御方法。
  5.  隣接セルごと、あるいは隣接セルの種類ごとに、モビリティ判定時間を設定し、
     前記隣接セルのモビリティ判定時間の間、所定のモビリティ基準を満たすか否かを判定することで前記モビリティ制御を実行する、
     ことを特徴とする請求項1-4のいずれか1項に記載のモビリティ制御方法。
  6.  前記モビリティ判定時間は前記移動端末の移動速度および前記隣接セルのセルサイズの少なくとも一方に依存して設定されることを特徴とする請求項5に記載のモビリティ制御方法。
  7.  前記モビリティ判定時間は、前記移動端末が接続している基地局から報知される所定モビリティ判定時間を前記移動速度および前記隣接セルのセルサイズの少なくとも一方に依存して変更することにより設定される、ことを特徴とする請求項6に記載のモビリティ制御方法。
  8.  前記移動端末が接続している基地局から報知される送信電力情報または前記隣接セルのセルサイズから前記隣接セルの種類を推定する、ことを特徴とする請求項5-7のいずれか1項に記載のモビリティ制御方法。
  9.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおけるモビリティ制御装置であって、
     移動端末が在圏しているセルの隣接セルごと、あるいは隣接セルの種類ごとのモビリティ制御のための優先度を格納する優先度割当情報格納手段と、
     前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行するモビリティ判定制御手段と、
     を有することを特徴とするモビリティ制御装置。
  10.  前記優先度は前記在圏セルの基地局から報知されることを特徴とする請求項9に記載のモビリティ制御装置。
  11.  前記優先度は前記隣接セルのセルサイズに依存して設定されることを特徴とする請求項9または10に記載のモビリティ制御装置。
  12.  前記優先度は前記隣接セルのセルサイズが小さくなるほど高く設定されることを特徴とする請求項3に記載のモビリティ制御装置。
  13.  前記移動端末が在圏しているセルの隣接セルごと、あるいは隣接セルの種類ごとのモビリティ判定時間を設定するモビリティ判定タイマ手段を更に有し、
     前記モビリティ判定制御手段が、前記隣接セルのモビリティ判定時間の間、所定のモビリティ基準を満たすか否かを判定することで前記モビリティ制御を実行する、ことを特徴とする請求項9-12のいずれか1項に記載のモビリティ制御装置。
  14.  前記モビリティ判定タイマ手段は、前記移動端末の移動速度および前記隣接セルのセルサイズの少なくとも一方に依存して前記モビリティ判定時間を設定する、ことを特徴とする請求項13に記載のモビリティ制御装置。
  15.  前記モビリティ判定タイマ手段は、前記基地局から報知される所定モビリティ判定時間を前記移動速度および前記隣接セルのセルサイズの少なくとも一方に依存して変更することにより前記モビリティ判定時間を設定する、ことを特徴とする請求項14に記載のモビリティ制御装置。
  16.  前記モビリティ判定制御手段は、前記移動端末が接続している基地局から報知される送信電力情報または前記隣接セルのセルサイズから前記隣接セルの種類を推定する、ことを特徴とする請求項13-15のいずれか1項に記載のモビリティ制御装置。
  17.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおけるモビリティ制御システムであって、
     前記セルを管理する基地局と、
     セル間を移動可能な移動局と、
     を有し、前記移動局が、隣接セルごとあるいは隣接セルの種類ごとにモビリティ制御のための優先度を予め設定し、前記移動端末が所定速度より高速で移動する場合に在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する、ことを特徴とするモビリティ制御システム。
  18.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおいて前記セルを管理する基地局であって、
     自局のセルの隣接セルごと、あるいは隣接セルの種類ごとに設定されたモビリティ制御のための優先度割当情報を格納する格納手段と、
     自局のセルに在圏している移動局に対して、前記優先度割当情報を報知する報知手段と、
     を有することを特徴とする基地局。
  19.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおける移動端末であって、
     当該移動端末が在圏しているセルの隣接セルごと、あるいは隣接セルの種類ごとのモビリティ制御のための優先度を格納する優先度割当情報格納手段と、
     前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行するモビリティ判定制御手段と、
     を有することを特徴とする移動端末。
  20.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおける移動端末のコンピュータにモビリティ制御機能を実現させるプログラムであって、
     隣接セルごと、あるいは隣接セルの種類ごとに、モビリティ制御のための優先度を予め設定する機能と、
     前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行する機能と、
     を前記コンピュータに実現させることを特徴とするプログラム。
  21.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおけるモビリティ制御装置としてコンピュータを機能させるプログラムであって、
     移動端末が在圏しているセルの隣接セルごと、あるいは隣接セルの種類ごとのモビリティ制御のための優先度を格納する優先度割当情報格納機能と、
     前記移動端末が所定速度より高速で移動する場合、在圏セルより低い優先度の隣接セルを選択するようにモビリティ制御を実行するモビリティ判定制御機能と、
     を前記コンピュータに実現させることを特徴とするプログラム。
  22.  セルサイズが異なる複数種類のセルからなる移動通信ネットワークにおいて前記セルを管理する基地局としてコンピュータを機能させるプログラムであって、
     自局のセルの隣接セルごと、あるいは隣接セルの種類ごとに設定されたモビリティ制御のための優先度割当情報を格納する格納機能と、
     自局のセルに在圏している移動局に対して、前記優先度割当情報を報知する報知機能と、
     を前記コンピュータに実現させることを特徴とするプログラム。
PCT/JP2013/005039 2012-08-30 2013-08-27 移動通信ネットワークにおけるモビリティ制御方法および装置 WO2014034090A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13832997.4A EP2892278A4 (en) 2012-08-30 2013-08-27 MOBILITY CONTROL METHOD AND DEVICE IN A MOBILE COMMUNICATION NETWORK
US14/423,730 US20150208301A1 (en) 2012-08-30 2013-08-27 Mobility control method and device in mobile communication network
CN201380056942.5A CN104756549A (zh) 2012-08-30 2013-08-27 移动通信网络中的移动性控制方法和装置
JP2014532788A JP5928756B2 (ja) 2012-08-30 2013-08-27 移動通信ネットワークにおけるモビリティ制御方法および装置
IN1540DEN2015 IN2015DN01540A (ja) 2012-08-30 2015-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012189473 2012-08-30
JP2012-189473 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034090A1 true WO2014034090A1 (ja) 2014-03-06

Family

ID=50182927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005039 WO2014034090A1 (ja) 2012-08-30 2013-08-27 移動通信ネットワークにおけるモビリティ制御方法および装置

Country Status (6)

Country Link
US (1) US20150208301A1 (ja)
EP (1) EP2892278A4 (ja)
JP (1) JP5928756B2 (ja)
CN (1) CN104756549A (ja)
IN (1) IN2015DN01540A (ja)
WO (1) WO2014034090A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516424A (ja) * 2014-03-27 2017-06-15 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 第5世代移動ネットワークにおけるオンデマンドネットワークサービス
JP2019512905A (ja) * 2016-03-29 2019-05-16 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. デバイスツーデバイス通信の伝送リソースを確定するための方法及び装置
CN110574430A (zh) * 2017-05-04 2019-12-13 苹果公司 用于高移动速度的无线电链路监测和小区搜索技术
US10524174B2 (en) 2015-08-13 2019-12-31 Huawei Technologies Co., Ltd. Access network device, user equipment, communications system, and communication method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070946A1 (zh) * 2015-10-30 2017-05-04 华为技术有限公司 确定驻留小区的方法、用户设备及网络设备
WO2017168297A1 (en) * 2016-03-27 2017-10-05 King Abdullah University Of Science And Technology Reducing handover signaling through base station skipping
CN105813195B (zh) * 2016-05-13 2019-05-17 电信科学技术研究院有限公司 一种按需为终端选择移动性管理机制的方法及装置
US10028129B2 (en) 2016-09-26 2018-07-17 Qualcomm Incorporated Techniques for mobility mode selection in uplink-based and downlink-based mobility
WO2018119805A1 (zh) * 2016-12-28 2018-07-05 华为技术有限公司 一种调整手机选网参数的方法和装置
CN107682901B (zh) * 2017-11-14 2021-01-26 南京佰联信息技术有限公司 基站选择控制方法及装置、基站和计算机可读存储介质
US11490300B2 (en) 2017-12-11 2022-11-01 Beijing Xiaomi Mobile Software Co., Ltd. Cell reselection method and device, and storage medium
WO2019232746A1 (en) * 2018-06-07 2019-12-12 Huawei Technologies Co., Ltd. Method of mobility based on prediction and pre-preparation
WO2020149631A1 (en) * 2019-01-16 2020-07-23 Lg Electronics Inc. Method and apparatus for cell reselection in wireless communication system
CN116935657B (zh) * 2023-09-18 2023-12-22 浙江大学建筑设计研究院有限公司 一种基于移动通信网络的高速公路违章停车远程驱离系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205673A (ja) * 1996-01-25 1997-08-05 Hitachi Ltd 移動通信システム
JPH11252613A (ja) * 1998-03-05 1999-09-17 Tsushin Hoso Kiko 移動体通信システム
JP2002118873A (ja) * 2000-10-10 2002-04-19 Nec System Integration & Construction Ltd 移動体通信システム
JP2002190769A (ja) * 2000-12-21 2002-07-05 Sharp Corp 移動体通信機及び移動体通信システム
JP2010531124A (ja) * 2007-06-20 2010-09-16 ゼットティーイー(ユーエスエー)インコーポレーテッド 無線通信における無線セルラネットワークとプライベートネットワークとの間のハンドオーバ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848294B2 (en) * 2006-10-30 2010-12-07 Nokia Corporation Apparatus, method and computer program product providing signaling for power reuse
CN101227705B (zh) * 2007-01-17 2012-09-05 华为技术有限公司 切换终端至宏小区的方法及系统、终端、接入节点和网关
GB0713391D0 (en) * 2007-07-11 2007-08-22 Vodafone Plc Measurement and reselection in idle mode
WO2011013967A2 (en) * 2009-07-27 2011-02-03 Lg Electronics Inc. Apparatus and method for determining mobility state in wireless communication system
CN101998555B (zh) * 2009-08-12 2015-05-06 中兴通讯股份有限公司 一种小区重选的方法和系统
US8532660B2 (en) * 2010-04-10 2013-09-10 Alcatel Lucent Method and apparatus for directing traffic between overlying macrocells and microcells
US10021635B2 (en) * 2011-12-23 2018-07-10 Nokia Solutions And Networks Oy Transmission of information to a UE for promoting the selection of a particular cell
US8744449B2 (en) * 2012-03-16 2014-06-03 Blackberry Limited Mobility parameter adjustment and mobility state estimation in heterogeneous networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205673A (ja) * 1996-01-25 1997-08-05 Hitachi Ltd 移動通信システム
JPH11252613A (ja) * 1998-03-05 1999-09-17 Tsushin Hoso Kiko 移動体通信システム
JP2002118873A (ja) * 2000-10-10 2002-04-19 Nec System Integration & Construction Ltd 移動体通信システム
JP2002190769A (ja) * 2000-12-21 2002-07-05 Sharp Corp 移動体通信機及び移動体通信システム
JP2010531124A (ja) * 2007-06-20 2010-09-16 ゼットティーイー(ユーエスエー)インコーポレーテッド 無線通信における無線セルラネットワークとプライベートネットワークとの間のハンドオーバ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516424A (ja) * 2014-03-27 2017-06-15 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 第5世代移動ネットワークにおけるオンデマンドネットワークサービス
US10524174B2 (en) 2015-08-13 2019-12-31 Huawei Technologies Co., Ltd. Access network device, user equipment, communications system, and communication method
US10716041B2 (en) 2015-08-13 2020-07-14 Huawei Technologies Co., Ltd. Access network device, user equipment, communications system, and communication method
JP2019512905A (ja) * 2016-03-29 2019-05-16 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. デバイスツーデバイス通信の伝送リソースを確定するための方法及び装置
US10764897B2 (en) 2016-03-29 2020-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for determining transmission resource for device-to-device communications
US11160085B2 (en) 2016-03-29 2021-10-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for determining transmission resource for device-to-device communications
CN110574430A (zh) * 2017-05-04 2019-12-13 苹果公司 用于高移动速度的无线电链路监测和小区搜索技术
US11071035B2 (en) 2017-05-04 2021-07-20 Apple Inc. Radio link monitoring and cell search techniques for high movement speeds

Also Published As

Publication number Publication date
EP2892278A1 (en) 2015-07-08
CN104756549A (zh) 2015-07-01
US20150208301A1 (en) 2015-07-23
IN2015DN01540A (ja) 2015-07-03
JPWO2014034090A1 (ja) 2016-08-08
EP2892278A4 (en) 2016-04-13
JP5928756B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6406390B2 (ja) 移動通信ネットワークにおける基地局、端末および通信方法
JP5928756B2 (ja) 移動通信ネットワークにおけるモビリティ制御方法および装置
JP7279766B2 (ja) 無線端末、基地局、及びこれらの方法
KR101620880B1 (ko) 무선 네트워크들에서 트래픽 재분배를 위한 방법, 장치 및 컴퓨터 판독 가능한 매체
EP2643998B1 (en) Method and apparatus for interference suppression in heterogenous networks
JP6824178B2 (ja) 特定セル確率負荷分散の装置、システム及び方法
CN103621139B (zh) 用于控制用户设备的切换决定的无线电网络节点中的方法
JP5607817B2 (ja) オーバーレイするマクロセルとマイクロセルとの間でトラフィックを向ける方法および装置
EP2995131B1 (en) Priority-based cell reselection with cell specific priorities
US9503935B2 (en) Handover mechanism in cellular networks
CN107852643B (zh) 空闲模式负载均衡
KR101657861B1 (ko) 부하 조절
JP6414208B2 (ja) 基地局、無線通信システム、通信方法
CN103391590A (zh) 异构网的小区重选参数调整方法
JPWO2014007336A1 (ja) 無線通信システム、無線端末、無線局、およびセル選択方法
WO2019091203A1 (zh) 小区重选的方法、终端及网络设备
WO2016038879A1 (ja) 無線通信システム、基地局、通信方法、記憶媒体
US9681349B1 (en) Method and system for managing traffic offload in a wireless communication network based on closed access mode conditions
WO2014116245A1 (en) Handover mechanism in cellular networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532788

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013832997

Country of ref document: EP