WO2014032446A1 - 一种有感无刷直流电机驱动方法 - Google Patents

一种有感无刷直流电机驱动方法 Download PDF

Info

Publication number
WO2014032446A1
WO2014032446A1 PCT/CN2013/076637 CN2013076637W WO2014032446A1 WO 2014032446 A1 WO2014032446 A1 WO 2014032446A1 CN 2013076637 W CN2013076637 W CN 2013076637W WO 2014032446 A1 WO2014032446 A1 WO 2014032446A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive
inductive
sense
driving
Prior art date
Application number
PCT/CN2013/076637
Other languages
English (en)
French (fr)
Inventor
毕磊
Original Assignee
峰岹科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 峰岹科技(深圳)有限公司 filed Critical 峰岹科技(深圳)有限公司
Publication of WO2014032446A1 publication Critical patent/WO2014032446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/181Circuit arrangements for detecting position without separate position detecting elements using different methods depending on the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the invention relates to a driving system, in particular to a method for driving a brushless DC motor.
  • Brushless DC motors (hereinafter referred to as motors) are widely used in the fields of cooling fans such as computers and drain pumps for washing machines due to their low cost of motors and drives and simple structure.
  • motors typically use a Hall element as a sensor for the rotor position of the motor to generate the control signals needed to switch the current based on the rotor position.
  • these Hall elements In order to ensure the accuracy of their control signals, these Hall elements must be accurately and reliably mounted near the rotor steel of the motor to ensure that the Hall element accurately and reliably detects changes in the magnetic field of the rotor magnet. If the position of the Hall element deviates, the efficiency of the motor will not only decrease, but also increase the running noise of the motor. Many single-phase brushless DC motors are currently unable to use complex Hall element fasteners in order to reduce costs. In addition, because the production process must be simplified, the positional accuracy of the Hall device cannot be tested during the production process. These factors inevitably cause deviations in the position of the Hall element of the motor, which reduces the yield of the motor. In addition, due to the motor's Huo After the ear element has been running through the motor for a period of time, its position is often offset by vibration and the like, which also reduces the efficiency of the motor and increases the noise of the motor.
  • the object of the present invention is to overcome the defects that the current brushless DC motor has a positional deviation of its Hall element due to various reasons, thereby causing a decrease in the yield of the motor and an increase in noise, and providing a brushless brush that can completely solve the above defects.
  • DC motor drive method is to overcome the defects that the current brushless DC motor has a positional deviation of its Hall element due to various reasons, thereby causing a decrease in the yield of the motor and an increase in noise, and providing a brushless brush that can completely solve the above defects.
  • the invention is realized by the following technical solutions: a method for driving a brushless DC motor, which mainly comprises the following steps:
  • the system After starting the power supply, the system automatically enters the sense motor start mode, and then operates according to the sense drive mode;
  • step ( 5 ) If the motor speed n> the threshold speed n a , the system switches to the non-inductive drive mode and performs step ( 5 ), otherwise the system determines whether to continue the operation according to the input operation control signal; if the determination continues, the system Re-enter the sensible drive mode, otherwise the system stops running;
  • the system calculates the motor speed n according to the motor position signal
  • step (4) specifically includes the following steps:
  • step (41) and step (43) are based on the formula To calculate the voltage frequency of the positive half cycle or negative half cycle back EMF, where t new is the time of the rotor position just detected, and t old is the time detected by the previous rotor position before t new .
  • Step (41) and step (43) and 'the electrical angle of the waiting area of the predetermined steady state operation to generate the width of the waiting area of the lower half of the period' according to the formula T HC / (180 ° / ⁇ stable ) is calculated, wherein, the electrical angle beta] to be electrically stabilized region of a predetermined steady-state operation, the time length T HC of the present half-cycle.
  • the width of the generated second half of the waiting area is in the range of 5 ° to 90 °, and the 'inductive' drive described in step (1) is switched to the 'non-inductive' drive.
  • the threshold rotation speed n a is greater than the 'non-inductive' drive transition to the 'feeling' drive threshold speed n b .
  • a method for driving a brushless DC motor comprising the following steps:
  • the system After starting the power supply, the system automatically enters the sense motor start mode, and then operates according to the sense drive mode;
  • the system calculates the motor speed n based on the signal of the Hall sensor, and records the number of revolutions of the rotor in the state of the sense drive mode. N ;
  • step ( 4 ) determining whether the duty cycle control voltage u pwm of the PWM exceeds a preset switching threshold voltage u a from the 'sensing' drive to the 'non-inductive' drive, and the number of turns of the motor when the motor is driven in the sense drive mode If N exceeds the preset value N a , then go to step ( 4 ); if the number of turns N ⁇ the preset value N a and the control signal is required to continue to run, return to the sense drive of step ( 1 ); When the signal request is stopped, the driving process is stopped;
  • the system enters the non-inductive drive mode, and calculates the motor speed n according to the position signal of the rotor;
  • the present invention has the following advantages and beneficial effects:
  • the invention can not only effectively reduce the influence of the position error of the Hall sensor on the operating efficiency and noise of the brushless DC motor, but also effectively improve the yield of the brushless DC motor, thereby reducing the production cost of the motor.
  • the invention adopts an optimized running current, can reduce the running noise of the motor while improving the operating efficiency of the brushless DC motor, and can also reduce the influence of the position error of the Hall sensor, and the invention can improve the brushless DC motor reliability.
  • FIG. 1 is a schematic structural view of an overall circuit of the present invention.
  • Figure 2 is a schematic diagram showing the relationship between the output waveform of the Hall sensor and the back EMF waveform of the armature winding when the Hall sensor is properly mounted.
  • image 3 A schematic diagram showing the relationship between the output waveform of the Hall sensor and the back EMF waveform of the armature winding when there is a deviation in the mounting position of the Hall sensor.
  • FIG. 4 is a flow chart showing an implementation manner in which the transition between the sensible and non-inductive driving modes of the present invention is based on the determination of the motor speed.
  • Figure 5 shows the flow chart of the system in the non-inductive drive mode.
  • Figure 6 shows the system detection circuit of the present invention.
  • Figure 7 shows the conversion between the sensible and non-inductive drive modes of the present invention based on PWM Flowchart of implementation of duty cycle voltage determination.
  • Figure 8 shows the PWM duty-cycle as a 100% voltage waveform.
  • Figure 9 shows the 50% voltage waveform of the duty-cycle of the PWM.
  • the sense drive is the abbreviation of 'drive with Hall position sensor'
  • 'non-inductive drive' is the abbreviation of 'driver without Hall position sensor'.
  • the drive system of the present invention is composed of a coil of a motor and a single-phase drive axle connection of an H-type, wherein the H
  • the single-phase drive axle is composed of FET MOT1, FET MOT2, FET MOT3 and FET MOT4, namely FET MOT1 and FET MOT3.
  • the FET MOT2 is connected in series with the FET MOT4, while the FET MOT1 and the drain D of the FET MOT2 are connected in common with the input voltage Vdd.
  • MOT3 is connected to the source S of the FET MOT4 and grounded.
  • the bridge points (ie the connection points) of the MOT4 are connected to the two ports MOT_A and MOT_B of the armature winding of the claw pole synchronous motor, respectively.
  • the Hall sensor If the Hall sensor is properly installed, it will control the 4 MOSFETs based on the polarity of the back-emf
  • the tube is turned on and off so that the windings of the motor are positive when their back-emf is positive, and the MOSFETs Mot_AH and Mot_BL are turned on and Mot_BH & Mot_AL is turned off so that the current of the winding is positive; when back-emf is negative, the MOSFETs Mot_AH and Mot_BL are turned off and Mot_BH & Mot_AL is turned on so that the winding current is negative. This ensures that the electromagnetic torque generated by the current flowing into the coil is always positive, the motor rotates in the forward direction, and its output signal and motor winding
  • the relationship between back-emf is shown in Figure 2.
  • the Hall sensor generates a signal that allows the MOSFET to be Mot_AH and Mot_BL will only turn on when back-EMF is positive.
  • the drive current flows from the port Mot_A of the armature winding and then from Mot_B.
  • the Hall sensor When back-emf
  • the Hall sensor When negative, the Hall sensor generates a signal that turns the MOSFETs Mot_AL and Mot_BH on, while the drive current flows from the port Mot_B and then from Mot_A. Flow out. Relying on such a driving method, the forward current is always with the positive back-emf
  • the action causes the electromagnetic torque generated by the motor at any sub-position to be positive, so that the rotor can be continuously driven by the forward electromagnetic torque of the motor.
  • MOSFETs Mot_AH and Mot_BL for positive torque generation when rotor position can be accurately detected It will only be turned on when back-EMF is positive. At this time, the drive current flows from the port Mot_A of the armature winding and then from Mot_B. When back-emf is negative, at this time, The MOSFETs Mot_AL and Mot_BH are turned on, and the drive current is flowed by the port Mot_B and then by Mot_A Flow out.
  • the torque generated by the motor is always positive regardless of whether the current in the motor armature winding is positive or negative. And, you can pass back-emf The judgment of the value of each part ensures that the drive current is the optimum current.
  • the back-emf change can be seen from its zero crossing point (ZCP) Obtained.
  • the present invention employs this technique to detect the condition of the back-emf.
  • Figure 6 shows the circuit diagram for implementing this technique.
  • a comparator can be used to obtain information on the change in back-emf polarity.
  • all MOSFET tubes are turned off.
  • the voltage signal of the motor armature winding port is back-emf signal of. Therefore, during the operation of the motor, the motor works in the 'waiting area' and 'drive area' respectively. Near the ZCP generating area, the driver works in the 'waiting area' for the position of the motor and back-emf Polarity detection.
  • the motor When the polarity of the back-emf is clearly discriminated, the motor operates in the 'drive zone' to generate drive torque. Due to back-emf in 'waiting area' The value is small and the interval is short, and the presence of the electrical zone has less effect on the motor torque.
  • the width of the generated electric region in the lower half of the cycle is in the range of 5 ° to 90 °, but the optimum width is in the range of 5 ° ⁇ 30 ° The range of electrical angles.
  • the commutation of the drive circuit is determined by the rotor position, so the current frequency is determined by the load of the motor. When the load is large, the motor speed is slower and the current switching frequency is lower.
  • the aforementioned single-phase non-inductive drive scheme is effective when the motor is running normally, but there is a problem when the motor starts and runs at low speed because the motor Back-emf very low, ZCP Undetectable, it is impossible to achieve sensorless drive of the motor. Therefore, the present invention still considers the conventional sensor-operated operation scheme when the motor is started and operated at a low speed so that the back EMF cannot be effectively detected.
  • the technical solution of the present invention is effective not only for a single-phase motor but also for a three-phase motor and other multi-phase motors.
  • the driving of the motor is composed of two links, namely, a sense drive and a non-inductive drive, and the specific process is as follows:
  • the system After starting the power supply, the system automatically enters the sense motor start mode and then operates in the sense drive mode.
  • the system calculates the motor speed n based on the signal of the Hall sensor.
  • step ( 5 ) the system switches to the non-inductive drive mode and performs step ( 5 ), otherwise the system determines whether to continue the operation according to the input operation control signal; if the determination continues, the system Re-enter the sensible drive mode, otherwise the system stops running.
  • the system calculates the motor speed n based on the motor position signal.
  • the 'felt' drive switch to 'no sense' n a driving speed greater than the threshold 'non-sense "drive switch to' felt 'drive speed threshold n b.
  • the described system switches to the non-inductive driving mode, which specifically includes the following steps:
  • the 'calculated motor drive frequency' described in steps (41) and (43) refers to the formula according to the formula To calculate the voltage frequency of the positive half cycle or negative half cycle back EMF, where t new is the time of the rotor position just detected, and t old is the time detected by the previous rotor position before t new .
  • Step (41) and step (43) and 'the electrical angle of the waiting area of the predetermined steady state operation to generate the width of the waiting area of the lower half of the period' according to the formula T HC / (180 ° / ⁇ stable ) is calculated, wherein, the electrical angle beta] to be electrically stabilized region of a predetermined steady-state operation, the time length T HC of the present half-cycle.
  • Embodiment 1 is to determine the conversion process between the sensible and non-inductive driving modes of the present invention based on the motor rotation speed, and the present embodiment is based on PWM.
  • the duty cycle control voltage is used to determine the transition process between the sense and the non-inductive drive mode, that is, the first embodiment adjusts the start mode by the motor speed, and the embodiment is PWM. The control voltage is adjusted.
  • Figure 8 and Figure 9 show that the duty cycle of the PWM in the drive region is 100% and 50%, respectively.
  • the driving current formed by such a method is naturally optimal.
  • the system After starting the power supply, the system automatically enters the sense motor start mode, and then operates according to the sense drive mode;
  • the system calculates the motor speed n based on the signal of the Hall sensor and records the number of revolutions of the rotor in the state of the sense drive mode. ;
  • step ( 4 ) determining whether the duty cycle control voltage u pwm of the PWM exceeds a preset switching threshold voltage u a from the 'sensing' drive to the 'non-inductive' drive, and the number of turns of the motor when the motor is driven in the sense drive mode If N exceeds the preset value N a , then go to step ( 4 ); if the number of turns N ⁇ the preset value N a and the control signal is required to continue to run, return to the sense drive of step ( 1 ); When the signal request is stopped, the driving process is stopped;
  • the system enters the non-inductive drive mode, and calculates the motor speed n according to the position signal of the rotor;
  • the system continues to operate in the non-inductive drive mode; if u pwm is lower than the preset The non-inductive drive to the sense-driven threshold transition voltage u b , and the control signal is required to continue to operate, then transfer to the sense drive of step (1), otherwise the system stops running.
  • the threshold switching voltage u b is less than the threshold voltage u a .
  • the present invention can be preferably carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种有感无刷直流电机驱动方法,主要包括以下步骤:(1)启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;(2)系统根据转子位置传感器的信号计算电机转速n;(3)判定该电机转速n是否大于预定的有感驱动转换到无感驱动的门槛转速na等步骤。所述有感无刷直流电机驱动方法不仅可以有效减小霍尔传感器的位置误差对无刷直流电机的运行效率和噪音的影响,而且还可以有效提高单相无刷直流电机生产的良品率,从而降低电机的生产成本。

Description

一种有感无刷直流电机驱动方法 技术领域
本发明涉及一种驱动系统,具体是指一种有感无刷直流电机驱动方法 。
背景技术
无刷直流电动机(以下简称电机)由于其电机和驱动器的成本较低,以及结构较为简单等特点而被广泛地运用在诸如计算机的冷却电风扇和洗衣机的排水泵等领域。在实际使用过程中,这类单相电机通常采用霍耳元件来作为电机转子位置的传感器,以根据转子位置产生切换电流所需要的控制信号。
为了确保其控制信号的精确度,这些霍耳元件必须准确、可靠地安装在电机转子磁钢的附近,以确保霍尔元件能准确、可靠地检测到转子磁钢的磁场变化。如果霍耳元件的位置发生偏差,则电机的效率不仅会下降,并且还会增大电机的运行噪音。目前人们为了降低成本,许多单相无刷直流电机无法采用复杂的霍尔元件紧固件。另外,因为生产过程必须简化,无法在生产过程中对霍尔器件的位置精度进行测试,这些因素不可避免造成电机的霍尔元件位置出现偏差,降低了电机生产合格率;此外,由于电机的霍耳元件在经过电机一段时间的运行之后,其位置往往也会因为震动等原因发生一些偏移,也会降低电机的效率和增加电机的噪音。
技术问题
本发明的目的在于克服目前无刷直流电动机因各种原因导致其霍尔元件产生位置偏差,从而导致电机生产合格率下降以及噪音增加的缺陷,提供一种能彻底解决以上缺陷的有感无刷直流电机驱动方法。
技术解决方案
本发明通过以下技术方案来实现:一种有感无刷直流电机驱动方法,主要包括以下步骤:
( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;
( 2 )系统根据霍尔传感器的信号计算电机转速 n ;
( 3 )判定该电机转速 n 是否大于预定的'有感'驱动转换到'无感'驱动的门槛转速 na?
( 4 )若电机转速 n> 门槛转速 na ,则系统切换到无感驱动模式,并执行步骤( 5 ),否则系统根据输入的运行控制信号再判定是否继续运行;若判定继续执行,则系统重新进入有感驱动模式,否则,系统停止运行;
( 5 )系统根据电机位置信号计算电机转速 n ;
( 6 )判定电机转速 n 是否大于预定的'无感'驱动转换到'有感'驱动的门槛转速 nb
( 7 )若电机转速 n>nb ,则系统继续在无感驱动模式下运行;若 n £ nb, 则根据运行状态控制信号再次判定是否继续运行,是则系统返回步骤( 1 )重新进入有感驱动模式,否则系统停止运行。
其中,步骤( 4 )中所述的'系统切换到无感驱动模式',具体包括以下步骤:
( 41 )利用有感位置信号或者对反电势的过零点的检测,计算电机转速和驱动频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;
( 42 )判定半周频率是否大于预设最低速度的频率?
( 43 )是,则检测负半周或正半周反电势的过零点,计算其频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;否,则系统停止运行;
( 44 )判定半周频率是否大于预设最低速度的频率?是,则返回步骤( 41 );否,则系统停止运行。
步骤( 41 )和步骤( 43 )中所述的'计算电机驱动频率'是指根据公式
Figure PCTCN2013076637-appb-I000001
来计算正半周或者负半周反电势的电压频率,其中, tnew 为刚检测到的转子位置的时间,told 为tnew 之前的上一个转子位置检测到的时间。
步骤( 41 )和步骤( 43 )中所述的'并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度'根据公式 THC/ ( 180°/β )来计算,其中, β 为预设的稳态运行的待电区的电角度, THC 为本半周期的时间长度。
为了确保使用效果,所生成的下半周待电区的宽度的取值范围为 5 °~ 90 °电角度,且步骤( 1 )中所述的'有感'驱动转换到'无感'驱动的门槛转速 na 大于'无感'驱动转换到'有感'驱动的门槛转速 nb
一种有感无刷直流电机驱动方法,主要包括以下步骤:
( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;
( 2 )系统根据霍尔传感器的信号计算电机转速 n ,并记录在有感驱动模式状态下的转子旋转的圈数 N ;
( 3 )判断 PWM 的占空比控制电压 upwm 是否超过预设的从'有感'驱动到'无感'驱动的转换门槛电压 ua ,并且当电机在有感驱动模式下旋转的圈数 N 超过预设的值 Na , 则转入步骤( 4 );若圈数 N< 预设的值 Na ,而控制信号要求继续运行,则重返步骤( 1 )的有感驱动;如果控制信号要求停止,则驱动过程停止;
( 4 )系统进入无感驱动模式,并且根据转子的位置信号计算电机速度 n ;
( 5 )在无感驱动过程中,如果 upwm 高于预设的无感驱动到有感驱动的门槛转换电压 ub ,则系统继续在无感驱动模式下运行;如果 upwm 低于预设的无感驱动到有感驱动的门槛转换电压 ub ,而控制信号要求继续运行,则转入步骤 (1) 的有感驱动,否则系统停止运行。
有益效果
本发明与现有技术相比,具有以下优点及有益效果:
( 1 )本发明不仅可以有效减小霍尔传感器的位置误差对无刷直流电机的运行效率和噪音的影响,而且还可以有效提高无刷直流电机生产的良品率,从而降低电机的生产成本。
( 2 )本发明采用优化的运行电流,可以在提高无刷直流电机的运行效率的同时降低电机的运行噪音,同时还可以减小霍尔传感器的位置误差的影响,本发明可以提高无刷直流电机的可靠性。
( 3 )本发明启动后可以根据外部条件自动在有感驱动模式和无感驱动模式间进行切换,从而自动调整电机运行状态。
附图说明
图 1 为本发明的整体电路结构示意图。
图 2 为正确安装霍尔传感器时的霍尔传感器的输出波形和电枢绕组的反电势波形的关系示意图。
图 3 为霍尔传感器的安装位置有偏差时的霍尔传感器的输出波形和电枢绕组的反电势波形的关系示意图。
图 4 为本发明的有感和无感驱动模式之间的转换基于电机转速判断时的实现方式流程图。
图 5 为系统在无感驱动模式的流程图。
图 6 为本发明系统检测电路。
图 7 为本发明的有感和无感驱动模式之间的转换基于对 PWM 占空比电压判断时的实现方式流程图。
图 8 为 PWM 的 duty-cycle 为 100% 电压波形图。
图 9 为 PWM 的 duty-cycle 为 50% 电压波形图。
本发明的最佳实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
有感驱动,其为全称是'带有霍尔位置传感器的驱动'的简称,而'无感驱动'为全称是'无霍尔位置传感器的驱动'的简称。
实施例 1
如图 1 ~ 6 所示,本发明的驱动系统由电机的线圈和一个 H 型的单相驱动桥连接组成,其中该 H 型单相驱动桥由场效应管 MOT1 、场效应管 MOT2 、场效应管 MOT3 及场效应管 MOT4 共同组成,即场效应管 MOT1 与场效应管 MOT3 相串联,场效应管 MOT2 与场效应管 MOT4 相串联,而场效应管 MOT1 和场效应管 MOT2 的漏极 D 则共同与输入电压 Vdd 相连接,场效应管 MOT3 与场效应管 MOT4 的源极 S 则连接后接地。场效应管 MOT1 与场效应管 MOT3 的桥接点(即连接点)与场效应管 MOT2 与场效应管 MOT4 的桥接点(即连接点)分别与爪极同步电机的电枢绕组的两个端口 MOT_A 和 MOT_B 相连接。
如果霍尔传感器安装正确,它会根据反电势( back-emf )的极性来发出控制 4 个 MOSFET 管子的导通和断开,使得电机的绕组在其 back-emf 为正的时候, MOSFET 管 Mot_AH 和 Mot_BL 导通而 Mot_BH & Mot_AL 关断,以使得绕组的电流为正向;当 back-emf 为负的时候, MOSFET 管 Mot_AH 和 Mot_BL 关断而 Mot_BH & Mot_AL 导通,以使得绕组的电流为负向。这样能够保证流入线圈的电流所产生电磁转矩始终为正值,电机正向旋转,其输出信号和电机绕组的 back-emf 之间的关系如图其检测电压波形如图 2 所示。
即两者之间没有相位差。 这种情况下,霍尔传感器产生的信号能够让 MOSFET 管 Mot_AH 和 Mot_BL 将只在 back-EMF 为正的时候导通。此时,驱动电流由电枢绕组的端口 Mot_A 流进而由 Mot_B 流出。当 back-emf 为负时,霍尔传感器产生的信号能够让 MOSFET 管 Mot_AL 和 Mot_BH 导通,而驱动电流由端口 Mot_B 流进而由 Mot_A 流出。依靠这样的驱动方式,正向的电流始终与与正向的 back-emf 作用使得电机在任何子位置所产生的电磁转矩都是正向的,因而转子能够被电机的正向电磁转矩所连续驱动。
如果霍尔传感器在电机中的位置有偏差,则有部分正向的电流会与负向的 back-emf 作用,以及则有部分负向的电流会与正向的 back-emf 作用,产生负的转矩。在电机正向旋转的时候如果偶尔出现负向的转矩,会使得电机的效率变差、振动和噪音增加。此时,传感器的送出的信号如图 3 所示,这时候霍尔传感器的输出信号和 back-emf 之间会有相位差。在这样情况下, MOSFET 管在电枢绕组中产生的电流会在部分运动区域产生负向的电磁转矩。当正向电磁转矩的均值大于负向转矩的均值的时候,转子仍然会正向旋转,但负向电磁转矩的存在使得电机的损耗和噪音增加。
当转子位置能够被准确地检测出时,为了产生正向转矩, MOSFET 管 Mot_AH 和 Mot_BL 将只在 back-EMF 为正的时候导通。此时,驱动电流由电枢绕组的端口 Mot_A 流进而由 Mot_B 流出。当 back-emf 为负时,此时, MOSFET 管 Mot_AL 和 Mot_BH 导通,而驱动电流由端口 Mot_B 流进而由 Mot_A 流出。依靠这样的驱动方式,无论电机电枢绕组中的电流为正还是负,电机产生的转矩永远是正的。而且,可以通过对 back-emf 各个部分的值的判断,能够确保驱动电流为最优电流。
back-emf 变化可以从其过零点 (zero crossing point ,简称 ZCP) 获得。本发明采用这个技术来检测 back-emf 的状况。图 6 显示了实现这一技术的电路图。采用比较器可以获得 back-emf 极性变化的信息。在可对 back-emf 进行检测的短暂期间,所有 MOSFET 管子处于关断状态。此时电机电枢绕组端口的电压信号即为 back-emf 的信号。因此,在电机工作期间,电机分别工作于'待电区'与'驱动区',在 ZCP 发生区域附近,驱动器工作于'待电区'进行电机的位置和 back-emf 的极性检测。当 back-emf 的极性判别清楚后,电机工作于'驱动区'以产生驱动转矩。由于'待电区'中 back-emf 的值较小,并且该区间较短,待电区在存在对电机转矩的影响较小。
采用本发明,所生成的下半周待电区的宽度的取值范围为 5 °~ 90 °电角度,但其最佳的宽度取值范围为 5 °~ 30 °电角度的范围。采用这种无感技术后,驱动电路的换向是由转子位置决定的,因此电流频率是由电机的负载决定的。当负载较大的时候,电机转速较慢,电流的切换频率就较低。
前述单相无感驱动方案在电机正常运行的时候很有效,但在电机启动和低速运行的时候会有问题,因为此时电机的 back-emf 很低, ZCP 无法被检测到,也就无法实现电机的无传感器驱动。因此在电机启动和低速运行而使得反电势无法有效地检测到的时候,本发明仍然考虑采用传统的有传感器的运行方案。
本发明的技术方案不仅对单相电机有效,对三相电机和其他多相电机也具有同样的效果。使用本发明的时候,电机的驱动由两个环节组成,即有感驱动和无感驱动,其具体流程如下:
( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行。
( 2 )系统根据霍尔传感器的信号计算电机转速 n 。
( 3 )判定该电机转速 n 是否大于预定的'有感'驱动转换到'无感'驱动的门槛转速 na?
( 4 )若电机转速 n> 门槛转速 na ,则系统切换到无感驱动模式,并执行步骤( 5 ),否则系统根据输入的运行控制信号再判定是否继续运行;若判定继续执行,则系统重新进入有感驱动模式,否则,系统停止运行。
( 5 )系统根据电机位置信号计算电机转速 n 。
( 6 )判定电机转速 n 是否大于预定的'无感'驱动转换到'有感'驱动的门槛转速 nb ?在实际设置过程中,该门槛转速 nb 要小于门槛转速 na 的转速。
( 7 )若电机转速 n>nb ,则系统继续在无感驱动模式下运行;若 n £ nb, 则根据运行状态控制信号再次判定是否继续运行,是则系统返回步骤( 1 )重新进入有感驱动模式,否则系统停止运行。
在实际使用时,所述的'有感'驱动转换到'无感'驱动的门槛转速 na 大于'无感'驱动转换到'有感'驱动的门槛转速 nb 。而所述的'系统切换到无感驱动模式',具体包括以下步骤:
( 41 )利用有感位置信号或者对反电势的过零点的检测,计算电机转速和驱动频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;
( 42 )判定半周频率是否大于预设最低速度的频率?
( 43 )是,则检测负半周或正半周反电势的过零点,计算其频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;否,则系统停止运行;
( 44 )判定半周频率是否大于预设最低速度的频率?是,则返回步骤( 41 );否,则系统停止运行。
同时,步骤( 41 )和步骤( 43 )中所述的'计算电机驱动频率'是指根据公式
Figure PCTCN2013076637-appb-I000002
来计算正半周或者负半周反电势的电压频率,其中, tnew 为刚检测到的转子位置的时间,told 为tnew 之前的上一个转子位置检测到的时间。
步骤( 41 )和步骤( 43 )中所述的'并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度'根据公式 THC/ ( 180°/β )来计算,其中, β 为预设的稳态运行的待电区的电角度, THC 为本半周期的时间长度。
实施例 2
实施例 1 是根据 电机转速来判定本发明的有感和无感驱动模式之间的转换过程,本实施例则是根据 PWM 占空比控制电压来判定有感和无感驱动模式之间的转换过程,即实施例 1 是以 电机转速来对启动模式进行调整,而本实施例则是以 PWM 的控制电压来进行调整。
如图 7 ~ 9 所示,图 8 、图 9 分别表示了在驱动区 PWM 的占空比为 100% 和 50% 时候的驱动电压的波形,用这样的方法形成的驱动电流自然是最优的。
其具体过程如图 9 所示,即包括以下步骤:
( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;
( 2 )系统根据霍尔传感器的信号计算电机转速 n ,并记录在有感驱动模式状态下的转子旋转的圈数 N ;
( 3 )判断 PWM 的占空比控制电压 upwm 是否超过预设的从'有感'驱动到'无感'驱动的转换门槛电压 ua ,并且当电机在有感驱动模式下旋转的圈数 N 超过预设的值 Na , 则转入步骤( 4 );若圈数 N< 预设的值 Na ,而控制信号要求继续运行,则重返步骤( 1 )的有感驱动;如果控制信号要求停止,则驱动过程停止;
( 4 )系统进入无感驱动模式,并且根据转子的位置信号计算电机速度 n ;
( 5 )在无感驱动过程中,如果 upwm 高于预设的无感驱动到有感驱动的门槛转换电压 ub ,则系统继续在无感驱动模式下运行;如果 upwm 低于预设的无感驱动到有感驱动的门槛转换电压 ub ,而控制信号要求继续运行,则转入步骤 (1) 的有感驱动,否则系统停止运行。在实际运行时,该门槛转换电压 ub 要小于门槛电压 ua
如上所述,便可 较好的实现本发明。
本发明的实施方式
工业实用性
序列表自由内容

Claims (7)

  1. 一种有感无刷直流电机驱动方法,其特征在于,主要包括以下步骤:
    ( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;
    ( 2 )系统根据霍尔传感器的信号计算电机转速 n ;
    ( 3 )判定该电机转速 n 是否大于预定的'有感'驱动转换到'无感'驱动的门槛转速 na ?
    ( 4 )若电机转速 n> 门槛转速 na ,则系统切换到无感驱动模式,并执行步骤( 5 ),否则系统根据输入的运行控制信号再判定是否继续运行;若判定继续执行,则系统重新进入有感驱动模式,否则,系统停止运行;
    ( 5 )系统根据电机位置信号计算电机转速 n ;
    ( 6 )判定电机转速 n 是否大于预定的'无感'驱动转换到'有感'驱动的门槛转速 nb
    ( 7 )若电机转速 n>nb ,则系统继续在无感驱动模式下运行;若 n £ nb, 则根据运行状态控制信号再次判定是否继续运行,是则系统返回步骤( 1 )重新进入有感驱动模式,否则系统停止运行。
  2. 根据权利要求 1 所述的一种有感无刷直流电机驱动方法,其特征在于,步骤( 4 )中所述的'系统切换到无感驱动模式',具体包括以下步骤:
    ( 41 )利用有感位置信号或者对反电势的过零点的检测,计算电机转速和驱动频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;
    ( 42 )判定半周频率是否大于预设最低速度的频率?
    ( 43 )是,则检测负半周或正半周反电势的过零点,计算其频率,并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度;否,则系统停止运行;
    ( 44 )判定半周频率是否大于预设最低速度的频率?是,则返回步骤( 41 );否,则系统停止运行。
  3. 根据权利要求 2
    所述的一种有感无刷直流电机驱动方法,其特征在于,步骤( 41 )和步骤( 43 )中所述的'计算电机驱动频率'是指根据公式
    Figure PCTCN2013076637-appb-I000003
    来计算正半周或者负半周反电势的电压频率,其中,
    tnew 为刚检测到的转子位置的时间,told 为tnew 之前的上一个转子位置检测到的时间。
  4. 根据权利要求 2 所述的一种有感无刷直流电机驱动方法,其特征在于,步骤( 41 )和步骤( 43 )中所述的'并按预设的稳态运行的待电区的电角度生成下半周的待电区的宽度'根据公式
    THC/ ( 180°/β )来计算,其中, β 为预设的稳态运行的待电区的电角度, THC 为本半周期的时间长度。
  5. 根据权利要求 4 所述的一种有感无刷直流电机驱动方法,其特征在于,所生成的下半周待电区的宽度的取值范围为 5 °~ 90 °电角度。
  6. 根据权利要求 1 所述的一种有感无刷直流电机驱动方法,其特征在于,步骤( 1 )中所述的'有感'驱动转换到'无感'驱动的门槛转速 na 大于'无感'驱动转换到'有感'驱动的门槛转速 nb
  7. 一种有感无刷直流电机驱动方法,其特征在于,主要包括以下步骤:
    ( 1 )启动电源后,系统自动进入有感电机启动模式,然后按有感驱动模式运行;
    ( 2 )系统根据霍尔传感器的信号计算电机转速 n ,并记录在有感驱动模式状态下的转子旋转的圈数 N ;
    ( 3 )判断 PWM 的占空比控制电压 upwm 是否超过预设的从'有感'驱动到'无感'驱动的转换门槛电压 ua ,并且当电机在有感驱动模式下旋转的圈数 N 超过预设的值 Na , 则转入步骤( 4 );若圈数 N< 预设的值 Na ,而控制信号要求继续运行,则重返步骤( 1 )的有感驱动;如果控制信号要求停止,则驱动过程停止;
    ( 4 )系统进入无感驱动模式,并且根据转子的位置信号计算电机速度 n ;
    ( 5 )在无感驱动过程中,如果 upwm 高于预设的无感驱动到有感驱动的门槛转换电压 ub ,则系统继续在无感驱动模式下运行;如果 upwm 低于预设的无感驱动到有感驱动的门槛转换电压 ub ,而控制信号要求继续运行,则转入步骤 (1) 的有感驱动,否则系统停止运行。
PCT/CN2013/076637 2012-09-03 2013-06-03 一种有感无刷直流电机驱动方法 WO2014032446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210321206.5A CN103684120B (zh) 2012-09-03 2012-09-03 一种有感无刷直流电机驱动方法
CN201210321206.5 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014032446A1 true WO2014032446A1 (zh) 2014-03-06

Family

ID=50182444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076637 WO2014032446A1 (zh) 2012-09-03 2013-06-03 一种有感无刷直流电机驱动方法

Country Status (3)

Country Link
CN (1) CN103684120B (zh)
TW (1) TW201412009A (zh)
WO (1) WO2014032446A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241035A (zh) * 2017-05-24 2017-10-10 北京控制工程研究所 一种具有导电环故障容错功能的无刷直流电机驱动系统
CN112994542A (zh) * 2021-04-29 2021-06-18 常州工业职业技术学院 基于换相点换相的无刷直流电机无感控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980066B (zh) * 2014-04-11 2018-01-05 常州雷利电机科技有限公司 排水泵用直流无刷电动机系统、及其控制方法和控制装置
TWI580173B (zh) * 2014-10-13 2017-04-21 Sensorless motor control device and method thereof
CN105929332B (zh) * 2016-06-20 2019-04-19 南京百邻悦科技服务有限公司 一种检测内置有感无刷直流电机驱动系统的装置及方法
KR20180120520A (ko) 2017-04-27 2018-11-06 엘에스산전 주식회사 고압인버터 제어 방법 및 이를 포함하는 시스템
CN109286353B (zh) * 2017-07-21 2021-01-19 深圳市道通智能航空技术有限公司 一种电机控制模式故障检测方法及装置
CN109905064B (zh) * 2017-12-08 2022-07-05 杭州海康机器人技术有限公司 一种电机电角度确定方法、装置及设备
CN107947647B (zh) * 2017-12-19 2024-03-12 深圳市创科维信电子有限公司 三相无刷电机驱动电路及其控制方法
TWI683530B (zh) * 2018-05-25 2020-01-21 茂達電子股份有限公司 馬達驅動電路及方法
CN109510405B (zh) * 2018-11-21 2020-07-17 邵琪 一种无感无刷电机及其防堵转控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080273865A1 (en) * 2007-05-01 2008-11-06 Andigilog, Inc. Noise suppresion suppression for hall sensor arrangements
CN101505127A (zh) * 2008-03-20 2009-08-12 天津航天鑫茂稀土机电科技有限公司 一种提高永磁无刷直流电机位置检测精度的方法
US20110084639A1 (en) * 2009-10-08 2011-04-14 Microchip Technology Incorporated Synchronized minimum frequency pulse width modulation drive for sensorless brushless direct current motor
US20120049777A1 (en) * 2010-09-01 2012-03-01 Kern Lynn R Natural Commutation for Three Phase Brushless Direct Current (BLDC) Motors
CN202261162U (zh) * 2011-10-14 2012-05-30 峰岹科技(深圳)有限公司 一种爪极电机驱动系统及应用其的风扇驱动系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2048131U (zh) * 1989-05-23 1989-11-22 王荣栓 直流电子风扇
BRPI0406949A (pt) * 2003-01-24 2006-01-03 Tecumseh Products Co Sistema de controle de motor cc sem escova e sem sensor com detecção de rotor travado e parado
TWI414803B (zh) * 2010-03-26 2013-11-11 Ind Tech Res Inst 風扇馬達電動勢量測的裝置及方法
TW201213828A (en) * 2010-09-28 2012-04-01 Metal Ind Res & Dev Ct A Back-EMF measuring method for a multi-phase BLDC motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080273865A1 (en) * 2007-05-01 2008-11-06 Andigilog, Inc. Noise suppresion suppression for hall sensor arrangements
CN101505127A (zh) * 2008-03-20 2009-08-12 天津航天鑫茂稀土机电科技有限公司 一种提高永磁无刷直流电机位置检测精度的方法
US20110084639A1 (en) * 2009-10-08 2011-04-14 Microchip Technology Incorporated Synchronized minimum frequency pulse width modulation drive for sensorless brushless direct current motor
US20120049777A1 (en) * 2010-09-01 2012-03-01 Kern Lynn R Natural Commutation for Three Phase Brushless Direct Current (BLDC) Motors
CN202261162U (zh) * 2011-10-14 2012-05-30 峰岹科技(深圳)有限公司 一种爪极电机驱动系统及应用其的风扇驱动系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241035A (zh) * 2017-05-24 2017-10-10 北京控制工程研究所 一种具有导电环故障容错功能的无刷直流电机驱动系统
CN112994542A (zh) * 2021-04-29 2021-06-18 常州工业职业技术学院 基于换相点换相的无刷直流电机无感控制方法
CN112994542B (zh) * 2021-04-29 2023-07-11 常州工业职业技术学院 基于换相点换相的无刷直流电机无感控制方法

Also Published As

Publication number Publication date
CN103684120A (zh) 2014-03-26
TWI497900B (zh) 2015-08-21
TW201412009A (zh) 2014-03-16
CN103684120B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2014032446A1 (zh) 一种有感无刷直流电机驱动方法
US9088238B2 (en) Method of determining the rotor position of a permanent-magnet motor
US7030582B2 (en) Digital adaptive sensorless commutational drive controller for a brushless DC motor
CN103731076B (zh) 一种基于永磁无刷直流电机的电动自行车控制方法
US9088235B2 (en) Method of determining the rotor position of a permanent-magnet motor
US20130234640A1 (en) Sensorless control of a brushless permanent-magnet motor
WO2015131791A1 (zh) 基于永磁同步传动系统的转子位置获取方法及装置
WO2009049501A1 (fr) Procédé et dispositif de commande de moteur utilisant une modulation de largeur d&#39;impulsion à vecteur spatial
JP5079055B2 (ja) 電力変換装置
CN203691303U (zh) 吸尘器用无位置传感器无刷直流电机控制器
WO2015027558A1 (zh) 一种应用单个霍尔传感器的三相直流无刷电机的控制方法
CN112549986B (zh) 一种电动车启动控制方法
KR100242445B1 (ko) 센서리스 3상 비엘디시 모터의 구동 회로
TWI611656B (zh) 無窗反電動勢偵測之方法及裝置
CN105356796A (zh) 永磁无刷直流电动机无位置传感器控制系统
GB2500013A (en) Sensorless control of a brushless permanent-magnet motor
CN201374671Y (zh) 直流无刷马达的控制器
WO2012174717A1 (zh) 一种单相交流永磁电动机的无传感器动态驱动方法及系统
TW201818644A (zh) 用於電機的控制芯片、控制系統及控制方法
WO2024078595A1 (zh) 无刷直流电机反电动势过零点电压的补偿系统及方法
WO2016026076A1 (zh) 一种空调器及其室外风机起动控制方法和系统
CN1921273A (zh) 无刷直流电机位置检测电路
CN111934588A (zh) 一种无位置传感器无刷直流电机静止状态下转子位置检测系统及方法
GB2599669A (en) A method of controlling a brushless permanent-magnet motor
WO2019242434A1 (zh) 吸尘器、电机的反电势过零检测方法、装置和控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.08.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13833358

Country of ref document: EP

Kind code of ref document: A1